$$
\cos { }^{\circ}
$$

The Delian Quest

John Clark

Saturday, September 4, 2021

Literacy

The process I used to do this work is actually described by Plato. Plato was a grammar teacher and one of the most fundamental concepts you have to realize, as Plato demonstrated in his dialogs, especially Parmenides and Theaetetus, is that all grammar systems are methods of binary recursion which he called Dialectic, words by two's. One starts with names and naming conventions based on this binary, and from there, one has to keep track of their names, build a dictionary with them, and from the items named, discover their relationships. This work is my first attempt, to write factual human literature demonstrating the pairing of our grammar systems to say the same things.
But fundamental to Plato's teaching in grammar is the point being made by the Judeo-Christian Scripture, that all a mind can do, by biological and physical fact, is read and write. We read and write with our whole body, mind and soul. Grammar affords us the ability to predict the results of any behavior, any complexity, and as one will see in this work, compute the results of any given number of variables, free from computational time: output is concurrent with the input. In short, not even the fastest computers today can match Geometry for speed and accuracy: And when one can comprehend the metaphors of the Book, one will realize by doing the math, there are four, and only four, basic systems of grammar, Common Grammar, Arithmetic, Algebra and Geometry: these four make a Grammar Matrix which defines literacy and mental competence. We learn to guide our whole behavior using a binary matrix in order to do our own
work, as Plato would say, or again, our biologically defined job. This Matrix was put into metaphors of the JCS.
This is a grammar book, a helper in learning how to read and write, or as I am want to say, learning how to say what you see.
There is no Trigonometry here, which is not a formal grammar, there is no Cartesian Geometry here, which is not a formal grammar, and there is no Calculus here, which is not a formal grammar. However, what is here is proof that the doctrines promoted by these previously mentioned are provably wrong. Binary recursion produces four, and only four, categories of grammar. Every formal system of grammar lays out, step by step, the pairing of our original Universal Binary with mental and computational behavior.

What is the Delian Quest?

One should, at least attempt, to find an intelligible concept commensurate with certain perceptible things. For example, the Delian Problem, as you probably know, is about the duplication of a cube, or one can say, the manipulation of a three dimensional object so as to produce a given product: in this case, a cube of twice the volume of one given. What is stated is a request for a perceptible result, not in terms of an estimate, or one satisfying some pre-determined precision, but exactly, perfectly. However, one can look at the problem intelligibly and metaphorically, in terms of the definition of what a mind, or again, what man is to become: a symbolic information processor in order to maintain and promote life. A mind, after all, when functional, is the most powerful life support system possible for any form of life. With it one can virtualize the environment and predict results favorable to the continuance of that life. Put into what people call a religious metaphor: "The Testimony of Jesus is the Spirit of Prophecy." Grammar systems, when functional, allow us to predict the
results of any number of givens. Thus, if one is smart enough, they see reasoning, judgment, and prophecy as synonyms.

Intelligibly then, one is looking for the very same result one finds in the metaphor, The Father, the Son, and the Holy Spirit are One. If one is paying attention, we are being presented with another three dimensional request. What is the meaning of that request?
We, as a mind, are evolving to become the most powerful life support system possible, i.e. the most fit for survival. What this means is that we are evolving to become masters of the perceptible through a mind. The foundation of mind is memory. Memory is a virtualization of perception and thus memory, is the foundation of what is called the Intelligible. Intelligence is the ability to manipulate memory for survival. Intelligence is founded upon what is called pattern recognition, or which Plato called the ability to see the similar idea in the many examples. There is no intelligible, no other idea, which demonstrates intelligence, than the recognition of an idea which covers all perceptions. That idea will then eventually end up with many names set into a phrase such as a unit, a thing. This phrase, comprising of two words, is what Plato called Dialectic, or what we call today, Binary. Every thing is defined as a binary relationship between a thing's form, shape, limits, etc., and a thing's relative difference also known as material and material difference: the stuff a thing is made of.
As the Universe is made up of every thing, one can say that the Universe is the product of Binary Recursion. Now, if one were parsing information correctly, they could reduce the story of Adam and Eve into a single metaphorical sentence which denotes how a functional mind works such as: Adam and Eve are a Conjugate Binary Pair, which by Complete Induction and Deduction produce the human race. Fundamental intelligence will eventually arrive at a simple provable fact, as a computer
can produce all of its output as the result of binary recursion, so can any functional mind.

Our mind is defined to master the Universal, the concept of binary and binary recursion, by learning from the particulars in our environment. Thus, it comes naturally, to the more intelligent of a species, to attempt to learn how every particular thing can be judged by that Universal. For example, the metaphor of the Father, Son and Holy Spirit can be transformed into exactly what we are, a mind responsible for a given product such that the product is true. Our Father, or teacher is perception: We, as the student, or Son of perception learn behavior from those perceptions. Thus, both metaphors, Duplication of the Cube, and what is called a religious quest, simply become, Perception determines conception; conception determines will; which is a description of every life support system of a living organism. In short, be it a scientific problem or a mystical problem, our mind sees but one object, one problem to categorize them under: a simple biological fact. This is an example of what Plato meant by the similar idea in the many examples, or again, the definition of any thing, or again, a unit. Dialectic is a term Plato used to denote binary recursion.
A mind is one of a group of life support systems of the body within which we reside; as such it has a well-defined, biologically determined, job to perform and well-defined, physically determined, means of doing that job. As the definition of a thing, aka, a unit, is a binary expression, our job is to learn, all the days of our life, correct and true binary recursion in order to maintain and promote life. Therefore, this work is simply part of my work, given to me, given to us all, by simple biological fact.
When I was very young, I became aware of a problem with humanity as a whole. The human mind is not exactly functional, and people are prone to a life of pointless and bizarre behavior. I, personally, was not being educated by our social systems, and had spent a great deal of time looking for teachers in books.

I was quickly approaching my 40's when I decided to try and learn some Geometry. In order to keep myself motivated, I chose to try and solve a problem called impossible to solve. The greatest minds in history had tried to solve it and gave up on it, therefore, I figured that since it was unsolvable, I would never have an excuse for leaving off my study of geometry. Unsolvable problems, like unrequited love, is one of the best carrots on a stick for our own dumb ass.
Somehow, I started with exactly the right figure to pursue. And somehow, writing equations to figures came naturally to me and it certainly had nothing to do with that ridiculous so called Cartesian Geometry, although of great utility for mechanics, I do not call it a pure mathematic. In geometry, a ruler is not allowed unless one produces one as capable of doing the math by the geometric figure. One does not set up rulers to measure where they will physically put a point. There is no precision in that.

Ten years down the road, I realized that I did solve the problem but that its solution was trivial compared to what I discovered along the way. I had written equations to figures for so long, I started learning how to write figures to equations until I had laid the foundation for Basic Analog Mathematics, or BAM for short. One actually draws the blueprint for computation where the output is concurrent with the input, i.e. no processing time. One can do all of one's logical and analogical processing using simple geometry as exampled in BAM and all of it quite independent of processing time. What put me onto this were apparently aliens, or so I assume, when they deliberately demonstrated the effect while helping to save my life from a very stupid decision I made while driving.

So called Euclidean Geometry, is just a grammar system, like any other, derived from binary recursion, i.e. the recursion of a simple unit. What this means is that it is wholly impossible to claim any other kind of geometry unless one's mind is dysfunctional and incapable of comprehending the fallacies it introduces. As every grammar is a product which expresses simple binary recursion, one cannot claim a different geometry for it would have to be based on something other than the recursion of a unit, i.e. it would leave no math by which to proof it, nor would it be based on the Universal Binary which defines our physical reality. Every form of true mathematics is the result of binary recursion and although this is fundamental to mathematics, it is surprising how many so called mathematicians cannot apply this first principle by which to judge their own words. Non-Euclidean Geometries, every one of them, are based on simple fallacies which their proponents cannot grasp.
The two main focal points of this early study of geometry which was constantly on my mind were that I was learning how to say what I saw. The second was how to establish a unit from which all the rest of the equations were derived. The fact is, that unit has to be expressed in the figure itself, either as one of the segments or a proportion of one of the segments. These two focal points of mind remain as the motivation for my study which will lead to a better understanding of the result, Basic Analog Mathematics or more formal, Basic Analog Grammar.

One of the things I discovered while going back over this project is that some work done and finished in the last update were never updated in the resulting product, i.e. overlooked, for example, the very first series of plates.

Grammar and Naming Conventions

Binary recursion affords us exactly four categories of grammar: Common Grammar, Arithmetic, Algebra and Geometry. This means that biologically
we are afforded a Grammar Matrix by which to process information. This matrix not only allows us to formulate verification by cross-checking, but also allows us to acquire the maximum utility from our experiences. However, the arts to do these processes have been greatly neglected because the human race is still very much mentally incompetent. Plato, himself, suggested using geometry as an aid to follow the concepts presented in common grammar, however, that work, Parmenides has been, by their own admission, over the heads of so called Platonic scholars. One has to learn not only how to correctly construct a figure, but also learn how to pair it with logical grammars. For example, the Arithmetic Naming Convention gives us names which we call numbers. A number is just a name in arithmetic grammar. If one is a complete idiot, they claim that there are different kinds of numbers which come about because of how one uses numbers. Every book on math I have ever read was written by someone who can be judged, by simple grammatical fact, as illiterate.
The Algebraic Naming Convention affords us letters. When we first establish a correspondence between the Arithmetic Naming Convention in our write-up of a figure, we are simply using Algebra as synonyms for Arithmetic. When we convert the Algebraic from being determined by the Arithmetic, which uses a standard naming outside the figure, to the figure as establishing the unit. One will find when they do this, they will see relationships in the figure not revealed by Arithmetic as given in the raw.

In many of the plates I accompany the write up with, one can see the results.
I will go over the previous introductory material for this work, and let it follow this introductory addendum. I will also add an essay addressing objectives in pairing the analogic of geometry to logical grammars such as common grammar, arithmetic and algebra.
All in all, one should develop a very firm objective belief, it is wholly impossible to predict the results of our own behavior, or fulfill the promise
of intelligence, when factually, there is not one correct grammar book on the planet, nor is simple binary recursion being taught anywhere as the foundation of the Grammar Matrix, we are evolving to master. Everywhere on this planet, from the simplest minds to those claimed to be genius; mankind is pre-literate and falls short of the very first principle which defines intelligence, the recognition of simple binary recursion. I, personally, find it odd, that one can even use a computer every day, even program it to perform its functions, and not realize that every thing it does, is the result of binary recursion which means that every possible system of grammar it can parrot, is also the product of binary recursion, or as Plato said, there are two, and only two, parts of speech recursively applied to produce all systems of grammar. The only thing a mind can do, is learn to read and write. Until there is a social recognition and use of our Grammar Matrix as the foundation of our behavior, mankind cannot be said to be more than an illiterate fool, no matter how many awards we give our self to celebrate that very same stupidity.
We are constantly told every moment of our life that our survival hinges on the mastery of simple binary recursion, and it is not a sign of intelligence when one does not recognize it.
The Delian Quest is more than a simple book, more than a single perceptible problem, it is our biological imperative, our Universal Problem, intelligence via the intelligible. Although my book shows that I solved for a particular ability to do cube roots exactly in geometry, it may only faintly help in achieving our Universal Quest, to have dominion over our environment.

The Simile in Multis

Or the Magic of Metaphor
Saturday, September 4, 2021
The greatest form of ignorance is thinking that you know what you provably do not know: Plato. Almost everyone believes that they have the ability to think and reason with some measure of truth, when this is provably not true. These people will not suffer being corrected as they defend themselves over what is true: they suffer the more extreme conditions of mental illness, yet they are also, the most common type of human today.
The ability to comprehend grammar is a biological given. We denote this ability as linguistic functionality of a mind, or any information processor. In the Judeo-Christian Scripture, it is called the light which is the manner in which Plato put the sun in the cave metaphor of the Republic. In that metaphor, Plato was admitting that he, himself, was a prophet as defined in the JCS. That metaphor refers to the fact that all information processing, the life of man, is a physical fact which is based on the definition of a thing as a relative constrained by correlatives, i.e. just like the metaphor of Adam and Eve, it is a binary relationship which Plato called Dialectic, language by two's. This binary is an intelligible which we put into the perceptible using symbols by which we construct grammar systems in order to do our biologically defined job. The difficulty of comprehending the binary metaphor can be gleaned from a history of responses to Plato's dialog called Parmenides. In that dialog Plato suggests to the reader to draw a line segment to follow it. The line segment is a binary, or in the grammar of geometry, the First Principle. We can only name the correlatives and the relatives of a binary construct: these are called nouns and verbs.

The unit binary in geometry, $\stackrel{\mathbf{A}}{\mathbf{B}}$, which gives us the simple sentence and our primitive equation. AB are correlatives, while c is the relative. This is the simplest binary analog example. If one looks to so called Set Theory and Venn Diagrams, one may learn why their writers always fall into contradictions, as Plato and Euclid noted, you do not start diagramming with a circle, but with a simple segment. If you cannot understand Parmenides, you cannot comprehend grammar and binary recursion. To understand this binary, we have to realize that A and B are the shape, limits, or container of c . A, B and c, individually are not things, they are parts of a thing. To put this into a signed number, it would be AcB for Common Grammar and 12c for Arithmetic, however, this name denotes a particular thing. In geometry, if we use the measurement function, it would look like $\mathrm{AcB}=12 \mathrm{c}$, this means that $\mathrm{A}=0, \mathrm{~B}=12$ and c is the coordinate system of reference called linear distance. In this mode, we are simply making synonyms between Common Grammar names and Arithmetic names. If we now take $A c B$ and divide it by $12 c$, we get $\frac{A B}{12}$ and since they are synonyms, we get $\frac{A B}{12}=1$: or we are denoting that $A B$ in Grammar is the same name as 12 in arithmetic. We have paired Common Grammar to Arithmetic, or again, made the two names synonyms.

This is a straightforward transform back to simple counting. When we can do this, we can now comprehend that not only is common grammar and arithmetic simple methods of counting, all grammar systems are, or in other words, every possible system of grammar is effected by simple binary recursion based on the simple definition of a thing, and even our own biology for any particular sense can either abstract a things material difference, or make us aware of a things limits, or boundaries. Binary recursion not only allows us to address memory, but also to manage and
manipulate memory in order for us to do our biologically defined job, to have life, and to have it more abundantly.
The true comprehension of the intelligible unit covers the whole of the perceptible and the intelligible. Binary recursion can only produce a binary result and not the gibberish common to the intellectuals of the world today.

So, before we become too lost, we have to put our binary into a definition of a thing, or unit.
Definition: A thing is any relative constrained by correlatives, or in simple terms, a thing is comprised of a shape with some material in that shape. A thing is a binary construct. The material is not the shape, nor is the shape material. A noun is a container for verbs.
Stupidity is when one takes a noun, which has absolutely no meaning at all for its paradigm is a container, not a material difference, and claims that the particular noun is a container for perceptions, verbs, that they have never acquired, one achieves functional schizophrenia, a schizoid population. What a person knows, retains in memory, is proportional to their own experiences.

When one studies Parmenides by Plato, they will begin to see the confusion in their own mind because the untrained mind confuses this distinction and tends to call the parts of a thing, things of which they are parts, i.e., gibberish. The ability to keep track of the intelligible is what Confucius meant by being aware of the truth of things. We have to always keep in mind that a thing is a binary, and this divides words into two, and only two, parts of speech, nouns and verbs: these are in a binary relationship and every grammar, correctly taught, is aimed at teaching simple binary recursion. Today, everyone simply uses words as a caveman uses a club; they spend a lifetime playing the shell game with words. There is no dictionary of common grammar today, which holds to the first
principles of binary recursion in grammar, i.e., every one of them is written by the functionally illiterate.

Let us take a brief and simple look at metaphor, how it works and what it is.
Let us take a simple grammar system, arithmetic and name a few things with it.

It is just a simple thing, perhaps a tunnel with an upright interior wall someone has sketched out for us. Let us take a moment to think about a common phrase used by some so called intellectuals, self-evident, and self-evident truth. We have a distinction between the perceptible and the intelligible. Which can we actually share with anyone? Can an intelligible ever be self evident? Can a perceptible ever be an intelligible, and vice versa? Which is absolute? Do we all live in the same reality? Do we all have the same memory sets and ability to virtualize our environment? Can we all perceive the same things? But can we all transform those perceptions into the intelligible of memory as everyone else? Which is objective, the perceptible or intelligible, and which is subjective. Which is sharable, and which is not?
Think about the word Truth. Is it perceptible or intelligible? Does one look for truth in the perceptible, claiming as many do to be on a search for truth... and in perceptible things to boot? Is that indicative of the least bit
of intelligence? Truth is the state of being true. Can one thing, in of itself be true? Does anyone, in their right mind, go around claiming, for each particular thing, that it is not different from itself? When told that truth is within, do we start dissecting brains to find it? I know plenty of intellectuals claim that by dissecting the brain they can find language, but then they paid a great deal of money to formalize their insanity. If you cannot paper train a dog, can you have paper trained intellectuals?
We are given perceptible objects, self-evident objects, which any bug, dog looking to piss on a wall, or weed can in some measure perceive, but it is not in the least bit intelligible. We want to mentally manipulate this thing in our mind, virtualize it, and we do that with the aid of grammar systems. Our sketch of the tunnel was our first grammar system. Let us start naming its parts.

I have used the alphabet which is used in the English Common Grammar system to name the limits of each part of our little tunnel. Algebra also uses alphabets in its system of grammar. So, now we have paired two grammar systems, common grammar which is a logic and the geometric figure which is an analogic. Let us pair arithmetic synonyms to our common grammar names.

Well, we find that our tunnel is kind of small, perhaps on a Hollywood scale for some movie. We have all these arithmetic names established as synonyms with common grammar names. And we also see, that this pairing is traditionally elliptical which should not be occurring in a formal system of grammar. This ellipses does not tell us much about the relationships between the parts, that is, ones we cannot see with our eyes. We are getting a hint that there is something which is not self-evident, but which only names can show us is there.
So far, we have taken our common grammar and paired it with our arithmetic grammar, but something is lacking. Our common grammar alphabet can name anything perceptible or intelligible, however, our arithmetic pairing is specific to a predefined system of measure, in this case centimeters. How do we make a pairing with a common grammar and a universal name? We perform an arithmetic operation, division. If we divide any of the two arithmetic names, we find that the particular now becomes a universal because the particular unit of measure now becomes a simple ratio.
 $A B=1.23283 \mathrm{~cm} \quad C D=9.22568 \mathrm{~cm} \quad B C=8.62983 \mathrm{~cm}$

$\frac{A B}{A B}=1.00000$	$\frac{A D}{A B}=2.82843$	$\frac{B D}{A B}=2.64575$
$\frac{A C}{A B}=8.00000$	$\frac{C D}{A B}=7.48331$	$\frac{B C}{A B}=7.00000$

We can now transform the arithmetic pairing with common grammar to a true algebraic pairing. Now we have three universal grammatical expressions, the common grammar, the arithmetic and the algebraic, each telling the reader that the geometric figure is, itself, a universal expression.

So, even though our program is wrong in the way it establishes it assignments, we can fix it by using an operation with the symbols.
We have six different arithmetic names which we can denominate as a unit for the figure. We can try all six, and see what it tells us, but right away we see we have patterns but we also have done something else, something very intelligible, so most do not get it. The simple arithmetic convention of names is comprised of two names, a noun and a verb. Ten cats, five fish, four centimeters. It is a verb noun system. Some call it signed numbers which does not make any sense at all because even numbers are signs, or symbols. Arithmetic, when correctly comprehended, provides us with simple sentences of verb and noun when paired to common grammar. However, when we ratio one name to another, the name for the material difference disappears. Length, weight, color, etc., that is names for some material difference, cancels out as unity. We have gone from the particular to the universal, or metaphor. We have found the similar idea in the many examples when we remove the particular, we get a universal. And if we keep going, we get equations wholly independent of any particular system of grammar or coordinate system of reference: keep this in mind when reading the pseudo intellectual Einsteins of history. These equations are just as valid for dirt as for jelly fish.
The fact that every thing in the Universe is the result of binary recursion also tells us that every thing in the Universe can be compared as ratios. Long grammatical names can be reduced to a much smaller set of ratios.
What we have done, is through grammar, brought to life the intelligible which is not at all perceptible. We slowly learn to go from the simple arithmetic one-to-one correspondence of names to points of perception, or arithmetic identity, to geometric, or metaphorical, identity. Most today are, however, either wholly unaware that there are two types of identity, or binary identity, or they are trying to figure it out. Identity, is itself, a binary conceptual unit. This process allows us to deal with information in the
simplest possible terms, not as particulars, as our senses produce for us, but in the intelligible which only the intelligent can comprehend. The very fact that so called intellectuals today are inventing particular words, and pretend grammar systems as fast as they can, is simply due to the fact that they are illiterate. Binary recursion produces exactly four categories of grammar, common grammar, arithmetic, algebra and geometry, and as it is binary, there is no such thing as a theory of grammar, a theory of numbers, or countless other hot air theories of the pseudo-intellectuals of our day.
Most people, denote themselves as this or that, they make themselves a horde in a box, a collection of empty nouns, gender, religion, politics, when factually, we are simply an information processor working at all times with virtual information through Language turned into four specific grammar systems. Language is Universal and Intelligible, while Grammar is Particular and Perceptible. One cannot teach Language but one can teach, providing they have learnt it, grammar systems. Not having a standard for Language, however, what is called grammar systems today are provably not much more than gibberish.
Plato tried to keep Aristotle close, but it was clear to him, while Aristotle was claiming that metaphor has no place in reasoning, Plato was teaching it as fundamental to thought. As Plato said, you can teach some people for an incredibly long time, but they will never get it. We have the letter of the Law, which is based on arithmetic constructs, but we have the intent of the Law which is metaphorical, something most if not every, judge in the world would deny

The algebraic equation, when correctly written, is independent of any particular application, just like every other grammar.

A grammar matrix makes full use of the absolute and the relative for the express purpose of information management. Mysticism rules the world today, but there is usually someone who spends their life denying its
validity, but never banishing it from their own mind. One of the greatest and most destructive myth of all is that words, symbols, have meaning, and when great fun by Plato was made of that idea in Cratylus, his whole point was missed. If words had, in of themselves, any meaning at all, then it is a fact, they would be wholly useless for information processing. The indexing system is not the indexed perceptions. Meaning is the motivation to effect one's behavior, like hunger, pain, thirst, pleasure, which no word, in the history of the Universe, has ever felt. To ascribe meaning to words is anthropomorphic, the signs of a savage. How is it that even today, one can be sued for things of no meaning while actual things done by our governing bodies go by with a blessing? We mean to do things, which means that meaning is a synonym for planned behavior, which, has not come to fruition for a linguistically functional species on this planet.
Faith is the substance of the things you had hoped for, the evidence of those things not seen, thus faith is prophecy, the ability to virtualize information to be used and is used to bring about the best state of life for one's self, and one's environment. But, which can never be said too much, mankind does not even know what a grammar system is yet, nor does he teach it.

Tell me the world is not sick. Sickness is a degraded state of the body, during evolution a mind is in a degraded state of functionality.
A sign of a very weak mind is confusing a thing with its virtualization, a theme Plato exampled a number of times. Our virtualizations are intelligible, they are not nor ever can be the perceptible, however, one can consider them as maps, thus prophecy, predicting behavior, is map making. The map is not the territory. The intelligible is not the perceptible. We do not eat the recipe, we use the recipe to make a meal. But, no matter how many times you say it, you find a world eating paper, the very same paper they wipe with.

Therefore, we are back at the beginning, the cave paintings, the handmade tools, all of these are the evolution of linguistic ability for the mind can do nothing else but learn to read and write. Analogic, the pairing of behavior to intelligible concepts, was our first and shall be our last, system of grammar. With a simple stroke of the hand to produce a segment, we have recognized the binary foundation of Geometry, which, the fools of today do not recognize, means there is one, and only one, geometry, just like there is one, and only one, common grammar, one and only one arithmetic, and one, and only one algebra. Each of these comprise a symbol set, and the method of recursively applying those symbols to count data.
Arithmetic reasoning is based on a one-to-one correspondence, one limit to one material difference. We use arithmetic to accumulate data from perception. Geometric, or again, metaphorical reasoning, is based on the one to many, the simile in multis, the one idea from the many examples, and this is called pattern recognition. How is it, that today, we have our so-called intellectuals spouting pattern recognition with their mouth, while on the other hand, claiming that there are an infinite number of grammar systems? Sounds like a damned brain dead fool to me.
Intelligence is the ability to construct standards of information processing which can be applied to all data. Ask your computer, does it use binary recursion to do it all, while on the other hand morons like Microsoft claims that there are countless systems of grammar? Do you want to read tomorrow, the files you make today, or do you want Microsoft to tell you that you are no longer allowed access to your own files? Is Microsoft, or any other corporation, educational, religious, or governmental the standard of information processing, or is simple binary recursion which is common to all and yet independent of all as well?

Adam and Eve are a Conjugate Binary Pair, whereby Compete Induction and Deduction, produce the human race. Words without wisdom is the condom which prevents the birth of man.
An illiterate species cannot reliably produce a literate computer. In my following work on Basic Analog Mathematics, you may learn how to draw one which is faster, and more accurate than any computer produced today, providing you have the intelligence to comprehend the work. Wow, instead of simply Geometry, I can call it Transcendental Transfinite Tit Tweaking Hand Computation! Or T-T-T-THC for short: it is legal you know, my stoned government said so.

Naming Convention

Saturday, September 4, 2021

Universally

Every possible grammar is a method of utilizing binary for memory manipulation. And every possible grammar is effected by complete induction and deduction of the unit. A unit, is a universal conjugate binary pair of a relative constrained by correlatives.

At the foundation of every possible grammar is the intelligible unit to formulate each particular grammar; the symbol set it uses and the method by which those symbols are grouped to express names is simply a recursion of that unit; these are the naming convention by which each grammar is based and every proof can resolve the entire chain of usage back to the convention of names, or what Plato called, the First Principle Parts of that grammar, which is the convention of names that grammar is based on, logical and analogical.

Fundamentally, a grammar is an indexing system, which is something you should take away from the above. We can call a grammar system an indexing system, or a memory mapping system but we can never say, if we are sane, that the grammar, or its product, is the data, or information, our actual experiences. Grammar is simply a tool afforded to us by Language. It is the Ultimate Tool.

These two elements of grammar, symbol sets and how we apply recursion to them, which are standards of human behavior for a correct system of grammar and are the standard for sapient psychology. As the human race is still primitive, it has not standardized this yet; close, but still not rational. It cannot be said that the human race is sapient or even civil, not by factual definition. Psychology is commensurate with the principles of grammar which are functionally resident in a mind as
grammar systems, and currently man is claiming ignorance of both. This amounts to calling himself a brainless fool and like a fool, he is happy with that result.

Our two intelligible elements of a unit, or thing, can be expressed as no difference between such and such, which is Arithmetic, and a difference, which is Geometric. For example, we compose symbol sets with standard behaviors of the hand. If I wanted to compose a symbol set which was absolute to those two elements, it would be geometry, stop, go stop, for a line segment. In Logics, we use a many to one in terms of behavior to formulate symbol and the methods to manipulate them. Thus the symbol sets are composed of many behaviors to form letters, numbers, etc. The symbolic convention in Arithmetic requires a one-to-one correspondence in how those symbols can be grouped or indexed to form names. The second element is how we index or group those letters to form particular names for the particular examples of the elements we experience in the things around us. These names must be kept in a dictionary, but there are no standard recognized dictionaries today except, when achieved in the coding particular programs which keeps them from crashing. There is no such care taken in human social behavior.

Common Grammar does not have an ordered system of indexing these, Arithmetic does, while Algebra combines both of the indexing methods used in common grammar and arithmetic for its system. In algebra, the names for the parts of things are unordered, however, the operations, our use of those names, are arithmetically ordered.

Geometry is the remaining grammar which starts with an arithmetic, one-to-one correspondence between the intelligible unit and the behavior of the hand. This means that Geometry is composed of two, and only two, symbols; point and segment, one is perceptible, the line, and one is intelligible, the point. A point which can be within a range is called its locus. When someone using the grammar is stupid, the ascribe relative
differences to points, as if they are perceptible objects instead of boundaries. They have moving points, and an infinite number of them to comprise a line, a plane, and even space itself. They are wholly ignorant of their insanity. When we make something visible, and call it a point, we are not denoting the perceptible, but something intelligible which these people do not get. A circle is just such a locus. Just like every other grammar, geometry functions by complete induction and deduction of a unit. The loci of a process is a simple way of saying things like, for ever P from N to X , etc. When one is simple minded, they actually believe that points move, or that one can ascribe motion to them; but an absolute is never a relative. It is not professional, save by way of conversation, to claim a point moves: such phrases are colloquialisms. One may say it moves only as a colloquialism and claiming a colloquialism in a formal write-up may not be professional and should always be pointed out as such in order not to confuse children.

When one is simple, or is conveying geometry to the simple minded, one does not expect them to comprehend the intelligible, even so called geniuses never did. So, we say, in those cases, for those minds, that geometry is effected by straightedge and compass. This is akin to saying that essays are written with pen or pencil, and paper. We express ourself to the simple minded in terms of the perceptible, but it should always be followed by a more exacting intelligible expression as simple minded people often never even imagine a distinction between perceptible descriptions and intelligible definitions. If you explain it to them, then they have a chance to eventually comprehend something intelligible. If you do not, then you forget that most of us are lazy.

Every grammar system forms names by using names, as a process of recursion, thus we are always seeking names by manipulating names; this is called reasoning, finding the equation, or solving for an equation or describing some thing or process, or a recipe and even instructions. As
grammar is a process of virtualization, the actual product will factually always be a virtual representation, or metaphor. Names, recursively used, produce only names, even in geometry. The first names, however, are symbols which one learns to pair with their own hand, or method of expression such as speech. These name one's own behavior specifically for grammar basics, units of behavior to effect a grammar.

Mystics teach and preach that reality is determined by names when in fact, names are determined by the intelligible mapping of reality. The map does not produce any reality at all. We may produce things by following a map, but the map has not ability, no motivation, to do anything at all. Names, in of themselves, have absolutely no meaning. There is nothing, in all of creation, which is a product of itself. From the Pope to the multiple PhD holders, men preach mysticism about names. Man is very much still a simple minded savage in the universe. The assignment of memory to names is an intelligible standard of mental behavior which is still not taught today; man is still proto-linguistic. The claim that the meaning of a set of symbols is derived from those symbols is the most basic selfreferential fallacy possible and this fallacy is still the foundation of a great deal of social education. This is simply delusion and insanity, a schizophrenic result produced during evolution. A mind has to evolve out of schizophrenia, out of delusion, out of mysticism.

Currently there are no correct grammar books, no correct educational systems, and no correct governments on the earth and the only one that can change that is that person we have slept with every day of our life. Did you know that this makes it wholly impossible not to have spent the greater part of our life not sleeping with a whore? Wow, now I need a shrink. Is that a self-referential fallacy, or simply a tautology?

Casually, we call something an angle, which means what Euclid said it did; things which are angled or again, in some respect proportional other than simply 1. Angle is not a noun until it is defined in terms of our naming
convention. Euclid showed how to do this, but simple minded people, view the angle as if it were a crotch and they describe it as such, the meeting of two legs when it is factually a ratio. Simple minded people, who apparently never consider the obvious, never ponder how it is, in plane geometry, that we ever never have anything more than two dimensions. The word dimension means binary, mentioning by the two-elements of a thing. By recursion of this unit, we say one dimension, meaning a single binary unit, two dimension, meaning 2 , or two binary units etc. Thus a onedimensional object in geometry is a simple segment. One mentions the points, or limits, and one mentions the relative difference called a line for linearity. A line can represent any relative whatsoever. It is completely metaphorical or to be more correct, since words have no meaning, we, ourselves, employ it metaphorically, or always intelligibly. So, when I say grammars are metaphorical, in truth, it means that if we are intelligent, we employ them metaphorically.

Any particular thing can have any number of units to describe it. We make this having possibly as part of grammar. This is one distinction between the perceptible and the intelligible, but if we are not idiots, we do not say that each particular thing exists in so many dimensions, when dimension refers to a naming convention established by Language and expressed in grammars.

Another thing to consider, in the working with things. If I slice and dice a unit, this is geometric, or deduction. When I add unit to unit, this is induction. There is no mystery, save for the ignorant, between induction and deduction. Deduction is Geometric, while induction is Arithmetic. They are not types of reasoning, but types of behavior in regard to things and our use of grammar. How can it ever be possible, when all of information processing is afforded by complete induction and deduction of a unit, to now have this doubled except by mystics and the ignorant? Is reasoning different from itself? Inductive reasoning, deductive reasoning,
positive and negative reasoning, are phrases for those who play with words, but are wholly devoid of intelligence. If, when I turn my computer on, it does something today differently than yesterday, I need to fix it, or junk it. For example, I have a raid 5 system for the boob tube which today has a red light on that will not go away. So far, raid 5 means I have lost no data. So, I have to back it up before I pull and replace the defective drive before further failure makes it impossible. This means I will not be able to watch reruns and I might become emotionally damaged if I cannot hear Walter tell me about flying monkeys.

Due to human simplicity brought about by our evolution, people confuse the name of a thing with the convention of names all of the time. For example, mystics teach that there are such things as real numbers, whole numbers, rational numbers, irrational numbers, imaginary numbers positive and negative numbers; all of which confuse a name and a naming convention with some particular use of it. This is mysticism in action. How many times can someone read Plato, and learn that the relative difference between terms, (such as lines and points) cannot be predicated of each other? It is wholly impossible for a name to be irrational; names are how we rationalize, or name. When you use a name constructed in an arithmetic convention of names to name a geometric process, then it is not the result which is irrational, it is the user who claims that induction is equal to deduction. We recursively name our only two working convents in binary; which was once put as, the point, or limit, or arithmetic, is that which has no part, or geometric; etc. My point is, a lot of teaching goes into making children remember half-baked, delusional rubbish. Teaching is supposed to unconfused children, not habituate them to it. I do know that forcing children to repeat rubbish as part of their social structure does cause mental damage and it is part of our social structure today.

Deduction, aka Geometric reasoning, or proportional, or again metaphorical processing has a very decided effect on memory requirements, it effects a kind of memory compression. Things are not grouped Arithmetically, one-to-one, but in accordance with some system of measure, of which there are actually few. It is also called thinking in accordance with the definition of a thing. Reasoning is factually geometric, or metaphorical when a mind is functional. It is wholly impossible to reason manipulating names arithmetically unless one has infinite memory, and infinite patients as one can do nothing with that information. Arithmetic is a method of assigning names, not manipulating them. I use the terms Arithmetic and Geometric, in this respect, in accordance with the original convention of name assignment, not the operations on the resulting names; every grammar system makes available the use of both for operations on the names created by these conventions.

Particularly

I have always looked at the Delian Quest as a unique type of novel. But in the writing of that novel, one can say that all the work to this point is sketched out, not in a finished format. During the work, I was learning about naming conventions, and I was very aware of it, but now, in the finishing of this work, I have to lay down what I understand of that convention. For example, we have induction and deduction. Deduction is parsing what we already have, where induction is using what we have to acquire more. In geometry, it can look like this.

I can start naming relative difference, or the part, in terms of some other given system of arithmetic naming, or I can start by naming it simply as 1 , making it the unit. If I start with two things, I have to name them relative to some other standard, or I can name one or the other relative and the remaining one as a proportion to it. This will produce results which look
different but that difference is wholly determined by the naming convention. When one renders a definition from a chain of reasoning, the resulting definitions appear different, yet that difference is wholly determined by the naming convention we started with.

I can name AB as 1 , which means that point C is an induction, in ratio to $A B$ and likewise if $C B$ is named 1 , then $A C$ is a ratio to it. If I name $A C$ as 36 and CB as 14 , I am using an external unit and the process is inductive. If I name AC 1 , the CB is a ratio to AC then I am doing a deductive process upon the names.

Induction and Deduction

One of the things one should ultimately arrive at in the distinction between induction and deduction, and how one writes up a plate.

Arithmetic equality relies on the Arithmetic system of grammar and so one will always have numbers which are no more than arithmetic names. The Geometric system of grammar relies on proportion which does not have arithmetic names, it has proportion. We learn proportion by using Arithmetic names, but proportion is actually independent of them. Every grammar uses both Arithmetic equality and Geometric equality; the one is not, nor ever can be the other, a relative is never an absolute and this fact has everything to do with Law. When primitive people write Laws, they mistake the Arithmetic with the Geometric, the absolute with the relative.

For example; 2 is an Arithmetic Name, however, in common grammar we can distinguish between two different operations it can name; two cats, or twice denied. Two cats, or twice the standard by which a thing is determined to be a cat, or twice denied, two judgments based on one or two standards, or units of judgment.

Now if you are really stupid, you Cantor your speech claiming that there are two kinds of numbers, Cardinal and Ordinal. It is wholly impossible to
have two kinds of numbers as a number is no more than an arithmetic name. So, the Cantor's of grammar are mythologist, it is not long before they start multiplying how many kinds of numbers one has, just like those who claim that certain names can effect magical spells and inCantations (sic).

Thus, there are no irrational numbers, there are results which can be put into arithmetic names, and results which can only be put into geometric names. We have a grammar matrix to function by because we have two elements of every thing to name and thus we formulate four distinct systems of grammar all of which use the unit, but simply express that unit using four distinct behaviors to construct the symbol sets and the methods those symbols are manipulated.

Arithmetic is for particular examples, for example, assigning names, while Geometric is for the universal, or every member of a class. Judgment is then, and always has been, Geometric, or proportional, or again, metaphorical. Line upon line; Precept upon precept.

Thus, the simple minded manipulate names arithmetically, the more complex a mind is, the more, as Plato noted, that mind sees and uses, the similar idea in the many examples, or metaphorically, proportionally, just as the Bible is written.

A correct grammar book is a book using Geometry, proportional, metaphorical, reasoning. A geometry book has to use the grammar matrix, all four grammar systems.

Notes

And so to be complete with the demonstrations, I should example each of these choices and how it changes the APPEARANCE of the definition; not to mention cleaning up my past write-ups which were rather awkward. I may not clean them all up or catch everything as I have no help in these projects of mine. Not many people actually consider that the only path to
salvation for mankind is learning how to do, and doing, the work of the mind, our own work. It is a learned process which is currently not even taught. I do not call anyone a teacher of a thing who is ignorant of what we are and why we are. We are simply another life support system of the body with a well defined job to do and well defined means of doing it. Unfortunately, this well defined thing is not often discovered, nor is it discoverable by the blind, or mentally handicapped which is just what happens during evolution.

When starting out in exploring, one may ponder these issues, but since one is running to learn, they often get put aside until one gets to where one is going, and then one has to clean up the mess in the end, just like building anything.

If one has ever seen one or more of the skits, the Anal Carpenter, it is something to consider.

Thus, in terms of the naming conventions in geometry, there are no actual options for mistake, the range of options arrive in the basket of the logical system of grammar we use to pair with geometry. We can name things in the simple arithmetic, implying some standard unit, of which there are many, or we can name every thing in terms of proportion. We then have 2 square ways to name our geometric elements in grammar and I will example these throughout the work. The equations will look different for each one of these ways, and how they are mixed in the write-up, but the final equations should be true to the choice of the naming conventions used at the start.

So, I have a lot of work in this final version, the conclusion of my Delian Quest as a particular Novel, but as a living behavior, it can never end until I, myself, expire.

The four horseman, four ways we ride to measure the four corners of the earth are simply four naming conventions used in four grammar
systems or the single grammar matrix of the virtual reality in our mind as an image of God, or reality itself.

I can also say that the Delian Quest, like all initial investigations and learning, displays a lot of thrashing about. This leaves open a final work, which is demonstrated in a highly organized fashion. BAM, or BAG is more on that lines, but I have in mind a much shorter work which I currently call Hominid's search for the Holy Grail. In this work, the end is already a given. However, I do not think anyone suspects that a single equation can denote the whole of grammatical manipulation, which it does.

The Delian Quest: Original Submission

Sunday, January 19, 2020
The following is a copy of the statistics of a document written long ago. I wrote it using Ami Pro, Windows Write, or Word 2, at one time had Word 6 save it another time. I eventually made Word 2003 my standard word processor. This is the first figure I started with and it eventually led not only to the Delian solution but to Basic Analog Mathematics and my understand that every possible grammar is a binary expression.
Filename: DELIAN.DOC
Directory: E: \My Documents $\backslash 1989$
Template: C:\Users \John \AppData \Roaming \backslash Microsoft \backslash Templates \backslash Normal.dot
Title:
Subject:
Author: John J. Clark
Keywords:
Comments:
Creation Date: 5/9/1992 4:32:00 PM
Change Number: 26
Last Saved On: 10/6/1992 7:23:00 AM
Last Saved By: John J. Clark
Total Editing Time: 339 Minutes
Last Printed On: 10/2/2019 10:29:00 AM
As of Last Complete Printing
Number of Pages: 19
Number of Words: 2,019 (approx.)
Number of Characters: 9,553 (approx.)

What it tells me is that I wrote it using an operating system prior to Windows 3 and may have originally written using Ami Pro which I quickly abandoned when I purchased Word. The formatting, however, leans towards Word 2. It tells me that I started learning geometry at about the age of 38 never having taken the topic in school. It was doing my drawing by hand at the time, the first drawing program I used was TommyCad. I later found Geometer's Sketchpad. Early on, I was using Word 2 to construct data table's which I would save to a text document picked up by QBasic to do the math, and then pass it back to Word. I wrote macro's for that. I did that until Mathcad sent me an invitation to buy that program and have used it ever since.

I suspect Mathcad sent me the offer as Microsoft approached me first to become a beta tester, probably based on the machine I had just purchased which ran at a blazing 25 mhz , which I later dropped out of because of the stupid way they ran the program, the original version of Dos 6 completely ate my hard drive and I lost a lot of work. I was using one of those sewing machine boxed computers at the time to carry it to and from work as I worked at G.M. I was the first G.M. factory worker to carry a pc in and out of the plant which led to a Union settlement allowing employees to bring their own computers in and out.

The following table is from Wikipedia.

I wrote the letter as I believed that a real geometer should work on the problem of cube duplication from this starting point as I have never even had geometry in school. However, I was surprised to find that these publications only expected such letters from professors instead of factory workers. No matter, once I had the combination of a drawing program and Mathcad, I could get more involved in simply learning. When I got these two together, I started putting some of my original drawing's on paper into a formal digital diary.

I have posted my work on AOL, personal free websites, even shareware CD rom's, mostly because I was looking for a kindred study flame, which never happened.

Before the Delian Quest, I pondered the issue of Who wrote the Book of John? I found that all evidence points to the wife of Christ, Mary and that enough still remains in the text to make a good case of it as it was deliberately altered to hide the fact. There is evidence to support the idea that Christ started to perform at his own wedding, which has a root in Law. His wife evidently became a companion prophet. There is also evidence that Peter had his eye on her which never panned out.

Then I decided to tackle the Name of the Beast 666. The depth of that solution evolved over years. After these, I decided to find another impossible problem to solve when I ran into the Delian Problem. My studies started in my childhood by putting before myself specific questions. Then for a long time just reading any book I could come up with. Then I started targeting so called impossible problems. My original approach to the Bible was a result of a sign post in a lucid dream. My first reaction was that it was rubbish, but it quickly faded when I realized, rather quickly, it was using words in a manner I had never seen before, it was deliberately testing the reader. Later, I found another writer who wrote in a similar fashion, Plato.

All of this tells me that I have been in a state of cognitive dissonance before I started my work on the Number of His Name and geometry as I should have been dead prior to this, before I came back to Michigan.

At this time, I am want to do another revision of the Delian Quest and have decided to put the opening as I had done before the 2015 release.

THE DELIAN SOLUTION

I do not view the Delian Problem in the traditional sense, that is, as the problem of duplicating a cube. I view the problem of duplication as only one application for a Geometric process of general cube root abstraction. Truisms and processes are there to be discovered, if they are at all possible, it is possible to discover them. The Delian Problem is, fo the correct Geometric figure, just one application of that figure. But then I am not a Geometer. In fact I dropped out of College to work on some items that I think are of particular importance, and tracing down the solution of the Delian Problem was just an example of some of the researches for that work. I have not even studied much of applied Geometry, I have been working on the theoretical aspects of it. Therefore this is an amateurs presentation and is not anything resembling a "finished" demonstration. The preceding figures are, however, technically correct abstractions.

While doing my first once over of the Elements, I found the propositions in Book 2 relating to the equality of complements. It occurred to me that since this was the correct method in which to manipulate area, an extension of it could be used to manipulate volume. This proved, after much searching, to be true. An extension of the figure can be used to abstract cube roots as well.

To cube a three dimensional rectilineal figure one has to start with the concepts of area manipulation on the two dimensional level. Starting with the rectangle in plate 1, one can see step by step, through plate 4, how to manipulate the figure while retaining the same area. If you study the Elements you will find a more complete set of abstracts to learn from. The method of squaring two sides is an abstract from this method.

Plate 1

Plate 2

Plate 3

Plate 4

The question becomes- "Can the figure be extended to work with three sides and retain the same volume?"

I will take a short side trip. Turn to plate 5 . Given a square and any point on the diagonal ray off the square, that is, extended outside of that square, divide two sides of that square into identical ratios with a ray from the chosen point. Plate 5 demonstrates the solution. If you play with the figure long enough you will find that it is a direct abstract from the figure that yields square roots. Length $A B=C D, B C=D E$. This is not a trivial matter, for to perform cubic reductions we will have to find a method to divide this square into three such segments that have a special relationship.

Let us take a "bar" as in P. 6 and put two of its sides back to back as in P.7. Also lay out a 45 degree angle, as that is what our cube will have to end with. In P. 8 we lay out where the cube is suppose to take place and we place in the two rays that will make the respective area manipulations. After several of these figures we will note that the two angles are indeed related because it always takes exactly two divisions to cube the figure, however, in this configuration I cannot gather any hint of another relationship between these two rays, or their angles.

P. 6

P. 8

P. 9

If I place both rays on the same side of the figure, I not only save paper, I also see a relationship, $A=D, B=E, C=F$, and by working with these segments find that the square root of $A C=B$.

P. $10 \mathrm{~A}=\mathrm{D}, \mathrm{B}=\mathrm{E}, \mathrm{C}=\mathrm{F}$
P. 11

With a little more playing around, I note also that I can put a "hat" on the figure and that rays from the corners of the square under that figure will always converge on that semicircle. The immediate implication is that, not only is the square root related to the right angle, but the cube root as well.

Let us work with the square in a right angle for a moment In P 12 we find the answer to the question-"How do I find the square in a righ triangle?"

In Plates 13 through 16, we find the answer to the question-"Given a length of line, and another that must be one third or less of the first, what is the righ angle which contains this angle which contains this segment as one side of could be tat could be stated echnically than this, but-

In P. 17 We see that "The square in a right triangle is equal to the square of the remaining wo segments, and in a duplicate ratio and"
P. 18 "The three riangles on the sides of that square are in a triplicate ratio to those sides of that square.
P. 19 Shows another square that can be formed using the same segments as the square in a right triangle. This square will be used in demonstrating another triplicate ratio, and that is the Pythagorean principle for cube roots.

Plate 20 Demonstrates the triple implication of the Pythagorean theorem in the cubic expression. It will also do well to note that the three squares in continued proportion on the diagonal of the square under the right angle major have the same relationship as the segments on the hypotenuse of that given right angle.

There is one more triple proportion to look at. Plate 21.

All three semicircles intersect the semicircle which we draw our right angle in at the same point (A). From the center of the square under our eventual right angle (E) until they all intersect on that semicircle (A) they will produce a 90 degree angle divided into a 45 in the semicircle that is used for the square root application. I will leave it to the inquisitive reader to find the proper method of using this information to find a the method to find the intersect of the two rays under this figure. One will note that I have written in the progression along the bottom of the plate of the lengths involved.

Let us turn now to a simple but very productive diagram, Plate 22 .

How close is the segment $A B$ to the cube root of the circle given as a sphere? Is it well within pencil tolerances?

What approximate cube root figure is the segment CB a part of? (for abstract see Plate 12.)

On Plate 24 the radius for the circle OP is given by $M N$.

One of the items that one will find in working with the figure is that it is infinitely recursive, by adding a couple of lines in the right place, one has another cubic relationship.

How do we test for accuracy of our cubic results? It will be noted that on the line that is the cube root of $B^{2} A$ (if you have missed it, the figure gives both roots, $A^{2} B$ and $B^{2} A$) there is a series of intersects, (three of them). When these intersects form a line parallel to the base of the figure then the result is accurate, this should have been abstracted, and used for proof, during one's play with P. 7 and P.8.

A great number of propositions relating to the figure can be generated, of which I shall not here produce any Doubling of the cube came very early in my search, the difficult part was in learning how to abstract any root. Now I have much work to do, and much learning to do to complete that work and I hope you have fun with the figure. J.C

The following is a list of returns for publication of the previous material. The first one is interesting in that the writer claims not to have understood the preceding document.

GEOMETRIAE DEDICATA

Managing Editors
K. StRambach

Mathematisches Institut
Bismarckstr. 1 1/2
D-8520 Eriangen
R. Germany
elephone: (0)9131-8525(X)
or 852502
F. D. VELDKANW
blemakch Mm4uw
ostbus 80.010
3508 TA Utrecht
Nene: (0)30-531519

Dear Mr. Clark,

From Kluwer academic publishers I received your
manuscript The Delian Solution which they presumed you wanted to submit
for Geometriae Dedicata. It is not clear to me what these
considerations on elementary Euclidean geometry are aiming at.
Geometriae Dedicata is a journal for research in modern geometry and
related fields. I think it is not the place to publish your manuscript,
which we cannot accept therefore. I return the three copies under separated
cover.
Sincerely,
F.D. Veldkamp

American Mathematical Society

PO. Box 6248, Providence, Rhode Island 02940 USA Telephone (401) 272-9500 Telex 797192, FAX 401-331-3842

Location: 201 Charles Street Providence, RI
02904

December 8, 1989

Professor Professor John J. Clark
Dear Professor Clark,

I recently received your manuscript entitied "The Delian solution" for consideration in BULLETIN (NEW SERIES) OF THE AMERICAN MATHEMATICAL SOCIETY. Please note that I am forwarding your paper to Professor Roger E. Howe (Department of Matheniatics, Yale University, New Haven. CT 06520) and that you should address all your inquiries to the editor

Sincerely yours,

Christine Vendettuoli
Publications Department

American Mathematical Society

Roger E. Howe

Bulletin
Department of Mathematics
Yale University
Editorial Committee
Box 2155, Yale Station
New Haven, CT 06520

December 14, 1989

Dear Professor Clark:

I regret to inform you that we are unable to accept your paper, "The Delian solution" for publication in the Bulletin. Our reviewers felt that the results are not of sufficient general interest or significance to warrant publication in the Bulletin.

REH/med

JOURNAL OF GEOMETRY

Editor's Office

Prof. Dr. H.-J. Kroll

Mathematisches Institut
Technische Universitiit MUnchen
Arcisstr. 21

D-8000 MUnchen 2

January 17, 1990

Dear Professor Clark,
Thank you very much for your manuscript on "THE DELIAN SOLUTION".
Date of receipt is January 12, 1990. As soon as we have the referee's report at hand, you will receive further information

Yours sincerely

H.-J. Kroll

Expert opinion on the article "The Delian Solution" of John J. Clark
You can find some interesting statements in the submitted version of this article but exact constructions are missing Mostly it's not clear where some points or lines come from. Therefore the proofs also cannot be examined very good And for the more complicated constructions it's very difficult to follow the ideas of the author. Moreover the relation between the single statements and the opening problem doesn't come out very good.

All together the article in the given version is not understandable

JOURNAL OF GEOM TRY
Editor's Office
München, 1 June 1990
Dear Professor Clark
Your paper "The Delian Solution" submitted to the Journal of Geometry is hereby regrettably returned by the decision of the reviewers.

We are very sorry that we could not be of any help to you
Sincerely yours,
H.-J. Kroll
(This one is a form letter.)

$\Longleftarrow \sim \sim \sim$ société mathématique de france

paris, le
BULLETIN
n. réf
a l'attention de
v. réf

Cher(e) collègue,
Le Comité de Rédacton du Bulletin de la Société Mathématique de France n'a pas pu accepter votre article intitulé

Malgré l'intérêt de votre travail, celui-ci ne correspond pas à l'esprit de notre Revue destinée à un large public de mathématiciens et non à des lecteurs trop spécialisés.

Nous vous prions d'agréer, cher(e) collégue, l'expression de nos sentiments les meilleurs
P. SCHAPIRA

Directeur de la Publication
P.J. : Manuscrit

I was expecting at least some type of guidance, or cogent response, other than, after stating that I was not a geometer, everyone insisted on rubbing it in by calling me a professor, which I found very rude.

Unit := 1
Given.
$\begin{array}{ll}\text { AB := 8.8900 } & \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \\ \text { BC := 3.28600 } & \mathbf{N}_{\mathbf{2}}:=\mathbf{4}\end{array}$

062092R1

Descriptions.

There are many ways to take the square root of any two differences this is one of them. It is a very old figure, one can find it in Euclid's Elements. One can then say, that the Delian Quest starts with a given, The Elements of Euclid. What many do not realize, is the foundation of that work, the concept that Geometry is just another binary grammar system, traces back to Plato.
$\mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}} \quad \mathbf{B D}=5.404863$

Now, let us fold BA over BC and make what is called a numbered line.

A Duplicate Ratio

0	1	N_{1}	N_{2}
$N_{1}=2.88094$			
$N_{2}=4.00000$			

As the first figure is a given, all we have to do to show how to take the square root of two numbers on a number line is simply unfold it. I am going to unfold it to the perpendicular to the point of origin. And now we can take advantage of all the simple resulting equations for the two numbers and the result.

$$
\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}=2.828427 \quad \mathbf{R}:=\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}
$$

Definitions.
$R-\sqrt{N_{1} \cdot N_{2}}=0 \quad \frac{\mathbf{R}^{2}}{\mathbf{N}_{1}}-N_{2}=0 \quad \frac{\mathbf{R}^{2}}{\mathbf{N}_{2}}-\mathbf{N}_{1}=0$
The numbered line is not a new idea. Numbers are just names developed as the Arithmetic Naming Convention. We can also use Common Grammar to name our points as has been done for thousands of years. A line with the points given names has always been a part of formal Geometry.

Unit := 1
Given.
N_{1} := 4
$\mathbf{N}_{2}:=2$

062092R2

Descriptions.
It really does not make much of a difference if unfold I fold my figure, certainly not in the result. The next question is, can I take a third thing and put it proportionally at point A?
$\mathbf{R}:=\sqrt{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}$

Definitions.

$$
\begin{aligned}
& \sqrt{N_{1} \cdot N_{2}}=2.828427 \\
& \frac{\mathbf{R}^{2}}{N_{1}}-N_{2}=0 \quad \frac{\mathbf{R}^{2}}{\mathbf{N}_{2}}-N_{1}=0
\end{aligned}
$$

Unit := 1
Given.
\mathbf{N}_{1} := 4
\mathbf{N}_{2} := 2

062092R3

Descriptions.

To add any number of differences,
proportionally to the first two given, we simply take half of it and project from the root of the first two to find our two radii from the center which will place that third difference on the line All the while, we se wwe have be producing duplicate ratios. It then follows that any number proportional ratios is going to depend on the square root of term pairs.

The whole exercise is then, given two differences and then find the point of similarity from which they are set into this proportional series.
$\mathbf{A}:=\sqrt{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}$
Definitions.
$\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}=\mathbf{2 . 8 2 8 4 2 7}$
$\mathrm{A}-\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0}$
$\frac{A^{2}}{N_{1}}-N_{2}=0 \quad \frac{A^{2}}{N_{2}}-N_{1}=0$

A Duplicate Ratio

$1=1.00000$
$\mathrm{N}_{1}=2.00000$
$\mathrm{N}_{2}=4.00000$
$\sqrt{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}=2.82843$
$\mathrm{A}=\mathbf{2 . 8 2 8 4 3}$
$\sqrt{\mathbf{N}_{1} \cdot \mathrm{~N}_{2}}-\mathrm{A}=0.00000$
$\frac{\mathrm{A}^{2}}{\mathrm{~N}_{1}}-\mathrm{N}_{2}=0.00000$
$\frac{\mathrm{A}^{2}}{\mathrm{~N}_{2}}-\mathrm{N}_{1}=0.00000$
$\mathrm{N}_{3}=1.19210$
$B C=2.42850 \mathrm{~cm}$
$D_{1}=2.03717 \mathrm{~cm}$
$\frac{\mathrm{BC}}{\mathrm{D} 1}=1.19210$
$B=2.29450$
$B=2.29450$
$C=3.48660$
$\frac{N_{1}}{N_{2}}=0.50000$

$$
\begin{array}{ll}
\frac{B}{N_{1}}=1.14725 & \frac{N_{1}}{C}=0.57363 \\
\frac{N_{2}}{C}=1.14725 & \frac{B}{N_{0}}=0.57363
\end{array}
$$

062092R4
Given $\mathrm{DE}, \mathrm{AB}, \mathrm{BC}$, place DE on AC such that with some point J, as $A B$: AD :: AE : AC and as AD : AJ :: AJ :
AE and as AB : AJ :: AJ : AC

Descriptions.

$\mathbf{A C}:=\mathbf{N}_{\mathbf{1}}+\mathbf{B C}$
$\mathbf{A F}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A G}:=\mathbf{A C} \quad \mathbf{A J}:=\sqrt{\mathbf{A F} \cdot \mathbf{A G}}$
$\mathbf{A L}:=\frac{\mathbf{D E}}{2} \quad \mathbf{J L}:=\sqrt{\mathbf{A J} \mathbf{J}^{2}+\mathbf{A L}^{2}}$
$\mathbf{A D}:=\mathbf{J L}-\mathbf{A L} \quad \mathbf{A E}:=\mathbf{J L}+\mathbf{A L}$
$\frac{N_{1}}{A D}-\frac{A E}{A C}=0 \quad \frac{A D}{A J}-\frac{A J}{A E}=0 \quad \frac{N_{1}}{A J}-\frac{A J}{A C}=0 \quad$ etc.,

Definitions

$\mathrm{AC}=\mathbf{3 . 7 4 2 0 6} \quad \mathrm{AJ}=\mathbf{1 . 6 6 6 3 8 3} \quad \mathrm{AL}=\mathbf{0 . 5 2 5}$
 $A D=1.222129 \quad A E=2.272129$

Unit, external
Given.
$\mathbf{N}_{1}:=.74206$
$\mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathrm{BC}:=\mathbf{N}_{\mathbf{2}}$
$\mathbf{N}_{\mathbf{3}}:=\mathbf{1 . 0 5} \quad \mathbf{D E}:=\mathbf{N}_{\mathbf{3}}$

A Duplicate Ratio

$C^{\circ} \cos ^{28}$
Definitions
$\mathbf{A C}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0}$
$\mathbf{A F}-\mathbf{N}_{\mathbf{1}}=\mathbf{0}$
$\mathbf{A G}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0}$
$\mathbf{A J}-\sqrt{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}=\mathbf{0}$
$\mathrm{AL}-\frac{\mathrm{N}_{3}}{2}=0$
$\mathrm{JL}-\frac{\sqrt{\left(4 \cdot \mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{1}+\mathrm{N}_{3}{ }^{2}\right)}}{2}=0$
$A D-\frac{\sqrt{4 \cdot N_{1}{ }^{2}+4 \cdot N_{1} \cdot N_{2}+N_{3}{ }^{2}}-N_{3}}{2}=0$
$A E-\frac{N_{3}+\sqrt{4 \cdot N_{1}{ }^{2}+4 \cdot N_{1} \cdot N_{2}+N_{3}{ }^{2}}}{2}=0$

$\cos ^{\circ} 4$

$Z=1.65272$
4. $\mathrm{N}_{1}{ }^{2}-\mathrm{Z}=0.00000$ $\mathrm{Y}=2.25442$
$\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{Y}=0.00000$
$\mathrm{X}=9.01766$
$4 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2} \cdot \mathrm{X}=0.00000$
$\mathrm{w}=2.05537$
$\mathrm{N}_{3}{ }^{2}$-W $=0.00000$
$4 \cdot N_{1}{ }^{2}+4 \cdot N_{1} \cdot N_{2}+N_{3}{ }^{2}=12.72575 \quad \frac{N_{3}+\sqrt{\left(4 \cdot N_{1}{ }^{2}+4 \cdot N_{1} \cdot N_{2}+N_{3}{ }^{2}\right)}}{2}-E=0.00000$

062092R5
Given $\mathrm{DE}, \mathrm{AB}, \mathrm{BC}$, place DE on AC such that with some point J, as $A B$: AD :: AE : AC and as AD : AJ :: AJ :
AE and as AB : AJ :: AJ : AC.

Definitions

$\mathrm{AC}:=1+\mathrm{N}_{1} \quad \mathrm{AC}=4.9828$
AF := AB
AF $=1$
$\mathbf{A G}:=\left(\mathbf{A B}+\mathbf{N}_{\mathbf{1}}\right) \quad \mathbf{A G}=4.9828$
$\mathbf{A J}:=\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{A B}\right)} \quad$ AJ $=\mathbf{2 . 2 3 2 2 1 9}$
AL $:=\frac{\mathbf{N}_{\mathbf{2}}}{2} \quad$ AL $=0.405455$
$\mathrm{JL}:=\frac{\sqrt{\left(\mathrm{N}_{\mathbf{2}}{ }^{2}+4 \cdot \mathrm{~N}_{1}+4\right)}}{2} \quad \mathrm{JL}=2.268743$
$A D:=\frac{\sqrt{\left(N_{2}{ }^{2}+4 \cdot N_{1}+4\right)}-N_{2}}{2}$
$\mathrm{AE}:=\frac{\mathbf{N}_{\mathbf{2}}+\sqrt{\left(\mathbf{N}_{\mathbf{2}}{ }^{2}+4 \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{4}\right)}}{2}$
$A D=1.863288$
$\mathrm{AE}=2.674198$
$\frac{A B}{A D}-\frac{A E}{A C}=0 \quad \frac{A D}{A J}-\frac{A J}{A E}=0$
$\frac{\mathbf{A B}}{\mathbf{A J}}-\frac{\mathbf{A J}}{\mathbf{A C}}=\mathbf{0}$

Unit.
AB := 1
Given.

$$
\begin{array}{ll}
\mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 9 8 2 8 0} & \mathbf{B C}:=\mathbf{N}_{\mathbf{1}} \\
\mathbf{N}_{\mathbf{2}}:=. \mathbf{8 1 0 9 1} & \text { DE:= } \mathbf{N}_{\mathbf{2}}
\end{array}
$$

A Duplicate Ratio

$\sim_{062092 R 6}^{0}$

We may now be ready to come to an outline of the whole affair.

$\sim_{062092 R 6}^{\infty}$

$\mathrm{AB}=2.13783 \mathrm{~cm}$ $A D=3.25040 \mathrm{~cm}$ $\mathrm{AJ}=4.16849 \mathrm{~cm}$ $\mathrm{AE}=5.34590 \mathrm{~cm}$ $\mathrm{AC}=8.12800 \mathrm{~cm}$
$\frac{\mathrm{AB}}{\mathrm{AD}}=0.65771$
$\frac{\mathrm{AD}}{\mathrm{AC}}=0.65771$
$\frac{\mathrm{AD}}{\mathrm{AJ}}=0.77975$
$\frac{\mathrm{AJ}}{\mathrm{AE}}=0.77975$
$\frac{A B}{A J}=0.51286$
$\frac{A J}{A C}=0.51286$

$\sim_{n=2}^{0}$
062092R6

BAG for 062092
$\mathrm{N}_{1}=4.27962$
$\mathrm{N}_{2}=2.48336$
$A B=1.00000 \quad A F=1.00000$
$A C=5.27962 \quad A G=5.27962$
AJ $=2.29774$
$\sqrt{\text { AB•AG-AJ }}=0.00000$
AL $=1.24168$
$\mathrm{JL}=2.61178$
$\sqrt{\mathrm{AJ}^{2}+\mathrm{AL}^{2}}-\mathrm{JL}=0.00000$ $\mathrm{AD}=1.37010$
AD-JL-AL $=0.00000$ AE $=3.85346$ AE-(JL+AL) $=0.00000$

Starting with a simple given, we will end up prepared to formulat Basic Analog Mathematics, i.e., write Geometric Figures which can compute any mathematical and any logical result which, as the output is concurrent with the input, independent of time, that is, process information in no time whatsoever, i.e., computation independent of time. And it is all the result of binary recursion. Every possible grammar is the product of binary recursion, and, as one can plainly see, it is possible to produce one's results, quite independent of time. Therefore, the ability to predict the future, using binary recursion, is not only possible, one can say, it is factually proven. Our biologically defined job, to learn to predict the results of any number of givens is a proven fact and provably possible.

081292
Given AB, how close is BJ to the cube root of $A B$ taken as a sphere?

Descriptions.

$$
\begin{array}{ll}
\mathbf{B H}:=\sqrt{\mathbf{2} \cdot \mathbf{A B}^{2}} & \mathbf{C G}:=\frac{\mathbf{A B}^{2}}{\mathbf{B H}} \\
\mathbf{A G}:=\sqrt{\mathbf{C G}^{2}+(\mathbf{A B}+\mathbf{C G})^{2}} & \mathbf{D G}:=\mathbf{C G} \cdot \frac{\mathbf{2 A B}}{\mathbf{A G}} \\
\mathbf{G J}:=\sqrt{\mathbf{A B}^{2}-\mathbf{D G}^{\mathbf{2}}} \quad \mathbf{A E}:=\frac{(\mathbf{A B}+\mathbf{C G}) \cdot(\mathbf{A G}+\mathbf{G J})}{\mathbf{A G}} \\
\mathbf{E J}:=\frac{\mathbf{C G} \cdot \mathbf{A E}}{\mathbf{A B}+\mathbf{C G}} \quad \mathbf{B J}:=\sqrt{\mathbf{E J}^{2}+(\mathbf{A E}-\mathbf{A B})^{2}}
\end{array}
$$

$\frac{\text { BJ }}{\left(\frac{4}{3} \cdot \pi \cdot \mathbf{N}_{1}^{3}\right)^{\frac{1}{3}}}=1.000943$
BJ $-\left(\frac{4}{3} \cdot \pi \cdot N_{1}^{3}\right)^{\frac{1}{3}}=0.00152$

Definitions.

BJ $-\mathbf{N}_{1} \cdot \sqrt{\sqrt{2}+2^{\frac{1}{4}}}=0$

$\sim_{n=2}^{0}$
010893A

Pythagoras Revisited
AB := 7.89517
AC := 6.02581
BC : $=3.92697$

Given just the three sides of any triangle, find its heighth from the perpendicular $C D, D J$ and the medial bisector CJ.

$$
\mathbf{A E}:=\frac{\mathbf{A C}^{2}}{\mathbf{A B}} \quad \mathbf{B F}:=\frac{\mathbf{B C}^{2}}{\mathbf{A B}} \quad \mathbf{E F}:=\mathbf{A B}-(\mathbf{A E}+\mathbf{B F}) \quad \mathbf{D E}:=\frac{\mathbf{E F}}{2}
$$

$$
\mathbf{A D}:=\mathbf{A E}+\mathbf{D E} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{C D}:=\sqrt{\mathbf{A C}^{2}-\mathbf{A D}^{2}}
$$

$$
\mathbf{A J}:=\frac{\mathbf{A B}}{2} \quad \mathbf{D J}:=\mathbf{A D}-\mathbf{A J} \quad \mathbf{C J}:=\sqrt{\mathbf{C D}^{2}+\mathbf{D J}^{2}}
$$

Definitions.

G
$E F-\frac{A B^{2}-A C^{2}-B C^{2}}{A B}=0 \quad D E-\frac{A B^{2}-A C^{2}-B C^{2}}{2 \cdot A B}=0$
$A D-\frac{A B^{2}+A C^{2}-B C^{2}}{2 \cdot A B}=0 \quad B D-\frac{A B^{2}-A C^{2}+B C^{2}}{2 \cdot A B}=0$
$D J-\frac{\sqrt{\left(A C^{2}-B C^{2}\right)^{2}}}{2 \cdot A B}=0$
$C J-\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{2}=0$

$$
\begin{array}{lr}
\mathrm{EF}-\frac{\mathrm{S}_{1}^{2}-\mathrm{S}_{2}^{2}-\mathrm{S}_{3}^{2}}{\mathrm{~S}_{1}}=0 & \mathrm{DE}-\frac{\mathrm{S}_{1}^{2}-\mathrm{S}_{2}^{2}-\mathrm{S}_{3}^{2}}{2 \cdot \mathrm{~S}_{1}}=0 \\
\mathrm{AD}-\frac{\mathrm{S}_{1}^{2}+\mathrm{S}_{2}^{2}-\mathrm{S}_{3}^{2}}{2 \cdot S_{1}}=0 & \mathrm{BD}-\frac{\mathrm{S}_{1}^{2}-\mathrm{S}_{2}^{2}+\mathrm{S}_{3}^{2}}{2 \cdot S_{1}}=0
\end{array}
$$

$$
D J-\frac{\sqrt{\left(S_{2}^{2}-S_{3}^{2}\right)^{2}}}{2 \cdot S_{1}}=0 \quad C J-\frac{\sqrt{2 \cdot S_{2}^{2}-S_{1}^{2}+2 \cdot S_{3}^{2}}}{2}=0
$$

$$
\mathbf{C D}-\frac{\sqrt{\left[\left(\mathbf{S}_{1}+\mathbf{S}_{2}-\mathbf{S}_{3}\right) \cdot\left(\mathbf{S}_{1}-\mathbf{S}_{2}+\mathbf{S}_{3}\right) \cdot\left(\mathbf{S}_{2}-\mathbf{S}_{1}+\mathbf{S}_{3}\right) \cdot\left(\mathbf{S}_{1}+\mathbf{S}_{2}+\mathbf{S}_{3}\right)\right.}}{2 \cdot \mathbf{S}_{1}}=\mathbf{0}
$$

$X:=20 \quad Z:=15$
Unit.
010893B
AB $:=\frac{\mathbf{X}}{\mathbf{X}}$

Descriptions.

$\mathbf{A D}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{C D}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{A C}:=\sqrt{\mathbf{A D}^{2}+\mathrm{CD}^{2}}$
$\mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{B C}:=\sqrt{\mathbf{B D}^{2}+\mathbf{C D}^{2}}$
$\mathrm{AE}:=\frac{\mathrm{AC}^{2}}{\mathrm{AB}} \quad \mathrm{BF}:=\frac{\mathrm{BC}^{2}}{\mathrm{AB}} \quad \mathrm{EF}:=\mathrm{AB}-(\mathrm{AE}+\mathrm{BF}) \quad \mathrm{DE}:=\frac{\mathrm{EF}}{2}$
AJ $:=\frac{\mathbf{A B}}{2} \quad$ DJ $:=\mathbf{A D}-\mathbf{A J} \quad \mathbf{C J}:=\sqrt{\mathbf{C D}^{2}+\mathbf{D J}^{2}}$

Definitions.
$A D-\frac{Y}{Z}=0 \quad C D-\frac{W}{X}=0 \quad A C-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{X \cdot Z}=0$
$B D-\frac{Z-Y}{Z}=0 \quad B C-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}-2 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}}{X \cdot Z}=0$
$A E-\frac{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}{X^{2} \cdot Z^{2}}=0 \quad B F-\frac{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}-2 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}{X^{2} \cdot Z^{2}}=0$
$E F-\frac{2 \cdot\left(X^{2} \cdot Y \cdot Z-W^{2} \cdot Z^{2}-X^{2} \cdot Y^{2}\right)}{X^{2} \cdot Z^{2}}=0 \quad D E-\frac{\left(X^{2} \cdot Y \cdot Z-W^{2} \cdot Z^{2}-X^{2} \cdot Y^{2}\right)}{X^{2} \cdot Z^{2}}=0$
AJ $-\frac{1}{2}=0 \quad$ DJ $-\frac{2 \cdot Y-Z}{2 \cdot Z}=0$
$C J-\frac{\sqrt{4 \cdot W^{2} \cdot Z^{2}+4 \cdot X^{2} \cdot Y^{2}-4 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}}{2 \cdot X \cdot Z}=0$

Pythagoras Revisited

Given just the three sides of any triangle, find its heighth from the perpendicular CD, DJ and the medial bisector CJ.

$\cos ^{\circ} \operatorname{cis}^{30}$
$\mathbf{N}_{\mathbf{1}}:=\mathbf{3}$
$\mathbf{N}_{\mathbf{2}}:=\mathbf{4}$
$\mathbf{N}_{2}:=4$

The curve AK is derived from the cube root figure as demonstrated.
Given $A G$ and that GF equals one third of $A G$, for any $A C$ is $B D$ the square root of $A B$ multiplied by DG?
Divide a segment twice such that the mean segment is the root of the extreems.

060393A
Descriptions.
$\mathbf{A G}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A C}:=\frac{\mathbf{A G}}{\mathbf{N}_{\mathbf{2}}}$
$\mathbf{G F}:=\frac{\mathbf{A G}}{\mathbf{3}} \quad \mathbf{F M}:=\sqrt{\mathbf{G F} \cdot(\mathbf{A G}-\mathbf{G F})}$
$\mathbf{G M}:=\sqrt{\mathbf{G F}^{2}+\mathbf{F M}^{2}} \quad \mathbf{S T}:=2 \cdot \mathbf{G M} \quad$ EN $:=\sqrt{\mathbf{G M}^{2}-\left(\frac{\mathbf{A G}}{2}\right)^{2}}$
$\mathbf{P S}:=\frac{\mathbf{S T}-\mathbf{A G}}{2} \quad \mathbf{H Q}:=\sqrt{(\mathbf{A C}+\mathbf{P S}) \cdot(\mathbf{A G}-\mathbf{A C}+\mathbf{P S})}$
$\mathbf{C H}:=\mathbf{H Q}-\mathbf{E N} \quad \mathbf{A H}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C H}^{2}} \quad \mathbf{G H}:=\sqrt{(\mathbf{A G}-\mathbf{A C})^{2}+\mathbf{C H}^{2}}$
$\mathbf{A B}:=\frac{\mathbf{A H}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{D G}:=\frac{\mathbf{G H}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G})$
$\mathbf{B D}-\sqrt{\mathrm{AB} \cdot \mathrm{DG}}=\mathbf{0} \quad \mathrm{AB}=\mathbf{0 . 3 4 8 6 1 2} \quad \mathrm{BD}=\mathbf{0 . 8 0 2 7 7 6} \quad \mathrm{DG}=1.848612$

Definitions.

$\mathbf{A C}-\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{G F}-\frac{\mathbf{N}_{1}}{3}=\mathbf{0} \quad \mathbf{F M}-\frac{\sqrt{2} \cdot \mathbf{N}_{1}}{3}=0 \quad \mathbf{G M}-\frac{\sqrt{3} \cdot \mathbf{N}_{1}}{3}=0 \quad \mathbf{S T}-\frac{2 \cdot \sqrt{3} \cdot \mathbf{N}_{1}}{3}=0 \quad \mathbf{E N}-\frac{\mathbf{N}_{1}}{\sqrt{12}}=\mathbf{0}$

$G H-\frac{N_{1} \cdot \sqrt{7 \cdot N_{2}-\sqrt{N_{2}^{2}+12 \cdot N_{2}-12}-6}}{\sqrt{6 \cdot \mathbf{N}_{2}}}=0 \quad A B-\frac{N_{1} \cdot\left(N_{2}-\sqrt{N_{2}^{2}+12 \cdot N_{2}-12}+6\right)}{6 \cdot N_{2}}=0 \quad D G-\frac{N_{1} \cdot\left(\mathbf{7} \cdot \mathbf{N}_{2}-\sqrt{N_{2}{ }^{2}+12 \cdot N_{2}-12}-6\right)}{6 \cdot N_{2}}=0$

$\mathbf{N}_{1}:=4$

The curve AK is derived from the cube root figure as demonstrated.
Given $A G$ and that GF equals one third of $A G$, for any $A C$ is $B D$ the square root of $A B$ multiplied by DG?
Divide a segment twice such that the mean segment is the root of the extreems.

060393B
Descriptions.

Exploring The Curve AK

$\mathbf{A C}:=\frac{\mathbf{A G}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{G F}:=\frac{\mathbf{A G}}{\mathbf{3}} \quad \mathbf{F M}:=\sqrt{\mathbf{G F} \cdot(\mathbf{A G}-\mathbf{G F})}$
$\mathbf{G M}:=\sqrt{\mathbf{G F}^{2}+\mathbf{F M}^{2}} \quad \mathbf{S T}:=2 \cdot \mathbf{G M} \quad$ EN $:=\sqrt{\mathbf{G M}^{2}-\left(\frac{\mathbf{A G}}{2}\right)^{2}}$
$\mathbf{P S}:=\frac{\mathbf{S T}-\mathbf{A G}}{2} \quad \mathbf{H Q}:=\sqrt{(\mathbf{A C}+\mathbf{P S}) \cdot(\mathbf{A G}-\mathbf{A C}+\mathbf{P S})}$
$\mathbf{C H}:=\mathbf{H Q}-\mathbf{E N} \quad \mathbf{A H}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C H}^{2}} \quad \mathbf{G H}:=\sqrt{(\mathbf{A G}-\mathbf{A C})^{2}+\mathbf{C H}^{2}}$
$\mathbf{A B}:=\frac{\mathbf{A H ^ { 2 }}}{\mathbf{A G}} \quad \mathbf{D G}:=\frac{\mathbf{G H}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G})$
$\mathbf{B D}-\sqrt{\mathbf{A B} \cdot \mathbf{D G}}=\mathbf{0} \quad \mathbf{A B}=\mathbf{0 . 1 1 6 2 0 4} \quad \mathbf{B D}=\mathbf{0 . 2 6 7 5 9 2} \quad \mathbf{D G}=\mathbf{0 . 6 1 6 2 0 4}$

Definitions.

$\mathbf{A C}-\frac{1}{\mathbf{N}_{1}}=\mathbf{0} \quad \mathbf{G F}-\frac{1}{3}=0 \quad \mathbf{F M}-\frac{\sqrt{2}}{\sqrt{9}}=0 \quad \mathbf{G M}-\frac{1}{\sqrt{3}}=0 \quad \mathbf{S T}-\frac{2 \cdot \sqrt{3}}{3}=0$
$E N-\frac{1}{\sqrt{12}}=0 \quad P S-\left(\frac{\sqrt{3}}{3}-\frac{1}{2}\right)=0 \quad H Q-\frac{\sqrt{\mathbf{N}_{1}{ }^{2}+12 \cdot N_{1}-12}}{\sqrt{12} \cdot \mathbf{N}_{1}}=0 \quad \mathbf{C H}-\frac{\left(\sqrt{\mathbf{N}_{1}{ }^{2}+12 \cdot \mathbf{N}_{1}-12}-\mathbf{N}_{1}\right) \cdot \sqrt{3}}{6 \cdot \mathbf{N}_{1}}=0$
$A H-\frac{\sqrt{N_{1}-\sqrt{N_{1}{ }^{2}+12 \cdot N_{1}-12}+6}}{\sqrt{6 \cdot N_{1}}}=0 \quad G H-\frac{\sqrt{7 \cdot N_{1}-\sqrt{N_{1}{ }^{2}+12 \cdot N_{1}-12}-6}}{\sqrt{6 \cdot N_{1}}}=0 \quad A B-\frac{N_{1}-\sqrt{N_{1}{ }^{2}+12 \cdot N_{1}-12}+6}{6 \cdot N_{1}}=0$
$D G-\frac{7 \cdot N_{1}-\sqrt{N_{1}{ }^{2}+12 \cdot N_{1}-12}-6}{6 \cdot N_{1}}=0 \quad B D-\frac{\sqrt{N_{1}{ }^{2}+12 \cdot N_{1}-12}-N_{1}}{3 \cdot N_{1}}=0 \quad B D \quad \frac{\sqrt{2 \cdot\left(N_{1}{ }^{2}+6 \cdot N_{1}-6\right)-2 \cdot N_{1} \cdot \sqrt{N_{1}{ }^{2}+12 \cdot N_{1}-12}}}{3 \cdot N_{1}}=0$

CN
060793A

Unit is external.

Given.
AD := 2.17506 AB := 3.14654 \quad AC $:=1.74732$
BD := 2.61333
CD := 1.38168

Descriptions.

Let the two triangles ABD and ACD be given.
Given two triangles with a common side, find the difference between their free vertices from opposing sides.

$$
\begin{aligned}
& \mathbf{C G}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{C D}+\mathbf{A C}) \cdot(-\mathbf{A D}+\mathbf{C D}+\mathbf{A C}) \cdot(\mathbf{A D}-\mathbf{C D}+\mathbf{A C})(\mathbf{A D}+\mathbf{C D}-\mathbf{A C})}}{\mathbf{2} \cdot \mathbf{A D}} \\
& \mathbf{B H}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{A B}+\mathbf{B D}) \cdot(-\mathbf{A D}+\mathbf{A B}+\mathbf{B D}) \cdot(\mathbf{A D}-\mathbf{A B}+\mathbf{B D})(\mathbf{A D}+\mathbf{A B}-\mathbf{B D})}}{\mathbf{2} \cdot \mathbf{A D}}
\end{aligned}
$$

Greatest Disance:

Definitions.

$$
\begin{aligned}
& \mathbf{B C}_{1}-\frac{\sqrt{2} \cdot \sqrt{\sqrt{(\mathbf{A B}+\mathbf{A D}-\mathbf{B D}) \cdot(\mathbf{A B}-\mathbf{A D}+\mathbf{B D}) \cdot(\mathbf{A D}-\mathbf{A B}+\mathbf{B D}) \cdot(\mathbf{A B}+\mathbf{A D}+\mathbf{B D})} \cdot \sqrt{(\mathbf{A C}+\mathbf{A D}-\mathbf{C D}) \cdot(\mathbf{A C}-\mathbf{A D}+\mathbf{C D}) \cdot(\mathbf{A D}-\mathbf{A C}+\mathbf{C D}) \cdot(\mathbf{A C}+\mathbf{A D}+\mathbf{C D})} \ldots}}{\sqrt{+-\mathbf{A D}^{4}-\mathbf{A B}^{2} \cdot \mathbf{A C}^{2}+\mathbf{A B}^{2} \cdot \mathbf{A D}^{2}+\mathbf{A C}^{2} \cdot \mathbf{A D}^{2}+\mathbf{A C}^{2} \cdot \mathbf{B D}^{2}+\mathbf{A D}^{2} \cdot \mathbf{B D}^{2}+\mathbf{A B}^{2} \cdot \mathbf{C D}^{2}+\mathbf{A D}^{2} \cdot \mathbf{C D}^{2}-\mathbf{B D}^{2} \cdot \mathbf{C D}^{2}}} \mathbf{2 \cdot \mathbf { A D }} \\
& \sqrt{2} \cdot \sqrt{A C^{2} \cdot A^{2}+A C^{2} \cdot \mathrm{BD}^{2}+\mathrm{AD}^{2} \cdot \mathrm{BD}^{2}+\mathrm{AB}^{2} \cdot \mathrm{CD}^{2}+\mathrm{AD}^{2} \cdot \mathrm{CD}^{2}-\mathrm{BD}^{2} \cdot \mathrm{CD}^{2}+\mathrm{AB}^{2} \cdot \mathrm{AD}^{2}-\mathrm{AD}^{4}-\mathrm{AB}^{2} \cdot \mathrm{AC}^{2}}
\end{aligned}
$$

CN
060793B
Descriptions.
Descriptions.

Given two triangles with a common side, find the difference between their free vertices from opposing sides.

Greatest Disance:

$$
B D:=2.61333 \quad C D:=1.38168
$$

Let the two triangles ABD and ACD be given.

Two Triangles with a Common Side.

$$
\begin{aligned}
& \mathbf{C G}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{C D}+\mathbf{A C}) \cdot(-\mathbf{A D}+\mathbf{C D}+\mathbf{A C}) \cdot(\mathbf{A D}-\mathbf{C D}+\mathbf{A C})(\mathbf{A D}+\mathbf{C D}-\mathbf{A C})}}{\mathbf{2} \cdot \mathbf{A D}} \\
& \mathbf{B H}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{B D}-\mathbf{1}) \cdot(\mathbf{A D}+\mathbf{B D}+\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{B D}+\mathbf{1}) \cdot(\mathbf{B D}-\mathbf{A D}+\mathbf{1})}}{\mathbf{2} \cdot \mathbf{A D}}
\end{aligned}
$$

Least Distance

$$
\begin{aligned}
\mathbf{A G}:=\frac{\mathbf{A D}^{2}+\mathbf{A C}^{2}-\mathbf{C D}^{2}}{2 \cdot \mathbf{A D}} \quad \mathbf{A H}:=\frac{\mathbf{A D}^{2}+\mathbf{1}^{2}-\mathbf{B D}^{2}}{2 \cdot \mathbf{A D}} \\
\mathbf{G H}:=\mathbf{A H}-\mathbf{A G}
\end{aligned}
$$

Definitions.

$\left.\left(\left(\left((\mathbf{A C} \cdot \mathrm{AD})^{2}+(\mathrm{AC} \cdot \mathrm{BD})^{2}\right)-\mathrm{AC}^{2}-\mathrm{AD}^{4}\right)+(\mathrm{AD} \cdot \mathrm{BD})^{2}+(\mathrm{AD} \cdot \mathrm{CD})^{2}\right)-(\mathrm{BD} \cdot \mathrm{CD})^{2}\right)+\mathrm{AD}^{2}+\mathrm{CD}^{2}=0.38355$
$\sqrt{((1+A D)-B D) \cdot((1-A D)+B D) \cdot((A D-1)+B D) \cdot(1+A D+B D) \cdot((A C+A D)-C D) \cdot((A C-A D)+C D) \cdot((A D-A C)+C D) \cdot(A C+A D+C D)}=0.19895$
 2.AD
-BD) $\cdot((1-A D)+B D) \cdot((A D-1)+B D) \cdot(1+A D+B D) \cdot((A C+A D)-C D) \cdot((A C-A D)+C D) \cdot((A D-A C)+C D) \cdot(A C+A D+C D)$
$\sim_{n=2}^{0}$
060793C
Descriptions.
Let the two triangles ABD and ACD be given.
Given two triangles with a common side, find the difference between their free vertices from opposing sides.

Greatest Disance:

$$
\mathbf{B C}_{\mathbf{1}}:=\sqrt{\mathbf{G H}^{2}+(\mathbf{C G}+\mathbf{B H})^{2}}
$$

Least Distance

$$
\mathbf{A B}:=\mathbf{1}
$$

Given.

$$
\text { AD := } 2.17506 \quad \text { AC }:=1.74732
$$

Two Triangles with a Common Side.

$$
\text { CD := } 1.38168
$$

$$
\begin{aligned}
& \mathbf{C G}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{C D}+\mathbf{A C}) \cdot(-\mathbf{A D}+\mathbf{C D}+\mathbf{A C}) \cdot(\mathbf{A D}-\mathbf{C D}+\mathbf{A C})(\mathbf{A D}+\mathbf{C D}-\mathbf{A C})}}{\mathbf{2} \cdot \mathbf{A D}} \\
& \mathbf{B H}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{B D}-\mathbf{1}) \cdot(\mathbf{A D}+\mathbf{B D}+\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{B D}+\mathbf{1}) \cdot(\mathbf{B D}-\mathbf{A D}+\mathbf{1})}}{\mathbf{2} \cdot \mathbf{A D}}
\end{aligned}
$$

$$
\mathbf{A G}:=\frac{\mathbf{A D}^{2}+\mathrm{AC}^{2}-\mathbf{C D}^{2}}{2 \cdot \mathbf{A D}}
$$

$$
\mathrm{AH}:=\frac{\mathbf{A D}^{2}+\mathbf{1}^{2}-\mathrm{BD}^{2}}{2 \cdot \mathbf{A D}}
$$

$$
\mathbf{G H}:=\mathbf{A H}-\mathbf{A G}
$$

$$
\mathbf{B C}_{\mathbf{2}}:=\sqrt{\mathbf{G H}^{2}+(\mathbf{B H}-\mathbf{C G})^{2}}
$$

Definitions.

$$
\begin{aligned}
& \sqrt{2} \cdot \sqrt{\mathrm{AC}^{2} \cdot \mathrm{AD}^{2}+\mathrm{AC}^{2} \cdot \mathrm{BD}^{2}-\mathrm{AC}^{2}-\mathrm{AD}^{4}+\mathrm{AD}^{2} \cdot \mathrm{BD}^{2}+\mathrm{AD}^{2} \cdot \mathrm{CD}^{2}+\mathrm{AD}^{2}-\mathrm{BD}^{2} \cdot \mathrm{CD}^{2}+\mathrm{CD}^{2}} \\
& \mathbf{B C}_{\mathbf{2}}-\frac{\sqrt{+-\sqrt{(\mathbf{1}+\mathbf{A D}-\mathbf{B D}) \cdot(\mathbf{1}-\mathbf{A D}+\mathbf{B D}) \cdot(\mathbf{A D}-\mathbf{1}+\mathbf{B D}) \cdot(\mathbf{1}+\mathbf{A D}+\mathbf{B D})} \cdot \sqrt{(\mathbf{A C}+\mathbf{A D}-\mathbf{C D}) \cdot(\mathbf{A C}-\mathbf{A D}+\mathbf{C D}) \cdot(\mathbf{A D}-\mathbf{A C}+\mathbf{C D}) \cdot(\mathbf{A C}+\mathbf{A D}+\mathbf{C D})}} \mathbf{2 \cdot \mathbf { A D }}=\mathbf{0}, \mathbf{d}}{}
\end{aligned}
$$

$\sim_{n=2}^{0}$
060793D

Unit
 AB := 1

Given.
$\mathbf{Z}:=\mathbf{1 0} \quad \mathbf{U}:=\mathbf{5}$
$\mathbf{V}:=\mathbf{2} \quad \mathbf{W}:=\mathbf{3} \quad \mathbf{X}:=\mathbf{7}$

Descriptions.
Let the two triangles ABD and ACD be given
Given two triangles with a common side, find the difference between their free vertices from opposing sides.
$\mathbf{A M}:=\frac{\mathbf{U}}{\mathbf{Z}} \quad$ AN $:=\frac{\mathbf{V}}{\mathbf{Z}} \quad \mathbf{A O}:=\frac{\mathbf{W}}{\mathbf{Z}} \quad$ AP $:=\frac{\mathbf{X}}{\mathbf{Z}} \quad$ AD $:=\sqrt{\mathbf{A N}^{2}+\mathbf{A M}^{2}}$
$\mathbf{B N}:=\mathbf{A B}-\mathbf{A N} \quad \mathbf{B D}:=\sqrt{\mathbf{B N}^{2}+\mathbf{A M}^{2}} \quad \mathbf{A C}:=\sqrt{\mathbf{A P}^{2}+\mathbf{A O}^{2}}$
$\mathbf{D H}:=\mathbf{A P}-\mathbf{A D} \quad \mathbf{C D}:=\sqrt{\mathbf{D H}^{2}+\mathbf{A O}^{2}} \quad \mathbf{A G}:=\frac{\mathbf{A D}^{2}+\mathbf{A B}^{2}-\mathbf{B D}^{2}}{2 \cdot \mathbf{A D}}$
$\mathbf{B G}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{B D}-\mathbf{A B}) \cdot(\mathbf{A D}-\mathbf{B D}+\mathbf{A B}) \cdot(\mathbf{B D}-\mathbf{A D}+\mathbf{A B}) \cdot(\mathbf{A D}+\mathbf{A B}+\mathbf{B D})}}{\mathbf{2 \cdot \mathbf { A D }}}$
$\mathbf{B J}:=\mathbf{B G}+\mathbf{A O} \quad \mathbf{B F}:=\mathbf{B G}-\mathbf{A O} \quad \mathbf{A H}:=\mathbf{A D}+\mathbf{D H} \quad \mathbf{C J}:=\mathbf{A H}-\mathbf{A G}$
$\mathbf{B C}:=\sqrt{\mathbf{B J}^{2}+\mathbf{C J}^{2}} \quad \mathbf{B E}:=\sqrt{\mathbf{B F}^{2}+\mathbf{C J}^{2}}$
Definitions.

Two Triangles with a Common Side.

Unit $=1.00000$	$\mathrm{AB}=1.00000$	BG $=0.92848$
$\mathrm{M}=0.50000$	$A C=0.76158$	$\mathrm{BJ}=1.22848$
$\mathrm{U}=5.00000$	AD $=0.53852$	$\mathrm{BF}=0.62848$
$Z=10.00000$	$\mathrm{BD}=0.94340$	$B C=1.27167$
$\mathrm{N}=0.20000$	CD $=0.34070$	$\mathrm{BE}=0.70920$
$\mathrm{V}=2.00000$	AG $=0.37139$	

$A M-\frac{U}{Z}=0 \quad A N-\frac{V}{Z}=0 \quad A O-\frac{W}{Z}=0 \quad A P-\frac{X}{Z}=0 \quad A D-\frac{\sqrt{U^{2}+V^{2}}}{Z}=0$
$B N-\frac{Z-V}{Z}=0 \quad B D-\frac{\sqrt{U^{2}+V^{2}-2 \cdot V \cdot Z+Z^{2}}}{Z}=0 \quad A C-\frac{\sqrt{W^{2}+X^{2}}}{Z}=0 \quad D H-\frac{X-\sqrt{U^{2}+V^{2}}}{Z}=0 \quad C D-\frac{\sqrt{U^{2}+V^{2}+W^{2}+X^{2}-2 \cdot X \cdot \sqrt{U^{2}+V^{2}}}}{Z}=0$ $A G-\frac{2 \cdot V \cdot Z}{2 \cdot Z \cdot \sqrt{U^{2}+V^{2}}}=0 \quad B G-\frac{U}{\sqrt{U^{2}+V^{2}}}=0 \quad B J-\frac{U \cdot Z+W \cdot \sqrt{U^{2}+V^{2}}}{Z \cdot \sqrt{U^{2}+V^{2}}}=0 \quad B F-\frac{U \cdot Z-W \cdot \sqrt{U^{2}+V^{2}}}{Z \cdot \sqrt{U^{2}+V^{2}}}=0 \quad \mathbf{A H}-\frac{X}{Z}=0 \quad \mathbf{C J}-\frac{X \cdot \sqrt{U^{2}+V^{2}}-V \cdot Z}{Z \cdot \sqrt{U^{2}+V^{2}}}=0$
$B C-\frac{\sqrt{2 \cdot Z \cdot(U \cdot W-V \cdot X) \cdot \sqrt{U^{2}+V^{2}}+\left(w^{2}+X^{2}+Z^{2}\right) \cdot\left(U^{2}+V^{2}\right)}}{Z \cdot \sqrt{U^{2}+V^{2}}}=0 \quad B E-\frac{\sqrt{\left(W^{2}+X^{2}+Z^{2}\right) \cdot\left(U^{2}+V^{2}\right)-2 \cdot Z \cdot(U \cdot W+V \cdot X) \cdot \sqrt{U^{2}+V^{2}}}}{Z \cdot \sqrt{U^{2}+V^{2}}}=0$

Given.
AB := $\mathbf{3}$
AC := $\mathbf{1}$

060993A Rectangular Roots.

Descriptions.

$$
\begin{aligned}
& \mathbf{D E}:=\mathbf{A C} \quad \mathbf{E O}:=\frac{\mathbf{A B}}{2} \quad \mathbf{D O}:=\sqrt{\mathbf{E O}^{2}-\mathbf{D E}^{2}} \quad \mathbf{B D}:=\mathbf{E O}+\mathbf{D O} \\
& \mathbf{A D}:=\mathbf{A B}-\mathbf{B D} \quad \mathbf{A D} \cdot \mathbf{B D}-\mathbf{A C}^{2}=\mathbf{0}
\end{aligned}
$$

Definitions.
$A D-\frac{A B-\sqrt{A B^{2}-4 \cdot A C^{2}}}{2}=0$
$A D=0.381966$
$B D-\frac{A B+\sqrt{A B^{2}-4 \cdot A C^{2}}}{2}=0$ $B D=2.618034 \quad A D+B D=3$

Given any value N_{1}, any other value, N_{2}, greater than twice the square root of N_{1} can be divided such that the resulting pair of values equals N_{1}.
Given $D E$ as a square, and some $A D$ equal to or greater than twice the square root of $D E$, divide $A D$ into rectangluar roots of $D E$.

Unit.
AB:= 1
Given.
$\mathbf{Y}:=20$
$\mathbf{X}:=\mathbf{8}$
060993B Rectangular Roots.

Given any value N_{1}, any other value, N_{2}, greater than twice the square root of N_{1} can be divided such that the resulting pair of values equals N_{1}.
Given $D E$ as a square, and some $A D$ equal to or greater than twice the square root of $D E$, divide $A D$ into rectangluar roots of $D E$.

Descriptions.

$$
\begin{aligned}
& \mathbf{A C}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{D E}:=\mathbf{A C} \quad \mathbf{E O}:=\frac{\mathbf{A B}}{2} \\
& \mathbf{D O}:=\sqrt{\mathbf{E O}^{2}-\mathbf{D E}^{2}} \quad \mathbf{B D}:=\mathbf{E O}+\mathbf{D O} \\
& \mathbf{A D}:=\mathbf{A B}-\mathbf{B D} \quad \mathbf{A D} \cdot \mathbf{B D}-\mathbf{A C}
\end{aligned}
$$

Definitions.

$A C-\frac{X}{Y}=0 \quad D E-\frac{X}{Y}=0 \quad$ EO $-\frac{1}{2}=0$
$D O-\frac{\sqrt{Y^{2}-4 \cdot X^{2}}}{2 \cdot Y}=0 \quad B D-\frac{Y+\sqrt{Y^{2}-4 \cdot X^{2}}}{2 \cdot Y}=0$
$A D-\frac{Y-\sqrt{Y^{2}-4 \cdot X^{2}}}{2 \cdot Y}=0$
$\frac{Y-\sqrt{Y^{2}-4 \cdot X^{2}}}{2 \cdot Y} \cdot \frac{Y+\sqrt{Y^{2}-4 \cdot X^{2}}}{2 \cdot Y}-A C^{2}=0 \quad \frac{X^{2}}{Y^{2}}-A C^{2}=0$
$\mathrm{XY}=0.40000$ $\mathbf{X}=\mathbf{8 . 0 0 0 0 0}$ $\mathrm{Y}=20.00000$

AD $=0.20000$ $A C=0.40000$ $\mathrm{BD}=0.80000$ $\mathrm{AB}=1.00000$

Unit $=\mathbf{1 . 0 0 0 0 0}$
$\frac{Y-\sqrt{Y^{2}-4 \cdot X^{2}}}{2 \cdot Y}-A D=0.00000$
$\frac{Y+\sqrt{Y^{2}-4 \cdot X^{2}}}{2 \cdot Y}-B D=0.00000$

Pyramid of Rations 1
If you just draw the figure, and measure and compare the numbers, you start to see it. Now one should simply take it and all its treasures.

Definitions for the unit we use or division. This will give us a Cardinal result. The buttons will put the $N 1$ or 2 on a number, but you have to define its actual ratio to the figure.

$$
\begin{aligned}
& \text { Unit }=1.00000 \\
& X=0.40000 \\
& \mathrm{Y}=0.30000 \\
& 01=2.32038 \mathrm{~cm} \\
& \mathrm{ON}_{1}=9.28153 \mathrm{~cm} \\
& \mathrm{ON}_{2}=6.96115 \mathrm{~cm} \\
& \frac{\mathrm{ON}_{1}}{\mathrm{O1}}=4.00000 \\
& \mathrm{~N}_{1}=4.00000 \\
& \frac{\mathrm{ON}_{2}}{\mathrm{O}}=3.00000
\end{aligned}
$$

$\mathrm{AC}=16.40759 \mathrm{~cm}$
$\mathrm{AF}=6.56304 \mathrm{~cm}$

$\frac{\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{2}\right)+1}{\mathrm{~N}_{1}}=\mathbf{2 . 5 0 0 0 0}$

$\frac{\mathrm{AC}}{\mathrm{AF}}=2.50000$
$\frac{\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{2}\right)+1}{\mathrm{~N}_{1}}-\frac{\mathrm{AC}}{\mathrm{AF}}=\mathbf{0 . 0 0 0 0 0}$
$\mathrm{BF}=19.13437$
$\mathrm{EF}=3.18906 \mathrm{~cm}$
$\frac{\mathrm{BF}}{\mathrm{EF}}=\mathbf{6 . 0 0 0 0 0}$

$$
\mathrm{N}_{2}=3.00000
$$

\qquad

062 193B

Descriptions.
Definitions.
N1 := $\mathbf{3} \quad$ N2 $:=5 \quad \delta_{m}:=1$.. N2
$\mathbf{A B}:=1 \quad \mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N} 1} \quad \mathbf{A L}:=\frac{\mathbf{A B}}{2}$
$\mathbf{D L}:=\mathbf{A L}-\mathbf{A D} \quad \mathbf{A C}:=\sqrt{\frac{\mathbf{A B}^{2}}{2}}$

Pyramid of Ratios I

Divide AB by N 1 then divide CD by N2, what are BF/EF and AC/AF?
$\mathbf{C L}:=\mathbf{A L} \quad \mathbf{C D}:=\sqrt{\mathbf{D L}^{2}+\mathbf{C L}^{2}}$
$\mathbf{D E}_{\boldsymbol{\delta}}:=\frac{\mathbf{C D} \cdot \boldsymbol{\delta}}{\mathbf{N} 2} \quad \mathbf{D K}_{\boldsymbol{\delta}}:=\frac{\mathbf{D L} \cdot \mathbf{D E}}{\mathbf{C D}} \quad \mathbf{A K}_{\boldsymbol{\delta}}:=\mathbf{A D}+\mathbf{D K}_{\boldsymbol{\delta}} \quad \mathbf{B K}_{\boldsymbol{\delta}}:=\mathbf{A B}-\mathbf{A K}_{\boldsymbol{\delta}} \quad \mathbf{E K}_{\boldsymbol{\delta}}:=\frac{\mathbf{C L} \cdot \mathbf{D K}_{\boldsymbol{\delta}}}{\mathbf{D L}}$
$\mathrm{BE}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{EK}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{BK}_{\boldsymbol{\delta}}\right)^{2}} \quad \mathrm{HK}_{\boldsymbol{\delta}}:=\frac{\mathrm{AL} \cdot \mathrm{DK}_{\boldsymbol{\delta}}}{\mathrm{DL}} \quad \mathrm{BH}_{\boldsymbol{\delta}}:=\mathrm{BK}_{\boldsymbol{\delta}}+\mathbf{H K}_{\boldsymbol{\delta}} \quad \mathbf{E H}_{\boldsymbol{\delta}}:=\frac{\mathrm{AC} \cdot \mathrm{DK}_{\boldsymbol{\delta}}}{\mathrm{DL}}$
$\mathbf{A F}_{\boldsymbol{\delta}}:=\frac{\mathbf{E H}_{\boldsymbol{\delta}} \cdot \mathbf{A B}}{\mathrm{BH}_{\boldsymbol{\delta}}} \quad \mathrm{BF}_{\boldsymbol{\delta}}:=\frac{\mathrm{BE}_{\boldsymbol{\delta}} \cdot \mathbf{A B}}{\mathrm{BH}_{\boldsymbol{\delta}}} \quad \mathbf{E F}_{\boldsymbol{\delta}}:=\mathrm{BF}_{\boldsymbol{\delta}}-\mathbf{B E}_{\boldsymbol{\delta}}$

This was my original write up, long ago, and it takes advantage of some functions of Mathcad. For the final product of The Delian Quest, it will become a series of demonstrations. However, the root figure does not change, nor what it does.

I never had Geometry in school, nor did I ever do well in algebra because like everything else, those who teach it really do not know what in the hell they are doing. Too much mythology, and too much insistence on traditional carping. I am a simple person and I like things simple, honest, and organized.
$\sim_{n \rightarrow 2}^{0}$

$062193 C$

 Descriptions.$\mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{A L}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A C}:=\sqrt{\mathbf{2} \cdot \mathbf{A L}^{2}} \quad \mathbf{C L}:=\mathbf{A L} \quad \mathbf{D L}:=\mathbf{A L}-\mathbf{A D}$ $\mathrm{CD}:=\sqrt{\mathrm{DL}^{2}+\mathrm{CL}^{2}} \quad \mathrm{DE}:=\frac{\mathrm{CD}}{\mathrm{N}_{2}} \quad$ EK $:=\frac{\mathrm{CL} \cdot \mathrm{DE}}{\mathrm{CD}} \quad$ DK $:=\frac{\mathrm{DL} \cdot \mathrm{EK}}{\mathrm{CL}}$
$\mathbf{A K}:=\mathbf{A D}+\mathbf{D K} \quad \mathbf{B K}:=\mathbf{A B}-\mathbf{A K} \quad \mathbf{B E}:=\sqrt{\mathbf{B K}^{2}+\mathbf{E K}^{2}}$
$\mathbf{H K}:=\frac{\mathbf{A L} \cdot \mathbf{E K}}{\mathbf{C L}} \quad \mathbf{B H}:=\mathbf{B K}+\mathbf{H K} \quad \mathbf{E H}:=\frac{\mathbf{A C} \cdot \mathbf{E K}}{\mathbf{C L}} \quad \mathbf{A F}:=\frac{\mathbf{E H} \cdot \mathbf{A B}}{\mathbf{B H}}$ $\mathbf{B F}:=\frac{\mathbf{B E} \cdot \mathbf{A B}}{\mathbf{B H}} \quad \mathbf{E F}:=\mathbf{B F}-\mathbf{B E}$
$\frac{\mathrm{BF}}{\mathrm{EF}}=8$
$\frac{\mathrm{AC}}{\mathrm{AF}}=1.75$
$\frac{C D}{D E}=2$

Definitions.
$\frac{\mathrm{AC}}{\mathrm{AF}}-\frac{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{2}}+\mathbf{1}}{\mathbf{N}_{\mathbf{1}}}=\mathbf{0}$
$\frac{\mathbf{B F}}{\mathbf{E F}}-\frac{\mathbf{N}_{\mathbf{1}} \cdot \mathrm{N}_{\mathbf{2}}}{\mathbf{N}_{\mathbf{2}}-\mathbf{1}}=\mathbf{0}$

Pyramid of Ratios I

Divide $A B$ by N_{1} then divide $C D$ by

N_{2}, what are BF/EF and AC/AF?

$$
\begin{array}{ll}
\frac{B F}{E F}=9.08799 & \frac{N_{1} \cdot N_{2}}{N_{2}-1}=9.08799 \\
\frac{A C}{A F}=1.49057 & \frac{\left(N_{1} \cdot N_{2}-N_{2}\right)+1}{N_{1}}=1.49057 \\
\frac{B F}{E F}-\frac{N_{1} \cdot N_{2}}{N_{2}-1}=0.00000 & \frac{A C}{A F}-\frac{\left(N_{1} \cdot N_{2}-N_{2}\right)+1}{N_{1}}=0.00000
\end{array}
$$

062 193D Pyramid of Ratios I
ust the fact that one is working with four names in the equation tells me that I have two different things using two different systems of measurement, each one bringing itself into the equation as it is.

Pyramid of Ratios I

The buttons on the macro are divided into two columns, one for the number of divisions I want for a given unit, and the other a particular point in that range. This means that if I set the points equal to what I am working with, I do not have to draw anything further to play with the line to examine it. Thus, althoght $N 1$ and $N 2$ are working with two different lengths of line, one always constant and the other variable, it is transparent in the the equation. We are dividing each of them in a Cardinal fashion, just rendering an arithmetic name for its point in a ratio of that particular line. And, this allows me to write up the equations for the figure which reduce, in the end, to $\mathbf{w}, \mathrm{x}, \mathrm{y}$ and z and always giving an exact answer no matter what original system of measurement one started with, inches, meters, or pixels, or even mystical particals of quantum dust. A thing, is a thing, is a thing, which is always independent of any convention of names and what one is looking for, is a simple, universal method of notation without using Einstein's rubbrer bands and crazy glue.

$\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{2}\right)+1$	
N_{1}	
$\mathbf{X} \cdot(\mathrm{W}-\mathrm{Z})+\mathrm{Y} \cdot \mathrm{Z}$	
Y.W	
AC	
$\overline{\text { AF }}$	
$\mathrm{N}_{1} \cdot \mathrm{~N}_{2}$	
$\mathrm{N}_{2}-1$	
Y.Z	Unit $=1.00000$
$\frac{\mathrm{X}}{\mathrm{X} \cdot(\mathrm{Z}-\mathrm{W})}=12.50000 \quad \mathrm{X}=4.00000$	
BF $\quad Y=20.00000$	
EF $=12.50000 \quad \frac{Y}{x}$	
$\mathrm{AC}=7.80151 \mathrm{~cm} \quad \mathbf{X}$	
$\mathrm{AF}=5.08794 \mathrm{~cm} \quad \mathrm{~N}_{1}=5.00000$	
$\mathrm{BF}=8.25996 \mathrm{~cm} \quad \mathrm{~W}=6.00000$	
$\mathrm{EF}=0.66080 \mathrm{~cm}$	$\mathrm{z}=10.00000$
	$\frac{\mathrm{Z}}{\mathrm{w}}=1.66667$

Descriptions.
$N_{1}:=\frac{Y}{X} \quad N_{2}:=\frac{Z}{W}$
$\mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}_{1}} \quad \mathbf{A L}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A C}:=\sqrt{2 \cdot \mathbf{A L}^{2}} \quad \mathbf{C L}:=\mathbf{A L} \quad \mathbf{D L}:=\mathbf{A L}-\mathbf{A D}$
$\mathbf{C D}:=\sqrt{\mathrm{DL}^{2}+\mathrm{CL}^{2}} \quad \mathrm{DE}:=\frac{\mathrm{CD}}{\mathrm{N}_{2}} \quad \mathrm{EK}:=\frac{\mathrm{CL} \cdot \mathrm{DE}}{\mathrm{CD}} \quad \mathrm{DK}:=\frac{\mathrm{DL} \cdot \mathrm{EK}}{\mathrm{CL}}$
$\mathbf{A K}:=\mathbf{A D}+\mathbf{D K} \quad \mathbf{B K}:=\mathbf{A B}-\mathbf{A K} \quad \mathbf{B E}:=\sqrt{\mathbf{B K}^{2}+\mathbf{E K}^{2}}$
$\mathbf{H K}:=\frac{\mathbf{A L} \cdot \mathbf{E K}}{\mathbf{C L}} \quad \mathbf{B H}:=\mathbf{B K}+\mathbf{H K} \quad \mathbf{E H}:=\frac{\mathbf{A C} \cdot \mathbf{E K}}{\mathbf{C L}} \quad \mathbf{A F}:=\frac{\mathbf{E H} \cdot \mathbf{A B}}{\mathbf{B H}}$
$\mathbf{B F}:=\frac{\mathbf{B E} \cdot \mathbf{A B}}{\mathbf{B H}} \quad \mathbf{E F}:=\mathbf{B F}-\mathbf{B E}$
$\frac{\mathrm{BF}}{\mathrm{EF}}=12.5 \quad \frac{\mathrm{AC}}{\mathrm{AF}}=1.533333 \quad \frac{\mathrm{CD}}{\mathrm{DE}}=1.666667$

Pyramid of Ratios I

Divide $A B$ by N_{1} then divide $C D$ by N_{2}, what are BF/EF and AC/AF?

\sim_{n}^{0}

Definitions.
$\frac{\mathbf{A C}}{\mathbf{A F}}-\frac{\mathbf{X} \cdot(\mathbf{W}-\mathbf{Z})+\mathbf{Y} \cdot \mathbf{Z}}{\mathbf{Y} \cdot \mathbf{W}}=\mathbf{0} \quad \frac{\mathbf{B F}}{\mathbf{E F}}-\frac{\mathbf{Y} \cdot \mathbf{Z}}{\mathbf{X} \cdot(\mathbf{Z}-\mathbf{W})}=\mathbf{0}$
$N_{1}-\frac{Y}{X}=0 \quad N_{2}-\frac{Z}{W}=0 \quad A D-\frac{X}{Y}=0 \quad A L-\frac{1}{2}=0 \quad A C-\frac{1}{\sqrt{2}}=0$
$\mathbf{C L}-\frac{1}{2}=0 \quad D L-\frac{Y-2 \cdot X}{2 \cdot Y}=0 \quad C D-\frac{\sqrt{2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}}}{\sqrt{2} \cdot Y}=0 \quad D E-\frac{\sqrt{2} \cdot W \cdot \sqrt{2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}}}{2 \cdot Y \cdot Z}=0$
$\mathbf{E K}-\frac{\mathbf{W}}{2 \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{D K}-\frac{\mathbf{W} \cdot(\mathbf{Y}-\mathbf{2} \cdot \mathbf{X})}{2 \cdot \mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{A K}-\frac{[\mathbf{W} \cdot(\mathbf{Y}-\mathbf{2} \cdot \mathbf{X})+\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Z}]}{2 \cdot \mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{B K}-\frac{\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{X}+\mathbf{Y} \cdot \mathbf{Z})-(\mathbf{W} \cdot \mathbf{Y}+\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Z})}{2 \cdot \mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0}$
$B E-\frac{\sqrt{2 \cdot(X-Y)^{2} \cdot Z^{2}+[2 \cdot W \cdot(Y-X) \cdot(2 \cdot X-Y)] \cdot Z+W^{2} \cdot\left(2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}\right)}}{\sqrt{2} \cdot \mathbf{Y} \cdot Z}=0 \quad H K-\frac{W}{2 \cdot Z}=0$
$\mathbf{B H}-\frac{\mathbf{W} \cdot \mathbf{X}-\mathbf{X} \cdot \mathbf{Z}+\mathbf{Y} \cdot \mathbf{Z}}{\mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{E H}-\frac{\sqrt{2} \cdot \mathbf{W}}{2 \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{A F}-\frac{\sqrt{2} \cdot \mathbf{W} \cdot \mathbf{Y}}{2 \cdot(\mathbf{W} \cdot \mathbf{X}-\mathbf{X} \cdot \mathbf{Z}+\mathbf{Y} \cdot \mathbf{Z})}=\mathbf{0}$
$B F-\frac{\sqrt{2 \cdot W^{2} \cdot\left(2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}\right)+4 \cdot Z^{2} \cdot(X-Y)^{2}+4 \cdot W \cdot Z \cdot(X-Y) \cdot(Y-2 \cdot X)}}{2 \cdot(W \cdot X-X \cdot Z+Y \cdot Z)}=0$
$E F-\frac{X \cdot(W-Z) \cdot \sqrt{2 \cdot W^{2} \cdot\left(2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}\right)+4 \cdot Z^{2} \cdot(X-Y)^{2}+4 \cdot W \cdot Z \cdot(X-Y) \cdot(Y-2 \cdot X)}}{2 \cdot Y \cdot Z \cdot(X \cdot Z-W \cdot X-Y \cdot Z)}=0$
$\sim_{n=2}^{0}$

$$
\begin{array}{ll}
\text { Given. } \\
\mathbf{N}_{\mathbf{1}}:=\mathbf{3} & \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \\
\mathbf{N}_{\mathbf{2}}:=\mathbf{6} & \mathbf{B C}:=\mathbf{N}_{\mathbf{2}} \\
\mathbf{N}_{\mathbf{3}}:=\mathbf{4} & \mathbf{A C}:=\mathbf{N}_{\mathbf{3}}
\end{array}
$$

Describe A Circle About a Triangle

Given the difference between three non-collinear points, find the radius of the circle that circumscribes them.
062793A
Descriptions.
$\Delta:=(\mathbf{A B}+\mathbf{A C}>\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{B C}>\mathbf{A C}) \cdot(\mathbf{B C}+\mathbf{A C}>\mathbf{A B}) \quad \mathbf{N O T}(\mathbf{X}):=\mathbf{X}=\delta_{n}:=\mathbf{0} . .2$
$\mathbf{B K}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A E}:=A C \quad \mathbf{B F}:=\mathbf{B C} \quad \mathbf{A G}:=\frac{\mathbf{A E}^{2}}{\mathbf{A B}} \quad \mathrm{BJ}:=\frac{\mathbf{B F}^{2}}{\mathrm{AB}}$
$\mathbf{G J}:=\mathbf{A B}-(\mathbf{A G}+\mathbf{B J}) \quad \mathbf{H J}:=\frac{\mathbf{G J}}{2} \quad \mathbf{B H}:=\mathbf{B J}+\mathbf{H J}$
$\mathbf{C H}:=\sqrt{\mathrm{BC}^{2}-\mathrm{BH}^{2}} \quad \mathrm{BN}:=\frac{\mathrm{BC}}{2} \quad \mathrm{BM}:=\frac{\mathrm{BC} \cdot \mathrm{BK}}{\mathrm{BH}}$
$\mathbf{M N}:=\mathbf{B M}-\mathbf{B N} \quad \mathbf{D N}:=\frac{\mathbf{B H} \cdot \mathbf{M N}}{\mathbf{C H}} \quad \mathbf{B D}:=\sqrt{\mathbf{B N}^{2}+\mathrm{DN}^{2}}$
Definitions.

radius $=\mathbf{3 . 3 7 5 4 1 2}$
imaginary_radius $:=\mathbf{i f}(\operatorname{NOT}(\Delta), \mathbf{B D}, \mathbf{0})$

The construction is independent of the
$\Delta=1$
$\mathbf{S}_{\mathbf{1}}:=\left(\begin{array}{c}\mathbf{A B} \\ \mathbf{A C} \\ \mathrm{BC}\end{array}\right) \quad \mathbf{S}_{\mathbf{2}}:=\left(\begin{array}{c}\mathbf{A C} \\ \mathbf{B C} \\ \mathbf{A B}\end{array}\right) \quad \mathbf{S}_{\mathbf{3}}:=\left(\begin{array}{c}\mathbf{B C} \\ \mathbf{A B} \\ \mathbf{A C}\end{array}\right) \quad \mathbf{R}_{\boldsymbol{\delta}}:=\frac{\mathbf{S}_{\mathbf{1}_{\boldsymbol{\delta}}} \cdot \mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}} \cdot \mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}}{\sqrt{\mathbf{S}_{\mathbf{1}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\boldsymbol{\delta}}}-\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}-\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}}}$
The name of the Radius in terms of the givens.
$\mathbf{R}^{\mathbf{T}}=(3.375412$
3.375412
3.375412)
The equation is a statement in regard to the relationship between each side of a triangle

$\sim_{n=2}^{\infty}$

$B K-\frac{N_{1}}{2}=0 \quad A E-N_{3}=0 \quad B F-N_{2}=0 \quad A G-\frac{N_{3}{ }^{2}}{N_{1}}=0 \quad B J-\frac{N_{2}{ }^{2}}{N_{1}}=0$
$G J-\frac{N_{1}{ }^{2}-N_{2}{ }^{2}-N_{3}{ }^{2}}{N_{1}}=0 \quad H J-\frac{N_{1}{ }^{2}-N_{2}{ }^{2}-N_{3}{ }^{2}}{2 \cdot N_{1}}=0 \quad B H-\frac{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}{2 \cdot N_{1}}=0$

$$
\mathbf{C H}-\frac{\sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right)}}{2 \cdot \mathbf{N}_{1}}=\mathbf{0} \quad \mathbf{B N}-\frac{\mathbf{N}_{\mathbf{2}}}{2}=\mathbf{0}
$$

$$
B M-\frac{N_{1}^{2} \cdot N_{2}}{{N_{1}}^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}=0 \quad M N-\frac{N_{2} \cdot\left(N_{1}^{2}-N_{2}^{2}+N_{3}^{2}\right)}{2 \cdot\left(N_{1}{ }^{2}+{N_{2}}^{2}-N_{3}^{2}\right)}=0
$$

$$
\mathrm{DN}-\frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}{ }^{2}-\mathbf{N}_{2}{ }^{2}+\mathbf{N}_{\mathbf{3}}{ }^{2}\right)}{2 \cdot \sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}+\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}+\mathbf{N}_{\mathbf{3}}\right)}}=0
$$

$$
\mathbf{B D}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}}{\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right)}}=\mathbf{0}
$$

[^0]$C A_{1} a^{3}$

\sim_{n}^{∞}
Unit.
AB := 1
Given.
$\mathbf{W}:=4 \quad \mathbf{Y}:=\mathbf{3}$
$X:=10 \quad Z:=10$
Descriptions.
$\mathbf{A H}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{C H}:=\frac{\mathbf{Y}}{\mathbf{Z}}$
$\mathbf{A C}:=\sqrt{\mathbf{A H}^{\mathbf{2}}+\mathbf{C H}^{2}} \quad \mathbf{B H}:=\mathbf{A B}-\mathbf{A H}$
$\mathbf{B C}:=\sqrt{\mathbf{B H}^{2}+\mathbf{C H}^{2}} \quad \mathbf{B K}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A E}:=\mathbf{A C} \quad \mathbf{B F}:=\mathbf{B C}$
$\mathbf{A G}:=\frac{\mathbf{A E}^{\mathbf{2}}}{\mathbf{A B}} \quad \mathbf{B J}:=\frac{\mathbf{B F}^{2}}{\mathbf{A B}} \quad \mathbf{G J}:=\mathbf{A B}-(\mathbf{A G}+\mathbf{B J}) \quad \mathbf{H J}:=\frac{\mathbf{G J}}{\mathbf{2}}$
$\mathbf{B N}:=\frac{\mathbf{B C}}{2} \quad \mathbf{B M}:=\frac{\mathbf{B C} \cdot \mathrm{BK}}{\mathbf{B H}} \quad \mathrm{MN}:=\mathbf{B M}-\mathbf{B N} \quad \mathrm{DN}:=\frac{\mathbf{B H} \cdot \mathrm{MN}}{\mathbf{C H}}$
BD $:=\sqrt{\mathbf{B N}^{2}+\mathbf{D N}^{2}}$
Definitions.
$\mathbf{A H}-\frac{W}{X}=0 \quad \mathbf{C H}-\frac{Y}{Z}=0 \quad A C-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{X \cdot Z}=0 \quad B H-\frac{X-W}{X}=0$

Unit $=1.00000$ $\mathrm{X} / \mathrm{W}=2.50000$ $\mathrm{w}=4.00000$ $X=10.00000$ $\mathbf{Z} / \mathbf{Y}=3.33333$ $\mathrm{Y}=3.00000$ $\mathrm{Z}=10.00000$ $\mathrm{N}_{1}=2.50000$ $\mathrm{N}_{2}=3.33333$

Given the difference between three non-collinear points, find the radius of the circle that circumscribes them
$B C-\frac{\sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(\mathbf{Y}^{2}+Z^{2}\right)}}{X \cdot Z}=0 \quad B K-\frac{1}{2} \quad A E-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot \mathbf{Y}^{2}}}{\mathbf{X} \cdot \mathbf{Z}}=0 \quad B F-\frac{\sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(\mathbf{Y}^{2}+Z^{2}\right)}}{\mathbf{X} \cdot \mathbf{Z}}=0$
$A G-\frac{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}{X^{2} \cdot Z^{2}}=0 \quad B J-\frac{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}{X^{2} \cdot Z^{2}}=0 \quad G J-\frac{2 \cdot\left(w \cdot X \cdot z^{2}-w^{2} \cdot Z^{2}-X^{2} \cdot Y^{2}\right)}{X^{2} \cdot Z^{2}}=0 \quad H J-\frac{\left(w \cdot X \cdot z^{2}-w^{2} \cdot Z^{2}-X^{2} \cdot Y^{2}\right)}{X^{2} \cdot Z^{2}}=0$
$\mathbf{B N}-\frac{\sqrt{\mathbf{W} \cdot \mathbf{Z}^{2} \cdot(\mathbf{W}-\mathbf{2} \cdot \mathbf{X})+\mathbf{X}^{2} \cdot\left(\mathbf{Y}^{2}+Z^{2}\right)}}{2 \cdot \mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{B M}-\frac{\sqrt{\mathbf{X}^{2} \cdot\left(\mathbf{Y}^{2}+Z^{2}\right)+\mathbf{W} \cdot \mathbf{Z}^{2} \cdot(\mathbf{W}-\mathbf{2} \cdot \mathbf{X})}}{2 \cdot Z \cdot(\mathbf{X}-\mathbf{W})}=0 \quad \mathbf{M N}-\frac{\mathbf{W} \cdot \sqrt{\mathbf{W} \cdot Z^{2} \cdot(\mathbf{W}-\mathbf{2} \cdot \mathbf{X})+\mathbf{X}^{2} \cdot\left(\mathbf{Y}^{2}+Z^{2}\right)}}{2 \cdot \mathbf{X} \cdot \mathbf{Z} \cdot(\mathbf{X}-\mathbf{W})}=\mathbf{0}$
$D N-\frac{W \cdot \sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}}{2 \cdot X^{2} \cdot Y}=0 \quad B D-\frac{\sqrt{\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right) \cdot\left(W^{2} \cdot Z^{2}-2 \cdot W \cdot X \cdot Z^{2}+X^{2} \cdot Y^{2}+X^{2} \cdot Z^{2}\right)}}{2 \cdot X^{2} \cdot \mathbf{Y} \cdot Z}=0$

Giving any side of a triangle as unity, then each of the remaing two sides are named as the

The only time this process fails in in the Mythological Great Circle, which Shamen (sic) claim is a line. The real significance of the Great Circle is that in looking forward to one's future, these people actually end up where they started. I believe Dodson called it a Caucus Race of which he had plenty of experience. It is a whole lot more flattering to claim we have moved when all we did is stand still. the Couch Potato Philosopher.
$A:=\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{X \cdot Z} \quad$ algebraic names assigned to A and B like such:
$B:=\frac{\sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}}{X \cdot Z}$
$\delta_{\mathrm{m}}:=0$.. 2 The result is independent of the side one starts assignes to unity
$\mathbf{S}_{\mathbf{1}}:=\left(\begin{array}{c}\mathbf{1} \\ \mathbf{A} \\ B\end{array}\right) \quad \mathbf{S}_{\mathbf{2}}:=\left(\begin{array}{c}\mathbf{A} \\ B \\ \mathbf{1}\end{array}\right) \quad \mathbf{S}_{\mathbf{3}}:=\left(\begin{array}{c}B \\ \mathbf{1} \\ \mathbf{A}\end{array}\right)$
$\mathbf{R}_{\boldsymbol{\delta}}:=\frac{\mathbf{S}_{\mathbf{1}_{\boldsymbol{\delta}}} \cdot \mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}} \cdot \mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}}{\sqrt{\mathbf{S}_{\mathbf{1}_{\delta}}+\mathbf{S}_{\mathbf{2}_{\delta}}+\mathbf{S}_{\mathbf{3}_{\delta}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}_{\delta}}+\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{3}_{\delta}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\delta}}-\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{3}_{\delta}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\delta}}+\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}-\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}}}$

The Arithmetic name of the Radius in terms of the givens.
$\mathbf{R}_{\boldsymbol{\delta}}=$

0.559017
0.559017
0.559017

$B D=0.559017$

$\sqrt{\left(W^{2} \cdot \mathbf{Z}^{2}+\mathrm{X}^{2} \cdot \mathbf{Y}^{2}\right) \cdot\left(\left(W^{2} \cdot \mathbf{Z}^{\mathbf{2}} \cdot \mathbf{2} \cdot \mathrm{W} \cdot \mathrm{X} \cdot \mathrm{Z}^{2}\right)+\mathrm{X}^{2} \cdot \mathbf{Y}^{2}+\mathrm{X}^{2} \cdot \mathbf{Z}^{\mathbf{2}}\right)}$	1.02148
2. ${ }^{\mathbf{2}} \cdot \mathbf{Y} \cdot \mathrm{Z}$	
$\sqrt{\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right) \cdot\left(\left(W^{2} \cdot Z^{2} \cdot 2 \cdot W \cdot X \cdot Z^{2}\right)+X^{2} \cdot Y^{2}+X^{2} \cdot \mathbf{Z}^{2}\right)}$	BD
2. ${ }^{\mathbf{2}}$. $\mathbf{Y} \cdot \mathrm{Z}$	AB

$B D=10.36188 \mathrm{~cm}$
$A B=10.14400 \mathrm{~cm}$
$\frac{\mathrm{BD}}{\mathrm{AB}}=1.02148$

Abstract

${ }_{\delta}$

$\mathrm{BD}=0.559017$

071593A
Descriptions.

Pyramid of Ratios II

AB := 1
Given.
$\mathbf{N}_{1}:=3 \quad$ Back in the day, I used to write shit up like $N_{2}:=5 \quad$ was doing, so, I had to invent other ways to $\mathrm{N}_{2}=5 \quad$ write these up and to understand them.
$\delta:=1 . . \mathbf{N}_{\mathbf{2}}$
$\mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}_{1}} \quad \mathbf{A C}:=\sqrt{\frac{\mathbf{A B}^{2}}{2}} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{D E}_{\delta}:=\frac{\mathbf{B D} \cdot \delta}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A G} \boldsymbol{\delta}:=\frac{\mathbf{A C} \cdot \delta}{\mathbf{N}_{\mathbf{2}}}$
$\mathbf{A E}_{\boldsymbol{\delta}}:=\mathbf{A D}+\mathbf{D E}_{\boldsymbol{\delta}} \quad \mathbf{A H}_{\boldsymbol{\delta}}:=\sqrt{\frac{\left(\mathbf{A G}_{\boldsymbol{\delta}}\right)^{2}}{2}} \quad \mathbf{G H}_{\boldsymbol{\delta}}:=\mathbf{A H}_{\boldsymbol{\delta}} \quad \mathbf{E H}_{\boldsymbol{\delta}}:=\mathbf{A E}_{\boldsymbol{\delta}}-\mathbf{A H}_{\boldsymbol{\delta}}$
$\mathbf{E G}_{\delta}:=\sqrt{\left(\mathbf{E H}_{\delta}\right)^{2}+\left(\mathbf{G H}_{\delta}\right)^{2}}$
$\mathbf{A L}:=\frac{\mathbf{A B}}{2}$
$\mathbf{D L}:=\mathbf{A L}-\mathbf{A D}$
$\mathbf{C L}:=\sqrt{\frac{\mathbf{A C}^{2}}{2}}$
$\mathbf{H K}_{\boldsymbol{\delta}}:=\frac{\mathbf{D L} \cdot \mathbf{G H}_{\boldsymbol{\delta}}}{\mathbf{C L}} \quad \mathbf{E K}_{\boldsymbol{\delta}}:=\mathbf{E H}_{\boldsymbol{\delta}}+\mathbf{H K}_{\boldsymbol{\delta}} \quad \mathbf{D J _ { \boldsymbol { \delta } }}:=\frac{\mathbf{H K}_{\boldsymbol{\delta}} \cdot \mathbf{D E}}{\boldsymbol{\delta}} \mathbf{\mathbf { E K } _ { \boldsymbol { \delta } }} \quad \mathbf{F J _ { \boldsymbol { \delta } }}:=\frac{\mathbf{G H}_{\boldsymbol{\delta}} \cdot \mathbf{D E}_{\boldsymbol{\delta}}}{\mathbf{E K}}$
$\mathbf{D F}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{D} \mathbf{J}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}+\left(\mathbf{F} \mathbf{J}_{\boldsymbol{\delta}}\right)^{2}} \quad \mathbf{E F}_{\boldsymbol{\delta}}:=\frac{\mathbf{E G}_{\boldsymbol{\delta}} \cdot \mathbf{D E} \mathbf{E}_{\boldsymbol{\delta}}}{\mathbf{E K}_{\boldsymbol{\delta}}} \quad \mathbf{F G}_{\boldsymbol{\delta}}:=\mathbf{E G}_{\boldsymbol{\delta}}-\mathbf{E F}_{\boldsymbol{\delta}}$
$\mathbf{C D}:=\sqrt{\mathbf{C L}^{2}+\mathbf{D L}^{2}}$

$A B$ is divided by N_{1} and $A C$ and $B D$ is divided by N_{2}, what are EG/FG and CD/DF?

$\overbrace{N \rightarrow 2}^{0}$
071593B
Descriptions.
$\mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}_{1}} \quad \mathbf{A C}:=\sqrt{\frac{\mathbf{A B}^{2}}{2}} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{A L}:=\frac{\mathbf{A B}}{2}$
$\mathbf{D E}:=\frac{\mathbf{B D}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A G}:=\frac{\mathbf{A C}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E} \quad \mathbf{A H}:=\sqrt{\frac{\mathbf{A G ^ { 2 }}}{2}}$
$\mathbf{G H}:=\mathbf{A H} \quad \mathbf{E H}:=\mathbf{A E}-\mathbf{A H} \quad \mathbf{E G}:=\sqrt{\mathbf{E H}}{ }^{\mathbf{2}+\mathbf{G H}^{2}} \quad \mathbf{D L}:=\mathbf{A L}-\mathbf{A D}$
$\mathbf{C L}:=\mathbf{A L} \quad \mathbf{H K}:=\frac{\mathbf{D L} \cdot \mathbf{A H}}{\mathbf{A L}} \quad \mathbf{E K}:=\mathbf{E H}+\mathbf{H K}$

DJ $:=\frac{\text { HK•DE }}{\text { EK }} \quad$ EF $:=\frac{\text { EG•DE }}{\text { EK }} \quad$ FG $:=$ EG $-\mathbf{E F}$

FJ $:=\frac{\mathbf{G H} \cdot \mathbf{D E}}{\mathbf{E K}} \quad \mathbf{C D}:=\sqrt{\mathbf{C L}^{2}+\mathbf{D L}^{2}} \quad \mathbf{D F}:=\sqrt{\mathbf{D J}^{2}+\mathbf{F J}^{2}}$
$\frac{E G}{F G}=1.5 \quad \frac{C D}{D F}=15$

Definitions.
$\begin{array}{ll}\frac{\mathbf{N}_{2}+\mathbf{N}_{1}-2}{\mathbf{N}_{2}-1}=1.5 & \frac{\mathbf{N}_{2}^{2}+N_{1} \cdot N_{2}-2 \cdot N_{2}}{\mathbf{N}_{1}-1}=15 \\ \frac{\text { EG }}{\text { FG }}-\frac{\mathbf{N}_{2}+\mathbf{N}_{1}-2}{\mathbf{N}_{2}-1}=0 & \frac{\text { CD }}{\text { DF }}-\frac{\mathbf{N}_{2}{ }^{2}+N_{1} \cdot N_{2}-2 \cdot N_{2}}{N_{1}-1}\end{array}$

Pyramid of Ratios II

AB := 1
Given.
$\mathbf{N}_{\mathbf{1}}$:= $\mathbf{3}$
$\mathbf{N}_{\mathbf{2}}:=\mathbf{5}$

When I got to this point, I thought I had the bull gonads, but, I was not satisfied.
$A B$ is divided by N_{1} and $A C$ and $B D$ is divided by N_{2}, what are EG/FG and CD/DF?

$$
\begin{aligned}
& \mathbf{N}_{1}=2.32900 \\
& \mathbf{N}_{2}=1.65606 \\
& \frac{\mathbf{N}_{1 \text { num }}}{\mathbf{N}_{1 \text { den }}}=2.32900 \\
& \frac{\mathbf{N}_{2 \text { num }}}{\mathbf{N}_{2 \text { dem }}}=1.65606
\end{aligned}
$$

$$
\begin{array}{lll}
\frac{E G}{F G}=3.02573 & \frac{\left(N_{2}+N_{1}\right)-2}{N_{2}-1}=3.02573 & \frac{E G}{F G}-\frac{\left(N_{2}+N_{1}\right)-2}{N_{2}-1}=0.00000 \\
\frac{C D}{D F}=2.47357 & \frac{\left(N_{2}{ }^{2}+N_{1} \cdot N_{2}\right)-2 \cdot N_{2}}{N_{1}-1}=2.47357 & \frac{C D}{D F}-\frac{\left(N_{2}^{2}+N_{1} \cdot N_{2}\right)-2 \cdot N_{2}}{N_{1}-1}=0.00000
\end{array}
$$

071593C
Descriptions.

Unit.

AB:= 1
Given.
$\mathbf{W}:=\mathbf{3}$
$\mathbf{X}:=10$
$\mathbf{Y}:=\mathbf{8}$
$Z:=20$

Pyramid of Ratios II

What we have, is a way to understand how to write something, which shows a very intimate account of the ratios which, if we stop to think about it, we had set all along. We are learning the results of our own behavior applied to information.
$N_{1}:=\frac{X}{W} \quad N_{2}:=\frac{Z}{Y} \quad A D:=\frac{A B}{N_{1}} \quad A C:=\sqrt{\frac{A B^{2}}{2}} \quad \mathbf{B D}:=A B-A D$
$\mathbf{A L}:=\frac{\mathbf{A B}}{2} \quad \mathbf{D E}:=\frac{\mathbf{B D}}{\mathbf{N}_{2}} \quad \mathbf{A G}:=\frac{\mathbf{A C}}{\mathbf{N}_{2}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E} \quad \mathbf{A H}:=\sqrt{\frac{\mathbf{A G} \mathbf{Q}^{2}}{2}}$
$\mathbf{G H}:=\mathbf{A H} \quad \mathbf{E H}:=\mathbf{A E}-\mathbf{A H} \quad \mathbf{E G}:=\sqrt{\mathbf{E H}^{\mathbf{2}}+\mathbf{G H}^{2}} \quad \mathbf{D L}:=\mathbf{A L}-\mathbf{A D}$
CL $:=\mathbf{A L} \quad$ HK $:=\frac{\text { DL } \cdot \mathbf{A H}}{\text { AL }} \quad$ EK $:=\mathbf{E H}+\mathbf{H K} \quad$ DJ $:=\frac{\text { HK•DE }}{\text { EK }}$
$\mathbf{E F}:=\frac{\mathbf{E G} \cdot \mathbf{D E}}{\mathbf{E K}} \quad \mathbf{F G}:=\mathbf{E G}-\mathbf{E F} \quad$ FJ $:=\frac{\mathbf{G H} \cdot \mathbf{D E}}{\mathbf{E K}}$
$\mathbf{C D}:=\sqrt{\mathbf{C L}^{2}+\mathbf{D L}^{2}} \quad \mathrm{DF}:=\sqrt{\mathbf{D J}^{2}+\mathbf{F J}^{2}}$
$\frac{\text { EG }}{\text { FG }}-\frac{\mathbf{N}_{2}+\mathbf{N}_{1}-2}{\mathbf{N}_{2}-1}=0 \quad \frac{C D}{D F}-\left(\frac{\mathbf{N}_{2}{ }^{2}+N_{1} \cdot N_{2}-2 \cdot N_{2}}{N_{1}-1}\right)=0$
Definitions.
$\mathbf{N}_{1}-\frac{\mathbf{X}}{\mathbf{W}}=0 \quad \mathbf{N}_{2}-\frac{\mathbf{Z}}{\mathbf{Y}}=0 \quad \mathbf{A D}-\frac{\mathbf{W}}{\mathbf{X}}=0 \quad A C-\frac{1}{\sqrt{2}}=0 \quad B D-\frac{(\mathbf{X}-\mathbf{W})}{\mathbf{X}}=\mathbf{0}$
$\mathbf{A L}-\frac{1}{2}=\mathbf{0} \quad \mathbf{D E}-\frac{\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W})}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{A G}-\frac{\sqrt{2} \cdot \mathbf{Y}}{2 \cdot Z}=0 \quad \mathbf{A E}-\frac{\mathbf{W} \cdot(\mathbf{Z}-\mathbf{Y})+\mathbf{X} \cdot \mathbf{Y}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{A H}-\frac{\mathbf{Y}}{2 \cdot \mathbf{Z}}=\mathbf{0}$
$\mathbf{G H}-\frac{\mathbf{Y}}{2 \cdot Z}=\mathbf{O} \quad \mathbf{E H}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot(Z-\mathbf{Y})+\mathbf{X} \cdot \mathbf{Y}}{2 \cdot X \cdot Z}=\mathbf{O} \quad \mathbf{E G}-\frac{\sqrt{\mathbf{Y}^{2} \cdot \mathbf{X}^{2}+[2 \cdot \mathbf{W} \cdot \mathbf{Y} \cdot(Z-\mathbf{Y})] \cdot \mathbf{X}+2 \cdot \mathbf{W}^{2} \cdot(\mathbf{Y}-\mathbf{Z})^{\mathbf{2}}}}{\sqrt{2} \cdot \mathbf{X} \cdot Z}=0$
$\mathbf{D L}-\frac{(\mathbf{X}-2 \cdot \mathbf{W})}{2 \cdot \mathbf{X}}=0 \quad \mathbf{C L}-\frac{1}{2}=0 \quad \mathbf{H K}-\frac{\mathbf{Y} \cdot(\mathbf{X}-2 \cdot \mathbf{W})}{2 \cdot \mathbf{X} \cdot \mathbf{Z}}=0 \quad \mathbf{E K}-\frac{(\mathbf{W} \cdot \mathbf{Z}-2 \cdot \mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Y})}{\mathbf{X} \cdot \mathbf{Z}}=0$

$$
\begin{aligned}
& \mathbf{D J}-\frac{\mathbf{Y}^{\mathbf{2}} \cdot(\mathbf{W}-\mathbf{X}) \cdot(\mathbf{X}-\mathbf{2} \cdot \mathbf{W})}{\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0} \\
& \mathbf{E F}-\frac{\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W}) \cdot \sqrt{2 \cdot \mathbf{X}^{2} \cdot \mathbf{Y}^{2}+4 \cdot \mathbf{W}^{2} \cdot(\mathbf{Y}-Z)^{2}-4 \cdot \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{Y} \cdot(\mathbf{Y}-Z)}}{2 \cdot \mathbf{X} \cdot \mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Z}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Y})}=0 \\
& \mathbf{F G}-\frac{\mathbf{W} \cdot(\mathbf{Z}-\mathbf{Y}) \cdot \sqrt{2 \cdot \mathbf{X}^{2} \cdot \mathbf{Y}^{2}+\mathbf{4} \cdot \mathbf{W}^{2} \cdot(\mathbf{Y}-\mathbf{Z})^{2}-4 \cdot \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{Y} \cdot(\mathbf{Y}-\mathbf{Z})}}{2 \cdot \mathbf{X} \cdot \mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Z}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0} \\
& \mathbf{F J}-\frac{\mathbf{Y}^{\mathbf{2}} \cdot(\mathbf{X}-\mathbf{W})}{2 \cdot \mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Z}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0} \\
& \mathbf{C D}-\frac{\sqrt{2 \cdot \mathbf{w}^{2}-2 \cdot w \cdot x+x^{2}}}{\sqrt{2} \cdot x}=0 \\
& \text { DF }-\frac{\mathbf{Y}^{2} \cdot(X-W) \cdot \sqrt{2 \cdot \mathbf{W}^{2}-2 \cdot W \cdot X+X^{2}}}{\sqrt{2} \cdot X \cdot Z \cdot(\mathbf{W} \cdot Z-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}+X \cdot Y)}=0 \\
& \frac{\mathbf{E G}}{\mathbf{F G}}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}{(\mathbf{Y}-\mathbf{Z}) \cdot \mathbf{W}}=\mathbf{0} \quad \frac{\mathbf{C D}}{\mathbf{D F}}-\left[\frac{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y})}{\mathbf{Y}^{\mathbf{2}} \cdot(\mathbf{W}-\mathbf{X})}\right]=\mathbf{0}
\end{aligned}
$$

Unit.
AB := 1
Given.
$\mathbf{N}:=6$
$\delta_{\text {只: }}: \mathbf{1}$.. \mathbf{N}

072593A

Descriptions.
$\mathbf{A D}:=\frac{\mathbf{A B}}{2} \quad \mathbf{B D}:=\mathbf{A D} \quad \mathbf{C D}:=\mathbf{B D} \quad \mathbf{B C}:=\sqrt{\frac{\mathbf{B D}^{2}}{2}} \quad \mathbf{D E}_{\delta}:=\frac{\mathbf{C D} \cdot \delta}{\mathrm{N}}$
$\mathrm{BE}_{\delta}:=\sqrt{\mathrm{BD}^{2}+\left(\mathrm{DE}_{\delta}\right)^{2}} \quad \mathrm{BF}_{\delta}:=\frac{\mathrm{BD} \cdot \mathrm{AB}}{\mathrm{BE}_{\delta}} \quad \mathrm{AF}_{\boldsymbol{\delta}}:=\frac{\mathrm{DE}_{\delta} \cdot \mathrm{AB}}{\mathrm{BE}_{\delta}} \quad \mathrm{EF}_{\boldsymbol{\delta}}:=\mathrm{BF}_{\delta}-\mathrm{BE}_{\boldsymbol{\delta}}$

$\mathbf{C F}_{\delta}:=\sqrt{\left(\mathbf{F G}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathbf{C G}_{\boldsymbol{\delta}}\right)^{2}}$

Unit.
AB:=1
Given.
$\mathbf{N}:=\mathbf{5}$
072593B
Descriptions.
$\mathbf{C D}:=\frac{\mathrm{AB}}{2} \quad \mathrm{DE}:=\frac{\mathrm{CD}}{\mathrm{N}} \quad \mathrm{BE}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DE}^{2}}$
$\mathbf{B F}:=\frac{\mathbf{C D} \cdot \mathbf{A B}}{\mathbf{B E}} \quad \mathbf{A F}:=\frac{\mathbf{D E} \cdot \mathbf{B F}}{\mathbf{C D}} \quad \mathbf{D G}:=\frac{\mathbf{D E} \cdot \mathbf{B F}}{\mathbf{B E}}$
$\mathbf{C G}:=\mathbf{C D}-\mathbf{D G} \quad \mathbf{F G}:=\frac{\mathbf{C D} \cdot(\mathbf{D G}-\mathbf{D E})}{\mathbf{D E}} \quad \mathbf{C F}:=\sqrt{\mathbf{F G}^{\mathbf{2}}+\mathbf{C G}^{\mathbf{2}}}$

Pyramid of Ratios III

Dividing DC into a ratio provides what in terms of BE/BF and AF/CF?

Definitions.

$\frac{B E}{B F}=0.52 \quad \frac{\mathbf{N}^{2}+1}{2 \cdot N^{2}}=0.52$
$\frac{\mathbf{A F}}{\mathbf{C F}}=0.353553 \quad \frac{\sqrt{2}}{\mathrm{~N}-1}=0.353553$
$\frac{B E}{B F}-\frac{N^{2}+1}{2 \cdot N^{2}}=0 \quad \frac{A F}{C F}-\frac{\sqrt{2}}{N-1}=0$

Unit.
AB:=1
Given.
$\mathbf{Y}:=20$
$\mathbf{x}:=4$
072593C
Descriptions.
$\mathbf{N}:=\frac{\mathbf{Y}}{\mathrm{X}} \quad \mathbf{C D}:=\frac{\mathbf{A B}}{2} \quad \mathbf{D E}:=\frac{\mathrm{CD}}{\mathrm{N}} \quad \mathrm{BE}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DE}^{2}}$
$\mathbf{B F}:=\frac{\mathbf{C D} \cdot \mathbf{A B}}{\mathbf{B E}} \quad \mathbf{A F}:=\frac{\mathbf{D E} \cdot \mathbf{B F}}{\mathbf{C D}} \quad \mathbf{D G}:=\frac{\mathrm{DE} \cdot \mathrm{BF}}{\mathbf{B E}}$
$\mathbf{C G}:=\mathbf{C D}-\mathbf{D G} \quad \mathbf{F G}:=\frac{\mathbf{C D} \cdot(\mathbf{D G}-\mathbf{D E})}{\mathbf{D E}} \quad \mathbf{C F}:=\sqrt{\mathbf{F G}^{2}+\mathbf{C G}^{2}}$
$\frac{\mathrm{BE}}{\mathrm{BF}}-\frac{\mathrm{N}^{2}+1}{2 \cdot \mathrm{~N}^{2}}=\mathbf{0} \quad \frac{\mathrm{AF}}{\mathrm{CF}}-\frac{\sqrt{2}}{\mathrm{~N}-1}=\mathbf{0}$
Definitions.
$\mathrm{N}-\frac{\mathrm{Y}}{\mathrm{X}}=\mathbf{0} \quad \mathbf{C D}-\frac{1}{2} \quad \mathbf{D E}-\frac{\mathrm{X}}{2 \cdot \mathrm{Y}}=\mathbf{0} \quad \mathbf{B E}-\frac{\sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}}}{2 \cdot \mathrm{Y}}=\mathbf{0}$ $\mathrm{BF}-\frac{\mathrm{Y}}{\sqrt{\mathrm{X}^{2}+\mathbf{Y}^{2}}}=\mathbf{0} \quad \mathrm{AF}-\frac{\mathbf{X}}{\sqrt{\mathrm{X}^{2}+\mathbf{Y}^{2}}}=0 \quad \mathrm{DG}-\frac{\mathbf{X} \cdot \mathbf{Y}}{\mathrm{X}^{2}+\mathrm{Y}^{2}}=0$
$\mathbf{C G}-\frac{(\mathbf{X}-\mathbf{Y})^{2}}{2 \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}=0 \quad F G-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{2 \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}=0$
$\mathbf{C F}-\frac{(\mathbf{Y}-\mathbf{X})}{\sqrt{2 \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}}=\mathbf{0}$
$\frac{\mathbf{B E}}{\mathbf{B F}}-\frac{\mathbf{X}^{2}+\mathbf{Y}^{2}}{2 \cdot \mathbf{Y}^{2}}=0 \quad \frac{\mathbf{A F}}{\mathbf{C F}}-\frac{\sqrt{2} \cdot \mathbf{X}}{\mathbf{Y}-\mathbf{X}}=0$

Pyramid of Ratios III

Dividing DC into a ratio provides what in terms of BE/BF and AF/CF?

Unit.
BH:= 1
Given.
$\mathbf{N}:=\mathbf{5}$
110693A
Descriptions.
$\mathbf{B F}:=\frac{\mathbf{B H}}{2} \quad \mathbf{B D}:=\frac{\mathbf{B F}}{\mathbf{N}} \quad \mathbf{D H}:=\mathbf{B H}-\mathbf{B D}$
$\mathbf{D K}:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad$ JO $:=\mathbf{B H}+\mathbf{D K} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B H}}{\mathbf{J O}}$
$\mathbf{B G}:=\mathbf{B H}-\mathbf{B C} \quad \mathbf{E H}:=\frac{\mathbf{D H} \cdot \mathbf{B H}}{\mathbf{J O}} \quad \mathbf{B E}:=\mathbf{B H}-\mathbf{E H} \quad \mathbf{E G}:=\mathbf{E H}-\mathbf{B C}$
$\mathbf{G M}:=\sqrt{2 \cdot \mathbf{B G}^{\mathbf{2}}} \quad$ HO $:=\sqrt{2 \cdot \mathbf{B H}^{2}} \quad$ HQ $:=\frac{\mathbf{G M} \cdot \mathbf{E H}}{\mathbf{E G}} \quad$ OQ $:=\mathbf{H Q}-\mathbf{H O}$
$\mathbf{A B}:=\frac{\mathbf{O Q}}{\sqrt{2}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A H}:=\mathbf{A B}+\mathbf{B H}$
$\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A E=0$
Definitions.

Gruntwork I on the Delian Solution

Does $\left(A B^{2} \times A H\right)^{1 / 3}=A C$ and $\left(A B \times \mathrm{AH}^{2}\right)^{1 / 3}=\mathrm{AE}$?

$\mathbf{B F}-\frac{1}{2}=\mathbf{0} \quad \mathbf{B D}-\frac{1}{2 \cdot \mathbf{N}}=\mathbf{0} \quad \mathbf{D H}-\frac{(2 \cdot \mathbf{N}-1)}{2 \cdot \mathbf{N}}=0 \quad \mathbf{D K}-\frac{\sqrt{2 \cdot N-1}}{(2 \cdot \mathbf{N})}=\mathbf{0}$
$J O-\frac{(2 \cdot N+\sqrt{2 \cdot N-1})}{2 \cdot \mathbf{N}}=0 \quad B C-\frac{1}{2 \cdot N+\sqrt{2 \cdot N-1}}=0 \quad B G-\frac{(2 \cdot \mathbf{N}+\sqrt{2 \cdot N-1}-1)}{2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1}}=0$
$\mathbf{E H}-\frac{(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})}{\mathbf{2 \cdot \mathbf { N }}+\sqrt{2 \cdot \mathbf{N}-1}}=\mathbf{0} \quad \mathbf{B E}-\frac{(\sqrt{\mathbf{2 \cdot N}-\mathbf{1}}+\mathbf{1})}{2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1}}=\mathbf{0} \quad \mathbf{E G}-\frac{\mathbf{2 \cdot (\mathbf { N } - \mathbf { 1 })}}{2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-\mathbf{1}}}=\mathbf{0}$
$\mathbf{G M}-\sqrt{\mathbf{2}} \cdot \frac{(\mathbf{2 \cdot N}+\sqrt{2 \cdot \mathbf{N}-1}-\mathbf{1})}{(2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1})}=\mathbf{0} \quad \mathbf{H O}-\sqrt{\mathbf{2}}=\mathbf{0}$

$\mathbf{H Q}-\frac{\sqrt{2} \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1}) \cdot(\mathbf{2} \cdot \mathbf{N}+\sqrt{\mathbf{2} \cdot \mathbf{N}-1}-\mathbf{1})}{2 \cdot(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{2 \cdot N}+\sqrt{\mathbf{2 \cdot N}-\mathbf{1}})}=\mathbf{0}$
$O Q-\frac{\sqrt{2} \cdot\left[2 \cdot \sqrt{2 \cdot \mathbf{N}-1}+(2 \cdot \mathbf{N}-1)^{\frac{3}{2}}-2 \cdot \mathbf{N} \cdot \sqrt{2 \cdot \mathbf{N}-1}+1\right]}{(2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1}) \cdot(2 \cdot \mathbf{N}-2)}=0$
$\mathbf{A B}-\frac{\left[\mathbf{2 \cdot \sqrt { 2 \cdot \mathbf { N } - 1 }}+(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})^{\frac{3}{2}}-\mathbf{2 \cdot \mathbf { N } \cdot \sqrt { 2 \cdot \mathbf { N } - 1 }}+1\right]}{2 \cdot(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{2 \cdot \mathbf { N }}+\sqrt{\mathbf{2 \cdot \mathbf { N } - 1}})}=\mathbf{0}$
$A C-\frac{\left[2 \cdot \mathbf{N}+2 \cdot \sqrt{2 \cdot \mathbf{N}-1}+(2 \cdot \mathbf{N}-1)^{\frac{3}{2}}-2 \cdot \mathbf{N} \cdot \sqrt{2 \cdot \mathbf{N}-1}-1\right]}{2 \cdot(\mathbf{N}-\mathbf{1}) \cdot(2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-\mathbf{1}})}=0$
$A E-\frac{\left[2 \cdot N+(2 \cdot N-1)^{\frac{3}{2}}-1\right]}{2 \cdot(\mathbf{N}-1) \cdot(2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1})}=0$
$A H-\frac{\left[(2 \cdot \mathbf{N}-1)^{\frac{3}{2}}-4 \cdot \mathbf{N}+4 \cdot \mathbf{N}^{2}+1\right]}{2 \cdot(\mathbf{N}-1) \cdot(2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1})}=0$

$B F=1.37917 \mathrm{in}$. $B D=0.65310 \mathrm{in}$.
$\frac{B F}{B D}=2.11173$
$\mathrm{N}=2.11173$
$\mathrm{BH}=2.75833 \mathrm{in}$.
$\mathrm{AE}=1.85725 \mathrm{in}$.
$\frac{\mathrm{BH} \cdot\left(\left(2 \cdot \mathrm{~N}+(2 \cdot \mathrm{~N}-1)^{\frac{3}{2}}\right)-1\right)}{2 \cdot(\mathrm{~N}-1) \cdot(2 \cdot \mathrm{~N}+\sqrt{2 \cdot \mathrm{~N}-1})}-\mathrm{AE}=0.00000 \mathrm{in}$.
$\sim_{N=0}^{0}$
110693B

Unit. BH := 1 Given. Y:= 20

Descriptions.

$\mathbf{B F}:=\frac{\mathbf{B H}}{2} \quad \mathbf{B D}:=\frac{\mathbf{Y}-\mathbf{X}}{2 \cdot \mathbf{Y}} \quad \mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \mathbf{D K}:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad$ JO $:=\mathbf{B H}+\mathbf{D K}$ $\mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B H}}{\mathbf{J O}} \quad \mathbf{B G}:=\mathbf{B H}-\mathbf{B C} \quad \mathbf{E H}:=\frac{\mathbf{D H} \cdot \mathbf{B H}}{\mathbf{J O}} \quad \mathbf{B E}:=\mathbf{B H}-\mathbf{E H} \quad \mathbf{E G}:=\mathbf{E H}-\mathbf{B C}$
$\mathbf{G M}:=\sqrt{2 \cdot \mathbf{B G}^{2}} \quad \mathbf{H O}:=\sqrt{2 \cdot \mathbf{B H}^{2}} \quad \mathbf{H Q}:=\frac{\mathbf{G M} \cdot \mathbf{E H}}{\mathbf{E G}} \quad$ OQ $:=\mathbf{H Q}-\mathbf{H O}$
$\mathbf{A B}:=\frac{\mathbf{O Q}}{\sqrt{2}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A H}:=\mathbf{A B}+\mathbf{B H}$
$\frac{B F}{B D}=2.857143 \quad \frac{A H}{A B}=10.235849\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A E=0$

Definitions.
$\mathbf{B F}-\frac{1}{2}=0 \quad B D-\frac{Y-X}{2 \cdot Y}=0 \quad D H-\frac{X+Y}{2 \cdot Y}=0 \quad D K-\frac{\sqrt{Y^{2}-X^{2}}}{2 \cdot Y}=0$
$J O-\frac{2 \cdot Y+\sqrt{Y^{2}-X^{2}}}{2 \cdot Y}=0 \quad B C-\frac{Y-X}{2 \cdot Y+\sqrt{Y^{2}-X^{2}}}=0 \quad B G-\frac{X+Y+\sqrt{Y^{2}-X^{2}}}{2 \cdot Y+\sqrt{Y^{2}-X^{2}}}=0$
$E H-\frac{X+Y}{2 \cdot Y+\sqrt{Y^{2}-X^{2}}}=0 \quad B E-\frac{(X+Y) \cdot \sqrt{Y^{2}-X^{2}}+(X-Y)^{2}}{X^{2}+3 \cdot Y^{2}}=0 \quad E G-\frac{2 \cdot X}{2 \cdot Y+\sqrt{Y^{2}-X^{2}}}=0$

$\mathbf{G M}-\frac{\sqrt{2} \cdot\left(\mathbf{X}+\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}{\left(2 \cdot \mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}=0 \quad \mathbf{H O}-\sqrt{2}=0 \quad \mathbf{H Q}-\frac{\sqrt{2} \cdot(\mathbf{X}+\mathbf{Y}) \cdot\left(\mathbf{X}+\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}{2 \cdot \mathbf{X} \cdot\left(2 \cdot \mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}=0 \quad \mathbf{O Q - \frac { (X - \mathbf { Y }) \cdot (\mathbf { X } - \mathbf { Y } - \sqrt { \mathbf { Y } ^ { 2 } - \mathbf { X } ^ { 2 } }) \cdot \sqrt { 2 } } { 2 \cdot \mathbf { X } \cdot (2 \cdot \mathbf { Y } + \sqrt { \mathbf { Y } ^ { 2 } - \mathbf { X } ^ { 2 } }) } = 0}$
$A B-\frac{(X-Y) \cdot\left(\mathbf{X}-\mathbf{Y}-\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}{2 \cdot \mathbf{X} \cdot\left(2 \cdot \mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}=0 \quad \mathbf{A C}-\frac{(\mathbf{Y}-\mathbf{X}) \cdot\left(\mathbf{X}+\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}{2 \cdot \mathbf{X} \cdot\left(2 \cdot \mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}=0$
$\mathbf{A E}-\frac{(\mathbf{X}+\mathbf{Y}) \cdot\left(\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}+\mathbf{Y}-\mathbf{X}\right)}{2 \cdot \mathbf{X} \cdot\left(2 \cdot \mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}=\mathbf{0}$
$\mathbf{A H}-\frac{(\mathbf{X}+\mathbf{Y}) \cdot\left(\mathbf{X}+\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}{2 \cdot \mathbf{X} \cdot\left(\mathbf{2} \cdot \mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}=\mathbf{0}$

BH:= 1
Given.
$\mathbf{N}_{1}:=\mathbf{5}$
110993A
Descriptions.
$\mathbf{B G}:=\frac{\mathbf{B H}}{2} \quad \mathbf{C F}:=\frac{\mathbf{B H}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{B L}:=\mathbf{C F} \quad$ GP $:=\mathbf{B G}$
$\mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{B D}:=\mathbf{B K} \quad$ NP $:=\mathbf{B D} \quad$ GN $:=\mathbf{G P}-\mathbf{N P} \quad$ EN $:=\mathbf{B L}$
$\mathbf{G E}:=\sqrt{\mathbf{G N}^{2}-\mathbf{E N}^{2}} \quad \mathbf{C E}:=\mathbf{B D} \quad \mathbf{B C}:=\mathbf{B G}-(\mathbf{G E}+\mathbf{C E})$
$\mathbf{G H}:=\mathbf{B G} \quad \mathbf{E F}:=\mathbf{B D} \quad \mathbf{F H}:=\mathbf{G H}+\mathbf{G E}-\mathbf{E F} \quad \mathbf{F Q}:=\mathbf{F H}$
FO $:=\mathbf{B L} \quad \mathbf{O Q}:=\mathbf{F Q}-\mathrm{lMO}:=\mathbf{C F} \quad \mathbf{A F}:=\frac{\mathbf{M O} \cdot \mathbf{F Q}}{\mathbf{O Q}} \mathbf{A C}:=\mathbf{A F}-\mathbf{C F}$
$\mathbf{A H}:=\mathbf{A F}+\mathbf{F H} \quad \mathbf{A B}:=\mathbf{A H}-\mathbf{B H}$
$\left(A B^{2} \cdot \mathbf{A H}\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A F=0 \quad \frac{A H}{A B}=51.980762113532$

The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship.

Solve For Cube Root Placement

With straight edge and compass only, solve the given problem. $B H$ is the difference between the segments $A H$ and $A B$.
$C F$ is the difference between the cube root of $A B$ squared by $A H$ and the cube root of $A H$ squared by $A B$. Find $A B$ and place the roots.

Cix mes
Definitions.
$\begin{array}{lc}\mathbf{B H}-1=0 \quad \mathbf{B G}-\frac{1}{2}=0 & \mathbf{C F}-\frac{1}{\mathbf{N}_{1}}=0 \quad B K-\frac{1}{2 \cdot \mathbf{N}_{1}}=0 \quad G N-\frac{\mathbf{N}_{1}-1}{2 \cdot \mathbf{N}_{1}}=0 \\ \mathbf{G E}-\frac{\sqrt{\left(\mathbf{N}_{1}+1\right) \cdot\left(\mathbf{N}_{1}-3\right)}}{2 \cdot \mathbf{N}_{1}}=0 & B C-\frac{\mathbf{N}_{1}-\sqrt{\left(\mathbf{N}_{1}+1\right) \cdot\left(\mathbf{N}_{1}-3\right)}-1}{2 \cdot \mathbf{N}_{1}}=0\end{array}$
$\mathbf{F H}-\frac{\mathbf{N}_{\mathbf{1}}+\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{3}\right)}-\mathbf{1}}{\mathbf{2 \cdot \mathbf { N } _ { \mathbf { 1 } }}}=\mathbf{0}$
$O Q-\frac{\left.\mathbf{N}_{1}+\sqrt{\left(\mathbf{N}_{1}+1\right) \cdot\left(\mathbf{N}_{1}-3\right.}\right)-3}{2 \cdot \mathbf{N}_{1}}=0$
$\mathbf{A F}-\frac{\mathbf{N}_{\mathbf{1}}+\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{3}\right)}-\mathbf{1}}{\mathbf{N}_{\mathbf{1}} \cdot\left[\mathbf{N}_{\mathbf{1}}+\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{3}\right)}-\mathbf{3}\right]}=\mathbf{0}$
$\mathbf{A C}-\frac{2}{\mathbf{N}_{\mathbf{1}} \cdot\left[\mathbf{N}_{\mathbf{1}}+\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{3}\right)}-\mathbf{3}\right]}=\mathbf{0}$

$\mathbf{A B}-\frac{\mathbf{N}_{1}-\sqrt{\left(\mathbf{N}_{1}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{3}\right)}-\mathbf{1}}{\mathbf{N}_{1} \cdot\left[\mathbf{N}_{1}+\sqrt{\left(\mathbf{N}_{1}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{3}\right)}-\mathbf{3}\right]}=0$

Unit.
BG:= 1
Given.
$\mathbf{Y}:=20$
110993B
Descriptions.
$\mathbf{B H}:=\mathbf{2} \cdot \mathbf{B G} \quad \mathbf{C F}:=\frac{\mathbf{2} \cdot \mathbf{X}}{\mathbf{3} \cdot \mathbf{Y}} \quad$ BL $:=\mathbf{C F} \quad$ GP $:=\mathbf{B G}$
$\mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad$ BD $:=\mathbf{B K} \quad \mathbf{N P}:=\mathbf{B D} \quad$ GN $:=\mathbf{G P}-\mathbf{N P} \quad$ EN $:=\mathbf{B L}$
$\mathbf{G E}:=\sqrt{\mathbf{G N}^{2}-\mathbf{E N}^{2}} \quad \mathbf{C E}:=\mathbf{B D} \quad \mathbf{B C}:=\mathbf{B G}-(\mathbf{G E}+\mathbf{C E})$
$\mathbf{G H}:=\mathbf{B G} \quad \mathbf{E F}:=\mathbf{B D} \quad \mathbf{F H}:=\mathbf{G H}+\mathbf{G E}-\mathbf{E F} \quad \mathbf{F Q}:=\mathbf{F H}$
FO := BL OQ := FQ - IMO $:=\mathbf{C F} \quad \mathbf{A F}:=\frac{\mathbf{M O} \cdot \mathbf{F Q}}{\mathbf{O Q}} \mathbf{A C}:=\mathbf{A F}-\mathbf{C F}$
$\mathbf{A H}:=\mathbf{A F}+\mathbf{F H} \quad \mathbf{A B}:=\mathbf{A H}-\mathbf{B H}$
$\mathbf{C H}:=\mathbf{C F}+\mathbf{F H}$
Arithmetic Names:
CF = 0.5
FH $=1.309017$
$\mathbf{C H}=\mathbf{1 . 8 0 9 0 1 7}$
$\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A F=0 \quad \frac{A H}{A B}=17.944271909999$

The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship.

Solve For Cube Root Placement

With straight edge and compass only, solve the given problem. $B H$ is the difference between the segments $A H$ and $A B$.
CF is the difference between the cube root of AB squared by AH and the cube root of $A H$ squared by $A B$. Find $A B$ and place the roots.

Unit $=1.00000 \quad C F=0.50000$ XY = 0.75000 $\mathbf{X}=15.00000 \quad$ FH $=1.30902$ $\mathrm{Y}=20.00000 \quad \mathrm{CH}=1.80902$
$\frac{\mathrm{X} \cdot 2}{\mathrm{Y} \cdot 3}=0.50000$ $\frac{\mathrm{AH}}{\mathrm{AB}}=\mathbf{1 7 . 9 4 4 2 7}$
$C^{2} \operatorname{cin}^{38}$
Definitions.
$\mathbf{B H}-2=\mathbf{0} \quad \mathbf{C F}-\frac{2 \cdot X}{3 \cdot \mathbf{Y}}=0 \quad \mathbf{B L}-\frac{2 \cdot X}{3 \cdot \mathbf{Y}}=0 \quad \mathbf{G P}-1=0$
$\mathbf{B K}-\frac{\mathbf{X}}{\mathbf{3} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{X}}{\mathbf{3} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{N P}-\frac{\mathbf{X}}{\mathbf{3} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{G N}-\frac{\mathbf{3} \cdot \mathbf{Y}-\mathbf{X}}{\mathbf{3} \cdot \mathbf{Y}}=\mathbf{0}$
$\mathbf{E N}-\frac{2 \cdot X}{3 \cdot \mathbf{Y}}=0 \quad \mathbf{G E}-\frac{\sqrt{3 \cdot Y^{2}-2 \cdot X \cdot Y-X^{2}}}{\sqrt{3} \cdot \mathbf{Y}}=0 \quad \mathbf{C E}-\frac{\mathbf{X}}{3 \cdot \mathbf{Y}}=0$
$\mathbf{B C}-\frac{\mathbf{3} \cdot \mathbf{Y}-X-\sqrt{3} \cdot \sqrt{3 \cdot \mathbf{Y}^{2}-2 \cdot X \cdot Y-X^{2}}}{3 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{G H}-1=0$
$\mathbf{E F}-\frac{\mathbf{X}}{\mathbf{3 \cdot Y}}=\mathbf{0} \quad \mathbf{F H}-\frac{3 \cdot \mathbf{Y}-\mathbf{X}+\sqrt{3} \cdot \sqrt{3 \cdot \mathbf{Y}^{2}-2 \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{X}^{2}}}{3 \cdot \mathbf{Y}}=\mathbf{0}$
$\mathbf{C H}-\frac{\mathbf{X}+3 \cdot \mathbf{Y}+\sqrt{3} \cdot \sqrt{3 \cdot \mathbf{Y}^{2}-2 \cdot X \cdot Y-X^{2}}}{3 \cdot \mathbf{Y}}=\mathbf{O} \quad \mathbf{F Q}-\frac{3 \cdot \mathbf{Y}-X+\sqrt{3} \cdot \sqrt{3 \cdot Y^{2}-2 \cdot X \cdot Y-X^{2}}}{3 \cdot \mathbf{Y}}=0$

$\mathbf{F} \quad \mathbf{C}$

Unit $=1.00000$ $\mathbf{X Y}=\mathbf{0 . 7 5 0 0 0}$ $\mathrm{X}=15.00000$ $\mathrm{Y}=20.00000$ $\frac{\mathrm{X} \cdot 2}{\mathrm{Y} \cdot 3}=0.50000$

CF $=0.50000$ $\mathrm{FH}=1.30902$ $\mathrm{CH}=1.80902$ $\frac{\mathrm{AH}}{\mathrm{AB}}=\mathbf{1 7 . 9 4 4 2 7}$

FO $-\frac{2 \cdot X}{3 \cdot Y}=0 \quad O Q-\frac{3 \cdot(Y-X)+\sqrt{3} \cdot \sqrt{3 \cdot Y^{2}-2 \cdot X \cdot Y-X^{2}}}{3 \cdot Y}=0 \quad$ MO $-\frac{2 \cdot X}{3 \cdot \mathbf{Y}}=0$
$A F-\frac{2 \cdot X \cdot\left(3 \cdot Y-X+\sqrt{9 \cdot Y^{2}-6 \cdot X \cdot Y-3 \cdot X^{2}}\right)}{3 \cdot Y \cdot\left(3 \cdot Y-3 \cdot X+\sqrt{9 \cdot Y^{2}-6 \cdot X \cdot Y-3 \cdot X^{2}}\right)}=0 \quad A C-\frac{4 \cdot X^{2}}{3 \cdot Y \cdot\left(3 \cdot Y-3 \cdot X+\sqrt{9 \cdot Y^{2}-6 \cdot X \cdot Y-3 \cdot X^{2}}\right)}=0$
$A H-\frac{18 \cdot Y^{2}-12 \cdot X \cdot Y-2 \cdot X^{2}-2 \cdot \sqrt{3 \cdot Y^{2}-2 \cdot X \cdot Y-X^{2}} \cdot(X-3 \cdot Y) \cdot \sqrt{3}}{3 \cdot Y \cdot\left(3 \cdot Y-3 \cdot X+\sqrt{3} \cdot \sqrt{3 \cdot Y^{2}-2 \cdot X \cdot Y-X^{2}}\right)}=0 \quad A B-\frac{2 \cdot X \cdot\left(3 \cdot Y-X-\sqrt{3} \cdot \sqrt{3 \cdot Y^{2}-2 \cdot X \cdot Y-X^{2}}\right)}{3 \cdot \mathbf{Y} \cdot\left(3 \cdot \mathbf{Y}-3 \cdot X+\sqrt{9 \cdot Y^{2}-6 \cdot X \cdot Y-3 \cdot X^{2}}\right)}=0$
$\frac{\mathbf{A H}}{\mathrm{AB}}=\mathbf{1 7 . 9 4 4 2 7 2}$
$\overbrace{n \rightarrow 2}^{0}$
111093

Descriptions.
$\mathbf{D E}:=\frac{\mathbf{A E}}{\mathbf{N}} \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E}$
$\mathbf{A H}:=\mathbf{A E} \quad \mathbf{A G}:=\mathbf{A D}$
$\mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A E}} \quad \mathbf{A F}:=\mathbf{A C}$
$\mathbf{A B}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A D}}$

Unit. Gruntwork II on the Delian Solution
AE := 1
Given.
$\mathbf{N}:=4$

Definitions.
$\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-A D=0$
$\frac{\mathrm{AE}}{\mathrm{AB}}=2.37 \quad \frac{\mathrm{AD}}{\mathrm{AB}}=1.777778 \frac{\mathrm{AC}}{\mathrm{AB}}=1.333333$

Albebraic Names:
$\frac{1}{N}-\mathbf{D E}=0 \quad 1-\frac{1}{N}-\mathbf{A D}=0 \quad \frac{(\mathbf{N}-1)^{2}}{N^{2}}-\mathbf{A C}=0$
$\frac{(N-1)^{3}}{N^{3}}-A B=0$

Unit.
AB:=1
Given. $\mathbf{N}:=\mathbf{3}$

111193A

Descriptions.

The Archimedean Paper Trisector

When I looked up the Archimedean Paper Trisector, which is all I found. I did not find where anyone had bothered to complete the figure, for it was obvious to me that the figure was simply not complete. The first task then in writing up the figure is to simply complete the figure.

Once one understands that the angle on the center is twice the angle from the circumference one can then start to work filling in the figure to include the APT. One can see, not only here, but in other figures that trisection is involved with the right triangle and square roots.
$\mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{C D}:=\sqrt{\mathbf{A D} \cdot \mathbf{B D}} \quad \mathbf{B C}:=\sqrt{\mathbf{C D}^{2}+\mathbf{B D}^{2}}$

$$
\mathbf{D O}:=\mathbf{A O}-\mathbf{A D} \quad \mathbf{O R}:=\mathbf{D R}+\mathbf{D O} \quad \mathbf{K Q}:=\frac{\mathbf{C D} \cdot \mathbf{A O}}{\mathbf{O R}} \quad \mathbf{O K}:=\frac{\mathbf{A O} \cdot \mathbf{K Q}}{\mathbf{C D}}
$$

$$
\mathbf{C K}:=\mathbf{A O}-\mathbf{O K} \quad \mathbf{Q P}:=\sqrt{\mathbf{C K}^{2}-\mathbf{K Q}^{2}} \quad \mathbf{O Q}:=\frac{\mathbf{D O} \cdot \mathbf{K Q}}{\mathbf{C D}} \quad \mathbf{E H}:=\mathbf{A O}-\mathbf{H O}
$$

$$
\mathbf{A P}:=\mathbf{A O}-(\mathbf{O Q}+\mathbf{Q P}) \quad \mathbf{A P}-\mathbf{C K}=\mathbf{0}
$$

$C^{2} \operatorname{cin}^{38}$
$\mathbf{C J}:=\frac{\mathbf{B C} \cdot \mathbf{C K}}{\mathbf{A O}} \quad \mathbf{A Q}:=\mathbf{A O}-\mathbf{O Q} \quad \mathbf{S O}:=\mathbf{C K}-\mathbf{O Q} \quad$ BS $:=\mathbf{A O}-\mathbf{S O}$
$\mathbf{B J}:=\mathbf{B C}-\mathbf{C J} \quad \mathbf{J S}:=\sqrt{\mathbf{B J}^{2}-\mathbf{B S}^{2}} \quad \mathbf{J S}-\mathbf{K Q}=\mathbf{0} \quad \mathbf{S N}:=\mathbf{S O}+\mathbf{O Q}-\mathbf{Q P}$
$\mathrm{JN}:=\sqrt{\mathrm{JS}^{2}+\mathrm{SN}^{2}} \quad \mathrm{UV}:=\frac{\mathrm{EH} \cdot \mathrm{CJ}}{\mathrm{BC}} \quad \mathrm{JV}:=\frac{\mathrm{CJ}}{2} \quad \mathrm{JU}:=\sqrt{\mathrm{JV}^{2}+\mathrm{UV}^{2}} \quad \mathrm{CU}:=\mathrm{JU}$
$\mathbf{A T}:=\frac{\mathbf{A D} \cdot \mathbf{C K}}{\mathbf{A C}} \quad \mathbf{P T}:=\mathbf{A P}-\mathbf{A T} \quad \mathbf{M T}:=\frac{\mathbf{C D} \cdot \mathbf{A P}}{\mathbf{A C}} \quad \mathbf{M P}:=\sqrt{\mathbf{P T}^{\mathbf{2}}+\mathbf{M T}^{\mathbf{2}}}$
$\mathbf{M P}-\mathbf{J N}=\mathbf{0} \quad \mathbf{M P}-\mathbf{J U}=\mathbf{0} \quad \mathbf{M P}-\mathbf{C U}=\mathbf{0}$

Definitions.

$A D-\frac{1}{N}=0$
$\mathbf{B D}-\frac{\mathbf{N}-\mathbf{1}}{\mathbf{N}}=\mathbf{0}$
$\mathbf{C D}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{\mathbf{N}}=\mathbf{0}$
$\mathbf{B C}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}}}=\mathbf{0}$
$A C-\frac{1}{\sqrt{\mathbf{N}}}=0$
$\mathbf{B H}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{2 \cdot \sqrt{\mathbf{N}}}=\mathbf{0}$

AO $-\frac{1}{2}=0$
$\mathrm{HO}-\frac{1}{2 \cdot \sqrt{N}}=\mathbf{0}$
$\mathbf{H L}-\frac{\sqrt{\mathbf{N}-1}}{2 \cdot \mathbf{N}}=\mathbf{0}$
LO $-\frac{1}{2 \cdot N}=0$
$O F-\frac{1}{2 \cdot \sqrt{N}}=0$
$\mathbf{A F}-\frac{\sqrt{\mathbf{N}}+\mathbf{1}}{\mathbf{2} \cdot \sqrt{\mathbf{N}}}$
$\mathbf{B F}-\frac{\sqrt{\mathbf{N}}-\mathbf{1}}{\mathbf{2} \cdot \sqrt{\mathbf{N}}}=\mathbf{0}$
$\mathbf{E F}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{2 \cdot \sqrt{\mathbf{N}}}=\mathbf{0}$

$$
\mathbf{D R}-\frac{\sqrt{\mathbf{N}-\mathbf{1}} \cdot(\sqrt{\mathbf{N}}+\mathbf{1})}{\mathbf{N} \cdot \sqrt{(\sqrt{\mathbf{N}}-\mathbf{1}) \cdot(\sqrt{\mathbf{N}}+\mathbf{1})}}=\mathbf{0}
$$

DO $-\frac{\sqrt{(N-2)^{2}}}{2 \cdot N}=0$
$O R-\frac{\sqrt{N}+2}{2 \cdot \sqrt{N}}=0$
$\mathbf{K Q}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
OK $-\frac{\sqrt{N}}{2 \cdot(\sqrt{N}+2)}=0$
$\mathbf{Q P}-\frac{\mathbf{1}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$O Q-\frac{\sqrt{(N-2)^{2}}}{2 \cdot \sqrt{N} \cdot(\sqrt{N}+2)}=0$
$\mathbf{E H}-\frac{\sqrt{\mathbf{N}}-\mathbf{1}}{2 \cdot \sqrt{\mathbf{N}}}=\mathbf{0}$
$A P-\frac{1}{\sqrt{N}+2}=0$
$\mathbf{C K}-\frac{1}{\sqrt{N}+2}=0$
In logic, things which have the same name are equal. CK equals AP.

$\mathbf{C J}-\frac{2 \cdot \sqrt{\mathbf{N}-1}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{A Q}-\frac{\sqrt{\mathbf{N}}+\mathbf{1}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+2)}=\mathbf{0} \quad$ SO $--\frac{\mathbf{N}-\mathbf{2} \cdot \sqrt{\mathbf{N}}-\mathbf{2}}{2 \cdot \sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+2)}=\mathbf{0}$
$\mathbf{B S}-\frac{\mathbf{1} \cdot(\mathbf{N}-\mathbf{1})}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{B J}-\frac{\mathbf{1} \cdot \sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}}+\mathbf{2}}=\mathbf{0} \quad \mathbf{J S}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$\mathbf{J S}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$\mathbf{S N}-\frac{\sqrt{\mathbf{N}}-\mathbf{1}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$\mathbf{J N}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\sqrt{\mathbf{N}}-1}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+2)}=\mathbf{0}$
$\mathbf{U V}-\frac{\sqrt{\mathbf{N}}-\mathbf{1}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{J V}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
JU $-\frac{\sqrt{2} \cdot \sqrt{\sqrt{\mathbf{N}}-1}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+2)}=0$

$$
\mathbf{C U}-\frac{\sqrt{2} \cdot \sqrt{\sqrt{\mathbf{N}}-1}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}
$$

$$
\mathbf{A T}-\frac{\mathbf{1}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}
$$

$\mathbf{P T}-\frac{\sqrt{\mathbf{N}}-\mathbf{1}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$\mathbf{M T}-\frac{\sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$\mathbf{M P}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\sqrt{\mathbf{N}}-\mathbf{1}}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$\mathbf{M P}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\sqrt{\mathbf{N}}-\mathbf{1}}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$\mathbf{M P}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\sqrt{\mathbf{N}}-1}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$
$\mathbf{M P}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\sqrt{\mathbf{N}}-1}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}$

Unit := 1

Given.
$\mathbf{N}:=4$

$111193 B 1$

Descriptions.
$\mathbf{A}:=\mathbf{N}-$ Unit $\quad \mathbf{A B}:=\frac{\mathbf{A}}{\mathbf{2}} \quad \mathbf{A N}:=\mathbf{N}-\mathbf{A}$
$\mathbf{N K}:=\sqrt{\mathbf{N} \cdot \mathbf{A N}} \quad \mathbf{B K}:=\mathbf{N}-(\mathbf{N K}+\mathbf{A B})$
$\mathrm{DK}:=\sqrt{\mathrm{AB}^{\mathbf{2}}+\mathrm{BK}^{\mathbf{2}}} \quad \mathrm{KM}:=\frac{\mathrm{BK} \cdot \mathrm{NK}}{\mathrm{DK}}$
$\mathbf{C E}:=\frac{\mathbf{N}-\mathrm{AB}}{2} \quad \mathrm{MP}:=\frac{\mathrm{CE}}{2} \quad \mathbf{C K}:=\mathrm{CE}-\mathbf{B K}$
$\mathbf{K P}:=\frac{\mathbf{C K}}{2} \quad \mathbf{N P}:=\mathbf{N K}-K P \quad \mathbf{C F}:=\frac{\text { MP } \cdot \mathbf{C E}}{\mathbf{N P}}$

EF := CE - CF \quad EM := KM
$\mathbf{E F}=\mathbf{0 . 7 6 9 2 3 1} \quad \mathbf{K M}=0.632456$

Definitions.

$\mathbf{E F}-\frac{\sqrt{\mathbf{N}} \cdot(\mathbf{N}+\mathbf{1})}{\mathbf{N}+\mathbf{4} \cdot \sqrt{\mathbf{N}}+\mathbf{1}}=\mathbf{0} \quad \mathbf{E M}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})^{2}}{2 \cdot \sqrt{(\mathbf{N}+\mathbf{1}) \cdot(\sqrt{\mathbf{N}}-\mathbf{1})^{2}}}=\mathbf{0}$
$\frac{\mathbf{E F}}{\mathbf{E M}}-\frac{(\mathbf{N}+\mathbf{1}) \cdot \sqrt{(\mathbf{2} \cdot \mathbf{N}+2) \cdot(\sqrt{\mathbf{N}}-\mathbf{1})^{2}}}{(\sqrt{\mathbf{N}}-\mathbf{1})^{2} \cdot(\mathbf{N}+4 \cdot \sqrt{\mathbf{N}}+\mathbf{1})}=\mathbf{0}$

D
$\mathrm{N}=4.00000$
EM $=1.81051 \mathrm{~cm}$ GM $=0.94862 \mathrm{~cm}$ $\mathrm{m} \angle \mathrm{EFG}=55.30485^{\circ}$ $\mathrm{m} \angle \mathrm{HFG}=18.43495^{\circ}$ $\mathrm{m} \angle \mathrm{EFK}=110.60969$ $\mathrm{m} \angle \mathrm{HFJ}=36.86990^{\circ}$
$\mathrm{EF}=0.76923$
EM $=0.63246$
$\begin{array}{ll}\frac{\mathrm{m} \angle \mathrm{EFG}}{\mathrm{m} \angle \mathrm{HFG}}=3.00000 & \frac{\sqrt{\mathrm{~N}} \cdot(\mathrm{~N}+1)}{\mathrm{N}+4 \cdot \sqrt{\mathrm{~N}}+1}-\mathrm{EF}=0.00000 \\ \frac{\mathrm{~m} \angle \mathrm{EFK}}{\mathrm{m} \angle \mathrm{HFJ}}=3.00000 & \frac{\sqrt{2 \cdot \mathrm{~N}} \cdot(\sqrt{\mathrm{~N}}-1)^{2}}{2 \cdot \sqrt{(\mathrm{~N}+1) \cdot(\sqrt{\mathrm{N}}-1)^{2}}}-\mathrm{EM}=0.00000\end{array}$

111193B2
Descriptions.
$\mathbf{H}:=\frac{\mathbf{N}}{\mathbf{2}} \mathbf{J}:=\mathbf{N}-\mathbf{U n i t} \quad \mathbf{F}:=\mathbf{N}-\sqrt{(\mathbf{N}+\mathbf{J})}$
$\mathbf{F K}:=\sqrt{\mathbf{F}^{\mathbf{2}}+\mathbf{J}^{2}} \quad$ FN $:=\mathbf{N}-\mathbf{F}$
EF $:=\frac{\text { F } \cdot \mathbf{F N}}{\text { FK }} \quad$ CF $:=2 \cdot \mathbf{E F} \quad$ EG $:=\frac{H}{2}$
FH $:=\mathbf{H}-\mathbf{F} \quad \mathbf{F G}:=\frac{\mathbf{F H}}{2} \quad \mathbf{G N}:=\mathbf{F N}-\mathbf{F G}$
$\mathbf{B H}:=\frac{\mathbf{E G} \cdot \mathbf{H}}{\mathbf{G N}} \quad \mathbf{B C}:=\mathbf{H}-\mathbf{B H} \quad \mathbf{B C}=\mathbf{0 . 8 9 7 7 6 3}$

CE := EF \quad CE $=0.797878$
Definitions.
$\mathbf{B C}-\frac{\mathbf{N} \cdot \sqrt{\mathbf{2 \cdot N}-\mathbf{1}}}{\mathbf{N}+\mathbf{2} \cdot \sqrt{\mathbf{2 \cdot N}-\mathbf{1}}}=\mathbf{0}$
$\mathbf{C E}-\frac{(\mathbf{N} \cdot \sqrt{\mathbf{2 \cdot \mathbf { N }}-\mathbf{1}}-\mathbf{2 \cdot \mathbf { N } + 1})}{\sqrt{2 \cdot \mathbf{N} \cdot(\mathbf{N}-\sqrt{2 \cdot \mathbf{N}-1})}}=\mathbf{0}$
$\frac{B C}{C E}-\frac{\sqrt{2} \cdot \sqrt{2 \cdot N-1} \cdot N \cdot \sqrt{\mathbf{N}^{2}-\sqrt{2 \cdot N-1} \cdot N}}{\sqrt{2 \cdot \mathbf{N}-1} \cdot\left(\mathbf{N}^{2}-4 \cdot \mathbf{N}+2\right)-\mathbf{N}+2 \cdot \mathbf{N}^{2}}=0$

m $\angle \mathrm{ABC}=62.71547^{\circ}$ m $\angle \mathrm{ABD}=20.90516^{\circ}$
$\frac{\mathrm{m} \angle \mathrm{ABC}}{\mathrm{m} \angle \mathrm{ABD}}=3.00000$
$\mathrm{N}=3.00000$
$\mathrm{BC}=0.89776$
$\mathrm{CE}=0.79788$
$\frac{\mathrm{N} \cdot \sqrt{2 \cdot \mathrm{~N}-1}}{\mathrm{~N}+2 \cdot \sqrt{2 \cdot \mathrm{~N}-1}}$-BC $=0.00000$ $\frac{(\mathrm{N} \cdot \sqrt{2 \cdot \mathrm{~N}-1}-2 \cdot \mathrm{~N})+1}{\sqrt{2 \cdot \mathrm{~N} \cdot(\mathrm{~N}-\sqrt{2 \cdot \mathrm{~N}-1})}}-\mathrm{CE}=0.00000$

Unit:=1 $\begin{aligned} & \text { Univen. } \\ & N:=5\end{aligned}$
111193B3
Descriptions.
$\mathbf{P}:=\mathbf{N}+$ Unit $\quad \mathbf{F}:=\mathbf{P}-\sqrt{\mathbf{P}} \quad \mathbf{F P}:=\mathbf{P}-\mathbf{F}$
$\mathbf{O}:=\frac{\mathbf{N}}{2} \quad$ FO $:=\mathbf{F}-\mathbf{O} \quad$ OP $:=\mathbf{P}-\mathbf{O}$
AJ $:=\frac{\mathbf{O P}}{2} \quad \mathbf{F K}:=\sqrt{\mathrm{FO}^{2}+\mathrm{O}^{2}} \quad$ FG $:=\frac{\text { FO } \cdot \mathbf{F P}}{\mathrm{FK}}$
$\mathbf{G H}:=\frac{\mathbf{A J}}{2} \quad$ FJ $:=\mathbf{A J}-\mathbf{F O}$
FH $:=\frac{\text { FJ }}{2} \quad$ PH $:=\mathbf{F P}-\mathbf{F H} \quad$ BJ $:=\frac{\mathbf{G H} \cdot \mathbf{A J}}{\mathbf{P H}}$

$\mathrm{N}=5.00000$
$\mathrm{m} \angle \mathrm{ABD}=68.37704^{\circ}$
m $\angle \mathrm{DBE}=22.79235^{\circ}$ m $\angle \mathrm{ABF}=136.75407^{\circ}$ $\mathrm{m} \angle \mathrm{DBC}=22.79235^{\circ}$

$\underline{\mathrm{m} \angle \mathrm{ABD}}=3.0000$

P $\quad \mathrm{m} \angle \mathrm{DBE}$
$\frac{\mathrm{m} \angle \mathrm{ABF}}{\mathrm{m} \angle \mathrm{DBC}}=6.00000$
$\mathrm{AB}=1.02074$
$A G=0.94891$
$\mathbf{A B}:=\mathbf{A} \mathbf{J}-\mathbf{B J} \quad \mathbf{A G}:=\mathbf{F G}$
$A B=1.020745 \quad A G=0.948914$

Definitions.

$\mathbf{A B}-\frac{\sqrt{\mathbf{N}+\mathbf{1}} \cdot(\mathbf{N}+\mathbf{2})}{\mathbf{N}+\mathbf{4} \cdot \sqrt{\mathbf{N}+\mathbf{1}}+\mathbf{2}}=\mathbf{0}$
$A G-\frac{2 \cdot \sqrt{2} \cdot(\sqrt{N+1})^{3}-2 \cdot \sqrt{2} \cdot \mathbf{N}-2 \cdot \sqrt{2}-\sqrt{2} \cdot \mathbf{N} \cdot \sqrt{\mathbf{N}+1}}{2 \cdot \sqrt{4 \cdot \mathbf{N}+\mathbf{N}^{2}+2 \cdot \mathbf{N} \cdot \sqrt{\mathbf{N}+1}-4 \cdot(\sqrt{\mathbf{N}+1})^{3}+4}}=0$
$\frac{\mathbf{A B}}{\mathbf{A G}}-\frac{\sqrt{2} \cdot \sqrt{\mathbf{N}+1} \cdot(\mathbf{N}+2) \cdot \sqrt{4 \cdot \mathbf{N}+\mathbf{N}^{2}+\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{\mathbf{N}+1}-4 \cdot(\sqrt{\mathbf{N}+1})^{\mathbf{3}}+\mathbf{4}}}{(\mathbf{N}+\mathbf{4} \cdot \sqrt{\mathbf{N}+\mathbf{1}}+\mathbf{2}) \cdot\left[\mathbf{2} \cdot(\sqrt{\mathbf{N}+\mathbf{1}})^{\mathbf{3}}-\mathbf{N} \cdot \sqrt{\mathbf{N}+\mathbf{1}}-\mathbf{2} \cdot \mathbf{N}-\mathbf{2}\right]}=\mathbf{0}$

Unit.
AC:= 1
Given.
$\mathbf{N}:=5$

111 193B4

Descriptions.
$\mathbf{A O}:=\frac{\mathbf{A C}}{2} \quad \mathbf{C O}:=\mathbf{A O} \quad \mathbf{C D}:=\frac{\mathbf{A C}}{\mathbf{N}} \quad \mathbf{A D}:=\mathbf{A C}-\mathbf{C D} \quad \mathbf{B D}:=\sqrt{\mathbf{A D} \cdot \mathbf{C D}}$
$\mathrm{AB}:=\sqrt{\mathbf{A D}^{2}+\mathrm{BD}^{2}} \quad \mathrm{BE}:=\frac{\mathbf{A B}}{2} \quad \mathrm{FG}:=\mathrm{BE} \quad \mathrm{EO}:=\sqrt{\mathbf{A O}^{2}-\mathrm{BE}^{2}}$
$\mathbf{A G}:=\mathbf{A O}-\mathbf{E O} \quad \mathbf{C G}:=\mathbf{A C}-\mathbf{A G} \quad \mathbf{D O}:=\mathbf{A D}-\mathbf{A O} \quad \mathbf{G M}:=\frac{\mathbf{D O} \cdot \mathbf{F G}}{\mathbf{B D}}$
$\mathbf{C M}:=\mathbf{C G}+\mathbf{G M} \quad \mathbf{F M}:=\sqrt{\mathbf{G M}^{2}+\mathbf{F G}}{ }^{\mathbf{2}} \quad \mathbf{K O}:=\frac{\mathbf{F M} \cdot \mathbf{A O}}{\mathbf{C M}}$
$\mathbf{B K}:=\mathbf{A O}-\mathbf{K O} \quad \mathbf{B K}=\mathbf{0 . 2 3 6 0 6 8}$

Definitions.

$\mathbf{B K}-\frac{1}{\sqrt{\mathrm{~N}}+2}=0 \quad \mathrm{~N}-\left(\frac{1}{\mathrm{BK}}-2\right)^{2}=0 \quad \mathrm{BC}:=\sqrt{\mathrm{CD}^{2}+\mathrm{BD}^{2}} \quad \mathrm{CF}:=\sqrt{\mathrm{FG}^{2}+\mathrm{CG}^{2}}$
$\mathbf{C P}:=\frac{\mathbf{C F} \cdot \mathbf{B C}}{\mathbf{A C}} \quad \mathbf{B P}:=\sqrt{\mathbf{B C}^{2}-\mathbf{C P}^{2}} \quad \mathrm{KP}:=\sqrt{\mathbf{B K}^{2}-\mathbf{B P}^{2}}$
$K P-\frac{\sqrt{2} \cdot \sqrt{\mathbf{N}^{3}+4 \cdot N^{\frac{3}{2}}-3 \cdot N^{\frac{5}{2}}}}{2 \cdot \sqrt{4 \cdot N^{3}+N^{4}+4 \cdot N^{\frac{7}{2}}}}=0 \quad K P-\frac{\sqrt{(\sqrt{\mathbf{N}}+1) \cdot(\sqrt{\mathbf{N}}-2)^{2}}}{\sqrt{2 \cdot \mathbf{N}^{\frac{3}{2}} \cdot(\sqrt{N}+2)^{2}}}=0$
$\frac{B K}{\mathbf{K P}}=11.135164 \quad \frac{\sqrt{2} \cdot \sqrt{\left\lfloor(\sqrt{\mathbf{N}})^{3} \cdot(\sqrt{\mathbf{N}}+2)^{2}\right.}}{(\sqrt{\mathbf{N}}+\mathbf{2}) \cdot \sqrt{(\sqrt{\mathbf{N}}+1) \cdot(\sqrt{\mathbf{N}}-2)^{2}}}=11.135164 \quad \frac{\mathrm{BK}}{\mathbf{K P}}-\frac{\left.\sqrt{\mathbf{2}} \cdot \sqrt{\left\lfloor(\sqrt{\mathbf{N}})^{3} \cdot(\sqrt{\mathbf{N}}+2)^{2}\right.}\right]}{(\sqrt{\mathbf{N}}+\mathbf{2}) \cdot \sqrt{(\sqrt{\mathbf{N}}+1) \cdot(\sqrt{\mathbf{N}}-\mathbf{2})^{2}}}=0$
$\sim_{N=3}^{\infty}$
Unit. To Square A Circle Off The Base Of A Right Triangle.
BF := 1
Using the approximation, $\pi=22 / 7$, square the circle off the base of a right triangle.

111293

Sometime in 1992, I remembered reading that some man spent some time in prison and learned the process for squaring a circle off the base of a right triangle but then history lost the figure, so I set out to find it - or something that could pass for it. It took a couple hours so I wonder what he did with the rest of his time?

Descriptions.

$\mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E H}:=\mathbf{B E} \quad \mathbf{B D}:=\frac{\mathbf{3}}{4} \cdot \mathbf{B E} \quad \mathbf{A B}:=\mathbf{B D}$
$\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad$ FK $:=\frac{\mathbf{E H} \cdot \mathbf{A F}}{\mathbf{A E}} \quad \mathbf{C F}:=\mathbf{F K}$
$\mathbf{B C}:=\mathbf{B F}-\mathbf{C F} \quad \mathbf{C G}:=\sqrt{\mathbf{B C} \cdot \mathbf{C F}} \quad \mathbf{F G}:=\sqrt{\mathbf{C F}^{2}+\mathbf{C G}^{2}}$

$\pi_{-} \mathbf{A}:=\frac{\mathbf{F G}^{2}}{\mathbf{B E}^{2}}$

Definitions.

$\pi_{-} \mathbf{A}-\frac{22}{7}=0$
$\pi=3.14159265359$
$\pi_{_} \mathbf{A}=\mathbf{3 . 1 4 2 8 5 7 1 4 2 8 5 7}$
$\frac{\pi}{\pi_{-} \mathrm{A}}=0.999597662505843$

Exploring Cube Roots Plate A

111893A

Descriptions. describe AB.
$\mathbf{B H}:=\frac{\mathbf{B J}}{2} \quad$ BD $:=\frac{\mathbf{B H}}{\mathbf{N}_{\mathbf{1}}} \quad$ HJ $:=\mathbf{B H}$
DH := BH - BD \quad HR := BJ \quad DJ $:=\mathbf{D H}+\mathbf{H J}$
DL $:=\sqrt{\mathbf{B D} \cdot \mathbf{D J}} \quad$ DF $:=\frac{\mathbf{D H} \cdot \mathbf{D L}}{\mathbf{D L}+\mathbf{H R}} \quad$ FO $:=\mathbf{B H} \quad \mathbf{B F}:=\mathbf{B D}+\mathbf{D F}$
$\mathbf{M O}:=\mathbf{F O}-\mathbf{D L} \quad \mathbf{L M}:=\mathbf{D F} \quad \mathbf{A F}:=\frac{\mathbf{L M} \cdot \mathbf{F O}}{\mathbf{M O}} \quad \mathbf{A B}:=\mathbf{A F}-\mathbf{B F}$

Definitions.

BJ $-1=0 \quad B H-\frac{1}{2}=0 \quad B D-\frac{1}{2 \cdot N_{1}}=0 \quad H J-\frac{1}{2}=0 \quad D H-\frac{N_{1}-1}{2 \cdot N_{1}}=0$
$\mathbf{H R}-1=0 \quad$ DJ $-\frac{2 \cdot N_{1}-1}{2 \cdot N_{1}}=0 \quad$ DL $-\frac{\sqrt{2 \cdot N_{1}-1}}{2 \cdot N_{1}}=0$
$D F-\frac{\left(N_{1}-1\right) \cdot \sqrt{2 \cdot N_{1}-1}}{2 \cdot N_{1} \cdot\left(2 \cdot N_{1}+\sqrt{2 \cdot N_{1}-1}\right)}=0 \quad F O-\frac{1}{2}=0 \quad B F-\frac{\sqrt{2 \cdot N_{1}-1}+2}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot N_{1}-1}\right)}=0$

MO $-\frac{\mathbf{N}_{1}-\sqrt{2 \cdot N_{1}-1}}{2 \cdot \mathbf{N}_{1}}=0 \quad L M-\frac{\left(N_{1}-1\right) \cdot \sqrt{2 \cdot N_{1}-1}}{2 \cdot \mathbf{N}_{1} \cdot\left(2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)}=0$
$A F-\frac{\left(N_{1}-1\right) \cdot \sqrt{2 \cdot N_{1}-1}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot \mathbf{N}_{1}-1}\right) \cdot\left(\mathbf{N}_{1}-\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)}=0 \quad A B-\frac{\sqrt{2 \cdot N_{1}-1}-1}{2 \cdot\left(2 \cdot \mathbf{N}_{1}{ }^{2}-2 \cdot \mathbf{N}_{1}-\mathbf{N}_{1} \cdot \sqrt{2 \cdot \mathbf{N}_{1}-1}+1\right)}=0$
$\mathrm{BH}-\frac{\mathrm{N}_{1}}{2}=0.00000 \mathrm{in}$.
$\mathrm{BD}-\frac{\mathrm{N}_{1}}{2 \cdot \mathrm{~N}_{2}}=0.00000 \mathrm{in}$.
HJ- $\frac{\mathrm{N}_{1}}{2}=0.00000 \mathrm{in}$.
$\mathrm{DH}-\frac{\mathrm{N}_{1} \cdot\left(\mathrm{~N}_{2}-1\right)}{2 \cdot \mathrm{~N}_{2}}=0.00000 \mathrm{in}$.
HR- $\mathrm{N}_{1}=0.00000 \mathrm{in}$.
DJ- $\frac{N_{1} \cdot\left(2 \cdot N_{2}-1\right)}{2 \cdot N_{2}}=0.00000 \mathrm{in}$.
DL- $\frac{\mathrm{N}_{1} \cdot \sqrt{2 \cdot \mathrm{~N}_{2}-1}}{2 \cdot \mathrm{~N}_{2}}=0.00000 \mathrm{in}$
DF- $\frac{N_{1} \cdot\left(N_{2}-1\right) \cdot \sqrt{2 \cdot N_{2}-1}}{2 \cdot N_{2} \cdot\left(2 \cdot N_{2}+\sqrt{2 \cdot N_{2}-1}\right)}$

Given.
BJ := $\mathbf{1}$
Given.
$\mathbf{N}_{\mathbf{1}}$:= $\mathbf{3 . 0 1 5 5 0}$

111893B

Exploring Cube Roots Plate B

Using the parallel FO to project to the point of similarity for the square root, point L is used for the cube root. Notice in this write-up I chose the wrong point to proportion. I get the right answers, but the equations are more complicated. Compare features to plate A.

Descriptions.
$\mathbf{B H}:=\frac{\mathbf{B J}}{\mathbf{2}} \quad \mathbf{H L}:=\mathbf{B H} \quad \mathbf{B F}:=\frac{\mathbf{B H}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{F H}:=\mathbf{B H}-\mathbf{B F} \quad \mathbf{H R}:=\mathbf{B J} \quad \mathbf{F R}:=\sqrt{\mathbf{F H}^{2}+\mathbf{H R}^{2}}$
FP $:=\frac{\mathbf{F H}^{2}}{\mathbf{F R}} \quad \mathbf{P H}:=\frac{\mathbf{H R} \cdot \mathbf{F P}}{\mathbf{F H}} \quad \mathbf{L P}:=\sqrt{\mathbf{H L}^{2}-\mathbf{P H}^{2}} \quad$ FL $:=\mathbf{L P}-\mathbf{F P} \quad$ DF $:=\frac{\mathbf{F H} \cdot \mathbf{F L}}{\text { FR }}$

DL $:=\frac{\text { HR } \cdot \mathbf{F L}}{\text { FR }} \quad$ FO $:=\mathbf{B H} \quad$ FM $:=\mathbf{D L} \quad$ MO $:=$ FO - FM \quad LM $:=$ DF \quad AF $:=\frac{\text { LM } \cdot \mathbf{F O}}{\text { MO }}$
$\mathbf{A B}:=\mathbf{A F}-\mathbf{B F} \quad \mathbf{B Q}:=\mathbf{B J} \quad \mathbf{B K}:=\mathbf{D L} \quad \mathbf{B D}:=\mathbf{B F}-\mathbf{D F} \quad \mathbf{K Q}:=\mathbf{B Q}+\mathbf{B K} \quad \mathbf{K L}:=\mathbf{B D}$
BC := $\frac{\text { KL } \cdot \mathbf{B Q}}{\mathbf{K Q}} \quad$ DJ $:=\mathbf{B J}-\mathbf{B D} \quad$ LN $:=\mathbf{D J} \quad$ JS $:=\mathbf{B J} \quad$ JN $:=$ DL \quad NS $:=\mathbf{J S}+\mathbf{J N}$
$\mathbf{G J}:=\frac{\mathbf{L N} \cdot \mathbf{J S}}{\mathbf{N S}} \quad \mathbf{B G}:=\mathbf{B J}-\mathbf{G J} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \quad \mathbf{A J}:=\mathbf{A B}+\mathbf{B J}$

Definitions.
$\left(A B^{2} \cdot A J\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A J^{2}\right)^{\frac{1}{3}}-A G=0$

BJ $-1=0 \quad B H-\frac{1}{2}=0 \quad H L-\frac{1}{2}=0 \quad B F-\frac{1}{2 \cdot N_{1}}=0 \quad$ FH $-\frac{N_{1}-1}{2 \cdot N_{1}}=0 \quad H R-1=0$

$F R-\frac{\sqrt{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}}{2 \cdot N_{1}}=0 \quad F P-\frac{\left(N_{1}-1\right)^{2}}{2 \cdot N_{1} \cdot \sqrt{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}}=0 \quad P H-\frac{N_{1}-1}{\sqrt{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}}=0$
$\sim_{n=2}^{0}$
$L P-\frac{\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}}{2 \cdot \sqrt{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}}=0 \quad F L--\frac{N_{1}{ }^{2}-2 \cdot N_{1}-N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+1}{2 \cdot N_{1} \cdot \sqrt{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}}=0$
$\mathbf{D F}--\frac{\left(N_{1}-1\right) \cdot\left(N_{1}{ }^{2}-2 \cdot N_{1}-N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+1\right)}{2 \cdot N_{1} \cdot\left(5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1\right)}=0 \quad D L-\frac{2 \cdot N_{1}-N_{1}{ }^{2}+N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}-1}{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}=0$
FO $-\frac{1}{2}=0 \quad$ FM $-\frac{2 \cdot N_{1}-N_{1}{ }^{2}+N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}-1}{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}=0 \quad$ MO $-\frac{7 \cdot N_{1}{ }^{2}-6 \cdot N_{1}-2 \cdot N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+3}{2 \cdot\left(5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1\right)}=0$
$L M--\frac{\left(N_{1}-1\right) \cdot\left(N_{1}{ }^{2}-2 \cdot N_{1}-N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+1\right)}{2 \cdot N_{1} \cdot\left(5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1\right)}=0 \quad A F-\frac{\left(1-N_{1}\right) \cdot\left(N_{1}{ }^{2}-2 \cdot N_{1}-N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+1\right)}{2 \cdot N_{1} \cdot\left(7 \cdot N_{1}{ }^{2}-6 \cdot N_{1}-2 \cdot N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+3\right)}=0$
$\left.A B-\frac{\left(N_{1}{ }^{2}+N_{1}\right) \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+3 \cdot N_{1}-4 \cdot N_{1}{ }^{2}-N_{1}{ }^{3}-2}{2 \cdot N_{1} \cdot\left(7 \cdot N_{1}{ }^{2}-6 \cdot N_{1}-2 \cdot N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+3\right.}\right) \quad=0 \quad B Q-1=0$
$\mathrm{BK}-\frac{2 \cdot \mathrm{~N}_{1}-\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{1} \cdot \sqrt{\mathrm{~N}_{1}{ }^{2}+6 \cdot \mathrm{~N}_{1}-\mathbf{3}}-\mathbf{1}}{5 \cdot \mathrm{~N}_{1}{ }^{2}-2 \cdot \mathrm{~N}_{1}+1}=0$

$K Q-\frac{N_{1} \cdot\left(4 \cdot N_{1}+\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}\right)}{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}=0$

$B C-\frac{2 \cdot N_{1}+N_{1}{ }^{2}-\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3} \cdot\left(N_{1}-1\right)+1}{2 \cdot N_{1} \cdot\left(4 \cdot N_{1}+\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}\right)}=0$
DJ $-\frac{\left(N_{1}-1\right) \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+9 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+1}{2 \cdot\left(5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1\right)}=0$

$L N-\frac{\left(N_{1}-1\right) \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+9 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+1}{2 \cdot\left(5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1\right)}=0 \quad J S-1=0$
$J N-\frac{2 \cdot N_{1}-N_{1}{ }^{2}+N_{1} \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}-1}{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}=0 \quad N S-\frac{N_{1} \cdot\left(4 \cdot N_{1}+\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}\right)}{5 \cdot N_{1}{ }^{2}-2 \cdot N_{1}+1}=0$
$G J-\frac{\left(N_{1}-1\right) \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+9 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+1}{2 \cdot N_{1} \cdot\left(4 \cdot N_{1}+\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}\right)}=0 \quad B G-\frac{3-N_{1}+\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}}{6 \cdot N_{1}}=0$
$A C-\frac{\left(9 \cdot N_{1}{ }^{2}-6 \cdot N_{1}{ }^{3}-8 \cdot N_{1}+1\right) \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}+\left(N_{1}+1\right) \cdot\left(6 \cdot N_{1}{ }^{3}+3 \cdot N_{1}{ }^{2}-8 \cdot N_{1}+3\right)}{2 \cdot N_{1} \cdot\left(26 \cdot N_{1}{ }^{3}-36 \cdot N_{1}{ }^{2}+18 \cdot N_{1}\right)-2 \cdot N_{1} \cdot\left(N_{1}{ }^{2}+6 \cdot N_{1}-3\right) \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3}}=0$
$A G-\frac{N_{1}{ }^{2}-4 \cdot N_{1}{ }^{3}+1+\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3} \cdot\left(4 \cdot 1 \cdot N_{1}{ }^{2}-3 \cdot 1 \cdot N_{1}+1\right)-2 \cdot N_{1}}{6 \cdot N_{1}-12 \cdot N_{1}{ }^{2}+14 \cdot N_{1}{ }^{3}-4 \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3 \cdot N_{1}}{ }^{2}}=0$
$A J-\frac{13 \cdot N_{1}{ }^{3}-16 \cdot N_{1}{ }^{2}-2+\sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3} \cdot\left(1 \cdot N_{1}-3 \cdot 1 \cdot N_{1}{ }^{2}\right)+9 \cdot N_{1}}{6 \cdot N_{1}-12 \cdot N_{1}{ }^{2}+14 \cdot N_{1}{ }^{3}-4 \cdot \sqrt{N_{1}{ }^{2}+6 \cdot N_{1}-3} \cdot N_{1}{ }^{2}}=0$

Etc.

111893 C
Descriptions.
$\mathbf{B H}:=\frac{\mathbf{B K}}{\mathbf{2}} \quad \mathbf{B D}:=\frac{\mathbf{B H}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{D K}:=\mathbf{B K}-\mathbf{B D}$
DN $:=\sqrt{\mathbf{B D} \cdot \mathbf{D K}} \quad \mathbf{B Q}:=\mathbf{B K} \quad$ KS $:=\mathbf{B K} \quad$ HR $:=\mathbf{B K}$
$\mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B Q}}{\mathbf{B Q}+\mathbf{D N}} \quad \mathbf{G K}:=\frac{\mathbf{D K} \cdot \mathbf{K S}}{\mathbf{K S}+\mathbf{D N}} \quad \mathbf{B G}:=\mathbf{B K}-\mathbf{G K}$
$\mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \mathbf{F H}:=\frac{\mathbf{D H} \cdot \mathbf{H R}}{\mathbf{H R}+\mathbf{D N}} \quad \mathbf{B F}:=\mathbf{B H}-\mathbf{F H}$
$\mathbf{C F}:=\mathbf{B F}-\mathbf{B C} \quad \mathbf{A L}:=\mathbf{C F} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D}$
NO := DF \quad FP := BH \quad PO := FP $-\mathbf{D N}$
$\mathbf{A D}:=\frac{\mathbf{N O} \cdot \mathbf{D N}}{\mathbf{P O}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D}$
$\mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{L M}:=\mathbf{A F} \quad \mathbf{E L}:=\mathbf{A F} \quad \mathbf{A K}:=\mathbf{A D}+\mathbf{D K}$
$\mathbf{A E}_{1}:=\sqrt{\mathbf{E L}^{2}-\mathbf{A L}^{\mathbf{2}}} \quad \mathbf{A E}_{\mathbf{2}}:=\sqrt{\mathbf{A B} \cdot \mathbf{A K}} \quad \mathbf{A E}_{1}-\mathbf{A E}_{\mathbf{2}}=\mathbf{0}$
Definitions.
$B H-\frac{1}{2}=0 \quad B D-\frac{1}{2 \cdot N_{1}}=0 \quad D K-\frac{\left(2 \cdot N_{1}-1\right)}{2 \cdot N_{1}}=0$
$D N-\frac{\sqrt{2 \cdot \mathbf{N}_{1}-1}}{2 \cdot \mathbf{N}_{1}}=0 \quad B Q-1=0 \quad K S-1=0$

Exploring Cube Roots Plate C

If $A L=1 / 2$ of $C G$, then the circle $L M$ passes through the square root of $A B \times A K$, being point E.

$\sim_{n=2}^{0}$
$H R-1=0 \quad B C-\frac{1}{2 \cdot N_{1}+\sqrt{2 \cdot N_{1}-1}}=0 \quad G K-\frac{2 \cdot N_{1}-1}{2 \cdot N_{1}+\sqrt{2 \cdot N_{1}-1}}=0$
$B G-\frac{\sqrt{2 \cdot N_{1}-1}+1}{2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot N_{1}-1}}=0 \quad D H-\frac{N_{1}-1}{2 \cdot N_{1}}=0 \quad F H-\frac{N_{1}-1}{2 \cdot N_{1}+\sqrt{2 \cdot N_{1}-1}}=0$
$\mathbf{B F}-\frac{\sqrt{2 \cdot \mathbf{N}_{1}-1}+2}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)}=0 \quad \mathbf{C F}-\frac{\sqrt{2 \cdot \mathbf{N}_{1}-1}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)}=0$
$A L-\frac{\sqrt{2 \cdot N_{1}-1}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)}=0$
$\mathbf{D F}-\frac{\left(\mathbf{N}_{1}-1\right) \cdot \sqrt{2 \cdot \mathbf{N}_{1}-1}}{2 \cdot \mathbf{N}_{1} \cdot\left(\mathbf{2 \cdot \mathbf { N } _ { 1 }}+\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)}=0 \quad \mathbf{N O}-\frac{\left(\mathbf{N}_{1}-1\right) \cdot \sqrt{2 \cdot \mathbf{N}_{1}-1}}{2 \cdot \mathbf{N}_{1} \cdot\left(2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)}=0$
$\mathbf{F P}-\frac{1}{2}=0 \quad P O-\frac{\mathbf{N}_{1}-\sqrt{2 \cdot \mathbf{N}_{1}-1}}{2 \cdot \mathbf{N}_{1}}=0 \quad A D-\frac{\left(\mathbf{N}_{1}-1\right) \cdot\left(\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)^{2}}{2 \cdot \mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}-\sqrt{2 \cdot \mathbf{N}_{1}-1}\right) \cdot\left(2 \cdot \mathbf{N}_{1}+\sqrt{2 \cdot \mathbf{N}_{1}-1}\right)}=0$

$\left.A B-\frac{\left(\sqrt{2 \cdot N_{1}-1}-1\right)}{2 \cdot\left(2 \cdot N_{1}{ }^{2}-2 \cdot N_{1}-N_{1} \cdot \sqrt{2 \cdot N_{1}-1}+1\right.}\right)=0 \quad A F-\frac{\left(N_{1}-1\right) \cdot\left(2 \cdot N_{1}+2 \cdot N_{1} \cdot \sqrt{2 \cdot N_{1}-1}-1\right)}{2 \cdot\left(3 \cdot N_{1}+\sqrt{2 \cdot N_{1}-1}-6 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{3}-2 \cdot N_{1} \cdot \sqrt{2 \cdot N_{1}-1}\right)}=0$
$\mathbf{E L}-\mathbf{A F}=\mathbf{0} \quad \mathbf{L M}-\mathbf{A F}=\mathbf{0}$
$A K-\frac{\left[4 \cdot N_{1}{ }^{2}-\left(2 \cdot N_{1}-1\right)^{\frac{3}{2}}-4 \cdot N_{1}+1\right]}{2 \cdot\left(2 \cdot N_{1}{ }^{2}-2 \cdot N_{1}-N_{1} \cdot \sqrt{2 \cdot N_{1}-1}+1\right)}=0 \quad A E_{1}-\sqrt{\left(\frac{\left(N_{1}-1\right)^{2} \cdot\left(2 \cdot N_{1}+2 \cdot N_{1} \cdot \sqrt{2 \cdot N_{1}-1}-1\right)^{2}}{4 \cdot\left(3 \cdot N_{1}+\sqrt{2 \cdot N_{1}-1}-6 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{3}-2 \cdot N_{1} \cdot \sqrt{2 \cdot N_{1}-1}\right)^{2}}-\frac{4 \cdot\left(2 \cdot N_{1}+\sqrt{2 \cdot N_{1}-1}\right)^{2}}{\left(2 \cdot N_{1}-1\right.}\right)}=0$
$A_{2}-\sqrt{\left[\frac{\left(\sqrt{2 \cdot \mathbf{N}_{1}-1}-1\right) \cdot\left[4 \cdot \mathbf{N}_{1}{ }^{2}-\left(2 \cdot \mathbf{N}_{1}-1\right)^{\frac{3}{2}}-4 \cdot \mathbf{N}_{1}+1\right]}{4 \cdot\left(2 \cdot \mathbf{N}_{1}-2 \cdot \mathbf{N}_{1}{ }^{2}+\mathbf{N}_{1} \cdot \sqrt{2 \cdot \mathbf{N}_{1}-1}-1\right)^{2}}\right]}=0 \quad{A E_{1}-A E_{2}=0}^{4}$

Exploring Cube Roots Plate D

The circle AO passes through point M. FM equals half of CG.

Descriptions.

$\mathbf{B K}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A K}:=\mathbf{B K}+\mathbf{A B}$
$\mathbf{A C}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A K}\right)^{\frac{1}{3}} \quad \mathbf{A G}:=\left(\mathbf{A B} \cdot \mathbf{A K}^{2}\right)^{\frac{1}{3}}$
$\mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C F}:=\frac{\mathbf{C G}}{2} \quad \mathbf{B H}:=\frac{\mathbf{B K}}{2}$
$\mathbf{A H}:=\mathbf{A B}+\mathbf{B H} \quad \mathbf{H P}:=\mathbf{B H} \quad \mathbf{A P}:=\sqrt{\mathbf{A H}^{\mathbf{2}}+\mathbf{H} \mathbf{P}^{\mathbf{2}}}$
AO $:=\frac{\mathbf{A P}}{2} \quad \mathbf{D O}:=\frac{\mathbf{H P}}{2} \quad \mathbf{A F}:=\mathbf{A C}+\mathbf{C F} \quad \mathbf{A D}:=\frac{\mathbf{A H}}{2}$
$\mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{F M}:=\mathbf{C F} \quad \mathbf{M O}:=\mathbf{A O}$

Definitions.

$\mathbf{M O}^{2}-\left[\mathrm{DF}^{2}+(\mathbf{D O}+\mathbf{F M})^{2}\right]=0 \quad \mathbf{A K}-\left(\mathbf{1}+\mathbf{N}_{1}\right)=0$
$\left.A C-\left(N_{1}+1\right)^{\frac{1}{3}}=0 \quad A G-\left[\left(N_{1}+1\right)^{2}\right]^{\frac{1}{3}}=0 \quad C G-\left[\left(N_{1}+1\right)^{2}\right]^{\frac{1}{3}}-\left(N_{1}+1\right)^{\frac{1}{3}}\right]=0$
$C F-\frac{\left[\left(N_{1}+1\right)^{2}\right]^{\frac{1}{3}}-\left(N_{1}+1\right)^{\frac{1}{3}}}{2}=0 \quad B H-\frac{N_{1}}{2}=0 \quad A H-\frac{2+N_{1}}{2}=0 \quad H P-\frac{N_{1}}{2}=0 \quad A P-\frac{\sqrt{N_{1}{ }^{2}+2 \cdot N_{1}+2}}{\sqrt{2}}=0$
$C^{2} \cos ^{3}$
$A O-\frac{\sqrt{2}}{4} \cdot \sqrt{\left(N_{1}{ }^{2}+2 \cdot N_{1}+2\right)}=0 \quad$ DO $-\frac{N_{1}}{4}=0 \quad A F-\frac{\left[\left[\left(N_{1}+1\right)^{2}\right]^{\frac{1}{3}}+\left(N_{1}+1\right)^{\frac{1}{3}}\right]}{2}=0$ $A D-\frac{2+N_{1}}{4}=0 \quad D F-\frac{\left[2 \cdot\left[\left(N_{1}+1\right)^{2}\right]^{\frac{1}{3}}-N_{1}-2+2 \cdot\left(N_{1}+1\right)^{\frac{1}{3}}\right]}{4}=0$
$F M-\frac{\left[\left(N_{1}+1\right)^{2}\right]^{\frac{1}{3}}-\left(N_{1}+1\right)^{\frac{1}{3}}}{2}=0 \quad$ MO $-\frac{\sqrt{2}}{4} \cdot \sqrt{2 \cdot 1^{2}+2 \cdot 1 \cdot N_{1}+N_{1}{ }^{2}}=0$
$\mathrm{MO}^{2}-\frac{\left[\begin{array}{l}2 \cdot \mathrm{~N}_{1}+\mathrm{N}_{1}{ }^{2}-4 \cdot \mathrm{~N}_{1} \cdot\left(\mathrm{~N}_{1}+1\right)^{\frac{1}{3}}-4 \cdot\left(\mathrm{~N}_{1}+1\right)^{\frac{1}{3}} \ldots \\ +4 \cdot\left(N_{1}+1\right)^{\frac{2}{3}}-4 \cdot\left(N_{1}{ }^{2}+2 \cdot N_{1}+1\right)^{\frac{1}{3}}+4 \cdot\left(N_{1}{ }^{2}+2 \cdot N_{1}+1\right)^{\frac{2}{3}}+2\end{array}\right]}{8}=0$
$\frac{\left[\left(N_{1}+1\right)^{2}\right]^{\frac{2}{3}}}{2}+\frac{\left(N_{1}+1\right)^{\frac{2}{3}}}{2}-\frac{\left[\left(N_{1}+1\right)^{2}\right]^{\frac{1}{3}}}{2}-\frac{\left(N_{1}+1\right)^{\frac{1}{3}}}{2}-\frac{N_{1} \cdot\left(N_{1}+1\right)^{\frac{1}{3}}}{2}=0$

Unit. $A B:=1$
Given. $\mathbf{A E}:=2$
$\delta_{m}:=0 . . \Delta$
112293 Cube by Iteration

Descriptions.
When F_{1} and F_{2} are the same point on C, then a sixth root
series has been constructed. Use iteration to place F_{2} on F_{1}.

$$
\mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A E}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C G}:=\sqrt{\mathbf{A C} \cdot \mathbf{C E}} \quad \mathbf{A G}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C G}^{2}}
$$

$$
\begin{aligned}
& \Delta \equiv 16
\end{aligned}
$$

$$
\left(\mathrm{AB}^{2} \cdot \mathrm{AE}^{4}\right)^{\frac{1}{6}}-\mathrm{AD}_{\Delta}=-6.761441 \times 10^{-4} \quad\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}-\mathrm{AD}_{\Delta}=-6.761441 \times 10^{-4}
$$

112493

Unit.
AE := $\mathbf{1}$
Given.
$\mathbf{N}_{1}:=\mathbf{3} \quad \alpha:=1$.. $\mathbf{N}_{1}-1$
$\mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \beta:=\mathbf{1} . . \mathbf{N}_{\mathbf{2}}-\mathbf{1}$

Generalize the work of 07/25/93 for dividing the base AE with K constant.

$\mathbf{E F}:=\sqrt{\mathbf{D E}^{2}+\mathbf{D F}^{2}} \quad \mathbf{A H}:=\frac{\mathbf{D F} \cdot \mathbf{A E}}{\mathbf{E F}} \quad \mathbf{E H}:=\frac{\mathbf{D E} \cdot \mathbf{A E}}{\mathbf{E F}} \mathbf{G H}:=\mathbf{E H}-\mathbf{E G} \quad$ FH $:=\mathbf{E H}-\mathbf{E F}$ FJ $:=\frac{\text { DF } \cdot \mathbf{F H}}{\text { EF }} \quad$ HJ $:=\frac{\text { DE } \cdot \text { FH }}{\text { EF }} \quad$ DJ $:=$ DF + FJ JK $:=$ DK - DJ \quad HK $:=\sqrt{\mathbf{H J}^{\mathbf{2}}+\mathbf{J K}^{\mathbf{2}}}$

Definitions.
$\frac{\mathrm{AH}}{\mathrm{HK}}=0.265165 \quad \frac{\sqrt{2} \cdot \mathrm{~N}_{1}}{2 \cdot\left(\mathrm{~N}_{1}-1\right) \cdot\left(\mathbf{N}_{2}-1\right)}=0.265165$
SeriesAH $_{\alpha}, \beta:=\frac{\sqrt{2} \cdot \mathbf{N}_{1} \cdot \beta}{2 \cdot\left(\mathbf{N}_{1}-\alpha\right) \cdot\left(\mathbf{N}_{2}-\beta\right)}$

SeriesAH $=$| | 1 | 2 | 3 | 4 |
| :---: | ---: | ---: | ---: | :---: |
| 1 | 0.265165 | 0.707107 | 1.59099 | 4.242641 |
| 2 | 0.53033 | 1.414214 | 3.181981 | 8.485281 |

$\frac{E H}{G H}=2.85 \quad N_{1} \cdot N_{2} \cdot \frac{2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{2}-N_{1}+2}{\left(N_{2}-1\right) \cdot\left(2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{2}+N_{1}{ }^{2}-2 \cdot N_{1}+2\right)}=2.85$
SeriesEH ${ }_{\alpha, \beta}:=\mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \frac{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{N}_{1} \cdot \beta+2 \cdot \alpha \cdot \beta}{\left(\mathbf{N}_{2}-\beta\right) \cdot\left(2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \alpha^{2}+\mathbf{N}_{1}{ }^{2} \cdot \beta-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \alpha \cdot \beta+\mathbf{2} \cdot \alpha^{2} \cdot \beta\right)}$

SeriesEH $=$| | 1 | 2 | 3 | 4 |
| :--- | :--- | ---: | :---: | ---: |
| 1 | 2.85 | 3 | 3.643 | 6 |
| 2 | 1.65 | 2 | 2.786 | 5.25 |

$\mathrm{HK}=2.35269$
$\frac{\mathrm{AH}}{\mathrm{HK}}=0.26517$
$\frac{\sqrt{2} \cdot \mathrm{~N}_{1}}{2 \cdot\left(\mathrm{~N}_{1}-1\right) \cdot\left(\mathrm{N}_{2}-1\right)}=0.26517$
$\frac{\sqrt{2} \cdot \mathrm{~N}_{1}}{2 \cdot\left(\mathrm{~N}_{1}-1\right) \cdot\left(\mathrm{N}_{2}-1\right)}-\frac{\mathrm{AH}}{\mathrm{HK}}=0.00000$

[^1]
n_{2}

Unit.

AH:=1
Given.
$\delta_{\text {p }}:=1 . .7$
120293
Descriptions.
Descriptions.
$\mathbf{A} \mathbf{P}_{\boldsymbol{\delta}}:=\frac{\mathbf{A H}}{\delta} \quad \mathbf{A G} \mathbf{G}_{\delta}:=\frac{\left(\mathbf{A} \mathbf{P}_{\delta}\right)^{2}}{\mathbf{A H}} \quad \mathbf{A} \mathbf{O}_{\delta}:=\mathbf{A G _ { \delta }}$
$\mathbf{A F} \boldsymbol{F}_{\delta}:=\frac{\left(\mathbf{A G _ { \delta }}\right)^{2}}{\mathbf{A P}_{\delta}} \quad \mathbf{A E}{ }_{\delta}:=\frac{\left(\mathbf{A F _ { \delta }}\right)^{2}}{\mathbf{A O}_{\delta}} \quad \mathbf{A N}_{\delta}:=\mathbf{A F}_{\delta}$
$\mathrm{AD}_{\delta}:=\frac{\left(\mathrm{AE}_{\delta}\right)^{2}}{\mathrm{AN}_{\delta}} \quad \mathrm{AM}_{\delta}:=\mathrm{AE}_{\delta}$
$A C_{\delta}:=\frac{\left(\mathrm{AD}_{\boldsymbol{\delta}}\right)^{2}}{\mathrm{AM}_{\boldsymbol{\delta}}} \quad \mathrm{AK}_{\boldsymbol{\delta}}:=\mathrm{AD}_{\boldsymbol{\delta}} \quad \mathrm{AB}_{\boldsymbol{\delta}}:=\frac{\left(\mathrm{AC}_{\boldsymbol{\delta}}\right)^{2}}{\mathrm{AK}_{\boldsymbol{\delta}}}$

POR Roots and Powers (Pyramid of Ratio

Series V)

Is the progression noticed in 112993 a continuous phenomenon?

Definitions.

$\left.C^{2} x^{2}\right)^{38}$

$$
\left(\begin{array}{l}
\frac{\mathrm{AH}}{1}, \frac{\mathrm{AH}}{\mathbf{1}^{2}}, \frac{\mathrm{AH}}{\mathbf{1}^{3}}, \frac{\mathrm{AH}}{\mathbf{1}^{4}}, \text { etc } \\
\frac{\mathrm{AH}}{2}, \frac{\mathrm{AH}}{\mathbf{2}^{2}}, \frac{\mathrm{AH}}{\mathbf{2}^{3}}, \frac{\mathrm{AH}}{\mathbf{2}^{4}}, \text { etc } \\
\frac{\mathrm{AH}}{3}, \frac{\mathrm{AH}}{\mathbf{3}^{2}}, \frac{\mathrm{AH}}{\mathbf{3}^{3}}, \frac{\mathrm{AH}}{\mathbf{3}^{4}}, \text { etc } \\
\frac{\mathrm{AH}}{4}, \frac{\mathrm{AH}}{\mathbf{4}^{2}}, \frac{\mathrm{AH}}{\mathbf{4}^{3}}, \frac{\mathrm{AH}}{\mathbf{4}^{4}}, \text { etc } \\
\frac{\mathrm{AH}}{5}, \frac{\mathrm{AH}}{\mathbf{5}^{2}}, \frac{\mathrm{AH}}{\mathbf{5}^{3}}, \frac{\mathrm{AH}}{\mathbf{5}^{4}}, \text { etc }
\end{array}\right)
$$

$$
\begin{aligned}
& \mathbf{A P}_{\boldsymbol{\Delta}}= \\
& \begin{array}{|r|}
\hline 1 \\
\hline 0.5 \\
\hline 0.333333 \\
\hline 0.25 \\
\hline 0.2 \\
\hline 0.166667 \\
\hline
\end{array}
\end{aligned}
$$

$\mathbf{A B}_{\Delta}=$

$\begin{array}{r}\mathbf{A P} \mathbf{B}_{\boldsymbol{\Delta}}= \\ \hline 1\end{array}$	$\mathbf{A G}_{\Delta} \cdot \frac{\mathbf{A H}}{\mathbf{A P}}$	$\left.\mathbf{A F}_{\Delta} \cdot\left(\frac{\mathbf{A H}}{\mathbf{A P}}\right)^{\mathbf{\Delta}}\right)^{\mathbf{2}}=$	$\mathbf{A E}_{\Delta} \cdot\left(\frac{\mathbf{A H}}{\mathbf{A P}}\right)^{\mathbf{3}}=$	$\mathbf{A D}_{\Delta} \cdot\left(\frac{\mathbf{A H}}{\mathbf{A P}}\right)^{4}=$	$\mathbf{A C}_{\Delta} \cdot\left(\frac{\mathbf{A H}}{\mathbf{A P}}\right)^{\mathbf{5}}=$	$\mathrm{AB}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{6}=$	
0.5	1	1	1	1	\|r		1
0.333333	0.5	0.5	0.5	0.5	0.5	0.5	
0.25	0.333333	0.333333	0.333333	0.333333	0.333333	0.333333	
0.2	0.25	0.25	0.25	0.25	0.25	0.25	
0.166667	0.2	0.2	0.2	0.2	0.2	0.2	
	0.166667	0.166667	0.166667	0.166667	0.166667	0.166667	

7	7	7	7	7	7	7
$\left(\frac{\mathrm{AH}}{\mathrm{AB}_{\Delta}}\right)^{\overline{7}}=$	$\left(\frac{\mathrm{AH}}{\mathrm{AC}_{\Delta}}\right)^{\frac{\mathbf{6}}{}}=$	$\left(\frac{\mathrm{AH}}{\mathrm{AD}_{\Delta}}\right)^{\frac{\mathbf{5}}{5}}=$	$\left(\frac{\mathrm{AH}}{\mathrm{AE}_{\Delta}}\right)^{\frac{4}{4}}=$	$\left(\frac{\mathbf{A H}}{\mathbf{A F}_{\Delta}}\right)^{\frac{\mathbf{3}}{3}}=$	$\left(\frac{\mathrm{AH}}{\mathbf{A G} \mathbf{S}_{\Delta}}\right)^{\overline{\mathbf{2}}}=$	$\left.\left(\frac{\mathbf{A H}}{\mathbf{A P}}\right)^{\mathbf{1}}\right)^{\mathbf{1}}=$
1	1	1	1	1	1	1
128	128	128	128	128	128	128
$2.187 \cdot 10^{3}$						
$1.6384 \cdot 10^{4}$						
$7.8125 \cdot 10^{4}$						
$2.79936 \cdot 10^{5}$						

$\frac{\mathbf{G P} \mathbf{D}_{\boldsymbol{\Delta}}}{\boldsymbol{\Delta}^{\mathbf{5}}}=$

0.013532
$1.293291 \cdot 10^{-3}$
$2.363881 \cdot 10^{-4}$
$6.270694 \cdot 10^{-5}$
$2.113369 \cdot 10^{-5}$

$\frac{\text { FO } \boldsymbol{\Delta}}{\Delta^{\mathbf{4}}}=$

| 0.013532 |
| ---: | ---: |
| $1.293291 \cdot 10^{-3}$ |
| $2.363881 \cdot 10^{-4}$ |
| $6.270694 \cdot 10^{-5}$ |
| $2.113369 \cdot 10^{-5}$ |

$\frac{\mathbf{E N}_{\Delta}}{\Delta^{\mathbf{3}}}=$

| 0.013532 |
| ---: | ---: |
| $1.293291 \cdot 10^{-3}$ |
| $2.363881 \cdot 10^{-4}$ |
| $6.270694 \cdot 10^{-5}$ |
| $2.113369 \cdot 10^{-5}$ |

$\frac{\mathbf{D M}_{\Delta}}{\Delta^{\mathbf{2}}}=$

0.013532
$1.293291 \cdot 10^{-3}$
$2.363881 \cdot 10^{-4}$
$6.270694 \cdot 10^{-5}$
$2.113369 \cdot 10^{-5}$

$\mathbf{E N}_{\Delta}=$
$\mathbf{D M}_{\Delta}=$

$\frac{\mathbf{G P}_{\Delta}}{\left(\frac{\mathbf{A H}}{\mathbf{A P}_{\Delta}}\right)^{\mathbf{5}}}=$

$$
\frac{\mathrm{FO}_{\Delta}}{\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{4}}=
$$

$$
\frac{\mathbf{E N}_{\Delta}}{\left(\frac{\mathbf{A H}}{\mathbf{A P}_{\Delta}}\right)^{3}}=
$$

$$
\frac{\mathbf{D M}_{\Delta}}{\left(\frac{\mathbf{A H}}{\mathbf{A P}_{\Delta}}\right)^{2}}=
$$

0
0.013532
$1.293291 \cdot 10^{-3}$
$2.363881 \cdot 10^{-4}$
$6.270694 \cdot 10^{-5}$
$2.113369 \cdot 10^{-5}$

0
0.013532
$1.293291 \cdot 10^{-3}$
$2.363881 \cdot 10^{-4}$
$6.270694 \cdot 10^{-5}$
$2.113369 \cdot 10^{-5}$

0
0.013532
$1.293291 \cdot 10^{-3}$
$2.363881 \cdot 10^{-4}$
$6.270694 \cdot 10^{-5}$
$2.113369 \cdot 10^{-5}$

0
0.013532
$1.293291 \cdot 10^{-3}$
$2.363881 \cdot 10^{-4}$
$6.270694 \cdot 10^{-5}$
$2.113369 \cdot 10^{-5}$

$\boldsymbol{A} \mathbf{D}_{\boldsymbol{\Delta}}$
0.013532
$1.293291 \cdot 10^{-3}$
$2.363881 \cdot 10^{-4}$
$6.270694 \cdot 10^{-5}$
$2.113369 \cdot 10^{-5}$

$\mathbf{B J}_{\Delta}=$

0
0.013532
$1.293291 \cdot 10^{-3}$
$2.363881 \cdot 10^{-4}$
$6.270694 \cdot 10^{-5}$
$2.113369 \cdot 10^{-5}$

$$
\begin{aligned}
& \frac{\sqrt{A G_{2} \cdot \mathrm{GH}_{2}}}{2}=0.216506 \quad \frac{\sqrt{A G_{2} \cdot \mathrm{GH}_{2}}}{2^{2}}=0.108253 \quad \frac{\sqrt{\mathrm{AG}_{2} \cdot \mathrm{GH}_{2}}}{2^{3}}=0.054127 \\
& \frac{\sqrt{A G_{3} \cdot \mathbf{G H}_{3}}}{3}=0.104757 \frac{\sqrt{A G_{3} \cdot \mathrm{GH}_{3}}}{3^{2}}=0.034919 \quad \frac{\sqrt{A G_{3} \cdot \mathrm{GH}_{3}}}{3^{3}}=0.01164
\end{aligned}
$$

$C^{2} x^{2} x^{88}$

$\begin{aligned} & a b=0.83886 \\ & a c=1.04858 \end{aligned}$	$\frac{\mathrm{N}_{1}}{\text { ap }}=1.25000$	
	$\mathrm{N}_{1} \frac{1}{1}$	
$\mathrm{ad}=1.31072$	$\frac{\mathrm{N}_{1} \overline{7}}{}{ }^{\text {a }}=1.25000$	$\underline{a p}^{\frac{1}{6}}=1.25000$
$\mathrm{ae}=1.63840$	ab	$\frac{\mathrm{ab}}{}=1.25000$
af $=2.04800$	$\mathrm{N}_{1} \frac{1}{6}$	ag $\frac{1}{5}$
$\mathrm{ag}=2.56000$	$\overline{\mathrm{ac}}=1.2$	$\frac{a b}{}^{\text {a }}=1.25000$
$\mathrm{ap}=3.20000$	$\mathrm{N}_{1} \frac{1}{5}$	af $\frac{1}{4}$
	${\frac{N_{1}}{\mathrm{ad}}}^{5}=1.25000$	$\frac{\mathrm{af}}{\mathrm{ab}}{ }^{4}=\mathbf{1 . 2 5 0 0 0}$
	$\mathrm{N}_{1} \frac{1}{4}$	ae ${ }^{\frac{1}{3}}$
	$\overline{a e}^{\text {a }}=1.25000$	$\frac{a b}{a b}^{3}=1.25000$
	$\mathrm{N}_{1} \frac{1}{3}$	
	$\overline{\mathrm{af}}=1.25000$	${\frac{\mathrm{ad}}{}{ }^{\text {ab }}}^{2}=1.25000$
	$\mathrm{N}_{1} \frac{1}{2}$	
	${\frac{\mathrm{N}_{1}}{\mathrm{ag}}}^{2}=1.25000$	$\frac{\mathrm{ab}}{\mathrm{ab}}=1.25000$

$\sim_{n \rightarrow 2}^{\infty}$

120493

Descriptions.
To use the digital indexing system to apply names, let AC be the thing with which we seek to name an exponential series on. $A B$ is our unit. As a number is a ratio, numbers are two dimensional.

The circle is a two dimensional object which is capable of producing every ratio between two differences.
$\mathbf{B C}:=\mathbf{A C}-\mathbf{A B}$
$\mathbf{B D}:=\sqrt{\mathbf{B C} \cdot \mathbf{A B}}$
$\mathbf{A H}:=\sqrt{\mathbf{A B}^{\mathbf{2}}+\mathbf{B D}^{\mathbf{2}}}$
$\mathbf{C H}:=\mathbf{A C}-\mathbf{A H}$
$\mathbf{H N}:=\sqrt{\mathbf{C H} \cdot \mathbf{A H}}$
$\mathbf{A J}:=\sqrt{\mathbf{A H}^{\mathbf{2}}+\mathbf{H N}^{2}}$
$\mathbf{C J}:=\mathbf{A C}-\mathbf{A J}$
$\mathbf{J S}:=\sqrt{\mathbf{C J} \cdot \mathbf{A J}}$
$\mathbf{A K}:=\sqrt{\mathbf{J S}^{2}+\mathbf{A J}^{2}} \quad \mathbf{A I}:=\frac{\mathbf{A J}^{2}}{\mathbf{A K}} \quad \mathrm{AG}:=\frac{\mathbf{A H}^{2}}{\mathrm{AI}} \quad \mathbf{A F}:=\frac{\mathbf{A H}^{2}}{\mathrm{AJ}} \quad \mathrm{AE}:=\frac{\mathbf{A F}^{2}}{\mathrm{AG}}$

Definitions.

$$
\mathbf{A C}^{\mathbf{0}}-\mathbf{A B}=\mathbf{0}
$$

$$
\begin{array}{rrr}
A C^{\frac{1}{8}}-A E=0 & A C^{\frac{2}{8}}-A F=0 & A C^{\frac{3}{8}}-A G=0 \\
A C^{\frac{5}{8}}-A I=0 & A C^{\frac{6}{8}}-A J=0 & A C^{\frac{4}{8}}-A H=0 \\
& A C^{\frac{7}{8}}-A K=0 & A C^{\frac{8}{8}}-A C=0
\end{array}
$$

A number is no more than a digital name used with the stipulation that the indexing system is further qualified by using as standard difference. In other words that the concept of ratio will employ a name called a number. Ratio, however, is independent of the naming convention. Given any ration, say, M, describe a two prime exponential series, $M^{\wedge} 1 / 2^{\wedge} N$, where N is any whole ratio.

$$
\underset{\mathbf{C}}{ } \quad \mathbf{B} \quad \mathbf{A}
$$

0

T

$\rightarrow \sim$

$$
\begin{array}{ll}
A C^{\frac{1}{8}}-A E=0 & A C^{\frac{2}{8}}-A F=0 \\
A C^{\frac{3}{8}}-A G=0 & A C^{\frac{4}{8}}-A H=0 \\
A C^{\frac{5}{8}}-A I=0 & A C^{\frac{6}{8}}-A J=0 \\
A C^{\frac{7}{8}}-A K=0 & A C^{\frac{8}{8}}-A C=0
\end{array}
$$

Alternate method of creating an exponential series.

Unit.
BE := 1
Given.
$\mathbf{N}_{\mathbf{1}}$:= $\mathbf{6}$
120693A
Descriptions.
$\mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2}$
$\mathbf{A E}-\left(\mathbf{N}_{1}+\mathbf{B E}\right)=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{B E}}{2}=\mathbf{0} \quad \mathbf{D F}:=\mathbf{B D}$
$A D:=B D+A B \quad D F-\frac{B E}{2}=0 \quad A D-\frac{2 \cdot \mathbf{N}_{1}+B E}{2}=0$
$\mathbf{A F}:=\sqrt{\mathbf{A D}^{2}-\mathbf{D F}^{2}} \quad \mathbf{A C}:=\mathbf{A F}$

Definitions.
$\sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A C}=\mathbf{0}$
$\left.\mathbf{A F}-\sqrt{\left[\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)\right.}\right]=\mathbf{0}$
$\left.\mathbf{A C}-\sqrt{\left[\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)\right.}\right]=\mathbf{0}$

Alternate Method: Square Root

Common Segment Common Endpoint

120693B

Descriptions.

$\mathbf{A C}:=\mathbf{N}_{\mathbf{1}}$
$\mathbf{C G}:=\mathbf{A G}-\mathbf{A C}$
AJ $:=\mathbf{A C}+\mathbf{C J}$
Are A, P and Q collinear? Are A, K and N collinear?

Unit.

CJ := $\mathbf{1}$
Given.
$\mathbf{N}_{1}:=5$

Gruntwork IV on the Delian Solution.

Definitions.

$A J-\left(N_{1}+1\right)=0 \quad A E-\left(N_{1}{ }^{3}+N_{1}{ }^{2}\right)^{\frac{1}{3}}=0 \quad A G-\left(N_{1}{ }^{3}+2 \cdot N_{1}{ }^{2}+N_{1}\right)^{\frac{1}{3}}=0$
$\mathbf{C G}-\left[\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+1\right)^{2}\right]^{\frac{1}{3}}-\mathbf{N}_{1}\right]=0 \quad \quad G J-\left[N_{1}-\left(N_{1}{ }^{3}+2 \cdot N_{1}{ }^{2}+N_{1}\right)^{\frac{1}{3}}+1\right]=0$
$G N-\sqrt{\left(2 \cdot N_{1}+1\right) \cdot\left(N_{1}{ }^{3}+2 \cdot N_{1}{ }^{2}+N_{1}\right)^{\frac{1}{3}}-\left[N_{1}+N_{1}{ }^{2}+\left(N_{1}{ }^{3}+2 \cdot N_{1}{ }^{2}+N_{1}\right)^{\frac{2}{3}}\right]}=0$
$\begin{aligned} & \text { Descriptions. } \\ & \mathbf{A L}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{A E}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A L}\right)^{\frac{1}{3}} \quad \mathbf{A J}:=\left(\mathbf{A B} \cdot \mathbf{A L}^{2}\right)^{\frac{1}{3}}\end{aligned}$
$\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{J L}:=\mathbf{B L}-\mathbf{B J} \quad \mathbf{E J}:=\mathbf{A J}-\mathbf{A E} \quad$ FJ $:=\frac{\mathbf{J L} \cdot \mathbf{E J}}{\mathbf{J L}}$
$\mathbf{F L}:=\mathbf{J L}+\mathbf{F J} \quad \mathbf{B F}:=\mathbf{B L}-\mathbf{F L} \quad$ FP $:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}} \quad \mathbf{K R}:=\mathbf{B K} \quad \mathbf{K L}:=\mathbf{B K}$
$\mathbf{F K}:=\mathbf{F L}-\mathbf{K L} \quad \mathbf{I K}:=\frac{\mathbf{F K} \cdot \mathbf{K R}}{\mathbf{K R}+\mathbf{F P}} \quad \mathbf{A K}:=\mathbf{B K}+\mathbf{A B} \quad \mathbf{A I}:=\mathbf{A K}-\mathbf{I K} \quad \mathbf{A D}:=\frac{\mathbf{A I}}{2}$
$\mathbf{K T}:=\mathbf{B L} \quad \mathbf{F H}:=\frac{\mathbf{F K} \cdot \mathbf{F P}}{\mathbf{K T}+\mathbf{F P}} \quad \mathbf{A F}:=\mathbf{B F}+\mathbf{A B} \quad \mathbf{A H}:=\mathbf{A F}+\mathbf{F H} \quad \mathbf{H I}:=\mathbf{A I}-\mathbf{A H}$
$\mathrm{HO}:=\sqrt{\mathrm{AH} \cdot \mathrm{HI}} \quad \mathrm{DN}:=\mathrm{AD} \quad \mathrm{KN}:=\mathrm{BK} \quad \mathrm{DK}:=\mathrm{AK}-\mathbf{A D} \quad \mathrm{CK}:=\frac{\mathrm{KN}^{2}+\mathrm{DK}^{2}-\mathrm{DN}^{2}}{2 \cdot \mathrm{DK}}$
$\mathbf{A C}:=\mathbf{A K}-\mathbf{C K} \quad \mathbf{C I}:=\mathbf{A I}-\mathbf{A C} \quad \mathbf{C N}:=\sqrt{\mathbf{A C} \cdot \mathbf{C I}} \frac{\mathbf{K R}}{\mathbf{I K}}-\frac{\mathbf{H O}}{\mathbf{H I}}=\mathbf{0} \quad \frac{\mathbf{A F}}{\mathbf{F P}}-\frac{\mathbf{A C}}{\mathbf{C N}}=\mathbf{0}$

The structure in red appears to be a constant.

$C^{\circ} \cos ^{28}$
Definitions.
$\mathbf{A L}-\mathbf{N}=\mathbf{0} \quad \mathbf{B L}-(\mathbf{N}-1)=0 \quad \mathbf{B K}-\frac{\mathbf{N}-1}{2}=0 \quad \mathbf{A E}-\mathbf{N}^{\frac{1}{3}}=0 \quad \mathbf{A J}-\mathbf{N}^{\frac{2}{3}}=0$ $B E-\left(N^{\frac{1}{3}}-1\right)=0$

BJ $-\left(N^{\frac{2}{3}}-1\right)=0 \quad J L-\left(N-N^{\frac{2}{3}}\right)=0$
$E J-N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}-1\right)=0$
$F \mathbf{F J}-\frac{N^{(} \cdot\left(N^{\frac{1}{3}}-1\right)}{N^{\frac{2}{3}}+1}=0 \quad F L-\frac{N^{\frac{2}{3}} \cdot(N-1)}{N^{\frac{2}{3}}+1}=0 \quad B F-\frac{N-1}{N^{\frac{2}{3}}+1}=0 \quad F P-\frac{N^{\frac{1}{3}} \cdot(N-1)}{\frac{2}{\frac{2}{3}}+0}$
$F K-\frac{\left(N^{\frac{1}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}-1\right)^{2}}{2 \cdot\left(N^{\frac{2}{3}}+1\right)}=0$
$I K-\frac{\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}-1\right)^{2}}{2 \cdot\left(N^{\frac{1}{3}}+1\right)}=0$

$C^{2} \cos ^{3}$
$A H-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}+1\right)}{2}=0 \quad H I-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}-1\right)^{2}}{2 \cdot\left(N^{\frac{1}{3}}+1\right)}=0 \quad H O-\frac{\sqrt{N^{\frac{2}{3}}-2 \cdot N+N^{\frac{4}{3}}}}{2}=0$
$D K-\frac{N^{\frac{4}{3}}+1}{2 \cdot\left(N^{\frac{1}{3}}+1\right)}=0$
$\mathbf{C K}-\frac{\left(N^{\frac{1}{3}}+1\right) \cdot\left(N^{\frac{2}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}-1\right)^{2}}{2 \cdot\left(N^{\frac{4}{3}}+1\right)}=0$
$A C-\frac{\left(N^{\frac{1}{3}}\right)^{3} \cdot\left(N^{\frac{1}{3}}+1\right)}{N^{\frac{4}{3}}+1}=0$
$C I-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}-1\right)^{2} \cdot\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right)^{2}}{\left(N^{\frac{1}{3}}+1\right) \cdot\left(N^{\frac{4}{3}}+1\right)}=0$
$C N-\frac{N^{\frac{2}{3}} \cdot\left(N^{\frac{1}{3}}-1\right) \cdot\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right)}{\left(N^{\frac{4}{3}}+1\right)}=0 \quad \frac{K R}{I K}-\frac{N^{\frac{1}{3}}+1}{N^{\frac{1}{3}}-1}=0 \quad \frac{A F}{F P}-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}+1\right)}{N-1}=0$

AB:= $\mathbf{1}$
Given.
$\mathbf{Y}:=4$
121193B $\mathbf{X}:=\mathbf{2 0}$

Descriptions.

$\mathbf{A L}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{A E}:=(\mathbf{A L})^{\frac{1}{3}} \quad \mathbf{A J}:=\mathbf{A L}^{\frac{2}{3}}$
$\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{J L}:=\mathbf{B L}-\mathbf{B J} \quad \mathbf{E J}:=\mathbf{A J}-\mathbf{A E} \quad$ FJ $:=\frac{\mathbf{J L} \cdot \mathbf{E J}}{\mathbf{J L}+\mathbf{B E}}$ $\mathbf{F L}:=\mathbf{J L}+\mathbf{F J} \quad \mathbf{B F}:=\mathbf{B L}-\mathbf{F L} \quad \mathbf{F P}:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}} \quad \mathbf{K R}:=\mathbf{B K} \quad \mathbf{K L}:=\mathbf{B K}$ $\mathbf{F K}:=\mathbf{F L}-\mathbf{K L} \quad \mathbf{I K}:=\frac{\mathbf{F K} \cdot \mathbf{K R}}{\mathbf{K R}+\mathbf{F P}} \quad \mathbf{A K}:=\mathbf{B K}+\mathbf{A B} \quad \mathbf{A I}:=\mathbf{A K}-\mathbf{I K} \quad \mathbf{A D}:=\frac{\mathbf{A I}}{\mathbf{2}}$ $\mathbf{K T}:=\mathbf{B L}$

$$
\mathbf{F H}:=\frac{\mathbf{F K} \cdot \mathbf{F P}}{\mathbf{K T}+\mathbf{F P}}
$$

$\mathbf{A F}:=\mathbf{B F}+\mathbf{A B} \quad \mathbf{A H}:=\mathbf{A F}+\mathbf{F H} \quad \mathbf{H I}:=\mathbf{A I}-\mathbf{A H}$
HO $:=\sqrt{\text { AH } \cdot \mathbf{H I}} \quad$ DN $:=\mathbf{A D} \quad \mathrm{KN}:=\mathrm{BK} \quad \mathrm{DK}:=\mathbf{A K}-\mathbf{A D} \quad \mathbf{C K}:=\frac{\mathrm{KN}^{2}+\mathrm{DK}^{2}-\mathrm{DN}^{2}}{2 \cdot \mathrm{DK}}$
$\mathbf{A C}:=\mathbf{A K}-\mathbf{C K}$ $\mathbf{C I}:=\mathbf{A I}-\mathbf{A C}$
$\mathbf{C N}:=\sqrt{\mathbf{A C} \cdot \mathbf{C I}} \quad \frac{\mathbf{K R}}{\mathrm{IK}}-\frac{\mathbf{H O}}{\mathrm{HI}}=0 \quad \frac{\mathbf{A F}}{\mathbf{F P}}-\frac{\mathbf{A C}}{\mathbf{C N}}=0$

The structure in red appears to be a constant.

$C^{2} \operatorname{cin}^{38}$
Definitions.
$A L-\frac{X}{Y}=0 \quad B L-\frac{X-Y}{Y}=0 \quad B K-\frac{X-Y}{2 \cdot Y}=0 \quad A E-\left(\frac{X}{Y}\right)^{\frac{1}{3}}=0 \quad A J-\left(\frac{X}{Y}\right)^{\frac{2}{3}}=0$ $\mathbf{B E}-\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}-1\right]=0 \quad$ BJ $-\left[\left(\frac{X}{Y}\right)^{\frac{2}{3}}-1\right]=0 \quad$ JL $-\left[\frac{X}{Y}-\left(\frac{X}{Y}\right)^{\frac{2}{3}}\right]=0 \quad$ EJ $-\left(\frac{X}{Y}\right)^{\frac{1}{3}} \cdot\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}-1\right]=0$

$\mathbf{F K}-\left[\frac{\mathbf{X}-\mathbf{Y}}{2 \cdot \mathbf{Y}}-\frac{\mathbf{X}-\mathbf{Y}}{\left(\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{2}{3}}+1\right]\right.}\right]=\mathbf{0} \quad \mathbf{I K}-\frac{\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}-1\right] \cdot(\mathbf{X}-\mathbf{Y})}{2 \cdot\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}+1\right]}=0 \quad \mathbf{A K}-\frac{\mathbf{X}+\mathbf{Y}}{2 \cdot \mathbf{Y}}=\mathbf{0}$

Descriptions.

$\mathbf{A B}:=1 \quad \mathrm{AL}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{A E}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A L}\right)^{\frac{1}{3}} \quad \mathrm{AJ}:=\left(\mathbf{A B} \cdot \mathbf{A L}^{2}\right)^{\frac{1}{3}}$
$\mathbf{B E}:=\mathbf{A E}-\mathbf{A B}$
$\mathbf{B J}:=\mathbf{A J}-\mathbf{A B}$
$\mathbf{J L}:=\mathbf{B L}-\mathbf{B J}$
$\mathbf{E J}:=\mathbf{A J}-\mathbf{A E}$
$\mathbf{F J}:=\frac{\mathbf{J L} \cdot \mathbf{E J}}{\mathbf{J L}+\mathbf{B E}}$
$\mathbf{F L}:=\mathbf{J L}+\mathbf{F J} \quad \mathbf{B F}:=\mathbf{B L}-\mathbf{F L} \quad \mathbf{F P}:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}} \quad \mathbf{K R}:=\mathbf{B K} \quad \mathbf{K L}:=\mathbf{B K}$
$\mathbf{F K}:=\mathbf{F L}-\mathbf{K L} \quad \mathbf{I K}:=\frac{\mathbf{F K} \cdot \mathbf{K R}}{\mathbf{K R}+\mathbf{F P}} \quad \mathbf{A K}:=\mathbf{B K}+\mathbf{A B} \quad \mathbf{A I}:=\mathbf{A K}-\mathbf{I K} \quad \mathbf{A D}:=\frac{\mathbf{A I}}{\mathbf{2}}$
$\mathbf{K T}:=\mathbf{B L} \quad \mathbf{F H}:=\frac{\mathbf{F K} \cdot \mathbf{F P}}{\mathbf{K T}+\mathbf{F P}} \quad \mathbf{A F}:=\mathbf{B F}+\mathbf{A B} \quad \mathbf{A H}:=\mathbf{A F}+\mathbf{F H} \quad \mathbf{H I}:=\mathbf{A I}-\mathbf{A H}$

$\mathbf{A C}:=\mathbf{A K}-\mathbf{C K} \quad \mathbf{C I}:=\mathbf{A I}-\mathbf{A C} \quad \mathbf{C N}:=\sqrt{\mathbf{A C} \cdot \mathbf{C I}} \quad \frac{\mathbf{K R}}{\mathbf{I K}}-\frac{\mathbf{H O}}{\mathbf{H I}}=\mathbf{0} \quad \frac{\mathbf{A F}}{\mathbf{F P}}-\frac{\mathbf{A C}}{\mathbf{C N}}=\mathbf{0}$
$\mathrm{AE}=1.259921 \quad \mathrm{AE}^{3}=2$
AJ $=1.587401 \quad A J^{\frac{3}{2}}=2$

The structure in red appears to be a constant.

$C^{\circ} \cos ^{28}$
Definitions.
$A L-\frac{X}{Y}=0 \quad B L-\frac{X-Y}{Y}=0 \quad B K-\frac{X-Y}{2 \cdot Y}=0 \quad A E-\left(\frac{X}{Y}\right)^{\frac{1}{3}}=0 \quad A J-\left(\frac{X}{Y}\right)^{\frac{2}{3}}=0$ $\mathbf{B E}-\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}-1\right]=0 \quad$ BJ $-\left[\left(\frac{X}{Y}\right)^{\frac{2}{3}}-1\right]=0 \quad$ JL $-\left[\frac{X}{Y}-\left(\frac{X}{Y}\right)^{\frac{2}{3}}\right]=0 \quad$ EJ $-\left(\frac{X}{Y}\right)^{\frac{1}{3}} \cdot\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}-1\right]=0$

$\mathbf{F K}-\left[\frac{\mathbf{X}-\mathbf{Y}}{2 \cdot \mathbf{Y}}-\frac{\mathbf{X}-\mathbf{Y}}{\left(\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{2}{3}}+1\right]\right.}\right]=\mathbf{0} \quad \mathbf{I K}-\frac{\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}-1\right] \cdot(\mathbf{X}-\mathbf{Y})}{2 \cdot\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}+1\right]}=0 \quad \mathbf{A K}-\frac{\mathbf{X}+\mathbf{Y}}{2 \cdot \mathbf{Y}}=\mathbf{0}$
$\mathbf{A I}-\frac{\mathbf{X}+\mathbf{Y} \cdot\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}}{\mathbf{Y} \cdot\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}+1\right]}=0$
$\operatorname{AD}-\frac{\left(\frac{X}{Y}\right)^{\frac{1}{3}} \cdot\left[\left(\frac{X}{Y}\right)^{\frac{2}{3}}+1\right]}{2 \cdot\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}+1\right]}=0$
$F \mathbf{F H}-\frac{\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}-1\right]^{2} \cdot\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}+1\right] \cdot\left(\frac{X}{Y}\right)^{\frac{1}{3}}}{2 \cdot\left(\frac{X}{Y}\right)^{\frac{2}{3}}+2}=0$
$\mathbf{A F}-\frac{\mathbf{X}+\mathbf{Y} \cdot\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{2}{3}}}{\mathbf{Y} \cdot\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{2}{3}}+1\right]}=0$

$$
\begin{aligned}
& C^{\circ} \mathrm{M} \pi \mathrm{~S}_{3} \\
& \left.A H-\frac{\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}+1\right] \cdot\left(\frac{X}{Y}\right)^{\frac{1}{3}}}{2}=0 \quad H I-\frac{\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}-1\right]^{2} \cdot\left(\frac{X}{Y}\right)^{\frac{1}{3}}}{1}=0 \quad H O-\frac{\sqrt{\left(\frac{X}{Y}\right)^{\frac{2}{3}}-\frac{2 \cdot X}{Y}+\frac{X}{}}=0 .\left(\frac{X}{Y}\right)^{\frac{1}{3}}}{2}\right) \\
& 2 \cdot\left(\frac{x}{Y}\right)^{\overline{3}}+2 \\
& \mathbf{D K}-\frac{\mathbf{Y}+\mathbf{X} \cdot\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}}{2 \cdot \mathbf{Y} \cdot\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}+1\right]}=\mathbf{0} \quad \mathbf{C K}-\frac{(\mathbf{X}-\mathbf{Y}) \cdot\left[\mathbf{Y}-\mathbf{X} \cdot\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}\right]}{2 \cdot \mathbf{Y}^{2} \cdot\left[\frac{\mathbf{X} \cdot\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}}{\mathbf{Y}}+1\right]}=0 \quad \mathbf{A C - \frac { \mathbf { X } \cdot [(\frac { \mathbf { X } } { \mathbf { Y } }) ^ { \frac { 1 } { 3 } } + 1] } { [(\frac { \mathbf { X } } { \mathbf { Y } }) ^ { \frac { 4 } { 3 } } + 1] } = 0} \\
& \mathrm{CI}-\frac{\left[\left(\frac{x}{Y}\right)^{\frac{1}{3}}-1\right]^{2} \cdot\left(\frac{x}{Y}\right)^{\frac{1}{3}} \cdot\left[\left(\frac{x}{Y}\right)^{\frac{1}{3}}+\left(\frac{x}{Y}\right)^{\frac{2}{3}}+1\right]^{2}}{\left[\left(\frac{X}{Y}\right)^{\frac{1}{3}}+1\right] \cdot\left[\left(\frac{X}{Y}\right)^{\frac{4}{3}}+1\right]}=0 \\
& \mathbf{C N}-\frac{(\mathbf{X}-\mathbf{Y}) \cdot\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{2}{3}}}{\mathbf{Y}+\mathbf{X} \cdot\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}}=\mathbf{0} \quad \frac{\mathbf{K R}}{\mathbf{I K}}-\frac{\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}+1}{\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}-1}=\mathbf{0} \quad \frac{\mathbf{A F}}{\mathbf{F P}}-\frac{\mathbf{Y} \cdot\left[\left(\frac{\mathbf{X}}{\mathbf{Y}}\right)^{\frac{1}{3}}+1\right] \cdot\left(\frac{\mathbf{x}}{\mathbf{Y}}\right)^{\frac{1}{3}}}{\mathbf{X}-\mathbf{Y}}=\mathbf{0}
\end{aligned}
$$

Given.
$\mathrm{N}_{1}:=5$ $\mathbf{N}_{\mathbf{2}}:=\mathbf{3}$
121293A 1
Descriptions.
$\mathbf{A F}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B E}:=\mathbf{N}_{\mathbf{2}}$
$\mathbf{A D}:=\frac{\mathbf{A F}}{2} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D}$
$\mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{C G}:=\mathbf{A C}$
$\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{G H}:=2 \cdot \sqrt{\mathbf{C G}^{2}-\mathbf{C D}^{2}}$

Definitions.

$\mathbf{G H}-\sqrt{\mathbf{A F} \cdot \mathbf{B E}}=\mathbf{0}$
$\mathbf{G H}-\sqrt{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0}$

Common Segment Common Midpoint

Square root by common segment common midpoint. Given AF and BE is GH their root?
$\mathrm{AF}=3.45000 \mathrm{in}$. $B E=1.48333 \mathrm{in}$. GH = 2.26219 in.
$\sqrt{\text { AF.BE }}-\mathrm{GH}=0.00000 \mathrm{in}$.

Descriptions.
$\mathbf{B E}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{2} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2}$
$\mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B}$
$\mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{C G}:=\mathbf{A C} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C}$
$\mathbf{G H}:=2 \cdot \sqrt{\mathbf{C G}^{2}-\mathbf{C D}^{2}} \quad \mathbf{G H}-\sqrt{\mathbf{A F} \cdot \mathbf{B E}}=\mathbf{0}$

Definitions.

$\mathbf{B E}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A D}-\frac{1}{2}=0 \quad \mathbf{B D}-\frac{\mathbf{X}}{2 \cdot \mathbf{Y}}=0$
$\mathbf{A B}-\left(\frac{\mathbf{Y}-\mathbf{X}}{2 \cdot \mathbf{Y}}\right)=\mathbf{0} \quad \mathbf{A E}-\left(\frac{\mathbf{X}+\mathbf{Y}}{2 \cdot \mathbf{Y}}\right)=\mathbf{0}$
$A C-\frac{X+Y}{4 \cdot Y}=0 \quad C G-\frac{X+Y}{4 \cdot Y}=0$
$\mathbf{C D}-\frac{\mathbf{Y}-\mathbf{X}}{4 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{G H}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0}$
$\mathbf{G H}-\sqrt{\frac{\mathbf{X}}{\mathbf{Y}}}=\mathbf{0}$

Common Segment Common Midpoint

Square root by common segment common midpoint. Given AFand BE is GH their root?

\sim_{n}^{0}
121293B1 Descriptions.
$\mathbf{A F}:=\mathbf{N}_{1} \quad \mathbf{D F}:=\frac{\mathbf{A F}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A D}:=\mathbf{A F}-\mathbf{D F}$

$$
\begin{aligned}
& \mathbf{D E}:=\frac{\mathbf{D F}}{\mathbf{N}_{\mathbf{3}}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E} \quad \mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{2}} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{A B}
\end{aligned}
$$

Definitions.

Given.
$\mathrm{N}_{1}:=1$
$N_{2}:=4$ $\mathbf{N}_{\mathbf{3}}:=\mathbf{3}$

$$
\mathbf{G H}:=2 \cdot \sqrt{(\mathbf{B H})^{2}-(\mathbf{B D})^{2}}
$$

$\mathbf{G H}-\mathbf{2} \cdot \frac{\mathbf{N}_{\mathbf{1}} \cdot \sqrt{\mathbf{N}_{\mathbf{2}} \mathbf{- 1}^{\mathbf{1}}}}{\mathbf{N}_{\mathbf{2}} \cdot \sqrt{\mathbf{N}_{\mathbf{3}}}}=\mathbf{0}$

Generalize The Previous Square Root Figure

CN
AF := $\mathbf{1}$
Given.
$Y:=20$
$\mathbf{X}:=\mathbf{8}$
121293B2
Descriptions.

$$
\mathbf{v}:=\mathbf{3}
$$

$\mathbf{D F}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A D}:=\mathbf{A F}-\mathbf{D F}$
$\mathbf{D E}:=\mathbf{D F}-\frac{\mathbf{D F} \cdot \mathbf{V}}{\mathbf{W}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E}$ $\mathbf{A B}:=\frac{\mathbf{A E}}{2} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{A B}$ $\mathbf{G H}:=2 \cdot \sqrt{(\mathrm{BH})^{2}-(\mathrm{BD})^{2}} \quad \mathbf{G H}=\mathbf{0 . 8}$

Definitions.

$\mathbf{D F}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A D}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{D E}-\frac{\mathbf{X} \cdot(\mathbf{W}-\mathbf{V})}{\mathbf{W} \cdot \mathbf{Y}}$
$\mathbf{A E}-\frac{\mathbf{W} \cdot \mathbf{Y}-\mathbf{V} \cdot \mathbf{X}}{\mathbf{W} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{A B}-\frac{\mathbf{W} \cdot \mathbf{Y}-\mathbf{V} \cdot \mathbf{X}}{2 \cdot \mathbf{W} \cdot \mathbf{Y}}=\mathbf{0}$
$\mathbf{B D}-\frac{\mathbf{V} \cdot \mathbf{X}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X}+\mathbf{W} \cdot \mathbf{Y}}{2 \cdot \mathbf{W} \cdot \mathbf{Y}}=\mathbf{0}$
$\mathbf{B H}-\frac{\mathbf{W} \cdot \mathbf{Y}-\mathbf{V} \cdot \mathbf{X}}{2 \cdot \mathbf{W} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{G H}=0.8$
$\mathbf{G H}-\mathbf{2} \cdot \frac{\sqrt{\mathbf{X} \cdot(\mathbf{V}-\mathbf{W}) \cdot(\mathbf{X}-\mathbf{Y})}}{\sqrt{\mathbf{W}} \cdot \mathbf{Y}}=\mathbf{0}$

Generalize The Previous Square Root Figure

Unit.
AR := $1 \quad$ Using 120493
$\begin{aligned} & \text { Given. } \\ & \Delta:=5\end{aligned} \quad \delta:=2 . . \Delta+1$

121693A

Descriptions.
$\mathbf{A B}_{\boldsymbol{\delta}}:=\frac{\mathbf{A R}}{\boldsymbol{\delta}}$

$\mathbf{J W}_{\boldsymbol{\delta}}:=\sqrt{\mathbf{A J}_{\boldsymbol{\delta}} \cdot \mathbf{J R}_{\boldsymbol{\delta}}}$ $\mathrm{AW}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{AJ}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{JW}_{\boldsymbol{\delta}}\right)^{2}}$

The figure presents me with a progression. What is it's formula? It turns out not only that I can do square roots, but any two-prime root. It took me 48 pages of sieve work to realize what I was looking at.

\mathbf{S}
Euclidean Exponential Serin~
$\mathbf{A T}:=\mathbf{A R} \quad \mathbf{A N}_{\boldsymbol{\delta}}:=\mathbf{A W}_{\boldsymbol{\delta}} \quad \mathbf{A F} \delta:=\frac{\left(\mathbf{A} \mathbf{J}_{\boldsymbol{\delta}}\right)^{2}}{\mathbf{A W}_{\delta}}$
$\mathbf{N R}_{\boldsymbol{\delta}}:=\mathbf{A R}-\mathbf{A N} \mathbf{N}_{\boldsymbol{\delta}} \quad \mathbf{N X}_{\boldsymbol{\delta}}:=\sqrt{\mathbf{A N} \mathbf{N}_{\boldsymbol{\delta}} \cdot \mathbf{N R}_{\boldsymbol{\delta}}}$
$\mathbf{A} \mathbf{X}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{A N}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}+\left(\mathbf{N} \mathbf{X}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}}$
Definitions.

$\mathbf{A B}_{\boldsymbol{\delta}}=$	$\mathbf{A F}_{\boldsymbol{\delta}}=$	$\mathbf{A J} \mathbf{J}_{\boldsymbol{\delta}}=$	$\mathbf{A N}_{\boldsymbol{\delta}}=$
0.5	0.594604	0.707107	0.840896
0.333333	0.438691	0.57735	0.759836
0.25	0.353553	0.5	0.707107
0.2	0.29907	0.447214	0.66874
0.166667	0.260847	0.408248	0.638943

What I find interesting, foremost, is the implication for number theory-- We learn exponential notation prior to any naturally occurring exponential examples- Here is one example. The figure removes the conception that exponentiation is purely a notational device and raises it's rank to that of a realistic abstraction.

\mathbf{S}

$\mathbf{A B}_{\boldsymbol{\delta}}=$	$\mathbf{A D}_{\boldsymbol{\delta}}=$	$\mathbf{A F}_{\boldsymbol{\delta}}=$	$\mathbf{A H}_{\boldsymbol{\delta}}=$
0.5	0.545254	0.594604	0.64842
0.333333	0.382401	0.438691	0.503268
0.25	0.297302	0.353553	0.420448
0.2	0.244569	0.29907	0.365716
0.166667	0.208506	0.260847	0.326329

$\mathbf{A J} \mathbf{J}_{\boldsymbol{\delta}}=$	$\mathbf{A L}_{\boldsymbol{\delta}}=$
0.707107	0.771105
0.57735	0.662338
0.5	0.594604
0.447214	0.546873
0.408248	0.510732

$\mathbf{A N}_{\boldsymbol{\delta}}=$	$\mathbf{A P} \mathbf{F}_{\boldsymbol{\delta}}=$
0.840896	0.917004
0.759836	0.871686
0.707107	0.840896
0.66874	0.817765
0.638943	0.799339

$$
\mathbf{A V}:=\mathbf{A R} \quad \mathbf{A} \mathbf{Q}_{\delta}:=\mathbf{A} \mathbf{Y}_{\delta} \quad \mathbf{A O _ { \delta }}:=\frac{\left(\mathbf{A P _ { \delta }}\right)^{2}}{\mathbf{A} \mathbf{Y}_{\delta}} \quad \mathbf{A M _ { \delta }}:=\frac{\left(\mathbf{A N _ { \delta }}\right)^{2}}{\mathbf{A O _ { \delta }}}
$$

$$
\begin{aligned}
& \mathbf{A K}_{\delta}:=\frac{\left(\mathbf{A L _ { \delta }) ^ { 2 }}\right.}{\mathbf{A M}_{\delta}} \quad \mathbf{A I}_{\delta}:=\frac{\left(\mathbf{A J}_{\delta}\right)^{2}}{\mathbf{A K}_{\delta}} \\
& \mathbf{A E}_{\delta}:=\frac{\left.(\mathbf{A F})^{2}\right)^{2}}{\mathbf{A G}_{\delta}} \quad \mathbf{A C} \mathbf{C}_{\delta}:=\frac{\left(\mathbf{A D}_{\delta}\right)^{2}}{\mathbf{A E}_{\delta}}
\end{aligned}
$$

$\mathbf{A B}_{\boldsymbol{\delta}}=$

0.5
0.333333
0.25
0.2
0.166667

$\mathbf{A} \mathbf{C}_{\boldsymbol{\delta}}=$

0.522137
0.357025
0.272627
0.221165
0.186416

$\mathbf{A} \mathbf{D}_{\boldsymbol{\delta}}=$
0.545254
0.382401
0.297302
0.244569
0.208506

$\mathbf{A E}_{\boldsymbol{\delta}}=$	$\mathbf{A F}_{\boldsymbol{\delta}}=$
0.569394	0.594604
0.40958	0.438691
0.32421	0.353553
0.27045	0.29907
0.233213	0.260847

$$
\begin{aligned}
& \mathbf{P R}_{\boldsymbol{\delta}}:=\mathbf{A R}-\mathbf{A} \mathbf{P}_{\boldsymbol{\delta}} \quad \mathbf{P} \mathbf{Y}_{\boldsymbol{\delta}}:=\sqrt{\mathbf{A} \mathbf{P}_{\boldsymbol{\delta}} \cdot \mathbf{P R}_{\boldsymbol{\delta}}} \quad \mathbf{A} \mathbf{Y}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{A} \mathbf{P}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}+\left(\mathbf{P Y}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}}
\end{aligned}
$$

~~~~

$\mathbf{A G}_{\boldsymbol{\delta}}=$	$\mathbf{A H}_{\boldsymbol{\delta}}=$	$\mathbf{A I}_{\boldsymbol{\delta}}=$	$\mathbf{A J} \mathbf{J}_{\boldsymbol{\delta}}=$	$\mathbf{A K}_{\boldsymbol{\delta}}=$	$\mathbf{A L}_{\boldsymbol{\delta}}=$
0.620929	0.64842	0.677128	0.707107	0.738413	0.771105
0.469872	0.503268	0.539038	0.57735	0.618386	0.662338
0.385553	0.420448	0.458502	0.5	0.545254	0.594604
0.330718	0.365716	0.404417	0.447214	0.494539	0.546873
0.291757	0.326329	0.364998	0.408248	0.456624	0.510732

$\mathbf{A M}_{\boldsymbol{\delta}}=$	$\mathbf{A N}_{\boldsymbol{\delta}}=$	$\mathbf{A O}_{\boldsymbol{\delta}}=$	$\mathbf{A P} \mathbf{P}_{\boldsymbol{\delta}}=$	$\mathbf{A Q} \mathbf{\delta}_{\boldsymbol{\delta}}=$
0.805245	0.840896	0.878126	0.917004	0.957603
0.709414	0.759836	0.813841	0.871686	0.933641
0.64842	0.707107	0.771105	0.840896	0.917004
0.604744	0.66874	0.739508	0.817765	0.904304
0.571252	0.638943	0.714655	0.799339	0.894058

Values found by the investigator of 12_14_93

$\mathbf{A Q} \mathbf{\delta}^{\mathbf{~}}$ =	$\left(\mathrm{AB}_{\delta}\right)^{\frac{1}{16}}$	$\mathbf{A P}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\boldsymbol{\delta}}\right)^{\frac{1}{8}}=$	$\mathbf{A N}_{\boldsymbol{\delta}}=$	$\left(\mathbf{A B}_{\delta}\right)^{\frac{1}{4}}=$	$\mathbf{A L}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{3}{8}}=$	$\mathbf{A I}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{9}{16}}$
0.957603	0.957603	0.917004	0.917004	0.840896	0.840896	0.771105	0.771105	0.677128	0.677128
0.933641	0.933641	0.871686	0.871686	0.759836	0.759836	0.662338	0.662338	0.539038	0.539038
0.917004	0.917004	0.840896	0.840896	0.707107	0.707107	0.594604	0.594604	0.458502	0.458502
0.904304	0.904304	0.817765	0.817765	0.66874	0.66874	0.546873	0.546873	0.404417	0.404417
0.894058	0.894058	0.799339	0.799339	0.638943	0.638943	0.510732	0.510732	0.364998	0.364998

$\mathbf{A H}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{5}{8}}=$	$\mathbf{A G}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{11}{16}}=$	$\mathbf{A F}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{3}{4}}=$
0.64842	0.64842	0.620929	0.620929	0.594604	0.594604
0.503268	0.503268	0.469872	0.469872	0.438691	0.438691
0.420448	0.420448	0.385553	0.385553	0.353553	0.353553
0.365716	0.365716	0.330718	0.330718	0.29907	0.29907
0.326329	0.326329	0.291757	0.291757	0.260847	0.260847

$\left(\mathrm{AB}_{\delta}\right)^{\frac{13}{16}}=$	$\mathbf{A D}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{7}{8}}=$	$\mathbf{A C}_{\boldsymbol{\delta}}=$	$\left(A B_{\delta}\right)^{\frac{15}{16}}$
0.569394	0.545254	0.545254	0.522137	0.522137
0.40958	0.382401	0.382401	0.357025	0.357025
0.32421	0.297302	0.297302	0.272627	0.272627
0.27045	0.244569	0.244569	0.221165	0.221165
0.233213	0.208506	0.208506	0.186416	0.186416

	1		2		3
$\mathbf{A Q} \mathbf{\delta}^{\text {= }}$	$\left(\mathrm{AB}_{\boldsymbol{\delta}}\right)^{\frac{1}{16}}$	$\mathbf{A P} \mathbf{\delta}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{16}{16}}$	$\mathbf{A O}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{\mathbf{3}}{16}}$
0.957603	0.957603	0.917004	0.917004	0.878126	0.878126
0.933641	0.933641	0.871686	0.871686	0.813841	0.813841
0.917004	0.917004	0.840896	0.840896	0.771105	0.771105
0.904304	0.904304	0.817765	0.817765	0.739508	0.739508
0.894058	0.894058	0.799339	0.799339	0.714655	0.714655

$\mathbf{A N}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{4}{16}}$	$\mathbf{A M}_{\boldsymbol{\delta}}=$	$\left(A B_{\delta}\right)^{\frac{5}{16}}=$	$\mathbf{A L}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\frac{6}{16}}$
0.840896	0.840896	0.805245	0.805245	0.771105	0.771105
0.759836	0.759836	0.709414	0.709414	0.662338	0.662338
0.707107	0.707107	0.64842	0.64842	0.594604	0.594604
0.66874	0.66874	0.604744	0.604744	0.546873	0.546873
0.638943	0.638943	0.571252	0.571252	0.510732	0.510732

	11		2
$\mathbf{A G}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\mathbf{1 6}}$	$\mathbf{A F}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\mathbf{1 6}}$
0.620929	0.620929	0.594604	0.594604
0.469872	0.469872	0.438691	0.438691
0.385553	0.385553	0.353553	0.353553
0.330718	0.330718	0.29907	0.29907
0.291757	0.291757	0.260847	0.260847

	13		14
$\mathbf{A E}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\overline{16}}$	$\mathbf{A D}_{\boldsymbol{\delta}}=$	$\left(\mathrm{AB}_{\delta}\right)^{\mathbf{1 6}}$
0.569394	0.569394	0.545254	0.545254
0.40958	0.40958	0.382401	0.382401
0.32421	0.32421	0.297302	0.297302
0.27045	0.27045	0.244569	0.244569
0.233213	0.233213	0.208506	0.208506

$$
\begin{array}{ll}
\left(A^{\delta} \cdot B^{\text {DIV }-\delta}\right)^{\frac{1}{\text { DIV }}} \\
\text { or } & \left(\mathbf{A}^{\text {DIV }-\delta} \cdot \mathbf{B}^{\delta}\right)^{\frac{1}{\text { DIV }}}
\end{array}
$$

depending on direction of transcription.

Given.
DIV $\equiv 7$
$\Delta:=$ DIV
$\delta:=1$.. Δ
121693B
Descriptions.
$\mathbf{A P}:=10 \quad \mathbf{A H}:=\mathbf{A P} \quad \mathrm{PF}_{1}:=5 \quad \mathbf{A F} 1:=\sqrt{\mathbf{A P}^{2}-\left(\mathrm{PF}_{1}\right)^{2}}$
$\mathbf{A F}_{\mathbf{2}}:=\frac{\mathbf{A F}_{1} \cdot \mathbf{A F _ { 1 }}}{\mathbf{A P}} \quad \mathbf{A F _ { \delta + 1 }}:=\frac{\mathbf{A F}_{1} \cdot \mathbf{A F _ { \delta }}}{\mathbf{A P}}$
$\frac{\mathrm{PF}_{1}{ }^{2}}{\mathrm{AF}_{2}}=3.333333 \quad \frac{\mathrm{PF}_{1}{ }^{2}}{\left(\frac{10}{3}\right)}=7.5 \quad \frac{\mathrm{AP}}{\mathrm{PF}_{1}}=2$
$\sqrt{\mathrm{AF}_{\Delta} \cdot \mathrm{AH}}=6.044456$
$\mathrm{AF}_{\Delta}=3.653545 \quad \frac{\mathrm{AH}}{\mathrm{AF}_{\Delta}}=\mathbf{2 . 7 3 7 0 6 8}$
Definitions.

Exponential Series

$\sim_{n=0}^{0}$
121693C
Descriptions.
$\mathbf{O J}:=\frac{\mathbf{x}}{\mathbf{Y}} \quad$ OK $:=\sqrt{\mathbf{O J}} \quad \mathrm{OJ}_{\mathbf{1}}:=\mathbf{O K}^{\mathbf{2}}$
$\mathbf{O J}_{\mathbf{2}}:=\frac{\mathbf{O J}^{\mathbf{2}}}{\mathbf{O K}} \quad \mathbf{O J}_{\delta+1}:=\frac{\mathbf{O J}_{\mathbf{1}} \cdot \mathbf{O J _ { \delta }}}{\mathbf{O K}}$

Definitions.

Unit.
\mathbf{L} := $\mathbf{1}$
Given.
Y := $20 \quad$ DIV := 10
$\begin{array}{ll}Y:=20 & \Delta:=\text { DIV } \\ X:=14 & \delta_{m}:=1 . . \Delta\end{array}$
Every number is expressible as a ratio.

Exponential Series

121693D

Unit.
L:= $\mathbf{1}$
Given. DIV := $\mathbf{1 0}$
$\mathbf{Y}:=20$
$\mathbf{X}:=14$
$\Delta:=$ DIV
$\delta:=1 . . \Delta$

Descriptions.

$\mathbf{O J}:=\frac{\mathbf{Y}}{\mathbf{X}} \quad \mathbf{O K}:=\sqrt{\mathbf{O J}} \quad \mathbf{O J}_{\mathbf{1}}:=\mathbf{O K}^{\mathbf{2}}$
$\mathrm{OJ}_{2}:=\frac{O J^{2}}{\mathrm{OK}} \quad O J_{\delta+1}:=\frac{\mathrm{OJ}_{1} \cdot O J_{\delta}}{\mathrm{OK}} \quad \sqrt{\frac{\mathrm{Y}}{\mathrm{X}}}=1.195229$

The first was X / Y, and this is Y / X.

Definitions.

$\left[(\mathbf{O J})^{\boldsymbol{\Delta - \delta}} \cdot(\mathbf{O K})^{\boldsymbol{\delta}}\right]^{\frac{\mathbf{1}}{\boldsymbol{\Delta}}}=\mathbf{i f}\left(\mathbf{\Delta}-\boldsymbol{\delta}, \mathbf{O} \mathbf{J}_{\Delta-\boldsymbol{\delta}}, \mathbf{0}\right)=\boldsymbol{\Delta}-\boldsymbol{\delta}+\mathbf{1}=\left(\sqrt{\frac{\mathbf{Y}}{\mathbf{X}}}\right)^{\boldsymbol{\Delta}-\boldsymbol{\delta}+\mathbf{1}}$
5.949902
4.978045
4.164931
3.484632
2.915452
2.439242
2.040816
1.707469
1.428571
1.195229

Exponential Series

Let us plead the 5th
So, if one is clever enough, which I am not, one can actually do any root seriesl from the fact that any number is expressible as a ratio, and triangles just love ratios.

At one time I was seriously
considering changing the name of the Delian Quest to One Circle, One Square, and One Line, but it did not stick.

And if given any member of a series, save the square root, we have from 042906

$C^{\circ} \times{ }^{3}$

Unit.

Given.

$$
\begin{array}{ll}
\mathbf{N}_{\mathbf{1}}:=\mathbf{3} & \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \\
\mathbf{N}_{\mathbf{2}}:=\mathbf{4} & \mathbf{B C}:=\mathbf{N}_{\mathbf{2}} \\
\mathbf{N}_{\mathbf{3}}:=\mathbf{5} & \mathbf{A C}:=\mathbf{N}_{\mathbf{3}}
\end{array}
$$

Descriptions.

Inscribing A Circle In A Given Triangle

Given three sides of a triangle, what is the length of the inscribed radius?
$\mathbf{A K}:=\mathbf{A C} \quad \mathbf{B D}:=\mathbf{B C} \quad \mathbf{A F}:=\frac{\mathbf{A C}^{2}+\mathbf{A B}^{2}-\mathbf{B C}^{2}}{2 \cdot \mathbf{A B}} \quad \mathbf{F K}:=\mathbf{A K}-\mathbf{A F}$
$\mathbf{C F}:=\sqrt{\mathbf{A C}^{2}-\mathbf{A F}^{2}} \quad \mathbf{A H}:=\mathbf{A F}+\frac{\mathbf{F K}}{2} \quad \mathbf{H N}:=\frac{\mathbf{C F}}{2} \quad \mathbf{B F}:=\mathbf{A B}-\mathbf{A F}$
$\mathrm{DF}:=\mathrm{BD}-\mathrm{BF} \quad \mathrm{CD}:=\sqrt{\mathrm{CF}^{2}+\mathrm{DF}^{2}} \quad \mathrm{BM}:=\frac{\mathrm{CF} \cdot \mathrm{BD}}{\mathrm{CD}} \quad \mathrm{BE}:=\frac{\mathrm{CF} \cdot \mathrm{BM}}{\mathrm{CD}}$
GL : $=\frac{\mathbf{H N} \cdot \mathbf{A B}}{\mathbf{A H}+\mathbf{B E}}$
$\begin{aligned} & \mathbf{G L}:=\frac{1}{\mathbf{A H}+\mathbf{B E}} \\ & \text { Definitions. }\end{aligned} \quad \mathbf{S}_{\mathbf{1}}:=\left(\begin{array}{l}\mathbf{A B} \\ \mathbf{B C} \\ \mathbf{A C}\end{array}\right) \quad \mathbf{S}_{\mathbf{2}}:=\left(\begin{array}{l}\mathbf{B C} \\ \mathbf{A C} \\ \mathbf{A B}\end{array}\right) \quad \mathbf{S}_{\mathbf{3}}:=\left(\begin{array}{l}\mathbf{A C} \\ \mathbf{A B} \\ \mathbf{B C}\end{array}\right) \quad \boldsymbol{\delta}_{\mathrm{m}}:=\mathbf{0} . .2$
Radius $\delta:=\frac{\sqrt{-\mathbf{S}_{\mathbf{1}_{\delta}}+\mathbf{S}_{\mathbf{2}_{\delta}}+\mathbf{S}_{\mathbf{3}_{\delta}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\boldsymbol{\delta}}}-\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}-\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}}}{2 \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\delta}}+\mathbf{S}_{\mathbf{2}_{\boldsymbol{\delta}}}+\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}}} \quad \quad$ Radius $=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$

$A K-N_{3}=0 \quad B D-N_{2}=0 \quad A F-\frac{N_{1}{ }^{2}-N_{2}{ }^{2}+N_{3}{ }^{2}}{2 \cdot N_{1}}=0 \quad F K-\frac{\left(N_{2}-N_{1}+N_{3}\right) \cdot\left(N_{1}+N_{2}-N_{3}\right)}{2 \cdot N_{1}}=0$
$\mathbf{C F}-\frac{\sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{3}}\right)}}{2 \cdot \mathbf{N}_{\mathbf{1}}}=\mathbf{0}$
$\mathbf{A H}-\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}+\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}+\mathbf{N}_{3}\right)}{4 \cdot \mathbf{N}_{1}}=0$
$H N-\frac{\sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}+\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}+\mathbf{N}_{3}\right)}}{4 \cdot \mathbf{N}_{1}}=0 \quad \mathbf{B F}-\frac{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2}{ }^{2}-\mathbf{N}_{\mathbf{3}}{ }^{2}}{2 \cdot \mathbf{N}_{1}}=0 \quad \mathbf{D F}-\frac{\left(\mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}+\mathbf{N}_{3}\right)}{2 \cdot \mathbf{N}_{1}}=0$
$\mathbf{C D}-\frac{\sqrt{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right)}}{\sqrt{\mathbf{N}_{\mathbf{1}}}}=\mathbf{0} \quad \mathbf{B M}-\frac{\mathbf{N}_{\mathbf{2}} \cdot \sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right)}}{\mathbf{2} \cdot \sqrt{\mathbf{N}_{\mathbf{1}}} \cdot \sqrt{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{3}}\right.}}=\mathbf{0} \quad \mathbf{B E}-\frac{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{3}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}}}=\mathbf{0}$

Imagine that, another equation for the radius along with every other definition!

$C^{2} \mathrm{~B}$

$\mathrm{DE}=0.58830$
GL $=0.58830$ DE-GL $=0.00000$
$\mathrm{AB}=2.25959$ $\mathrm{BC}=2.13235$ $\mathrm{AC}=1.84623$

$\mathbf{S}_{1}=2.25959$
$\mathbf{S}_{\mathbf{2}}=2.13235$
$\mathbf{S}_{3}=1.84623$
$\frac{\sqrt{\left(\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{3}\right)-\mathbf{S}_{1}} \cdot \sqrt{\left(\mathbf{S}_{1}+\mathbf{S}_{3}\right)-\mathbf{S}_{\mathbf{2}}} \cdot \sqrt{\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right)-\mathbf{S}_{\mathbf{3}}}}{2 \cdot \sqrt{\mathbf{S}_{1}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}}}$ GL $=\mathbf{0 . 0 0 0 0 0}$
$\sim_{n=2}^{0}$
040694A
Descriptions.
$\mathbf{A F}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{A F}=\mathbf{0 . 4} \quad \mathbf{A P}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{A P}=0.55 \quad$ CF $:=\mathrm{AP}$
$\mathbf{A C}:=\sqrt{\mathbf{A F}^{2}+\mathbf{C F}^{2}} \quad \mathbf{B F}:=\mathbf{A B}-\mathbf{A F} \quad \mathbf{B C}:=\sqrt{\mathrm{BF}^{2}+\mathrm{CF}^{2}}$
$\mathbf{A K}:=\mathbf{A C} \quad \mathbf{B D}:=\mathbf{B C} \quad \mathbf{F K}:=\mathbf{A K}-\mathbf{A F} \quad \mathbf{H N}:=\frac{\mathbf{C F}}{\mathbf{2}}$
$\mathbf{A H}:=\mathbf{A F}+\frac{\mathbf{F K}}{2} \quad \mathbf{D F}:=\mathbf{B D}-\mathbf{B F} \quad \mathbf{B E}:=\mathbf{B F}+\frac{\mathbf{D F}}{2} \quad \mathbf{E M}:=\mathbf{H N}$
$\mathbf{G O}:=\frac{\mathbf{E M} \cdot \mathbf{A B}}{\mathbf{B E}+\mathbf{A H}}$
$\mathbf{G O}:=\frac{\mathbf{E M} \cdot \mathbf{A B}}{\mathbf{B E}+\mathbf{A H}} \quad \mathbf{G O}=\mathbf{0 . 2 2 0 5 2 8}$

Definitions.

$\mathbf{A F}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{A P}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{C F}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0}$
$A C-\frac{\sqrt{\mathbf{W}^{2} \cdot Z^{2}+\mathbf{X}^{2} \cdot \mathbf{Y}^{2}}}{\mathbf{X} \cdot \mathbf{Z}}=0 \quad \mathbf{B F}-\frac{\mathbf{X}-\mathbf{W}}{\mathrm{X}}=\mathbf{0}$
$A B$ is the
AB := $1 \quad$ working side or
base.
$\mathbf{W}:=8 \quad \mathbf{Y}:=11$
$X:=20 \quad Z:=20$
$B C-\frac{\sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}}{X \cdot Z}=0 \quad A K-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{X \cdot Z}=0 \quad B D-\frac{\sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}}{X \cdot Z}=0$
$F K-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}-W \cdot Z}{X \cdot Z}=0 \quad H N-\frac{Y}{2 \cdot Z}=0 \quad A H-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}+W \cdot Z}{2 \cdot X \cdot Z}=0 \quad D F-\frac{\sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}+Z \cdot(W-X)}{X \cdot Z}=0$
$B E-\frac{\sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}+Z \cdot(X-W)}{2 \cdot X \cdot Z}=0 \quad E M-\frac{Y}{2 \cdot Z}=0$
$G O-\frac{X \cdot Y}{\sqrt{W \cdot Z^{2} \cdot(W-2 \cdot X)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}+\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}+X \cdot Z}=0$

Given three sides of a triangle, what is the length of the
inscribed radius?

Unit.
AB := 1
Given.
$\mathbf{N}:=\mathbf{5}$
042 194A
Descriptions.
$\mathbf{A L}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}}$
$A C:=\left(A B^{2} \cdot \mathbf{A L}\right)^{\frac{1}{3}} \quad A J:=\left(A B \cdot A L^{2}\right)^{\frac{1}{3}}$
$\mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B P}:=\mathbf{B L} \quad \mathbf{L R}:=\mathbf{B L} \quad \mathbf{F L}:=\mathbf{A L}-\mathbf{A F}$
$\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{J L}:=\mathbf{B L}-\mathbf{B J}$
$\mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{F J}:=\mathbf{A J}-\mathbf{A F} \quad \mathbf{C F}:=\mathbf{A F}-\mathbf{A C}$
$\mathbf{F G}:=\frac{\mathbf{B F} \cdot \mathbf{F J}}{\mathbf{B F}+\mathbf{J L}} \quad \mathbf{G N}:=\frac{\mathbf{B P} \cdot \mathbf{F G}}{\mathbf{B F}} \quad \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{C F}}{\mathbf{B C}+\mathbf{F L}}$
$\mathbf{D M}:=\frac{\mathbf{B P} \cdot \mathbf{C D}}{\mathbf{B C}} \quad \mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{A G}:=\mathbf{A F}+\mathbf{F G}$
$\frac{\mathbf{A G}}{\mathbf{G N}}-\frac{\mathbf{A D}}{\mathbf{D M}}=\mathbf{0}$

The Cradle

Are A, M, N colinear?

Definitions.
$\mathbf{A L}-\mathbf{N}=\mathbf{0} \quad \mathbf{A F}-\sqrt{\mathbf{N}}=\mathbf{0} \quad \mathbf{A C}-\mathbf{N}^{\frac{1}{3}}=\mathbf{0}$
$\mathbf{A J}-\mathbf{N}^{\frac{2}{3}}=\mathbf{0} \quad \mathbf{B L}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{F L}-(\mathbf{N}-\sqrt{\mathbf{N}})=\mathbf{0}$
$B C-\left(N^{\frac{1}{3}}-1\right)=0 \quad$ BJ $-\left(N^{\frac{2}{3}}-1\right)=0 \quad J L-\left(N-N^{\frac{2}{3}}\right)=0 \quad B F-(\sqrt{N}-1)=0$
$\mathbf{F J}-\left(\mathbf{N}^{\frac{2}{3}}-\sqrt{N}\right)=0 \quad \mathbf{C F}-\left[\sqrt{N}-\left(\mathbf{N}^{\frac{1}{3}}\right]=0 \quad \mathbf{F G}-\frac{\sqrt{N} \cdot(\sqrt{N}-1)}{N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0\right.$
$G N-\frac{\sqrt{N} \cdot(N-1)}{N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0 \quad C D-\frac{N^{\frac{2}{3}}-N^{\frac{1}{3}}}{\sqrt{N}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0$
$D M-\frac{N^{\frac{4}{3}}-N^{\frac{1}{3}}}{\sqrt{N}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0$
$A D-\frac{N+\sqrt{N}+N^{\frac{2}{3}}+N^{\frac{5}{6}}+N^{\frac{7}{6}}}{\sqrt{N}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0$

$A G-\frac{N+N^{\frac{2}{3}}+N^{\frac{4}{3}}+N^{\frac{5}{6}}+N^{\frac{7}{6}}}{N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0$
$\frac{A G}{G N}-\frac{\sqrt{N}+N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}}{N-1}=0$
$\frac{A D}{D M}-\frac{\sqrt{N}+N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}}{N-1}=0$

Unit.
AB:= $\mathbf{1}$
Given.
$\mathbf{X}:=9$
$\mathbf{Y}:=\mathbf{2 0}$

The Cradle

Are A, M, N colinear?

Descriptions.
Descriptions.
$\mathbf{A D}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A E}:=\sqrt{\mathbf{A D}} \quad \mathbf{A E}=0.67082 \quad \mathbf{A C}:=\mathbf{A D}^{\frac{3}{2}} \quad \mathbf{A C}=0.301869$
$\frac{A B}{A C}=3.312693 \quad A H:=A C^{\frac{5}{6}} \quad A H=0.368566 \quad A D-A C^{\frac{4}{6}}=0$
$A J:=A C^{\frac{3}{6}} \quad A J=0.549426 \quad A E:=A C^{\frac{2}{6}} \quad A E=0.67082$
$A K:=A C^{\frac{1}{6}} \quad A K=0.819036 \quad A B-A C^{\frac{0}{6}}=0$
In this plate one can see some of the various ways to project a root series. We have one method down in the little unit box, L, M, and N. We have the parallel line method shown by O and P. We have the peak method R, Q, and S. and we have the method I started wtih. So, eventually one can show, many ways that each of them are part of a root series. So, here I will simply cash out.

When every possible root series is constructed in exactly the same way, it is very odd to say that one cannot do this or that root series. We have to learn how to start and stop them, and how many geometric recursions we want between those two limits. Learning the different ways to produce those series and learning how they are all interrelated can do nothing more than help us in that regard.

Definitions.

$\mathbf{A D}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A E}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0}$
$A C:=\left(\frac{X}{Y}\right)^{\frac{3}{2}} \quad A H-\left[\left(\frac{X}{Y}\right)^{\frac{3}{2}}\right]^{\frac{5}{6}}=0$

It is perfectly silly, but Mathcad 15 will not reduce these expressions. You have to do it manually.

$$
\mathbf{A H}-\left(\frac{X}{Y}\right)^{\frac{5}{4}}=0 \quad \text { AJ }-\left(\frac{X}{Y}\right)^{\frac{3}{4}}=0
$$

$$
A E-\left(\frac{X}{Y}\right)^{\frac{1}{2}}=0 \quad A K-\left(\frac{X}{Y}\right)^{\frac{1}{4}}=
$$

$$
A B-\left(\frac{X}{Y}\right)^{\frac{0}{12}}=0
$$

042694A
Descriptions.
I will work with point C first.
Given AD = large radius
$B E=$ small radius
$A B=$ difference between centers
$\mathrm{AD}:=4 \quad \mathrm{BE}:=2 \mathrm{AB}:=7 \quad \mathrm{DE}:=\mathrm{AD}-\mathrm{BE}$
$\mathbf{A C}:=\frac{\mathbf{A B} \cdot \mathbf{A D}}{\mathbf{D E}} \quad \mathbf{A C}=14$

AC "External similarity point Origin to center of Radius Large"
$\mathbf{A C}:=\mathbf{i f}\left(\mathbf{A D} \neq \mathbf{B E}, \mathbf{i f}\left(\mathbf{B E}>\mathbf{A D}, \mathbf{0}, \frac{\mathbf{A B} \cdot \mathbf{A D}}{\mathbf{A D}-\mathbf{B E}}\right), \infty\right) \quad \mathbf{A C}=\mathbf{1 4}$
What is the length of line JC tangent to both circles?
CJ $:=\sqrt{A C^{2}-A D^{2}} \quad C J=13.416408$
And what is the formula?
JC " External similarity point Origin to Tangent (Large Radius)"
$\mathbf{C J}-\mathbf{A D} \cdot \frac{\sqrt{(\mathbf{A D}-\mathbf{B E}+\mathbf{A B}) \cdot(-\mathbf{A D}+\mathbf{B E}+\mathbf{A B})}}{\mathbf{A D}-\mathbf{B E}}=\mathbf{0}$

Tangents and Similarity Points.

What is the Algebraic names of the similarity points C and F in relation to the radius of each circle and the difference between their centers?

I believe that I was almost laughing when I drew this up originally. I made it an acronym side show. I actually get annoyed with acronyms. It scared me so much I never did it again. But, for the last version of $D Q$. I should at least put a dress on the graphics and remove the acorns. For some reason, I always liked this write-up.

What is the length of the line tangent to the least circle (CK)?
$\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B C}=\mathbf{7}$
$\mathbf{C K}:=\sqrt{\mathrm{BC}^{2}-\mathbf{B E}^{2}}$
CK = 6.708204
And what is the formula?
CK " External similarity point Origin to Tangent (Small Radius)"
$\mathbf{C K}-\mathbf{B E} \cdot \frac{\sqrt{-(\mathbf{A D}-\mathbf{B E}+\mathbf{A B}) \cdot(\mathbf{A D}-\mathbf{B E}-\mathbf{A B})}}{\mathbf{A D}-\mathbf{B E}}=\mathbf{0}$
Lastly what is the length of line from tangent to tangent of these circles?
$\mathbf{J K}:=\mathbf{C J}-\mathbf{C K}$
JK = 6.708204
And what is the formula for, JK, Tangent to Tangent"?
$\mathbf{J K}-\sqrt{-(\mathbf{A D}-\mathbf{B E}+\mathbf{A B}) \cdot(\mathbf{A D}-\mathbf{B E}-\mathbf{A B})}=\mathbf{0}$

I will now turn my attention to the point F the internal similarity point.
$\mathrm{AF}:=\frac{\mathrm{AB} \cdot \mathrm{AD}}{\mathrm{AD}+\mathrm{BE}} \quad \mathrm{AF}=4.666667$
AF "Internal similarity point to center of Radius Large"
$\mathbf{A F}-\mathbf{A B} \cdot \frac{\mathbf{A D}}{\mathbf{A D}+\mathbf{B E}}=\mathbf{0}$

$\mathbf{B F}:=\mathbf{A B}-\mathbf{A F} \quad \mathbf{B F}=\mathbf{2 . 3 3 3 3 3 3}$
BF "Internal similarity point to center of Radius Small"
$\mathbf{B F}-\mathbf{A B} \cdot \frac{\mathbf{B E}}{\mathbf{A D}+\mathbf{B E}}=\mathbf{0}$
$\mathrm{DF}:=\sqrt{\mathrm{AF}^{2}-\mathrm{AD}^{2}} \quad \mathrm{DF}=\mathbf{2 . 4 0 3 7 0 1}$

DF "Internal similarity point Origin to Tangent (Large Radius)"
$\mathbf{D F}-\mathbf{A D} \cdot \frac{\sqrt{-(\mathbf{A D}+\mathbf{B E}-\mathbf{A B}) \cdot(\mathbf{A D}+\mathbf{B E}+\mathbf{A B})}}{(\mathbf{A D}+\mathbf{B E})}=\mathbf{0}$
$\mathbf{D F}=\mathbf{2 . 4 0 3 7 0 1} \quad \mathbf{E F}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{E F}=1.20185$

EF "Internal similarity point Origin to Tangent (Small Radius)"
$\mathbf{E F}-\mathbf{B E} \cdot \frac{\sqrt{-(\mathbf{A D}+\mathbf{B E}-\mathbf{A B}) \cdot(\mathbf{A D}+\mathbf{B E}+\mathbf{A B})}}{\mathbf{A D}+\mathbf{B E}}=\mathbf{0}$
$\mathbf{D E}:=\mathbf{D F}+\mathbf{E F} \quad \mathbf{D E}=\mathbf{3 . 6 0 5 5 5 1}$

DE "Internal similarity point Tangent to Tangent"
$\mathbf{D E}-\sqrt{-(\mathbf{A D}+\mathbf{B E}-\mathbf{A B}) \cdot(\mathbf{A D}+\mathbf{B E}+\mathbf{A B})}=\mathbf{0} \quad \mathbf{D E}=3.605551$

042694B

Tangents and Similarity Points.

Descriptions.
$\mathbf{R}_{1}:=\sqrt{\mathbf{N}_{1}{ }^{2}} \quad \mathbf{R}_{\mathbf{2}}:=\sqrt{\mathbf{N}_{\mathbf{2}}{ }^{2}}$
What is the length of the AO, O being the similarity point?
$\mathbf{A C}:=\mathbf{R}_{\mathbf{1}} \quad \mathbf{B D}:=\mathbf{R}_{\mathbf{2}} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{3}}$
$\mathbf{D E}:=\mathbf{A B} \quad \mathbf{A E}:=\mathbf{B D} \quad \mathbf{C E}:=\mathbf{A C}-\mathbf{A E}$
$\mathbf{A O}:=\frac{\mathbf{D E} \cdot \mathbf{A C}}{\mathbf{C E}} \quad \mathbf{A O}=\mathbf{2 1}$
$\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}}=\mathbf{2 1} \quad \mathbf{A O}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}}=\mathbf{0}$

$$
0 \begin{array}{llll}
\mathbf{1} & \mathbf{n}_{\mathbf{2}} & \mathbf{n}_{1} & \mathbf{n}_{\mathbf{3}}
\end{array} \quad K
$$

What is the length of the tangent GO?

What is the length of the tangent HO?

$$
\begin{aligned}
& \mathbf{B H}:=\mathbf{R}_{\mathbf{2}} \quad \mathrm{HO}:=\sqrt{\left(\frac{\mathbf{N}_{3} \cdot \mathbf{R}_{1}}{\mathbf{R}_{1}-\mathbf{R}_{\mathbf{2}}}-\mathbf{N}_{\mathbf{3}}\right)^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}} \\
& \mathbf{H O}-\frac{\mathbf{R}_{\mathbf{2}} \cdot \sqrt{\mathbf{N}_{\mathbf{3}}{ }^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}+\mathbf{2} \cdot \mathbf{R}_{1} \cdot \mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{2}}{ }^{2}}}{\sqrt{\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}\right)^{2}}}=\mathbf{0}
\end{aligned}
$$

What is the length of line tangent to tangent of these circles?

$$
\mathbf{G H}:=\frac{\mathbf{G O} \cdot \mathbf{A B}}{\mathbf{A O}} \quad \mathbf{G H}-\sqrt{\mathbf{N}_{3}^{2}-\mathbf{R}_{1}^{2}+2 \cdot \mathbf{R}_{1} \cdot \mathbf{R}_{2}-\mathbf{R}_{2}^{2}}=\mathbf{0}
$$

What are the names of the tangents AP and BP to the similarity point P ?

$$
\mathbf{A P}:=\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}} \quad \mathbf{B P}:=\mathbf{N}_{\mathbf{3}}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}
$$

What is JP?

$$
J P:=\sqrt{A P^{2}-\mathbf{R}_{1}{ }^{2}} \quad J P-\frac{\mathbf{R}_{1} \cdot \sqrt{\mathbf{N}_{3}{ }^{2}-\mathbf{R}_{1}{ }^{2}-2 \cdot \mathbf{R}_{1} \cdot \mathbf{R}_{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}}}{\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}}=0
$$

What is KP?

$$
\mathbf{B P}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{2}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}=\mathbf{0}
$$

$$
K P:=\frac{J P \cdot B P}{A P} \quad K P-\frac{R_{2} \cdot \sqrt{N_{3}^{2}-R_{1}^{2}-2 \cdot R_{1} \cdot R_{2}-R_{2}^{2}}}{\mathbf{R}_{1}+\mathbf{R}_{2}}=0
$$

What is JK?

$$
\mathbf{J K}:=\frac{\mathrm{JP} \cdot \mathbf{A B}}{\mathrm{AP}} \quad \mathrm{JK}-\sqrt{\mathbf{N}_{3}^{2}-\mathbf{R}_{1}^{2}-2 \cdot \mathbf{R}_{1} \cdot \mathbf{R}_{2}-\mathbf{R}_{2}^{2}}=\mathbf{0}
$$

042694C
Descriptions.
I will work with point C first.
Given AD = large radius
$\mathrm{BE}=$ small radius
$A B=$ difference between centers

$$
\begin{aligned}
& \mathbf{A D}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{B E}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{A B}:=\mathbf{1} \\
& \mathbf{D E}:=\mathbf{A D}-\mathbf{B E} \quad \mathbf{A C}:=\frac{\mathbf{A B} \cdot \mathbf{A D}}{\mathbf{D E}} \quad \mathbf{A C}=\mathbf{2}
\end{aligned}
$$

AC "External similarity point Origin to center of Radius Large"
$\mathbf{A C}:=\mathbf{i f}\left(\mathbf{A D} \neq \mathbf{B E}, \mathbf{i f}\left(\mathbf{B E}>\mathbf{A D}, \mathbf{0}, \frac{\mathbf{A B} \cdot \mathbf{A D}}{\mathbf{A D}-\mathbf{B E}}\right), \infty\right) \quad \mathbf{A C}=\mathbf{2}$
What is the length of line JC tangent to both circles?
CJ := $\sqrt{\mathrm{AC}^{2}-\mathrm{AD}^{2}} \quad \mathbf{C J}=1.959592$
And what is the formula?
JC " External similarity point Origin to Tangent (Large Radius)"
$\mathbf{C J}-\frac{\mathbf{W} \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Z})}}{\mathbf{X} \cdot(\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0}$

What is the Algebraic names of the similarity points C and F in relation to the radius of each circle and the difference between their centers?

I believe that I was almost laughing when I drew this up originally. I made it an acronym side show. I actually get annoyed with acronyms. It scared me so much I never did it again. But, for the last version of DQ. I should at least it again. But, for the last version of DQ. I should at least
put a dress on the graphics and remove the acorns. For some reason, I always liked this write-up.

Tangents and Similarity Points.

What is the length of the line tangent to the least circle (CK)?
$\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B C}=\mathbf{1}$
$\mathbf{C K}:=\sqrt{\mathrm{BC}^{2}-\mathrm{BE}^{2}}$
$\mathbf{C K}=0.979796$

And what is the formula?
CK " External similarity point Origin to Tangent (Small Radius)"
$\mathbf{C K}-\frac{\mathbf{Y} \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Z})}}{\mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0}$
Lastly what is the length of line from tangent to tangent of these circles?
$\mathbf{J K}:=\mathbf{C J}-\mathbf{C K}$
JK = 0.979796
And what is the formula for, JK, Tangent to Tangent"?
$\mathbf{J K}-\frac{\sqrt{(\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Z})}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}$

I will now turn my attention to the point F the internal similarity point.
$\mathbf{A F}:=\frac{\mathbf{A B} \cdot \mathbf{A D}}{\mathbf{A D}+\mathbf{B E}} \quad \mathbf{A F}=\mathbf{0 . 6 6 6 6 6 7}$
AF "Internal similarity point to center of Radius Large"
$\mathbf{A F}-\frac{\mathbf{W} \cdot \mathbf{Z}}{\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}}=\mathbf{0}$
$\mathbf{B F}:=\mathbf{A B}-\mathbf{A F} \quad \mathbf{B F}=\mathbf{0 . 3 3 3 3 3 3}$
BF "Internal similarity point to center of Radius Small"
$\mathbf{B F}-\frac{\mathbf{Y} \cdot \mathbf{X}}{\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}}=\mathbf{0}$

DF $:=\sqrt{\mathbf{A F}^{2}-\mathbf{A D}^{2}} \quad$ DF $=0.533333$

DF "Internal similarity point Origin to Tangent (Large Radius)"
$\mathbf{D F}-\mathbf{A D} \cdot \frac{\sqrt{-(\mathbf{A D}+\mathbf{B E}-\mathbf{A B}) \cdot(\mathbf{A D}+\mathbf{B E}+\mathbf{A B})}}{(\mathbf{A D}+\mathbf{B E})}=\mathbf{0}$
$\mathbf{D F}=\mathbf{0 . 5 3 3 3 3 3} \quad \mathbf{E F}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{E F}=0.266667$

EF "Internal similarity point Origin to Tangent (Small Radius)"
$\mathbf{E F}-\frac{\mathbf{Y} \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}}{\mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0}$
$\mathbf{D E}:=\mathbf{D F}+\mathbf{E F} \quad \mathbf{D E}=\mathbf{0 . 8}$

DE "Internal similarity point Tangent to Tangent"
$\mathbf{D E}-\frac{\sqrt{(\mathbf{X} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}) \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}$

\sim_{n}^{∞}
042794A
Descriptions.
Given.
\mathbf{N}_{1} := $\mathbf{3}$
$\mathbf{N}_{\mathbf{2}}:=\mathbf{2}$
$\mathbf{N}_{\mathbf{3}}:=\mathbf{6}$
$\mathbf{R}_{1}:=\sqrt{\mathbf{N}_{1}{ }^{2}} \quad \mathbf{R}_{\mathbf{2}}:=\sqrt{\mathbf{N}_{\mathbf{2}}{ }^{2}} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{3}}$
$A C:=\frac{\mathbf{R}_{\mathbf{1}}{ }^{\mathbf{2}}}{\mathbf{A B}} \quad \mathbf{B D}:=\frac{\mathbf{R}_{\mathbf{2}}{ }^{\mathbf{2}}}{\mathbf{A B}} \quad \mathbf{C D}:=\mathrm{AB}-(\mathbf{A C}+\mathbf{B D})$
$\mathbf{C E}:=\frac{\mathbf{C D}}{2} \quad \mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \quad \mathbf{B E}:=\mathbf{A B}-\mathbf{A E}$
$\mathrm{AE}-\frac{\mathrm{N}_{3}{ }^{2}+\mathrm{R}_{1}{ }^{2}-\mathrm{R}_{2}{ }^{2}}{2 \cdot \mathbf{N}_{3}}=0$
$\mathrm{BE}-\frac{\mathrm{N}_{3}{ }^{2}-\mathrm{R}_{1}{ }^{2}+\mathrm{R}_{2}{ }^{2}}{2 \cdot \mathbf{N}_{3}}=0$
Definitions.

If these equations look familiar, see 01/08/93 The perpendicular of a Triangle would be on the powerline.
$\mathbf{N}_{4}:=3 \quad \mathbf{A F}:=\sqrt{\mathbf{A E}^{2}+\mathbf{N}_{4}{ }^{2}} \quad \quad \mathrm{FG}:=\sqrt{\mathrm{AF}^{2}-\mathbf{R}_{1}{ }^{2}}$
$F G-\frac{\sqrt{N_{3}{ }^{2} \cdot\left(N_{3}{ }^{2}+4 \cdot N_{4}{ }^{2}-2 \cdot R_{1}{ }^{2}-2 \cdot R_{2}{ }^{2}\right)+\left(R_{1}-R_{2}\right)^{2} \cdot\left(R_{1}+R_{2}\right)^{2}}}{2 \cdot \sqrt{N_{3}{ }^{2}}}=0$

A drawomg solution for finding the chordal as outlined in 100 Great Problems of Elementary Mathematics Their History and Solution by Heinrich Dörrie. It does not lend itself to formal geometry, so I developed my own method, this is actually one of the methods I developed and it is quite simple. I was actually surprised to see how undeveloped it was.
One of the attributes of the powerline is that a circle drawn with a center on the powerline which cuts one perpendicularly will cut the other as such.

The Chordal or Power Line of two Circles

042794B

$$
\begin{array}{lll}
\mathbf{U}:=\mathbf{8} & \mathbf{W}:=\mathbf{3} & \mathbf{Y}:=\mathbf{1 2} \\
\mathbf{V}:=\mathbf{1 5} & \mathbf{X}:=\mathbf{8} & \mathbf{Z}:=\mathbf{1 6}
\end{array}
$$

Descriptions.
A drawomg solution for finding the chordal as outlined in 100 Great Problems of Elementary Mathematics Their History and Solution by Heinrich Dörrie. It does not lend itself to formal geometry, so I developed my own method, this is actually one of the methods I developed and it is quite simple. I was actually surprised to see how undeveloped it was.
One of the attributes of the powerline is that a circle drawn with a center on the powerline which cuts one perpendicularly will cut the other as such.

AH $:=\frac{\mathbf{U}}{\mathbf{V}} \quad$ BJ $:=\frac{\mathbf{W}}{\mathbf{X}} \quad$ EF $:=\frac{\mathbf{Y}}{\mathbf{Z}}$
$\mathbf{A C}:=\frac{\mathbf{A H}^{\mathbf{2}}}{\mathbf{A B}} \quad \mathbf{B D}:=\frac{\mathbf{B J}^{\mathbf{2}}}{\mathbf{A B}} \quad \mathbf{C D}:=\mathbf{A B}-(\mathbf{A C}+\mathbf{B D})$
$\mathbf{C E}:=\frac{\mathbf{C D}}{2} \quad \mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \quad \mathbf{B E}:=\mathbf{A B}-\mathbf{A E}$
$A E-\frac{U^{2} \cdot x^{2}-V^{2} \cdot W^{2}+V^{2} \cdot x^{2}}{2 \cdot V^{2} \cdot x^{2}}=0 \quad A E=0.57191$
$\mathrm{BE}--\frac{\mathrm{U}^{2} \cdot \mathrm{X}^{2}-\mathrm{v}^{2} \cdot \mathrm{w}^{2}-\mathrm{v}^{2} \cdot \mathrm{X}^{2}}{2 \cdot \mathrm{v}^{2} \cdot \mathrm{X}^{2}}=0 \quad \mathrm{BE}=0.42809$

Definitions.

$A F:=\frac{\sqrt{\left(U^{2} \cdot x^{2}-v^{2} \cdot w^{2}+v^{2} \cdot x^{2}\right)^{2} \cdot z^{2}+4 \cdot v^{4} \cdot x^{4} \cdot Y^{2}}}{2 \cdot V^{2} \cdot x^{2} \cdot z}$
Unit $=\mathbf{1 . 0 0 0 0 0}$
$\mathbf{X Y}=\mathbf{0 . 5 3 3 3 3}$
$\mathbf{U}=\mathbf{8 . 0 0 0 0 0}$
$\mathbf{V}=\mathbf{1 5 . 0 0 0 0 0}$
$\mathbf{A H}=\mathbf{0 . 5 3 3 3 3}$
$\mathbf{X Y}=\mathbf{0 . 3 7 5 0 0}$
$\mathbf{W}=\mathbf{3 . 0 0 0 0 0}$
$\mathbf{X}=\mathbf{8 . 0 0 0 0 0}$
$\mathbf{B J}=\mathbf{0 . 3 7 5 0 0}$

$\mathbf{X Y}=\mathbf{0 . 7 5 0 0 0}$
$\mathbf{Y}=\mathbf{1 2 . 0 0 0 0 0}$
$\mathbf{Z}=\mathbf{1 6 . 0 0 0 0 0}$
$\mathbf{A E}=\mathbf{0 . 5 7 1 9 1}$
$\mathbf{E F}=\mathbf{0 . 7 5 0 0 0}$
$\mathbf{B E}=\mathbf{0 . 4 2 8 0 9}$
$\mathbf{F G}=\mathbf{0 . 7 7 7 9 1}$
$\mathbf{A F}=\mathbf{0 . 9 4 3 1 8}$
$\mathbf{A F}=0.943176$
$F G:=\frac{\sqrt{\left(\left(U^{4}-2 \cdot U^{2} \cdot v^{2}+v^{4}\right) \cdot X^{4}-2 \cdot v^{2} \cdot w^{2} \cdot\left(U^{2}+v^{2}\right) \cdot X^{2}+v^{4} \cdot w^{4}\right] \cdot z^{2}+4 \cdot v^{4} \cdot X^{4} \cdot Y^{2}}}{2 \cdot v^{2} \cdot X^{2} \cdot Z}$
$\mathbf{F G}=\mathbf{0 . 7 7 7 9 0 5}$
\sim_{n}^{0}
042894
Descriptions.

Given three circles find their power point and if it is at all possible, cut all three perpendicularly. Demonstrate an Algebraic name for the power point and the length of the resultant tangent.
$\mathbf{R}_{\mathbf{1}}:=\sqrt{\mathbf{N}_{\mathbf{1}}{ }^{2}} \quad \mathbf{R}_{\mathbf{2}}:=\sqrt{\mathbf{N}_{\mathbf{2}}{ }^{2}} \quad \mathbf{R}_{\mathbf{3}}:=\sqrt{\mathbf{N}_{\mathbf{3}}{ }^{2}} \quad \mathrm{AC}:=\mathbf{D}_{\mathbf{1}} \quad \mathrm{AE}:=\mathbf{D}_{\mathbf{2}} \quad \mathrm{CE}:=\mathrm{D}_{\mathbf{3}}$

Power Point

$\mathbf{A G}:=\frac{\sqrt{\left(\mathbf{R}_{1}{ }^{2}+\mathrm{D}_{1}{ }^{2}-\mathbf{R}_{2}{ }^{2}\right)^{2}}}{\mathbf{2 \cdot D _ { 1 }}} \quad \mathbf{A H}:=\frac{\sqrt{\left(\mathrm{R}_{1}{ }^{2}+\mathrm{D}_{2}{ }^{2}-\mathrm{R}_{3}{ }^{2}\right)^{2}}}{2 \cdot \mathbf{D}_{2}} \quad \mathrm{AM}:=\frac{\sqrt{\left(\mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{2}-\mathrm{D}_{3}{ }^{2}\right)^{2}}}{\mathbf{2 \cdot D _ { 1 }}}$
$\mathbf{E M}:=\sqrt{\mathbf{A E}^{2}-\mathbf{A M}^{2}} \quad \mathbf{A K}:=\frac{\mathbf{A E} \cdot \mathbf{A H}}{\mathbf{A M}} \quad \mathbf{G K}:=\mathbf{A K}-\mathbf{A G} \quad \mathbf{G J}:=\frac{\mathbf{A M} \cdot \mathbf{G K}}{\mathbf{E M}}$
$\mathbf{A J}:=\sqrt{\mathbf{A G}^{2}+\mathbf{G J}^{2}} \quad \mathbf{A N}:=\mathbf{R}_{\mathbf{1}} \quad \mathbf{J N}:=\sqrt{\mathbf{A J}^{\mathbf{2}}-\mathbf{A N}{ }^{\mathbf{2}}}$
Definitions.
$G J-\frac{2 \cdot D_{1}{ }^{2} \cdot \sqrt{\left(D_{2}{ }^{2}+R_{1}{ }^{2}-R_{3}{ }^{2}\right)^{2}}-\sqrt{\left(D_{1}{ }^{2}+D_{2}{ }^{2}-D_{3}{ }^{2}\right)^{2}} \cdot \sqrt{\left(D_{1}{ }^{2}+R_{1}{ }^{2}-R_{2}{ }^{2}\right)^{2}}}{2 \cdot \sqrt{D_{1}{ }^{2}} \cdot \sqrt{\left(D_{1}+D_{2}-D_{3}\right) \cdot\left(D_{1}-D_{2}+D_{3}\right) \cdot\left(D_{2}-D_{1}+D_{3}\right) \cdot\left(D_{1}+D_{2}+D_{3}\right)}}=0$

$\mathrm{N}_{1}=2.27017$
$\mathrm{N}_{2}=1.11001$
$\mathrm{N}_{3}=1.12235$ $\mathrm{N}_{4}=2.09689$

Animate Points

Given.
AF := 2.652
$\mathrm{BE}:=1.390$ AB := 2.992

042994A

Descriptions.

$$
\begin{aligned}
& \mathbf{A D}:=\mathbf{B E} \quad \mathbf{D E}:=\mathbf{A B} \\
& \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \\
& \mathbf{E F}:=\left(\mathbf{D F}^{2}+\mathbf{D E}^{2}\right)^{\frac{1}{2}} \\
& \mathbf{C E}:=\frac{\mathbf{E F} \cdot \mathbf{B E}}{\mathbf{D F}} \quad \mathbf{C F}:=\mathbf{E F}+\mathbf{C E} \quad \mathbf{B C}:=\frac{\mathbf{A B} \cdot \mathbf{C E}}{\mathbf{E F}}
\end{aligned}
$$

Definitions.

See the end note on the next plate for those who want to make AD greater than AF.

EF = 3.247262
$\mathbf{E F}-\sqrt{\mathrm{AF}^{2}-2 \cdot \mathbf{A F} \cdot \mathbf{B E}+\mathrm{BE}^{2}+\mathrm{AB}^{2}}=\mathbf{0}$
$C E=3.576619$
$\mathbf{C E}-\frac{\sqrt{\mathrm{AF}^{2}-2 \cdot \mathrm{AF} \cdot \mathrm{BE}+\mathrm{BE}^{2}+\mathrm{AB}^{2}} \cdot \mathrm{BE}}{\mathrm{AF}-\mathrm{BE}}=0$
$C F=6.823881$
$\mathbf{C F}-\frac{\mathrm{AF} \cdot \sqrt{\mathrm{AF}^{2}-2 \cdot \mathbf{A F} \cdot \mathrm{BE}^{2}+\mathrm{BE}^{2}+\mathrm{AB}^{2}}}{\mathbf{A F}-\mathbf{B E}}=0$
$B C=3.295468$
$\mathbf{B C}-\frac{\mathbf{B E} \cdot \mathbf{A B}}{\mathbf{A F}-\mathbf{B E}}=\mathbf{0}$

Teeter-Totter

Given the rectangle $A B D E$, and some point F, collinear with $A D$, what are $C E, C F, E F, B C$?

$\sim_{n=2}^{0}$
042994B
Descriptions.

Unit.

AB:= 1
Given.
$\mathbf{W}:=6 \quad \mathbf{Y}:=15$
$\mathbf{B E}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{A F}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{A D}:=\mathbf{B E} \quad \mathrm{DE}:=\mathrm{AB}$
$\mathbf{B E}=\mathbf{0 . 3} \quad \mathbf{A F}=\mathbf{0 . 8 3 3 3 3 3}$
$D F:=A F-A D \quad E F:=\left(D F^{2}+D E^{2}\right)^{\frac{1}{2}}$
$\mathrm{CE}:=\frac{\mathrm{EF} \cdot \mathrm{BE}}{\mathrm{DF}} \quad \mathrm{CF}:=\mathrm{EF}+\mathrm{CE} \quad \mathrm{BC}:=\frac{\mathrm{AB} \cdot \mathrm{CE}}{\mathrm{EF}}$

Definitions.

$\mathrm{EF}=1.133333$
$E F-\frac{\sqrt{W \cdot Z \cdot(W \cdot Z-2 \cdot X \cdot Y)+X^{2} \cdot\left(Y^{2}+Z^{2}\right)}}{X \cdot Z}=0$
$C E=0.6375$
$\mathbf{C E}-\frac{W \cdot \sqrt{\mathbf{X}^{2} \cdot\left(Y^{2}+Z^{2}\right)+W \cdot Z \cdot(W \cdot Z-2 \cdot X \cdot Y)}}{X \cdot(X \cdot Y-W \cdot Z)}=0$
$C F=1.770833$
$\mathbf{C F}-\frac{\mathbf{Y} \cdot \sqrt{\mathbf{X}^{2} \cdot\left(\mathbf{Y}^{2}+\mathbf{Z}^{2}\right)+\mathbf{W} \cdot \mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Z}-\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y})}}{\mathbf{Z} \cdot(\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}=\mathbf{0}$
$B C=0.5625$
$\mathbf{B C}-\frac{\mathbf{W} \cdot \mathbf{Z}}{\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}}=\mathbf{0}$

$$
X:=20 \quad Z:=18
$$

Teeter-Totter

Given the rectangle $A B D E$, and some point F, collinear with $A D$, what are $C E, C F, E F, B C$?

On both of these plates, if you are going to invert D and F, then you have to make a small change to some of the equations, making sure the the result is always positive.

$\sim_{N=3}^{0}$
Given. AB := 5
BC: $=2$
043094A
Descriptions.
$\mathbf{A C}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B C}^{2}}$
$\mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{A C}}{\mathbf{A B}}$
$\mathrm{BD}:=\sqrt{\mathbf{C D}^{2}-\mathbf{B C}^{2}}$

Definitions.

O43094B
Descriptions.
$\begin{aligned} & \text { UBit. } \\ & \text { Given. } \\ & X:=3\end{aligned}$
$Y:=1$

$$
\begin{aligned}
& \mathbf{B C}:=\frac{\mathbf{X}}{\mathbf{Y}} \\
& \mathbf{A C}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B C}^{2}} \\
& \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{A C}}{\mathbf{A B}} \\
& \mathbf{B D}:=\sqrt{\mathbf{C D}^{2}-\mathbf{B C}^{2}}
\end{aligned}
$$

Definitions.
$\left(\frac{X}{Y}\right)^{2}-B D=0$

Division $\mathbf{N}^{\mathbf{2}}$

Unit $=1.00000$
XY $=3.00000$
$\mathbf{X}=3.00000$
$\mathrm{Y}=1.00000$
$\mathrm{BC}=3.00000$
$\mathrm{BD}=\mathbf{9 . 0 0 0 0 0}$

$$
\begin{array}{ll}
\text { Given. } \\
\mathbf{R}_{\mathbf{1}}:=\mathbf{3} & \text { DE }:=\mathbf{R}_{\mathbf{1}} \\
\mathbf{R}_{\mathbf{2}}:=\mathbf{2} & \mathbf{B C}:=\mathbf{R}_{\mathbf{2}}
\end{array}
$$

Two Circles And A Parallel

Given the radius of two tangent circles find the radius of the third
that is tangent to the two circles and tangent to the parallel
opposite AP which is tangent to the larger circle.

050194A

Descriptions.

$\mathbf{C N}:=\mathbf{B C} \quad \mathrm{EQ}:=\mathrm{DE} \quad \mathbf{C D}:=\mathbf{B C} \quad \mathbf{C E}:=\mathbf{C D}+\mathrm{DE}$
$\mathbf{E S}:=\mathbf{C N} \quad \mathbf{N S}:=\mathbf{C E} \quad \mathbf{S Q}:=\mathbf{E Q}-\mathbf{E S} \quad \mathbf{A E}:=\frac{\mathbf{N S} \cdot \mathbf{E Q}}{\mathbf{S Q}}$
$\mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathbf{E P}:=\mathbf{D E} \quad \mathbf{A P}:=\sqrt{\mathbf{A E}}{ }^{\mathbf{2}}-\mathbf{E P}^{\mathbf{2}}$
$\mathbf{D O}:=\frac{\mathbf{E P} \cdot \mathbf{A D}}{\mathbf{A P}} \quad \mathbf{D L}:=\frac{\mathbf{D O} \cdot \mathbf{D E}}{\mathbf{C D}} \quad \mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \quad \mathbf{C M}:=\mathbf{B C}$
$\mathbf{A M}:=\frac{\mathbf{A P} \cdot \mathbf{A C}}{\mathbf{A E}} \quad \mathbf{A O}:=\frac{\mathbf{A E} \cdot \mathbf{A D}}{\mathbf{A P}} \quad \mathbf{M O}:=\mathbf{A O}-\mathbf{A M} \quad \mathbf{M R}:=\frac{\mathbf{A D} \cdot \mathbf{M O}}{\mathbf{A O}}$
$\mathbf{R O}:=\frac{\mathbf{D O} \cdot \mathbf{M R}}{\mathbf{A D}} \quad \mathbf{D R}:=\mathbf{D O}-\mathbf{R O} \quad \mathbf{L R}:=\mathbf{D R}+\mathbf{D L} \quad \mathbf{M L}:=\sqrt{\mathbf{M} \mathbf{R}^{\mathbf{2}+\mathbf{L R}}{ }^{\mathbf{2}}}$
$\mathbf{D K}:=\frac{\mathbf{M R} \cdot \mathbf{D L}}{\mathbf{L R}} \quad \mathbf{C K}:=\mathbf{D K}-\mathbf{C D} \quad \mathbf{C H}:=\frac{\mathbf{L R} \cdot \mathbf{C K}}{\mathbf{M L}}$
$\mathbf{M H}:=\sqrt{\mathbf{C M}^{\mathbf{2}}-\mathbf{C H}^{\mathbf{2}}} \quad \mathbf{M G}:=\mathbf{2} \cdot \mathbf{M H} \quad$ GL $:=\mathbf{M L}-\mathbf{M G} \quad$ GJ $:=\frac{\mathbf{C M} \cdot \mathbf{G L}}{\mathbf{M G}}$

Definitions.

$\mathbf{R}_{\mathbf{3}}:=\frac{\mathbf{R}_{\mathbf{1}}{ }^{\mathbf{2}}}{\mathbf{4} \cdot \mathbf{R}_{\mathbf{2}}} \quad \mathbf{G J}-\mathbf{R}_{\mathbf{3}}=\mathbf{0}$

050194B

Two Circles And A Parallel

Unit.

mn := 1

Given.
 $W:=13 \quad Y:=4$

$X:=20 \quad Z:=15$

Given the radius of two tangent circles find the radius of the third that is tangent to the two circles and tangent to the parallel opposite F which is tangent to the larger circle.

Descriptions.
The results of Plate A tells us the equation for the remaining radius, and knowing that it is tangent to both circles the construction becomes obvious.
$\mathbf{A D}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{B D}:=\frac{\mathbf{Y}}{\mathbf{Z}}$
$\mathbf{A K}:=4 \cdot \mathbf{B D} \quad \mathbf{A G}:=\frac{\mathbf{A D}^{2}}{\mathbf{A K}}$
$\mathbf{A H}:=\mathbf{A D}+\mathbf{A G} \quad \mathbf{B J}:=\mathbf{B D}+\mathbf{A G}$
$\mathrm{CE}:=\frac{\mathrm{AD}^{2}}{4 \cdot \mathrm{BD}} \quad \mathrm{CE}=0.396094$

Definitions.
$C E-\frac{w^{2} \cdot z}{4 \cdot X^{2} \cdot y}=0$

$c^{2} \operatorname{cin}^{38}$

If one compare this plate, B, with A, they find something missing, some
understanding as to why it is so.
Although one can construct figures from equations, the finished construction may need to be aughmented with structures which are implicit in the equation.

Just knowing ones projection is dependent on the powerline, a lot less construction is needed than any of my plates on this show.

Two Circles And A Tangent

Given two circles, the difference between them and a point on one expressed as a ratio of the diameter, find the circle tangent to both at that point.
\sim_{n}^{0}
050494A
Descriptions.
$\mathbf{G L}:=\mathbf{F L}-\mathbf{F G} \quad \mathbf{G M}:=\sqrt{\mathbf{F G} \cdot \mathbf{G L}} \quad \mathbf{A J}:=\frac{\mathbf{A Q} \cdot \mathbf{A Q}}{\mathbf{A K}} \quad \mathbf{A F}:=\mathbf{A K}-\mathbf{F K}$
FJ $:=\mathbf{A J}-\mathbf{A F} \quad \mathbf{J L}:=\mathbf{F L}-\mathbf{F J}$ $\mathbf{J Q}:=\sqrt{\mathbf{F J} \cdot \mathbf{J L}} \quad \mathbf{G J}:=\mathbf{F J}-\mathbf{F G}$

$$
\mathbf{A J}:=\frac{\mathbf{A Q} \cdot \mathbf{A Q}}{\mathbf{A K}}
$$

$$
\mathbf{A F}:=\mathbf{A K}-\mathbf{F K}
$$ $\mathbf{Q M}:=\sqrt{(\mathbf{J Q}+\mathbf{G M})^{\mathbf{2}}+\mathbf{G J}^{\mathbf{2}}} \quad \mathbf{G H}:=\frac{\mathbf{G J} \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}} \quad \mathbf{H M}:=\frac{\mathbf{Q M} \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}}$ $\mathbf{E F}:=\mathbf{E K}-\mathbf{F K} \quad \mathbf{E H}:=\mathbf{E F}+\mathbf{F G}+\mathbf{G H} \quad \mathbf{H O}:=\frac{\mathbf{H M} \cdot \mathbf{E H}}{\mathbf{G H}} \quad$ MO $:=\mathbf{H O}-\mathbf{H M}$ KM := FK \quad MN $:=\frac{\text { KM } \cdot \text { MO }}{\text { QM }} \quad$ MN $=\mathbf{0 . 6 1 9 8 3 3}$

$$
\begin{aligned}
& \mathbf{F L}:=\mathbf{2} \cdot \mathbf{F K} \quad \text { FG }:=\frac{\mathbf{F L}}{\mathbf{N}} \quad \mathbf{A K}:=\frac{\mathbf{D} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}} \\
& \mathbf{E K}:=\frac{\mathbf{R}_{\mathbf{1}}{ }^{\mathbf{2}}+\mathbf{D}^{\mathbf{2}}-\mathbf{R}_{\mathbf{2}}{ }^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{D}} \quad \mathbf{A Q}:=\mathbf{R}_{\mathbf{1}} \cdot \frac{\sqrt{\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(-\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}}
\end{aligned}
$$

Definitions.

$\mathbf{M N}-\frac{\left(\mathbf{4} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{D}\right)-\mathbf{N} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right) \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}-\mathbf{D}\right)}{\mathbf{2 N} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right)-\mathbf{4} \cdot \mathbf{D}}=\mathbf{0}$

Unit.
CK := 1
Given

$$
\begin{array}{lll}
\mathbf{U}:=\mathbf{9} & \mathbf{W}:=\mathbf{4} & \mathbf{Y}:=16 \\
\mathbf{V}:=14 & \mathbf{X}:=17 & \mathbf{Z}:=20
\end{array}
$$

050494B
Descriptions.

FK $:=\frac{\mathbf{U}}{\mathbf{V}} \quad \mathbf{B C}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{G K}:=\frac{\mathbf{F K} \cdot \mathbf{Y}}{\mathbf{Z}} \quad$ FG $:=\mathbf{F K}-\mathbf{G K}$
FL $:=2 \cdot \mathbf{F K} \quad \mathrm{AK}:=\frac{\mathbf{C K} \cdot \mathbf{F K}}{\mathrm{FK}-\mathbf{B C}} \quad \mathbf{E K}:=\frac{\mathbf{F K}^{2}+\mathbf{C K}^{2}-\mathbf{B C}^{2}}{2 \cdot \mathbf{C K}}$
$\mathbf{A Q}:=\mathbf{F K} \cdot \frac{\sqrt{(\mathbf{F K}-\mathbf{B C}+\mathbf{C K}) \cdot(-\mathbf{F K}+\mathbf{B C}+\mathbf{C K})}}{\mathbf{F K}-\mathbf{B C}}$

$$
\begin{array}{lll}
\mathbf{G L}:=\mathbf{F L}-\mathbf{F G} & \mathbf{G M}:=\sqrt{\mathbf{F G} \cdot \mathbf{G L}} \quad \text { AJ }:=\frac{\mathbf{A Q} \cdot \mathbf{A Q}}{\mathbf{A K}} \quad \text { AF }:=\mathbf{A K}-\mathbf{F K} \\
\text { FJ }:=\mathbf{A J}-\mathbf{A F} \quad \mathbf{J L}:=\mathbf{F L}-\mathbf{F J} \quad \text { JQ }:=\sqrt{\mathbf{F J} \cdot \mathbf{J L}} & \text { GJ }:=\mathbf{F J}-\mathbf{F G} \\
\mathbf{Q M}:=\sqrt{(\mathbf{J Q}+\mathbf{G M})^{\mathbf{2}}+\mathbf{G J}^{\mathbf{2}}} \quad \mathbf{G H}:=\frac{\mathbf{G J} \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}} \quad \mathbf{H M}:=\frac{\mathbf{Q M} \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}}
\end{array}
$$

$\mathbf{E F}:=\mathbf{E K}-\mathbf{F K} \quad \mathbf{E H}:=\mathbf{E F}+\mathbf{F G}+\mathbf{G H} \quad \mathbf{H O}:=\frac{\mathbf{H M} \cdot \mathbf{E H}}{\mathbf{G H}} \quad$ MO $:=\mathbf{H O}-\mathbf{H M}$
$\mathbf{K M}:=\mathbf{F K} \quad \mathbf{M N}:=\frac{\mathbf{K M} \cdot \mathbf{M O}}{\mathbf{Q M}} \quad$ MN $=0.419597$
Definitions.
$\mathbf{M N}-\frac{\mathbf{X}^{2} \cdot\left[Z \cdot\left(\mathbf{U}^{2}+\mathbf{V}^{2}\right)-2 \cdot \mathbf{U} \cdot \mathbf{V} \cdot \mathbf{Y}\right]-\mathbf{V}^{2} \cdot \mathbf{W}^{2} \cdot Z}{2 \cdot \mathbf{V} \cdot \mathbf{X} \cdot(V \cdot \mathbf{W} \cdot Z-U \cdot X \cdot Z+V \cdot X \cdot Y)}=0$

Two Circles And A Tangent

Given two circles, the difference between them and a point on one expressed as a ratio of the diameter, find the circle tangent to both at that point.

Unit
FH:= 1
Given.
N := 2.423
050694

Descriptions.
$\mathbf{C E}:=\mathrm{FH} \quad \mathbf{C G}:=\frac{\mathrm{FH}}{\mathrm{N}} \quad \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}-\mathrm{CG}^{2}} \quad \mathrm{CD}:=\frac{\mathbf{C G}^{2}}{\mathbf{C E}}$
$\mathbf{D G}:=\sqrt{\mathbf{C G}^{2}-\mathbf{C D}^{2}} \quad \mathbf{E H}:=\mathbf{2} \cdot \mathbf{E G} \quad \mathbf{B H}:=\frac{\mathbf{D G} \cdot \mathbf{E H}}{\mathbf{E G}} \quad \mathbf{C H}:=\mathbf{F H}$
$\mathbf{B C}:=\sqrt{\mathbf{C H}^{2}-\mathbf{B H}^{2}} \quad \mathbf{A C}:=2 \cdot \mathbf{B C} \quad \mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \quad \mathbf{A J}:=\frac{\mathbf{C G} \cdot \mathbf{A E}}{\mathbf{C E}}$
3. CG $-\frac{4 \cdot \mathbf{C G}^{3}}{\mathbf{C E}^{2}}-\mathbf{A J}=0 \quad 3 \cdot C G-4 \cdot \mathbf{C G}^{3}-A J=0 \quad A J-\frac{\left(3 \cdot N^{2}-4\right)}{N^{3}}=0$

Definitions.

AJ $-\left(\frac{3}{N}-\frac{4}{N^{3}}\right)=0$
The resultant equation suggests this construction.

$$
\left(3 \cdot \frac{\mathbf{C G}}{\mathbf{F H}}-\mathbf{4} \cdot \frac{\mathbf{C G}}{}{ }^{\mathbf{F}}{ }^{\mathbf{F H}}\right)-\frac{\mathbf{A J}}{\mathbf{F H}}=\mathbf{0 . 0 0 0 0 0}
$$

A Ratio In Trisection

What is AJ to CG?

Unit.

A Trisection Ratio with the Paper Trisector

The figure works on the fact that trisection takes place as point K moves between .5 and 1 of half the radius. Thus one can examine it by a simple fact. Division in this method will take place, for the Paper Trisector, over $3 / 4$ of the semi-circle.

In trisection, what is the ratio of FG/EK?
Descriptions.

$$
\begin{aligned}
& \mathbf{E H}:=\frac{\mathbf{A E}}{2} \quad \mathbf{H K}:=\frac{\mathbf{E H}}{\mathbf{N}} \mathbf{A K}:=\mathbf{A E}+\mathbf{E H}+\mathbf{H K} \\
& \mathbf{E J}:=\mathbf{A E} \quad \mathbf{E K}:=\mathbf{E H}+\mathbf{H K} \quad \mathbf{A D}:=\frac{\mathbf{E J} \cdot \mathbf{A K}}{\mathbf{E K}} \quad \mathbf{C D}:=\mathbf{A E} \\
& \mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \quad \mathbf{B C}:=\frac{\mathbf{A C}}{2} \quad \mathbf{C E}:=\mathbf{A E} \quad \mathbf{B E}:=\sqrt{\mathbf{C E}^{2}-\mathbf{B C}^{\mathbf{2}}} \\
& \mathbf{B D}:=\mathbf{C D}+\mathbf{B C} \quad \mathbf{D E}:=\sqrt{\mathbf{B D}^{\mathbf{2}}+\mathbf{B E}^{\mathbf{2}}} \quad \mathbf{D F}:=\frac{\mathbf{B D} \cdot \mathbf{A D}}{\mathbf{D E}} \\
& \mathbf{E G}:=\mathbf{A E} \quad \mathbf{D G}:=\mathbf{D E}+\mathbf{E G} \quad \mathbf{F G}:=\mathbf{D G}-\mathbf{D F} \\
& \mathbf{H K}=\mathbf{0 . 1} \\
& \mathbf{E K}=\mathbf{0 . 6} \quad \mathbf{F G}=\mathbf{0 . 3 6 1 7 1 5}
\end{aligned}
$$

Definitions.

$$
\mathbf{E H}-\frac{1}{2}=0 \quad \mathbf{H K}-\frac{1}{2 \cdot \mathbf{N}}=0 \quad \text { AK }-\frac{3 \cdot \mathbf{N}+1}{2 \cdot \mathbf{N}}=0 \quad \text { EJ }-1=0 \quad \text { EK }-\frac{\mathbf{N}+1}{2 \cdot \mathbf{N}}=0
$$

$$
\mathbf{A D}-\frac{\mathbf{3} \cdot \mathbf{N}+\mathbf{1}}{\mathbf{N}+\mathbf{1}}=\mathbf{0} \quad \mathbf{C D}-\mathbf{1}=\mathbf{0} \quad \mathbf{A C}-\frac{\mathbf{2} \cdot \mathbf{N}}{\mathbf{N}+\mathbf{1}}=\mathbf{0} \quad \mathbf{B C}-\frac{\mathbf{N}}{\mathbf{N}+1}=\mathbf{0} \quad \mathbf{C E}-\mathbf{1}=\mathbf{0}
$$

$$
\mathbf{B E}-\frac{\sqrt{\mathbf{2} \cdot \mathbf{N}+\mathbf{1}}}{(\mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{2} \cdot \mathbf{N}+\mathbf{1}}{\mathbf{N}+\mathbf{1}}=\mathbf{0} \quad \mathbf{D E}-\frac{\sqrt{2 \cdot(\mathbf{2 \cdot N}+\mathbf{1})}}{\sqrt{\mathbf{N}+\mathbf{1}}}=\mathbf{0} \quad \mathbf{E G}-\mathbf{1}=\mathbf{0}
$$

$$
\mathbf{D F}-\frac{(\mathbf{3} \cdot \mathbf{N}+1) \cdot \sqrt{4 \cdot \mathbf{N}+2}}{2 \cdot(\mathbf{N}+1)^{\frac{3}{2}}}=0 \quad \mathbf{D G}-\frac{\sqrt{2} \cdot \sqrt{2 \cdot \mathbf{N}+1}+\sqrt{\mathbf{N}+1}}{\sqrt{\mathbf{N}+1}}=0
$$

$$
\frac{N \cdot\left((1-N) \cdot \sqrt{2} \cdot \sqrt{2 \cdot N+1}+2 \cdot(N+1)^{\frac{3}{2}}\right)}{(N+1)^{\frac{5}{2}}}-\frac{F G}{E K}=0.00000
$$

$$
\mathbf{F G}-\frac{(\sqrt{2}-\sqrt{2} \cdot \mathbf{N}) \cdot \sqrt{2 \cdot \mathbf{N}+1}+2 \cdot(\mathbf{N}+1)^{\frac{3}{2}}}{2 \cdot(\mathbf{N}+1)^{\frac{3}{2}}}=0 \quad \frac{\mathbf{F G}}{\mathbf{E K}}-\frac{\mathbf{N} \cdot\left[(1-\mathbf{N}) \cdot \sqrt{2} \cdot \sqrt{2 \cdot \mathbf{N}+1}+2 \cdot(\mathbf{N}+1)^{\frac{3}{2}}\right]}{(\mathbf{N}+1)^{\frac{5}{2}}}=0
$$

$$
\frac{(\sqrt{2} \cdot \sqrt{2} \cdot \mathrm{~N}) \cdot \sqrt{2 \cdot \mathrm{~N}+1}+2 \cdot(\mathrm{~N}+1)^{\frac{3}{2}}}{2 \cdot(\mathrm{~N}+1)^{\frac{3}{2}}} \cdot \mathrm{FG}=0.00000
$$

Unit.
AE := 1
Given.
$\mathbf{X}:=5 \quad Y:=17$
050794B
Descriptions.
$\mathbf{E H}:=\frac{\mathbf{A E}}{2} \quad \mathbf{N}:=\frac{\mathbf{Y}}{\mathbf{X}} \quad \mathbf{H K}:=\frac{\mathbf{E H}}{\mathbf{N}} \quad \mathbf{A K}:=\mathbf{A E}+\mathbf{E H}+\mathbf{H K}$
$\mathbf{E J}:=\mathbf{A E} \quad \mathbf{E K}:=\mathbf{E H}+\mathbf{H K} \quad \mathbf{A D}:=\frac{\mathbf{E J} \cdot \mathbf{A K}}{\mathbf{E K}} \quad \mathbf{C D}:=\mathbf{A E}$
$\mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \quad \mathbf{B C}:=\frac{\mathbf{A C}}{2} \quad \mathbf{C E}:=\mathbf{A E} \quad \mathrm{BE}:=\sqrt{\mathbf{C E}^{2}-\mathbf{B C}^{2}}$
$\mathbf{B D}:=\mathbf{C D}+\mathbf{B C} \quad \mathbf{D E}:=\sqrt{\mathbf{B D}^{2}+\mathrm{BE}^{2}} \quad \mathrm{DF}:=\frac{\mathrm{BD} \cdot \mathbf{A D}}{\mathrm{DE}}$
$\mathbf{E G}:=\mathbf{A E} \quad \mathbf{D G}:=\mathbf{D E}+\mathbf{E G} \quad \mathbf{F G}:=\mathbf{D G}-\mathbf{D F}$
$\mathbf{H K}=\mathbf{0 . 1 4 7 0 5 9} \quad \mathbf{F G}=\mathbf{0 . 4 8 6 4 7 2} \quad \mathbf{N}=\mathbf{3 . 4}$
$\mathbf{E K}=\mathbf{0 . 6 4 7 0 5 9} \quad \mathrm{AK}=1.647059$
Definitions.
$\mathbf{H K}-\frac{X}{2 \cdot Y}=0 \quad \mathbf{E K}-\frac{X+Y}{2 \cdot Y}=0$
$\mathbf{F G}-\frac{\sqrt{\mathbf{X}+2 \cdot \mathbf{Y}} \cdot(\mathbf{X}-\mathbf{Y}) \cdot \sqrt{2}+2 \cdot(\mathbf{X}+\mathbf{Y}) \cdot \sqrt{\mathbf{X}+\mathbf{Y}}}{\frac{3}{2}}=\mathbf{0}$
$2 \cdot(X+Y)^{\overline{2}}$
$\mathbf{A K}-\frac{\mathbf{X}+\mathbf{3} \cdot \mathbf{Y}}{2 \cdot \mathbf{Y}}=\mathbf{0}$
$\frac{\mathbf{F G}}{E K}-\frac{\mathbf{Y} \cdot\left[\sqrt{X+2 \cdot Y} \cdot\left(\mathbf{X}^{2}-Y^{2}\right) \cdot \sqrt{2}+2 \cdot(X+Y)^{\frac{5}{2}}\right]}{(X+Y)^{\frac{7}{2}}}=0$

A Trisection Ratio with the Paper Trisector

The figure works on the fact that trisection takes place as point K moves between .5 and 1 of half the radius. Thus one can examine it by a simple fact. Division in this method will take place, for the Paper Trisector, over 3/4 of the semi-circle.

In trisection, what is the ratio of FG/EK?

Unit

CE := 1

Given.

$$
\mathbf{Y}:=\mathbf{1 7} \quad \mathbf{N}_{\mathbf{1}}:=\mathbf{2}
$$

051694A

Descriptions.

Choose a point along CF and the number of circles tanget to it and to the circumscribing circle and place them in the downright position.
The number of marbles one can stack this way is equal to the number of E / J,
or N_{1}.
$\mathrm{DE}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad$ EJ $:=\mathbf{C E} \cdot \mathrm{N}_{1} \quad$ DJ $:=\sqrt{\mathrm{DE}^{2}+\mathbf{E J}^{2}} \quad \mathbf{J G}:=\frac{\mathbf{E J}^{2}}{\mathbf{D J}}$
$\mathbf{B E}:=\mathbf{C E} \quad \mathbf{E G}:=\sqrt{\mathbf{E J}^{2}-\mathbf{J G}^{2}} \quad \mathbf{B G}:=\sqrt{\mathbf{B E}^{2}-\mathbf{E G}^{2}}$
BJ $:=\mathbf{B G}+\mathbf{J G} \quad \mathbf{J K}:=\mathbf{C E} \quad \mathbf{B D}:=\mathbf{B J}-\mathbf{D J} \quad \mathbf{D H}:=\frac{\mathbf{J K} \cdot \mathbf{B D}}{\mathbf{B J}}$
DH $=0.301428$

Definitions.

$D E-\frac{X}{Y}=0 \quad$ EJ $-N_{1}=0 \quad$ DJ $-\frac{\sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}{Y}=0$
$J G-\frac{N_{1}{ }^{2} \cdot Y}{\sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0 \quad B E-1=0 \quad E G-\frac{N_{1} \cdot X}{\sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0$
$B G-\frac{\sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}}{\sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0 \quad B J-\frac{N_{1}{ }^{2} \cdot Y+\sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}}{\sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0$
$J K-1=0 \quad B D-\frac{Y \cdot \sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}-X^{2}}{Y \cdot \sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0$
$D H-\frac{Y \cdot \sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}-X^{2}}{Y \cdot\left[N_{1}{ }^{2} \cdot Y+\sqrt{X^{2}-N_{1}{ }^{2} \cdot\left(X^{2}-Y^{2}\right)}\right]}=0$

Tangent Diameter and Circles

Unit.
AF := 1
Given.
$\mathbf{X}:=5 \quad \mathbf{N}_{\mathbf{1}}:=\mathbf{3}$
$\mathbf{Y}:=13$
051694B

Descriptions.

Choose a point along DF and the number of circles tanget to it and to the circumscribing circle and place them in the downright position.
The number of marbles one can stack this way is equal to the number of F / J, or N_{1}.

DF $:=\mathbf{A F} \quad$ FJ $:=\mathbf{N}_{1} \quad$ HJ $:=\mathbf{A F} \quad$ EF $:=\frac{\mathbf{X}}{\mathbf{Y}} \quad$ EJ $:=\sqrt{\mathbf{E F}^{2}+\mathbf{F J}^{2}} \quad$ EG $:=\frac{\text { EF }^{2}}{\text { EJ }} \quad$ BF $:=$ AF $\mathbf{F G}:=\sqrt{\mathbf{E F}^{\mathbf{2}}-\mathbf{E G}^{\mathbf{2}}} \quad \mathbf{B G}:=\sqrt{\mathbf{B F}^{2}-\mathbf{F G}^{\mathbf{2}}} \quad \mathbf{B E}:=\mathbf{B G}-\mathbf{E G} \quad$ BJ $:=\mathbf{B E}+\mathbf{E J} \quad \mathbf{E K}:=\frac{\mathbf{H J} \cdot \mathbf{B E}}{\mathbf{B J}}$ $\mathbf{A J}:=\mathbf{F J}+\mathbf{A F} \quad \mathbf{B C}:=\mathbf{B F}-\sqrt{\mathbf{E F}}{ }^{2}+\left[\left(\frac{\mathbf{A J}-\mathbf{A F}}{\mathbf{A F}}\right) \cdot \mathbf{E K}\right]^{2} \quad \mathbf{B C}-\mathbf{E K}=\mathbf{0} \quad \mathbf{E K}=\mathbf{0 . 2 2 4 4 7 7}$

Definitions.

Definitions.
DF-1 $=0 \quad$ FJ $-\mathbf{N}_{1}=0 \quad \mathbf{H J}-1=0 \quad E F-\frac{X}{Y}=0 \quad E J-\frac{\sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}{Y}=0$
$E G-\frac{X^{2}}{Y \cdot \sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0 \quad B F-1=0 \quad F G-\frac{N_{1} \cdot X}{\sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0 \quad A J-\left(N_{1}+1\right)=0$
$B G-\frac{\sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}}{\sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0 \quad B E-\frac{Y \cdot \sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}-X^{2}}{Y \cdot \sqrt{N_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0$
$\mathrm{BJ}-\frac{\mathrm{N}_{1}{ }^{2} \cdot Y+\sqrt{\mathrm{N}_{1}{ }^{2} \cdot Y^{2}-N_{1}{ }^{2} \cdot X^{2}+X^{2}}}{\sqrt{\mathrm{~N}_{1}{ }^{2} \cdot Y^{2}+X^{2}}}=0 \quad \mathrm{EK}-\frac{Y \cdot \sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}-X^{2}}{Y \cdot\left[N_{1}{ }^{2} \cdot Y+\sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}\right.}=0$
$B C-\frac{Y \cdot \sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}-X^{2}}{Y \cdot\left[N_{1}{ }^{2} \cdot Y+\sqrt{N_{1}{ }^{2} \cdot\left(Y^{2}-X^{2}\right)+X^{2}}\right]}=0$

Tangent Diameter and Circles

Unit.
$\mathbf{Y}:=\mathbf{1} \quad \mathbf{A B}:=\mathbf{Y}$
Given.
$\mathbf{X}:=\mathbf{5} \quad \mathbf{N}:=\mathbf{X}$
102794A

Descriptions.
$\mathbf{A G}:=\mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}}$
$\mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{F H}:=\mathbf{B F} \quad \mathbf{D F}:=\frac{\mathbf{F H}^{2}}{\mathbf{A F}} \quad \mathbf{A D}:=\mathbf{A F}-\mathbf{D F}$
$\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{F J}:=\mathbf{B F}$ $\mathbf{D H}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathbf{D E}:=\frac{\mathbf{D F} \cdot \mathbf{D H}}{\mathbf{D H}+\mathbf{F J}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B D}+\mathbf{D E}$
$\sqrt{\mathbf{A B} \cdot \mathbf{A G}}-\mathbf{A E}=\mathbf{0} \quad \mathbf{A E}=\mathbf{2 . 2 3 6 0 6 8}$

Definitions.

The following is as far as Mathcad 15 will get you, the rest you have to do by hand. As I noted elsware, Mathcad is not the sharpest tool in the shed, I hope!
$\left.\mathbf{A E}-\frac{\sqrt{(\mathbf{N}+1)^{2}} \cdot\left[\sqrt{\mathbf{N} \cdot(\mathbf{N}-1)^{2}} \cdot \sqrt{(\mathbf{N}+\mathbf{1})^{2}}-2 \cdot \mathbf{N}+\mathbf{2} \cdot \mathbf{N}^{2}\right]}{(\mathbf{N}+\mathbf{1}) \cdot\left[\mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{1})^{2}}-\sqrt{(\mathbf{N}+\mathbf{1})^{2}}+2 \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1})^{2}}\right.}\right]=\mathbf{0}$
$\mathbf{A E}-\sqrt{\mathbf{N}}=\mathbf{0}$

Trivial Method Square Root

$A E$ is the square root of $A B \times A G$.
Now, if you are wondering why I say trivial, it is because I foundf that word in a dictionary and
thought it would look good standing there

Unit.
$\mathbf{Y}:=\mathbf{1} \quad \mathbf{A B}:=\mathbf{Y}$
Given. $\mathbf{X}:=\mathbf{4} \quad \mathbf{N}:=\mathbf{X}$
102794B

Descriptions.

$\mathbf{A G}:=\mathbf{N} \quad \mathbf{A C}:=\frac{\mathbf{A B}}{2} \quad \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C F}:=\frac{\mathbf{C G}}{2}$
$\mathbf{A F}:=\mathbf{A C}+\mathbf{C F} \quad \mathbf{F H}:=\mathbf{C F} \quad \mathbf{C D}:=\frac{\mathbf{A C}^{2}}{\mathbf{C G}} \quad \mathbf{A D}:=\mathbf{A C}+\mathbf{C D}$
$\mathbf{D G}:=\mathbf{C G}-\mathbf{C D} \quad \mathbf{C J}:=\mathbf{A C} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D}$
$\mathbf{D H}:=\sqrt{\mathbf{B D} \cdot \mathbf{A D}} \quad \mathbf{C E}:=\frac{\mathbf{C D} \cdot \mathbf{A C}}{\mathbf{D H}+\mathbf{A C}} \quad$ EG $:=\mathbf{C G}-\mathbf{C E}$
$\sqrt{\mathbf{N} \cdot(\mathbf{N}-\mathbf{A B})}-\mathbf{E G}=\mathbf{0}$
$\mathbf{C G}=\mathbf{3 . 5} \quad \mathbf{E G}=\mathbf{3 . 4 6 4 1 0 2} \quad \mathbf{C D}=\mathbf{0 . 0 7 1 4 2 9}$

Definitions.
$E G-\frac{\left(\mathbf{N}^{2}-\mathbf{N}+1\right) \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}-1)}+2 \cdot \mathbf{N}^{2}-2 \cdot \mathbf{N}}{\mathbf{N}^{2}-\mathbf{N}+2 \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}-1)}+1}=0$

Trivial Method Square Root

$A E$ is the square root of $B G \times A G$.
$\sim_{n \rightarrow 2}^{0}$
102794C

Given.
$X:=6 \quad Y:=20$
Unit.
AG:= $\mathbf{1}$
Descriptions.
In plates A and B, we took one or the other things involved in computatrion and called it unity. Here, both are grouped as a unit and one can see the whole of all the possible interactions between the two in a simple figure.
$\mathbf{A B}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B G}:=\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}} \quad \mathbf{F H}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{F H}$
$\mathbf{C H}:=\frac{\mathbf{A F}}{2} \quad \mathbf{C D}:=\frac{2 \cdot \mathbf{C H}^{2}-\mathbf{F H}^{2}}{2 \cdot \mathbf{C H}} \quad \mathrm{DF}:=\mathrm{CH}-\mathrm{CD}$
DH $:=\sqrt{(\mathbf{C H}+\mathbf{C D}) \cdot \mathbf{D F}} \quad \mathrm{DE}:=\frac{\mathrm{DF} \cdot \mathbf{D H}}{\mathrm{DH}+\text { FH }}$
$\mathbf{A E}:=\mathbf{C H}+\mathbf{C D}+\mathbf{D E} \quad \mathbf{A E}=\mathbf{0 . 5 4 7 7 2 3}$
$\sqrt{\frac{\mathbf{X}}{\mathbf{Y}}}-\mathbf{A E}=\mathbf{0}$

Definitions.

$\mathbf{A B}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B G}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0}$
$\mathbf{F H}-\frac{\mathbf{Y}-\mathbf{X}}{2 \cdot \mathbf{Y}}=\mathbf{0}$
$A F-\frac{X+Y}{2 \cdot Y}=0 \quad \mathbf{C H}-\frac{X+Y}{4 \cdot Y}=0$
$C D-\frac{\left(6 \cdot X \cdot Y-X^{2}-Y^{2}\right)}{4 \cdot \mathbf{Y} \cdot(X+Y)}=0 \quad D F-\frac{(X-Y)^{2}}{2 \cdot Y \cdot(X+Y)}=0$
$\mathbf{D H}-\frac{(\mathbf{Y}-\mathbf{X}) \cdot \sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}} \cdot(\mathbf{X}+\mathbf{Y})}=\mathbf{0}$
$\mathbf{D E}-\frac{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{X}}-\sqrt{\mathbf{Y}})^{2}}{\sqrt{\mathbf{Y}} \cdot(\mathbf{X}+\mathbf{Y})}=\mathbf{0}$
$\mathbf{A E}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0}$

Unit $=1.00000$		
XY $=0.30000$	$A=0.00000$	$G=1.00000$
$X=6.00000$	$B=0.30000$	$D E=0.08618$
$Y=20.00000$	$C=0.32500$	$D F=0.18846$
$B=0.30000$	$D=0.46154$	$C D=0.13654$
$\sqrt{B}=0.54772$	$E=0.54772$	
$C=0.54772$	$F=0.65000$	

$A E$ is the square root of $A B \times A G$, which is always 1 . One should come to understand that considering two things, and the relation between them, they are grouped as one thing and are proportional to that whole. Thus, a simple 1 , or unit, produces every possible solution there ever can be in terms between 0 and 1 . So, slide B from A to G and see every possible root that can exist.

CN
Unit.
AB := $\mathbf{1}$
Given.
$\mathbf{N}:=\mathbf{5}$
102894A
Descriptions.
$\mathbf{A H}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B H}:=\mathbf{A H}-\mathbf{A B}$
$\mathbf{B G}:=\frac{\mathbf{B H}}{\mathbf{2}} \quad \mathbf{G K}:=\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G}$
$\mathbf{D G}:=\frac{\mathbf{G K}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{A D}:=\mathbf{A G}-\mathbf{D G} \quad \mathbf{A L}:=\mathbf{B G}$
$\mathbf{G L}:=\sqrt{\mathbf{A L}{ }^{\mathbf{2}}+\mathbf{A G}^{\mathbf{2}}} \quad \mathbf{B D}:=\mathbf{B G}-\mathbf{D G} \quad \mathbf{D H}:=\mathbf{B H}-\mathbf{B D}$
$\mathbf{D K}:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad \mathbf{K L}:=\sqrt{\mathbf{A D}^{\mathbf{2}}+(\mathbf{A L}+\mathbf{D K})^{2}}$
$\mathbf{G J}:=\frac{\mathbf{G L}^{\mathbf{2}}+\mathbf{G K}^{\mathbf{2}}-\mathbf{K L}^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{G K}} \quad \mathbf{F G}:=\frac{\mathbf{D G} \cdot \mathbf{G J}}{\mathbf{G K}}$
$\mathbf{A F}:=\mathbf{A G}-\mathbf{F G} \quad$ FJ $:=\frac{\mathbf{D K} \cdot \mathbf{G J}}{\mathbf{G K}} \quad \mathbf{E F}:=\frac{\mathbf{A F} \cdot \mathbf{F J}}{\mathbf{F J}+\mathbf{A L}}$
$\mathbf{A E}:=\mathbf{A F}-\mathbf{E F} \quad \sqrt{\mathbf{A B} \cdot \mathbf{A H}}-\mathbf{A E}=\mathbf{0} \quad \mathbf{A E}=\mathbf{2} \mathbf{2 3 6 0 6 8}$

Definitions.
Another fine example of Mathcad's inability to function rationally. Even to get the reduction this far required too much manual labor, but if one wants to continue, then one will get to the simple result.
$\mathbf{A E}-\frac{(\mathbf{N}-1)^{2} \cdot(\mathbf{N}+1) \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}-1)^{2}}+2 \cdot \mathbf{N} \cdot(\mathbf{N}-1) \cdot(\mathbf{N}+1) \cdot \sqrt{(\mathbf{N}+1)^{2}}}{\left(\mathbf{N}^{3}-\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{3} \cdot \mathbf{N}-1\right) \cdot \sqrt{(\mathbf{N + 1})^{2}}+\sqrt{\mathbf{N} \cdot(\mathbf{N}-1)^{2}} \cdot\left(2 \cdot \mathbf{N}^{2}+4 \cdot \mathbf{N}+2\right)}=0$
$\mathbf{A E}-\sqrt{\mathbf{N}}=\mathbf{0}$

Trivial Method Square Root

$A E$ is the square root of $A B \times A H$
$\mathbf{S}_{\mathbf{1}}:=\mathbf{G K} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{G L} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{K L}$
$G J-\frac{S_{2}{ }^{2}+S_{1}{ }^{2}-S_{3}{ }^{2}}{2 \cdot S_{1}}=0$

102894B
Descriptions.
$\mathbf{A B}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B H}:=\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \quad \mathbf{B G}:=\frac{\mathbf{B H}}{\mathbf{2}}$
$\mathbf{G K}:=\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \quad \mathbf{D G}:=\frac{\mathbf{G K}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{A D}:=\mathbf{A G}-\mathbf{D G}$
$\mathbf{A L}:=\mathbf{B G}$

$$
\mathbf{G L}:=\sqrt{\mathbf{A L}^{\mathbf{2}}+\mathbf{A G}^{\mathbf{2}}} \quad \mathbf{B D}:=\mathbf{B G}-\mathbf{D G}
$$

$\mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \mathbf{D K}:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad \mathbf{K L}:=\sqrt{\mathbf{A D}^{2}+(\mathbf{A L}+\mathbf{D K})^{2}}$
$\mathbf{G J}:=\frac{\mathbf{G L}^{2}+\mathbf{G K}^{2}-\mathbf{K L}^{2}}{2 \cdot \mathbf{G K}} \quad \mathbf{F G}:=\frac{\mathbf{D G} \cdot \mathbf{G} \mathbf{J}}{\mathbf{G K}} \quad \mathbf{A F}:=\mathbf{A G}-\mathbf{F G}$
FJ $:=\frac{\text { DK } \cdot \mathbf{G J}}{\mathbf{G K}} \quad \mathbf{E F}:=\frac{\mathbf{A F} \cdot \mathbf{F J}}{\mathbf{F J}+\mathbf{A L}} \quad \mathbf{A E}:=\mathbf{A F}-\mathbf{E F}$
$\sqrt{\mathbf{A B} \cdot \mathbf{A H}}-\mathbf{A E}=\mathbf{0} \quad \mathbf{A E}=0.547723$

Definitions.
And again, this method judges both parties equally.
$\mathbf{A E}-\sqrt{\frac{\mathbf{X}}{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{A E}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=0$

Trivial Method Square Root

$A E$ is the square root of $A B \times A H$ which is always unity.

Unit.
AB := 1
Given.
N := 22
103194A
Descriptions.
$\mathbf{A F}:=\mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{2}$
$\mathbf{A J}:=\mathbf{A F} \quad \mathbf{F K}:=\mathbf{A F} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B J}:=\sqrt{\mathbf{A B}^{\mathbf{2}}+\mathbf{A \mathbf { J } ^ { 2 }}}$
$\mathbf{B G}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B J}} \mathbf{D H}:=\mathbf{A D} \quad \mathbf{D G}:=\frac{\mathbf{A J} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \mathbf{G H}:=\sqrt{\mathbf{D H}^{2}-\mathbf{D G}^{2}}$
$\mathbf{H J}:=\mathbf{B J}+\mathbf{B G}+\mathbf{G H} \quad \mathbf{B C}:=\frac{\mathbf{A B} \cdot(\mathbf{B G}+\mathbf{G H})}{\mathbf{B J}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}$
$\mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \quad \mathbf{C H}:=\sqrt{\mathbf{A C} \cdot \mathbf{C F}} \quad \mathbf{C E}:=\frac{\mathbf{C F} \cdot \mathbf{C H}}{(\mathbf{C H}+\mathbf{F K})}$
$\mathbf{E F}:=\mathbf{C F}-\mathbf{C E} \quad \mathbf{B E}:=\mathbf{B C}+\mathbf{C E} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B E} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C}$

Definitions.

I cannot get Mathcad to transform one into the other.
$\mathbf{B E}^{2}-\mathbf{E F}=\mathbf{0} \quad \sqrt{\mathbf{E F}}-\mathbf{B E}=\mathbf{0}$

$\mathbf{E F}-\frac{2 \cdot \mathbf{N}^{2}-\sqrt{4 \cdot \mathbf{N}-3}-2 \cdot \mathbf{N}+1}{2 \cdot \mathbf{N}+\sqrt{4 \cdot \mathbf{N}-3}+1}=\mathbf{0}$

Square Root of a Segment

Given a unit divide a segment into N and its square. Let $A B$ be the unit and $B F$ the segment then $B E$ is N and $E F$ its square.

110194A

Given.
N_{1} := 4.55192
\mathbf{N}_{2} := $\mathbf{3 . 8 6 3 6 2}$

Descriptions.
$\mathbf{B G}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B C}:=\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}} \quad \mathbf{B N}:=\mathbf{B G} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{F L}:=\mathbf{B F} \quad \mathbf{C F}:=\mathbf{B F}-\mathbf{B C}$
$\mathrm{CN}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BN}^{2}} \quad \mathrm{CH}:=\frac{\mathrm{BC} \cdot \mathbf{C F}}{\mathrm{CN}} \quad \mathrm{FH}:=\frac{\mathrm{BN} \cdot \mathrm{CF}}{\mathrm{CN}} \quad \mathrm{HL}:=\sqrt{\mathrm{FL}^{2}-\mathrm{FH}^{2}}$
$\mathbf{C L}:=\mathbf{C H}+\mathbf{H L} \quad \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{C L}}{\mathbf{C N}} \quad \mathbf{D L}:=\frac{\mathbf{B N} \cdot \mathbf{C L}}{\mathbf{C N}} \quad \mathbf{G M}:=\mathbf{D L} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D}$ $\mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{L M}:=\mathbf{D G} \quad \mathbf{G O}:=\mathbf{B G} \quad \mathbf{M O}:=\mathbf{G O}+\mathbf{G M} \quad$ EG $:=\frac{\mathbf{L M} \cdot \mathbf{G O}}{\mathbf{M O}}$
$\mathbf{C G}:=\mathbf{B G}-\mathbf{B C} \quad \mathbf{C E}:=\mathbf{C G}-\mathbf{E G} \quad \mathbf{C J}:=\mathbf{B C} \quad \mathbf{C K}:=\mathbf{C E} \quad$ IJ $:=\mathbf{B C}$
$\mathbf{J K}:=\mathbf{C K}-\mathbf{C J} \quad \mathbf{I K}:=\sqrt{\mathbf{I J}^{\mathbf{2}}+\mathbf{J K}^{\mathbf{2}}} \quad \mathbf{B I}:=\mathbf{B C} \quad \mathbf{A B}:=\frac{\mathbf{I J} \cdot \mathbf{B I}}{\mathbf{J K}} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G}$

$$
\mathbf{A E}:=\mathbf{A B}+\mathbf{B C}+\mathbf{C E} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A B}=\mathbf{0 . 7 4 6 9 9 8} \quad \mathbf{A G}=\mathbf{5 . 2 9 8 9 1 8}
$$

$\mathrm{AE}=\mathbf{2 . 7 5 7 8 1 2}$
Definitions.
$\left(A B^{2} \cdot A G\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A G^{2}\right)^{\frac{1}{3}}-A E=0$

Here, everything looks as it should and we might get comfortable, but let us just move C.
Given any point on a segment, cut the segment into duplicate ratios with that point.
$\mathbf{E G}=2.541106 \quad \mathrm{CE}=1.322514 \quad \mathrm{BC}=0.6883 \quad \frac{\mathrm{EG}}{\mathrm{CE}}-\frac{\mathrm{CE}}{\mathrm{BC}}=0$

Duplicate Ratios

Given $B G$ and $B C$ find $A B, A G$, such that $\left(A B^{2} \cdot A G\right)^{1 / 3}=B C$. For obvious reasons, BC between BG. It seems this is the first time I drew the figure in Sketchpad, all my other graphics came from TommyCad in the early 90's,

I am going to be presenting two identical write-ups of the figure, the only difference will be in \mathbf{N}_{2} in order to show a problem with so called mathematicians today.
$\mathrm{N}_{1}=4.55192$
$\mathrm{N}_{2}=3.86362$
$\mathrm{AB}=0.74699$
$B F=2.27596$
$A G=5.29891$
$A C=1.43528$
$\mathrm{AE}=\mathbf{2 . 7 5 7 7 9}$
$\left(\mathrm{AB}^{2} \cdot \mathrm{AG}\right)^{\frac{1}{3}}=1.43528$
$\left(A B \cdot A G^{2}\right)^{\frac{1}{3}}=2.75779$
$\left(\mathrm{AB}^{2} \cdot \mathrm{AG}\right)^{\frac{1}{3}}-\mathrm{AC}=0.00000$
$\left(A B \cdot A^{2}\right)^{\frac{1}{3}}-A E=0.00000$

CN
Given.
N_{1} := 4.55192
\mathbf{N}_{2} := 2.63187

110194B

Descriptions. Duplicate Ratios

Given $A G-A B=B G$ and $\left(A B^{2} \cdot A G\right)^{1 / 3}-A B=B C$, find $A B, A G$, and $\left(A B \cdot A G^{2}\right)^{1 / 3}$.
For obvious reasons, BC between BG. It seems this is the first time I drew the figure in Sketchpad, all my other graphics came from TommyCad in the early 90's,

I am going to be presenting two identical write-ups of the figure, the only difference will be in N_{2} in order to show a problem with so called mathematicians today.
$\mathbf{B G}:=\mathbf{N}_{1} \quad \mathbf{B C}:=\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}} \quad \mathbf{B N}:=\mathbf{B G} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{F L}:=\mathbf{B F} \quad \mathbf{C F}:=\mathbf{B F}-\mathbf{B C}$
$\mathrm{CN}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BN}^{2}} \quad \mathrm{CH}:=\frac{\mathrm{BC} \cdot \mathbf{C F}}{\mathrm{CN}} \quad \mathrm{FH}:=\frac{\mathrm{BN} \cdot \mathrm{CF}}{\mathrm{CN}} \quad \mathrm{HL}:=\sqrt{\mathrm{FL}^{2}-\mathrm{FH}^{2}}$
$\begin{array}{lllll}\mathbf{C L}:=\mathbf{C H}+\mathbf{H L} & \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{C L}}{\mathbf{C N}} \quad \mathbf{D L}:=\frac{\mathbf{B N} \cdot \mathbf{C L}}{\mathbf{C N}} \quad \text { GM }:=\mathbf{D L} & \text { BD }:=\mathbf{B C}+\mathbf{C D} \\ \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} & \mathbf{L M}:=\mathbf{D G} \quad \text { GO }:=\mathbf{B G} & \text { MO }:=\mathbf{G O}+\mathbf{G M} & \text { EG }:=\end{array}$
$\mathbf{C G}:=\mathbf{B G}-\mathbf{B C} \quad \mathbf{C E}:=\mathbf{C G}-\mathbf{E G} \quad \mathbf{C J}:=\mathbf{B C} \quad \mathbf{C K}:=\mathbf{C E} \quad$ IJ $:=\mathbf{B C}$
$\mathbf{J K}:=\mathbf{C K}-\mathbf{C J} \quad \mathbf{I K}:=\sqrt{\mathbf{I J}^{2}+\mathbf{J K}^{2}} \quad \mathbf{B I}:=\mathbf{B C} \quad \mathbf{A B}:=\frac{\mathbf{I J} \cdot \mathbf{B I}}{\mathbf{J K}} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G}$
$\mathbf{A E}:=\mathbf{A B}+\mathbf{B C}+\mathbf{C E} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A B}=-\mathbf{8 . 4 6 1 3 1 2} \quad \mathbf{A G}=-3.909392$
$\mathrm{AE}=\mathbf{- 5 . 0 5 6 9 1 1}$
Definitions.
$\left(\mathrm{AB}^{2} \cdot \mathrm{AG}\right)^{\frac{1}{3}}=3.270631+5.664899 \mathrm{i} \quad\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{3}}-\mathrm{AE}=7.585367+4.379414 \mathrm{i}$

For those who believe that math is perfect, that mathematicians are literate, here we have an example of simple geometry and a child's drawing program showing the illiteracy of one of the top math programs world-wide. How is it possible for two identical equations with identical inputs produce two different resullts? How is it possible not to know what your own grammar means? Do the equation in Windows Calculator, it will even get it right. Why can't a so called high end math program?

Unit.

AB := 1
Given.
$\mathbf{N}:=\mathbf{5}$

122494A

Descriptions.
$\mathbf{A J}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A J}} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B G}:=\frac{\mathbf{B J}}{2}$
$\mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \quad \mathbf{G S}:=\mathbf{B G} \quad \mathbf{D G}:=\frac{\mathbf{G S}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{F G}:=\mathbf{A G}-\mathbf{A F}$
$\mathbf{B D}:=\mathbf{B G}-\mathbf{D G} \quad \mathbf{D J}:=\mathbf{B J}-\mathbf{B D} \quad \mathbf{D S}:=\sqrt{\mathbf{B D} \cdot \mathbf{D J}}$
$\mathbf{F K}:=\frac{\mathbf{D S} \cdot \mathbf{F G}}{\mathbf{D G}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B K}:=\sqrt{\mathbf{B F}^{\mathbf{2}}+\mathbf{F K}^{2}}$
FI $:=\frac{\text { DJ } \cdot \mathbf{F K}}{\text { DS }} \quad$ BI $:=\mathbf{F I}+\mathbf{B F} \quad \mathbf{B P}:=\frac{\mathbf{B K} \cdot \mathbf{B J}}{\mathbf{B I}}$
$\mathbf{K P}:=\mathbf{B P}-\mathbf{B K} \quad$ MP $:=\frac{\mathrm{BJ} \cdot \mathbf{K P}}{\mathbf{B K}} \quad$ OS $:=\frac{\text { MP }}{2}$
Definitions.
$\mathbf{D G}-\frac{(\mathbf{N}-\mathbf{1})^{2}}{2 \cdot(\mathbf{N}+\mathbf{1})}=0 \quad$ OS $-\frac{\sqrt{\mathbf{N}} \cdot(\mathbf{N}-\mathbf{1})}{2 \cdot(\mathbf{N}+\sqrt{\mathbf{N}}+\mathbf{1})}=\mathbf{0}$

Power Line At Square Root

In this square root figure, what is the Algebraic definition of the tangent circle OS?

$A B=1.43933 \mathrm{~cm}$ AJ $=11.23950 \mathrm{~cm}$ OS = $1.18009 \mathbf{c m}$
$\sim_{n=0}^{0}$
Given.
$Y:=20 \quad X:=16$

Power Line At Square Root

In this square root figure, what is the Algebraic definition of the tangent circle OS Given just point D ?

Definitions.

Unit.
122494B
Descriptions.
AH $:=\frac{\mathbf{Y}}{\mathbf{Y}}$
$\mathbf{A D}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A C}:=\frac{\mathbf{A H}}{\mathbf{2}} \quad \mathbf{D O}:=\sqrt{\mathbf{A D} \cdot(\mathbf{A H}-\mathbf{A D})} \quad \mathbf{C D}:=\sqrt{\mathbf{A C}^{2}-\mathbf{D O}^{2}}$
$\mathbf{C K}:=\frac{\mathbf{A C}^{2}}{\mathbf{C D}} \quad \mathbf{A K}:=\mathbf{C K}+\mathbf{A C} \quad \mathbf{D K}:=\mathbf{A K}-\mathbf{A D} \quad \mathbf{D J}:=\frac{\mathbf{D K}}{2}$
$\mathbf{A J}:=\mathbf{A D}+\mathbf{D J} \quad \mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{C G}:=\frac{\mathbf{A C}^{2}}{\mathbf{C J}} \quad \mathbf{A G}:=\mathbf{C G}+\mathbf{A C}$
$\mathbf{G V}:=\sqrt{\mathbf{A G} \cdot(\mathbf{A H}-\mathbf{A G})} \quad \mathbf{D P}:=\frac{\mathbf{D J} \cdot \mathbf{C D}}{\mathbf{A C}} \quad \mathbf{D W}:=\frac{\mathbf{A G} \cdot \mathbf{D P}}{\mathbf{G V}}$
$\mathbf{D H}:=\mathbf{A H}-\mathbf{A D} \quad \mathbf{H P}:=\sqrt{\mathbf{D H}^{\mathbf{2}}+\mathbf{D P}^{\mathbf{2}}} \quad \mathbf{A W}:=\mathbf{A D}-\mathbf{D W}$
$\mathbf{H R}:=\frac{\mathbf{H P} \cdot \mathbf{A H}}{\mathbf{A H}-\mathbf{A W}} \quad \mathbf{P R}:=\mathbf{H R}-\mathbf{H P} \quad \mathbf{R T}:=\frac{\mathbf{A H} \cdot \mathbf{P R}}{\mathbf{H P}} \quad \mathbf{S T}:=\frac{\mathbf{R T}}{\mathbf{2}}$
$\mathbf{S T}=\mathbf{0 . 0 9 5 2 3 8}$
$\mathbf{A D}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A C}-\frac{1}{2}=\mathbf{0} \quad \mathbf{D O}-\frac{\sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{C D}-\frac{(2 \cdot \mathbf{X}-\mathbf{Y})}{2 \cdot \mathbf{Y}}=0 \quad \mathbf{C K}-\frac{\mathbf{Y}}{2 \cdot(2 \cdot \mathbf{X}-\mathbf{Y})}=0$
 $A G-\frac{X^{2}}{2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}}=0 \quad G V-\frac{X \cdot(Y-X)}{\left(2 \cdot X^{2}+Y^{2}-2 \cdot X \cdot Y\right)}=0 \quad D P-\frac{X \cdot(Y-X)}{\mathbf{Y}^{2}}=0 \quad D W-\frac{\mathbf{X}^{2}}{\mathbf{Y}^{2}}=0 \quad D H-\frac{Y-X}{Y}=0 \quad \mathbf{H P}-\frac{\sqrt{X^{2}+\mathbf{Y}^{2}} \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y}^{2}}=0$
$A W-\frac{X \cdot(Y-X)}{\mathbf{Y}^{2}}=0 \quad \mathbf{H R}-\frac{(Y-X) \cdot \sqrt{X^{2}+Y^{2}}}{\mathbf{X}^{2}-X \cdot \mathbf{Y}+\mathbf{Y}^{2}}=0 \quad \mathbf{P R}-\frac{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}} \cdot \mathbf{X} \cdot(\mathbf{X}-\mathbf{Y})^{2}}{\mathbf{Y}^{2} \cdot\left(\mathbf{X}^{2}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}\right)}=0 \quad \mathbf{R T}-\frac{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{X}^{2}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}}=0 \quad \mathbf{S T}-\frac{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}{2 \cdot\left(\mathbf{X}^{2}-X \cdot \mathbf{Y}+\mathbf{Y}^{2}\right)}=0$

122595A

Descriptions.

$\mathbf{A O}:=\mathbf{A B} \cdot \mathbf{N}$
N $\mathbf{A G}:=\sqrt{\mathbf{A B} \cdot \mathbf{A O}}$
Unit.
AB := 1
Given.
Two Prime Exponential Series Developed Through The Powerline Progression
$\mathbf{B O}:=\mathbf{A O}-\mathbf{A B} \quad \mathbf{B J}:=\frac{\mathbf{B O}}{2} \quad \mathbf{J Z}:=$ BJ $\quad \mathbf{J V}:=\mathbf{B J} \quad \mathbf{J O}:=$ BJ
$\mathbf{B G}_{\mathbf{1}}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{G O} \mathbf{1}_{1}:=\mathbf{B O}-\mathbf{B G}_{\mathbf{1}} \quad \mathbf{G W}_{\mathbf{1}}:=\sqrt{\mathbf{B G}_{\mathbf{1}} \cdot \mathbf{G O}} \mathbf{1} \quad \mathbf{G J _ { 1 }}:=\mathbf{B J}-\mathbf{B G _ { 1 }} \quad \mathbf{G H} \mathbf{1}:=\frac{\mathbf{G} \mathbf{J}_{\mathbf{1}} \cdot \mathbf{G W}_{\mathbf{1}}}{\mathbf{J Z}+\mathbf{G W} \mathbf{W}_{\mathbf{1}}}$

$\mathbf{H J}:=\mathbf{B J}-\mathbf{B G}_{\Delta} \quad$ FJ $:=\frac{(\mathbf{N}-\mathbf{1})^{2}}{2 \cdot(\mathbf{N}+1)} \quad$ BF $:=\mathbf{B J}-\mathbf{F J} \quad$ FO $:=\mathbf{F J}+\mathbf{J O} \quad$ FV $:=\sqrt{\text { BF } \cdot \mathbf{F O}} \quad$ HR $:=\frac{\text { FV } \cdot \mathbf{H J}}{\text { FJ }}$
$\mathbf{B H}:=\mathbf{B J}-\mathbf{H J} \quad \mathbf{B R}:=\sqrt{\mathbf{H R}^{\mathbf{2}}+\mathbf{B H}^{\mathbf{2}}} \quad \mathbf{H M}:=\frac{\mathbf{F O} \cdot \mathbf{H R}}{\mathbf{F V}} \quad \mathbf{B U}:=\frac{\mathbf{B R} \cdot \mathbf{B O}}{\mathbf{B H}+\mathbf{H M}} \quad \mathbf{R U}:=\mathbf{B U}-\mathbf{B R} \quad \mathbf{S U}:=\frac{\mathbf{B O} \cdot \mathbf{R U}}{\mathbf{B R}}$

$\mathbf{T V}:=\frac{\mathbf{S U}}{2} \quad \mathbf{P U}:=\frac{\mathbf{B H} \cdot \mathbf{S U}}{\mathbf{B R}} \quad \mathbf{B P}:=\mathbf{B U}-\mathbf{P U} \quad \mathbf{B E}:=\frac{\mathbf{B R} \cdot \mathbf{B P}}{\mathbf{B H}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E}$

Definitions.

Descriptions.
$\mathbf{L U}:=\frac{\mathbf{H R} \cdot \mathbf{B U}}{\mathbf{B R}} \quad \mathbf{B L}:=\frac{\mathbf{B H} \cdot \mathbf{B U}}{\mathbf{B R}} \quad \mathbf{H O}:=\mathbf{J O}+\mathbf{H J}$ OR $:=\sqrt{\mathrm{HR}^{2}+\mathrm{HO}^{2}} \quad \mathrm{DS}:=\mathrm{LU} \quad \mathrm{OS}:=\frac{\mathrm{OR} \cdot \mathrm{DS}}{\mathrm{HR}}$ DO $:=\frac{\text { HO DS }}{\text { HR }} \quad$ QS $:=\frac{\text { DO } \mathbf{S U}}{\text { OS }} \quad$ OQ $:=\mathbf{O S}-\mathbf{Q S}$ KO := $\frac{\mathbf{O S} \cdot \mathbf{O Q}}{\mathbf{D O}} \quad \mathbf{A K}:=\mathbf{A O}-\mathbf{K O}$
Definitions.

Two Prime Exponential Series Developed
Through The Powerline Progression

Descriptions.
A series is actually the recursion of a process. In this case, you will find that M through C and then again through ever G, we have produced an exponential series with a simple square root figure. One can see, there are many places one can start this figure and determine the rest of it.
$\mathbf{D H}:=\frac{\mathbf{Y}}{\mathbf{Y}} \quad \mathbf{B D}:=\mathbf{2} \cdot \mathbf{D H} \quad \mathbf{C H}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{H M}:=\mathbf{D H}$
$\mathbf{C M}:=\sqrt{\mathbf{C H}^{2}+\mathbf{H M}^{2}} \quad L M:=\frac{H M \cdot B D}{C M} \quad L M=1.915653$
JL $:=\mathbf{C H} \cdot \frac{\mathbf{B D}}{\mathbf{C M}} \quad \mathbf{J L}=0.574696 \quad$ FH $:=\frac{\mathbf{H M}^{2}}{\mathbf{C H}}$
$\mathbf{D F}:=\mathbf{F H}+\mathbf{D H} \quad \mathbf{D F}=4.333333 \quad \mathbf{C F}:=\mathbf{F H}-\mathbf{C H}$
$\mathbf{C D}:=\mathbf{C H}+\mathbf{D H} \quad \mathbf{A C}:=\frac{\mathbf{C F}}{2} \quad \mathbf{A D}:=\mathbf{A C}+\mathbf{C D}$
$\mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \sqrt{\mathbf{A B} \cdot \mathbf{A D}}-\mathbf{A C}=\mathbf{0}$
$\mathbf{C G}:=\frac{\mathbf{C H} \cdot(\mathbf{L M}-\mathbf{C M})}{\mathbf{C M}} \quad \mathbf{B G}:=\mathbf{D H}-(\mathbf{C H}+\mathbf{C G})$
$\mathbf{G L}:=\sqrt{\mathbf{B G} \cdot(\mathbf{B D}-\mathbf{B G})} \quad \mathbf{G L}=\mathbf{0 . 8 3 4 8 6 2}$

Definitions.
$\mathbf{D H}-\mathbf{1}=\mathbf{0} \quad$ BD: $=2 \quad \mathbf{C H}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{H M}-\mathbf{1}=\mathbf{0} \quad \mathbf{C M}-\frac{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}{\mathbf{Y}}=\mathbf{0}$
$\mathbf{L M}-\frac{2 \cdot \mathbf{Y}}{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}=\mathbf{0} \quad \mathbf{J L}-\frac{2 \cdot \mathbf{X}}{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}=0 \quad \mathbf{F H}-\frac{\mathbf{Y}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{D F}-\frac{\mathbf{X}+\mathbf{Y}}{\mathbf{X}}=0$
$\mathbf{C F}-\frac{\mathbf{Y}^{2}-\mathbf{X}^{2}}{\mathbf{X} \cdot \mathbf{Y}}=0 \quad \mathbf{C D}-\frac{\mathbf{X}+\mathrm{Y}}{\mathbf{Y}}=0$
$A C-\frac{Y^{2}-X^{2}}{2 \cdot X \cdot Y}=0 \quad A D-\frac{(X+Y)^{2}}{2 \cdot X \cdot Y}$
$A B-\frac{(X-Y)^{2}}{2 \cdot X \cdot Y}=0 \quad A C-\frac{\left(Y^{2}-X^{2}\right)}{2 \cdot X \cdot Y}=0$
$C G-\frac{X \cdot\left(Y^{2}-X^{2}\right)}{\left(X^{2}+Y^{2}\right) \cdot Y}=0 \quad B G-\frac{(X-Y)^{2}}{X^{2}+Y^{2}}=0$
$G L-\frac{\mathbf{Y}^{2}-\mathbf{X}^{2}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=0$

Unit.
AB := 1
Given.
$\mathbf{N}:=\mathbf{5}$

122694A

Descriptions.
$\mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}$
$\mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EF}:=\mathrm{BE} \quad \mathrm{EK}:=\mathrm{BE}$
$\mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \quad \mathbf{C E}:=\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)} \quad \mathbf{C F}:=\mathbf{C E}+\mathbf{E F}$
$\mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{B C}:=\mathbf{B F}-\mathbf{C F} \quad \mathbf{C H}:=\sqrt{\mathbf{B C} \cdot \mathbf{C F}}$
$\mathrm{DG}_{1}:=\frac{\mathrm{CH} \cdot \mathrm{DF}}{\mathrm{CF}} \quad \mathrm{DG}_{1}=1.236068$
$\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G} \mathbf{2}_{\mathbf{2}}:=\frac{\mathbf{E K} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathbf{D G}_{1}-\mathbf{D G} \mathbf{2}_{\mathbf{2}}=\mathbf{0}$

Definitions.
This might give you something to think about.
$\mathbf{D G} \mathbf{1}^{-} \frac{(\mathbf{N}+\mathbf{1}) \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1})^{2}} \cdot(\mathbf{N}-\sqrt{\mathbf{N}})}{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{1})^{2}}}=\mathbf{0}$
$\mathbf{D G}_{\mathbf{2}}-(\sqrt{\mathbf{N}}-\mathbf{1})=\mathbf{0}$

Exponential Series

Is Point G on DJ?
Is G, the intersection of $F H$ and $B K$, on $D J$?

122694B
Descriptions.

Given.
$\mathbf{X}:=\mathbf{7}$
$\mathbf{Y}:=\mathbf{2 0}$ Unit.
Unit. Exponential Series
$\frac{Y}{Y}=1 \quad$ Leaving love and me out of the equation.

Definitions.

Unit.
AC:= $\mathbf{1}$
Given.
N := 5

010695A

Descriptions.
$\mathbf{A J}:=\mathbf{A C} \cdot \mathbf{N} \quad \mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{A E}:=\sqrt{\mathbf{A C} \cdot \mathbf{A J}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C}$

EJ := CJ - CE EN $:=\sqrt{\text { CE } \cdot \mathbf{E J}}$ BM $:=$ EN HO $:=$ EN

MN:= EN NO := IBE := EN EH := EN BJ := BE + EJ
$\mathbf{M J}:=\sqrt{\mathbf{B J}^{\mathbf{2}}+\mathbf{B M}^{\mathbf{2}}} \quad \mathbf{M O}:=\mathbf{M N}+\mathbf{N O} \quad \mathbf{M L}:=\frac{\mathbf{B J} \cdot \mathbf{M O}}{\mathbf{M J}}$

Alternate Method Quad Roots

$\mathbf{J L}:=\mathbf{M J}-\mathbf{M L} \quad \mathbf{G J}:=\frac{\mathbf{M J} \cdot \mathbf{J L}}{\mathbf{B J}} \quad \mathbf{A G}:=\mathbf{A J}-\mathbf{G J} \quad\left(\mathbf{A C} \cdot \mathbf{A} \mathbf{J}^{\mathbf{3}}\right)^{\frac{\mathbf{1}}{\mathbf{4}}}-\mathbf{A G}=\mathbf{0}$
$\mathrm{CH}:=\mathrm{CE}+\mathrm{EH} \quad \mathrm{CO}:=\sqrt{\mathrm{CH}^{2}+\mathrm{HO}^{2}} \quad \mathrm{KO}:=\frac{\mathrm{CH} \cdot \mathrm{MO}}{\mathrm{CO}} \quad \mathrm{CK}:=\mathrm{CO}-\mathrm{KO} \quad \mathrm{CD}:=\frac{\mathrm{CO} \cdot \mathrm{CK}}{\mathrm{CH}}$
$A D:=A C+C D \quad\left(A C^{3} \cdot A J\right)^{\frac{1}{4}}-A D=0$

Definitions.
$N^{\frac{3}{4}}-A G=0 \quad N^{\frac{1}{4}}-A D=0$
$\sim_{n}^{\infty} \operatorname{NHT}_{2}^{0}$
Given.
$\mathbf{X}:=6$
Y := 20
Unit.
$\mathbf{F G}:=\frac{\mathbf{Y}}{\mathbf{Y}}$
100695B
Descriptions.
$\mathbf{B F}:=\mathbf{2} \cdot \mathbf{F G} \quad \mathbf{D G}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{D F}:=\mathbf{F G}+\mathbf{D G} \quad \mathbf{B D}:=\mathbf{F G}-\mathbf{D G}$ $\mathbf{D H}:=\sqrt{\mathbf{D F} \cdot \mathbf{B D}} \quad \mathbf{J K}:=\mathbf{2} \cdot \mathbf{D H} \quad \mathbf{F K}:=\sqrt{(\mathbf{D F}+\mathbf{D H})^{2}+\mathbf{D H}^{2}}$
$\mathbf{K U}:=\frac{(\mathbf{D F}+\mathbf{D H}) \cdot \mathbf{J K}}{\text { FK }} \quad$ FU $:=$ FK $-\mathbf{K U} \quad$ EF $:=\frac{\mathbf{J K} \cdot \mathbf{F U}}{\mathbf{K U}}$
BJ $:=\sqrt{(\mathbf{D H}+\mathbf{B D})^{2}+\mathbf{D H}^{2}} \quad \mathrm{JV}:=\frac{(\mathbf{D H}+\mathbf{B D}) \cdot \mathbf{J K}}{\mathbf{B J}}$
$\mathbf{B V}:=\mathbf{B J}-\mathbf{J V} \quad \mathbf{B C}:=\frac{\mathbf{J K} \cdot \mathbf{B V}}{\mathbf{J V}}$
Use 041694, Tangents and Similarity Points for the next equation.
$\mathbf{A F}:=\frac{\mathbf{E F} \cdot(\mathbf{B C}-\mathbf{B F})}{\mathbf{B C}-\mathbf{E F}} \quad \mathbf{A B}:=\mathbf{A F}-\mathbf{B F} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}$
$\mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \quad \mathbf{A E}:=\mathbf{A F}-\mathbf{E F}$
$\left(\frac{A F}{A B}\right)^{\frac{1}{4}}-\frac{A C}{A B}=0 \quad\left(\frac{A F}{A B}\right)^{\frac{2}{4}}-\frac{A D}{A B}=0 \quad\left(\frac{A F}{A B}\right)^{\frac{3}{4}}-\frac{A E}{A B}=0$

What the above tells us is that the figure has to be redrawn such that $A B$ is the unit if we want to express the figure as a quad root series.
The following plate will do just that.

Finding the Unit for a Figure.
Supplement to 100695

Definitions.
$\mathbf{B F}-\mathbf{2}=\mathbf{0} \quad \mathbf{D G}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{D F}-\frac{\mathbf{X}+\mathbf{Y}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{D H}-\frac{\sqrt{\mathbf{Y}^{2}-X^{2}}}{\mathbf{Y}}=0$ $J K-\frac{2 \cdot \sqrt{Y^{2}-X^{2}}}{Y}=0 \quad F K-\frac{\sqrt{(X+Y) \cdot\left(3 \cdot Y-X+2 \cdot \sqrt{Y^{2}-X^{2}}\right)}}{Y}=0$
$K U-\frac{2 \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}} \cdot\left(\mathbf{X}+\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}{\sqrt{(\mathbf{X}+\mathbf{Y}) \cdot\left(3 \cdot \mathbf{Y}-\mathbf{X}+2 \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)} \cdot \mathbf{Y}}=0$
$F U-\frac{(X+Y)^{2}}{Y \cdot \sqrt{2 \cdot X \cdot \sqrt{Y^{2}-X^{2}}+2 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-X^{2}+3 \cdot Y^{2}+2 \cdot X \cdot Y}}=0$
$\mathbf{E F}-\frac{\sqrt{(X+Y) \cdot\left(3 \cdot Y-X+2 \cdot \sqrt{Y^{2}-X^{2}}\right)} \cdot(X+Y)^{2}}{Y \cdot\left(X+Y+\sqrt{Y^{2}-X^{2}}\right) \cdot \sqrt{2 \cdot X \cdot \sqrt{Y^{2}-X^{2}}+2 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-X^{2}+3 \cdot Y^{2}+2 \cdot X \cdot Y}}=0$
$\mathbf{B J}-\frac{\sqrt{(Y-X) \cdot\left(X+3 \cdot Y+2 \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}}{\mathbf{Y}}=0 \quad J V-\frac{2 \cdot\left(Y-X+\sqrt{Y^{2}-X^{2}}\right) \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}}{\mathbf{Y} \cdot \sqrt{(Y-X) \cdot\left(X+3 \cdot \mathbf{Y}+2 \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}}=0$
$B V_{n}:=\frac{(X-Y)^{2}}{Y \cdot \sqrt{2 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-2 \cdot X \cdot \sqrt{Y^{2}-X^{2}}-X^{2}+3 \cdot Y^{2}-2 \cdot X \cdot Y}}$
$B C-\frac{(X-Y)^{2} \cdot \sqrt{(Y-X) \cdot\left(X+3 \cdot Y+2 \cdot \sqrt{Y^{2}-X^{2}}\right)}}{Y \cdot\left(Y-X+\sqrt{Y^{2}-X^{2}}\right) \cdot \sqrt{2 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-2 \cdot X \cdot \sqrt{Y^{2}-X^{2}}-X^{2}+3 \cdot Y^{2}-2 \cdot X \cdot Y}}=0$
$A F-\frac{(X+Y)^{2}}{2 \cdot X \cdot Y}=0 \quad A B-\frac{(X-Y)^{2}}{2 \cdot X \cdot Y}=0 \quad A C-\frac{(X-Y)^{2} \cdot\left(X+Y+\sqrt{Y^{2}-X^{2}}\right)}{2 \cdot X \cdot Y \cdot\left(Y-X+\sqrt{Y^{2}-X^{2}}\right)}=0$

Given.
$\mathbf{X}:=\mathbf{9}$
$\mathbf{Y}:=\mathbf{2}$

Unit.
AB $:=\frac{\mathbf{Y}}{\mathbf{Y}}$
100695C

Finding the Unit for a Figure. Supplement to 100695

Mathcad 15 is not able to reduce these equations to the final powers of $\frac{X}{Y}$, therefore one is going to have to do that manually.

Descriptions.
$\mathbf{A F}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{B F}}{\mathbf{2}} \quad \mathbf{A D}:=\sqrt{\mathbf{A F}}$
$\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D} \quad \mathbf{D G}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}}$
$\mathbf{H J}:=\mathbf{2} \cdot \mathbf{D G} \quad$ BJ $:=\sqrt{(\mathbf{B D}+\mathbf{D G})^{2}+\mathbf{D G}^{2}}$
$\mathbf{J K}:=\frac{(\mathbf{B D}+\mathbf{D G}) \cdot \mathbf{H J}}{\mathbf{B J}} \quad \mathbf{B K}:=\mathbf{B J}-\mathbf{J K} \quad$ BC $:=\frac{\mathbf{H J} \cdot \mathbf{B K}}{\mathbf{J K}}$
$\mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{F H}:=\sqrt{(\mathbf{D F}+\mathbf{D G})^{\mathbf{2}}+\mathbf{D G} \mathbf{D}^{\mathbf{2}}}$
$\mathbf{H P}:=\frac{(\mathbf{D F}+\mathbf{D G}) \cdot \mathbf{H J}}{\mathbf{F H}} \quad \mathbf{F P}:=\mathbf{F H}-\mathbf{H P} \quad$ EF $:=\frac{\mathbf{H J} \cdot \mathbf{F P}}{\mathbf{H P}}$
$\mathbf{A E}:=\mathbf{A F}-\mathbf{E F} \quad \mathbf{A F}^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0} \quad \mathbf{A F}^{\frac{2}{4}}-\mathbf{A D}=\mathbf{0} \quad \mathbf{A F}^{\frac{\mathbf{3}}{4}}-\mathbf{A E}=0$
1.00000 $\mathrm{XY}=4.50000$ $\mathbf{X}=9.00000$ $\mathbf{Y}=2.00000$ $\mathrm{AB}=1.00000$ $\mathrm{AC}=1.45648$ $A D=2.12132$ $\mathrm{AE}=3.08965$ AF $=4.50000$ $\mathrm{AC}^{4}=4.50000$ $\mathrm{AD}^{\frac{4}{2}}=4.50000$ $\mathrm{AE}^{\frac{4}{3}}=4.50000$ $\mathrm{AF}^{\frac{1}{4}}-\mathrm{AC}=0.00000$ $\mathrm{AF}^{\frac{2}{4}}-\mathrm{AD}=0.00000$ $\mathrm{AF}^{\frac{3}{4}}-\mathrm{AE}=0.00000$

$\mathbf{A F}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B F}-\frac{\mathbf{X}-\mathbf{Y}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B O}-\frac{\mathbf{X}-\mathbf{Y}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{A D}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0}$

$$
H J-\frac{2 \cdot X^{\frac{1}{4}} \cdot(\sqrt{X}-\sqrt{Y})}{\left(Y^{3}\right)^{\frac{1}{4}}}=0
$$

$\mathbf{B J}-\frac{\sqrt{(\sqrt{\mathbf{X}}-\sqrt{\mathbf{Y}})^{2} \cdot\left[2 \cdot \sqrt{\mathbf{X}} \cdot \mathbf{Y}+\sqrt{\mathbf{Y}^{3}}+2 \cdot \mathbf{X}^{\frac{1}{4}} \cdot \sqrt{\mathbf{Y}} \cdot\left(\mathbf{Y}^{3}\right)^{\frac{1}{4}}\right]}}{\sqrt{\mathbf{Y} \cdot \sqrt{\mathbf{Y}^{3}}}}=0$

$$
J K-\frac{2 \cdot \mathbf{X}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{X}}-\sqrt{\mathbf{Y}}) \cdot \sqrt{\mathbf{Y} \cdot \sqrt{\mathbf{Y}^{3}}} \cdot(\sqrt{\mathbf{X}}-\sqrt{\mathbf{Y}}) \cdot\left[\mathbf{X}^{\frac{1}{4}} \cdot \sqrt{\mathbf{Y}}+\left(\mathbf{Y}^{3}\right)^{\frac{1}{4}}\right]}{\sqrt{\mathbf{Y}^{3}} \cdot \sqrt{(\sqrt{X}-\sqrt{\mathbf{Y}})^{2} \cdot\left[2 \cdot \sqrt{X} \cdot \mathbf{Y}+\sqrt{\mathbf{Y}^{3}}+2 \cdot \mathbf{X}^{\frac{1}{4}} \cdot \sqrt{Y} \cdot\left(\mathbf{Y}^{3}\right)^{\frac{1}{4}}\right] \cdot \sqrt{Y}}}=0
$$

$\sim_{n=2}^{0}$

$F H-\frac{X^{\frac{1}{4}} \cdot \sqrt{X^{\frac{3}{2}} \cdot \sqrt{Y^{3}}+2 \cdot X \cdot Y^{2}+2 \cdot Y^{3}-4 \cdot \sqrt{X} \cdot Y^{\frac{5}{2}}-2 \cdot X \cdot \sqrt{Y} \cdot \sqrt{Y^{3}}+\sqrt{X} \cdot Y \cdot \sqrt{Y^{3}}+2 \cdot X^{\frac{5}{4}} \cdot Y \cdot\left(Y^{3}\right)^{\frac{1}{4}}+2 \cdot X^{\frac{1}{4}} \cdot Y^{2} \cdot\left(Y^{3}\right)^{\frac{1}{4}}-4 \cdot X^{\frac{3}{4}} \cdot Y^{\frac{3}{2}} \cdot\left(Y^{3}\right)^{\frac{1}{4}}}}{Y \cdot\left(Y^{3}\right)^{\frac{1}{4}}}=0$
$\mathbf{H P}-\frac{2 \cdot X^{\frac{1}{4}} \cdot(\sqrt{X}-\sqrt{Y})^{2} \cdot\left[Y^{\prime}+X^{\frac{1}{4}} \cdot\left(Y^{3}\right)^{\frac{1}{4}}\right]}{\left(Y^{3}\right)^{\frac{1}{4}} \cdot \sqrt{X^{\frac{3}{2}} \cdot \sqrt{Y^{3}}+2 \cdot X \cdot Y^{2}+2 \cdot Y^{3}-4 \cdot \sqrt{X} \cdot Y^{\frac{5}{2}}-2 \cdot X \cdot \sqrt{Y} \cdot \sqrt{Y^{3}}+\sqrt{X} \cdot Y \cdot \sqrt{Y^{3}}+2 \cdot X^{\frac{5}{4}} \cdot Y \cdot\left(Y^{3}\right)^{\frac{1}{4}}+2 \cdot X^{\frac{1}{4}} \cdot Y^{2} \cdot\left(Y^{3}\right)^{\frac{1}{4}}-4 \cdot X^{\frac{3}{4}} \cdot Y^{\frac{3}{2}} \cdot\left(Y^{3}\right)^{\frac{1}{4}}}}=0$

$A E-\frac{\left(x^{\frac{1}{4}}\right)^{3} \cdot\left[x^{\frac{1}{4}} \cdot \sqrt{Y}+\left(Y^{3}\right)^{\frac{1}{4}}\right]}{\sqrt{Y} \cdot\left[Y+X^{\frac{1}{4}} \cdot\left(Y^{3}\right)^{\frac{1}{4}}\right]}=0 \quad A E-\left(\frac{X}{Y}\right)^{\frac{3}{4}}=0$

011295A
Archimedean Trisection Revisited.

I am curious as to why the
Archamedian trisection is still taught the way it was given so long ago and the idea from which it derives is not in any of my books.

I am going to use a circle to demonstrate some principles concerning angles. To help log the results in mathematical terms, I will divide the circle into quadrants and label them either plus or minus. The top is labeled one.

The circle is divided into $1 / 8$ segments of 90 degrees for each quadrant. I start at the top. Since the angle at the perimeter is $1 / 2$ of the angle at the center, when I start the figure I use twice the arc segment for the angle I am working with. I have marked some quadrants with plus and minus and have found that for the figure, I would say that I have $1+1 / 8-1 / 8$. From this I have $\frac{190}{8}=11.25$ my starting angle of the si $\overline{8}=11.25$ will be 90 degrees.
$90+\frac{90}{8}-\frac{90}{8}=90 \quad\left(1+\frac{1}{8}-\frac{1}{8}\right) \cdot 90=90$

CN
$\begin{array}{ll}\text { B }:=1+\frac{1}{8}-\frac{1}{8} & B=1 \\ \frac{B \cdot 4}{4} \cdot 90=90 & \frac{B \cdot 3}{4} \cdot 90=67.5 \\ \frac{B \cdot 2}{4} \cdot 90=45 & \frac{B}{4} \cdot 90=22.5\end{array}$
$\mathbf{8 + 1}-1=8$
$8 \cdot 11.25=90$
$8+1-1-2=6$
$6 \cdot 11.25=67.5$
$8+1-1-2-2=4$
$8+1-1-2-2-2=2$
$4 \cdot 11.25=45$
$2 \cdot 11.25=22.5$
$8+1-1-2-2-2-2=0$
$\bmod (8+1-1,2)=0$
I have added another plus to a quadrant at the bottom of the
figure.
B $:=1+\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \quad B=1.125 \quad \frac{9}{8}=1.125$
$\frac{B \cdot 4.5}{4.5} \cdot 90=101.25$
$\frac{B \cdot 3.5}{4.5} \cdot 90=78.75$
$\frac{B \cdot 2.5}{4.5} \cdot 90=56.25$
$\frac{B \cdot .5}{4.5} \cdot 90=11.25$
$8+1+1-1=9$
$8+1+1-1-2=7$
$8+1+1-1-2-2=5$
$8+1+1-1-2-2-2=3$
$8+1+1-1-2-2-2-2=1$
$\bmod (8+1+1-1,2)=1$

~~~~

$\bmod (8+1,2)=1$
$\underset{\text { B }}{B}:=1+\frac{3}{24}-\underset{\underset{4}{-} \underset{-}{\bullet}=0.791667}{ }$
$\frac{B \cdot 3.1666}{3.1666} \cdot 90=71.25$
$\frac{\text { B } \cdot 1.16666}{3.16666} \cdot 90=26.249905$
$\frac{19}{24}=0.791667$
$\frac{\text { B } \cdot 2.1666}{3.1666} \cdot 90=48.749526$
$\frac{\text { B } \cdot .166666}{3.166666} \cdot 90=3.749986$
$(24+3)-8=19$
$(24+3)-8-(1 \cdot 6)=13$
$(24+3)-8-(2 \cdot 6)=7$
$(24+3)-8-(3 \cdot 6)=1$
$19 \cdot 3.75=71.25$
$19 \cdot 3.75=71.25$
$13 \cdot 3.75=48.75$
$7 \cdot 3.75=26.25$
$1 \cdot 3.75=3.75$

$\bmod (24+3-8,2)=1$

$$
B:=1+\frac{1}{8}-\frac{1}{8}+\frac{10}{8} \quad B=2.25 \quad \frac{18}{8}=2.25
$$

$$
\frac{B \cdot 9}{9} \cdot 90=202.5 \quad \frac{\text { B } \cdot 8}{9} \cdot 90=180
$$

$$
\frac{B \cdot 7}{9} \cdot 90=157.5 \quad \frac{B \cdot .6}{9} \cdot 90=13.5
$$

$8+1-1+10=18 \quad 18 \cdot 11.25=202.5$
$8+1-1+10-(2 \cdot 1)=1616 \cdot 11.25=180$
$8+1-1+10-(2 \cdot 2)=1414 \cdot 11.25=157.5$
$8+1-1+10-(2 \cdot 3)=1212 \cdot 11.25=135$
$8+1-1+10-(2 \cdot 4)=1010 \cdot 11.25=112.5$
$8+1-1+10-(2 \cdot 5)=8 \quad 8 \cdot 11.25=90$
$8+1-1+10-(2 \cdot 6)=66 \cdot 11.25=67.5$
$8+1-1+10-(2 \cdot 7)=44 \cdot 11.25=45$
$8+1-1+10-(2 \cdot 8)=2 \quad 2 \cdot 11.25=22.5$
$\bmod [(8+1-1)+10,2]=0$
$B:=1+\frac{1}{7}-\frac{2}{7} \quad B=0.857143 \quad \frac{6}{7}=0.857143$

$\frac{\text { B } \cdot 6}{6} \cdot 90=77.142857$	$\frac{\text { B } \cdot \mathbf{4}}{6} \cdot 90=51.428571$
90	

$\frac{\text { B } \cdot 2}{6} \cdot 90=25.714286 \quad$ c $:=\frac{90}{7}$

$7+1-(1 \cdot 2)=6$	$6 \cdot c=77.142857$
$7+1-(2 \cdot 2)=4$	$4 \cdot c=51.428571$
$7+1-(3 \cdot 2)=2$	$2 \cdot c=25.714286$

$\begin{array}{ll}7+1-(3 \cdot 2)=2 & 2 \cdot c=25.714286\end{array}$
$\bmod (7+1-2,2)=0$
$\sim_{n \rightarrow 2}^{0}$
B: $:=1+\frac{1}{7}-\frac{1}{7} \quad B=1 \quad \frac{7}{7}=1$
$\frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.285714$
$\frac{B \cdot 3}{7} \cdot \mathbf{9 0}=\mathbf{3 8 . 5 7 1 4 2 !} \frac{B \cdot 1}{7} \cdot \mathbf{9 0}=12.857143$
$7+1-1=7 \quad 7 \cdot c=90$
$7+1-1-(1 \cdot 2)=5 \quad 5 \cdot c=64.285714$
$7+1-1-(2 \cdot 2)=3 \quad 3 \cdot c=38.571429$ $7+1-1-(3 \cdot 2)=1 \quad 1 \cdot c=12.857143$ $\bmod (7+1-1,2)=1$

B:= $1+\frac{8}{56}-\frac{7}{56}$

$$
B=1.017857
$$

$\frac{B \cdot 57}{57} \cdot 90=91.607143$ $\frac{B \cdot 41}{57} \cdot 90=65.892857$
$\frac{B \cdot 25}{57} \cdot 90=40.178571$
c: $=\frac{90}{56}$
$56+8-7=57$
$56+8-7-(1 \cdot 16)=41$
$56+8-7-(2 \cdot 16)=25$
$56+8-7-(3 \cdot 16)=9$
$57 \cdot \mathbf{c}=91.607143$ $41 \cdot c=65.892857$ $25 \cdot c=40.178571$ 9.c $=14.464286$

$\sim_{N=0}^{\infty}$
$B:=1+\frac{1}{7}-\frac{1}{7} \quad B=1$
$\frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.285714$ $\frac{\text { B } \cdot 3}{7} \cdot 90=38.571429 \quad \frac{B \cdot 1}{7} \cdot 90=12.857143$
$7+1-1=7$
$7+1-1-(1 \cdot 2)=5$
$7+1-1-(2 \cdot 2)=3$
$7+1-1-2-2-2=1$
$\bmod (7+1-1,2)=1$

$\sim_{n=2}^{0}$

011295B

Archimedean Trisection Revisited.

$\mathrm{m} \angle \mathrm{BAD}=145.92404^{\circ}$	$\mathrm{A}=145.92404^{\circ}$	
$\mathrm{m} \angle \mathrm{CAD}=111.84808^{\circ}$	$B=111.84808^{\circ}$	
$\mathrm{m} \angle \mathrm{ABC}=72.96202{ }^{\circ}$	$\mathrm{C}=72.96202{ }^{\circ}$	
$\mathrm{m} \angle \mathrm{ABD}=17.03798^{\circ}$	$\mathrm{D}=17.03798{ }^{\circ}$	
$\mathrm{m} \angle \mathrm{BCA}=72.96202{ }^{\circ}$		
$\mathrm{m} \angle \mathrm{BCD}=107.03798^{\circ}$	$\mathrm{F}=107.0379{ }^{\circ}$	$\mathrm{E}=72.96202^{\circ}$
$\mathrm{m} \angle \mathrm{ADB}=17.03798^{\circ}$		
$\mathrm{m} \angle \mathrm{ADC}=34.07596^{\circ}$	$\mathbf{H}=34.07596{ }^{\circ}$	$\mathbf{G}=17.03798^{\circ}$
m \angle AEB $=128.88606^{\circ}$		$\mathrm{J}=128.88606^{\circ}$
$\mathrm{m} \angle \mathrm{BEC}=51.11394^{\circ}$		$\mathrm{K}=51.1139{ }^{\circ}$
m $\angle C E D=128.88606^{\circ}$	$\mathrm{M}=128.88606^{\circ}$	
$\mathrm{m} \angle \mathrm{DEA}=51.11394^{\circ}$	N = 51.11394 ${ }^{\circ}$	

$\frac{\mathrm{A}}{\mathrm{~B}}=1.30466$	$\frac{\mathrm{B}}{\mathrm{~A}}=0.76648$	$\frac{\mathrm{C}}{\mathrm{~A}}=0.50000$	$\frac{\mathrm{D}}{\mathrm{~A}}=0.11676$	$\frac{\mathrm{F}}{\mathrm{~A}}=0.73352$	$\frac{\mathrm{H}}{\mathrm{~A}}=0.23352$	$\frac{\mathrm{M}}{\mathrm{~A}}=0.88324$	$\frac{\mathrm{N}}{\mathrm{~A}}=0.35028$
$\frac{\mathrm{A}}{\mathrm{C}}=2.00000$	$\frac{B}{C}=1.53296$	$\frac{C}{B}=0.65233$	$\frac{D}{B}=0.15233$	$\frac{F}{B}=0.95699$	$\frac{\mathrm{H}}{\mathrm{B}}=0.30466$	$\frac{\mathrm{M}}{\mathrm{B}}=1.15233$	$\frac{\mathrm{N}}{\mathrm{~B}}=0.45699$
$\frac{\mathrm{A}}{\mathrm{D}}=8.56463$	$\frac{B}{D}=6.56463$	$\frac{C}{D}=4.28232$	$\frac{\mathrm{D}}{\mathrm{C}}=0.23352$	$\frac{F}{C}=1.46704$	$\frac{\mathrm{H}}{\mathrm{C}}=0.46704$	$\frac{\mathrm{M}}{\mathrm{C}}=1.76648$	$\frac{\mathrm{N}}{\mathrm{C}}=0.70056$
$\frac{\mathrm{A}}{\mathrm{~F}}=1.36329$	$\frac{B}{F}=1.04494$	$\frac{C}{F}=0.68165$	$\frac{\mathrm{D}}{\mathrm{~F}}=0.15918$	$\frac{F}{D}=6.28232$	$\frac{\mathrm{H}}{\mathrm{D}}=2.00000$	$\frac{\mathrm{M}}{\mathrm{D}}=7.56463$	$\frac{\mathrm{N}}{\mathrm{D}}=3.00000$
$\frac{\mathrm{A}}{\mathrm{H}}=4.28232$	$\frac{\mathrm{B}}{\mathrm{H}}=3.28232$	$\frac{\mathrm{C}}{\mathrm{H}}=2.14116$	$\frac{\mathrm{D}}{\mathrm{H}}=0.50000$	$\frac{F}{H}=3.14116$	$\frac{\mathrm{H}}{\mathrm{~F}}=0.31835$	$\frac{\mathrm{M}}{\mathrm{F}}=1.20412$	$\frac{N}{F}=0.47753$
$\frac{\mathrm{A}}{\mathrm{M}}=1.13219$	$\frac{B}{M}=0.86781$	$\frac{C}{M}=0.56610$	$\frac{\mathrm{D}}{\mathrm{M}}=0.13219$	$\frac{\mathrm{F}}{\mathrm{M}}=0.83049$	$\frac{\mathrm{H}}{\mathrm{M}}=0.26439$	$\frac{\mathrm{M}}{\mathrm{H}}=3.78232$	$\frac{\mathrm{N}}{\mathrm{H}}=1.50000$
$\frac{\mathrm{A}}{\mathrm{~N}}=2.85488$	$\frac{\mathrm{B}}{\mathrm{~N}}=2.18821$	$\frac{\mathrm{C}}{\mathrm{~N}}=1.42744$	$\frac{\mathrm{D}}{\mathrm{~N}}=0.33333$	$\frac{\mathrm{F}}{\mathrm{~N}}=2.09411$	$\frac{\mathrm{H}}{\mathrm{~N}}=0.66667$	$\frac{\mathrm{M}}{\mathrm{~N}}=2.52154$	$\frac{\mathrm{N}}{\mathrm{M}}=0.39658$

Exponential Series-Roots and Powers

I remember a dream was it? That exponential notation is not demonstrable in Geometric Grammar, that it is a pure conceptual abstract.
$\mathbf{A G}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A D}_{\mathbf{0}}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A N}:=\mathbf{A D}_{\mathbf{0}}$

$$
\mathbf{A} \mathbf{J}_{\mathbf{1}}:=\mathbf{A} \mathbf{D}_{\mathbf{0}} \quad \mathbf{D F} \mathbf{0}:=\mathbf{A G}-\mathbf{A} \mathbf{D}_{\mathbf{0}}
$$

$$
\mathbf{D O}_{\mathbf{0}}:=\sqrt{\mathbf{A D _ { \mathbf { 0 } }} \cdot \mathbf{D F}_{\mathbf{0}}} \quad \mathbf{A O _ { 0 }}:=\sqrt{\left(\mathbf{D O}_{\mathbf{0}}\right)^{2}+\left(\mathbf{A D}_{\mathbf{0}}\right)^{2}}
$$

$$
\left(\begin{array}{c}
\mathbf{A D}_{\boldsymbol{\delta}+\mathbf{1}} \\
\mathbf{D F}_{\boldsymbol{\delta}+\mathbf{1}} \\
\mathbf{D O}_{\boldsymbol{\delta}+\mathbf{1}} \\
\mathbf{A O}_{\boldsymbol{\delta}+\mathbf{1}}
\end{array}\right):=\left[\begin{array}{c}
\mathbf{A O _ { \boldsymbol { \delta } }} \\
\mathbf{A G}-\mathbf{A \mathbf { O } _ { \boldsymbol { \delta } }} \\
\sqrt{\left.\mathbf{A O _ { \boldsymbol { \delta } } \cdot (\mathbf { A G } - \mathbf { A O }} \boldsymbol{\delta}\right)} \\
\sqrt{\mathbf{A O _ { \boldsymbol { \delta } }} \cdot\left(\mathbf{A G}-\mathbf{A O} \mathbf{O}_{\boldsymbol{\delta}}\right)+\left(\mathbf{A O _ { \boldsymbol { \delta } }) ^ { \mathbf { 2 } }}\right.}
\end{array}\right]
$$

Definitions.

Definitions. abstract.

I remember a dream was it? That exponential notation is not demonstrable in Geometric Grammar, that it is a pure conceptual

AE := $\mathbf{5 . 2 0 7 0 0}$
Unit := AE
Given.
$\mathrm{AB}:=1.11300 \quad \mathrm{~N}_{\mathbf{1}}$:= AB
091395A 1

$$
\mathbf{A C}:=\mathbf{2 . 0 2 7 1 2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{A C}
$$

Given AE, AB, AC what is GH?

Descriptions.

$\mathbf{B C}:=(\mathbf{A C}-\mathbf{A B})$
$\mathbf{G K}:=\frac{\mathbf{A E} \cdot \mathbf{B C}}{\mathbf{A B}}$
$\mathbf{G H}:=\frac{\mathbf{G K}}{\mathbf{2}}$
$\mathbf{G K}=\mathbf{4 . 2 7 6 5 7} \quad \mathbf{G H}=\mathbf{2 . 1 3 8 2 8 5}$

Definitions.

When selecting a unit, one has to make sure that one draws the figure so that all of the givens are in terms of the unit. These terms will not be in reference to a positive or negative unit, as there is no such thing. Then one can write the logical operators which answer questions in terms of the resulting operations with the unit. In this example, we can put the remaining question as: Is the Brown Circle outside the Green one? If it is not we have to change the sign of the equation. One can look at logical operators which are 1 and - 1 as is such and such and is not such and such or as simple assertion and denial. Therefore, this one logical operator is universal for every question.
$\frac{\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}}{\sqrt{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)^{2}}}=\mathbf{1}$
$\mathbf{G H}-\left[\frac{\text { Unit } \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)}{2 \cdot \mathbf{N}_{1}} \cdot \frac{\mathbf{N}_{2}-\mathbf{N}_{1}}{\sqrt{\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)^{2}}}\right]=\mathbf{0} \quad$ Combinaing we get: $\quad \mathbf{G H}-\frac{\text { Unit } \cdot \sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}}{2 \cdot \mathbf{N}_{1}}=\mathbf{0}$

$$
\begin{array}{ll}
\mathrm{AE}=5.20700 \mathrm{~cm} & \text { Unit }=5.20700 \mathrm{~cm} \\
\mathrm{AB}=1.11300 \mathrm{~cm} & \mathrm{~N}_{1}=1.11300 \mathrm{~cm} \\
\mathrm{AC}=2.02712 \mathrm{~cm} & \mathrm{~N}_{2}=2.02712 \mathrm{~cm} \\
\mathrm{CK}=3.88781 \mathrm{~cm} & \mathrm{AC}-\mathrm{AB}=0.91412 \mathrm{~cm} \\
\mathrm{EF}=4.61708 \mathrm{~cm} & \frac{\mathrm{AE}}{\mathrm{GK}}=0.00000 \\
\mathrm{GK}=4.27653 \mathrm{~cm} & \frac{\mathrm{AB}}{\mathrm{BC}}=0.02 \\
\mathrm{GH}=2.13827 \mathrm{~cm} & \mathrm{AE} \cdot \mathrm{BC} \\
\mathrm{BC}=0.91412 \mathrm{~cm} & \frac{\mathrm{AB}}{\mathrm{~GB}}=0.00000 \mathrm{cr} \\
& \frac{(\mathrm{AC}-\mathrm{AB})}{\sqrt{(\mathrm{AC}-\mathrm{AB})^{2}}}=1.00000
\end{array}
$$

Is GK outside side AE? $=1.00000$ $\mathrm{X}=1.00000$
$\frac{\text { Unit. }\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right)}{2 \cdot \mathrm{~N}_{1}}=2.13827 \mathrm{~cm}$

A Study In Placement

$\frac{\text { Unit } \cdot\left(N_{2}-N_{1}\right)}{2 \cdot N_{1}} \cdot \mathrm{X}-\mathrm{GH}=0.00000 \mathrm{~cm}$
$\frac{\text { Unit } \cdot \sqrt{\left(\mathrm{N}_{1}-\mathrm{N}_{2}\right)^{2}}}{2 \cdot \mathrm{~N}_{1}}-\mathrm{GH}=0.00000 \mathrm{~cm}$

$$
\frac{\text { Unit } \cdot\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right)}{2 \cdot \mathrm{~N}_{1}} \cdot \frac{(\mathrm{AC}-\mathrm{AB})}{\sqrt{(\mathrm{AC}-\mathrm{AB})^{2}}}-\mathrm{GH}=0.00000 \mathrm{~cm}
$$

: $\begin{aligned} & \text { Given. } \\ & x:=4 \\ & z:=6 \\ & z:=17\end{aligned}$
091395A2
Given $\mathrm{AE}, \mathrm{AB}, \mathrm{AC}$ what is GH?
Descriptions.
$\mathbf{A B}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{A C}:=\frac{\mathbf{Y}}{\mathbf{Z}}$
$\mathbf{B C}:=(\mathbf{A C}-\mathbf{A B}) \quad \mathbf{G K}:=\frac{\mathbf{B C}}{\mathbf{A B}} \quad \mathbf{G H}:=\frac{\mathbf{G K}}{\mathbf{2}}$
$\mathbf{G K}=\mathbf{0 . 7 6 4 7 0 6} \mathbf{G H}=\mathbf{0 . 3 8 2 3 5 3}$

Definitions.
$\mathbf{A B}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{A C}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{B C}-\frac{\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}$
$\mathbf{G K}-\frac{\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}}{\mathbf{W} \cdot \mathbf{Z}}=\mathbf{0}$
$\mathbf{G H}-\frac{\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}}{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}}=\mathbf{0}$

A Study In Placement

AE := 5.20700
Unit := AE
Given.
EF := $4.58113 \quad \mathbf{N}_{\mathbf{1}}$:= EF
AC := $1.96362 \quad \mathbf{N}_{2}:=A C$
091395B1

$$
\text { AC := } 1.96362 \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{A C}
$$

Given AE, EF AC what is GH?

Descriptions.

$$
\begin{aligned}
& \mathbf{A B}:=\mathbf{A E}-\frac{\mathbf{E F}^{2}}{\mathbf{A E}} \quad \mathbf{B C}:=(\mathbf{A C}-\mathbf{A B}) \quad \mathbf{G K}:=\frac{\mathbf{A E} \cdot \mathbf{B C}}{\mathbf{A B}} \\
& \mathbf{G H}:=\frac{\mathbf{G K}}{2} \quad \mathbf{G K}=\mathbf{3 . 4 8 3 5 8} \quad \mathbf{G H}=\mathbf{1 . 7 4 1 7 9}
\end{aligned}
$$

Definitions.

When selecting a unit, one has to make sure that one draws the figure so that all of the givens are in terms of the unit. These terms will not be in reference to a positive or negative unit, as there is no such thing. Then one can write the logical operators which answer questions in terms of the resulting operations with the unit. In this example, we can put the remaining question as: Is the Brown Circle outside the Green one? If it is not we have to change the sign of the equation. One can look at logical operators which are 1 and- 1 as is such and such and is not such and such or as simple assertion and denial. Therefore, this one logical operator is universal for every question.

$$
\frac{N_{1}{ }^{2}-\text { Unit }^{2}+N_{2} \cdot \text { Unit }}{\sqrt{\left(N_{1}{ }^{2}-\text { Unit }^{2}+N_{2} \cdot \text { Unit }\right)^{2}}}=1
$$

$\mathbf{G H}-\left[\frac{\left(\mathrm{N}_{2} \cdot \text { Unit }^{2}-\text { Unit }^{3}+\text { Unit } \cdot \mathrm{N}_{1}{ }^{2}\right)}{2 \cdot \text { Unit }^{2}-2 \cdot \mathrm{~N}_{1}{ }^{2}} \cdot \frac{\mathrm{~N}_{1}{ }^{2}-\text { Unit }^{2}+\mathrm{N}_{2} \cdot \text { Unit }}{\sqrt{\left(\mathrm{N}_{1}{ }^{2}-\text { Unit }^{2}+\mathrm{N}_{2} \cdot \text { Unit }\right)^{2}}}\right]=0$
$\mathbf{G H}-\frac{\text { Unit } \cdot \sqrt{\left(\mathbf{N}_{1}{ }^{2}-\text { Unit }^{2}+\mathbf{N}_{2} \cdot \text { Unit }\right)^{2}}}{2 \cdot\left(\text { Unit }^{2}-\mathbf{N}_{1}{ }^{2}\right)}=0$

A Study In Placement

$\frac{\text { Unit } \cdot \sqrt{\left(\left(\mathrm{N}_{1}{ }^{2}-\text { Unit }^{2}\right)+\mathrm{N}_{2} \cdot \text { Unit }\right)^{2}}}{2 \cdot\left(\text { Unit }^{2}-\mathrm{N}_{1}{ }^{2}\right)}-\mathbf{G H}=0.00000 \mathrm{~cm}$
$A B=3.92817 \mathrm{~cm}$ $\mathrm{AB}=3.92817 \mathrm{~cm}$ $A C=5.79479 \mathrm{~cm}$ $\mathrm{CK}=3.30635 \mathrm{~cm}$ $\mathrm{EF}=2.58048 \mathrm{~cm}$ GK $=2.47430 \mathrm{~cm}$ GH $=1.23715 \mathrm{~cm}$ $B C=1.86662 \mathrm{~cm}$

Unit $=5.20700 \mathrm{~cm}$ $\mathrm{N}_{1}=2.58048 \mathrm{~cm}$ $\mathrm{N}_{2}=5.79479 \mathrm{~cm}$
$\frac{\mathrm{AE}}{\mathrm{AB}}-\frac{\mathrm{GK}}{\mathrm{BC}}=\mathbf{0 . 0 0 0 0 0}$ $\overline{A B}-\frac{G}{B C}=$
$\frac{\mathrm{AE} \cdot \mathrm{BC}}{\mathrm{AB}}-\mathrm{GK}=0.00000 \mathrm{~cm}$ $\mathrm{AC}-\mathrm{AB}=1.86662 \mathrm{~cm}$ $\frac{(\mathrm{AC}-\mathrm{AB})}{\sqrt{(\mathrm{AC}-\mathrm{AB})^{2}}}=1.00000$ Is GK outside AE? $=1.00000$ $\mathrm{X}=1.00000$
$\sim_{n=0}^{0}$
091395B2

$$
\mathbf{A E}:=\mathbf{1}
$$

Given AE, EF AC what is GH?

Descriptions.

$\mathbf{A B}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{E F}:=\mathbf{A B} \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{A C}:=\frac{\mathbf{Y}}{\mathbf{Z}}$
$\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad$ GK $:=\frac{\mathbf{A E} \cdot \mathbf{C D}}{\mathbf{D E}}$
GJ $:=\frac{\mathbf{G K}}{\mathbf{2}}$
GJ $=\mathbf{0 . 4 8 0 3 9 2}$
Definitions.
$\mathbf{A B}-\frac{\mathbf{W}}{\mathbf{X}}=0 \quad \mathbf{E F}-\frac{\mathbf{W}}{\mathrm{X}}=0 \quad \mathrm{AD}:=\frac{\mathbf{x}^{2}-\mathbf{w}^{2}}{\mathrm{X}^{2}}$
$A C-\frac{Y}{Z}=0 \quad C D-\frac{X^{2} \cdot Z-X^{2} \cdot Y-W^{2} \cdot Z}{X^{2} \cdot Z}=0$
$D E-\frac{W^{2}}{x^{2}}=0 \quad G K-\frac{x^{2} \cdot z-X^{2} \cdot Y-w^{2} \cdot z}{W^{2} \cdot z}=0$
$G J-\frac{x^{2} \cdot z-x^{2} \cdot y-w^{2} \cdot z}{2 \cdot w^{2} \cdot z}=0$

$$
\begin{array}{ll}
\mathbf{W}:=\mathbf{6} & \mathbf{Y}:=\mathbf{1 4} \\
\mathbf{X}:=\mathbf{2 0} & Z:=\mathbf{1 7}
\end{array}
$$

A Study In Placement

Unit $=1.00000 \quad A_{G}=0.00000$
$\mathrm{w} / \mathrm{X}=0.30000 \quad \mathrm{GH}=0.08647$ $\mathrm{W}=6.00000 \quad \mathrm{AB}=0.30000$ $\mathrm{X}=20.00000 \quad \mathrm{GJ}=0.48039$ $\mathrm{Y} / \mathrm{Z}=\mathbf{0 . 8 2 3 5 3} \quad \mathrm{AC}=0.82353$ $\mathrm{Y}=14.00000 \quad$ GK $=0.96078$ $Z=17.00000 \quad A D=0.91000$ $\mathrm{AW}_{\mathrm{Z}}=1.00000$

GJ- $\frac{X^{2} \cdot Z-X^{2} \cdot Y-W^{2} \cdot Z}{2 \cdot W^{2} \cdot Z}=0.00000$

Unit $=1.00000 \quad A_{G}=0.00000$ $\mathrm{W} / \mathrm{X}=0.67737 \quad \mathrm{GH}=-\mathbf{0 . 2 4 6 4 2}$ $\mathrm{W}=13.54733 \quad \mathrm{AB}=0.67737$ $X=20.00000 \quad$ GJ $=-0.26853$ $\mathrm{Y} / \mathrm{Z}=\mathbf{0 . 7 8 7 5 9} \quad$ AC $=0.78759$ $Y=13.38903 \quad G K=-0.53706$ $\begin{array}{ll}Y=13.38903 \\ Z=17.00000\end{array} \quad A D=0.54117$ $\mathrm{Z}=17.00000 \quad \mathrm{AW}_{\mathrm{Z}}=1.00000$ GJ- $\frac{X^{2} \cdot Z-X^{2} \cdot Y-W^{2} \cdot Z}{2 \cdot W^{2} \cdot Z}=0.00000$

AE := $\mathbf{5 . 2 0 7 0 0}$
Unit := AE
Given.
CK := $2.82631 \mathrm{~N}_{\mathbf{1}}$:= CK
091395C1

Given AE, CK, AC what is GH?
Descriptions.
$\mathbf{C M}:=\frac{\mathbf{C K}^{2}}{\mathbf{A C}} \quad \mathbf{A B}:=\frac{\mathbf{A C} \cdot \mathbf{A E}}{\mathbf{A C}+\mathbf{C M}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B}$
$\mathbf{G K}:=\frac{\mathbf{A E} \cdot \mathbf{B C}}{\mathbf{A B}} \quad \mathbf{G H}:=\frac{\mathbf{G K}}{2} \quad$ GK $=1.019626 \quad$ GH $=0.509813$
Definitions.
When selecting a unit, one has to make sure that one draws the figure so that all of the givens are in terms of the unit. These terms will not be in reference to a positive or negative unit, as there is no such thing. Then one can write the logical operators which answer questions in terms of the resulting operations with the unit. In this example, we can put the remaining question as: Is the Brown Circle outside the Green one? If it is not we have to change the sign of the equation. One can look at logical operators which are 1 and -1 as is such and such and is not such and such or as simple assertion and denial. Therefore, this one logical operator is universal for every question.
$\frac{N_{2} \cdot \sqrt{\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right)^{2}} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}-\text { Unit } \cdot N_{2}\right)}{\sqrt{N_{2}{ }^{2} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}-\text { Unit } \cdot N_{2}\right)^{2} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right)}}=1$
$\mathbf{G H}-\left[\frac{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2}{ }^{2}-\text { Unit } \cdot \mathrm{N}_{2}}{2 \cdot \mathrm{~N}_{2}} \cdot \frac{\mathbf{N}_{2} \cdot \sqrt{\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}\right)^{2} \cdot\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}-\text { Unit } \cdot \mathrm{N}_{2}\right)}}{\sqrt{\mathrm{N}_{2}{ }^{2} \cdot\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}-\text { Unit } \cdot \mathrm{N}_{2}\right)^{2}} \cdot\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}\right)}\right]=0$
$G H-\frac{\left(N_{1}{ }^{2}+N_{2}{ }^{2}-\text { Unit } \cdot N_{2}\right)^{2}}{2 \cdot \sqrt{N_{2}{ }^{2} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}-\text { Unit } \cdot N_{2}\right)^{2}}}=0$

A Study In Placement

$\mathrm{AE}=5.20700 \mathrm{~cm}$ $A B=3.69534 \mathrm{~cm}$ $A C=4.41895 \mathrm{~cm}$ $\mathrm{CK}=2.82631 \mathrm{~cm}$ $\mathrm{EF}=2.80557 \mathrm{~cm}$ GK $=1.01963 \mathrm{~cm}$ GH $=0.50981 \mathrm{~cm}$ $\mathrm{BC}=0.72362 \mathrm{~cm}$ $C M=1.80767 \mathrm{~cm}$

$\frac{\left(\left(\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}\right)-\text { Unit } \cdot \mathrm{N}_{2}\right)^{2}}{2 \cdot \sqrt{\mathrm{~N}_{2}{ }^{2} \cdot\left(\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}\right) \text { Unit } \cdot \mathrm{N}_{2}\right)^{2}}}-\mathrm{GH}=0.00000 \mathrm{~cm}$

Combinaing we get: $\frac{N_{2} \cdot \sqrt{\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right)^{2}} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}-\text { Unit } \cdot N_{2}\right)}{\sqrt{N_{2}{ }^{2} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}-\text { Unit } \cdot N_{2}\right)^{2}} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right)}$

And since MC cannot figure this out, we finish it

Unit $=\mathbf{5 . 2 0 7 0 0} \mathbf{~ c m}$
$\mathrm{N}_{1}=2.82631 \mathrm{~cm}$
$\mathrm{N}_{2}=4.41895 \mathrm{~cm}$
$A C-A B=0.72362 \mathrm{~cm}$
$\frac{\mathrm{AE}}{\mathrm{AB}}-\frac{\mathrm{GK}}{\mathrm{BC}}=\mathbf{0 . 0 0 0 0 0}$
$\frac{\mathrm{AE} \cdot \mathrm{BC}}{\mathrm{AB}}-\mathrm{GK}=0.00000 \mathrm{~cm}$
$\frac{(\mathrm{AC}-\mathrm{AB})}{\sqrt{(\mathrm{AC}-\mathrm{AB})^{2}}}=\mathbf{1 . 0 0 0 0 0}$
Is GK outside AE? = 1.00000 X = 1.00000

Given.
$\mathbf{W}:=12 \quad Y:=6$
$\mathbf{X}:=10 \quad Z:=8$
Unit.
AE := $\mathbf{1}$
091395C2
Given AE, CK, AC what is GH? Descriptions.
$\mathbf{C K}:=\frac{\mathbf{Y}}{\mathbf{Z}}$
$\mathbf{A C}:=\frac{\mathbf{W}}{\mathbf{X}}$
$\mathbf{C M}:=\frac{\mathbf{C K}^{2}}{\mathbf{A C}}$
$\mathbf{A B}:=\frac{\mathbf{A C} \cdot \mathbf{A E}}{\mathbf{A C}+\mathbf{C M}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B}$
$\mathbf{G K}:=\frac{\mathbf{A E} \cdot \mathbf{B C}}{\mathbf{A B}} \quad \mathbf{G H}:=\frac{\mathbf{G K}}{\mathbf{2}}$
$A B=0.719101$
$\mathbf{G K}=\mathbf{0 . 6 6 8 7 5} \quad \mathbf{G H}=\mathbf{0 . 3 3 4 3 7 5}$

Definitions.

$\mathbf{C K}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{A C}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0}$
$C M-\frac{X \cdot Y^{2}}{W \cdot Z^{2}}=0 \quad A B-\frac{W^{2} \cdot Z^{2}}{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}=0$
$B C:=\frac{W \cdot\left(W^{2} \cdot Z^{2}-W \cdot X \cdot Z^{2}+X^{2} \cdot Y^{2}\right)}{X \cdot\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)}$
$G K-\frac{W^{2} \cdot Z^{2}-W \cdot X \cdot Z^{2}+X^{2} \cdot Y^{2}}{W \cdot X \cdot Z^{2}}=0$
$G H-\frac{W^{2} \cdot Z^{2}-W \cdot X \cdot Z^{2}+X^{2} \cdot Y^{2}}{2 \cdot W \cdot X \cdot Z^{2}}=0$

A Study In Placement

$\mathbf{A}_{\mathbf{G}} \quad \mathbf{G J} \mathbf{G H} \quad \mathbf{G K} \quad 10$
Unit $=1.00000 \quad A_{G}=0.00000$
$W / X=1.20000 \quad G J=0.18785$
$\mathrm{W}=12.00000 \quad \mathrm{GH}=0.33438$ $\mathrm{X}=10.00000$ $\mathrm{Y} / \mathrm{Z}=0.75000$ GK $=0.66875$ $\mathrm{AB}=0.71910$ $\mathrm{CK}=0.75000$ $\mathrm{AE}=1.00000$ $\mathrm{AC}=1.20000$ $\mathrm{Y}=6.00000$ Z $=\mathbf{8 . 0 0 0 0 0}$
$\left(\mathrm{W}^{\mathbf{2}} \cdot \mathrm{Z}^{2}-\mathrm{W} \cdot \mathrm{X} \cdot \mathrm{Z}^{\mathbf{2}}\right)+\mathrm{X}^{\mathbf{2}} \cdot \mathbf{Y}^{\mathbf{2}}-\mathrm{GH}=\mathbf{0 . 0 0 0 0 0}$ 2.W.X.Z ${ }^{2}$

Unit.
AB := $\mathbf{1}$
Given.
N_{1} := 5
101495A
Descriptions.

Alternate Method Square Root

For any AK is AC the root of $A B \times A F ?$
$\mathbf{A F}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A K}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}$
$\mathbf{B O}:=\frac{\mathbf{B F}}{2} \quad \mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \quad \mathbf{K M}:=\mathbf{A O} \quad \mathbf{A M}:=\sqrt{\mathbf{A K}^{\mathbf{2}}+\mathbf{K M}^{2}}$
DJ $:=\mathbf{B O} \quad$ AJ $:=\mathbf{A M} \quad \mathbf{A D}:=\sqrt{\mathbf{A J} \mathbf{J}^{2}-\mathbf{D \mathbf { J } ^ { 2 }}}$
$\mathbf{C K}:=\mathbf{A D} \quad \mathbf{A C}:=\sqrt{\mathbf{C K}^{2}-\mathbf{A K}^{2}}$
$\sqrt{\mathbf{A B} \cdot \mathbf{A F}}-\mathbf{A C}=\mathbf{0}$

Definitions.

$\mathbf{A C}-\sqrt{\mathbf{N}_{\mathbf{1}}}=\mathbf{0}$

101495B
Descriptions. \quad BF :=
$\mathbf{A B}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{1} \quad \mathbf{A K}:=\frac{\mathbf{Y}}{\mathbf{Z}}$
$\mathbf{B O}:=\frac{\mathbf{B F}}{\mathbf{2}} \quad \mathbf{A O}:=\mathbf{A B}+\mathbf{B O}$
$\mathbf{K M}:=\mathbf{A O} \quad \mathbf{A M}:=\sqrt{\mathbf{A K}^{\mathbf{2}}+\mathbf{K M}^{\mathbf{2}}}$
DJ := BO \quad AJ := AM
$\mathbf{A D}:=\sqrt{\mathbf{A J}^{2}-\mathbf{D J}}{ }^{2} \quad \mathbf{C K}:=\mathbf{A D}$
$\mathbf{A C}:=\sqrt{\mathbf{C K}^{2}-\mathbf{A K}} \quad \sqrt{\mathbf{A B} \cdot \mathbf{A F}}-\mathbf{A C}=\mathbf{0}$
Definitions.
$\mathbf{A B}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{A F}-\frac{\mathbf{W}+\mathbf{X}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{A K}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0}$
$B O-\frac{1}{2}=0 \quad A O-\frac{2 \cdot W+X}{2 \cdot X}=0 \quad K M-\frac{2 \cdot W+X}{2 \cdot X}=0$
$A M-\frac{\sqrt{4 \cdot W \cdot Z^{2} \cdot(W+X)+X^{2} \cdot\left(4 \cdot Y^{2}+Z^{2}\right)}}{2 \cdot X \cdot Z}=0$
$D J-\frac{1}{2}=0 \quad A J-\frac{\sqrt{4 \cdot W \cdot Z^{2} \cdot(W+X)+X^{2} \cdot\left(4 \cdot Y^{2}+Z^{2}\right)}}{2 \cdot X \cdot Z}=0$
$A D-\frac{\sqrt{W \cdot Z^{2} \cdot(W+X)+X^{2} \cdot Y^{2}}}{X \cdot Z}=0 \quad C K-\frac{\sqrt{W \cdot Z^{2} \cdot(W+X)+X^{2} \cdot Y^{2}}}{X \cdot Z}=0$

$$
\begin{array}{ll}
\text { Given. } & \\
\mathbf{W}:=\mathbf{5} & \mathbf{Y}:=\mathbf{6} \\
\mathbf{X}:=\mathbf{2 0} & Z:=\mathbf{6} \\
\text { Unit. } &
\end{array}
$$

BF :=

Alternate Method Square Root

For any $A K$ is $A C$ the root of $A B \times A F ?$

Unit.
AE := 1
Given.
$\mathbf{N}_{\mathbf{1}}$:= $\mathbf{2}$
102095A
Descriptions.
$\mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B F}:=\sqrt{\mathbf{A B} \cdot \mathbf{B E}} \quad \mathbf{A F}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B F}^{2}}$
$\mathrm{AC}:=\mathrm{AF} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{EG}:=\mathrm{CE} \quad \mathrm{DE}:=\frac{\mathrm{EG}^{2}}{\mathrm{AE}}$
$\mathbf{B D}:=\mathbf{A E}-(\mathbf{A B}+\mathbf{D E}) \quad \frac{\mathbf{B D}^{2}}{4 \cdot(\mathbf{A B} \cdot \mathbf{D E})}=1 \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathbf{D G}:=\sqrt{\mathbf{A D} \cdot \mathbf{D E}}$
Definitions.

$\frac{1}{\mathbf{N}_{1}}-\mathbf{A B}=0 \quad 1-\frac{1}{\mathbf{N}_{1}}-\mathbf{B E}=0 \quad \sqrt{\frac{\left(\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{1} \cdot \mathbf{N}_{1}\right)}}-\mathbf{B F}=0 \quad \sqrt{\frac{\mathbf{N}_{1}}{\mathbf{N}_{1}{ }^{2}}}-\mathbf{A F}=0$
$1-\sqrt{\frac{N_{1}}{N_{1}{ }^{2}}}-\mathrm{CE}=0 \quad 1-2 \cdot \sqrt{\frac{1}{N_{1}}}+\frac{1}{N_{1}}-\mathrm{DE}=0 \quad 2 \cdot \sqrt{\frac{1}{N_{1}}}-\frac{2}{N_{1}}-B D=0$
$2 \cdot \sqrt{\frac{1}{N_{1}}}-\frac{1}{N_{1}}-\mathbf{A D}=0 \quad \frac{\sqrt{4 \cdot \sqrt{N_{1}}-5 \cdot N_{1}+2 \cdot N_{1}{ }^{\frac{3}{2}}-1}}{N_{1}}-D G=0$

102095B
Descriptions.
$\mathbf{A B}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B F}:=\sqrt{\mathbf{A B} \cdot \mathbf{B E}} \quad \mathbf{A F}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B F}^{2}}$
$\mathrm{AC}:=\mathrm{AF} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{EG}:=\mathrm{CE} \quad \mathrm{DE}:=\frac{\mathbf{E G}^{2}}{\mathrm{AE}}$
$\mathbf{B D}:=\mathbf{A E}-(\mathbf{A B}+\mathbf{D E}) \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathbf{D G}:=\sqrt{\mathbf{A D} \cdot \mathbf{D E}}$
$\frac{\mathrm{BD}^{2}}{\mathrm{AB} \cdot \mathrm{DE}}=4 \quad \frac{\mathrm{BD}^{2}}{4 \cdot(\mathrm{AB} \cdot \mathrm{DE})}=1$
$A F=0.447214 \quad A D=0.694427$

Definitions.
$\mathbf{A B}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B E}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B F}-\frac{\sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}}{\mathbf{Y}}=\mathbf{0}$
$\mathbf{A F}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{A C}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=0 \quad \mathbf{C E}-\frac{\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=0$
$\mathbf{E G}-\frac{\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{D E}-\frac{(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})^{\mathbf{2}}}{\mathbf{Y}}=\mathbf{0}$
$\mathbf{B D}-\frac{\mathbf{2} \cdot \sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A D}-\frac{\sqrt{\mathbf{X}} \cdot(\mathbf{2} \cdot \sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y}}=\mathbf{0}$
$\mathbf{D G}-\frac{\mathbf{X}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}) \cdot \sqrt{2 \cdot \sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}}}{\mathbf{Y}}=0$

Four Times The Square

 $\mathrm{Y}=20.00000$

Unit $=\mathbf{1 . 0 0 0 0 0} \quad A B=0.20000$
$\mathbf{X Y}=\mathbf{0 . 2 0 0 0 0} \quad \mathrm{AC}=\mathbf{0 . 4 4 7 2 1}$ $X=4.00000 \quad A D=0.6944$ $\mathrm{AD}=0.69443$

110195A
Descriptions.
$\mathbf{A E}:=\frac{\mathbf{A G}}{2} \quad \mathbf{E G}:=\mathbf{A E} \mathbf{E F}:=\frac{\mathbf{A G}}{\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}} \quad \mathbf{A F}:=\mathbf{A E}+\mathbf{E F}$
$\mathbf{F G}:=\mathbf{E G}-\mathbf{E F} \quad \mathbf{F N}:=\sqrt{\mathbf{A F} \cdot \mathbf{F G}} \quad \mathbf{G N}:=\sqrt{\mathbf{F N}^{2}+\mathbf{F G}^{\mathbf{2}}} \quad$ GK $:=\mathbf{G N}$
$\mathbf{E K}:=\sqrt{\mathbf{G K}^{2}-\mathbf{E G}}{ }^{2} \quad \mathbf{E O}:=\frac{\mathbf{E G} \cdot \mathbf{E F}}{\mathbf{E K}} \quad$ OK $:=\mathbf{E O}+\mathbf{E K} \quad \mathrm{DE}:=\frac{\mathbf{A E}}{\mathbf{N}_{\mathbf{2}}}$
$\mathbf{D O}:=\sqrt{\mathbf{D E}^{2}+\mathbf{E O}^{2}} \quad$ DJ $:=\mathbf{O K}-\mathbf{D O} \quad \mathbf{C D}:=\frac{\mathbf{D E} \cdot \mathbf{D J}}{\mathrm{DO}} \quad \mathbf{C E}:=\mathbf{C D}+\mathbf{D E}$
$\mathbf{C J}:=\frac{\text { EO } \cdot \mathbf{D J}}{\mathbf{D O}} \quad \mathbf{A C}:=\mathbf{A E}-\mathbf{C E} \quad \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}^{2}} \quad \mathbf{A L}:=\mathbf{A J} \quad \mathbf{A B}:=\frac{\mathbf{A L}^{2}}{\mathbf{A G}}$
$\mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{G J}:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}^{2}} \quad \mathbf{G M}:=\mathbf{G J} \quad \mathbf{D G}:=\frac{\mathbf{G M}^{\mathbf{2}}}{\mathbf{A G}}$
$\mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G})$
Definitions.

A Modification Of The Square Root Figure, Gemini Roots

On a given segment and from any point on that segment
construct a square and a segment that will divide that
square by ($\mathrm{N}-1$)/2 times.
Although the final equation is wholly correct, the write-up, itself, is pure garbage. I remember doing this plate right once, but I no longer seem to have that write-up, so I did it again in the plate B. This errant write-up goes back at least as far as 2001. When I started to examine it, the faults it contains shortly after a few equations puzzles me. Maybe that is what happens when you work 12 hours a day, seven days a week for a long time. Well, I often get equations before I write them up, but rarely do so badly on the write-up as this is. Or, the write-up could be the result of a complete lapse in sanity by yours truly. At any rate, it stops being correct after the definition of EO. After EO, it makes no sense at all. Not even on the graphic for this is D a mobile point!. The working point is C, not D.

$\frac{\mathbf{N}_{\mathbf{1}}-\mathbf{1}}{2}-\frac{\sqrt{\mathbf{A B} \cdot \mathbf{D G}}}{\mathbf{B D}}=\mathbf{0}$

Given.
$W:=15 \quad Y:=14$
$X:=20 \quad Z:=20$
Unit.
110195B
AG:= $\mathbf{1}$
Descriptions.
$\mathbf{A E}:=\frac{\mathbf{A G}}{2} \quad \mathbf{E F}:=\frac{\mathbf{Y}}{4 \cdot \mathbf{Z}} \quad \mathbf{A F}:=\mathbf{A E}-\mathbf{E F} \quad \mathbf{A B}:=\frac{\mathbf{W}}{\mathbf{X}}$
$\mathbf{F G}:=\mathbf{A E}+\mathbf{E F} \quad \mathbf{F N}:=\sqrt{\mathbf{A F} \cdot \mathbf{F G}} \quad \mathbf{A N}:=\sqrt{\mathbf{F N}^{2}+\mathbf{A F}^{2}}$
$\mathbf{A K}:=\mathbf{A N} \quad \mathbf{E K}:=\sqrt{\mathbf{A K}^{2}-\mathbf{A E}^{2}} \quad$ EO $:=\frac{\mathbf{A E} \cdot \mathbf{E F}}{\mathbf{E K}}$
$\mathbf{O K}:=\mathbf{E O}+\mathbf{E K} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B}$
$\mathbf{P Q}:=\mathbf{2} \cdot \mathbf{O K} \quad \mathbf{S Q}:=\frac{\mathbf{P Q}-\mathbf{A G}}{2} \quad \mathbf{R J}:=\sqrt{(\mathbf{A B}+\mathbf{S Q}) \cdot[\mathbf{P Q}-(\mathbf{A B}+\mathbf{S Q})]}$
$\mathbf{B J}:=\mathbf{R J}-\mathbf{E O} \quad \mathbf{A J}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B J}^{2}} \quad \mathbf{A M}:=\mathbf{A J} \quad \mathbf{A C}:=\frac{\mathbf{A J} \mathbf{J}^{2}}{\mathbf{A G}}$
$\mathbf{B C}:=\mathbf{A B}-\mathbf{A C} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{C D}:=\mathbf{2} \cdot \mathbf{B C} \quad \mathbf{D G}:=\mathbf{A G}-\mathbf{A D}$
$\mathbf{N}:=\frac{\mathbf{A G}}{\mathbf{2} \cdot \mathbf{E F}} \quad \mathbf{N}=\mathbf{2 . 8 5 7 1 4 3} \quad \frac{\sqrt{\mathbf{A C} \cdot \mathbf{D G}}}{\mathbf{C D}}=\mathbf{0 . 9 2 8 5 7 1}$
$\frac{\mathbf{N}-1}{2}=0.928571 \quad \frac{\mathbf{N}-\mathbf{1}}{2}-\frac{\sqrt{\mathbf{A C} \cdot \mathbf{D G}}}{\mathbf{C D}}=\mathbf{0}$
$\frac{1-2 \cdot \mathbf{E F}}{4 \cdot \mathbf{E F}}-\frac{\sqrt{\mathbf{A C} \cdot \mathbf{D G}}}{\mathbf{C D}}=\mathbf{0}$

A Modification Of The Square Root Figure, Gemini Roots

On a given segment and from any point on that segment construct a square and a segment that will divide that square by ($\mathrm{N}-1$)/2 times.

Definitions.

$\mathbf{E O}-\frac{\mathbf{Y}}{4 \cdot \sqrt{\mathbf{Z}} \cdot \sqrt{\mathbf{Z}-\mathbf{Y}}}=\mathbf{O} \quad \mathbf{O K}-\frac{2 \cdot \mathbf{Z}-\mathbf{Y}}{4 \cdot \sqrt{\mathbf{Z}} \cdot \sqrt{\mathbf{Z - Y}}}=\mathbf{O} \quad \mathbf{B G}-\frac{\mathbf{X}-\mathbf{W}}{\mathbf{X}}=\mathbf{O} \quad \mathbf{P Q}-\frac{\mathbf{2} \cdot \mathbf{Z}-\mathbf{Y}}{2 \cdot \sqrt{\mathbf{Z}} \cdot \sqrt{\mathbf{Z}-\mathbf{Y}}}=\mathbf{0} \quad \mathbf{S Q}-\frac{\mathbf{2} \cdot \mathbf{Z}-\mathbf{Y}-\mathbf{2} \cdot \sqrt{\mathbf{Z}} \cdot \sqrt{\mathbf{Z}-\mathbf{Y}}}{4 \cdot \sqrt{\mathbf{Z}} \cdot \sqrt{\mathbf{Z}-\mathbf{Y}}}=0$

$A J-\frac{\sqrt{\sqrt{Z} \cdot(Y-Z) \cdot\left(8 \cdot W \cdot Y \cdot Z-X \cdot Y^{2}-8 \cdot W \cdot Z^{2}\right)-Y \cdot \sqrt{Z-Y} \cdot \sqrt{Z^{2}-Y \cdot Z} \cdot \sqrt{16 \cdot \mathbf{W}^{2} \cdot Z \cdot(Y-Z)-16 \cdot W \cdot X \cdot Z \cdot(Y-Z)+X^{2} \cdot Y^{2}}}}{\sqrt{8 \cdot Z^{\frac{3}{2}} \cdot X \cdot(Y-Z)^{2}}}=0$

$A C-\frac{8 \cdot(\sqrt{Z})^{3} \cdot \mathbf{W} \cdot(Y-Z)^{2}-\sqrt{Z} \cdot \mathbf{X} \cdot \mathbf{Y}^{2} \cdot(Y-Z)-Y \cdot \sqrt{Z-Y} \cdot \sqrt{Z^{2}-Y \cdot Z} \cdot \sqrt{\mathbf{X}^{2} \cdot \mathbf{Y}^{2}+16 \cdot \mathbf{W} \cdot \mathbf{Z} \cdot(\mathbf{Y}-Z) \cdot(\mathbf{W}-\mathbf{X})}}{\frac{3}{2}}=0$
$\mathbf{8} \cdot \mathbf{X} \cdot \mathbf{Z}^{\overline{2}} \cdot(\mathbf{Y}-Z)^{\mathbf{2}}$

$\mathbf{A D}-\frac{\sqrt{\mathbf{Z}} \cdot(\mathbf{Y}-Z) \cdot\left(\mathbf{X} \cdot \mathbf{Y}^{2}+\mathbf{8} \cdot \mathbf{W} \cdot \mathbf{Y} \cdot \mathbf{Z}-\mathbf{8} \cdot \mathbf{W} \cdot \mathbf{Z}^{2}\right)+\mathbf{Y} \cdot \sqrt{\mathbf{Z}-\mathbf{Y}} \cdot \sqrt{\mathbf{Z}^{2}-\mathbf{Y} \cdot \mathbf{Z}} \cdot \sqrt{\mathbf{1 6} \cdot \mathbf{W}^{2} \cdot \mathbf{Z} \cdot(\mathbf{Y}-Z)-\mathbf{1 6} \cdot \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{Z} \cdot(\mathbf{Y}-Z)+\mathbf{X}^{2} \cdot \mathbf{Y}^{2}}}{3}=0$ $\mathbf{8} \cdot \mathrm{Z}^{\frac{3}{2}} \cdot \mathbf{X} \cdot(\mathbf{Y}-\mathrm{Z})^{\mathbf{2}}$

$\mathbf{C D}-\frac{Y \cdot\left(\sqrt{Z-Y} \cdot \sqrt{Z^{2}-Y \cdot Z} \cdot \sqrt{16 \cdot W^{2} \cdot Y \cdot Z-16 \cdot W^{2} \cdot Z^{2}-16 \cdot W \cdot X \cdot Y \cdot Z+16 \cdot W \cdot X \cdot Z^{2}+X^{2} \cdot Y^{2}}-X \cdot Y \cdot Z^{\frac{3}{2}}+X \cdot Y^{2} \cdot \sqrt{Z}\right)}{4 \cdot Z^{\frac{3}{2}} \cdot X \cdot(Y-Z)^{2}}=0$
$\mathbf{D G}-\frac{\sqrt{\mathbf{Z}} \cdot(\mathbf{Y}-\mathbf{Z}) \cdot\left[\mathbf{8} \cdot\left(\mathbf{W} \cdot \mathbf{Z}^{2}+\mathbf{X} \cdot \mathbf{Y} \cdot \mathbf{Z}\right)-\left[\mathbf{X} \cdot \mathbf{Y}^{2}+\mathbf{8} \cdot \mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})\right]-\mathbf{Y} \cdot \sqrt{\mathbf{Z}-\mathbf{Y}} \cdot \sqrt{\mathbf{Z}^{2}-\mathbf{Y} \cdot \mathbf{Z}} \cdot \sqrt{\mathbf{1 6} \cdot \mathbf{W} \cdot \mathbf{Z} \cdot(\mathbf{Y}-\mathbf{Z}) \cdot(\mathbf{W}-\mathbf{X})+\mathbf{X}^{2} \cdot \mathbf{Y}^{2}}\right.}{8 \cdot \mathbf{Z}^{\frac{\mathbf{3}}{2}} \cdot \mathbf{X} \cdot(\mathbf{Y}-\mathbf{Z})^{2}}=0$

$$
8 \cdot \mathbf{Z}^{\overline{2}} \cdot \mathbf{X} \cdot(\mathbf{Y}-\mathbf{Z})^{2}
$$

This is all a bit out of hand, maybe?
$\mathbf{N}:=\frac{\mathbf{A G}}{\mathbf{2 \cdot E F}} \quad \mathbf{N}=\mathbf{2 . 8 5 7 1 4 3}$
$\frac{\mathbf{N}-\mathbf{1}}{2}=0.928571 \quad \frac{\mathbf{N}-1}{2}-\frac{\sqrt{\mathbf{A C} \cdot \mathbf{D G}}}{\mathbf{C D}}=\mathbf{0} \quad \frac{\sqrt{\mathbf{A C} \cdot \mathbf{D G}}}{\mathbf{C D}}=0.928571$

Unit.

AG:= $\mathbf{1}$
Given.
$\mathbf{N}_{\mathbf{1}}$:= $\mathbf{3}$
110595A
Descriptions.
$\mathbf{N}_{\mathbf{2}}:=\mathbf{5}$
AF $:=\frac{\mathbf{A G}}{2} \quad$ AR $:=\mathbf{A F} \quad \mathbf{F Q}:=\mathbf{A F} \quad$ FG $:=\mathbf{A F}$
$\mathbf{A L}:=\frac{\mathbf{A R}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{I M}:=\frac{\mathbf{A R}}{\mathbf{N}_{\mathbf{2}}} \quad$ AK $:=\frac{\mathbf{A L} \cdot \mathbf{I M}}{\mathbf{A R}} \quad$ DO $:=\mathbf{I M}$
$\mathbf{A B}:=\mathbf{A K} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{F O}:=\mathbf{B F} \quad \mathbf{O Q}:=\mathbf{F Q}-\mathbf{F O}$
NP := $\frac{(A G-2 \cdot A B) \cdot \mathbf{O Q}}{\text { FO }} \quad$ NP $-2 \cdot A K=0 \quad C D:=A K$

Alternate Method Gemini Roots

$\mathbf{D E}:=\mathbf{A K} \quad \mathbf{D F}:=\sqrt{\mathbf{F O}^{2}-\mathbf{D O}^{2}} \quad \mathbf{A D}:=\mathbf{A F}-\mathbf{D F}$
$\mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \quad \mathbf{E G}:=\mathbf{F G}+\mathbf{D F}-\mathbf{D E} \quad \mathbf{C E}:=\mathbf{N P}$
$\frac{\mathbf{N}_{1}}{2}-\frac{\sqrt{\mathbf{A C} \cdot \mathbf{E G}}}{\mathbf{C E}}=\mathbf{0}$
Definitions.
$A F-\frac{1}{2}=0 \quad A R-\frac{1}{2}=0 \quad F Q-\frac{1}{2}=0 \quad F G-\frac{1}{2}=0 \quad A L-\frac{1}{2 \cdot N_{1}}=0 \quad I M-\frac{1}{2 \cdot N_{2}}=0 \quad D O-\frac{1}{2 \cdot N_{2}}=0$
$A K-\frac{1}{2 \cdot N_{1} \cdot N_{2}}=0 \quad A B-\frac{1}{2 \cdot N_{1} \cdot N_{2}}=0 \quad C D-\frac{1}{2 \cdot N_{1} \cdot N_{2}}=0 \quad D E-\frac{1}{2 \cdot N_{1} \cdot N_{2}}=0$
$B F-\frac{N_{1} \cdot N_{2}-1}{2 \cdot N_{1} \cdot N_{2}}=0 \quad F O-\frac{N_{1} \cdot N_{2}-1}{2 \cdot N_{1} \cdot N_{2}}=0 \quad O Q-\frac{1}{2 \cdot N_{1} \cdot N_{2}}=0 \quad N P-\frac{1}{N_{1} \cdot N_{2}}=0 \quad C E-\frac{1}{N_{1} \cdot N_{2}}=0$
$D F-\frac{\left.\sqrt{\left(N_{1} \cdot N_{2}-N_{1}-1\right.}\right) \cdot\left(N_{1}+N_{1} \cdot N_{2}-1\right)}{2 \cdot N_{1} \cdot N_{2}}=0 \quad A D-\frac{N_{1} \cdot N_{2}-\sqrt{N_{1}{ }^{2} \cdot N_{2}{ }^{2}-N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+1}}{2 \cdot N_{1} \cdot N_{2}}=0$
$A C-\frac{N_{1} \cdot N_{2}-\sqrt{N_{1}{ }^{2} \cdot N_{2}{ }^{2}-N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+1}-1}{2 \cdot N_{1} \cdot \mathbf{N}_{2}}=0$
$E G-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}+\sqrt{\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}{ }^{2}-\mathbf{N}_{1}{ }^{2}-2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+1}-1}{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}=0 \quad \frac{\mathbf{N}_{1}}{2}=1.5 \quad \frac{\sqrt{A C \cdot E G}}{C E}=1.5$

110595B
Descriptions.

Unit.
AB := 1
Given.
$\mathbf{W}:=8 \quad Y:=13$
$X:=20 \quad Z:=20$
$\mathbf{B C}:=\mathbf{A B} \quad \mathbf{A P}:=\mathbf{A B} \quad \mathbf{R T}:=\mathbf{A B} \quad \mathbf{B M}:=\mathbf{A B}$
$\mathbf{A C}:=\mathbf{2} \cdot \mathbf{A B} \quad \mathbf{A N}:=\frac{\mathbf{W}}{\mathbf{X}} \quad$ OR $:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{R S}:=\frac{\mathbf{A N} \cdot \mathbf{O R}}{\mathbf{R T}}$
EH := OR \quad FJ $:=\mathbf{O R} \quad$ GK $:=\mathbf{O R}$
$\mathbf{B J}:=\mathbf{A B}-\mathbf{R S} \quad \mathbf{J M}:=\mathbf{R S}$
HK := 2.JM EG := HK
$\mathbf{B F}:=\sqrt{\mathbf{B J}^{\mathbf{2}}-\mathbf{F} \mathbf{J}^{\mathbf{2}}} \quad \mathbf{B G}:=\mathbf{B F}+\mathbf{J M}$
$\mathbf{C G}:=\mathbf{B C}-\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A C}-\mathbf{C G} \quad \mathbf{A E}:=\mathbf{A G}-\mathbf{E G}$ $\frac{\mathbf{A B}}{2 \cdot \mathbf{A N}}-\frac{\sqrt{\mathbf{A E} \cdot \mathbf{C G}}}{\mathbf{E G}}=\mathbf{0}$

Definitions.
$\mathbf{B C}-\mathbf{1}=\mathbf{0} \quad \mathbf{A P}-\mathbf{1}=\mathbf{0} \quad \mathbf{R T}-\mathbf{1}=\mathbf{0} \quad \mathbf{B M}-\mathbf{1}=\mathbf{0}$

$A C-2=0 \quad A N-\frac{W}{X}=0 \quad$ OR $-\frac{\mathbf{Y}}{\mathbf{Z}}=0 \quad \mathbf{R S}-\frac{\mathbf{W} \cdot \mathbf{Y}}{\mathbf{X} \cdot \mathbf{Z}}=0$
$\mathbf{E H}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{F J}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{G K}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{B J}-\frac{\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{J M}-\frac{\mathbf{W} \cdot \mathbf{Y}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{H K}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{E G}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}$


~~~~

\section*{Unit.}

AH:= \(\mathbf{1}\)
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{5}\)
120195A
Descriptions.
\(\mathbf{A E}:=\frac{\mathbf{A H}}{2} \quad \mathbf{E H}:=\mathbf{A E} \mathbf{E P}:=\mathbf{A E} \quad \mathbf{A P}:=\sqrt{2 \cdot \mathbf{A E}^{2}}\)
\(\mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{N}_{1}} \quad \mathbf{C E}:=\mathbf{A B} \mathbf{C H}:=\mathbf{E H}+\mathbf{C E} \quad \mathbf{C L}:=\sqrt{2 \cdot \mathbf{C E}^{2}}\)
\(\mathbf{A M}:=\frac{\mathbf{C L} \cdot \mathbf{A H}}{\mathbf{C H}} \quad \mathbf{M P}:=\mathbf{A P}-\mathbf{A M} \quad \mathbf{N P}:=\frac{\mathbf{E P} \cdot \mathbf{M P}}{\mathbf{A P}}\)
Definitions.
\(\frac{1}{2} \cdot \frac{\left(\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{1}+1\right)}-\mathbf{N P}=0 \quad \frac{\left(\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{1}+1\right)}-\mathbf{2} \cdot \mathbf{N P}=\mathbf{0}\)
\(A E-\frac{1}{2}=0 \quad E H-\frac{1}{2}=0 \quad E P-\frac{1}{2}=0\)
\(A P-\frac{\sqrt{2}}{2}=0 \quad A B-\frac{1}{2 \cdot \mathbf{N}_{1}}=0 \quad C E-\frac{1}{2 \cdot N_{1}}=0\)
\(\mathrm{CH}-\frac{\mathbf{N}_{1}+1}{2 \cdot \mathbf{N}_{1}}=0 \quad \mathrm{CL}-\frac{1}{\sqrt{2} \cdot \mathrm{~N}_{1}}=0 \quad \mathrm{AM}-\frac{\sqrt{2}}{\mathbf{N}_{1}+1}=0\)
\(\mathbf{M P}-\frac{\sqrt{2} \cdot\left(\mathbf{N}_{1}-1\right)}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=0 \quad \mathbf{N P}-\frac{\mathbf{N}_{1}-\mathbf{1}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=0\)

\section*{Method For Equals}

Given \(A B\) find NP

(
Given.
\(\mathbf{X}:=8\)
\(\mathbf{Y}:=\mathbf{2 0}\)
Y:=20
AE : \(=\frac{\mathbf{Y}}{\mathbf{Y}}\)
Descriptions.
\(\mathbf{A H}:=2 \cdot \mathbf{A E} \quad \mathbf{E H}:=\mathbf{A E} \mathbf{E P}:=\mathbf{A E} \quad \mathbf{A P}:=\sqrt{2 \cdot \mathbf{A E}^{2}}\)
\(\mathrm{AB}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{C E}:=\mathrm{AB} \mathbf{C H}:=\mathbf{E H}+\mathbf{C E} \quad \mathrm{CL}:=\sqrt{2 \cdot \mathbf{C E}^{2}}\)
\(\mathbf{A M}:=\frac{\mathbf{C L} \cdot \mathbf{A H}}{\mathbf{C H}} \quad \mathbf{M P}:=\mathbf{A P}-\mathbf{A M} \quad \mathbf{N P}:=\frac{\mathbf{E P} \cdot \mathbf{M P}}{\mathbf{A P}}\)
Definitions.
\(\mathbf{E H}-\mathbf{1}=\mathbf{0} \quad \mathbf{E P}-\mathbf{1}=\mathbf{0} \quad \mathbf{A H}-\mathbf{2}=\mathbf{0} \quad \mathbf{A P}-\sqrt{2}=\mathbf{0}\)
\(\mathbf{A B}-\frac{\mathbf{X}}{\mathbf{Y}}=0 \quad \mathbf{C E}-\frac{\mathbf{X}}{\mathbf{Y}}=0 \quad \mathbf{C H}-\frac{\mathbf{X}+\mathbf{Y}}{\mathbf{Y}}=0 \quad \mathbf{C L}-\frac{\sqrt{2} \cdot \mathbf{X}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{A M}-\frac{2 \cdot \sqrt{2} \cdot \mathbf{X}}{\mathbf{X}+\mathbf{Y}}=\mathbf{0} \quad \mathbf{M P}-\frac{(\mathbf{Y}-\mathbf{X}) \cdot \sqrt{2}}{\mathbf{X}+\mathbf{Y}}=\mathbf{0} \quad \mathbf{N P}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{X}+\mathbf{Y}}=\mathbf{0}\)

\section*{Method For Equals}

Given AB find NP.


\section*{27 Euler's Straight Line}

In all triangles the center of the circumscribed circle, the point of intersection of the medians, and the point of intersection of the altitudes are siluated in this order in a straight line-the Euler line-and are spaced in such a manner that the altitude intersection is twice as far from the median intersection as the center of the circumscribed circle is.

Leonhard Euler (1707-1783) was one of the greatest and most fertile mathematicians of all time. His writings comprise 45 volumes and over 700 papers, most of them long ones, published in periodicals.

The above theorem is among the results of the paper "Solutio facilis problematum quorundam geometricorum difficillimorum," which appeared in the journal Novi commentarii Academiae Petropolitanae (ad annum 1765).

The following proof of the Euler theorem is distinguished by its great simplicity.

In the triangle \(A B C\) let \(M\) be the midpoint of side \(A B, S\) the median intersection, which lies on \(C M\), so that
\[
\begin{equation*}
S C=2 \cdot S M \tag{1}
\end{equation*}
\]
and \(U\) the center of the circle of circumscription, lying on the perpendicular bisector of \(A B\).

We extend \(U S\) by \(S O\) so that
\[
\begin{equation*}
S O=2 \cdot S U \tag{2}
\end{equation*}
\]
and join \(O\) to \(C\).
According to (1) and (2) the triangles MUS and COS are similar. Consequently, \(C O \| M U\), i.e., \(C O \perp A B\), or expressed verbally, the line connecting the point \(O\) with a vertex of the triangle is perpendicular to the side of the triangle opposite the vertex; consequently, the connecting line is an altitude of the triangle.

The three alitudes consequently pass through point 0 . This is, therefore, the altitude intersection, and Euler's theorem is proved.

Note. Our proof contains at the same time the solution to the interesting

120795A
Dover republished this book in 1965. The only time I ever drew it up I was still using TommyCad. The graphic, on the following page, is not even appropriate for the figure. The proof is not valid at all. In a proof, one has to have their Lets, only be the given three lines of a triangle.

\section*{Euler's Straight Line}

In all triangles the center of the circumscribed circle, the point of intersection of the medians, and the point of intersection of the altitudes are situated in this order in a straight line-the Euler line-and are spaced in such a manner that the altitude intersection is twice as far from the median intersection as the center of the circumscribed circle is.

So, what is the so called proposition, which is not labled as such, try to say? What does the above statement mean?

Let us take any triangle whatsoever and construct three points with it. One is the center of the circle which circumscribes it, point \(N\), the second is perpendicular of each point to the segment opposite to it. These three will also converge at what is being called an altitude, point P. Next let us take the midpoint of each segment and form a segment with the opposite vertex point. These three will also construct one point, . These three points will be collinear, and if we take NP for the unit, ON will be \(1 / 3\) rd of \(i t\), while OP the other \(2 / 3\) rds.

This plate in my releases has never been drawn up by me in Sketchpad. It is still the origional grapic \(I\) did in TommyCad. So, in this revision I will correct that issue.

The real problem that \(I\) see, is that every median is also cut in the same ratio, no different than the so called Euler's line as if Euler had anything what so ever to do than connent the dots. which is hardly a great feat for any so called mathematician, or anyone playing dots to begin with. The most obsurd thing which ego does for someone is incite them to simply rename a name in a particular grammar.
If this is Euler's straight line, are the the rest of his lines crooked?


120795AR
Descriptions.
AC \(:=\left(\begin{array}{c}\text { Side_1 } \\ \text { Side_2 } \\ \text { Side_3 }\end{array}\right) \quad\) BC \(:=\left(\begin{array}{c}\text { Side_2 } \\ \text { Side_3 } \\ \text { Side_1 }\end{array}\right) \quad\) AB \(:=\left(\begin{array}{c}\text { Side_3 } \\ \text { Side_1 } \\ \text { Side_2 }\end{array}\right)\)

\section*{Scholia: 100 Great Problems of Elementary}

\section*{Mathematics H. Dorrie Problem 27 Euler's Line}

Given three sides of a triangle, determine the length of the Euler line. Work the drawing from each of the sides.

TRIANGLE \(:=(\) Side_1 + Side_2 \(>\) Side_3 \() \cdot(\) Side_1 + Side_3 \(>\) Side_2 \() \cdot(\) Side_2 + Side_3 \(>\) Side_1) \(\quad\) TRIANGLE \(=1\)

\(\mathbf{A h}_{\boldsymbol{\delta}}:=\mathbf{A B}_{\boldsymbol{\delta}}-\mathbf{B h}_{\boldsymbol{\delta}} \quad \quad \mathbf{h i}_{\boldsymbol{\delta}}:=\mathbf{A h}_{\boldsymbol{\delta}}-\mathbf{A} \mathbf{i}_{\boldsymbol{\delta}} \quad \mathbf{A j} \boldsymbol{\delta}:=\mathbf{A i}_{\boldsymbol{\delta}}+\frac{\mathbf{h i}_{\boldsymbol{\delta}}}{2} \quad \mathbf{C j}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{A C} \mathbf{C}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}-(\mathbf{A j} \boldsymbol{j})^{\mathbf{2}}}\)
\(\mathrm{BE}_{\boldsymbol{\delta}}:=\mathrm{AE}_{\boldsymbol{\delta}} \quad \mathrm{Bj}_{\delta}:=\mathrm{AB}_{\boldsymbol{\delta}}-\mathrm{Aj}_{\boldsymbol{\delta}} \quad \mathrm{Bg}_{\delta}:=\frac{\mathrm{BC}_{\boldsymbol{\delta}}}{2} \quad \mathrm{Bf}_{\boldsymbol{\delta}}:=\frac{\mathrm{BC}_{\boldsymbol{\delta}} \cdot \mathrm{BE}_{\boldsymbol{\delta}}}{\mathrm{Bj}_{\boldsymbol{\delta}}} \quad \mathrm{fg}_{\delta}:=\mathrm{Bf}_{\boldsymbol{\delta}}-\mathrm{Bg}_{\boldsymbol{\delta}}\)
\(\mathbf{U g}_{\delta}:=\mathbf{i f}\left(\mathbf{C j}_{\delta}, \frac{\mathrm{Bj}_{\delta} \cdot \mathrm{fg}_{\delta}}{\mathrm{Cj}_{\boldsymbol{\delta}}}, \mathbf{0}\right) \quad \mathrm{BU}_{\boldsymbol{\delta}}:=\mathbf{i f}\left[\mathrm{Ug}_{\boldsymbol{\delta}}, \sqrt{\left(\mathrm{Ug}_{\delta}\right)^{2}+\left(\mathrm{Bg}_{\delta}\right)^{2}}, \infty\right] \quad \mathrm{AM}_{\boldsymbol{\delta}}:=\frac{\mathrm{AC}_{\boldsymbol{\delta}}}{2}\)

\(\mathbf{B M}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{G G M}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathbf{B G G}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}} \quad \mathbf{B S}_{\boldsymbol{\delta}}:=\frac{2 \cdot \mathbf{B M}_{\boldsymbol{\delta}}}{3} \quad \mathbf{B G _ { \boldsymbol { \delta } }}:=\frac{\mathbf{B G G}_{\boldsymbol{\delta}} \cdot \mathbf{B S}_{\boldsymbol{\delta}}}{\mathbf{B M}_{\boldsymbol{\delta}}} \quad \mathbf{G S _ { \boldsymbol { \delta } }}:=\frac{\mathbf{G G M}_{\boldsymbol{\delta}} \cdot \mathbf{B S}_{\boldsymbol{\delta}}}{\mathbf{B M}_{\boldsymbol{\delta}}}\)

\(\mathrm{MU}_{\delta}:=\sqrt{\left(\mathrm{AU}_{\delta}\right)^{2}-\left(\mathrm{AM}_{\delta}\right)^{2}} \quad \mathbf{A e} \mathrm{E}_{\delta}:=\frac{1}{2} \cdot \frac{\left(\mathrm{AS}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}}+\frac{1}{2} \cdot \mathbf{A M _ { \delta }}-\frac{1}{2} \cdot \frac{\left(\mathbf{M S}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}}\)


The following sequence is from 06_07_93.MCD. In that paper I treated it as a problem between two triangles, which it is. One can restate it as finding the fourth side of a quadrilateral by pulling up a line.
\(\mathbf{e M}_{\boldsymbol{\delta}}:=\mathbf{A e}_{\boldsymbol{\delta}}-\mathbf{A M}_{\boldsymbol{\delta}} \quad \mathbf{S m}_{\boldsymbol{\delta}}:=\mathbf{e M}_{\boldsymbol{\delta}} \quad \mathbf{S e}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{A S}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}-\left(\mathbf{A e}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}} \quad \mathbf{M m}_{\boldsymbol{\delta}}:=\mathbf{S e}_{\boldsymbol{\delta}}\)

\(\mathbf{S U}_{\delta}:=\sqrt{\left(\mathbf{U m}_{\delta}\right)^{2}+\left(\mathbf{S m}_{\delta}\right)^{2}} \quad \mathbf{U O}_{\delta}:=\mathbf{3} \cdot \mathbf{S U}_{\delta}\)

Due to the way in which certain lines lay, the above switch was needed.

\section*{Definitions.}

\section*{Is this a TRIANGLE = 1 ? Now if you are} wondering why thumbs up means that things are a go, or okay, think about it
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{S U}_{\boldsymbol{\delta}}=\) & \(\mathbf{U O}_{\boldsymbol{\delta}}=\) & \(\mathbf{A U}_{\boldsymbol{\delta}}=\) \\
\hline 1.021981 & 3.065942 & 2.065591 \\
\hline 1.021981 & 3.065942 & 2.065591 \\
\hline 1.021981 & 3.065942 & 2.065591 \\
\hline
\end{tabular}
\begin{tabular}{c}
\(\frac{\mathbf{S U}_{\boldsymbol{\delta}}}{\mathbf{U O}_{\boldsymbol{\delta}}}=\) \\
\hline 0.333333 \\
\hline 0.333333 \\
\hline 0.333333 \\
\hline
\end{tabular}



Unit.
Given.
AB := 10.49867
BC := 9.21723
AC := 3.47398
120795B
Descriptions.
\(\mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{2}} \quad \mathbf{A O}:=\frac{\mathbf{A B} \cdot \mathbf{A C} \cdot \mathbf{B C}}{\sqrt{\mathbf{A B}+\mathbf{A C}+\mathbf{B C}} \cdot \sqrt{\mathbf{A C}+\mathbf{B C}-\mathbf{A B}} \cdot \sqrt{\mathbf{A B}-\mathbf{A C}+\mathbf{B C}} \cdot \sqrt{\mathbf{A B}+\mathbf{A C}-\mathbf{B C}}}\)
\(A J:=\frac{A B^{2}+A C^{2}-B^{2}}{2 \cdot A B} \quad C D:=\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{2} \quad A E:=\frac{\sqrt{2 \cdot A B^{2}-B C^{2}+2 \cdot A C^{2}}}{2}\)
\(\mathbf{B F}:=\frac{\sqrt{2 \cdot \mathbf{B C}^{2}-{A C^{2}}^{2}+2 \cdot A B^{2}}}{2} \quad \mathbf{D E}:=\frac{\mathbf{A C}}{2} \quad\) DP \(:=\frac{\mathbf{A D}}{2} \quad\) EP \(:=\frac{\mathbf{C D}}{2} \quad \mathbf{A P}:=\mathbf{A D}+\mathbf{D P}\)
\(\mathbf{D H}:=\frac{\mathbf{E P} \cdot \mathbf{A D}}{\mathbf{A P}} \quad \frac{\mathbf{C D}}{\mathbf{D H}}=3 \quad\) DN \(:=\frac{\mathbf{A D} \cdot \mathbf{D H}}{\mathbf{C D}} \quad \mathbf{N R}:=\frac{\mathbf{A J} \cdot \mathbf{D H}}{\mathbf{C D}} \quad\) BJ \(:=\mathbf{A B}-\mathbf{A J}\)
\(\mathbf{C J}:=\sqrt{\mathbf{B C}^{2}-\mathbf{B J}^{2}} \quad \mathbf{H R}:=\frac{\mathbf{C J} \cdot \mathbf{D H}}{\mathbf{C D}} \quad \mathbf{D R}:=\mathbf{D N}-\mathbf{N R} \quad \mathbf{D O}:=\sqrt{\mathbf{A O}^{2}-\mathbf{A D}^{\mathbf{2}}}\)
\(\mathbf{H O}:=\sqrt{(\mathbf{H R}+\mathbf{D O})^{2}+\mathbf{D R}^{2}} \quad \mathbf{A R}:=\mathbf{A D}-\mathbf{D R} \quad \mathbf{J R}:=\mathbf{A R}-\mathbf{A J} \quad \mathbf{R S}:=\frac{\mathbf{D R} \cdot \mathbf{H R}}{\mathbf{D O}+\mathbf{H R}}\)
\(\mathbf{H S}:=\frac{\mathbf{H O} \cdot \mathbf{H R}}{\mathbf{D O}+\mathbf{H R}} \quad \mathbf{J S}:=\mathbf{J R}+\mathbf{R S} \quad \mathbf{G S}:=\frac{\mathbf{H S} \cdot \mathbf{J S}}{\mathbf{R S}} \quad\) OS \(:=\mathbf{H O}-\mathbf{H S} \quad\) GO \(:=\mathbf{G S}+\mathbf{O S} \quad \frac{\text { GO }}{\text { HO }}=\mathbf{3}\)
\begin{tabular}{|c|c|c|c|c|}
\hline AO \(=5.364458\) & \(\mathrm{BF}=9.724843\) & \(E P=2.288963\) & \(\mathrm{NR}=0.592667\) & GS \(=5.931605\) \\
\hline AJ \(=1.778\) & DE \(=1.73699\) & DH \(=1.525976\) & \(\mathbf{R S}=0.548099\) & OS = 1.262059 \\
\hline CD \(=4.577927\) & DP \(=2.624668\) & CJ \(=2.984502\) & HS \(=1.135829\) & GO = \(\mathbf{7 . 1 9 3 6 6 3 ~}\) \\
\hline \(\mathrm{AE}=\mathbf{6 . 3 1 7 1 1 7}\) & HR = 0.994834 & DN = 1.749778 & \(\mathbf{J S}=\mathbf{2 . 8 6 2 3 2 2}\) & \\
\hline
\end{tabular}

\(A B=10.49867 \mathrm{~cm}\) AC \(=3.47398 \mathrm{~cm}\) \(B C=9.21723 \mathrm{~cm}\) \(\mathrm{AO}=5.36446 \mathrm{~cm}\) \(\mathrm{AO}=5.36446 \mathrm{~cm}\) \(\mathrm{AJ}=1.77800 \mathrm{~cm}\) \(\mathrm{CD}=4.57792 \mathrm{~cm}\)
\(\mathrm{AE}=6.31712 \mathrm{~cm}\) \(B F=9.72484 \mathrm{~cm}\) DE \(=1.73699 \mathrm{~cm}\) DP \(=2.62467 \mathrm{~cm}\) HR \(=0.99483 \mathrm{~cm}\)
\(E P=2.28896 \mathrm{~cm}\) DH \(=1.52597 \mathrm{~cm}\) \(\mathrm{CJ}=2.98450 \mathrm{~cm}\) DN \(=1.74978 \mathrm{~cm}\) \(\mathrm{NR}=0.59267 \mathrm{~cm}\) RS \(=0.54810 \mathrm{~cm}\) HS \(=1.13583 \mathrm{~cm}\) JS \(=2.86232 \mathrm{~cm}\) GS \(=5.93160 \mathrm{~cm}\) OS \(=1.26206 \mathrm{~cm}\) GO \(=7.19366 \mathrm{~cm}\)

Definitions.
\(\mathbf{A D}-\frac{\mathbf{A B}}{2}=\mathbf{0} \quad \mathbf{A O}-\frac{\mathbf{A B} \cdot \mathbf{A C} \cdot \mathbf{B C}}{\sqrt{\mathbf{A B}+\mathbf{A C}+\mathbf{B C}} \cdot \sqrt{\mathbf{A C}+\mathbf{B C}-\mathbf{A B}} \cdot \sqrt{\mathbf{A B}-\mathbf{A C}+\mathbf{B C}} \cdot \sqrt{\mathbf{A B}+\mathbf{A C}-\mathbf{B C}}}=0 \quad \mathbf{A J}-\frac{\mathbf{A B}^{2}+\mathbf{A C}^{2}-\mathbf{B C}^{2}}{2 \cdot \mathbf{A B}}=0\)
\(C D-\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{2}=0 \quad A E-\frac{\sqrt{2 \cdot A B^{2}-B C^{2}+2 \cdot A C^{2}}}{2}=0 \quad B F-\frac{\sqrt{2 \cdot B C^{2}-A C^{2}+2 \cdot A B^{2}}}{2}=0 \quad D E-\frac{A C}{2}=0\)
\(C^{2} \operatorname{cin}^{38}\)
\(D P-\frac{A B}{4}=0 \quad E P-\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{4}=0 \quad A P-\frac{3 \cdot A B}{4}=0 \quad D H-\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{6}=0\)
\(N R-\frac{A B^{2}+A C^{2}-B C^{2}}{6 \cdot A B}=0 \quad B J-\frac{A B^{2}-A C^{2}+B C^{2}}{2 \cdot A B}=0 \quad D N-\frac{A B}{6}=0 \quad D R-\frac{(B C-A C) \cdot(A C+B C)}{6 \cdot A B}=0\)
\(\mathbf{C J}-\frac{\sqrt{(\mathbf{A B}+\mathbf{A C}-\mathbf{B C}) \cdot(\mathbf{A B}-\mathbf{A C}+\mathbf{B C}) \cdot(\mathbf{A C}-\mathbf{A B}+\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{A C}+\mathbf{B C})}}{2 \cdot \mathbf{A B}}=0 \quad \mathbf{A R}-\frac{\mathbf{3} \cdot \mathbf{A B}{ }^{2}+\mathbf{A C}^{2}-\mathbf{B C}^{2}}{6 \cdot \mathbf{A B}}=0\)
\(\mathbf{H R}-\frac{\sqrt{(\mathbf{A B}+\mathbf{A C}-\mathbf{B C}) \cdot(\mathbf{A B}-\mathbf{A C}+\mathbf{B C}) \cdot(\mathbf{A C}-\mathbf{A B}+\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{A C}+\mathbf{B C})}}{\mathbf{6} \cdot \mathbf{A B}}=\mathbf{0}\)
\(\mathrm{HO}-\frac{\sqrt{\mathrm{AB}^{6}-\mathrm{AB}^{4} \cdot \mathrm{AC}^{2}-\mathrm{AB}^{4} \cdot \mathrm{BC}^{2}-\mathrm{AB}^{2} \cdot \mathrm{AC}^{4}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{AC}^{2} \cdot \mathrm{BC}^{2}-\mathrm{AB}^{2} \cdot \mathrm{BC}^{4}+\mathrm{AC}^{6}-A C^{4} \cdot \mathrm{BC}^{2}-\mathrm{AC}^{2} \cdot \mathrm{BC}^{4}+\mathrm{BC}^{6}}}{\sqrt{(\mathrm{AB}+\mathrm{AC}-\mathrm{BC}) \cdot(\mathrm{AC}-\mathrm{AB}+\mathrm{BC}) \cdot(\mathrm{AB}+\mathrm{AC}+\mathrm{BC}) \cdot(9 \cdot \mathrm{AB}-9 \cdot \mathrm{AC}+9 \cdot \mathrm{BC})}}=0\)
\(\mathbf{J R}-\frac{(\mathbf{B C}-\mathbf{A C}) \cdot(\mathbf{A C}+\mathbf{B C})}{\mathbf{3} \cdot \mathbf{A B}}=\mathbf{0} \quad \mathbf{R S}-\frac{(\mathbf{A B}+\mathbf{A C}-\mathbf{B C}) \cdot(\mathbf{A B}-\mathbf{A C}+\mathbf{B C}) \cdot(\mathbf{A C}-\mathbf{A B}+\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{A C}+\mathbf{B C}) \cdot(\mathbf{A C}+\mathbf{B C}) \cdot(\mathbf{B C}-\mathbf{A C})}{6 \cdot \mathbf{A B} \cdot\left[3 \cdot \mathbf{A B}^{4}-\mathbf{3} \cdot \mathbf{A B}^{\mathbf{2}} \cdot \mathbf{A C}^{\mathbf{2}}-\mathbf{3} \cdot \mathbf{A B} \mathbf{2}^{\mathbf{2}} \cdot \mathbf{B C}^{2}+(\mathbf{A B}+\mathbf{A C}-\mathbf{B C}) \cdot(\mathbf{A B}-\mathbf{A C}+\mathbf{B C}) \cdot(\mathbf{A C}-\mathbf{A B}+\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{A C}+\mathbf{B C})\right]}=\mathbf{0}\)

\(J S-\frac{(B C-A C) \cdot(A C+B C) \cdot\left(A B^{2}-A C^{2}+B C^{2}\right) \cdot\left(A B^{2}+A C^{2}-B C^{2}\right)}{2 \cdot A B \cdot\left(2 \cdot A B^{4}-A B^{2} \cdot A C^{2}-A B^{2} \cdot B^{2}-A C^{4}+2 \cdot A C^{2} \cdot B^{2}-B C^{4}\right)}=0 \quad D O-\frac{A B \cdot\left(A B^{2}-A C^{2}-B C^{2}\right)}{2 \cdot \sqrt{(A B+A C+B C) \cdot(A B-A C+B C) \cdot(A B+A C-B C) \cdot(A C-A B+B C)}}=0\)


\(G O-\frac{\sqrt{A B^{6}-A B^{4} \cdot A C^{2}-A B^{4} \cdot \mathrm{BC}^{2}-A B^{2} \cdot A C^{4}+3 \cdot A B^{2} \cdot A C^{2} \cdot \mathrm{BC}^{2}-A B^{2} \cdot B C^{4}+A C^{6}-A C^{4} \cdot \mathrm{BC}^{2}-A C^{2} \cdot \mathrm{BC}^{4}+\mathrm{BC}^{6}}}{\sqrt{2 \cdot A B^{2} \cdot A C^{2}-A B^{4}+2 \cdot A B^{2} \cdot B C^{2}-A C^{4}+2 \cdot A C^{2} \cdot B C^{2}-B C^{4}}}=0\)
\(\sim_{n=2}^{0}\)
\[
\mathbf{X}:=20 \quad Z:=13
\]

120795C
Descriptions.

\section*{Given.}
\[
\mathbf{W}:=\mathbf{6} \quad \mathbf{Y}:=\mathbf{3}
\]

Unit.
AB := \(\frac{\mathbf{Y}}{\mathbf{Y}}\)
\(\mathbf{A M}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{B M}:=\mathbf{A B}-\mathbf{A M} \quad \mathbf{C M}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{A C}:=\sqrt{\mathbf{A M}^{2}+\mathbf{C M}^{2}} \quad \mathbf{B C}:=\sqrt{\mathbf{B M}^{2}+\mathbf{C M}^{2}}\)
\(\mathbf{A D}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A O}:=\frac{\mathbf{A B} \cdot \mathbf{A C} \cdot \mathbf{B C}}{\sqrt{\mathbf{A B}+\mathbf{A C}+\mathbf{B C}} \cdot \sqrt{\mathbf{A C}+\mathbf{B C}-\mathbf{A B}} \cdot \sqrt{\mathbf{A B}-\mathbf{A C}+\mathbf{B C}} \cdot \sqrt{\mathbf{A B}+\mathbf{A C}-\mathbf{B C}}}\)
\(A M:=\frac{A B^{2}+A C^{2}-B C^{2}}{2 \cdot A B} \quad C D:=\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{2} \quad A E:=\frac{\sqrt{2 \cdot A B^{2}-B C^{2}+2 \cdot A C^{2}}}{2}\)
\(\mathrm{BF}:=\frac{\sqrt{2 \cdot \mathrm{BC}^{2}-\mathrm{AC}^{2}+2 \cdot \mathrm{AB}^{2}}}{2} \quad \mathrm{DE}:=\frac{\mathrm{AC}}{2} \quad \mathrm{DR}:=\frac{\mathrm{AD}}{2} \quad\) ER \(:=\frac{\mathrm{CD}}{2} \quad\) AR \(:=\mathrm{AD}+\mathbf{D R}\)
\(\mathbf{D H}:=\frac{\mathbf{E R} \cdot \mathbf{A D}}{\mathbf{A R}} \quad \frac{\mathbf{C D}}{\mathbf{D H}}=\mathbf{3} \quad \mathbf{D N}:=\frac{\mathbf{A D} \cdot \mathbf{D H}}{\mathbf{C D}} \quad \mathbf{N P}:=\frac{\mathbf{A M} \cdot \mathbf{D H}}{\mathbf{C D}} \quad \mathbf{B M}:=\mathbf{A B}-\mathbf{A M}\)
\(\mathbf{H P}:=\frac{\mathbf{C M} \cdot \mathbf{D H}}{\mathbf{C D}} \quad \mathbf{D P}:=\mathbf{D N}-\mathbf{N P} \quad \mathbf{D O}:=\sqrt{\mathbf{A O}^{2}-\mathbf{A D}^{2}}\)
\(\mathbf{H O}:=\sqrt{(\mathbf{H P}+\mathbf{D O})^{2}+\mathbf{D P}^{\mathbf{2}}} \quad \mathbf{A P}:=\mathbf{A D}-\mathbf{D P} \quad \mathbf{J P}:=\mathbf{A P}-\mathbf{A M} \quad\) PJ \(:=\frac{\mathbf{D P} \cdot \mathbf{H P}}{\mathbf{D O}+\mathbf{H P}}\)
HJ \(:=\frac{\text { HO } \cdot \text { HP }}{\text { DO }+ \text { HP }} \quad\) MJ \(:=\mathbf{J P}+\) PJ \(\quad\) GJ \(:=\frac{\text { HJ } \cdot \mathbf{M J}}{\text { PJ }} \quad\) OJ \(:=\) HO - HJ \(\quad\) GO \(:=\) GJ + OJ \(\quad \frac{\text { GO }}{\text { HO }}=\mathbf{3}\)
Definitions.
\(A C-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{X \cdot Z}=0 \quad B C-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}-2 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}}{X \cdot Z}=0 \quad A D-\frac{1}{2}=0\)


Given three sides of a triangle, determine the length of the Euler line. Work the drawing from each of the sides.
In this write up, I will use equations from previous versions of the DQ. \(062793,010893\).
\(\mathrm{Y} / \mathrm{Z}=0.23077\) \(\mathbf{Y}=3.00000\)
\(Z=13.00000\)


Unit \(=1.00000 \quad \mathrm{AC}=0.37849\) \(\mathrm{W} / \mathrm{X}=0.30000 \quad \mathrm{BC}=0.82566\) \(\mathrm{W}=6.00000 \quad \mathrm{AO}=0.52084\) \(\mathrm{X}=20.00000 \quad \mathrm{GO}=0.78518\)
\[
G O=0.78518
\]

\(C^{\circ} \mathrm{B}\) 로
\(A M-\frac{Y}{Z}=0 \quad C D-\frac{\sqrt{4 \cdot W^{2} \cdot Z^{2}+4 \cdot X^{2} \cdot Y^{2}-4 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}}{2 \cdot X \cdot Z}=0 \quad A E-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}+2 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}}{2 \cdot X \cdot Z}=0 \quad B F-\frac{\sqrt{W^{2}} \cdot Z^{2}+X^{2} \cdot Y^{2}-4 \cdot X^{2} \cdot Y \cdot Z+4 \cdot X^{2} \cdot Z^{2}}{2 \cdot X \cdot Z}=0\)
\(D E-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{2 \cdot X \cdot Z}=0 \quad E R-\frac{\sqrt{4 \cdot W^{2} \cdot Z^{2}+4 \cdot X^{2} \cdot Y^{2}-4 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}}{4 \cdot X \cdot Z}=0 \quad A R-\frac{3}{4}=0 \quad D H-\frac{\sqrt{4 \cdot W^{2}} \cdot Z^{2}+4 \cdot X^{2} \cdot Y^{2}-4 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}{6 \cdot X \cdot Z}=0\)
\(D R-\frac{1}{4}=0 \quad N P-\frac{Y}{3 \cdot Z}=0 \quad B M-\frac{Z-Y}{Z}=0 \quad D N-\frac{1}{6}=0 \quad D P--\frac{\left(\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}-2 \cdot X^{2} \cdot Y \cdot Z+X^{2} \cdot Z^{2}}+\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}\right) \cdot\left(\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}-B_{C} \cdot X \cdot Z\right)}{6 \cdot X^{2} \cdot Z^{2}}=0\)
\(\mathbf{C M}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{A P}-\frac{\mathbf{Y}+\mathbf{Z}}{\mathbf{3 \cdot Z}}=\mathbf{0} \quad \mathbf{H P}-\frac{\mathbf{W}}{\mathbf{3 \cdot X}}=\mathbf{0}\)
\(H O-\frac{\sqrt{W^{4} \cdot Z^{4}+10 \cdot W^{2} \cdot X^{2} \cdot Y^{2} \cdot Z^{2}-10 \cdot W^{2} \cdot X^{2} \cdot Y \cdot Z^{3}+W^{2} \cdot X^{2} \cdot Z^{4}+9 \cdot X^{4} \cdot Y^{4}-18 \cdot X^{4} \cdot Y^{3} \cdot Z+9 \cdot X^{4} \cdot Y^{2} \cdot Z^{2}}}{6 \cdot W \cdot X \cdot Z^{2}}=0\)
\(J P-\frac{Z-2 \cdot Y}{3 \cdot Z}=0 \quad P J--\frac{W^{2} \cdot Z \cdot(Z-2 \cdot Y)}{3 \cdot\left(W^{2} \cdot Z^{2}+3 \cdot X^{2} \cdot Y^{2}-3 \cdot X^{2} \cdot Y \cdot Z\right)}=0\)
\(H J-\frac{W \cdot \sqrt{W^{4} \cdot Z^{4}+10 \cdot W^{2} \cdot X^{2} \cdot Y^{2} \cdot Z^{2}-10 \cdot W^{2} \cdot X^{2} \cdot Y \cdot Z^{3}+W^{2} \cdot X^{2} \cdot Z^{4}+9 \cdot X^{4} \cdot Y^{4}-18 \cdot X^{4} \cdot Y^{3} \cdot Z+9 \cdot X^{4} \cdot Y^{2} \cdot Z^{2}}}{3 \cdot X \cdot\left(3 \cdot X^{2} \cdot Y \cdot Z-3 \cdot X^{2} \cdot Y^{2}-W^{2} \cdot Z^{2}\right)}=0\)
\(M J--\frac{X^{2} \cdot Y \cdot\left(2 \cdot Y^{2}-3 \cdot Y \cdot Z+Z^{2}\right)}{Z \cdot\left(W^{2} \cdot Z^{2}+3 \cdot X^{2} \cdot Y^{2}-3 \cdot X^{2} \cdot Y \cdot Z\right)}=0 \quad D O-\frac{X^{2} \cdot Y \cdot Z-W^{2} \cdot Z^{2}-X^{2} \cdot Y^{2}}{2 \cdot W \cdot X \cdot Z^{2}}=0\)
\(G J-\frac{X \cdot Y \cdot(Y-Z) \cdot \sqrt{W^{4} \cdot Z^{4}+10 \cdot W^{2} \cdot X^{2} \cdot Y^{2} \cdot Z^{2}-10 \cdot W^{2} \cdot X^{2} \cdot Y \cdot Z^{3}+W^{2} \cdot X^{2} \cdot Z^{4}+9 \cdot X^{4} \cdot Y^{4}-18 \cdot X^{4} \cdot Y^{3} \cdot Z+9 \cdot X^{4} \cdot Y^{2} \cdot Z^{2}}}{W \cdot Z^{2} \cdot\left(W^{2} \cdot Z^{2}+3 \cdot X^{2} \cdot Y^{2}-3 \cdot X^{2} \cdot Y \cdot Z\right)}=0\)

\(O J-\frac{\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}-X^{2} \cdot Y \cdot Z\right) \cdot \sqrt{W^{4} \cdot Z^{4}+10 \cdot W^{2} \cdot X^{2} \cdot Y^{2} \cdot Z^{2}-10 \cdot W^{2} \cdot X^{2} \cdot Y \cdot Z^{3}+W^{2} \cdot X^{2} \cdot Z^{4}+9 \cdot X^{4} \cdot Y^{4}-18 \cdot X^{4} \cdot Y^{3} \cdot Z+9 \cdot X^{4} \cdot Y^{2} \cdot Z^{2}}}{2 \cdot W \cdot X \cdot Z^{2} \cdot\left(W^{2} \cdot Z^{2}+3 \cdot X^{2} \cdot Y^{2}-3 \cdot X^{2} \cdot Y \cdot Z\right)}=0\)
\(G O-\frac{\sqrt{W^{4} \cdot Z^{4}+10 \cdot W^{2} \cdot X^{2} \cdot Y^{2} \cdot Z^{2}-10 \cdot W^{2} \cdot X^{2} \cdot Y \cdot Z^{3}+W^{2} \cdot X^{2} \cdot Z^{4}+9 \cdot X^{4} \cdot Y^{4}-18 \cdot X^{4} \cdot Y^{3} \cdot Z+9 \cdot X^{4} \cdot Y^{2} \cdot Z^{2}}}{2 \cdot W \cdot X \cdot Z^{2}}=0\)


121695
Descriptions.
\(A D:=n \cdot \mathbf{a} \quad B E:=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}} \quad \mathrm{BC}:=\frac{\mathbf{a}^{2}}{\mathrm{BE}}\)
\(\mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{C F}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}}\)
\(\mathbf{F G}:=\frac{\mathbf{A D}}{2} \quad \mathbf{C G}:=\sqrt{\mathbf{F G}^{2}-\mathbf{C F}^{2}}\)
\(\mathbf{A G}:=\mathbf{F G} \quad \mathbf{A C}:=\mathbf{A G}+\mathbf{C G}\)
\(\mathbf{B G}:=\mathbf{C G}-\mathbf{B C} \quad \mathbf{D G}:=\mathbf{F G}\)
\(\mathbf{B D}:=\mathbf{D G}-\mathbf{B G} \quad \mathbf{A B}:=\mathbf{A G}+\mathbf{B G}\)
\(\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{D E}:=\mathbf{B E}-\mathbf{B D}\)
\(\mathbf{D H}:=\frac{\mathbf{b}^{\mathbf{2}}}{\mathbf{D E}} \quad\) DI \(:=\mathbf{A E} \quad \mathbf{H I}:=\mathbf{D I}-\mathbf{D H}\)
\(z:=A E \quad z=12.621556\)
\(\mathbf{c}:=\mathrm{DE} \quad \mathrm{c}=0.621556\)
\(\mathbf{d}:=\mathbf{H I} \quad \mathbf{d}=\mathbf{6 . 1 8 6 0 9}\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0\)

Given.
\(\mathbf{n} \equiv 3 \quad\) Place values
\(\mathbf{a} \equiv 4\) here :
\(\mathbf{b} \equiv \mathbf{2}\)

Descartes gives a figure for solving \(z^{2}=a z+b^{2}\) which should have been stated as \(z^{2}=2 a z+b^{2}\), generalize the figure. Descartes' figure was given only when \(n=2\). In this form, it is an equation of two givens and one unknown, generalized it as three givens and solves for three unknowns. Attempt to eliminate two of the unknowns as a function of the three givens.

\section*{Given \(a, n\) and \(b\) for the equation \(z^{2}=\)}
\(n a z+b^{2}+c d\) find \(z, c\), and \(d\).


Z

Expressing \(c\) and \(d\) in terms of the givens does not really look esthetically pleasing.
\(d-2 \cdot a \cdot \frac{b^{2}}{\sqrt{a^{2}+b^{2}}} \cdot \frac{\left(2 \cdot a-\sqrt{-2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right)}{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{-2 \cdot b+n} \cdot \sqrt{a^{2}+b^{2}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right)}=0\)
\(c-\frac{-1}{2} \cdot \frac{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\sqrt{a^{2}+b^{2}}}=0\)
The symbolic
processor could not
reduce cd directly so \(I\) had to do it in terms of the equation by resolving \(z\).
\(z-\frac{1}{2} \cdot \frac{\left(n \cdot a \cdot \sqrt{a^{2}+b^{2}}+a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}+2 \cdot b^{2}\right)}{\sqrt{\mathbf{a}^{2}+b^{2}}}=0\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0 \quad p:=-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\)

\((\mathbf{c} \cdot \mathbf{d})-\mathbf{p}=\mathbf{0}\)
\(z^{2}-\left[n \cdot a \cdot z+b^{2}+\left[-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\right]\right]=0\)

\section*{Solve for \(\mathbf{z}\) below.}
\(\binom{\frac{1}{2} \cdot n \cdot a+\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}}}{\frac{1}{2} \cdot n \cdot a-\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}}}\)
\(C^{\circ} \cos ^{28}\)

\section*{121895}

\section*{Descriptions.}

Scholia: The Geometry of Rene Descartes with a facsimile of the first edition. Translated by \(D\). Eugene and M. Latham
\[
\mathbf{z}^{\mathbf{2}}:=\mathbf{a z - \mathbf { b } ^ { \mathbf { 2 } }}
\]

The problem is given for the solution of \(z\) when \(a\) and \(b\) are given. Working the problem backward, \(z^{2}+b^{2}:=a z\) one can see constants in the figure for solving when only \(a\) and \(b\) are given.
b := 2.12
\(z:=1.41\)
\(\mathbf{c}:=\frac{\mathbf{b}^{2}}{\mathbf{z}}\)

Finding \(a\) is just a matter of expressing \(b\) in terms of cz , and a becomes \(z+c\).
\[
\mathbf{a}:=\mathbf{z}+\mathbf{c}
\]

We find that this \(\mathbf{c}\) has another relation to \(z\), for it holds a proportion to it in the given equation.
\[
\begin{aligned}
& \left(c^{2}+b^{2}\right)-a \cdot c=1.776357 \times 10^{-15} \\
& \left(c^{2}+b^{2}\right)-[(z+c) \cdot c]=1.776357 \times 10^{-15} \\
& \left(c^{2}+b^{2}\right)-(c \cdot z)-c^{2}=0 \\
& \left(z^{2}+b^{2}\right)-(z+c) \cdot z=0 \\
& \left(z^{2}+b^{2}\right)-(c \cdot z)-z^{2}=0
\end{aligned}
\]


C

\(b^{2}\)

Descartes and other mathematicians speak as if we have two different values for \(z\), however, I see quite plainly that we have a \(z\) and a \(c\) that was found. The unique name of the symbols in context are thus preserved.


One can also see that working the figure in a straight forward manner, imaginary situations are not possible,

\(b^{2}\)

\(z^{2}\)

\(b^{2}\)

The primitive form of construction is very suggestive of Descartes process. If however we use Pythagorean division, the figure may not be so apparent. One should note that contrary to his statement on page 4, one cannot divide a line by a line. In geometry one can divide a square by a line. This is the law of tautology, which holds for all mathematics. It will also be noted that Descartes claims to be working with a quadratic equation, and his solution is indeed for one, however he states it as a quadratic deficient by a rectangle, deficient in fact by az. The authors of the notes make the same mistake.

\(\sim_{n=0}^{0}\)
Unit.
EF:= 1
Given.
N:= \(\mathbf{2}\)

\section*{122095A}

Descriptions.
\(\mathbf{E J}:=\mathbf{E F} \cdot \mathbf{N} \quad \mathbf{A E}:=\frac{\mathbf{E J}^{2}}{\mathbf{E F}} \quad \mathbf{A F}:=\mathbf{A E}+\mathbf{E F}\)
\(\mathbf{A B}:=\frac{\mathbf{A F}}{2} \quad \mathbf{B F}:=\mathbf{A B} \quad \mathbf{B E}:=\mathbf{B F}-\mathbf{E F} \quad \mathbf{B H}:=\mathrm{BE}\)
\(\mathbf{B J}:=\sqrt{\mathbf{E J}^{2}+\mathbf{B E}^{2}} \quad \mathbf{B D}:=\frac{\mathbf{B E} \cdot \mathbf{B H}}{\mathbf{B J}} \quad \mathbf{B G}:=\mathbf{B D}\)
\(\mathbf{B C}:=\frac{\mathbf{B E} \cdot \mathbf{B G}}{\mathbf{B J}} \mathbf{G H}:=\mathbf{B H}-\mathbf{B G} \quad \mathbf{D E}:=\mathbf{B E}-\mathbf{B D}\)
\(\mathbf{H O}:=\mathbf{D E} \quad \mathbf{E G}_{\mathbf{1}}:=\sqrt{\mathbf{B E}^{\mathbf{2}}-\mathbf{B G}^{\mathbf{2}}} \quad \mathbf{G J}:=\mathbf{B J}-\mathbf{B G}\)
\(E G_{2}:=\sqrt{E J^{2}-\mathbf{G J}} \quad \frac{\mathbf{G H}}{\mathbf{H O}}=1 \quad \frac{\mathbf{E G} \mathbf{1}_{1}}{\mathbf{E G}_{2}}=1\)
\(\left(\mathrm{BC}^{2} \cdot \mathrm{BF}\right)^{\frac{1}{3}}-\mathrm{BD}=0 \quad\left(\mathrm{BC} \cdot \mathrm{BF}^{2}\right)^{\frac{1}{3}}-\mathrm{BE}=0\)

\section*{Delian Solution in Every Right Angle}

This plate is derived from the fact that for any EJ taken as a square, divided by EF, the answer is AE. And in every case, the small circle \(O H\) has a relationship to the circle EJ. This is another plate on geometric progression.


Definitions.
\(\mathbf{E J}-\mathbf{N}=0 \quad \mathbf{A E}-\mathbf{N}^{2}=0 \quad \mathbf{A F}-\left(\mathbf{N}^{2}+1\right)=0 \quad \mathrm{AB}-\frac{\mathbf{N}^{2}+1}{2}=0 \quad B F-\frac{\mathbf{N}^{2}+1}{2}=0 \quad B E-\frac{(\mathbf{N}-1) \cdot(\mathbf{N}+1)}{2}=0\)
\(B H-\frac{(N-1) \cdot(N+1)}{2}=0 \quad B J-\frac{\left(\mathbf{N}^{2}+1\right)}{2}=0 \quad B D-\frac{(N-1)^{2} \cdot(N+1)^{2}}{2 \cdot\left(\mathbf{N}^{2}+1\right)}=0 \quad B G-\frac{(N-1)^{2} \cdot(N+1)^{2}}{2 \cdot\left(N^{2}+1\right)}=0\)
\(\mathbf{B C}-\frac{(\mathbf{N}-1)^{3} \cdot(\mathbf{N}+1)^{3}}{2 \cdot\left(\mathbf{N}^{2}+1\right)^{2}}=0 \quad \mathbf{G H}-\frac{(\mathbf{N}-1) \cdot(\mathbf{N}+1)}{\mathbf{N}^{2}+1}=0 \quad \mathrm{DE}-\frac{(\mathbf{N}-1) \cdot(\mathbf{N}+1)}{\mathbf{N}^{2}+1}=0 \quad \mathrm{HO}-\frac{(\mathbf{N}-1) \cdot(\mathbf{N}+1)}{\mathbf{N}^{2}+1}=0\)
\(E G_{1}-\frac{\left(\mathbf{N}^{3}-\mathbf{N}\right)}{\left(\mathbf{N}^{2}+1\right)}=0 \quad \mathbf{G J}-\frac{2 \cdot \mathbf{N}^{2}}{\mathbf{N}^{2}+1}=0 \quad \mathbf{E G}_{2}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot(\mathbf{N}+1)}{\left(\mathbf{N}^{2}+1\right)}=0\)
~~~ \(\begin{aligned} & \text { Given. } \\ & x:=7 \\ & Y:=20\end{aligned}\)

\section*{122095B}

Descriptions.
\(\mathbf{A F}:=2 \quad \mathbf{E F}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{E J}:=\sqrt{\mathbf{E F} \cdot(\mathbf{A F}-\mathbf{E F})} \quad \mathbf{A E}:=\frac{\mathbf{E J}^{2}}{\mathbf{E F}}\)
\(\mathbf{A B}:=\frac{\mathbf{A F}}{2} \quad \mathbf{B F}:=\mathbf{A B} \quad \mathbf{B E}:=\mathbf{B F}-\mathbf{E F}\)
\(\mathbf{B H}:=\mathbf{B E} \quad \mathbf{B J}:=\sqrt{\mathbf{E J}^{2}+\mathbf{B E}^{2}} \quad \mathbf{B D}:=\frac{\mathbf{B E} \cdot \mathbf{B H}}{\mathbf{B J}}\)
\(\mathbf{B G}:=\mathbf{B D} \quad \mathbf{B C}:=\frac{\mathbf{B E} \cdot \mathbf{B G}}{\mathbf{B J}} \quad \mathbf{G H}:=\mathbf{B H}-\mathbf{B G} \quad \mathbf{D E}:=\mathbf{B E}-\mathbf{B D}\)
\(\mathbf{H O}:=\mathbf{D E} \quad \mathbf{E G}_{\mathbf{1}}:=\sqrt{\mathbf{B E}^{2}-\mathbf{B G}^{\mathbf{2}}} \quad \mathbf{G J}:=\mathbf{B J}-\mathbf{B G}\)
\(\mathbf{E G}_{2}:=\sqrt{\mathbf{E J}^{2}-\mathbf{G J}^{2}} \quad \frac{\mathbf{G H}}{\mathrm{HO}}=1 \quad \frac{\mathbf{E G}_{1}}{\mathbf{E G}_{2}}=\mathbf{1}\)
\(\left(\mathrm{BC}^{2} \cdot \mathrm{BF}\right)^{\frac{1}{3}}-\mathrm{BD}=0 \quad\left(\mathrm{BC} \cdot \mathrm{BF}^{2}\right)^{\frac{1}{3}}-\mathrm{BE}=0\)

\section*{Delian Solution in Every Right Angle}

This plate is derived from the fact that for any EJ taken as a square, divided by EF, the answer is AE. And in every case, the small circle OH has a relationship to the circle EJ.

\[
\begin{array}{l|l}
\text { Unit }=\mathbf{1 . 0 0 0 0 0} \\
\mathbf{X Y}=\mathbf{0 . 3 5 0 0 0} \\
\mathbf{X}=\mathbf{7 . 0 0 0 0 0} & \mathbf{X} \\
\mathbf{Y}=\mathbf{2 0 . 0 0 0 0 0} & \mathbf{1}
\end{array}
\]

\section*{Definitions.}
\(\mathbf{A F}-2=\mathbf{0} \quad \mathbf{E F}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{E J}-\frac{\sqrt{\mathbf{X} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{X})}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A E}-\frac{2 \cdot \mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A B}-\mathbf{1}=\mathbf{0} \quad \mathbf{B F}-\mathbf{1}=\mathbf{0} \quad \mathbf{B E}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{B H}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B J}-\sqrt{\mathbf{1}}=\mathbf{0} \quad \mathbf{B D}-\frac{(\mathbf{X}-\mathbf{Y})^{2}}{\mathbf{Y}^{2}}=\mathbf{0} \quad \mathbf{B G}-\frac{(\mathbf{X}-\mathbf{Y})^{2}}{\mathbf{Y}^{2}}=\mathbf{0} \quad \mathbf{B C}-\frac{(\mathbf{Y}-\mathbf{X})^{3}}{\mathbf{Y}^{3}}=0 \quad \mathbf{G H}-\frac{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y}^{2}}=0\)
\(\mathbf{D E}-\frac{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y}^{2}}=\mathbf{0} \quad \mathbf{H O}-\frac{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y}^{2}}=\mathbf{0} \quad \mathbf{E G}_{1}-\frac{\sqrt{\mathbf{X} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{X})} \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y}^{2}}=\mathbf{0} \quad \mathbf{G J}-\frac{\mathbf{X} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{X})}{\mathbf{Y}^{2}}=\mathbf{0} \quad \mathbf{E G}_{2}-\frac{\sqrt{\mathbf{X} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{X}) \cdot(\mathbf{Y}-\mathbf{X})}}{\mathbf{Y}^{2}}=\mathbf{0}\)

Unit.
AB:= \(\mathbf{1}\)
Given.
\(\mathbf{N}:=\mathbf{7}\)
122195A1
Descriptions.
\(\mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C}\)
\(\mathbf{B C}:=\mathbf{B D}-\mathbf{C D} \quad \mathbf{C F}:=\sqrt{\mathbf{B C} \cdot \mathbf{C D}} \quad \mathbf{D F}:=\sqrt{\mathbf{C F}^{2}+\mathbf{C D}^{2}}\)
DK \(:=\frac{\text { DF } \cdot \text { BD }}{\text { CD }} \quad\) FK \(:=\frac{\text { DK } \cdot \text { BC }}{\text { BD }} \quad\) HK \(:=\frac{\text { FK } \cdot \text { FK }}{\text { DK }} \quad\) JK \(:=\frac{\text { HK } \cdot \text { HK }}{\text { FK }}\)

Definitions.
\(\frac{\text { DK }}{\text { FK }}-\frac{(\mathbf{N}-1)}{(\sqrt{\mathbf{N}}-1)}=0 \quad \frac{\mathrm{DK}}{\mathrm{HK}}-\frac{\mathbf{N}^{2}-2 \cdot \mathbf{N}+1}{\mathbf{N}-2 \cdot \sqrt{\mathbf{N}}+1}=0\)

\section*{Pascal's Triangle With Exponential Division}

Plate A1

\(\mathbf{A D}-\mathbf{N}=\mathbf{0} \quad \mathbf{A C}-\sqrt{\mathbf{N}}=\mathbf{0} \quad \mathbf{B D}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{C D}-(\mathbf{N}-\sqrt{\mathbf{N}})=\mathbf{0}\)
\(\mathbf{B C}-(\sqrt{\mathbf{N}}-\mathbf{1})=\mathbf{0} \quad \mathbf{C F}-\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})=\mathbf{0} \quad \mathbf{D F}-\sqrt{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})^{\mathbf{2}} \cdot(\sqrt{\mathbf{N}}+\mathbf{1})}=\mathbf{0}\)
\(\mathbf{D K}-\frac{\sqrt{\mathbf{N}+\sqrt{\mathbf{N}}} \cdot(\mathbf{N}-\mathbf{1})}{\sqrt{\mathbf{N}}}=\mathbf{0} \quad \mathbf{F K}-\frac{\sqrt{\mathbf{N}+\sqrt{\mathbf{N}}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{\sqrt{\mathbf{N}}}=\mathbf{0}\)
\(\mathbf{H K}-\frac{\sqrt{\mathbf{N}+\sqrt{\mathbf{N}}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{1})}=\mathbf{0} \quad \mathbf{J K}-\frac{\sqrt{\mathbf{N}+\sqrt{\mathbf{N}}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{1})^{2}}=\mathbf{0}\)
\(\sim_{n=2}^{\infty}\)
Given.
\(\mathbf{X}:=\mathbf{3} \quad \mathbf{Y}:=20\)
\(A B:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{N}:=\frac{\mathbf{Y}}{\mathbf{X}}\)
122195A2
Descriptions.
\(\mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C}\) \(\mathrm{BC}:=\mathrm{BD}-\mathbf{C D} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CD}} \quad \mathrm{DF}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CD}^{2}}\)

Definitions.
\(\frac{\text { DK }}{\text { FK }}-\frac{(\mathbf{N}-1)}{(\sqrt{\mathbf{N}}-\mathbf{1})}=0 \quad \frac{\mathrm{DK}}{\mathrm{HK}}-\frac{\mathbf{N}^{2}-2 \cdot \mathbf{N}+1}{\mathbf{N}-2 \cdot \sqrt{N}+1}=0\)
\(\mathbf{A D}-\mathbf{1}=\mathbf{0} \quad \mathbf{A C}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{C D}-\frac{\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0}\)
\(\mathbf{B C}-\frac{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y}}=0 \quad \mathbf{C F}-\frac{\sqrt{\sqrt{\mathbf{X}} \cdot \mathbf{Y}-2 \cdot \mathbf{X} \cdot \sqrt{\mathbf{Y}}+\mathbf{X}^{\frac{3}{2}}}}{\mathbf{Y}^{\frac{3}{4}}}=0\)
\(\mathbf{D F}-\frac{\sqrt{\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y}^{\frac{\mathbf{3}}{4}}}=\mathbf{0} \quad \mathbf{D K}-\frac{(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}) \cdot(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}) \cdot \sqrt{\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}}}{\mathbf{Y}^{\frac{\mathbf{5}}{4}}}=0\)
\(\mathbf{F K}-\frac{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}) \cdot(\sqrt{\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}})^{\mathbf{3}}}{\mathbf{Y}^{\frac{\mathbf{5}}{\mathbf{4}}} \cdot(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}})}=\mathbf{0}\)
\(\mathbf{H K}-\frac{\mathbf{X} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y}^{\frac{5}{4}} \cdot \sqrt{\sqrt{X}+\sqrt{Y}}}=\mathbf{0} \quad \mathbf{J K}-\frac{(\sqrt{\mathbf{X}})^{\mathbf{3}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y}^{\frac{5}{4}} \cdot(\sqrt{\mathbf{X}}+\sqrt{Y})^{\frac{3}{2}}}=\mathbf{0}\)

\section*{Pascal's Triangle With Exponential Division}

Plate A2

Unit. AB:= \(\mathbf{1}\) Given. \(\mathbf{N}:=7\) 122195B1 Descriptions.
\(\mathbf{A F}:=\mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A E}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}}\) \(\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{B E}\)
\(\mathbf{B D}:=\frac{\mathbf{B E} \cdot \mathbf{B H}}{\mathbf{B F}} \quad \mathbf{B G}:=\mathbf{B D} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B G}}{\mathbf{B E}}\)

\section*{Pascal's Triangle With Exponential Division}

\section*{Plate B1}

\section*{Definitions.}
\(\frac{B F}{B E}-\frac{(\mathbf{N}-1)}{(\sqrt{\mathbf{N}}-1)}=0 \quad \frac{\mathbf{B F}}{\mathbf{B D}}-\frac{\mathbf{N}^{2}-2 \cdot \mathbf{N}+1}{\mathbf{N}-2 \cdot \sqrt{\mathbf{N}}+1}=0 \quad \frac{\mathbf{B F}}{\mathbf{B C}}-\frac{\mathbf{N}^{3}-3 \cdot \mathbf{N}^{2}+3 \cdot \mathbf{N}-1}{\mathbf{N}^{\frac{3}{2}}-3 \cdot \mathbf{N}+3 \cdot \sqrt{\mathbf{N}}-1}=0\)
\(\mathbf{A F}-\mathbf{N}=\mathbf{0} \quad \mathbf{B F}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{A E}-\sqrt{\mathbf{N}}=\mathbf{0}\)
\(\mathbf{B E}-(\sqrt{\mathbf{N}}-\mathbf{1})=\mathbf{0} \quad \mathbf{B H}-(\sqrt{\mathbf{N}}-\mathbf{1})=\mathbf{0}\)
\(\mathbf{B D}-\frac{\sqrt{\mathbf{N}}-\mathbf{1}}{\sqrt{\mathbf{N}}+\mathbf{1}}=\mathbf{0} \quad \mathbf{B G}-\frac{\sqrt{\mathbf{N}}-\mathbf{1}}{\sqrt{\mathbf{N}}+\mathbf{1}}=\mathbf{0} \quad \mathbf{B C}-\frac{\sqrt{\mathbf{N}}-\mathbf{1}}{(\sqrt{\mathbf{N}}+\mathbf{1})^{2}}=\mathbf{0}\)

Cosers 122195B2
\[
\mathbf{A B}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{N}:=\frac{\mathbf{Y}}{\mathbf{X}}
\] Descriptions.
\(\mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A E}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}}\)
\(\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{B E}\)
\(\mathbf{B D}:=\frac{\mathbf{B E} \cdot \mathbf{B H}}{\mathbf{B F}} \quad \mathbf{B G}:=\mathbf{B D} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B G}}{\mathbf{B E}}\)
\(\frac{B F}{B E}-\frac{(N-1)}{(\sqrt{N}-1)}=0 \quad \frac{B F}{B D}-\frac{N^{2}-2 \cdot N+1}{N-2 \cdot \sqrt{N}+1}=0 \quad \frac{B F}{B C}-\frac{\mathbf{N}^{3}-3 \cdot N^{2}+3 \cdot N-1}{N^{\frac{3}{2}}-3 \cdot N+3 \cdot \sqrt{N}-1}=0\)

\section*{Definitions.}
\(\mathbf{A F}-\mathbf{1}=\mathbf{0} \quad \mathbf{B F}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A E}-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0}\)
\(\mathbf{B E}-\frac{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B H}-\frac{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{B D}-\frac{\mathbf{X} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y} \cdot(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}})}=\mathbf{0} \quad \mathbf{B G}-\frac{\mathbf{X} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y} \cdot(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}})}=\mathbf{0}\)
\(\mathbf{B C}-\frac{(\sqrt{\mathbf{X}})^{\mathbf{3}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}})}{\mathbf{Y} \cdot(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}})^{2}}=\mathbf{0}\)
\[
\begin{aligned}
& \text { Given. } \\
& \mathbf{X}:=\mathbf{3} \quad \mathbf{Y}:=\mathbf{1 5}
\end{aligned}
\]

Pascal's Triangle With Exponential Division
Plate B2

\[
\begin{array}{ll}
\frac{Y-X}{Y}-B F=0.00000 & \frac{X \cdot(\sqrt{Y}-\sqrt{X})}{Y \cdot(\sqrt{X}+\sqrt{Y})}=0.07639 \\
\frac{\sqrt{X}}{\sqrt{Y}}-\mathrm{AE}=0.00000 & \frac{X \cdot(\sqrt{Y}-\sqrt{X})}{Y \cdot(\sqrt{X}+\sqrt{Y})}-\mathrm{BD}=0.00000 \\
\frac{\sqrt{X} \cdot(\sqrt{Y}-\sqrt{X})}{Y}=0.24721 & \frac{X \cdot(\sqrt{Y}-\sqrt{X})}{Y \cdot(\sqrt{X}+\sqrt{Y})}-\mathrm{BG}=0.00000 \\
\frac{\sqrt{X} \cdot(\sqrt{Y}-\sqrt{X})}{Y}-\mathrm{BE}=0.00000 & \frac{\sqrt{X^{3} \cdot(\sqrt{Y}-\sqrt{X})}}{Y \cdot(\sqrt{X}+\sqrt{Y})^{2}}-\mathrm{BC}=0.00000
\end{array}
\]
\(\frac{\mathbf{B F}}{\mathbf{B E}}-\left(\frac{\sqrt{Y}}{\sqrt{X}}+1\right)=0 \quad \frac{\mathbf{B F}}{\mathbf{B D}}-\frac{\mathbf{X}+\mathbf{Y}+2 \cdot \sqrt{X} \cdot \sqrt{Y}}{\mathbf{X}}=0 \quad \frac{\mathbf{B F}}{\mathbf{B C}}-\frac{\mathbf{X}^{3}-3 \cdot \mathbf{X}^{2} \cdot \mathbf{Y}+3 \cdot \mathbf{X} \cdot \mathbf{Y}^{2}-\mathbf{Y}^{3}}{\left[\begin{array}{l}\mathbf{X}^{2} \cdot\left[\mathbf{X}+3 \cdot \mathbf{Y}-X \cdot\left(\frac{Y}{X}\right)^{\frac{3}{2}}-3 \cdot \sqrt{X} \cdot \sqrt{\mathbf{Y}}\right]\end{array}=0\right.}\)

Unit.
AB:= 1
Given.
122195 C 1
Descriptions.
\(\left.\mathbf{A G}:=\mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{A F}:=(\mathbf{A B} \cdot \mathbf{A G})^{3}\right)^{\frac{1}{4}}\)
\(\mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{B F} \quad \mathbf{B E}:=\frac{\mathbf{B J} \cdot \mathbf{B F}}{\mathbf{B G}}\)
\(\mathbf{B H}:=\mathbf{B E} \quad \mathbf{B C}:=\frac{\mathbf{B H} \cdot \mathbf{B E}}{\mathbf{B F}}\)
Definitions.
\(\frac{B G}{B F}-\frac{N-1}{N^{\frac{3}{4}}-1}=0 \quad \frac{B G}{B E}-\frac{N^{2}-2 \cdot N+1}{N^{\left(\frac{3}{2}\right)}-2 \cdot N^{\left(\frac{3}{4}\right)}+1}=0 \quad \frac{B G}{B C}-\frac{N^{3}-3 \cdot N^{2}+3 \cdot N-1}{N^{\left(\frac{9}{4}\right)}-3 \cdot N^{\left(\frac{3}{2}\right)}+3 \cdot N^{\left(\frac{3}{4}\right)}-1}=0\)
\(\mathbf{A G}-\mathbf{N}=\mathbf{0} \quad \mathbf{B G}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{A F}-\left(\mathbf{N}^{3}\right)^{\frac{1}{4}}=\mathbf{0}\)
\(B F-\left[\left(N^{3}\right)^{\frac{1}{4}}-1\right]=0 \quad\) BJ \(-\left[\left(N^{3}\right)^{\frac{1}{4}}-1\right]=0\)
\(B E-\frac{\left[\left(N^{3}\right)^{\frac{1}{4}}-1\right]^{2}}{N-1}=0 \quad B H-\frac{\left[\left(N^{3}\right)^{\frac{1}{4}}-1\right]^{2}}{N-1}=0\)
\(B C-\frac{\left[\left(N^{3}\right)^{\frac{1}{4}}-1\right]^{3}}{(N-1)^{2}}=0\)
\(\sim_{n}^{\infty}\)
Given.
\(\mathbf{X}:=\mathbf{3} \quad \mathbf{Y}:=\mathbf{1 7}\)
\(\mathbf{A B}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{N}:=\frac{\mathbf{Y}}{\mathbf{X}}\)
122195 C 2
Descriptions.
Descriptions.
\(\mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{A F}:=(\mathbf{A B} \cdot \mathbf{A G})^{\frac{\mathbf{3}}{\frac{1}{4}}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}\)
\(\mathbf{B J}:=\mathbf{B F} \quad \mathbf{B E}:=\frac{\mathbf{B J} \cdot \mathbf{B F}}{\mathbf{B G}} \quad \mathbf{B H}:=\mathbf{B E} \quad \mathbf{B C}:=\frac{\mathbf{B H} \cdot \mathbf{B E}}{\mathbf{B F}}\)
\(\frac{B G}{B F}-\frac{N-1}{N^{\frac{3}{4}}-1}=0 \quad \frac{B G}{B E}-\frac{N^{2}-2 \cdot N+1}{N^{\left(\frac{3}{2}\right)}-2 \cdot N^{\left(\frac{3}{4}\right)}+1}=0\)
\(\frac{B G}{B C}-\frac{N^{3}-3 \cdot N^{2}+3 \cdot N-1}{N^{\left(\frac{9}{4}\right)}-3 \cdot N^{\left(\frac{3}{2}\right)}+3 \cdot N^{\left(\frac{3}{4}\right)}-1}=0\)

Definitions.
\(\mathbf{A G}-1=0 \quad \mathbf{B G}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=0 \quad \mathbf{A F}-\left(\frac{X}{Y}\right)^{\frac{1}{4}}=0\)
\(B F-\frac{X^{\frac{1}{4}} \cdot\left(Y^{\frac{1}{4}}-X^{\frac{1}{4}}\right) \cdot\left(\sqrt{X}+\sqrt{Y}+X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)}{Y}=0\)
BJ \(-\frac{X^{\frac{1}{4}} \cdot\left(Y^{\frac{1}{4}}-X^{\frac{1}{4}}\right) \cdot\left(\sqrt{X}+\sqrt{Y}+X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)}{Y}=0\)

\section*{Pascal's Triangle With Exponential Division}

Plate C2

\(C^{\circ} \cos ^{38}\)
\(\mathbf{B E}-\frac{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}) \cdot\left(\mathbf{Y}^{\frac{1}{4}}-\mathbf{X}^{\frac{1}{4}}\right) \cdot\left(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}+\mathbf{X}^{\frac{1}{4}} \cdot \mathbf{Y}^{\frac{1}{4}}\right)^{2}}{\mathbf{Y} \cdot(\mathbf{Y}-\mathbf{X}) \cdot\left(\mathbf{X}^{\frac{1}{4}}+\mathbf{Y}^{\frac{1}{4}}\right)}=\mathbf{0}\)
\(\mathbf{B H}-\frac{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{Y}}-\sqrt{\mathbf{X}}) \cdot\left(\mathbf{Y}^{\frac{1}{4}}-\mathbf{X}^{\frac{1}{4}}\right) \cdot\left(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}+\mathbf{X}^{\frac{1}{4}} \cdot \mathbf{Y}^{\frac{1}{4}}\right)^{2}}{\mathbf{Y} \cdot(\mathbf{Y}-\mathbf{X}) \cdot\left(\mathbf{x}^{\frac{1}{4}}+\mathbf{Y}^{\frac{1}{4}}\right)}=\mathbf{0}\)
\(B C-\frac{X^{\frac{3}{4}} \cdot\left(Y^{\frac{1}{4}}-x^{\frac{1}{4}}\right)^{2} \cdot\left(\sqrt{X}+\sqrt{Y}+X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)^{3}}{\left(X^{\frac{1}{4}}+Y^{\frac{1}{4}}\right)^{2} \cdot Y \cdot(\sqrt{X}+\sqrt{Y})^{2} \cdot\left(Y^{\frac{1}{4}}-X^{\frac{1}{4}}\right)}=0\)
\(\frac{\mathbf{B G}}{\mathbf{B F}}-\frac{(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}) \cdot\left(\mathbf{x}^{\frac{1}{4}}+\mathbf{Y}^{\frac{1}{4}}\right)}{\mathbf{x}^{\frac{1}{4}} \cdot\left(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}+\mathbf{X}^{\frac{1}{4}} \cdot \mathbf{Y}^{\frac{1}{4}}\right)}=\mathbf{0}\)
\(\frac{\mathrm{BG}}{\mathrm{BE}}-\frac{\left(\mathrm{X}^{\frac{1}{4}}+\mathrm{Y}^{\frac{1}{4}}\right)^{2} \cdot(\sqrt{\mathrm{X}}+\sqrt{\mathrm{Y}})^{2}}{\sqrt{\mathrm{X}} \cdot\left(\sqrt{\mathrm{X}}+\sqrt{\mathrm{Y}}+\mathrm{X}^{\frac{1}{4}} \cdot \mathrm{Y}^{\frac{1}{4}}\right)^{2}}=0\)
\(\frac{\mathrm{BG}}{\mathrm{BC}}-\frac{(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}})^{3} \cdot\left(\mathrm{X}^{\frac{1}{4}}+\mathrm{Y}^{\frac{1}{4}}\right)^{3}}{\mathrm{X}^{\frac{3}{4}} \cdot\left(\sqrt{\mathrm{X}}+\sqrt{\mathrm{Y}}+\mathrm{X}^{\frac{1}{4}} \cdot \mathrm{Y}^{\frac{1}{4}}\right)^{3}}=0\)

\({\frac{\mathrm{X}}{}{ }^{\frac{1}{4}}}^{-\mathrm{AF}}=0.00000\)
\[
\begin{aligned}
& \frac{Y}{X^{\frac{1}{4}} \cdot\left(Y^{\frac{1}{4}}-X^{\frac{1}{4}}\right) \cdot\left(\sqrt{X}+\sqrt{Y}+X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)} \\
& \frac{X^{\frac{1}{4}} \cdot\left(Y^{\frac{1}{4}}-X^{\frac{1}{4}}\right) \cdot\left(\sqrt{X}+\sqrt{Y}+X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)}{Y}=0.47167 \\
& \frac{X^{\frac{1}{4}} \cdot\left(Y^{\frac{1}{4}}-X^{\frac{1}{4}}\right) \cdot\left(\sqrt{X}+\sqrt{Y}+X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)}{Y}-B J=0.00000
\end{aligned}
\]

Unit.
AC := 1
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{9} \quad \mathbf{C E}:=\mathbf{N}_{\mathbf{1}}\)

122995A
Descriptions.
\(\mathbf{A E}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C E}^{2}} \quad \mathbf{A D}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A E}}\)
\(\mathbf{A B}:=\frac{\mathbf{A D}^{2}}{\mathbf{A C}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}}\)
\(\mathbf{C D}:=\sqrt{\mathbf{B C}^{2}+\mathbf{B D}^{2}} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D}\)

\section*{Definitions.}
\(B C-\frac{N_{1}{ }^{2}}{N_{1}{ }^{2}+1}=0 \quad B D-\frac{N_{1}}{N_{1}{ }^{2}+1}=0 \quad A B-\frac{1}{N_{1}{ }^{2}+1}=0\)
\(A D-\frac{1}{\sqrt{N_{1}{ }^{2}+1}}=0 \quad D E-\frac{N_{1}{ }^{2}}{\sqrt{1+N_{1}{ }^{2}}}=0\)

Given AC and CE find BC.

\section*{122995B}

Descriptions.
\(\mathbf{A E}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C E}^{2}} \quad \mathbf{A D}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A E}}\)
\(\mathbf{A B}:=\frac{\mathbf{A D}^{\mathbf{2}}}{\mathbf{A C}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}}\) \(\mathbf{C D}:=\sqrt{\mathbf{B C}^{2}+\mathbf{B D}^{2}} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D}\)

\section*{Definitions.}
\(\mathbf{A E}-\sqrt{\mathbf{Y}^{2}+\mathbf{X}^{2}}=0 \quad \mathbf{A D}-\frac{\mathbf{Y}^{2}}{\sqrt{\mathbf{Y}^{2}+\mathbf{X}^{2}}}=0\)
\(A B-\frac{\mathbf{Y}^{3}}{X^{2}+\mathbf{Y}^{2}}=0 \quad B C-\frac{X^{2} \cdot Y}{X^{2}+Y^{2}}=0\)
\(B D-\frac{X \cdot Y^{2}}{X^{2}+Y^{2}}=0 \quad C D-\frac{X \cdot Y}{\sqrt{X^{2}+Y^{2}}}=0\)
\(D E-\frac{X^{2}}{\sqrt{X^{2}+Y^{2}}}=0\)

Given \(A C\) and CE find BC.

010496

As \(\angle \mathrm{HBJ}\) is opposite and equal to \(\angle \mathrm{GBD}, \mathrm{DG}=\mathrm{HJ}\), therefore \(\angle \mathrm{DG}\) is \(\frac{1}{3} \mathrm{CF}\). As CE is parallel to DH and EF is parallel to GJ, EGBD is equilateral.
By construction DK \(=\mathbf{K M}\).
As DH is parallel to \(\mathrm{CE}, \mathrm{CH}=\mathrm{DG}\).
As DK is equal and opposite CH, MK + DK + DG is \(\frac{1}{3}\) DG.

The Archamedian Paper Trisector- Without the Numbers.

\section*{Given any circle AB.}

Given any circle \(B C\) such that \(B C \leq 2 A B\).
Construct AE such that \(\mathrm{AE}=\mathrm{AC}\).
\(A s A C=A B+B C\) and \(A D=A B\) so too \(D E=B C\).
Construct DH parallel to BD. Construct CE.
\(A s A B=A D\) and \(A C=A E, \triangle A B D\) is proportional to \(\triangle A C E\), therefore \(C E\) is parallel to \(B D\).
From here one can take two paths.
Construct GJ parallel to EF.
As CE is parallel to \(\mathrm{DH}, \mathrm{DG}=\mathbf{C H}\).
As GJ is parallel to EF, DG = FJ.

A rusty Compass construction for the duplication of the cube.
Descriptions.
\(\mathbf{A B}:=\frac{\mathbf{A D}}{2} \quad \mathbf{A G}:=\sqrt{2 \cdot \mathbf{A B}^{2}} \quad \mathbf{A F}:=\frac{\mathbf{A G}}{9} \cdot \mathbf{8}\)
\(\mathbf{A C}:=\mathbf{A F} \quad \mathbf{A C}=1.257079\)
\(\left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}=1.259921 \quad \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}}{\mathrm{AC}}=1.002261\)

\section*{Rusty Cubes}

I remember a rusty construction for squaring a circle off the base of a right triangle. Here is one more rust pile construction.

\section*{Definitions.}
\(\frac{2^{\frac{1}{3}}}{2} \cdot\left(N^{3}\right)^{\frac{1}{3}} \frac{9 \cdot 2^{\frac{5}{6}} \cdot\left(N^{3}\right)^{\frac{1}{3}}}{16 \cdot \sqrt{N^{2}}}\)

010896A1

Given.
\(\mathbf{R}_{\mathbf{1}}:=\mathbf{2}\)

Descriptions.
\(\mathbf{D E}:=\mathbf{R}_{\mathbf{1}} \quad \mathbf{K M}:=\mathbf{R}_{\mathbf{2}} \quad \mathbf{E K}:=\mathbf{D} \quad \mathbf{D M}:=\mathbf{D E}+\mathbf{E K}+\mathbf{K M}\)
\(\mathbf{E F}:=\mathbf{D E} \quad\) JK \(:=\mathbf{K M} \quad\) FJ \(:=\mathbf{E K}-(\mathbf{E F}+\mathbf{J K}) \quad\) AD \(:=\mathbf{D M}\)
\(\mathbf{B M}:=\mathbf{D M} \quad \mathbf{D F}:=\mathbf{D E}+\mathbf{E F} \quad \mathbf{J M}:=\mathbf{J K}+\mathbf{K M}\)
FG \(:=\frac{\mathbf{D F} \cdot \mathbf{F J}}{\mathbf{D F}+\mathbf{J M}} \quad\) GJ \(:=\mathbf{F J}-\mathbf{F G} \quad\) DI \(:=\frac{\mathbf{D M}}{2}\)
\(\mathbf{D G}:=\mathbf{D F}+\mathbf{F G} \quad \mathbf{G I}:=\mathbf{D I}-\mathbf{D G} \quad \mathbf{C I}:=\mathbf{D I} \mathbf{G N}:=\frac{\mathbf{A D} \cdot \mathbf{F G}}{\mathbf{D F}}\)
\(\mathbf{G H}:=\frac{\mathbf{G I} \cdot \mathbf{G N}}{\mathbf{C I}+\mathbf{G N}} \quad \mathbf{D H}:=\mathbf{D F}+\mathbf{F G}+\mathbf{G H} \quad \mathbf{D H}=\mathbf{1 . 3 7 5}\)
\(\mathbf{H M}:=\mathbf{D M}-\mathbf{D H}\)

Definitions.
\(\mathbf{D H}-\frac{\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}{\mathbf{2} \cdot \mathbf{D}}=\mathbf{0}\)

010896A2
Descriptions.
\[
\begin{aligned}
& \mathbf{A B}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{C D}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{A C}:=\mathbf{B D}-(\mathbf{A B}+\mathbf{C D}) \\
& \mathbf{M N}:=\mathbf{A C}-(\mathbf{A B}+\mathbf{C D}) \quad \mathbf{B M}:=\mathbf{2} \cdot \mathbf{A B} \quad \mathbf{D N}:=\mathbf{2} \cdot \mathbf{C D} \\
& \text { NO }:=\frac{\mathbf{D N} \cdot \mathbf{M N}}{\mathbf{B D}-\mathbf{M N}} \quad \mathbf{M O}:=\mathbf{M N}-\mathbf{N O} \quad \text { DE }:=\frac{\mathbf{B D}}{2} \\
& \text { DO }:=\mathbf{D N}+\text { NO } \quad \text { EO }:=\mathbf{D E}-\mathbf{D O} \quad \text { EF }:=\mathbf{D E} \\
& \text { JO }:=\frac{\mathbf{B D} \cdot \mathbf{N O}}{\text { DN }} \quad \text { KO }:=\frac{\mathbf{E O} \cdot \mathbf{J O}}{\mathbf{E F}+\mathbf{J O}} \\
& \text { DK }:=\mathbf{D O}+\text { KO } \quad \text { BK }:=\mathbf{B D}-\mathbf{D K} \\
& \text { DK }=\mathbf{0 . 3 4 3 4 3 4} \\
& \text { BK }=\mathbf{0 . 6 5 6 5 6 6}
\end{aligned}
\]

\section*{Definitions}
\[
\mathbf{D K}-\frac{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{W}-\mathbf{X})}{\mathbf{2} \cdot[\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot(\mathbf{Y}-\mathbf{Z})]}=\mathbf{0} \quad \mathbf{B K}-\frac{\mathbf{X} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}{\mathbf{2} \cdot[\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot(\mathbf{Y}-\mathbf{Z})]}=\mathbf{0}
\]

\section*{Alternate Method Power Line}

\(\mathbf{A B}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{C D}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{A C}-\frac{\mathbf{X} \cdot(\mathbf{Z}-\mathbf{Y})-\mathbf{W} \cdot \mathbf{Z}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}\)
\(\mathbf{M N}-\frac{\mathbf{X} \cdot \mathbf{Z}-\mathbf{2} \cdot(\mathbf{X} \cdot \mathbf{Y}+\mathbf{W} \cdot \mathbf{Z})}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{B M}-\frac{\mathbf{2} \cdot \mathbf{W}}{\mathbf{X}}=\mathbf{0}\)
\(\mathbf{D N}-\frac{\mathbf{2} \cdot \mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{N O}-\frac{\mathbf{Y} \cdot[\mathbf{X} \cdot \mathbf{Z}-\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})]}{\mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0}\)
\(\mathbf{M O}-\frac{\mathbf{W} \cdot[\mathbf{X} \cdot \mathbf{Z}-\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})]}{\mathbf{X} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0} \quad \mathbf{D E}-\frac{\mathbf{1}}{\mathbf{2}}=\mathbf{0}\)
\(\mathbf{D O}-\frac{\mathbf{X} \cdot \mathbf{Y}}{\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}}=\mathbf{0} \quad\) EO \(-\frac{\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}{2 \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}=0\)
\(\mathrm{JO}-\frac{\mathbf{X} \cdot \mathbf{Z}-\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}{2 \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}=0 \quad \mathbf{E F}-\frac{1}{2}=\mathbf{0}\)
\(\mathbf{K O}-\frac{(\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}) \cdot[\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})-\mathbf{X} \cdot \mathbf{Z}]}{\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}) \cdot[\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot(\mathbf{Y}-\mathbf{Z})]}=\mathbf{0}\)

Unit.
\(\mathrm{AB}:=1\)
Given.
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N}\)

\section*{010896B1}

Descriptions.
\[
\begin{aligned}
& \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{B O}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \mathbf{A C}:=\left(\mathbf{A B}^{\mathbf{3}} \cdot \mathbf{A G}\right)^{\frac{1}{4}} \\
& \mathbf{A F}:=(\mathbf{A B} \cdot \mathbf{A G})^{\frac{1}{4}} \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{F G}:=\mathbf{A G}-\mathbf{A F} \\
& \mathbf{D G}:=\mathbf{A G}-\mathbf{A D} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D K}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \\
& \mathbf{B K}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D K}^{2}} \quad \mathbf{G K}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D K}^{2}} \\
& \mathbf{B J}:=\frac{\mathbf{B K} \cdot \mathbf{B C}}{\mathbf{B G}} \quad \mathbf{G L}:=\frac{\mathbf{G K} \cdot \mathbf{F G}}{\mathbf{B G}} \\
& \mathbf{G L} \\
& \frac{\mathbf{B J}}{}=\mathbf{5} \quad \frac{\mathbf{F G}}{\mathbf{A B}}=\mathbf{5}
\end{aligned}
\]

\section*{Quad Roots}

The figure cuts the base line in quad roots. As such it would be another trivial method for doing quad roots, however I am interested in some of the ratio's of the figure instead.

Coses
Definitions.
\(\frac{G K}{G L}-\left(\frac{N^{\frac{3}{4}}+N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}}{N^{\frac{3}{4}}}\right)=0 \quad \frac{B K}{B J}-\left(N^{\frac{3}{4}}+N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}\right)=0\)
\(\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{B M}:=\frac{\mathbf{B D} \cdot \mathbf{B C}}{\mathbf{B G}} \mathbf{C N}:=\frac{\mathbf{B D} \cdot \mathbf{C D}}{\mathbf{B G}} \mathbf{D P}:=\frac{\mathbf{B D} \cdot \mathbf{D F}}{\mathbf{B G}}\)
\(\frac{B G}{B M}-\left(N^{\frac{5}{4}}+N+N^{\frac{3}{4}}+N^{\frac{3}{4}}+N^{\frac{2}{4}}+N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}\right)=0\)
\(\frac{B G}{C N}-\left(N+N^{\frac{3}{4}}+N^{\frac{2}{4}}+N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}+N^{\frac{-1}{4}}\right)=0\)

Cons
\(\frac{B G}{D P}-\left(N^{\frac{3}{4}}+N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}+N^{\frac{0}{4}}+N^{\frac{-1}{4}}+N^{\frac{-2}{4}}\right)=0\)
\(\frac{B G}{F Q}-\left(N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}+N^{\frac{0}{4}}+N^{\frac{-1}{4}}+N^{\frac{-1}{4}}+N^{\frac{-2}{4}}+N^{\frac{-3}{4}}\right)=0\)
\(\frac{A G}{B M}-\left(\frac{N^{\frac{3}{2}}+N}{N^{\frac{1}{4}}-N^{\frac{0}{4}}}\right)=0 \quad \frac{A G}{C N}-\left(\frac{N^{\frac{5}{4}}+N^{\frac{3}{4}}}{N^{\frac{1}{4}}-N^{\frac{0}{4}}}\right)=0\)
\(\frac{A G}{D P}-\left(\frac{N+N^{\frac{2}{4}}}{N^{\frac{1}{4}}-N^{\frac{0}{4}}}\right)=0 \quad \frac{A G}{F Q}-\left(\frac{N^{\frac{3}{4}}+N^{\frac{1}{4}}}{N^{\frac{1}{4}}-N^{\frac{0}{4}}}\right)=0\)

\[
\begin{aligned}
& \text { 010896B2 } \\
& \text { Descriptions. } \\
& \mathbf{A C}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{B C}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathbf{A E}:=\sqrt{\mathbf{A D}^{2}-\mathbf{B D}^{2}} \quad \mathbf{D E}:=\mathbf{A D}-\mathbf{A E} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \\
& \mathbf{C E}:=\mathbf{B C}-\mathbf{B E} \quad \mathbf{E H}:=\sqrt{\mathbf{B E} \cdot \mathbf{C E}} \quad \mathbf{E J}:=\frac{\mathbf{D E} \cdot \mathbf{E H}}{\mathbf{B D}+\mathbf{E H}} \\
& \mathbf{A J}:=\mathbf{A E}+\mathbf{E J} \quad \mathbf{D J}:=\mathbf{D E}-\mathbf{E J} \quad \mathbf{J K}:=\sqrt{\mathbf{B D}^{\mathbf{2}}+\mathbf{D J}^{\mathbf{2}}} \\
& \mathbf{J M}:=\frac{\text { DJ } \cdot \mathbf{A J}}{\mathbf{J K}} \quad \mathbf{H K}:=\sqrt{(B D+\mathbf{E H})^{\mathbf{2}}+\mathrm{DE}^{2}} \\
& \mathbf{M H}:=\mathbf{H K}-(\mathbf{J K}+\mathbf{J M}) \quad \mathbf{O R}:=\mathbf{2} \cdot \mathbf{M H} \quad \mathbf{B H}:=\sqrt{\mathbf{E H}^{2}+\mathrm{BE}^{2}} \\
& \mathrm{HO}:=\sqrt{2 \cdot \mathrm{MH}^{2}} \quad \mathrm{BO}:=\mathrm{BH}-\mathrm{HO} \quad \mathrm{CH}:=\sqrt{\mathrm{CE}^{2}+\mathrm{EH}^{2}} \\
& \mathbf{B F}:=\frac{\mathbf{B C} \cdot \mathbf{B O}}{\mathbf{B H}} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{C R}:=\mathbf{C H}-\mathbf{H O} \\
& \mathbf{C G}:=\frac{\mathbf{B C} \cdot \mathbf{C R}}{\mathbf{C H}} \quad \mathbf{A G}:=\mathbf{A C}-\mathbf{C G} \\
& A C^{\frac{1}{4}}-A F=0 \quad A C^{\frac{2}{4}}-A E=0 \quad A C^{\frac{3}{4}}-A G=0
\end{aligned}
\]

\section*{Quad Roots}

\section*{(n)}

Definitions.
\(\mathbf{A C}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B C}-\frac{\mathbf{X}-\mathbf{Y}}{\mathbf{Y}}=0 \quad \mathbf{B D}-\frac{\mathbf{X}-\mathbf{Y}}{2 \cdot \mathbf{Y}}=0 \quad \mathbf{A D}-\frac{\mathbf{X}+\mathbf{Y}}{2 \cdot \mathbf{Y}}=0 \quad \mathbf{A E}-\frac{\sqrt{X}}{\sqrt{Y}}=0\)
\(\mathbf{D E}-\frac{(\sqrt{\mathbf{X}}-\sqrt{\mathbf{Y}})^{2}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{B E}-\frac{\sqrt{\mathbf{X}}-\sqrt{\mathbf{Y}}}{\sqrt{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{C E}-\frac{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{X}}-\sqrt{\mathbf{Y}})}{\mathbf{Y}}=\mathbf{0}\)
\(E H-\frac{X^{\frac{1}{4}} \cdot(\sqrt{X}-\sqrt{Y})}{Y^{\frac{3}{4}}}=0 \quad E J-\frac{X^{\frac{1}{4}} \cdot\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right)^{2}}{Y^{\frac{3}{4}}}=0 \quad A J-\frac{X^{\frac{1}{4}} \cdot\left(\sqrt{X}+\sqrt{Y}-X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)}{Y^{\frac{3}{4}}}=0\)
\(D J-\frac{(\sqrt{X}+\sqrt{Y}) \cdot\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right)^{2}}{2 \cdot Y}=0 \quad J K-\frac{\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right) \cdot(\sqrt{X}+\sqrt{Y})^{\frac{3}{2}}}{\sqrt{2} \cdot Y}=0\)

\(J M-\frac{\sqrt{2} \cdot X^{\frac{1}{4}} \cdot\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right) \cdot\left(\sqrt{X}+\sqrt{Y}-X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)}{2 \cdot Y^{\frac{3}{4}} \cdot(\sqrt{X}+\sqrt{Y})^{\frac{1}{2}}}=0\)
\(H K-\frac{\sqrt{2} \cdot\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right) \cdot \sqrt{\sqrt{X}}+\sqrt{Y} \cdot\left(X^{\frac{1}{4}}+Y^{\frac{1}{4}}\right)^{2}}{2 \cdot Y}=0 \quad M H-\frac{X^{\frac{1}{4}} \cdot\left(\sqrt{2} \cdot \sqrt{X}+\sqrt{2} \cdot \sqrt{Y}+\sqrt{2} \cdot X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right) \cdot\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right)}{2 \cdot Y^{\frac{3}{4}} \cdot \sqrt{\sqrt{X}+\sqrt{Y}}}=0\)

\(\mathbf{O R}-\frac{\mathbf{X}^{\frac{1}{4}} \cdot\left(\sqrt{2} \cdot \sqrt{\mathbf{X}}+\sqrt{2} \cdot \sqrt{\mathbf{Y}}+\sqrt{2} \cdot \mathbf{X}^{\frac{1}{4}} \cdot \mathbf{Y}^{\frac{1}{4}}\right) \cdot\left(\mathbf{X}^{\frac{1}{4}}-\mathbf{Y}^{\frac{1}{4}}\right)}{\mathbf{Y}^{\frac{3}{4}} \cdot \sqrt{\sqrt{\mathbf{X}}+\sqrt{Y}}}=0 \quad \mathbf{B H}-\frac{\sqrt{\sqrt{X}+\sqrt{\mathbf{Y}} \cdot(\sqrt{X}-\sqrt{Y})}}{\mathbf{Y}^{\frac{3}{4}}}=0\) \(H O-\frac{\left(X^{\frac{1}{4}}\right) \cdot\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right) \cdot\left(\sqrt{X}+\sqrt{Y}+X^{\frac{1}{4}} \cdot Y^{\frac{1}{4}}\right)}{Y^{\frac{3}{4}} \cdot \sqrt{\sqrt{X}+\sqrt{Y}}}=0\)
\(\mathbf{B O}-\frac{\mathbf{X}^{\frac{1}{4}}-\mathbf{Y}^{\frac{1}{4}}}{\sqrt{\sqrt{X}+\sqrt{Y}}}=\mathbf{0} \quad \mathbf{C H}-\frac{\sqrt{\sqrt{X} \cdot(\sqrt{X}+\sqrt{Y})} \cdot(\sqrt{X}-\sqrt{Y})}{Y}=0 \quad \mathbf{B F}-\frac{X^{\frac{1}{4}}-Y^{\frac{1}{4}}}{\mathbf{Y}^{\frac{1}{4}}}=0 \quad \mathbf{A F}-\frac{X^{\frac{1}{4}}}{\mathbf{Y}^{\frac{1}{4}}}=0\) \(\left.\mathbf{C R}-\frac{\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right) \cdot \sqrt{\sqrt{X}}+\sqrt{Y}}{\left(X^{\frac{1}{4}}+Y^{\frac{1}{4}}\right) \cdot \sqrt{X}+\sqrt{X} \cdot \sqrt{Y}}-\left(X^{\frac{1}{4}}-Y^{\frac{1}{4}}\right) \cdot\left(\sqrt{X} \cdot \sqrt{Y}+X^{\frac{1}{4}} \cdot Y^{\frac{3}{4}}+X^{\frac{3}{4}} \cdot Y^{\frac{1}{4}}\right)\right)=0\) \(\mathbf{C G}-\frac{\left(\mathbf{X}^{\frac{1}{4}}-\mathbf{Y}^{\frac{1}{4}}\right) \cdot(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}) \cdot\left[\sqrt{\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}} \cdot\left(\mathbf{X}^{\frac{\mathbf{1}}{4}}+\mathbf{Y}^{\frac{1}{4}}\right) \cdot \sqrt{\mathbf{X}+\sqrt{\mathbf{X}} \cdot \sqrt{\mathbf{Y}}}-\left(\sqrt{\mathbf{X}} \cdot \sqrt{\mathbf{Y}}+\mathbf{X}^{\frac{\mathbf{1}}{4}} \cdot \mathbf{Y}^{\frac{\mathbf{3}}{4}}+\mathbf{X}^{\frac{\mathbf{3}}{4}} \cdot \mathbf{Y}^{\frac{1}{4}}\right)\right]}{\mathbf{Y} \cdot \sqrt{\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}} \cdot \sqrt{\sqrt{\mathbf{X}} \cdot(\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}})}}=\mathbf{0}\) \(\mathbf{A G}-\frac{\mathbf{Y}^{\frac{\mathbf{3}}{4}} \cdot \sqrt{\mathbf{X}+\sqrt{\mathbf{X}} \cdot \sqrt{\mathbf{Y}}}+\left(\mathbf{X}-\mathbf{X}^{\frac{\mathbf{1}}{4}} \cdot \mathbf{Y}^{\frac{\mathbf{3}}{4}}\right) \cdot \sqrt{\sqrt{\mathbf{X}}+\sqrt{\mathbf{Y}}}}{\mathbf{Y}^{\frac{\mathbf{3}}{4}} \cdot \sqrt{\mathbf{X}+\sqrt{\mathbf{X}} \cdot \sqrt{\mathbf{Y}}}}=\mathbf{0}\)

\(\sim_{n}^{\infty}\)
011396A
Descriptions.
Unit.
AD := 1
Given.
\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{a}}:=\mathbf{2} . . \mathbf{N}_{\mathbf{1}}
\]
\[
\mathbf{N}_{\mathbf{2}}:=\mathbf{7} \quad \mathbf{N}_{\mathbf{b}}:=\mathbf{2} . . \mathbf{N}_{\mathbf{2}}
\]
\(\mathbf{A B}:=\frac{\mathbf{A D}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\sqrt{\mathbf{A B} \cdot \mathbf{B D}} \quad \mathbf{B E}:=\frac{\mathbf{B G}}{\mathbf{N}_{\mathbf{2}}}\)
\(\mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B E}}{\mathbf{B G}} \quad \mathbf{A E}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B E}^{2}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A F}:=\frac{\mathbf{A E} \cdot \mathbf{A D}}{\mathbf{A C}}\)
\(\mathbf{E F}:=\mathbf{A F}-\mathbf{A E} \quad \frac{\mathbf{A F}}{\mathbf{E F}}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)}=\mathbf{0} \quad \frac{\mathbf{A F}}{\mathbf{E F}}=1.458333\)
Definitions.
SeriesAF \(_{\mathbf{N}_{\mathbf{a}}}, \mathbf{N}_{\mathbf{b}}:=\frac{\mathbf{N}_{\mathbf{a}} \cdot \mathbf{N}_{\mathbf{b}}}{\left(\mathbf{N}_{\mathbf{a}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{b}}-\mathbf{1}\right)}\)
SeriesAF \(=\left(\begin{array}{cccccc}4 & 3 & 2.666667 & 2.5 & 2.4 & 2.333333 \\ 3 & 2.25 & 2 & 1.875 & 1.8 & 1.75 \\ 2.666667 & 2 & 1.777778 & 1.666667 & 1.6 & 1.555556 \\ 2.5 & 1.875 & 1.666667 & 1.5625 & 1.5 & 1.458333\end{array}\right)\)
\(\mathrm{DG}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BG}^{2}} \quad \mathrm{CE}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BE}^{2}} \quad \mathrm{DF}:=\frac{\mathrm{CE} \cdot \mathbf{A D}}{\mathrm{AC}} \quad \mathrm{GF}:=\mathrm{DG}-\mathrm{DF}\)
\(\frac{\mathbf{D G}}{\mathbf{G F}}-\frac{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)}{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}=\mathbf{0} \quad\) SeriesDG \(\mathbf{N}_{\mathbf{a}}, \mathbf{N}_{\mathbf{b}}:=\frac{\left(\mathbf{N}_{\mathbf{b}}+\mathbf{N}_{\mathbf{a}}-\mathbf{1}\right)}{\left(\mathbf{N}_{\mathbf{b}}-\mathbf{1}\right)} \quad \frac{\mathbf{D G}}{\mathbf{G F}}=1.833333\)

SeriesDG \(=\left(\begin{array}{cccccc}3 & 2 & 1.666667 & 1.5 & 1.4 & 1.333333 \\ 4 & 2.5 & 2 & 1.75 & 1.6 & 1.5 \\ 5 & 3 & 2.333333 & 2 & 1.8 & 1.666667 \\ 6 & 3.5 & 2.666667 & 2.25 & 2 & 1.833333\end{array}\right)\)

\section*{Pyramid of Ratios VI, Moving the Point}

\(\sim_{n=2}^{0}\)
011396B Descriptions.
\(\mathbf{A B}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\sqrt{\mathbf{A B} \cdot \mathbf{B D}} \quad \mathbf{B E}:=\frac{\mathbf{B G} \cdot(\mathbf{Z}-\mathbf{Y})}{\mathbf{Z}}\)
\(\mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B E}}{\mathbf{B G}} \quad \mathbf{A E}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B E}^{2}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A F}:=\frac{\mathbf{A E} \cdot \mathbf{A D}}{\mathbf{A C}}\)
\(\mathbf{E F}:=\mathbf{A F}-\mathbf{A E} \quad \mathbf{D G}:=\sqrt{\mathbf{B D}^{2}+\mathbf{B G}^{2}} \quad \mathbf{C E}:=\sqrt{\mathbf{B C}^{2}+\mathbf{B E}^{2}}\)
DF := \(\frac{\mathbf{C E} \cdot \mathbf{A D}}{\mathbf{A C}} \quad \mathbf{G F}:=\mathbf{D G}-\mathbf{D F} \quad \frac{\mathbf{A F}}{\mathbf{E F}}=1.904762 \quad \frac{\mathbf{D G}}{\mathbf{G F}}=2.714286\)
Definitions.
\(\mathbf{A B}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{X}-\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{B G}-\frac{\sqrt{\mathbf{W} \cdot(\mathbf{X}-\mathbf{W})}}{\mathbf{X}}=\mathbf{0}\)
\(\mathbf{B E}-\frac{\sqrt{\mathbf{W} \cdot \mathbf{X}-\mathbf{W}^{2}} \cdot(\mathbf{Z}-\mathbf{Y})}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{B C}-\frac{(\mathbf{W}-\mathbf{X}) \cdot(\mathbf{Y}-\mathbf{Z}) \cdot \sqrt{\mathbf{W} \cdot \mathbf{X}-\mathbf{W}^{2}}}{\mathbf{X} \cdot \mathbf{Z} \cdot \sqrt{-\mathbf{W} \cdot(\mathbf{W}-\mathbf{X})}}=\mathbf{0}\)
\(\mathbf{A E}-\frac{\sqrt{\mathbf{W} \cdot\left[\mathbf{Y}^{2} \cdot(\mathbf{X}-\mathbf{W})+\mathbf{X} \cdot \mathbf{Z}^{2}+2 \cdot \mathbf{Y} \cdot \mathbf{Z} \cdot(\mathbf{W}-\mathbf{X})\right]}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}\)
\(\mathbf{A C}-\frac{\mathbf{Y} \cdot(\mathbf{W}-\mathbf{X})+\mathbf{X} \cdot \mathbf{Z}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{A F}-\frac{\sqrt{\mathbf{W} \cdot\left[\mathbf{X} \cdot \mathbf{Z}^{\mathbf{2}}-\mathbf{Y} \cdot(\mathbf{Y}-\mathbf{2} \cdot \mathbf{Z}) \cdot(\mathbf{W}-\mathbf{X})\right]}}{\mathbf{W} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}\)
\(\mathbf{E F}-\frac{\sqrt{\mathbf{W} \cdot\left[\mathbf{Y}^{2} \cdot(\mathbf{X}-\mathbf{W})+\mathbf{X} \cdot \mathbf{Z}^{2}+\mathbf{2} \cdot \mathbf{Y} \cdot \mathbf{Z} \cdot(\mathbf{W}-\mathbf{X})\right]} \cdot \mathbf{Y} \cdot(\mathbf{W}-\mathbf{X})}{\mathbf{X} \cdot \mathbf{Z} \cdot[\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W})-\mathbf{X} \cdot \mathbf{Z}]}=\mathbf{0}\)
\(\mathbf{D G}-\frac{\sqrt{\mathbf{X}-\mathbf{W}}}{\sqrt{\mathbf{X}}}=\mathbf{0} \quad \mathbf{C E}-\frac{(\mathbf{Z}-\mathbf{Y}) \cdot \sqrt{\mathbf{X}-\mathbf{W}}}{\sqrt{\mathbf{X}} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{D F}-\frac{\sqrt{\mathbf{X}} \cdot \sqrt{\mathbf{X}-\mathbf{W}} \cdot(\mathbf{Z}-\mathbf{Y})}{\mathbf{W} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{G F}-\frac{\mathbf{W} \cdot \mathbf{Y} \cdot \sqrt{\mathbf{X}-\mathbf{W}}}{\sqrt{\mathbf{X}} \cdot(\mathbf{W} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0}\)
\(\frac{\mathbf{A F}}{\mathbf{E F}}-\frac{\mathbf{X} \cdot \mathbf{Z}}{\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W})}=\mathbf{0} \quad \frac{\mathbf{A F}}{\mathbf{E F}}=1.904762 \quad \frac{\mathbf{D G}}{\mathbf{G F}}-\frac{\mathbf{Y} \cdot(\mathbf{W}-\mathbf{X})+\mathbf{X} \cdot \mathbf{Z}}{\mathbf{W} \cdot \mathbf{Y}}=0 \quad \frac{\mathbf{D G}}{\mathbf{G F}}=2.714286\)

Pyramid of Ratios VI, Moving the Point

Descriptions.
\(\mathbf{B C}:=\frac{\mathbf{B D}}{\mathbf{2}} \quad \mathbf{C G}:=\frac{\mathbf{B C}}{\mathbf{N}_{\mathbf{a}}} \quad \mathbf{B G}:=\mathbf{B C}-\mathbf{C G} \quad \mathbf{D G}:=\mathbf{B C}+\mathbf{C G}\)
\(\mathbf{G H}:=\sqrt{\mathbf{B G} \cdot \mathbf{D G}} \quad \mathbf{C F}:=\mathbf{B C} \quad \mathbf{C O}:=\frac{\mathbf{C G} \cdot \mathbf{C F}}{\mathbf{G H}+\mathbf{C F}}\)
\(\mathbf{G J}:=\frac{\mathbf{B G} \cdot \mathbf{G H}}{\mathbf{B D}+\mathbf{G H}} \quad \mathbf{G K}:=\frac{\mathbf{D G} \cdot \mathbf{G H}}{\mathbf{B D}+\mathbf{G H}} \quad \mathbf{J K}:=\mathbf{G J}+\mathbf{G K}\)
\(\mathbf{G T}:=\frac{\mathbf{G H} \cdot \mathbf{J K}}{\mathbf{B D}} \quad \mathbf{A G}:=\frac{\mathbf{C F} \cdot \mathbf{G T}}{\mathbf{C O}} \quad \mathbf{A D}:=\mathbf{A G}+\mathbf{D G}\)
\(\mathbf{A J}:=\mathbf{A G}-\mathbf{G} \mathbf{J} \quad \mathbf{A K}:=\mathbf{A G}+\mathbf{G K} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D}\)
The figure cuts the base in Cube Roots and provides some interesting ratios.

BJ \(:=\mathbf{B G}-\mathbf{G J} \quad \mathbf{D K}:=\mathbf{D G}-\mathbf{G K}\)
\(\mathbf{D R}:=\frac{\mathbf{D H} \cdot \mathbf{D K}}{\mathbf{B D}} \quad \mathbf{B P}:=\frac{\mathbf{B H} \cdot \mathbf{B J}}{\mathbf{B D}} \quad \mathbf{B M}:=\frac{\mathbf{B G} \cdot \mathbf{B J}}{\mathbf{B D}} \quad \mathbf{K N}:=\frac{\mathbf{B G} \cdot \mathbf{D K}}{\mathbf{B D}}\)
\(\frac{\mathbf{A D}}{\mathrm{AB}}=2.828427 \quad \frac{\mathbf{D R}}{\mathrm{BP}}=2.828427 \quad \mathrm{~N}:=\frac{\mathbf{A D}}{\mathbf{A B}}\)

\section*{\(\sim_{n=20}^{0}\)}

Definitions.
\(\left(\frac{A B}{A D}\right)^{\frac{2}{3}}+\left(\frac{A B}{A D}\right)^{\frac{1}{3}}+\left(\frac{A B}{A D}\right)^{\frac{0}{3}}=2.207107 \quad \frac{D H}{D R}=2.207107 \quad \frac{N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}}{N^{\frac{2}{3}}}=2.207107\)
\(\left(\frac{A D}{A B}\right)^{\frac{2}{3}}+\left(\frac{A D}{A B}\right)^{\frac{1}{3}}+\left(\frac{A D}{A B}\right)^{\frac{0}{3}}=4.414214 \quad \frac{B H}{B P}=4.414214 \quad N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}=4.414214\)
\(\left(\frac{A D}{A B}\right)^{\frac{4}{3}}+\left(\frac{A D}{A B}\right)^{\frac{3}{3}}+\left(\frac{A D}{A B}\right)^{\frac{2}{3}}+\left(\frac{A D}{A B}\right)^{\frac{2}{3}}+\left(\frac{A D}{A B}\right)^{\frac{1}{3}}+\left(\frac{A D}{A B}\right)^{\frac{0}{3}}=13.242641\)
\(N^{\frac{4}{3}}+N^{\frac{3}{3}}+N^{\frac{2}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}=13.242641 \quad \frac{B D}{B M}=13.242641\)
\(\left(\frac{A D}{A B}\right)^{\frac{1}{3}}+\left(\frac{A D}{A B}\right)^{\frac{1}{3}}+\left(\frac{A D}{A B}\right)^{\frac{2}{3}}+\left(\frac{A D}{A B}\right)^{\frac{3}{3}}+\left(\frac{A B}{A D}\right)^{\frac{0}{3}}+\left(\frac{A B}{A D}\right)^{\frac{1}{3}}=9.363961\)
\(N^{\frac{3}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}+\frac{1}{N^{\frac{1}{3}}}=9.363961\)
\(\frac{B D}{G J}=\mathbf{9 . 3 6 3 9 6 1}\)

\(\left(\frac{A D}{A B}\right)^{\frac{2}{3}}+\left(\frac{A D}{A B}\right)^{\frac{1}{3}}+\left(\frac{A D}{A B}\right)^{\frac{0}{3}}+\left(\frac{A D}{A B}\right)^{\frac{0}{3}}+\left(\frac{A B}{A D}\right)^{\frac{1}{3}}+\left(\frac{A B}{A D}\right)^{\frac{2}{3}}=6.62132 \quad N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}+N^{\frac{0}{3}}+\frac{1}{N^{\frac{1}{3}}}+\frac{1}{N^{\frac{2}{3}}}=6.62132\) \(\frac{A D^{\frac{5}{3}}+A B^{\frac{2}{3}} \cdot A D}{A D^{\frac{1}{3}} \cdot A B^{\frac{4}{3}}-A B^{\frac{5}{3}}}=20.485281 \quad \frac{A D}{B M}=20.485281 \quad \frac{N^{\frac{5}{3}}+N}{N^{\frac{1}{3}}-N^{\frac{0}{3}}}=20.485281\)
\(\frac{A D^{\frac{4}{3}}+A B^{\frac{2}{3}} \cdot A D^{\frac{2}{3}}}{A D^{\frac{1}{3}} \cdot A B-A B^{\frac{4}{3}}}=14.485281\)
\(\frac{A D}{G J}=14.485281 \quad \frac{N^{\frac{4}{3}}+N^{\frac{2}{3}}}{N^{\frac{1}{3}}-N^{\frac{0}{3}}}=14.485281\)
\(\frac{A D+A B^{\frac{2}{3}} \cdot A D^{\frac{1}{3}}}{A D^{\frac{1}{3}} \cdot A B^{\frac{2}{3}}-A B}=10.242641 \quad \frac{A D}{K N}=10.242641 \quad \frac{N^{\frac{1}{3}}+N^{\frac{1}{3}}}{N^{\frac{1}{3}}-N^{\frac{0}{3}}}=10.242641\)

Given.
AE := \(\mathbf{5}\)
AB := 3
011796A
Descriptions.
\(\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{D F}:=\mathbf{B D} \quad \mathbf{D E}:=\mathbf{B D}\)
\(\mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \quad \mathbf{D H}:=\mathbf{B D} \quad \mathbf{A H}:=\sqrt{\mathbf{A D}^{2}+\mathbf{D H}^{2}} \quad \mathbf{A G}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A H}}\)
\(\mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \quad \mathbf{F G}:=\mathbf{G H} \quad \mathbf{A F}:=\mathbf{A H}-(\mathbf{F G}+\mathbf{G H})\)
\(\mathbf{C D}:=\frac{\mathbf{A D}^{2}-\mathbf{A F}^{2}+\mathbf{D F}^{2}}{2 \cdot \mathbf{A D}} \quad \mathbf{B C}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{CE}:=\mathrm{CD}+\mathrm{DE}\)
Given \(A E\) and \(A B\) on \(A E\), place a right triangle on \(B E\) as base such that the opposite sides are in the ratio of AB to AE.

\section*{Right Triangle In A Given Ratio}
\(\mathbf{C F}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}} \quad \mathrm{BF}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CF}^{2}} \quad \mathrm{EF}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CF}^{2}}\)
\(\frac{\mathbf{A E}}{\mathbf{A B}}-\frac{\mathbf{E F}}{\mathbf{B F}}=\mathbf{0}\)
Definitions.
\(\mathbf{B E}-(\mathbf{A E}-\mathbf{A B})=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{A E}-\mathbf{A B}}{2}=\mathbf{0} \quad \mathbf{D F}-\frac{\mathbf{A E}-\mathbf{A B}}{2}=\mathbf{0} \quad \mathbf{D E}-\frac{\mathbf{A E}-\mathbf{A B}}{2}=\mathbf{0}\)
\(A D-\frac{A B+A E}{2}=0 \quad D H-\frac{A E-A B}{2}=0 \quad A H-\frac{\sqrt{A B^{2}+A E^{2}}}{\sqrt{2}}=0 \quad A G-\frac{\sqrt{2} \cdot(A B+A E)^{2}}{4 \cdot \sqrt{A B^{2}+A E^{2}}}=0\)
\(\mathbf{G H}-\frac{\sqrt{2} \cdot(\sqrt{2} \cdot \mathbf{A B}-\sqrt{2} \cdot \mathbf{A E})^{2}}{8 \cdot \sqrt{\mathbf{A B}^{2}+\mathbf{A E}^{2}}}=0 \quad \mathbf{F G}-\frac{\sqrt{2} \cdot(\sqrt{2} \cdot \mathbf{A B}-\sqrt{2} \cdot \mathbf{A E})^{2}}{8 \cdot \sqrt{\mathbf{A B}^{2}+\mathbf{A E}^{2}}}=0 \quad \mathbf{A F}-\frac{\sqrt{2} \cdot \mathbf{A B} \cdot \mathbf{A E}}{\sqrt{\mathbf{A B}^{2}+\mathbf{A E}^{2}}}=\mathbf{0}\)
\(C D-\frac{(A B-A E)^{2} \cdot(A B+A E)}{2 \cdot\left(A B^{2}+A E^{2}\right)}=0 \quad B C-\frac{A B^{2} \cdot(A E-A B)}{A B^{2}+A E^{2}}=0 \quad C E-\frac{A E^{2} \cdot(A E-A B)}{A B^{2}+A E^{2}}=0\)
\(\mathbf{C F}-\frac{\mathbf{A B} \cdot \mathbf{A E} \cdot(\mathbf{A E}-\mathbf{A B})}{\left(\mathbf{A B}^{2}+\mathbf{A E}^{2}\right)}=0 \quad \mathbf{B F}-\frac{\mathbf{A B} \cdot(\mathbf{A E}-\mathbf{A B})}{\sqrt{\mathbf{A B}^{2}+\mathbf{A E}^{2}}}=0 \quad \mathbf{E F}-\frac{\mathbf{A E} \cdot(\mathbf{A E}-\mathbf{A B})}{\sqrt{\mathbf{A B}^{2}+\mathbf{A E}^{2}}}=\mathbf{0}\)

011796B1

\section*{Divide The Sides Of A Right Triangle In A Given Ratio}

Here was another junk write up, not only that, the original plate was defective, not absolutely correct, but, it takes time to learn how to say what one sees and at this revision time, all of it has to be fixed. What is being noted is that in this figure, there is a constant ratio, no matter where GH is on BC, AB is to AC as CD is to BE It is very simple, and originally I over obfuscated the whole thing. In short, it has something to say about the common angle. I suspect, now that I review it, it is very iimportant. There is, and always has been, a physical standard for ratio in this respect.

011796B1
Descriptions.
\(\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B C}}{2} \quad \mathbf{B H}:=\mathbf{B C}-\mathbf{C H} \quad \mathbf{G H}:=\sqrt{\mathbf{C H} \cdot \mathbf{B H}}\)
\(\mathbf{F K}:=\mathbf{B F} \quad \mathbf{F H}:=\mathbf{C H}-\mathbf{B F} \quad \mathbf{G K}:=\sqrt{\mathbf{F H}^{\mathbf{2}}+(\mathbf{F K}+\mathbf{G H})^{2}}\)
FM \(:=\frac{\mathbf{F H} \cdot \mathbf{F K}}{\mathbf{F K}+\mathbf{G H}} \quad \mathbf{H M}:=\mathbf{F H}-\mathbf{F M} \quad \mathbf{A H}:=\mathbf{A C}-\mathbf{C H} \quad \mathbf{A M}:=\mathbf{A H}+\mathbf{H M}\)
\(\mathbf{M N}:=\frac{\mathbf{F H} \cdot \mathbf{A M}}{\mathbf{G K}} \quad \mathbf{K M}:=\sqrt{\mathbf{F K}^{2}+\mathbf{F M}^{2}} \quad \mathbf{K N}:=\mathbf{K M}+\mathbf{M N}\)
\(\mathbf{G N}:=\mathbf{G K}-\mathbf{K N} \quad \mathbf{C G}:=\sqrt{\mathbf{C H}^{\mathbf{2}}+\mathbf{G H}^{\mathbf{2}}} \quad \mathbf{B G}:=\sqrt{\mathbf{B H}^{\mathbf{2}}+\mathbf{G H}^{2}}\)
\(\mathbf{D G}:=\sqrt{2 \cdot \mathbf{G N}^{2}} \quad \mathbf{E G}:=\mathbf{D G} \quad \mathbf{C D}:=\mathbf{C G}-\mathbf{D G} \quad \mathbf{B E}:=\mathbf{B G}-\mathbf{E G}\)
\(\frac{A C}{A B}=2.33333 \quad \frac{C D}{B E}=2.33333 \quad \frac{A C}{A B}-\frac{C D}{B E}=0\)

Definitions.
\(\mathbf{B C}-\left(\mathbf{N}_{1}-\mathbf{1}\right)=\mathbf{0} \quad \mathbf{B F}-\frac{\mathbf{N}_{1}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{B H}-\left(\mathbf{N}_{1}-\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)=\mathbf{0} \quad \mathbf{G H}-\sqrt{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}=\mathbf{0} \quad \mathbf{F K}-\frac{\mathbf{N}_{\mathbf{1}}-\mathbf{1}}{2}=\mathbf{0}\)

\(K M-\frac{\left.\sqrt{\left(N_{1}-1\right)^{3} \cdot\left(N_{1}+2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{2}{ }^{2}-N_{2}}-1\right.}\right)}{\left.\sqrt{2 \cdot\left[\left(4 \cdot N_{1}-4\right) \cdot \sqrt{N_{1} \cdot N_{2}-N_{2}{ }^{2}-N_{2}}+N_{1}{ }^{2}+4 \cdot N_{1} \cdot N_{2}-2 \cdot N_{1}-4 \cdot N_{2}{ }^{2}-4 \cdot N_{2}+1\right.}\right]}=0\)
\(K N-(K M+M N)=0 \quad\) On this equation, Matcad is going to expand it past its viewing ability. At the minimum of 10 percept page size, the results is well over 10 pages and it cannot reduce it. It would take hours to do this manually. A second approach, subing all the expressions that are reduced, and rebuild with that. See last page.

\(\mathbf{C G}-\sqrt{\mathrm{N}_{2}{ }^{2}+\mathrm{GH}^{2}}=0\) Mathcad 15 blows a tire here. After spreading it out, and then asking it to collet, it deletes evreything and comes back, "undefined." I might get back to this some other time, maybe. What you can take away from the distinction between Logic, such as Arithmetic and Algebra, and Analogic, the geometric figure, one of them does the computations instantly and concurrently, and logics require a lot of binary computation not required by analogic. Much of the current problem are the so called invalid principles used in logic today.
\(\mathbf{B G}-\sqrt{\mathrm{BH}^{2}+\mathbf{G H}^{2}}=\mathbf{0}\)
\(\mathbf{D G}-\sqrt{2 \cdot \mathbf{G N}^{2}}=\mathbf{0}\)
\(\mathbf{E G}-\mathbf{D G}=\mathbf{0}\)
\(\mathbf{C D}-(\mathbf{C G}-\mathbf{D G})=\mathbf{0}\)
\(\mathbf{B E}-(\mathbf{B G}-\mathbf{E G})=\mathbf{0}\)
(KM \(+\mathbf{M N}\))

\section*{MN = 0.31209}
\[
\mathbf{z}:=\sqrt{\left[\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)\right]}
\]
\(\mathbf{K M}=\mathbf{0 . 6 8 1 0 3 1}\)
\((\mathbf{K M}+\mathbf{M N})=\mathbf{0 . 9 9 3 1 2 1}\)
\[
\begin{aligned}
& \mathbf{Y}:=\sqrt{\left.\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left[\mathbf{N}_{\mathbf{1}}+\mathbf{2} \cdot \sqrt{\left[\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)\right.}\right]-\mathbf{1}\right]} \\
& \mathbf{x}:=\sqrt{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left[\mathbf{N}_{\mathbf{1}}+\mathbf{2} \cdot \sqrt{\left[\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)\right]-\mathbf{1}}\right]} \\
& \mathbf{W}:=\sqrt{\left[\left(\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}}-\mathbf{4}\right) \cdot \sqrt{\left[\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)\right]+\mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{4} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{4} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{4} \cdot \mathbf{N}_{\mathbf{2}}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{1}}\right]}
\end{aligned}
\]
\[
\frac{\sqrt{2} \cdot\left[\mathbf{Y} \cdot\left(\mathbf{N}_{1}+\mathbf{2} \cdot \mathbf{Z}-\mathbf{1}\right) \cdot \mathbf{X}+\mathbf{W} \cdot\left(\mathbf{N}_{1}-\mathbf{2} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{\mathbf{2}}-\mathbf{Z}-\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{1} \cdot \mathbf{Z}\right)\right]}{2 \cdot \mathbf{W} \cdot \mathbf{X} \cdot\left(\mathbf{N}_{1}+\mathbf{2} \cdot \mathbf{Z}-\mathbf{1}\right)}=0.993121
\]

011796B2

\section*{Divide The Sides Of A Right Triangle In A Given Ratio}

Here was another junk write up, not only that, the original plate was defective, not absolutely correct, but, it takes time to learn how to say what one sees and at this revision time, all of it has to be fixed. What is being noted is that in this figure, there is a constant ratio, no matter where GH is on BC, AB is to AC as CD is to BE It is very simple, and originally I over obfuscated the whole thing. In short, it has something to say about the common angle. I suspect, now that I review it, it is very iimportant. There is, and always has been, a physical standard for ratio in this respect.

\section*{Given.}
\[
\mathbf{W}:=14 \quad \mathbf{Y}:=\mathbf{7}
\]
\[
X:=20 \quad Z:=4
\]

\section*{011796B2}

Descriptions.
\(\mathbf{A C}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{A B}:=\frac{\mathbf{Y}-\mathbf{Z}}{\mathbf{Z}} \quad \mathbf{C H}:=\frac{\mathbf{W}}{\mathbf{X}}\)
\(\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B C}}{2} \quad \mathbf{B H}:=\mathbf{B C}-\mathbf{C H} \quad \mathbf{G H}:=\sqrt{\mathbf{C H} \cdot \mathbf{B H}}\)
\(\mathbf{F K}:=\mathbf{B F} \quad \mathbf{F H}:=\mathbf{C H}-\mathbf{B F} \quad \mathbf{G K}:=\sqrt{\mathbf{F H}^{\mathbf{2}}+(\mathbf{F K}+\mathbf{G H})^{\mathbf{2}}}\)
\(\mathbf{F M}:=\frac{\mathbf{F H} \cdot \mathbf{F K}}{\mathbf{F K}+\mathbf{G H}} \quad \mathbf{H M}:=\mathbf{F H}-\mathbf{F M} \quad \mathbf{A H}:=\mathbf{A C}-\mathbf{C H} \quad \mathbf{A M}:=\mathbf{A H}+\mathbf{H M}\)
\(\mathbf{M N}:=\frac{\mathbf{F H} \cdot \mathbf{A M}}{\mathbf{G K}} \quad \mathbf{K M}:=\sqrt{\mathbf{F K}^{\mathbf{2}}+\mathbf{F M}^{\mathbf{2}}} \quad \mathbf{K N}:=\mathbf{K M}+\mathbf{M N}\)
\(\mathbf{G N}:=\mathbf{G K}-\mathbf{K N} \quad \mathbf{C G}:=\sqrt{\mathbf{C H}^{2}+\mathbf{G H}^{2}} \quad \mathbf{B G}:=\sqrt{\mathbf{B H}^{2}+\mathbf{G H}^{2}}\)
DG \(:=\sqrt{2 \cdot \mathbf{G N}^{2}} \quad\) EG \(:=\mathbf{D G} \quad \mathbf{C D}:=\mathbf{C G}-\mathbf{D G} \quad \mathbf{B E}:=\mathbf{B G}-\mathbf{E G}\)
\(\frac{A C}{A B}=2.333333 \quad \frac{C D}{B E}=2.333333 \frac{A C}{A B}-\frac{C D}{B E}=0 \quad \frac{A C}{A B}-\frac{Y}{Y-Z}=0\)

To make this always work, when AB is less than \(B C: \quad \frac{A C}{A B}-\frac{Y}{\sqrt{(Y-Z)^{2}}}=0\)
This is because a difference and a sum are not the same thing
As one can see, \(W\) and \(X\), which form everything about where \(G H\) is, and the ratios on it have disappeared, in short, these particulars have nothing to do with the outcome.

Perhaps if I have the time, I will rework the whole thing using \(A B-\frac{\sqrt{(Y-Z)^{2}}}{Z}=0\) and things might work out better because there may, perhaps be five or more operations of math instead of four.

Definitions.
\(\mathbf{A C}-\frac{\mathbf{Y}}{\mathbf{Z}}=0 \quad \mathbf{A B}-\frac{\mathbf{Y}-\mathbf{Z}}{\mathrm{Z}}=\mathbf{0} \quad \mathbf{C H}-\frac{\mathbf{W}}{\mathrm{X}}=0 \quad \mathbf{B C}-1=0 \quad \mathbf{B F}-\frac{1}{2}=0\)
\(\mathbf{B H}-\frac{\mathbf{X}-\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{G H}-\frac{\sqrt{\mathbf{W} \cdot(\mathbf{X}-\mathbf{W})}}{\mathbf{X}}=\mathbf{0} \quad\) FK \(-\frac{1}{2}=\mathbf{0} \quad\) FH \(-\frac{2 \cdot \mathbf{W}-\mathbf{X}}{2 \cdot \mathbf{X}}=\mathbf{0}\)
\(\mathbf{G K}-\frac{\sqrt{\mathbf{X}+2 \cdot \sqrt{\mathbf{W} \cdot \mathbf{X}-\mathbf{W}^{2}}}}{\sqrt{2 \cdot \mathbf{X}}}=\mathbf{0} \quad \mathbf{F M}-\frac{2 \cdot \mathbf{W}-\mathbf{X}}{2 \cdot[\mathbf{X}+2 \cdot \sqrt{-W \cdot(\mathbf{W}-\mathbf{X})}]}=\mathbf{0}\)
\(\mathbf{H M}-\frac{(2 \cdot \mathbf{W}-\mathbf{X}) \cdot \sqrt{\mathbf{W} \cdot \mathbf{X}-\mathbf{W}^{2}}}{\mathbf{X} \cdot\left(\mathbf{X}+2 \cdot \sqrt{\mathbf{W} \cdot \mathbf{X}-\mathbf{W}^{2}}\right)}=\mathbf{0} \quad \mathbf{A H}-\frac{\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot Z}{\mathbf{X} \cdot \mathbf{Z}}=0 \quad \mathbf{A M}-\frac{\sqrt{\mathbf{W} \cdot X-\mathbf{W}^{2}} \cdot(2 \cdot \mathbf{Y}-Z)-\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}}{Z \cdot\left(\mathbf{X}+2 \cdot \sqrt{W \cdot X-\mathbf{W}^{2}}\right)}=0\)
\(\mathbf{M N}-\frac{\sqrt{2} \cdot(X-2 \cdot W) \cdot\left[W \cdot Z-X \cdot Y-\sqrt{W \cdot X-W^{2}} \cdot(2 \cdot Y-Z)\right]}{\frac{3}{2}}=0\)
\(2 \cdot \sqrt{X} \cdot z \cdot\left(x+2 \cdot \sqrt{W \cdot x-w^{2}}\right)^{\frac{3}{2}}\)
\(K M-\frac{\sqrt{X \cdot\left(X+2 \cdot \sqrt{W \cdot X-w^{2}}\right)}}{\sqrt{2} \cdot\left[\sqrt{X^{2}-4 \cdot w^{2}+4 \cdot X \cdot\left(w+\sqrt{w \cdot X-w^{2}}\right)}\right.}=0\)
\(K N-\left[\frac{\sqrt{X \cdot\left(X+2 \cdot \sqrt{W \cdot X-\mathbf{W}^{2}}\right)}}{\sqrt{2} \cdot\left[\sqrt{\mathbf{X}^{2}-4 \cdot \mathbf{W}^{2}+4 \cdot X \cdot\left(W+\sqrt{W \cdot X-\mathbf{w}^{2}}\right)}\right.}+\frac{\sqrt{2} \cdot(\mathbf{X}-2 \cdot \mathbf{W}) \cdot\left[\mathbf{W} \cdot Z-X \cdot Y-\sqrt{W \cdot X-\mathbf{W}^{2}} \cdot(2 \cdot \mathbf{Y}-Z)\right]}{2 \cdot \sqrt{X} \cdot Z \cdot\left(X+2 \cdot \sqrt{W \cdot X-W^{2}}\right)^{\frac{3}{2}}}\right]=0\)

I am not even going to try, this time, to have Mathcad 15 simplify the following. Mathcad 15 crashes and the programmars nevrer imagined to have this program save backup and restore files. That function has to be manually set and it sometimes works.

Mathcad 15 cannot simplify the equation, in essence, it cannot produce an algebraic result as easily as Arithmetic and geometry can give their result.

\(\frac{A C}{A B}=2.333333 \quad \frac{C D}{B E}=2.333333 \frac{A C}{A B}-\frac{C D}{B E}=0 \quad \frac{A C}{A B}-\frac{Y}{Y-Z}=0\)

\section*{Unit.}

BH := 1
Given. N := 5

\section*{012196A}

Descriptions.
\(\mathbf{B P}:=\mathbf{B H} \quad \mathbf{H Q}:=\mathbf{B H} \quad \mathbf{B G}:=\frac{\mathbf{B H}}{2} \quad \mathbf{G O}:=\mathbf{B G} \quad \mathbf{G N}:=\mathbf{B G}\) \(\mathbf{N O}:=\mathbf{B H} \quad \mathbf{G H}:=\mathbf{B G} \quad \mathbf{B E}:=\frac{\mathbf{B G}}{\mathbf{N}} \quad \mathbf{E G}:=\mathbf{B G}-\mathbf{B E}\)
\(\mathbf{E O}:=\sqrt{\mathbf{E G}^{2}+\mathbf{G O}^{2}} \quad\) MO \(:=\frac{\mathbf{G O} \cdot \mathbf{N O}}{\mathbf{E O}} \quad\) EM \(:=\mathbf{M O}-\mathbf{E O}\)
EL \(:=\frac{\mathbf{E M}}{2} \quad\) LK \(:=\mathbf{E L} \quad\) LO \(:=\mathbf{E O}+\mathbf{E L} \quad\) LJ \(:=\frac{\mathbf{L K}^{2}}{\mathbf{L O}}\)
\(\mathbf{E J}:=\mathbf{E L}-\mathbf{L} \mathbf{J} \quad \mathbf{A E}:=\frac{\mathbf{E O} \cdot \mathbf{E J}}{\mathbf{E G}} \quad \mathbf{A H}:=\mathbf{A E}+\mathbf{E G}+\mathbf{G H}\)
\(\mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \quad \mathbf{D E}:=\frac{\text { EG } \cdot \mathbf{E M}}{\text { EO }} \quad \mathbf{D M}:=\frac{\mathbf{G O} \cdot \mathbf{E M}}{\text { EO }}\)
\(\mathbf{B D}:=\mathbf{B G}-(\mathbf{E G}+\mathbf{D E}) \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B P}}{\mathbf{B P}+\mathbf{D M}} \quad \mathbf{D H}:=\mathbf{B H}-\mathbf{B D}\) \(\mathbf{D F}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{D M}+\mathbf{H Q}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B D}+\mathbf{D F}\)

\section*{Definitions.}

\section*{More On Cube Roots}

\(\sim_{N=3}^{0}\)
Given.
\(\mathbf{X}\) := 5
\(Y:=20\)
Unit.
BH \(:=\frac{\mathbf{Y}}{\mathbf{Y}}\)
012 196B
\[
\mathbf{B H}:=\frac{\mathbf{Y}}{\mathbf{Y}}
\]

Descriptions.
\(\mathbf{B P}:=\mathbf{B H} \quad \mathbf{H Q}:=\mathbf{B H} \quad \mathbf{B G}:=\frac{\mathbf{B H}}{\mathbf{2}} \quad \mathbf{G O}:=\mathbf{B G} \quad \mathbf{G N}:=\mathbf{B G}\) \(\mathbf{N O}:=\mathbf{B H} \quad \mathbf{G H}:=\mathbf{B G} \quad \mathbf{B E}:=\mathbf{B G}-\frac{\mathbf{X}}{\mathbf{2 \cdot \mathbf { Y }}} \quad \mathbf{E G}:=\mathbf{B G}-\mathbf{B E}\) \(\mathbf{E O}:=\sqrt{\mathbf{E G}^{2}+\mathbf{G O}^{\mathbf{2}}} \quad\) MO \(:=\frac{\mathbf{G O} \cdot \mathbf{N O}}{\text { EO }} \quad\) EM \(:=\mathbf{M O}-\mathbf{E O}\) EL \(:=\frac{\text { EM }}{2} \quad\) LK \(:=\) EL \(\quad\) LO \(:=\) EO + EL \(\quad\) LJ \(:=\frac{\mathbf{L K}^{2}}{\mathbf{L O}}\) \(\mathbf{E J}:=\mathbf{E L}-\mathbf{L} \mathbf{J} \quad \mathbf{A E}:=\frac{\mathbf{E O} \cdot \mathbf{E J}}{\mathbf{E G}} \quad \mathbf{A H}:=\mathbf{A E}+\mathbf{E G}+\mathbf{G H}\) \(\mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \quad \mathbf{D E}:=\frac{\mathbf{E G} \cdot \mathbf{E M}}{\mathbf{E O}} \quad \mathbf{D M}:=\frac{\mathbf{G O} \cdot \mathbf{E M}}{\mathbf{E O}}\) \(\mathbf{B D}:=\mathbf{B G}-(\mathbf{E G}+\mathbf{D E}) \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B P}}{\mathbf{B P}+\mathbf{D M}} \quad \mathbf{D H}:=\mathbf{B H}-\mathbf{B D}\) \(\mathbf{D F}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{D M}+\mathbf{H Q}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B D}+\mathbf{D F}\) \(\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A F=0\) \(\mathbf{G E}:=\mathbf{B G}-\mathbf{B E} \quad \mathbf{G E}=\mathbf{0 . 1 2 5} \quad \mathbf{A B}=\mathbf{0 . 2 7 5 5 1}\)

More On Cube Roots

0 : \(\quad \mathbf{B E} \quad \begin{gathered}\text { AB } \\ \\ \mathbf{x}\end{gathered}\) 1

\section*{\(\sim_{n=2}^{0}\)}

\section*{Definitions.}
\(\mathbf{B H}-1=\mathbf{0} \quad \mathbf{B P}-\mathbf{1}=\mathbf{0} \quad \mathbf{H Q}-1=0 \quad\) NO \(-1=0 \quad\) BG \(-\frac{1}{2}=\mathbf{0} \quad\) GO \(-\frac{1}{2}=\mathbf{0} \quad\) GN \(-\frac{1}{2}=\mathbf{0} \quad\) GH \(-\frac{1}{2}=0\) \(\mathbf{B E}-\frac{\mathbf{Y}-\mathbf{X}}{2 \cdot \mathbf{Y}}=0 \quad \mathbf{E G}-\frac{\mathbf{X}}{2 \cdot \mathbf{Y}}=0 \quad \mathbf{E O}-\frac{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}{2 \cdot \mathbf{Y}}=0 \quad \mathbf{M O}-\frac{\mathbf{Y}}{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}=0 \quad \mathbf{E M}-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{2 \cdot \mathbf{Y} \cdot \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}=0\)
\(E L-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{4 \cdot \mathbf{Y} \cdot \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{\mathbf{2}}}}=0\)
\(L K-\frac{(Y-X) \cdot(X+Y)}{4 \cdot Y \cdot \sqrt{\mathbf{X}^{2}+Y^{2}}}=0\)
\(L O-\frac{X^{2}+3 \cdot Y^{2}}{4 \cdot Y \cdot \sqrt{X^{2}+Y^{2}}}=0\)
\(L J-\frac{(X-Y)^{2} \cdot(X+Y)^{2}}{4 \cdot Y \cdot\left(X^{2}+3 \cdot Y^{2}\right) \cdot \sqrt{X^{2}+Y^{2}}}=0\)
\(E J-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y}) \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}{2 \cdot \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}} \cdot \mathbf{Y} \cdot\left(\mathbf{X}^{2}+3 \cdot \mathbf{Y}^{2}\right)}=0\)
\(A E-\frac{(Y-X) \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right) \cdot(\mathbf{X}+\mathbf{Y})}{2 \cdot X \cdot \mathbf{Y} \cdot\left(\mathbf{X}^{2}+\mathbf{3} \cdot \mathbf{Y}^{2}\right)}=\mathbf{0}\)
\(A H-\frac{(X+Y)^{3}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0 \quad A B-\frac{(Y-X)^{3}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0 \quad D E-\frac{X \cdot(Y-X) \cdot(X+Y)}{2 \cdot Y \cdot\left(X^{2}+Y^{2}\right)}=0 \quad D M-\frac{(Y-X) \cdot(X+Y)}{2 \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}=0\)
\(B D-\frac{(X-Y)^{2}}{2 \cdot\left(X^{2}+Y^{2}\right)}=0 \quad B C-\frac{(X-Y)^{2}}{X^{2}+3 \cdot Y^{2}}=0 \quad D H-\frac{(X+Y)^{2}}{2 \cdot\left(X^{2}+Y^{2}\right)}=0 \quad D F-\frac{(Y-X) \cdot(X+Y)^{3}}{2 \cdot\left(X^{2}+Y^{2}\right) \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0\)
\(A C-\frac{(X+Y) \cdot(X-Y)^{2}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0 \quad A F-\frac{(Y-X) \cdot(X+Y)^{2}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0\)

\(\mathbf{0} \quad \mathbf{B E} \quad \mathbf{A B}\)

And again, Mathcad 15 cannot reduce the following equations.
\(\left[\left[\frac{(Y-X)^{3}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}\right]^{2} \cdot \frac{(X+Y)^{3}}{2 \cdot X \cdot\left(X^{2}+3 \cdot \mathbf{Y}^{2}\right)}\right]^{\frac{1}{3}}-\frac{(X+Y) \cdot(X-Y)^{2}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0 \quad\left[\frac{(Y-X)^{3}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)} \cdot\left[\frac{(X+Y)^{3}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}\right]^{2}-\frac{(Y-X) \cdot(X+Y)^{2}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0\right.\)

012296A
Descriptions.
AL \(:=\mathbf{A F} \cdot \mathbf{N}_{1} \quad\) FL \(:=\mathbf{A L}-\mathbf{A F} \quad\) FJ \(:=\frac{\text { FL }}{2}\)
\(\mathbf{A M}:=\sqrt{\mathbf{A F} \cdot \mathbf{A L}} \quad \mathbf{A J}:=\mathbf{A F}+\mathbf{F J} \quad \mathbf{A G}:=\frac{\mathbf{A M}^{2}}{\mathbf{A J}}\)
\(\mathbf{G L}:=\mathbf{A L}-\mathbf{A G} \quad \mathbf{G K}:=\frac{\mathbf{G L}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{F G}:=\mathbf{A G}-\mathbf{A F}\)
\(\mathbf{F K}:=\mathbf{G K}+\mathbf{F G} \quad \mathbf{K L}:=\mathbf{F L}-\mathbf{F K} \quad \mathbf{E K}:=\sqrt{\mathbf{F K} \cdot \mathbf{K L}}\)
\(\mathbf{A K}:=\mathbf{F K}+\mathbf{A F} \quad \mathbf{A E}:=\sqrt{\mathbf{A K}^{2}+\mathbf{E K}^{2}} \quad \mathbf{A D}:=\frac{\mathbf{A K} \cdot \mathbf{A J}}{\mathbf{A E}}\)
\(\mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{B D}:=\mathbf{D E} \quad \mathbf{A B}:=\mathbf{A E}-\mathbf{2} \cdot \mathbf{B D}\)
\(\sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A M}=\mathbf{0}\)
Definitions.
\(A L-\mathbf{N}_{1}=0 \quad F L-\left(\mathbf{N}_{1}-1\right)=0 \quad F J-\frac{\mathbf{N}_{1}-1}{2}=0 \quad A M-\sqrt{\mathbf{N}_{1}}=0\)
\(A J-\frac{\mathbf{N}_{1}+1}{2}=0 \quad A G-\frac{2 \cdot \mathbf{N}_{1}}{\mathbf{N}_{1}+1}=0 \quad G L-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right)}{\mathbf{N}_{1}+1}=0 \quad G K-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}-1\right)}{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=0\)
\(\mathbf{F G}-\frac{\mathbf{N}_{\mathbf{1}}-\mathbf{1}}{\mathbf{N}_{1}+\mathbf{1}}=\mathbf{0} \quad \mathbf{F K}-\frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}=\mathbf{0} \quad \mathbf{K L}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)}{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}=\mathbf{0}\)
\(\mathbf{E K}-\frac{\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot \sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}\right)}}{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=\mathbf{0} \quad \mathbf{A K}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{1}+\mathbf{2} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=\mathbf{0} \quad \mathbf{A E}-\frac{\left.\sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right.}\right)}{\sqrt{\mathbf{N}_{\mathbf{2}}}}=\mathbf{0}\)
\(A D-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+2 \cdot \mathbf{N}_{2}-1\right)}{\left.2 \cdot \sqrt{\mathbf{N}_{2}} \cdot \sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}-1\right.}\right)}=0 \quad D E-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}-1\right)}{2 \cdot \sqrt{\mathbf{N}_{2}} \cdot \sqrt{\mathbf{N}_{1}{ }^{2}-\mathbf{N}_{1}+\mathbf{N}_{1} \cdot \mathbf{N}_{2}}}=0 \quad A B-\frac{\mathbf{N}_{1} \cdot \sqrt{\mathbf{N}_{2}}}{\sqrt{\mathbf{N}_{1}{ }^{2}-\mathbf{N}_{1}+\mathbf{N}_{1} \cdot \mathbf{N}_{2}}}=0\)

\section*{Trivial Method Square Root}

For any \(E\) between arc \(M\) and \(L, A M\) is the square root of \(A B x\) AE. Perhaps this is one way to construct a logical operator to determine class membrership for \(E\).

\(\mathrm{AB}=0.857 \mathrm{in}\). \(A E=0.857 \mathrm{in}\). AM \(=1.130 \mathrm{in}\).

Unit.
AB:= \(\mathbf{1}\)
Given.
\(\mathbf{N}:=\mathbf{5}\)

\section*{012496A}

Descriptions.
\(\mathbf{A E}:=\mathbf{N} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D}\)
\(\mathbf{D M}:=\mathbf{B D} \quad \mathbf{D H}:=\mathbf{B D} \quad \mathbf{C D}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{A D}} \quad \mathbf{B C}:=\mathbf{B D}-\mathbf{C D}\)
\(\mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}\)
\(\mathbf{A J}:=\sqrt{(\mathbf{A B}+\mathbf{B C})^{2}+\mathbf{C J}}{ }^{\mathbf{2}}\)

\section*{Definitions.}
\(\mathbf{A J}-\sqrt{\mathbf{N}}=\mathbf{0} \quad \mathbf{2} \cdot \frac{\mathbf{N}}{(\mathbf{1}+\mathbf{N})}-\mathbf{A C}=\mathbf{0}\)
\(\mathbf{A E}-\mathbf{N}=\mathbf{0} \quad \mathbf{B E}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A D}-\left(\frac{\mathbf{N}+\mathbf{1}}{2}\right)\)
\(\mathbf{D M}-\frac{\mathbf{N}-1}{2}=\mathbf{0} \quad \mathbf{D H}-\frac{\mathbf{N}-1}{2}=0 \quad\) CD \(-\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)} \quad \mathbf{B C}-\frac{\mathbf{N}-1}{\mathrm{~N}+1}=\mathbf{0}\)
\(\mathbf{C E}-\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1})}{\mathbf{N}+\mathbf{1}}=\mathbf{0} \quad \mathbf{C J}-\frac{\sqrt{\mathbf{N}} \cdot(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{A C}-\frac{\mathbf{2} \cdot \mathbf{N}}{\mathbf{N}+\mathbf{1}}=\mathbf{0} \quad \mathbf{A J}-\sqrt{\mathbf{N}}=\mathbf{0}\)

The tangent from any point outside a circle is equal to the square root of the difference to the circle and that difference plus the diameter of the circle.

Given.
\(\mathbf{X}:=\mathbf{5}\)
\(\mathbf{Y}:=20\)

\section*{012496B}

Descriptions.
Unit
\(\mathbf{A E}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B E}:=\frac{\mathbf{X}-\mathbf{Y}}{\mathbf{Y}} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D}\)
\(\mathbf{D M}:=\mathbf{B D} \quad \mathbf{D H}:=\mathbf{B D} \quad \mathbf{C D}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{A D}} \quad \mathbf{B C}:=\mathbf{B D}-\mathbf{C D}\)
\(\mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}\)
\(A J:=\sqrt{(A B+B C)^{2}+\mathbf{C J}^{2}} \quad \mathbf{A C}=0.4\)
AJ \(=0.5\)

Definitions.
\(\mathbf{A E}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B E}-\frac{\mathbf{X}-\mathbf{Y}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{X}-\mathbf{Y}}{2 \cdot \mathbf{Y}}=\mathbf{0}\)
\(A D-\frac{X+Y}{2 \cdot Y}=0 \quad D M-\frac{X-Y}{2 \cdot Y}=0 \quad D H-\frac{X-Y}{2 \cdot Y}=0\)
\(\mathbf{C D}-\frac{(\mathbf{X}-\mathbf{Y})^{2}}{2 \cdot \mathbf{Y} \cdot(\mathbf{X}+\mathbf{Y})}=0 \quad B C-\frac{\mathbf{X}-\mathbf{Y}}{\mathbf{X}+\mathbf{Y}}=\mathbf{0} \quad \mathbf{C E}-\frac{\mathbf{X} \cdot(\mathbf{X}-\mathbf{Y})}{\mathbf{Y} \cdot(\mathbf{X}+\mathbf{Y})}=\mathbf{0}\)
\(\mathbf{C J}-\frac{\sqrt{\mathbf{X}} \cdot(\mathbf{Y}-\mathbf{X})}{\sqrt{\mathbf{Y}} \cdot(\mathbf{X}+\mathbf{Y})}=\mathbf{0}\)
\(A C-\frac{2 \cdot X}{X+Y}=0\)
AJ \(-\frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0}\)
\(\mathrm{AE}=0.25 \quad \mathrm{BE}=-0.75 \quad \mathrm{BD}=-\mathbf{0 . 3 7 5} \quad \mathrm{AD}=0.625\)
\(\mathbf{C D}=0.225 \quad \mathrm{BC}=-\mathbf{0 . 6} \quad \mathbf{C E}=-0.15 \quad \mathbf{C J}=0.3\)

The tangent from any point outside a circle is equal to the square root of the difference to the circle and that difference plus the diameter of the circle.

What I did on this plate is draw it up like the first, then I moved \(X\) btween 0 and 1. Sketchpad automatically swaps \(B\) and \(E\), all else remaining the same. The equations work the same way Sketchpad did. However, look at the step by step results, it will give you something to think about.

\section*{Tangent}

\[
\begin{array}{ll}
\text { Unit }=1.00000 & \text { AC }=1.60000 \\
\text { XY }=4.00000 & \text { AJ }=2.00000
\end{array}
\]
\[
\begin{array}{ll}
\mathbf{X}=4.00000 \\
\mathbf{Y}=1.00000
\end{array} \quad \frac{\sqrt{\mathbf{X}}}{\sqrt{\mathbf{Y}}}-\mathrm{AJ}=0.00000
\]

\section*{Unit.}

BE := 1
Given.
N := \(\mathbf{1 . 3 3 3 3 3 3}\)
012596A
Descriptions.
BD \(:=\frac{\mathbf{B E}}{2} \quad \mathbf{D K}:=\mathbf{B D} \quad\) DJ \(:=\mathbf{B D} \quad\) JK \(:=\mathbf{B E} \quad \mathbf{D E}:=\mathbf{B D}\)
\(\mathrm{BC}:=\frac{\mathrm{BD}}{\mathrm{N}} \quad \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{CK}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DK}^{2}}\)
HK := \(\frac{\text { DK } \cdot \text { JK }}{\text { CK }} \quad\) CH \(:=\mathrm{HK}-\mathrm{CK} \quad\) CF \(:=\frac{\mathrm{CH}}{2}\)
FK \(:=\mathbf{C K}+\mathbf{C F} \quad \mathbf{G K}:=\frac{\mathbf{D K} \cdot \mathbf{F K}}{\mathbf{C K}} \quad\) FG \(:=\frac{\mathbf{C D} \cdot \mathbf{F K}}{\mathbf{C K}}\)
\(\mathbf{G J}:=\mathbf{J K}-\mathbf{G K} \quad \mathbf{A D}:=\frac{\mathbf{G J} \cdot \mathbf{D K}}{\mathbf{F G}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E}\)
\(\mathrm{AB}:=\mathrm{AE}-\mathrm{BE} \quad \mathrm{AB}=0.275511 \quad \mathrm{AE}=1.275511\)
\[
\mathbf{B D}=0.5 \quad \mathbf{B C}=0.375
\]

Definitions.
\(A E-\frac{(2 \cdot N-1)^{3}}{2 \cdot(N-1) \cdot\left(4 \cdot N^{2}-2 \cdot N+1\right)}=0\)
\(A B-\frac{1}{2 \cdot(N-1) \cdot\left(4 \cdot N^{2}-2 \cdot N+1\right)}=0\)

Given a point on BD (a point on the cubes powerline), project to the point of cubic similarity

\section*{On Cubes}
\(\frac{(2 \cdot \mathrm{~N}-1)^{3}}{2 \cdot(\mathrm{~N}-1) \cdot\left(\left(4 \cdot \mathrm{~N}^{2}-2 \cdot \mathrm{~N}\right)+1\right)}-\mathrm{AE}=0.00000\)

\section*{Quick Roots}

De Button is the replacement for Calculus and it still uses just a straightedge and compass.
Quick roots. Push De Button.

Quick roots. Push De Button

It only takes a few presses to get Sketchpad to fifteen decimal places down.

\(A B=0.72571 \mathrm{in}\). \(A C=1.26691 \mathrm{in}\). \(A D=2.21171 \mathrm{in}\). \(A E=3.86108 \mathrm{in}\).
\(\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AC}=0.00000\) \(\left.\left(\mathrm{AB}^{\mathrm{AE}}\right)^{2}\right)^{\frac{1}{3}}-\mathrm{AD}=0.00000\) Move F -> G

Given.
\(\mathbf{X}\) := \(\mathbf{5}\)
\(\mathbf{Y}:=20\)
Unit.
012596B
Descriptions.
BE := \(\frac{\mathbf{Y}}{\mathbf{Y}}\)
BD \(:=\frac{\mathbf{B E}}{2} \quad \mathbf{D K}:=\) BD DJ \(:=\mathbf{B D} \quad \mathbf{J K}:=\) BE
\(\mathbf{D E}:=\mathbf{B D} \quad \mathbf{C D}:=\frac{\mathbf{X}}{2 \cdot \mathbf{Y}} \quad \mathrm{CK}:=\sqrt{\mathbf{C D}^{2}+\mathrm{DK}^{2}}\)
HK \(:=\frac{\text { DK } \cdot \text { JK }}{\text { CK }} \quad\) CH \(:=\mathrm{HK}-\mathbf{C K} \quad\) CF \(:=\frac{\mathrm{CH}}{2}\)
FK \(:=\mathbf{C K}+\mathbf{C F} \quad \mathbf{G K}:=\frac{\mathbf{D K} \cdot \mathbf{F K}}{\mathbf{C K}} \quad\) FG \(:=\frac{\mathbf{C D} \cdot \mathbf{F K}}{\mathbf{C K}}\)
GJ := JK - GK \(\quad\) AD \(:=\frac{\mathbf{G J} \cdot \mathbf{D K}}{\text { FG }} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E}\)
\(\mathrm{AB}:=\mathbf{A E}-\mathbf{B E} \quad \mathrm{AB}=0.27551 \quad \mathbf{A E}=1.27551\) \(\mathrm{BD}=0.5\)

Definitions.
\(B D-\frac{1}{2}=0 \quad D K-\frac{1}{2}=0 \quad D J-\frac{1}{2}=0 \quad D E-\frac{1}{2}=0\)
\(J K-1=0 \quad C D-\frac{X}{2 \cdot Y}=0\)
\(C K-\frac{\sqrt{X^{2}+Y^{2}}}{2 \cdot Y}=0\)
\(H K-\frac{Y}{\sqrt{X^{2}+Y^{2}}}=0 \quad C H-\frac{(Y-X) \cdot(X+Y)}{2 \cdot Y \cdot \sqrt{X^{2}+Y^{2}}}=0\)
\(\mathbf{C F}-\frac{(\mathbf{Y}-X) \cdot(X+Y)}{4 \cdot \mathbf{Y} \cdot \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}=\mathbf{0}\)
\(F K-\frac{X^{2}+3 \cdot Y^{2}}{4 \cdot Y \cdot \sqrt{X^{2}+Y^{2}}}=0\)
\(\mathbf{G K}-\frac{\mathrm{DK} \cdot \mathrm{FK}}{\mathrm{CK}}=\mathbf{0} \quad \mathbf{F G}-\frac{\mathbf{X} \cdot\left(\mathbf{X}^{2}+3 \cdot \mathbf{Y}^{2}\right)}{4 \cdot \mathbf{Y} \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}=0\)
\(G J-\frac{3 \cdot X^{2}+Y^{2}}{4 \cdot\left(x^{2}+Y^{2}\right)}=0\)
\(A D-\frac{Y \cdot\left(3 \cdot X^{2}+Y^{2}\right)}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0\)
\(A E-\frac{(X+Y)^{3}}{2 \cdot X \cdot\left(X^{2}+\mathbf{3} \cdot \mathbf{Y}^{2}\right)}=0\)
\(A B-\frac{(Y-X)^{3}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}=0\)
Given a point on BD (a point on the cubes powerline), project to the point of cubic similarity.

\section*{On Cubes}

\[
\frac{(Y-X)^{3}}{2 \cdot X \cdot\left(X^{2}+3 \cdot Y^{2}\right)}-A B=0.00000
\]

Unit \(=1.00000\) Unit \(=1.00000\)
\(\mathrm{XY}=0.71301\) \(X=14.26010\) \(\mathrm{Y}=20.00000\) \(\mathrm{CD}=0.35650\) \(\mathrm{AB}=0.00472\) \(A B=1.00472\)

012996A
Descriptions.
\(\mathbf{A E}:=\mathbf{N}_{\mathbf{1}} \quad\) AH \(:=\mathbf{N}_{\mathbf{2}} \quad\) AC \(:=\frac{\mathbf{A E}}{2}\)
\(\mathbf{C F}:=\mathbf{N}_{\mathbf{3}} \quad \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{C F}}{\mathrm{AH}} \quad \mathbf{C E}:=\mathrm{AC}\)
\(\mathrm{BE}:=\mathrm{CE}+\mathrm{BC} \quad \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathbf{C E}}{\mathrm{BE}} \quad \mathrm{DE}:=\mathrm{CE}-\mathrm{CD}\)
\(A D:=A C+C D \quad D G:=\frac{A H \cdot C D}{A C} \quad B C-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{3}}{2 \cdot \mathbf{N}_{2}}=\mathbf{0}\)
Definitions.
\(\mathrm{DE}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{2 \cdot\left(\mathbf{N}_{2}+\mathbf{N}_{3}\right)}=0 \quad \mathrm{AD}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}+2 \cdot \mathbf{N}_{3}\right)}{2 \cdot\left(\mathbf{N}_{2}+\mathbf{N}_{3}\right)}=0\)
\(B C-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{3}}{2 \cdot \mathbf{N}_{2}}=\mathbf{0} \quad \mathrm{CD}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{3}}{2 \cdot\left(\mathbf{N}_{2}+\mathbf{N}_{3}\right)}=\mathbf{0} \quad \mathrm{DG}-\frac{\mathbf{N}_{2} \cdot \mathbf{N}_{3}}{\mathbf{N}_{2}+\mathbf{N}_{3}}=0\)

Linear division \(\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}+\mathbf{2} \cdot \mathbf{N}_{\mathbf{3}}\right)}{2 \cdot\left(\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right)}\)

\(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{2 \cdot\left(\mathrm{~N}_{2}+\mathrm{N}_{3}\right)}-\mathrm{DE}=0.00000 \mathrm{~cm} \quad \frac{\mathrm{~N}_{1} \cdot \mathrm{~N}_{3}}{2 \cdot\left(\mathrm{~N}_{2}+\mathrm{N}_{3}\right)}-\mathrm{CD}=0.00000 \mathrm{~cm}\) \(\frac{\mathrm{N}_{1} \cdot\left(\mathrm{~N}_{2}+2 \cdot \mathrm{~N}_{3}\right)}{2 \cdot\left(\mathbf{N}_{2}+\mathrm{N}_{3}\right)}-\mathrm{AD}=0.00000 \mathrm{~cm} \quad \frac{\mathrm{~N}_{2} \cdot \mathrm{~N}_{3}}{\mathrm{~N}_{2}+\mathrm{N}_{3}}-\mathrm{DG}=0.00000 \mathrm{~cm}\) \(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{3}}{2 \cdot \mathrm{~N}_{2}}-\mathrm{BC}=0.00000 \mathrm{~cm}\)

012996B
Descriptions
\(\mathbf{A E}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A H}:=\mathbf{N}_{\mathbf{2}} \quad\) AC \(:=\mathbf{N}_{\mathbf{3}}\)
\(\mathbf{C F}:=\mathbf{N}_{4} \quad \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{C F}}{\mathrm{AH}} \quad \mathbf{C E}:=\mathrm{AE}-\mathrm{AC}\)
\(\mathrm{BE}:=\mathrm{CE}+\mathrm{BC} \quad \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathbf{C E}}{\mathrm{BE}} \quad \mathrm{DE}:=\mathrm{CE}-\mathrm{CD}\)
\(\mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{D G}:=\frac{\mathbf{C F} \cdot \mathbf{C E}}{\mathbf{B E}}\)
\[
\begin{array}{ll}
\mathbf{N}_{\mathbf{1}}:=\mathbf{2} & \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \\
\mathbf{N}_{\mathbf{3}}:=\mathbf{9} & \mathbf{N}_{\mathbf{4}}:=\mathbf{3}
\end{array}
\]

Linear division \(\frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{3}\right)^{\mathbf{2}}}{\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{2} \cdot \mathbf{N}_{3}+\mathbf{N}_{3} \cdot \mathbf{N}_{4}}\)

\section*{Definitions.}
\[
\begin{aligned}
& D E-\frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{3}\right)^{2}}{\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{2} \cdot \mathbf{N}_{3}+\mathbf{N}_{3} \cdot \mathbf{N}_{4}}=\mathbf{0} \\
& \mathbf{A D}-\frac{\mathbf{N}_{\mathbf{3}} \cdot\left(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{4}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{4}}}=\mathbf{0} \\
& \mathbf{B C}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{4}}}{\mathbf{N}_{\mathbf{2}}}=\mathbf{0} \\
& \mathbf{C D}-\frac{\mathbf{N}_{3} \cdot \mathbf{N}_{\mathbf{4}} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{4}}}=\mathbf{0} \\
& \mathbf{D G}-\frac{\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{4}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{4}}}=\mathbf{0}
\end{aligned}
\]

012996 C
Descriptions.
\(\mathbf{A E}:=\frac{\mathbf{X}}{\mathbf{X}} \quad \mathbf{E H}:=\frac{\mathbf{W}}{\mathbf{X}} \quad\) AC \(:=\frac{\mathbf{A E}}{2}\)
\(\mathbf{C F}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad \mathbf{A D}:=\frac{\mathbf{A C} \cdot \mathbf{E H}}{\mathbf{E H}+\mathbf{C F}} \quad \mathbf{A D}=0.265625\)
Definitions.
\(\mathbf{A E}-\frac{\mathbf{X}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{E H}-\frac{\mathbf{W}}{\mathbf{X}}=0 \quad\) AC \(-\frac{1}{2}=0\)
\(\mathbf{C F}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{A D}-\frac{\mathbf{W} \cdot \mathbf{Z}}{2 \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0}\)

Linear division \(\frac{\mathbf{W} \cdot \mathbf{Z}}{2 \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}\)

012996D
Descriptions.
\[
\begin{aligned}
& \mathbf{A B}:=\frac{\mathbf{V}}{\mathbf{V}} \quad \mathbf{B C}:=\frac{\mathbf{U}}{\mathbf{V}} \quad \mathbf{A D}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{D E}:=\frac{\mathbf{Y}}{\mathbf{Z}} \\
& \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{D H}:=\frac{\mathbf{B D} \cdot \mathbf{D E}}{\mathbf{B C}} \\
& \mathbf{A H}:=\mathbf{A D}+\mathbf{D H} \quad \mathbf{A F}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A H}} \quad \text { AF }=\mathbf{0 . 4 4 4 8 5 3}
\end{aligned}
\]

Definitions.
\[
\begin{aligned}
& \mathbf{A B}-\mathbf{1}=\mathbf{0} \quad \mathbf{B C}-\frac{\mathbf{U}}{\mathbf{V}} \quad \mathbf{A D}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{D E}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \\
& \mathbf{B D}-\frac{\mathbf{X}-\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{D H}-\frac{\mathbf{V} \cdot \mathbf{Y} \cdot(\mathbf{X}-\mathbf{W})}{\mathbf{U} \cdot \mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \\
& \mathbf{A H}-\frac{\mathbf{U} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{V} \cdot \mathbf{Y} \cdot(\mathbf{X}-\mathbf{W})}{\mathbf{U} \cdot \mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \\
& \mathbf{A F}-\frac{\mathbf{U} \cdot \mathbf{Z} \cdot \mathbf{W}^{2}}{\mathbf{X} \cdot[\mathbf{U} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{V} \cdot \mathbf{Y} \cdot(\mathbf{X}-\mathbf{W})]}=\mathbf{0}
\end{aligned}
\]
Linear division \(\frac{\mathbf{U} \cdot \mathbf{Z} \cdot \mathbf{W}^{\mathbf{2}}}{\mathbf{X} \cdot[\mathbf{U} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{V} \cdot \mathbf{Y} \cdot(\mathbf{X}-\mathbf{W})]}\)
\(\mathrm{AB}=1.00000\) \(\mathrm{BC}=\mathbf{0 . 4 0 0 0 0}\) \(\mathrm{U}=8.00000\) \(\mathrm{V}=20.00000\) AD \(=0.64706\) \(\mathrm{W}=11.00000\) \(\mathrm{X}=17.00000\) DE \(=0.33333\) \(\mathrm{Y}=5.00000\) \(Z=15.00000\) AF \(=0.44485\) FG \(=0.22917\) \(\mathbf{A H}=0.94118\)
\[
\frac{\mathrm{U} \cdot \mathbf{Z} \cdot \mathrm{~W}^{2}}{\mathbf{X} \cdot(\mathrm{U} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{V} \cdot \mathbf{Y} \cdot(\mathbf{X}-\mathrm{W}))}-\mathrm{AF}=0.00000
\]

Unit.
BC := \(\mathbf{1}\)
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{5}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{3}\)
013196A
-
Descriptions.
BJ \(:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{C J}:=\mathbf{B J}-\mathbf{B C}\) CI := \(\frac{\mathbf{C}}{2}\) \(\mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{C F}:=\mathbf{B F}-\mathbf{B C} \quad\) FJ \(:=\mathbf{C J}-\mathbf{C F} \quad \mathbf{F O}:=\sqrt{\mathbf{C F} \cdot \mathbf{F J}} \quad \mathbf{C R}:=\mathbf{C J} \cdot \mathbf{N}_{\mathbf{2}}\)
\(\mathbf{H S}:=\mathbf{C R} \quad\) FI \(:=\mathbf{F J}-\mathbf{I J} \quad\) FG \(:=\frac{\text { FI } \cdot \mathbf{F O}}{\text { FO }+\mathbf{H S}} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B F}+\mathbf{F G}\) OS \(:=\sqrt{(H S+F O)^{2}+\text { FI }^{2}} \quad\) GO \(:=\frac{\text { OS } \cdot \mathbf{F O}}{\text { HS }+ \text { FO }} \quad\) AJ \(:=\mathbf{A F}+\) FJ \(\quad\) GL \(:=\frac{\text { HS } \cdot \mathbf{G O}}{\text { OS }}\)

FU \(:=\frac{\mathbf{A G} \cdot \mathbf{F O}}{\mathbf{G L}} \quad \mathbf{A H}:=\frac{\mathbf{F U} \cdot \mathbf{A J}}{\text { FU }+\mathbf{F J}} \quad \mathbf{D K}:=\frac{\text { FO } \cdot(\mathbf{A F}-\mathbf{C F})}{\mathbf{F U}-\mathbf{C F}} \quad\) AD \(:=\frac{\mathbf{A G} \cdot \mathbf{D K}}{\mathbf{G L}} \quad\) AC \(:=\mathbf{A F}-\mathbf{C F}\) \(\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{C H}:=\mathbf{A H}-\mathbf{A C} \quad \mathbf{D H}:=\mathbf{C H}-\mathbf{C D} \quad \mathbf{H J}:=\mathbf{C J}-\mathbf{C H} \quad\) EN \(:=\frac{\mathbf{C R} \cdot \mathbf{D H}}{\mathbf{C D}+\mathbf{H J}}\) \(\mathbf{C E}:=\frac{\mathbf{C D} \cdot(\mathbf{C R}+\mathbf{E N})}{\mathbf{C R}} \quad \mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \quad \mathbf{B H}:=\mathbf{B C}+\mathbf{C H}\) \(\frac{\mathbf{A F}}{\mathbf{F O}}-\frac{\mathbf{A E}}{\mathbf{E N}}=\mathbf{0} \quad \sqrt{\mathbf{B C} \cdot \mathbf{B J}}-\sqrt{\mathbf{B D} \cdot \mathbf{B H}}=\mathbf{0}\)

Hitting AO from any RT while
maintaining Gemini Roots.

\section*{\(\sim_{n}^{0}\)}

Definitions.
BJ \(-\mathbf{N}_{1}=0 \quad\) CJ \(-\left(\mathbf{N}_{1}-1\right)=0 \quad\) CI \(-\frac{\mathbf{N}_{1}-1}{2}=0 \quad\) IJ \(-\frac{\mathbf{N}_{1}-1}{2}=0 \quad B F-\sqrt{N_{1}}=0\)
\(\mathbf{A B}-\sqrt{\mathbf{N}_{\mathbf{1}}}=\mathbf{0} \quad \mathbf{A F}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{\mathbf{1}}}=\mathbf{0} \quad \mathbf{C F}-\left(\sqrt{\mathbf{N}_{\mathbf{1}}}-\mathbf{1}\right)=\mathbf{0} \quad \mathbf{F J}-\left(\mathbf{N}_{\mathbf{1}}-\sqrt{\mathbf{N}_{\mathbf{1}}}\right)=\mathbf{0}\)
\(\mathrm{FO}-\sqrt{\sqrt{\mathbf{N}_{\mathbf{1}}}} \cdot\left(\sqrt{\mathbf{N}_{\mathbf{1}}}-\mathbf{1}\right)=\mathbf{0} \quad \mathbf{C R}-\left(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0}\)
\(H S-\left(N_{1} \cdot N_{2}-N_{2}\right)=0 \quad F I-\frac{\left(\sqrt{N_{1}}-1\right)^{2}}{2}=0 \quad F G-\frac{N_{1}^{\frac{1}{4}}-2 \cdot N_{1}{ }^{\frac{3}{4}}+N_{1}{ }^{\frac{5}{4}}}{2 \cdot\left(N_{2}+\sqrt{N_{1}} \cdot N_{2}+N_{1}{ }^{\frac{1}{4}}\right)}=0\)
\(A G-\frac{N_{1}{ }^{\frac{1}{4}} \cdot\left(\sqrt{N_{1}}+1\right) \cdot\left(4 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+\sqrt{N_{1}}+1\right)}{2 \cdot\left(N_{2}+\sqrt{N_{1}} \cdot N_{2}+N_{1}{ }^{\frac{1}{4}}\right)}=0\)
\(O S-\frac{\left.\left(\sqrt{N_{1}}-1\right) \cdot \sqrt{\left(\sqrt{N_{1}}+1\right.}\right) \cdot\left[8 \cdot \mathbf{N}_{1}{ }^{\frac{1}{4}} \cdot \mathbf{N}_{2}+4 \cdot \mathbf{N}_{2}{ }^{2}+\sqrt{N_{1}} \cdot\left(4 \cdot \mathbf{N}_{2}{ }^{2}+1\right)+1\right]}{2}=0\)

\(G O-\frac{N_{1}{ }^{\frac{1}{4}} \cdot \sqrt{\left(\sqrt{N_{1}}+1\right) \cdot\left(8 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+4 \cdot N_{2}{ }^{2}+\sqrt{N_{1}} \cdot\left(4 \cdot N_{2}{ }^{2}+1\right)+1\right] \cdot\left(N_{1}{ }^{\frac{1}{4}}-1\right) \cdot\left(N_{1}{ }^{\frac{1}{4}}+1\right)}}{2 \cdot\left(N_{2}+\sqrt{N_{1}} \cdot N_{2}+N_{1}{ }^{\frac{1}{4}}\right)}=0 \quad A J-\sqrt{N_{1}} \cdot\left(\sqrt{N_{1}}+1\right)=0\)
\(G L-\frac{N_{1}{ }^{\frac{1}{4}} \cdot N_{2} \cdot\left(N_{1}-1\right)}{1}=0 \quad F U-\frac{N_{1}{ }^{\frac{1}{4}} \cdot\left(4 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+\sqrt{N_{1}}+1\right)}{2 \cdot N_{2}}=0 \quad A H-\frac{N_{1}{ }^{\frac{2}{4}} \cdot\left(4 \cdot N_{1}^{\frac{1}{4}} \cdot N_{2}+\sqrt{N_{1}}+1\right)}{2 \cdot N_{1} N_{1}^{4} \cdot N_{2}+1}=0\)
\[
\mathbf{N}_{2}+\sqrt{\mathbf{N}_{1}} \cdot \mathbf{N}_{2}+\mathbf{N}_{1}{ }^{\mathbf{4}}
\]
\[
2 \cdot N_{1}{ }^{\overline{4}} \cdot N_{2}+1
\]
\(C^{\circ} \mathrm{B}\) 롱
\(D K-\frac{2 \cdot N_{1}{ }^{\frac{3}{4}} \cdot N_{2}-2 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}}{2 \cdot N_{2}+N_{1}{ }^{\frac{1}{4}}}=0 \quad A D-\frac{N_{1}{ }^{\frac{1}{4}} \cdot\left(4 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+\sqrt{N_{1}}+1\right)}{2 \cdot N_{2}+N_{1}{ }^{\frac{1}{4}}}=0 \quad A C-\left(\sqrt{N_{1}}+1\right)=0\)
\(C D-\frac{2 \cdot N_{2} \cdot\left(\sqrt{N_{1}}-1\right)}{2 \cdot N_{2}+N_{1}{ }^{\frac{1}{4}}}=0 \quad C H-\frac{N_{1}-2 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+2 \cdot N_{1}{ }^{\frac{3}{4}} \cdot N_{2}-1}{2 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+1}=0\)
\(D H-\frac{N_{1}{ }^{\frac{1}{4}} \cdot\left(\sqrt{N_{1}}-1\right) \cdot\left(4 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+\sqrt{N_{1}}+1\right)}{2 \cdot N_{2} \cdot\left(\sqrt{N_{1}}+1\right)+N_{1}{ }^{\frac{1}{4}} \cdot\left(4 \cdot N_{2}{ }^{2}+1\right)}=0 \quad H J-\frac{2 \cdot N_{1}{ }^{\frac{5}{4}} \cdot N_{2}-2 \cdot N_{1}{ }^{\frac{3}{4}} \cdot N_{2}}{2 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+1}=0\)
\(E N-\frac{4 \cdot N_{1}{ }^{\frac{3}{2}} \cdot N_{2}-4 \cdot \sqrt{N_{1}} \cdot N_{2}-N_{1}{ }^{\frac{1}{4}}-N_{1}{ }^{\frac{3}{4}}+N_{1}{ }^{\frac{5}{4}}+N_{1}{ }^{\frac{7}{4}}}{2 \cdot\left(N_{1}+2 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+2 \cdot N_{1}{ }^{\frac{3}{4}} \cdot N_{2}+1\right)}=0 \quad C E-\frac{N_{1}-2 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+2 \cdot N_{1}^{\frac{5}{4}} \cdot N_{2}-1}{N_{1}+2 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+2 \cdot N_{1}^{\frac{3}{4}} \cdot N_{2}+1}=0\)

\(A E-\frac{\sqrt{N_{1}} \cdot\left(\sqrt{N_{1}}+1\right) \cdot\left(4 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+\sqrt{N_{1}}+1\right)}{N_{1}+2 \cdot N_{1}{ }^{\frac{1}{4}} \cdot N_{2}+2 \cdot N_{1}{ }^{\frac{3}{4}} \cdot N_{2}+1}=0 \quad B D-\frac{2 \cdot \sqrt{N_{1}} \cdot N_{2}+N_{1}{ }^{\frac{1}{4}}}{2 \cdot N_{2}+N_{1}{ }^{\frac{1}{4}}}=0 \quad B H-\frac{N_{1}+2 \cdot N_{1}^{\frac{3}{4}} \cdot N_{2}}{\frac{1}{\frac{3}{4}} \cdot N_{2}+1}=0\)
\(\frac{A E}{E N}-\frac{2 \cdot N_{1}{ }^{\frac{1}{4}}}{\left(\sqrt{N_{1}}-1\right)}=0 \quad \frac{A F}{F O}-\frac{2 \cdot N_{1}{ }^{\frac{1}{4}}}{\left(\sqrt{N_{1}}-1\right)}=0\)
\(\sim_{n=2}^{0}\)
Given.
\(\mathrm{N}_{1}\) := 3.467
020296A
\(\mathrm{N}_{\mathbf{2}}:=1.728\)
Descriptions.
\(\mathbf{B E}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{C H}:=\mathbf{B D} \quad \mathrm{BD}:=\frac{\mathbf{B E}}{2}\)
\(\mathbf{C D}:=\mathbf{B D}-\frac{\mathrm{BD}}{\mathbf{N}_{2}} \quad \mathrm{DH}:=\sqrt{\mathrm{CD}^{2}+\mathrm{CH}^{2}} \quad \mathrm{DF}:=\frac{\mathrm{DH}}{2}\)
\(\mathbf{A D}:=\frac{\mathbf{D H} \cdot \mathbf{D F}}{\mathbf{C D}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{B C}:=\mathbf{B D}-\mathbf{C D}\)
\(\sqrt{(\mathbf{A B}+\mathbf{B E}) \cdot \mathbf{A B}}-(\mathbf{A B}+\mathbf{B C})=\mathbf{0}\)
Definitions.
\(\mathrm{BE}-\mathrm{N}_{1}=0 \quad \mathrm{BD}-\frac{\mathrm{N}_{1}}{2}=0 \quad \mathrm{CH}-\frac{\mathrm{N}_{1}}{2}=0 \quad \mathrm{BD}-\frac{\mathrm{N}_{1}}{2}=0\)

\(\mathrm{DF}-\frac{\mathrm{N}_{1} \cdot \sqrt{2 \cdot \mathrm{~N}_{2}{ }^{2}-2 \cdot \mathrm{~N}_{2}+1}}{4 \cdot \mathbf{N}_{2}}=0 \quad \mathrm{AD}-\frac{\mathrm{N}_{1} \cdot\left(2 \cdot \mathrm{~N}_{2}{ }^{2}-2 \cdot \mathrm{~N}_{2}+1\right)}{4 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{2}-1\right)}=0\)
\(A B-\frac{N_{1}}{4 \cdot N_{2} \cdot\left(N_{2}-1\right)}=0 \quad B C-\frac{N_{1}}{2 \cdot N_{2}}=0\)
\(\sqrt{(\mathbf{A B}+\mathbf{B E}) \cdot \mathbf{A B}}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}{\mathbf{4 \cdot \mathbf { N } _ { \mathbf { 2 } } \cdot (\mathbf { N } _ { 2 } - \mathbf { 1 })}}=\mathbf{0} \quad \mathbf{A B}+\mathbf{B C}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}{\mathbf{4} \cdot \mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}\)
\(\frac{B C^{2}}{B E-2 \cdot B C}-A B=0\)

\section*{Find A Segment}

Find segment AB.

Given \(B E\) and \(B C\) such that
\(\sqrt{(A B+B E) \cdot A B}=\mathbf{A B}+\mathbf{B C}\), find \(\mathbf{A B}\).

Given.
\(\mathbf{X}:=\mathbf{7}\)
\(\mathbf{Y}:=\mathbf{2 0}\)
020296B
\(\mathbf{Y}:=\mathbf{2 0}\)
Descriptions.
DE \(:=\frac{\mathbf{Y}}{\mathbf{Y}} \quad\) BD \(:=\mathbf{D E} \quad\) BE \(:=2 \cdot \mathbf{D E}\)
\(\mathbf{C H}:=\mathrm{BD} \quad \mathbf{C D}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad\) DH \(:=\sqrt{\mathrm{CD}^{2}+\mathrm{CH}^{2}}\)
\(\mathbf{D F}:=\frac{\mathbf{D H}}{2} \quad \mathbf{A D}:=\frac{\mathbf{D H} \cdot \mathbf{D F}}{\mathbf{C D}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D}\)
\(\mathbf{B C}:=\mathbf{B D}-\mathbf{C D} \quad \mathbf{A B}=\mathbf{0 . 6 0 3 5 7 1}\)
\(\sqrt{(\mathbf{A B}+\mathbf{B E}) \cdot \mathbf{A B}}-(\mathbf{A B}+\mathbf{B C})=\mathbf{0}\)

\section*{Definitions.}
\(\mathbf{D E}-\frac{\mathbf{Y}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{Y}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{C H}-\frac{\mathbf{Y}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{B E}-\mathbf{2}=\mathbf{0} \quad \mathbf{C D}-\frac{\mathbf{X}}{\mathbf{Y}}=0 \quad \mathrm{DH}-\frac{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}{\mathbf{Y}}=0\)
\(D F-\frac{\sqrt{X^{2}+Y^{2}}}{2 \cdot Y}=0 \quad A D-\frac{X^{2}+Y^{2}}{2 \cdot X \cdot Y}=0\)
\(A B-\frac{(Y-X)^{2}}{2 \cdot X \cdot Y}=0 \quad B C-\frac{Y-X}{Y}=0\)
\(\frac{(\mathbf{X}+\mathbf{Y}) \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}}-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}}=\mathbf{0}\)

\section*{Find A Segment}

\section*{Find segment AB.}

\(\mathrm{DE}=1.00000\) \(\mathbf{X Y}=\mathbf{0 . 3 5 0 0 0}\) \(\mathbf{X}=7.00000\) \(\mathrm{Y}=20.00000\) \(\mathrm{AE}=2.60357\) \(\mathrm{AB}=0.60357\)
Given \(B E\) and \(B C\) such that
\(\sqrt{(\mathbf{A B}+\mathbf{B E}) \cdot \mathbf{A B}}=\mathbf{A B}+\mathbf{B C}\), find \(\mathbf{A B}\)

Unit.

\section*{Given.}
\(\mathbf{N}:=2\)
\(\Delta:=40 \quad \delta:=0\).. \(\Delta\)

\section*{021496}

Descriptions.
\(\mathbf{C I}:=1 \quad\) CG \(:=\frac{\mathbf{C I}}{2} \quad\) GI \(:=\mathbf{C G} \quad\) BC \(:=1\)
\(\mathbf{B I}:=\mathbf{B C}+\mathbf{C I} \quad \mathbf{B E}:=\sqrt{\mathbf{B C} \cdot \mathbf{B I}} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C}\)
\(\mathbf{E I}:=\mathbf{C I}-\mathbf{C E} \quad \mathbf{E K}:=\sqrt{\mathbf{C E} \cdot \mathbf{E I}} \quad\) EG \(:=\mathbf{C G}-\mathbf{C E}\)
\(\mathbf{A E}:=\frac{\mathbf{E K}^{\mathbf{2}}}{\mathbf{E G}} \quad \mathbf{A C}:=\mathbf{A E}-\mathbf{C E} \quad \mathbf{A G}:=\mathbf{A C}+\mathbf{C G}\)
\(\mathbf{G N}:=\mathbf{C G} \cdot \mathbf{N} \quad \mathbf{I O}:=\mathbf{G N} \quad \mathbf{C M}:=\mathbf{G N}\)

Use iteration to find any root pair for BE Remember that when \(N\) is set to 2 , we have cube roots.

\(\mathbf{A K}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E K}^{2}} \quad \mathbf{A L}:=\sqrt{\left(\mathbf{A F}_{\Delta}\right)^{2}+\left(\mathbf{F L}_{\Delta}\right)^{2}} \quad \mathbf{A J}:=\frac{\mathbf{A K}^{2}}{\mathbf{A L}} \quad \mathbf{A Q}:=\frac{\mathbf{A F}_{\Delta} \cdot \mathbf{A J}}{\mathbf{A L}}\)
\(\mathbf{C Q}:=\mathbf{A Q}-\mathbf{A C} \quad \mathbf{I Q}:=\mathbf{C I}-\mathbf{C Q} \quad \mathbf{J Q}:=\sqrt{\mathbf{C Q} \cdot \mathbf{I Q}} \quad \mathbf{C D}:=\frac{\mathbf{C Q} \cdot \mathbf{C M}}{\mathbf{C M}+\mathbf{J Q}}\)
\(\mathbf{H I}:=\frac{\mathbf{I Q} \cdot \mathbf{I O}}{\mathbf{I O}+\mathbf{J Q}} \quad \mathbf{D H}:=\mathbf{C I}-(\mathbf{C D}+\mathbf{H I}) \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D}\)
\(\mathbf{B H}:=\mathbf{B C}+\mathbf{C D}+\mathbf{D H} \quad \frac{\mathbf{D H}}{\sqrt{\mathbf{C D} \cdot \mathbf{H I}}}=\mathbf{1} \quad \mathbf{B E}-\sqrt{\mathbf{B D} \cdot \mathbf{B H}}=\mathbf{0}\)

The next two equations are for the Delian Problem only. Resolution set to max of the program.
\(\left(\mathrm{BC}^{2} \cdot \mathrm{BI}\right)^{\frac{1}{3}}-\mathrm{BD}=0 \quad\left(\mathrm{BC} \cdot \mathrm{BI}^{2}\right)^{\frac{1}{3}}-\mathrm{BH}=0\)
\(B D=1.2599210498948732 \quad 2^{\frac{1}{3}}=1.2599210498948732\)
17 decimal places. Good to the limits of the program.
\(B H=1.5874010519681994\)
\(4^{\frac{1}{3}}=1.5874010519681994\)

The problem as stated was to duplicate the altar of Apollo. The solution demanded was material and not theoretical, and therefore has been solved by a finite number of steps. The next step is to solve it theoretically. That solution alone will conquer contiguous domains and will satisfy the purist. The solution is only good to material differences, on the atomic level, so to speak.
\(\sim_{n=2}^{0}\)
041496A
Descriptions.
\(\mathbf{C K}:=\frac{\mathbf{C M}}{\mathbf{2}} \quad\) CE \(:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{L M}:=\mathbf{N}_{\mathbf{2}} \quad\) EL \(:=\mathbf{C M}-(\mathbf{C E}+\mathbf{L M})\)
\(\mathbf{B L}:=\frac{\mathbf{E L} \cdot \mathbf{L M}}{\mathbf{L M}-\mathbf{C E}} \quad \mathbf{B M}:=\mathbf{B L}+\mathbf{L M} \quad \mathbf{B C}:=\mathbf{B M}-\mathbf{C M} \quad \mathbf{B K}:=\frac{\mathbf{C M}}{2}+\mathbf{B C}\)
\(\mathbf{R}_{\mathbf{1}}:=\mathbf{L M} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{C E} \quad \mathbf{D}:=\mathbf{E L} \quad \mathrm{KS}:=\mathbf{C K} \quad \mathbf{E H}:=\frac{\left(\mathbf{R}_{\mathbf{2}}{ }^{2}+\mathbf{D}^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}\right)}{\mathbf{2} \cdot \mathbf{D}}\)
FK \(:=\frac{\mathbf{K S}^{\mathbf{2}}}{\mathbf{B K}} \quad\) CF \(:=\mathbf{C K}-\mathbf{F K} \quad\) FM \(:=\mathbf{C M}-\mathbf{C F} \quad\) FS \(:=\sqrt{\mathbf{C F} \cdot \mathbf{F M}}\)
\(\mathbf{H K}:=\mathbf{C K}-(\mathbf{C E}+\mathbf{E H}) \quad \mathbf{C H}:=\mathbf{C K}-\mathbf{H K} \quad\) HN \(:=\frac{\text { FS } \cdot \mathbf{H K}}{\mathbf{F K}} \quad\) AF \(:=\frac{\mathbf{C H} \cdot \mathbf{F S}}{\mathrm{HN}}\)
JR \(:=\frac{\text { FS } \cdot \mathbf{C M}}{\mathbf{A F}+\mathbf{F M}} \quad\) RO \(:=\frac{\mathbf{C M} \cdot(\mathbf{F S}-\mathbf{J R})}{\text { FS }} \quad\) PS \(:=\frac{\text { RO }}{2} \quad\) PS \(=\mathbf{0 . 1 6 7 4 8 5}\)

\section*{Unit.}

CM := 1
Given.
\(\mathrm{N}_{1}:=.13749\)
\(\mathrm{N}_{\mathbf{2}}:=.30814\)
Given \(c_{1}, c_{2}, c_{3}\), find \(c_{4}\). 1 had this sketched out in 95 , but
if \(I\) put it there \(I\) would have had a lot of document links to redo in "The Quest." In my earlier revisions, it seems that I forgot to remove the reciprocals for \(\mathbf{C} 2\) and 3.

\section*{Method for Unequals}

Definitions.

\(\operatorname{PS}-\frac{\left(\mathbf{2} \cdot \mathrm{N}_{\mathbf{2}}-\mathbf{1}\right) \cdot\left(\mathbf{2} \cdot \mathrm{N}_{1}-\mathbf{1}\right)}{2 \cdot\left(\mathbf{1 - 4 \cdot N _ { 1 } \cdot N _ { 2 })}\right.}=\mathbf{0}\)
\(\sim_{n=2}^{0}\)
Given.
\(\mathbf{W}:=\mathbf{3} \quad \mathbf{Y}:=6\)
\(X:=20 \quad Z:=19\)
041496B
Descriptions.
\(\mathbf{C K}:=\frac{\mathbf{C M}}{\mathbf{2}} \quad \mathbf{C E}:=\frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{L M}:=\frac{\mathbf{Y}}{\mathbf{Z}} \quad\) EL \(:=\mathbf{C M}-(\mathbf{C E}+\mathbf{L M})\)
\(\mathbf{B L}:=\frac{\mathbf{E L} \cdot \mathbf{L M}}{\mathbf{L M}-\mathbf{C E}} \quad \mathbf{B M}:=\mathbf{B L}+\mathbf{L M} \quad \mathbf{B C}:=\mathbf{B M}-\mathbf{C M} \quad \mathbf{B K}:=\frac{\mathbf{C M}}{2}+\mathbf{B C}\)
power line. \(\mathbf{E H}:=\frac{\left(\mathrm{CE}^{2}+\mathrm{EL}^{2}-\mathrm{LM}^{2}\right)}{2 \cdot \mathrm{EL}} \quad \mathrm{KS}:=\mathrm{CK}\)
FK := \(\frac{\mathbf{K S}^{\mathbf{2}}}{\mathbf{B K}} \quad\) CF \(:=\mathbf{C K}-\mathbf{F K} \quad\) FM \(:=\mathbf{C M}-\mathbf{C F} \quad\) FS \(:=\sqrt{\text { CF } \cdot \mathbf{F M}}\)
\(\mathbf{H K}:=\mathbf{C K}-(\mathbf{C E}+\mathbf{E H}) \quad \mathbf{C H}:=\mathbf{C K}-\mathbf{H K} \quad\) HN \(:=\frac{\text { FS } \cdot \mathbf{H K}}{\text { FK }} \quad\) AF \(:=\frac{\text { CH } \cdot \mathbf{F S}}{\text { HN }}\)
\(\mathrm{JR}:=\frac{\mathrm{FS} \cdot \mathbf{C M}}{\mathbf{A F}+\mathbf{F M}} \quad\) RO \(:=\frac{\text { CM } \cdot(\mathbf{F S}-\mathbf{J R})}{\text { FS }} \quad\) PS \(:=\frac{\text { RO }}{2} \quad\) PS \(=0.159091\)
Definitions.

\section*{Method for Unequals}

Given \(c_{1}, c_{2}, c_{3}\), find \(c_{4}\). The thin blue lines is the process \(I\) developed for finding the powerline between two circles.

\(\mathbf{C M}-1=\mathbf{0} \quad \mathbf{C K}-\frac{1}{2}=\mathbf{0} \quad \mathbf{C E}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{L M}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{E L}-\frac{(\mathbf{X} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{B L}-\frac{\mathbf{Y} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z})}{\mathbf{Z} \cdot(\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0}\)
\(\mathbf{B M}-\frac{\mathbf{Y} \cdot(\mathbf{2} \cdot \mathbf{W}-\mathbf{X})}{\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{B C}-\frac{\mathbf{W} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}{\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{B K}-\frac{\mathbf{4} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}{2 \cdot(\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0} \quad \mathbf{E H}-\frac{\mathbf{2} \cdot \mathbf{W}^{2} \cdot \mathbf{Z}-\mathbf{2} \cdot \mathbf{X}^{\mathbf{2}} \cdot \mathbf{Y}+\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}+\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{Z}}{2 \cdot \mathbf{X} \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}=\mathbf{0}\)
\(\mathbf{K S}-\frac{1}{2}=\mathbf{0} \quad \mathbf{F K}-\frac{\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}{2 \cdot(\mathbf{4} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0} \quad \mathbf{C F}-\frac{\mathbf{W} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}{\mathbf{4} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{F M}-\frac{\mathbf{Y} \cdot(\mathbf{2} \cdot \mathbf{W}-\mathbf{X})}{\mathbf{4} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}=\mathbf{0}\)
\(\mathbf{F S}-\frac{\sqrt{\mathbf{W} \cdot \mathbf{Y} \cdot(\mathbf{2} \cdot \mathbf{W}-\mathbf{X}) \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}}{(\mathbf{W} \cdot \mathbf{Z}-\mathbf{4} \cdot \mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0} \quad \mathbf{H K}-\frac{\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}}{\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{C H}-\frac{\mathbf{X} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}{\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{H N}-\frac{\sqrt{\mathbf{W} \cdot \mathbf{Y} \cdot(\mathbf{X}-\mathbf{2} \cdot \mathbf{W}) \cdot(\mathbf{Z}-\mathbf{2} \cdot \mathbf{Y})}}{(\mathbf{X} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}=\mathbf{0}\)
\(\mathbf{A F}-\frac{\mathbf{X} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}{2 \cdot(4 \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Y})}=\mathbf{0} \quad \mathbf{J R}-\frac{2 \cdot \sqrt{\mathbf{W} \cdot \mathbf{Y} \cdot(\mathbf{X}-\mathbf{2} \cdot \mathbf{W}) \cdot(\mathbf{Z}-\mathbf{2} \cdot \mathbf{Y})}}{(\mathbf{X} \cdot \mathbf{Z}-\mathbf{4} \cdot \mathbf{W} \cdot \mathbf{Y})}=\mathbf{0} \quad \mathbf{R O}:=\frac{(\mathbf{X}-\mathbf{2} \cdot \mathbf{W}) \cdot(\mathbf{Z}-\mathbf{2} \cdot \mathbf{Y})}{\mathbf{X} \cdot \mathbf{Z}-\mathbf{4} \cdot \mathbf{W} \cdot \mathbf{Y}} \quad \mathbf{P S}-\frac{(X-2 \cdot \mathbf{W}) \cdot(\mathbf{Z}-\mathbf{2} \cdot \mathbf{Y})}{2 \cdot(X \cdot Z-4 \cdot \mathbf{W} \cdot \mathbf{Y})}=0\)

\section*{Unit.}

AB:=
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{4}\)

041596
Descriptions.

On Gemini Roots
\(\mathbf{B E}:=\mathbf{N}_{\mathbf{1}} \quad \mathrm{BD}:=\frac{\mathbf{B E}}{2}\)
\(\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A E}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{C F}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}}\) \(\mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{C G}:=\frac{\mathbf{C F}^{2}}{\mathbf{C D}} \quad \mathbf{B G}:=\mathbf{C G}-\mathbf{B C} \quad \mathbf{E G}:=\mathbf{B G}+\mathbf{B E} \quad \mathbf{C H}:=\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{C F}\) \(\mathbf{D H}:=\sqrt{\mathbf{C H}^{2}+\mathbf{C D}^{2}} \quad\) DI \(:=\frac{1}{2} \cdot \mathbf{D H} \quad\) DL \(:=\frac{\mathbf{C D} \cdot \mathbf{D I}}{\mathbf{D H}} \quad\) BL \(:=\mathbf{B D}-\mathbf{D L} \quad\) EL \(:=\mathbf{B E}-\mathbf{B L}\) \(\mathbf{J L}:=\sqrt{\mathbf{B L} \cdot \mathbf{E L}} \quad \mathbf{G L}:=\mathbf{B L}+\mathbf{B G} \quad \mathbf{G J}:=\sqrt{\mathbf{J L}^{\mathbf{2}}+\mathbf{G L} \mathbf{2}^{2}} \quad \mathbf{G K}:=\frac{\mathbf{B G} \cdot \mathbf{E G}}{\mathbf{G J}} \quad \mathbf{G M}:=\frac{\mathbf{G L} \cdot \mathbf{G K}}{\mathbf{G J}}\) \(\mathbf{B M}:=\mathbf{G M}-\mathbf{B G} \quad \mathbf{E M}:=\mathbf{B E}-\mathbf{B M} \quad \mathbf{I L}:=\sqrt{\mathbf{D I}^{2}-\mathbf{D L}^{2}} \quad \mathbf{C O}:=\frac{\mathbf{G L} \cdot \mathbf{C H}}{\mathbf{I L}} \quad \mathbf{N P}:=\frac{\mathbf{C H} \cdot \mathbf{E G}}{(\mathbf{C O}+\mathbf{C E})}\) \(\mathbf{E P}:=\frac{\mathbf{C E} \cdot \mathbf{N P}}{\mathbf{C H}} \quad \mathbf{C Q}:=\frac{\mathbf{I L} \cdot \mathbf{C G}}{\mathbf{G L}} \quad \mathbf{C R}:=\frac{\mathbf{B C} \cdot \mathbf{C Q}}{\mathbf{C H}} \quad \mathbf{G R}:=\mathbf{C G}-\mathbf{C R} \quad \mathbf{B S}:=\frac{\mathbf{C R} \cdot \mathbf{B G}}{\mathbf{G R}}\)

Definitions.

Unit.
AJ := \(\mathbf{1}\)
Given.
\(\mathrm{N}_{1}\) := . 24440
Given Three Radii

\section*{041696A}
\(\mathbf{N}_{\mathbf{2}}:=.19782\)
Descriptions.
AF := \(\frac{\text { AJ }}{\mathbf{2}} \quad\) HJ \(:=\mathbf{N}_{\mathbf{1}} \quad\) NO \(:=\mathbf{N}_{\mathbf{2}} \quad\) HM \(:=\) HJ \(\quad\) MO \(:=\mathbf{N O}\)
HO := HM + MO FO := AF - NO \(\quad\) AH \(:=\mathbf{A J}-\mathbf{H J} \quad\) FH \(:=\mathbf{A H}-\mathbf{A F}\)
\(\mathbf{E H}:=\frac{\mathbf{H O}^{2}+\mathbf{F H}^{2}-\mathbf{F O}^{2}}{2 \cdot \mathbf{F H}} \quad \mathbf{E O}:=\sqrt{\mathbf{H O}^{2}-\mathbf{E H}^{2}} \quad \mathrm{OP}:=\mathrm{NO}\)
\(\mathbf{E G}:=\mathbf{O P} \quad \mathbf{A E}:=\mathbf{A H}-\mathbf{E H} \quad \mathbf{A G}:=\mathbf{A E}+\mathbf{E G} \quad \mathbf{G P}:=\mathbf{E O}\)
\(\mathbf{A P}:=\sqrt{\mathbf{A G}^{2}+\mathbf{G P}^{\mathbf{2}}} \quad \mathbf{P L}:=\frac{\mathbf{A G} \cdot(\mathbf{N O}+\mathbf{O P})}{\mathbf{A P}} \quad \mathbf{A L}:=\mathbf{A P}-\mathbf{P L} \quad \mathbf{A B}:=\frac{\mathbf{A P} \cdot \mathbf{A L}}{\mathbf{2} \cdot \mathbf{A G}}\)

\section*{\(A B=0.181806\)}

Definitions.
\(A F-\frac{1}{2}=0 \quad H J-N_{1}=0 \quad N O-N_{2}=0 \quad H M-N_{1}=0 \quad\) MO \(-N_{2}=0\)
\(\mathbf{H O}-\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)=0 \quad\) FO \(-\frac{1-2 \cdot \mathbf{N}_{2}}{2}=0 \quad \mathbf{A H}-\left(1-\mathbf{N}_{1}\right)=0 \quad \mathbf{F H}-\frac{1-2 \cdot \mathbf{N}_{1}}{2}=0\)

Given c1, c2 and c3 find c4 such that \(A B\) is collinear with c1 and c2.
\(\mathbf{E H}-\frac{\mathbf{N}_{1}-\mathbf{N}_{2}-2 \cdot \mathbf{N}_{1}{ }^{2}-2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}{2 \cdot \mathbf{N}_{1}-1}=0 \quad E O-\frac{\sqrt{4 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot\left(1-2 \cdot \mathbf{N}_{2}-2 \cdot \mathbf{N}_{1}\right)}}{1-2 \cdot \mathbf{N}_{1}}=0\)
\(\mathbf{O P}-\mathbf{N}_{2}=\mathbf{0} \quad \mathbf{E G}-\mathbf{N}_{2}=0 \quad \mathbf{A E}-\frac{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}+2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-1}{2 \cdot \mathbf{N}_{1}-1}=0\)
\(A G-\frac{2 \cdot N_{1}+4 \cdot N_{1} \cdot N_{2}-1}{2 \cdot N_{1}-1}=0 \quad G P-\frac{2 \cdot N_{1}-1}{1-2 \cdot N_{1}}=0 \quad A P-\frac{\left.\sqrt{\left(1-4 \cdot N_{1} \cdot N_{2} \cdot\left(1-2 \cdot N_{2}-2 \cdot N_{2}-2 \cdot N_{1}-8 \cdot N_{1} \cdot N_{2}\right.\right.}{ }^{2}\right)}{\sqrt{1-2 \cdot N_{1}}}=0\)
\(P L-\frac{2 \cdot N_{2} \cdot\left(1-4 \cdot N_{1} \cdot N_{2}-2 \cdot N_{1}\right)}{\sqrt{1-2 \cdot N_{1}} \cdot \sqrt{1-4 \cdot N_{1} \cdot N_{2}-2 \cdot N_{1}-8 \cdot N_{1} \cdot N_{2}^{2}}}=0 \quad A L-\frac{1-2 \cdot N_{2}-2 \cdot N_{1}}{\sqrt{1-2 \cdot N_{1}} \cdot \sqrt{1-4 \cdot N_{1} \cdot N_{2}-2 \cdot N_{1}-8 \cdot N_{1} \cdot N_{2}^{2}}}=0 \quad A B \quad=\frac{2 \cdot N_{1}+2 \cdot N_{2}-1}{2 \cdot\left(2 \cdot N_{1}+4 \cdot N_{1} \cdot N_{2}-1\right)}\)
\(\sim_{n=2}^{0}\)
Given.
\(\mathbf{W}:=4 \quad \mathbf{Y}:=3\)
X:= \(20 \quad Z:=17\)
Unit.
041696B
Descriptions.
AF : \(=\frac{\mathrm{AJ}}{2}\)
HJ \(:=\frac{\mathbf{W}}{\mathbf{X}}\)
NO := \(\frac{Y}{Z}\)
HM := HJ MO := NO
HO := HM + MO FO := AF - NO AH:=AJ - HJ FH:= AH - AF
\(\mathbf{E H}:=\frac{\mathbf{H O}^{2}+\mathbf{F H}^{2}-\mathbf{F O}^{2}}{2 \cdot \mathbf{F H}} \quad \mathbf{E O}:=\sqrt{\mathbf{H O}^{2}-\mathbf{E H}^{2}} \quad\) OP \(:=\mathbf{N O}\)
\(\mathbf{E G}:=\mathbf{O P} \quad \mathbf{A E}:=\mathbf{A H}-\mathbf{E H} \quad \mathbf{A G}:=\mathbf{A E}+\mathbf{E G} \quad \mathbf{G P}:=\mathbf{E O}\)
\(\mathbf{A P}:=\sqrt{\mathbf{A G}^{2}+\mathbf{G P}^{2}} \quad \mathbf{P L}:=\frac{\mathbf{A G} \cdot(\mathbf{N O}+\mathbf{O P})}{\mathbf{A P}} \quad \mathbf{A L}:=\mathbf{A P}-\mathbf{P L} \quad \mathbf{A B}:=\frac{\mathbf{A P} \cdot \mathbf{A L}}{\mathbf{2} \cdot \mathbf{A G}}\)
\(\mathrm{AB}=\mathbf{0 . 2 6 9 2 3 1}\)
Definitions.
AF \(-\frac{1}{2}=0 \quad\) HJ \(-\frac{W}{X}=0 \quad\) NO \(-\frac{Y}{Z}=0 \quad\) HM \(-\frac{W}{X}=0 \quad\) MO \(-\frac{Y}{Z}=0\)
HO \(-\frac{\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad\) FO \(-\frac{\mathbf{Z}-\mathbf{2} \cdot \mathbf{Y}}{2 \cdot Z}=\mathbf{0} \quad\) AH \(-\frac{\mathbf{X}-\mathbf{W}}{\mathbf{X}}=0 \quad\) FH \(-\frac{\mathbf{X}-2 \cdot \mathbf{W}}{2 \cdot X}=0\)
\(\mathbf{E H}-\frac{2 \cdot \mathbf{W}^{2} \cdot Z+\mathbf{X}^{2} \cdot \mathbf{Y}+\mathbf{W} \cdot \mathbf{X} \cdot(2 \cdot \mathbf{Y}-Z)}{\mathbf{X} \cdot(\mathbf{X}-\mathbf{2} \cdot \mathbf{W}) \cdot \mathbf{Z}}=0 \quad\) EO \(-\frac{\sqrt{4 \cdot \mathbf{W} \cdot \mathbf{Y} \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z})}}{\mathbf{Z} \cdot(\mathbf{X}-\mathbf{2} \cdot \mathbf{W})}=0\)

\section*{Given Three Radii}

Given c1, c2 and c3 find c4 such that AB is collinear with c 1 and c 2 .

\(\mathbf{O P}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{O} \quad \mathbf{E G}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{O} \quad \mathbf{A E}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}+\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z}}{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{W}-\mathbf{X})}=\mathbf{O} \quad \mathbf{A G}-\frac{\mathbf{4} \cdot \mathbf{W} \cdot \mathbf{Y}+\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}-\mathbf{X} \cdot \mathbf{Z}}{\mathbf{Z} \cdot(2 \cdot \mathbf{W}-\mathbf{X})}=\mathbf{0}\)
\(G P-\frac{\sqrt{4 \cdot W \cdot Y \cdot(X \cdot Z-2 \cdot X \cdot Y-2 \cdot W \cdot Z)}}{Z \cdot(X-2 \cdot W)}=0 \quad A P-\frac{\sqrt{X \cdot Z^{2}-2 \cdot W \cdot Z^{2}-8 \cdot W \cdot Y^{2}-4 \cdot W \cdot Y \cdot Z}}{Z \cdot \sqrt{X-2 \cdot W}}=0\)
\(P L-\frac{2 \cdot Y \cdot(X \cdot Z-2 \cdot W \cdot Z-4 \cdot W \cdot Y)}{Z \cdot \sqrt{X-2 \cdot W} \cdot \sqrt{Z^{2} \cdot(X-2 \cdot W)-8 \cdot W \cdot Y^{2}-4 \cdot W \cdot Y \cdot Z}}=0\)
\(A L-\frac{(X \cdot Z-2 \cdot X \cdot Y-2 \cdot W \cdot Z)}{\sqrt{X-2 \cdot W} \cdot \sqrt{X \cdot Z^{2}-2 \cdot W \cdot Z^{2}-8 \cdot W \cdot Y^{2}-4 \cdot W \cdot Y \cdot Z}}=0 \quad A B-\frac{2 \cdot(W \cdot Z+X \cdot Y)-X \cdot Z}{2 \cdot[2 \cdot W \cdot(2 \cdot Y+Z)-X \cdot Z]}=0\)

\section*{The Man in the Moon; What is his name?}

Monday, February 20, 2020
My name is John; I am either insane, or, things have been written about me thousands of years before I was born. These facts, about me, are hardly a mystery and can be dismissed a countless variety of ways. I am not, nor ever have been, of significant importance. I believe that the world was prepared to ignore me so that they would not ponder the most important question there really is, or could ever be: What is the name of the Man in the Moon? Let me show you a picture so that you can follow; I have been doing a rather detailed examination of my subject.
Here is the moon, or rather the crescent moon.

From time to time, some observers have spotted the Man in the Moon; fortunately, I have a friend at an observatory which was able to photograph him;

I may have actually seen a commercial of him somewhere. If you were wondering why people say that aliens are little green men, it all started with the Man in the Moon.
This little essay is not about little green men, it is about finding the name of The Man in the Moon. In the following two graphics, if you examine them very, very carefully, you will see the controversy about his name.

This name, 2 times BH times CG divided by CF squared added to twice CF removing CG squared added to our denominator with a unit added, which some who are uninformed call an equation, denotes the name of the man in the moon using these very specific set of absolutes, or nouns. It is always correct and always exacting. So, one could say, well, that is the name of the Man in the Moon. If this were the only way to name the Man in the Moon, there would be no controversy. What happens if we use the exact same criteria, same geometry, same arithmetic, same algebra, but make a slight change in our naming convention? Let us ask Seven of Nine or what have you.

Along with our first name, we have a second, which is completely different, yet entirely true. Y multiplying \(U\) minus \(V\) over \(U\) times \(Y\) subtracting V times Z . How is this possible? The first equation denotes all the givens, which are nowhere to be found in the second!!!!
Here is a little bit about the starting convention for our names. The first method was arithmetic, based on nouns, a one-to-one correspondence. It is like saying, this is such and such, and that is such and such. It is like counting pebbles. The second method is geometric. Same geometry, same arithmetic, same algebra, but instead of just nouns, we use a noun and a verb; for example, instead of saying, it is One, we say, she, or he, is Seven of Nine; in short, nouns and verbs. So, there you have it. The very same
thing to name and by the very same systems of grammar. The very same geometry, the very same arithmetic, the very same algebra, yet we arrive at two different names, both arithmetically identical, meaning of course, they have a one-to-one correspondence between a thing and an arithmetic name. The construct of the naming convention in the first example is very familiar to us; we use it all the time, but the second, well, that is another of my own inventions. Invention does not mean we create anything, only that we have leant to recognize and reproduce something.
Now, people have told stories about me for thousands of years, not one of those who told those stories, save those who were instrumental in creating certain written works, even knew what they were talking about. Well, my name is certainly not important, and in fact, it was written that my name would be a common generic name, John: not interesting at all, I worked from skilled trades to day labor. Yet the name of the Man in the Moon, never worked a day in his life, that, has turned out very interesting; the stories told about that name, well it is well documented by every possible grammar system and like our crescent moon, not even noticed until a shadow appears.
I have created a little work packet for those who want to study the mystic art of names and have placed them in a directory called The Man in the Moon, on the Internet Archive. Anyone wanting to become a true mystic, with real power, will study the art of names, magical incantations which uses only four specific grammar systems; Common Grammar, Arithmetic, Algebra and Geometry. These four grammar systems are the true descendants of Adam and Eve, a Conjugate Binary Pair, often called simply a noun and a verb.

The first set of equations reduce to all of our givens: The second, to a ratio of the givens: Arithmetic and Geometric. Thus, when so called intellectuals tell you, that such and such is THE EQUATION for such and such, well, they are simply illiterate. The elements of every thing are
binary, and in binary, we have both arithmetic and geometric results, absolute and relative. The Relativities of Einstein are proven myths venerated by simpletons; the elements of a thing are physical facts.
Let us do a very brief review of the evolution of binary information processing. Binary is how every possible grammar is effected; we name, and can only name, relatives and correlatives, the two parts of any thing, their shape or boundaries and the relative differences within them. In metaphor, one of the ways it is introduced in the Bible is by a Conjugate Binary Pair called Adam and Eve. The Book, however, is just full of these binary contrasts, very deliberately placed. Then there is Geometry, a simple stop, go, stop, producing a line segment from which all of geometry, unless you are an idiot non-Euclidean Geometer, who cannot spot a contradiction in the words if it bit them in the ass, is produced. Then there is Plato. Plato used the term Dialectic, speaking by 2's, to preserve the science for posterity in dialogs. If he would have put it down plainly, his life would have been forcibly shortened and no dialogs would have remained. There have been relatively few prophets in history whose work has been aimed at bringing into the human mind that all information is a product of binary processing until today we have the computer. Yet every thing, every possible thing, is this binary, so it is not new, in fact, as it defines existence, it could never have been new; it just is.
A mind, by the recursion of this binary, produces exactly four groups of grammar from the intelligible of Language; Common Grammar, Arithmetic, Algebra, of which these three are called Logics, while the remaining one, which can be used to example everything, is an Analogic called Geometry.

Let us use egocentricity as an example. Egocentricity is inversely proportional to intelligence. The reason is very simple. The less you really comprehend of the world, the more one has to play with themselves. It is an evolutionary artifact; unless one is very intelligent, and everyone else
just leaves you to play with yourself. Every animal's behavior is egocentric in terms of simple survival; however, the more one comprehends what it takes to survive, the more of the world one has to be able to comprehend to do it. This is not necessarily linked to large memories. Aristotle had a phenomenal memory, but he was not the sharpest tool in the shed; this also accounts for his vanity.
This fact is what makes me believe that either the Man in the Moon is very stupid, or he is very wise; for thousands of years, all he seems to do is show off. I wager that study will eventually solve the mystery. Maybe he is trying to get someone to toss him a rope so he could climb off the moon. Today, people are still simply smoking the rope.

041796A
Descriptions.

Unit.
\(A G:=1 \quad\) The radius of the Large, green, Circle, it is taken as the unit of the crescent.
Given.
CF := . 53859
CG := . 65522 BH:=1.15236 The point on the diameter of the Large Cresant that we want to know the radius of that circle on the perpendicular.
\(\mathbf{A J}:=2 \cdot \mathbf{A G} \quad \mathbf{B G}:=\frac{\left(\mathbf{A G}^{2}+\mathbf{C G}^{2}-\mathbf{C F}^{2}\right)}{2 \cdot \mathbf{C G}} \quad \mathbf{B C}:=\mathbf{C G}-\mathbf{B G} \quad\) FG \(:=\mathbf{C G}-\mathbf{C F}\)
\(\mathbf{A B}:=\mathbf{A G}-\mathbf{B G} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B}\)
\(\mathbf{A H}:=\mathbf{B H}+\mathbf{A B} \quad \mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \quad \mathbf{H R}:=\sqrt{\mathbf{A G}^{2}-\mathbf{G H}^{2}} \quad \mathbf{B P}:=\mathbf{H R}\)
\(\mathbf{P R}:=\mathbf{B H} \quad \mathbf{P S}:=\frac{\mathbf{G H} \cdot \mathbf{P R}}{\mathbf{H R}} \quad \mathbf{B S}:=\mathbf{B P}+\mathbf{P S} \quad \mathbf{R S}:=\sqrt{\mathbf{P R}^{\mathbf{2}}+\mathbf{P S}^{\mathbf{2}}} \quad \mathbf{N S}:=\mathbf{R S}\)
CN := CF
\(\mathrm{CS}:=\sqrt{\mathrm{NS}^{2}+\mathrm{CN}^{2}}\)
\(\mathbf{C K}:=\frac{\mathbf{C N}^{2}}{\mathbf{C S}} \quad \mathbf{S K}:=\mathbf{C S}-\mathbf{C K}\)
\(\mathrm{KN}:=\sqrt{\mathbf{C N}^{2}-\mathbf{C K}^{2}} \quad \mathrm{KM}:=\frac{\mathbf{B C} \cdot \mathrm{KN}}{\mathrm{BS}} \quad \mathbf{S M}:=\mathbf{S K}+\mathrm{KM} \quad\) SL \(:=\frac{\mathbf{B S} \cdot \mathbf{S M}}{\mathbf{C S}}\)
\(\mathrm{BL}:=\mathrm{BS}-\mathbf{S L} \quad \mathrm{EN}:=\mathrm{BL} \quad \mathrm{CE}:=\sqrt{\mathrm{CN}^{2}-\mathrm{EN}^{2}} \quad \mathrm{HT}:=\frac{\mathrm{CE} \cdot \mathrm{HR}}{\mathrm{EN}}\)
\(\mathbf{G T}:=\mathbf{H T}-\mathbf{G H} \quad \mathbf{G O}:=\frac{\mathbf{A G} \cdot \mathbf{C G}}{\mathbf{G T}} \quad \mathbf{O R}:=\mathbf{A G}-\mathbf{G O}\)
\(O R=0.437958\)

Definitions.
\(\mathrm{OR}-\frac{2 \cdot \mathrm{BH} \cdot \mathrm{CG}}{\mathrm{CF}^{2}+2 \cdot \mathrm{CF}-\mathrm{CG}^{2}+2 \cdot \mathrm{BH} \cdot \mathrm{CG}+1}=0\)
\(\mathbf{A J}-2=0 \quad \mathbf{B G}-\frac{\mathbf{C G}^{2}-\mathbf{C F}^{2}+1}{2 \cdot \mathbf{C G}}=0 \quad \mathbf{B C}-\frac{\mathbf{C F}^{2}+\mathbf{C G}^{2}-1}{2 \cdot \mathbf{C G}}=0 \quad \mathbf{F G}-(\mathbf{C G}-\mathbf{C F})=\mathbf{0}\)
\[
\mathrm{AB}-\frac{\mathbf{C F}^{2}-\mathrm{CG}^{2}+2 \cdot \mathbf{C G}-1}{2 \cdot \mathbf{C G}}=0 \quad \mathbf{B J}-\frac{\mathbf{C G}^{2}-\mathbf{C F}^{2}+2 \cdot \mathbf{C G}+1}{2 \cdot \mathbf{C G}}=0
\]
\(\mathrm{AH}-\frac{\mathrm{CF}^{2}-\mathrm{CG}^{2}+(2 \cdot \mathrm{BH}+2) \cdot \mathbf{C G}-1}{2 \cdot \mathbf{C G}}=\mathbf{0} \quad \mathbf{G H}-\frac{\mathrm{CF}^{2}-\mathbf{C G}^{2}+2 \cdot \mathbf{B H} \cdot \mathbf{C G}-1}{2 \cdot \mathbf{C G}}=\mathbf{0}\)
\(\mathbf{H R}-\frac{\sqrt{\left(2 \cdot C G+\mathrm{CF}^{2}-\mathrm{CG}^{2}+2 \cdot \mathrm{BH} \cdot \mathbf{C G}-1\right) \cdot\left(2 \cdot \mathbf{C G}-\mathrm{CF}^{2}+\mathrm{CG}^{2}-2 \cdot \mathrm{BH} \cdot \mathbf{C G}+1\right)}}{2 \cdot \mathbf{C G}}=0\)
\(\mathbf{P R}-\mathbf{B H}=\mathbf{0} \quad \mathbf{P S}-\frac{\mathbf{B H} \cdot\left(\mathbf{C F}^{2}-\mathbf{C G}^{2}+2 \cdot \mathrm{BH} \cdot \mathbf{C G}-\mathbf{1}\right)}{\sqrt{\left(2 \cdot \mathbf{C G}^{2}+\mathrm{CF}^{2}-\mathbf{C G}^{2}+\mathbf{2} \cdot \mathbf{B H} \cdot \mathbf{C G}-\mathbf{1}\right) \cdot\left(2 \cdot \mathbf{C G}-\mathbf{C F}^{2}+\mathbf{C G}^{2}-\mathbf{2} \cdot \mathbf{B H} \cdot \mathbf{C G}+\mathbf{1}\right)}}=\mathbf{0}\)
\(\mathrm{BS}-\frac{2 \cdot \mathrm{CF}^{2} \cdot \mathrm{CG}^{2}-\mathrm{CF}^{4}-2 \cdot \mathrm{BH}^{2} \cdot \mathrm{CF}^{2} \cdot \mathrm{CG}^{2}+2 \cdot \mathrm{CF}^{2}-\mathrm{CG}^{4}+2 \cdot \mathrm{BH}^{4} \cdot \mathrm{CG}^{3}+2 \cdot \mathrm{CG}^{2}+2 \cdot \mathrm{BH}^{2} \cdot \mathrm{CG}^{2}-1}{2 \cdot \mathrm{CG} \cdot \sqrt{4 \cdot \mathrm{BH}^{2} \cdot \mathrm{CG}^{3}-4 \cdot \mathrm{BH} \cdot \mathrm{CF}^{2} \cdot \mathrm{CG}^{2}-4 \cdot \mathrm{BH}^{2} \cdot \mathrm{CG}^{2}+4 \cdot \mathrm{BH} \cdot \mathrm{CG}^{4}-\mathrm{CF}^{4}+2 \cdot \mathrm{CF}^{2} \cdot \mathrm{CG}^{2}+2 \cdot \mathrm{CF}^{2}-\mathrm{CG}^{4}+2 \cdot \mathrm{CG}^{2}-1}}=0\)
\(\mathbf{R S}-\frac{2 \cdot \mathrm{BH} \cdot \mathbf{C G}}{\sqrt{\left(2 \cdot \mathbf{C G}^{+} \mathrm{CF}^{2}-\mathbf{C G}^{2}+2 \cdot \mathrm{BH} \cdot \mathbf{C G}-1\right) \cdot\left(2 \cdot \mathbf{C G}^{2}-\mathrm{CF}^{2}+\mathbf{C G}^{2}-2 \cdot \mathrm{BH} \cdot \mathbf{C G}+1\right)}}=\mathbf{0}\)

\(\mathrm{KN}-\frac{2 \cdot \mathrm{BH} \cdot \mathrm{CF} \cdot \mathbf{C G}}{\sqrt{\left(\mathrm{CF}^{3}+2 \cdot \mathrm{CF}^{2}-\mathrm{CF} \cdot \mathrm{CG}^{2}+2 \cdot \mathrm{BH} \cdot \mathrm{CF} \cdot \mathrm{CG}+\mathrm{CF}+2 \cdot \mathrm{BH} \cdot \mathrm{CG}\right) \cdot\left(2 \cdot \mathrm{CF}^{2}-\mathrm{CF}^{3}+\mathbf{C F} \cdot \mathrm{CG}^{2}-2 \cdot \mathrm{BH} \cdot \mathbf{C F} \cdot \mathbf{C G}-\mathrm{CF}+2 \cdot \mathrm{BH} \cdot \mathrm{CG}\right)}}=0\)

Unit.
AF:=1
Given.
DH:= . 46274
DF:= . 81564
041796B
CJ := \(\mathbf{1 . 3 8 7 1 4}\)
Descriptions.
\(\mathbf{A K}:=2 \cdot \mathbf{A F} \quad \mathbf{F P}:=\mathbf{A F} \quad \mathbf{F K}:=\mathbf{A F} \quad \mathbf{C D}:=\frac{\mathbf{D H}^{2}+\mathbf{D F}^{2}-\mathbf{A F}^{2}}{2 \cdot \mathbf{D F}}\)
FH := DF - DH \(\quad\) AH \(:=\mathbf{A F}-\mathbf{F H} \quad\) AE \(:=\frac{\mathbf{A H}}{2} \quad\) EH \(:=\mathbf{A E}\)
\(\mathbf{A D}:=\mathbf{D F}-\mathbf{A F} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{D N}:=\mathbf{D H} \quad \mathbf{A C}:=\mathbf{C D}-\mathbf{A D}\)
\(\mathbf{C K}:=\mathbf{A K}-\mathbf{A C} \quad \mathbf{C F}:=\mathbf{C K}-\mathbf{F K} \quad \mathbf{C F}:=\mathbf{D F}-\mathbf{C D} \quad\) FJ \(:=\mathbf{C J}-\mathbf{C F}\)
\(\mathrm{JP}:=\sqrt{\mathrm{FP}^{2}-\mathrm{FJ}^{2}} \quad\) FS \(:=\frac{\text { FP.CF }}{\text { FJ }} \quad\) PS \(:=\) FS + FP \(\quad\) QS \(:=\frac{\text { FP.PS }}{\mathrm{JP}}\)
\(\mathbf{P Q}:=\frac{\mathbf{F J} \cdot \mathbf{Q S}}{\text { FP }} \quad \mathbf{C S}:=\frac{\mathbf{J P} \cdot \mathbf{C F}}{\text { FJ }} \quad \mathbf{C Q}:=\mathbf{Q S}-\mathbf{C S} \quad \mathbf{D Q}:=\sqrt{\mathbf{C D}^{2}+\mathbf{C Q}^{2}}\)
\(\mathbf{D L}:=\frac{\mathbf{D H}^{\mathbf{2}}}{\mathbf{D Q}} \quad \mathbf{L N}:=\sqrt{\mathbf{D N}^{2}-\mathbf{D L}^{\mathbf{2}}} \quad \mathbf{L Z}:=\frac{\mathbf{C D} \cdot \mathbf{L N}}{\mathbf{C Q}} \quad \mathbf{Q Z}:=\mathbf{D Q}-\mathbf{D L}+\mathbf{L Z}\)
\(\mathbf{M Q}:=\frac{\mathbf{C Q} \cdot \mathbf{Q Z}}{\mathbf{D Q}} \quad \mathbf{C M}:=\mathbf{C Q}-\mathbf{M Q} \quad \mathbf{G N}:=\mathbf{C M} \quad \mathbf{D G}:=\sqrt{\mathbf{D N}^{2}-\mathbf{G N}^{2}}\)
\(\mathbf{B J}:=\frac{\text { DG } \cdot \mathbf{J P}}{\mathbf{G N}} \quad \mathbf{B F}:=\mathbf{B J}-\mathbf{F J} \quad\) FO \(:=\frac{\text { FP } \cdot \mathbf{D F}}{\mathbf{B F}} \quad\) OP \(:=\) FP \(-\mathbf{F O}\)
\(\mathrm{OP}=0.605491\)
\(\frac{2 \cdot \mathrm{CJ} \cdot \mathrm{DF}}{\mathrm{DH}^{2}+2 \cdot \mathrm{DH}-\mathrm{DF}^{2}+\mathrm{CJ} \cdot \mathrm{DF}+1}=0.605491\) \(\overline{\mathrm{DH}^{2}+2 \cdot \mathrm{DH}-\mathrm{DF}^{2}+2 \cdot \mathrm{CJ} \cdot \mathrm{DF}+1}\)

A Circle In A Crescent
 \(\frac{\text { DH }) \text {-DF }{ }^{2} \text {) }+2 . \mathrm{CJ} \cdot \mathrm{DF}+1}{}-\mathrm{OP}=0.00000\)

Given.
\(\mathrm{U}:=7\)
\(\mathbf{W}:=7 \quad \mathbf{Y}:=7\)
\(\mathrm{V}:=\mathbf{2 0} \quad \mathrm{X}:=17 \quad \mathrm{Z}:=15\)
AB := \(\frac{\mathbf{X}}{\mathbf{X}}\)
041796C
Descriptions.
\(A C:=2 \cdot A B \quad C E:=\frac{2 \cdot \mathbf{Y}}{Z} \quad D E:=\frac{\mathbf{2} \cdot \mathbf{W}}{\mathbf{X}}\)
\(\mathbf{B C}:=\mathbf{A B} \quad \mathbf{B G}:=\mathbf{A B} \quad \mathbf{C D}:=\mathbf{C E}+\mathbf{D E} \quad \mathbf{B D}:=\mathbf{C D}-\mathbf{B C}\)
\(\mathbf{B K}:=\frac{\left(\mathbf{A B}^{2}+\mathbf{B D}^{2}-\mathbf{D E}^{2}\right)}{2 \cdot \mathbf{B D}} \quad \mathbf{D K}:=\mathbf{B D}-\mathbf{B K} \quad \mathrm{BE}:=\mathbf{C E}-\mathbf{B C}\)
\(\mathbf{A K}:=\mathbf{A B}-\mathbf{B K} \quad \mathbf{C K}:=\mathbf{A C}-\mathbf{A K} \quad \mathbf{C F}:=\frac{\mathbf{C K} \cdot \mathbf{U}}{\mathbf{V}} \quad\) FK \(:=\mathbf{C K}-\mathbf{C F}\)
\(\mathbf{B F}:=\mathbf{B C}-\mathbf{C F} \quad \mathbf{A F}:=\mathbf{A C}-\mathbf{C F} \quad \mathbf{F G}:=\sqrt{\mathbf{C F} \cdot \mathbf{A F}} \quad \mathbf{K P}:=\mathbf{F G}\)
\(\mathbf{G P}:=\mathbf{F K} \quad \mathbf{H P}:=\frac{\mathbf{B F} \cdot \mathbf{G P}}{\mathbf{F G}} \quad \mathbf{H K}:=\mathbf{K P}+\mathbf{H P} \quad \mathbf{G H}:=\sqrt{\mathbf{G P}^{\mathbf{2}}+\mathbf{H P}^{\mathbf{2}}}\)
HN \(:=G H \quad\) DN \(:=\mathrm{DE} \quad\) DH \(:=\sqrt{\mathrm{DN}^{2}+\mathrm{HN}^{2}} \quad\) DS \(:=\frac{\mathrm{DN}^{2}}{\mathrm{DH}}\)
HS \(:=\mathbf{D H}-\mathbf{D S} \quad\) NS \(:=\sqrt{\text { HN }^{2}-\mathbf{H S}^{2}} \quad\) ST \(:=\frac{\text { DK } \cdot \text { NS }}{\text { HK }} \quad\) HT \(:=\) HS + ST
HU \(:=\frac{\text { HK } \cdot \text { HT }}{\text { DH }} \quad\) KU \(:=H K-H U \quad\) JN \(:=K U \quad\) DJ \(:=\sqrt{\text { DN }^{2}-\text { JN }^{2}}\)
\(\mathbf{F V}:=\frac{\mathbf{D J} \cdot \mathbf{F G}}{\mathbf{J N}} \quad \mathbf{B V}:=\mathbf{F V}-\mathbf{B F} \quad \mathbf{B M}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B V}} \quad \mathbf{G M}:=(\mathbf{B G}-\mathbf{B M})\)
\(\mathbf{G M}=\mathbf{0 . 3 6 2 5 5}\)
\(\frac{2 \cdot F K \cdot B D}{\mathrm{DE}^{2}+2 \cdot \mathrm{DE}-\mathrm{BD}^{2}+2 \cdot \mathrm{FK} \cdot \mathrm{BD}+1}=0.36255 \quad \frac{\mathbf{Y} \cdot(\mathrm{U}-\mathrm{V})}{\mathrm{U} \cdot \mathbf{Y}-\mathrm{V} \cdot \mathrm{Z}}=0.36255\)

\section*{A Circle In A Crescent}

This is odd, \(W\) and \(X\) dissappear out of the equation. In short, this is pure implication in an equation.
~~~~

$A B-1=0 \quad A C-2 \cdot A B=0 \quad C E-\frac{2 \cdot Y}{Z}=0 \quad D E-\frac{2 \cdot W}{X}=0$
$\mathbf{B C}-\mathbf{1}=\mathbf{0} \quad \mathbf{B G}-\mathbf{1}=\mathbf{0} \quad \mathbf{C D}-\frac{\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}$
$\mathbf{B D}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z}}{\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}$
$B K-\frac{2 \cdot X \cdot Y^{2}-2 \cdot W \cdot Z^{2}+X \cdot Z^{2}+4 \cdot W \cdot Y \cdot Z-2 \cdot X \cdot Y \cdot Z}{Z \cdot(2 \cdot W \cdot Z+2 \cdot X \cdot Y-X \cdot Z)}=0$
$D K-\frac{2 \cdot\left(2 \cdot W^{2} \cdot Z^{2}+2 \cdot W \cdot X \cdot Y \cdot Z-W \cdot X \cdot Z^{2}+X^{2} \cdot Y^{2}-X^{2} \cdot Y \cdot Z\right)}{X \cdot Z \cdot(2 \cdot W \cdot Z+2 \cdot X \cdot Y-X \cdot Z)}=0$
$\mathbf{B E}-\frac{\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z}}{\mathbf{Z}}=\mathbf{0} \quad \mathbf{A K}-\frac{\mathbf{2} \cdot(\mathbf{Z}-\mathbf{Y}) \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z})}{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0}$
$\mathbf{C K}-\frac{\mathbf{2} \cdot \mathbf{Y} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{C F}-\frac{\mathbf{2} \cdot \mathbf{U} \cdot \mathbf{Y} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y})}{\mathbf{V} \cdot \mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0}$
$\mathbf{F K}-\frac{\mathbf{2} \cdot \mathbf{Y} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}) \cdot(\mathbf{V}-\mathbf{U})}{\mathbf{V} \cdot \mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Z}+\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \frac{\mathbf{Y} \cdot(\mathbf{U}-\mathbf{V})}{\mathbf{U} \cdot \mathbf{Y}-\mathbf{V} \cdot \mathbf{Z}}=\mathbf{0 . 3 6 2 5 5}$



Wow. Everything was going well reading this until I came to DT, it did not exist. Seems that in redoing the graphic and editing, I forgot to draw it in. So, I changed MT to MX and put DT back in. One has to find DQ in order to solve for CE and this cannot be done if DT is left out of an earlier update. BP is going to be parallal with CDG and all one has to do is proportion down to find CE.


Definitions.

$$
\begin{aligned}
& \mathbf{M X}-\mathbf{2}=\mathbf{0} \quad \mathbf{B F}-\frac{\mathbf{W}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{F X}-\frac{\mathbf{W}+\mathbf{X}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{E F}-\frac{\sqrt{(\mathbf{X}-\mathbf{W}) \cdot(\mathbf{W}+\mathbf{X})}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{E I}-\frac{\mathbf{2} \cdot \sqrt{(\mathbf{X}-\mathbf{W}) \cdot(\mathbf{W}+\mathbf{X})}}{\mathbf{X}}=\mathbf{0} \\
& F G-\frac{Y}{Z}=0 \quad E G-\frac{Z \cdot \sqrt{X^{2}-W^{2}}+X \cdot Y}{X \cdot Z}=0 \quad B G-\frac{\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{X \cdot Z}=0 \quad G L-\frac{X \cdot Z-\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{X \cdot Z}=0 \\
& G H-\frac{Y \cdot\left(X \cdot Z-\sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}\right)}{Z \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}=0 \quad E H-\frac{X^{2} \cdot Y+\sqrt{X^{2}-W^{2}} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}{X \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}=0
\end{aligned}
$$

$H L-\frac{\sqrt{w^{4} \cdot z^{3}-2 \cdot X \cdot\left(w^{2} \cdot z^{2}+x^{2} \cdot Y^{2}\right)^{\frac{3}{2}}+w^{2} \cdot x^{2} \cdot z^{3}+2 \cdot x^{3} \cdot Y^{2} \cdot \sqrt{w^{2} \cdot z^{2}+X^{2} \cdot Y^{2}}+w^{2} \cdot x^{2} \cdot Y^{2} \cdot z}}{X \cdot \sqrt{z \cdot\left(w^{2} \cdot z^{2}+x^{2} \cdot Y^{2}\right)}}=0$
$E L-\frac{\left.\sqrt{2 \cdot\left[X^{2} \cdot Y^{2} \cdot \sqrt{W^{2}} \cdot Z^{2}+X^{2} \cdot Y^{2}\right.}-\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}}+W^{2} \cdot X \cdot Z^{3}+X^{3} \cdot Y^{2} \cdot Z+X \cdot Y \cdot Z \cdot \sqrt{X^{2}-W^{2}} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}\right]}{\sqrt{X \cdot Z \cdot\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)}}=0$
$\mathrm{JL}-\frac{\sqrt{2 \cdot\left[X^{2} \cdot Y^{2} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}-\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}}+W^{2} \cdot X \cdot Z^{3}+X^{3} \cdot Y^{2} \cdot Z+X \cdot Y \cdot Z \cdot \sqrt{X^{2}-W^{2}} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}\right]}}{2 \cdot \sqrt{X \cdot Z \cdot\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)}}=0$
$B J-\frac{\sqrt{\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}}-X^{2} \cdot Y^{2} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}+W^{2} \cdot X \cdot Z^{3}+X^{3} \cdot Y^{2} \cdot Z-X \cdot Y \cdot Z \cdot \sqrt{X^{2}-W^{2}} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}}{\sqrt{2 \cdot X \cdot Z \cdot\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)}}=0$

$L N-\frac{\sqrt{X^{2} \cdot Y^{2} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}-\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}}+W^{2} \cdot X \cdot Z^{3}+X^{3} \cdot Y^{2} \cdot Z+X \cdot Y \cdot Z \cdot \sqrt{X^{2}-W^{2}} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}}{\sqrt{\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}}-X^{2} \cdot Y^{2} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}+W^{2} \cdot X \cdot Z^{3}+X^{3} \cdot Y^{2} \cdot Z-X \cdot Y \cdot Z \cdot \sqrt{X^{2}-W^{2}} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}}}=0$


$\mathbf{B L}=\mathbf{1} \quad \mathbf{D G}:=\mathbf{G L}$
EN:= LN $\quad$ EJ:= JL
$\sim_{n=2}^{\infty}$

$$
\begin{aligned}
& \left(w^{2} \cdot z^{2}+x^{2} \cdot Y^{2}\right)^{\frac{5}{2}}+2 \cdot w^{2} \cdot x^{3} \cdot z^{5}+2 \cdot X^{5} \cdot Y^{2} \cdot z^{3}-w^{2} \cdot Z^{2} \cdot\left(w^{2} \cdot z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}}-x^{4} \cdot Y^{4} \cdot \sqrt{w^{2} \cdot z^{2}+X^{2} \cdot Y^{2}} . \\
& +2 \cdot X^{2} \cdot Z^{2} \cdot\left(W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{2}{2}}-2 \cdot W^{4} \cdot X \cdot Z^{5}+2 \cdot X^{5} \cdot Y^{4} \cdot Z+4 \cdot X^{4} \cdot Y^{3} \cdot Z^{2} \cdot \sqrt{X^{2}-W^{2}}-2 \cdot W^{2} \cdot X_{3}^{2} \cdot Z^{4} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}} \\
& +-6 \cdot X^{4} \cdot Y^{2} \cdot Z^{2} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}+3 \cdot w^{2} \cdot X^{2} \cdot Y^{2} \cdot Z^{2} \cdot \sqrt{w^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}-X \cdot Y \cdot Z^{3} \cdot\left(X^{2}-W^{2}\right)^{\frac{3}{2}} \cdot \sqrt{w^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}
\end{aligned}
$$



$$
\begin{aligned}
& \begin{array}{l}
W^{8} \cdot z^{5}-w^{2} \cdot X^{6} \cdot z^{5}+3 \cdot w^{4} \cdot X^{4} \cdot z^{5}-3 \cdot w^{6} \cdot x^{2} \cdot z^{5}-2 \cdot x^{5} \cdot Y^{5} \cdot\left(x^{2}-w^{2}\right)^{\frac{3}{2}} \\
+2 \cdot X^{7} \cdot Y^{5} \cdot \sqrt{x^{2}-w^{2}}-6 \cdot w^{2} \cdot x^{6} \cdot y^{2} \cdot z^{3} \ldots
\end{array} \\
& +12 \cdot W^{4} \cdot X^{4} \cdot Y^{2} \cdot Z^{3}-6 \cdot w^{6} \cdot X^{2} \cdot Y^{2} \cdot z^{3}-2 \cdot W^{2} \cdot X^{5} \cdot Y^{5} \cdot \sqrt{X^{2}-W^{2}} \\
& +-2 \cdot X^{5} \cdot Y^{3} \cdot Z^{2} \cdot\left(x^{2}-W^{2}\right)^{\frac{3}{2}}+2 \cdot X^{7} \cdot Y^{3} \cdot Z^{2} \cdot \sqrt{X^{2}-w^{2}}-w^{2} \cdot x^{6} \cdot Y^{4} \cdot Z \ldots \\
& +W^{4} \cdot X^{4} \cdot Y^{4} \cdot z-2 \cdot W^{2} \cdot X^{3} \cdot Y^{3} \cdot Z^{2} \cdot\left(x^{2}-W^{2}\right)^{\overline{2}}-4 \cdot w^{2} \cdot X^{5} \cdot Y^{3} \cdot z^{2} \cdot \sqrt{x^{2}-w^{2}} \\
& +2 \cdot W^{4} \cdot X^{3} \cdot Y^{3} \cdot Z^{2} \cdot \sqrt{X^{2}-W^{2}}+2 \cdot w^{4} \cdot X \cdot Y \cdot Z^{4} \cdot\left(X^{2}-W^{2}\right)^{\frac{3}{2}} \ldots \\
& +-2 \cdot w^{6} \cdot X \cdot Y \cdot Z^{4} \cdot \sqrt{X^{2}-w^{2}}-X^{2} \cdot Y \cdot Z \cdot\left(X^{2}-w^{2}\right)^{\frac{3}{2}} \cdot\left(w^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}} \\
& +X^{4} \cdot Y \cdot z \cdot \sqrt{X^{2}-w^{2}} \cdot\left(w^{2} \cdot z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}}-4 \cdot w^{2} \cdot X^{3} \cdot Y \cdot z^{4} \cdot\left(X^{2}-w^{2}\right)^{\frac{3}{2}} \\
& +2 \cdot \mathbf{w}^{4} \cdot X^{3} \cdot Y \cdot Z^{4} \cdot \sqrt{X^{2}-w^{2}}+X^{4} \cdot Y \cdot z^{3} \cdot\left(X^{2}-w^{2}\right)^{\frac{3}{2}} \cdot \sqrt{w^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}} \cdots \\
& \begin{array}{l}
+6 \cdot X^{4} \cdot Y^{3} \cdot z \cdot\left(x^{2}-W^{2}\right)^{\frac{3}{2}} \cdot \sqrt{w^{2} \cdot Z^{2}+x^{2} \cdot \mathbf{Y}^{2}} \ldots \\
+-X^{6} \cdot Y \cdot Z^{3} \cdot \sqrt{\mathbf{x}^{2}-\mathbf{w}^{2}} \cdot \sqrt{\mathbf{w}^{2} \cdot Z^{2}+\mathbf{x}^{2} \cdot \mathbf{Y}^{2}} \ldots
\end{array} \\
& \begin{array}{l}
+-X^{6} \cdot Y \cdot Z^{3} \cdot \sqrt{X^{2}-w^{2}} \cdot \sqrt{\mathbf{w}^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}} \ldots \\
+-6 \cdot X^{6} \cdot Y^{3} \cdot Z \cdot \sqrt{X^{2}-W^{2}} \cdot \sqrt{w^{2} \cdot Z^{2}+X^{2} \cdot \mathbf{Y}^{2}} \ldots
\end{array} \\
& +-W^{2} \cdot X^{2} \cdot Y \cdot Z \cdot \sqrt{x^{2}-w^{2}} \cdot\left(w^{2} \cdot z^{2}+x^{2} \cdot Y^{2}\right)^{\frac{3}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NR }
\end{aligned}
$$

$$
\begin{aligned}
& +6 \cdot \mathrm{w}^{2} \cdot \mathrm{X}^{4} \cdot \mathrm{Y}^{2} \cdot \mathrm{Z}^{3}-6 \cdot \mathrm{w}^{4} \cdot \mathrm{X}^{2} \cdot \mathrm{Y}^{2} \cdot \mathrm{Z}^{3} \ldots \\
& +-2 \cdot X^{3} \cdot Y^{3} \cdot Z^{2} \cdot\left(X^{2}-W^{2}\right)^{\frac{3}{2}}-2 \cdot X^{5} \cdot Y^{3} \cdot Z^{2} \cdot \sqrt{X^{2}-W^{2}} \ldots \\
& \begin{array}{l}
+-2 \cdot X^{3} \cdot Y^{2} \cdot Z^{2} \cdot\left(X^{2}-W^{2}-2 \cdot X^{5} \cdot Y^{3} \cdot Z^{2} \cdot \sqrt{X^{2}-}{ }^{2} \cdot Y^{2} \cdot Z^{2} \cdot \sqrt{W^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}}+W^{2} \cdot X^{4} \cdot Y^{4} \cdot Z \ldots\right.
\end{array} \\
& +2 \cdot w^{2} \cdot x \cdot z^{2} \cdot\left(w^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}} \\
& +2 \cdot \mathrm{w}^{2} \cdot \mathrm{X}^{3} \cdot \mathrm{Y}^{3} \cdot \mathrm{Z}^{2} \cdot \sqrt{\mathrm{X}^{2}-\mathrm{w}^{2}} \ldots \\
& \begin{array}{l}
+2 \cdot \mathbf{W}^{2} \cdot X^{3} \cdot \mathbf{Y}^{3} \cdot Z^{2} \cdot \sqrt{X^{2}-\mathbf{w}^{2}} \ldots \\
+-6 \cdot \mathbf{w}^{2} \cdot \mathbf{X}^{3} \cdot \mathbf{Y}^{2} \cdot \mathbf{Z}^{2} \cdot \sqrt{\mathbf{w}^{2} \cdot \mathbf{Z}^{2}+\mathbf{X}^{2} \cdot \mathbf{Y}^{2}} \ldots
\end{array} \\
& +2 \cdot W^{2} \cdot X \cdot Y \cdot Z^{4} \cdot\left(X^{2}-W^{2}\right)^{\frac{3}{2}}-2 \cdot W^{4} \cdot X \cdot Y \cdot Z^{4} \cdot \sqrt{X^{2}-W^{2}} \\
& +-4 \cdot X^{2} \cdot Y \cdot Z \cdot \sqrt{X^{2}-W^{2}} \cdot\left(w^{2} \cdot Z^{2}+X^{2} \cdot Y^{2}\right)^{\frac{3}{2}} \ldots \\
& +-2 \cdot \mathrm{w}^{2} \cdot \mathrm{X}^{3} \cdot \mathrm{Y} \cdot \mathrm{Z}^{4} \cdot \sqrt{\mathrm{X}^{2}-\mathrm{w}^{2}}{ }^{2} \ldots
\end{aligned}
$$

This seems to be the limit of my Mathcad
$\mathbf{O R}-\sqrt{\mathbf{N O}^{2}-\mathbf{N R}^{2}}=\mathbf{0} \quad \mathbf{O T}-(\mathbf{O R}-\mathbf{R T})=\mathbf{O} \quad \mathbf{D O}-\sqrt{\mathbf{D T}^{2}+\mathbf{O T}^{2}}=\mathbf{0} \quad \mathbf{O Q}-\frac{\mathbf{D O}^{2}+\mathbf{G O}^{2}-\mathbf{D G}{ }^{2}}{2 \cdot \mathbf{G O}}=\mathbf{O} \quad \mathbf{G Q}-(\mathbf{G O}-\mathbf{O Q})=\mathbf{O}$
$\mathbf{D Q}-\sqrt{\mathbf{D O}^{2}-\mathbf{O Q}^{2}}=\mathbf{0} \quad \mathbf{F P}-\frac{\mathbf{G Q} \cdot \mathbf{B F}}{\mathrm{DQ}}=\mathbf{0}$
$\mathbf{C E}-\frac{\mathbf{B E} \cdot \mathbf{E G}}{\mathbf{F P}+\mathbf{E F}}=\mathbf{0}$


042296B

Unit. Given

## Definitions.

## Place EF and GH and find JK

I do not think I have drawn this figure correctly since the first time $I$ drew it. Every write up of it after the drawing has been in error. I may get around to writing it up now that I disected and redrew it correctly.

H



Unit.
AB:=1
Given.
042396
Descriptions.
$\mathbf{A H}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{1}} \quad \mathbf{B H}:=\mathbf{A H}-\mathbf{A B}$
$\mathbf{B G}:=\frac{\mathbf{B H}}{2}$ BN $:=\mathbf{B G} \quad \mathbf{G O}:=\mathbf{B G} \quad \mathbf{H P}:=\mathbf{B G}$
$\mathbf{G M}:=\mathbf{B G} \quad \mathbf{G H}:=\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A H}-\mathbf{G H} \quad \mathbf{A M}:=\sqrt{\mathbf{G M}^{\mathbf{2}}+\mathbf{A G}^{\mathbf{2}}} \quad \mathbf{A L}:=\frac{\mathbf{A G}^{\mathbf{2}}}{\mathbf{A M}}$

| $\mathbf{L M}:=\mathbf{A M}-\mathbf{A L}$ | $\mathbf{J L}:=\mathbf{L M} \quad \mathbf{A J}:=\mathbf{A M}-(\mathbf{J L}+\mathbf{L M}) \quad \mathbf{A D}:=\frac{\mathbf{A G} \cdot \mathbf{A J}}{\mathbf{A M}}$ |
| :--- | :--- | :--- |
| $\mathbf{B D}:=\mathbf{A D}-\mathbf{A B}$ | $\mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad$ DJ $:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B N}}{\mathbf{B N}+\mathbf{D J}}$ |
| $\mathbf{D F}:=\frac{\mathbf{D H} \cdot \mathbf{D J}}{\mathbf{B N}+\mathbf{D J}}$ | $\mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{C F}:=\mathbf{C D}+\mathbf{D F} \quad \mathbf{C E}:=\frac{\mathbf{C F}}{2} \quad \mathbf{B E}:=\mathbf{B C}+\mathbf{C E}$ |
| $\mathbf{A E}:=\mathbf{A B}+\mathbf{B E}$ | $\mathbf{E K}:=\frac{\mathbf{G M} \cdot \mathbf{A E}}{\mathbf{A G}} \quad \mathbf{E K}-\mathbf{C F}=\mathbf{0} \quad \mathbf{E K}=\mathbf{0 . 7 5}$ |

Definitions.
$E K-\frac{2 \cdot N_{1} \cdot\left(N_{1}-1\right)}{\left(N_{1}+1\right)^{2}}=0$
$\mathbf{C F}-\frac{2 \cdot N_{1} \cdot\left(N_{1}-1\right)}{\left(N_{1}+1\right)^{2}}=0$


Sometimes the process of naming becomes very complex and it is impossible given the working constraints to put everything in terms of the givens, actually, they often do not illicit any recognition in the mind as to their truth, so one has to write all the steps down anyway, but sometimes one would like to show all the definitions in a given step by step process.
$\mathbf{B H}-\left(\mathbf{N}_{1}-\mathbf{1}\right)=\mathbf{0} \quad \mathbf{B G}-\frac{\mathbf{N}_{1}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A G}-\left(\frac{\mathbf{N}_{1}+\mathbf{1}}{2}\right)=\mathbf{0}$
$A M-\frac{1}{2} \cdot \sqrt{2 \cdot N_{1}{ }^{2}+2}=0$
$A L-\frac{1}{2} \cdot \frac{\left(N_{1}+1\right)^{2}}{\sqrt{2 \cdot N_{1}{ }^{2}+2}}=0$
$L M-\frac{1}{2} \cdot \frac{\left(N_{1}-1\right)^{2}}{\sqrt{2 \cdot N_{1}{ }^{2}+2}}=0$
$A J-\frac{2}{\sqrt{2 \cdot N_{1}^{2}+2}} \cdot \mathbf{N}_{1}=0$
$A D-\left(\mathbf{N}_{1}+\mathbf{1}\right) \cdot \frac{\mathbf{N}_{1}}{\left(\mathbf{N}_{1}{ }^{2}+\mathbf{1}\right)}=0$
$B D-\frac{\left(N_{1}-1\right)}{\left(N_{1}{ }^{2}+1\right)}=0$
$\mathrm{DH}-\mathrm{N}_{1}{ }^{2} \cdot \frac{\left(\mathrm{~N}_{1}-1\right)}{\left(\mathrm{N}_{1}{ }^{2}+1\right)}=0$
DJ $-\frac{\left(\mathbf{N}_{1}-\mathbf{1}\right)}{\left(\mathbf{N}_{1}{ }^{2}+1\right)} \cdot \mathbf{N}_{1}=\mathbf{0}$
$B C-\frac{\left(\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{1}+1\right)^{2}}=0$
$D F-2 \cdot N_{1}{ }^{3} \cdot \frac{\left(N_{1}-1\right)}{\left[\left(N_{1}+1\right)^{2} \cdot\left(N_{1}{ }^{2}+1\right)\right]}=0 \quad C D-2 \cdot\left(N_{1}-1\right) \cdot \frac{N_{1}}{\left[\left(N_{1}{ }^{2}+1\right) \cdot\left(N_{1}+1\right)^{2}\right]}=0$
$C F-2 \cdot N_{1} \cdot \frac{\left(N_{1}-1\right)}{\left(N_{1}+1\right)^{2}}=0$
$C E-N_{1} \cdot \frac{\left(N_{1}-1\right)}{\left(N_{1}+1\right)^{2}}=0$
$\mathbf{B E}-\frac{\left(\mathbf{N}_{1}-\mathbf{1}\right)}{\left(\mathbf{N}_{1}+\mathbf{1}\right)}=\mathbf{0}$

$A E-2 \cdot \frac{N_{1}}{\left(N_{1}+1\right)}=0 \quad E K-2 \cdot\left(N_{1}-1\right) \cdot \frac{N_{1}}{\left(N_{1}+1\right)^{2}}$
$\mathbf{E K}-\mathbf{C F}=\mathbf{0} \quad \mathbf{E K}=0.75$
$\sim_{n \rightarrow 2}^{0}$
Unit.
AB:=1
Given.
$\mathrm{N}_{1}:=. \mathbf{3 6 8 0 2}$

## 042496

Descriptions.
$\mathbf{A F}:=\mathbf{A B} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{2} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{D O}:=\frac{\mathbf{A B}}{2} \quad$ OR $:=\mathbf{A F} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C}$
$\mathbf{C O}:=\sqrt{\mathbf{C D}^{2}+\text { DO }^{2}} \quad$ PO $:=\frac{\text { DO } \cdot \mathbf{O R}}{\text { CO }} \quad \mathbf{C P}:=\mathbf{P O}-\mathbf{C O} \quad \mathbf{C K}:=\frac{\text { DO } \cdot \mathbf{C P}}{\text { PO }}$
$\mathbf{J K}:=\mathbf{C K} \quad \mathrm{KO}:=\sqrt{\mathbf{C D}^{2}+(\mathrm{DO}+\mathbf{C K})^{2}} \quad \mathrm{JO}:=\sqrt{\mathrm{KO}^{2}-\mathrm{JK}^{2}} \quad \mathrm{KS}:=\frac{\mathbf{J K}^{2}}{\mathrm{KO}}$
SO := KO - KS $\quad$ JS $:=\frac{\text { JK } \cdot \text { SO }}{\text { JO }} \quad$ ST $:=\frac{\text { CD } \cdot \text { SO }}{\text { DO }+ \text { CK }} \quad$ JT $:=$ JS + ST
TO $:=\frac{\text { KO } \cdot \mathbf{S T}}{\mathbf{C D}} \quad$ TU $:=\frac{\text { CD } \cdot \mathbf{J T}}{\text { KO }} \quad$ DU $:=\mathbf{T O}-(\mathbf{D O}+\mathbf{T U})$
$\mathbf{C V}:=\mathbf{D U} \quad \mathbf{C Q}:=\mathbf{2 \cdot C K} \quad \mathbf{Q V}:=\mathbf{C Q}-\mathbf{C V} \quad \mathbf{B H}:=\frac{\mathbf{C K} \cdot \mathbf{C V}}{\mathbf{Q V}}$
$\mathbf{C K}=\mathbf{0 . 2 3 2 5 8 1} \quad \mathrm{BH}=0.082585$

## Definitions.

## Three Circles.

Given $A C$, find $\mathbf{C K}$ and $B H$.

$\mathbf{C K}-\left(\mathrm{N}_{1}-\mathrm{N}_{1}{ }^{\mathbf{2}}\right)=\mathbf{0}$

If one takes the time to work MC by hand we get; $\quad \mathrm{BH}-\frac{\mathrm{N}_{1} \cdot\left(1-\mathbf{N}_{1}\right)}{\left[\sqrt{2}-\left(2 \mathrm{~N}_{1}-1\right)\right]^{2}}=0$


Some Algebraic Names, or Definitions.

$\operatorname{con}^{\infty}$
Descriptions.
042596

## One Over $\mathrm{N}+$ One

## Unit. <br> AC := 1

Given.

$$
\mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 8 1 7} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{1}}
$$

$$
\mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{F K}:=\mathbf{N}_{\mathbf{2}}
$$

$\mathbf{C F}:=\mathbf{A F}-\mathrm{AC} \quad \mathbf{C E}:=\frac{\mathbf{C F}}{2} \quad \mathrm{AE}:=\mathrm{AC}+\mathbf{C E}$
EJ $:=\frac{\text { FK } \cdot \mathbf{A E}}{\mathbf{A F}} \quad$ DL $:=\mathbf{F K} \quad$ EF $:=\mathbf{C E} \quad$ DF $:=\frac{\text { EF } \cdot \mathbf{D L}}{\text { EJ }}$
$\mathbf{C G}:=\frac{\mathbf{F K} \cdot \mathbf{A C}}{\mathbf{A F}} \quad \mathbf{C D}:=\mathbf{C F}-\mathbf{D F} \quad \mathbf{D H}:=\mathbf{C G}$
HL := DL - DH $\quad$ BC $:=\frac{\text { CD.CG }}{\text { HL }}$
Definitions.
$\mathbf{C F}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)=\mathbf{0} \quad$ CE $-\frac{1}{2} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)=\mathbf{0}$
$\mathrm{AE}-\frac{1}{2} \cdot\left(1+\mathrm{N}_{1}\right)=0$
$\mathbf{E J}-\frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}{\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}}=\mathbf{0} \quad \mathbf{D F}-\frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)}{\left(\mathbf{1 + N _ { 1 }}\right)} \cdot \mathbf{N}_{\mathbf{1}}=\mathbf{0}$
$C G-\frac{N_{2}}{N_{1}}=0 \quad C D-\frac{\left(N_{1}-1\right)}{\left(1+N_{1}\right)}=0$
$H L-N_{2} \cdot \frac{\left(N_{1}-1\right)}{N_{1}}=0 \quad \frac{1}{N_{1}+1}-B C=0$

$\mathrm{N}_{1}=2.96971$

$$
N_{2}=1.18938
$$

## Construct $1 /(\mathrm{N}+1)$

In this construction, $\mathbf{N}_{\mathbf{2}}$ has to be something, it can be anything and will not change the results BC.

## Three Bases.

082621 Each time I looked at the original write-up done in 96, I have promised myself to redo it as it was not done right. So, I finally got it done.

## 042696

## Descriptions.



 $\mathbf{a m}:=\frac{\mathbf{N h} \cdot \mathbf{a b}}{\mathbf{N k}} \quad \mathbf{A m}:=\mathbf{A a}+\mathbf{a m} \quad \mathbf{B m}:=\mathbf{A B}-\mathbf{A m} \quad \mathbf{A N}:=\mathbf{C R} \quad \mathbf{D a}:=\mathbf{A D}-\mathbf{A a} \quad \mathbf{A O}:=\frac{\mathbf{D K} \cdot \mathbf{A a}}{\mathbf{D a}} \quad \mathbf{E a}:=\mathbf{A E}-\mathbf{A a} \quad \mathbf{A P}:=\mathbf{E M} \cdot \frac{\mathbf{A a}}{\mathbf{E a}} \quad \mathbf{E b}:=\mathbf{a b}-\mathbf{E a} \quad \mathbf{B T}:=\mathbf{E M} \cdot \frac{\mathbf{B b}}{\mathbf{E b}} \quad \mathbf{D b}:=\mathbf{a b}-\mathbf{D a}$


$$
\begin{aligned}
& \mathbf{B U}:=\mathbf{D K} \cdot \frac{\mathbf{B b}}{\mathbf{D b}} \\
& \mathbf{B V}:=\mathbf{C R}
\end{aligned}
$$

## 

Definitions.
 $\mathbf{E M}-\frac{\sqrt{(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y})}}{2 \cdot \mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{D G}-\frac{(\mathbf{X}-\mathbf{W}) \cdot(\mathbf{W}+\mathbf{X})}{2 \cdot \mathbf{W} \cdot \mathbf{X}}=\mathbf{0} \quad \mathbf{A G}-\frac{\mathbf{W}+\mathbf{X}}{2 \cdot \mathbf{W}}=\mathbf{0} \quad \mathbf{D F}-\frac{(\mathbf{X}-\mathbf{W}) \cdot(\mathbf{W}+\mathbf{X})}{4 \cdot \mathbf{W} \cdot \mathbf{X}}=\mathbf{0} \quad \mathbf{A F}-\frac{(\mathbf{W}+\mathbf{X})^{2}}{4 \cdot \mathbf{W} \cdot \mathbf{X}}=\mathbf{0} \quad \mathbf{B F}-\frac{(\mathbf{W}-\mathbf{X})^{2}}{4 \cdot \mathbf{W} \cdot \mathbf{X}}=\mathbf{0} \quad \mathbf{E d}-\frac{\mathbf{Y} \cdot \sqrt{(\mathbf{X}-\mathbf{W}) \cdot(\mathbf{W}+\mathbf{X})}}{2 \cdot \mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}$ $\mathbf{E G}-\frac{\mathbf{X}^{2} \cdot \mathbf{Z}-\mathbf{W}^{2} \cdot \mathbf{Y}}{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{D f}-\frac{\mathbf{X}^{2} \cdot \mathbf{Z}-\mathbf{W}^{2} \cdot \mathbf{Y}}{\mathbf{2 \cdot W} \cdot \mathbf{X} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{A f}-\frac{\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}}{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{A a}-\frac{\mathbf{Y} \cdot(\mathbf{W}+\mathbf{X})^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{X} \cdot(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{A g}-\frac{\mathbf{Y} \cdot(\mathbf{W}+\mathbf{X})}{\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{G g}-\frac{(\mathbf{W}+\mathbf{X}) \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y})}{2 \cdot \mathbf{W} \cdot(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{a g}-\frac{\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W}) \cdot(\mathbf{W}+\mathbf{X})}{\mathbf{2} \cdot \mathbf{X} \cdot(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0}$ $\mathbf{B G}-\frac{\mathbf{X}-\mathbf{W}}{\mathbf{2} \cdot \mathbf{W}}=\mathbf{0} \quad \mathbf{B b}-\frac{\mathbf{Y} \cdot(\mathbf{W}-\mathbf{X})^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{X} \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y})}=\mathbf{0} \quad \mathbf{D K}-\frac{(\mathbf{W}-\mathbf{X}) \cdot \sqrt{-(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{W} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{W}+\mathbf{X})}}{\mathbf{2} \cdot \mathbf{X} \cdot\left(\mathbf{W}^{\mathbf{2}} \cdot \mathbf{Y}-\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}\right)}=\mathbf{0} \quad \mathbf{D E}-\frac{\mathbf{W} \cdot(\mathbf{Z}-\mathbf{Y})}{\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Z}}=\mathbf{0}$
$\mathbf{C R}-\frac{\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W}) \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y})} \cdot(\mathbf{W}+\mathbf{X})}{\mathbf{2} \cdot \mathbf{X} \cdot(\mathbf{Y}-\mathbf{Z}) \cdot\left(\mathbf{W}^{\mathbf{2}} \cdot \mathbf{Y}-\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}\right)}=\mathbf{0}$
$\mathbf{a h}-\frac{\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W}) \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y}) \cdot(\mathbf{W}+\mathbf{X})}}{\mathbf{2} \cdot \mathbf{X} \cdot(\mathbf{Y}-\mathbf{Z}) \cdot\left(\mathbf{W}^{\mathbf{2}} \cdot \mathbf{Y}-\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}\right)}=\mathbf{0} \quad \mathbf{N h}-\frac{\mathbf{Y} \cdot(\mathbf{W}+\mathbf{X})^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{X} \cdot(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{h k}-\frac{\mathbf{Y} \cdot(\mathbf{W}-\mathbf{X})^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{( X \cdot \mathbf { Z } - \mathbf { W } \cdot \mathbf { Y } )}=\mathbf{0}, \mathbf{l}}$
$\mathbf{N k}-\frac{\mathbf{Y} \cdot\left(\mathbf{2} \cdot \mathbf{W}^{\mathbf{2}} \cdot \mathbf{Y}-\mathbf{W}^{\mathbf{2}} \cdot \mathbf{Z}-\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}\right)}{(\mathbf{W} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{a b}-\frac{(\mathbf{Z}-\mathbf{Y}) \cdot\left(\mathbf{W}^{\mathbf{2}} \cdot \mathbf{Y}-\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}\right)}{(\mathbf{W} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{H m}-\frac{(\mathbf{W}-\mathbf{X}) \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y}) \cdot(\mathbf{W}+\mathbf{X})}}{\mathbf{2} \cdot \mathbf{X} \cdot\left(\mathbf{2} \cdot \mathbf{W}^{\mathbf{2}} \cdot \mathbf{Y}-\mathbf{W}^{\mathbf{2}} \cdot \mathbf{Z}-\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}\right)}=\mathbf{0}$
$a m-\frac{(Z-Y) \cdot\left(\mathbf{W}^{2} \cdot \mathbf{Y}-X^{2} \cdot Z\right) \cdot(W+X)^{2}}{2 \cdot X \cdot(W \cdot Y+X \cdot Z) \cdot\left(2 \cdot \mathbf{W}^{2} \cdot Y-\mathbf{W}^{2} \cdot Z-X^{2} \cdot Z\right)}=0$
$A m-\frac{(W+X)^{2} \cdot(W \cdot Y-X \cdot Z)}{2 \cdot X \cdot\left(2 \cdot \mathbf{W}^{2} \cdot \mathbf{Y}-\mathbf{W}^{2} \cdot Z-\mathbf{X}^{2} \cdot Z\right)}=0 \quad B m-\frac{(W-X)^{2} \cdot(W \cdot Y+X \cdot Z)}{2 \cdot X \cdot\left(\mathbf{W}^{2} \cdot Z-2 \cdot \mathbf{W}^{2} \cdot \mathbf{Y}+\mathbf{X}^{2} \cdot Z\right)}=0$
$\mathbf{A N}-\frac{\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W}) \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y})} \cdot(\mathbf{W}+\mathbf{X})}{\mathbf{2} \cdot \mathbf{X} \cdot(\mathbf{Y}-\mathbf{Z}) \cdot\left(\mathbf{W}^{\mathbf{2}} \cdot \mathbf{Y}-\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}\right)}=\mathbf{0}$
$\mathbf{D a}-\frac{(\mathbf{Z}-\mathbf{Y}) \cdot(\mathbf{W}+\mathbf{X})}{\mathbf{2} \cdot(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z})}=\mathbf{0} \quad \mathbf{A O}-\frac{\mathbf{Y} \cdot(\mathbf{X}-\mathbf{W}) \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Y}+\mathbf{X} \cdot \mathbf{Z}) \cdot(\mathbf{X} \cdot \mathbf{Z}-\mathbf{W} \cdot \mathbf{Y})} \cdot(\mathbf{W}+\mathbf{X})^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{X}^{\mathbf{2}} \cdot(\mathbf{Y}-\mathbf{Z}) \cdot\left(\mathbf{W}^{\mathbf{2}} \cdot \mathbf{Y}-\mathbf{X}^{\mathbf{2}} \cdot \mathbf{Z}\right)}=\mathbf{0}$





## 042796

Descriptions.

Unit.
CF:= 1
Given.
$\mathbf{N}_{1}$ := 4
$\mathbf{N}_{\mathbf{2}}:=\mathbf{9}$
$\mathrm{CE}:=\frac{\mathrm{CF}}{\mathbf{2}} \quad \mathrm{CD}:=\frac{\mathrm{CE}}{\mathbf{N}_{\mathbf{1}}} \quad$ FK $:=\mathbf{N}_{\mathbf{2}} \quad$ DM $:=\mathrm{FK} \quad$ EL $:=$ FK

DF $:=\mathbf{C F}-\mathbf{C D}$	EF $:=\frac{\text { CF }}{2}$	EJ $:=\frac{\text { DM } \cdot \mathbf{E F}}{\text { DF }}$		JL $:=$ EL - EJ
KL $:=\mathbf{E F}$	AF $:=\frac{\text { KL } \cdot \mathbf{F K}}{\text { JL }}$	AC $:=\mathbf{A F}-\mathbf{C F}$	CG $:=\frac{\text { FK } \cdot \mathbf{A C}}{\text { AF }}$	

$\mathbf{D H}:=\mathbf{C G} \quad \mathbf{H M}:=\mathbf{D M}-\mathbf{D H} \quad \mathbf{B C}:=\frac{\mathbf{C D} \cdot \mathbf{D H}}{\mathbf{H M}} \quad \mathbf{B F}:=\mathbf{B C}+\mathbf{C F}$
$\mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \quad \mathbf{A B}:=\mathbf{A F}-\mathbf{B F}$
$\mathbf{A B}^{\mathbf{2}}-\mathbf{B C} \cdot \mathbf{B F}=\mathbf{0} \quad \sqrt{\mathbf{B C} \cdot \mathbf{B F}}-\mathbf{B D}=\mathbf{0} \quad \mathbf{B D}-(\mathbf{C D}+\mathbf{B C})=\mathbf{0}$
$\mathbf{A B}-\mathbf{B D}=\mathbf{0} \quad \sqrt{\mathbf{B C} \cdot \mathbf{B F}}-\mathbf{A B}=\mathbf{0} \quad \mathbf{A B}=0.145833$
One may notice that can be any value at all, it just has to be some value. Every use of symbols require prue intelligble concepts which are perceptible in the grammar, but not all people can see them intelligibly.

## A Root Figure

The difference between the perceptible and the intelligible.
$C D+B C$ is the square root of $\sqrt{B C \cdot B F}$. What is $B C ?$
When I originally did this story, I said to myself, well I can name that tune in 2 variables, which it should be, however, it is one of those things one says that they will do later as it has little to do with the main goal of the Delian Quest. Sometimes later means later in the day, sometimes later means decades away, as in this case. What are revisions for? One should also be aware, while learning, that one is not going to have the experience required to do a story justice until they mature, thus waiting is certainly an option.


$$
A B-\sqrt{B C \cdot B F}=0.00000 \quad \text { This equation is in the universal and any relatative difference can use it. }
$$

$A B-\sqrt{B C \cdot B F}=0.00000 \mathbf{c m}$

This equation is particular. It is from these particular examples, perceptible examples, that one acquires what Plato called, the similie in multis, or the Universal, or again, the intelligible. One aims for three things then, the correct range for a varaible built in to the equation, the answer expressed only in the givens, and the equation be free from any particular perceptible as grammar is always applicable universally. Not all my examples fill that bill, but then this is my storybook, my rather odd novel.


Definitions.
$C F-1=0 \quad C E-\frac{1}{2}=0 \quad C D-\frac{1}{2 \cdot N_{1}}=0 \quad F K-N_{2}=0 \quad D M-N_{2}=0 \quad E L-N_{2}=0 \quad D F-\frac{2 \cdot N_{1}-1}{2 \cdot N_{1}}=0 \quad E F-\frac{1}{2}=0 \quad E J-\frac{N_{1} \cdot N_{2}}{2 \cdot N_{1}-1}=0$ $\mathbf{J L}-\frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right)}{2 \cdot \mathbf{N}_{1}-\mathbf{1}}=\mathbf{0} \quad \mathrm{KL}-\frac{1}{2}=\mathbf{0} \quad \mathbf{A F}-\frac{2 \cdot \mathbf{N}_{1}-\mathbf{1}}{2 \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right)}=\mathbf{0} \quad \mathbf{A C}-\frac{\mathbf{1}}{2 \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right)}=\mathbf{0} \quad \mathbf{C G}-\frac{\mathbf{N}_{\mathbf{2}}}{2 \cdot \mathbf{N}_{1}-\mathbf{1}}=\mathbf{0} \quad \mathbf{D H}:=\frac{\mathbf{N}_{\mathbf{2}}}{2 \cdot \mathbf{N}_{1}-\mathbf{1}} \quad \mathbf{H M}-\frac{\mathbf{2} \cdot \mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right)}{2 \cdot \mathbf{N}_{1}-\mathbf{1}}=\mathbf{0}$ $B C-\frac{1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}=0 \quad B F-\frac{\left(2 \cdot N_{1}-1\right)^{2}}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}=0 \quad B D-\frac{2 \cdot N_{1}-1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}=0 \quad A B-\frac{2 \cdot N_{1}-1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}=0$ $\left[\frac{2 \cdot N_{1}-1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}\right]^{2}-\frac{1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)} \cdot \frac{\left(2 \cdot N_{1}-1\right)^{2}}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}=0 \quad \sqrt{\frac{1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)} \cdot \frac{\left(2 \cdot N_{1}-1\right)^{2}}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}-\frac{2 \cdot N_{1}-1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}=0} \frac{2 \cdot N_{1}-1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}-\left[\frac{1}{2 \cdot N_{1}}+\frac{1}{4 \cdot N_{1} \cdot\left(N_{1}-1\right)}=0\right.$ $\mathbf{A B}-\mathbf{B D}=\mathbf{0} \quad \sqrt{\mathbf{B C} \cdot \mathbf{B F}}-\mathbf{A B}=\mathbf{0} \quad \mathbf{A B}=\mathbf{0} .145833$


Unit.
Given.
$\mathrm{N}_{1}$ := 2
$\mathbf{N}_{\mathbf{2}}$ := $\mathbf{6}$
042896

I had finally decided to write this up in Oct. of 94, and being punctual, here it is.

Process Summary will use a $5^{\text {th }}$ root series for an example.

## Descriptions.



Given one root in a prime root series, determine the rest of the series using the straight edge method. The other method uses a compass and is shown at the end of document.


## $C^{2} \cos ^{38}$

$\mathbf{G a}:=\frac{\mathbf{G Z} \cdot \mathbf{A G}}{\mathbf{E G}}$	$\mathbf{H b}:=\frac{\mathbf{G H} \cdot(\mathbf{G H}+\mathbf{G Z})}{\mathbf{G H}+\mathbf{G a}}$
$\mathbf{G b}:=\mathbf{G H}-\mathbf{H b}$	$\mathbf{I b}:=\frac{\mathbf{A G} \cdot(\mathbf{G H}+\mathbf{G Z})}{\mathbf{G H}+\mathbf{G a}}$
$\mathbf{B d}:=\mathbf{B G}-\mathbf{I b}$	$\mathbf{B C}:=\frac{\mathbf{B d} \cdot \mathbf{B Y}}{\mathbf{B Y}+\mathbf{G b}}$
$\mathbf{A C}:=\mathbf{A B}+\mathbf{B C}$	$\mathbf{B J}:=\frac{\mathbf{G Z} \cdot \mathbf{B C}}{\mathbf{C G}}$




$$
\begin{aligned}
\mathrm{AB} & =1.29117 \mathrm{~cm} \\
\mathrm{AG} & =7.30394 \mathrm{~cm} \\
\mathrm{AC} & =1.82599 \mathrm{~cm} \\
\mathrm{AD} & =2.58233 \mathrm{~cm} \\
\mathrm{AE} & =3.65197 \mathrm{~cm} \\
\mathrm{AF} & =5.16467 \mathrm{~cm}
\end{aligned}
$$

$\mathbf{G K}:=\frac{\mathbf{B J} \cdot \mathbf{A G}}{\mathbf{A B}} \quad \mathbf{K Z}:=\mathbf{G Z}+\mathbf{G K}$
$\mathbf{F G}:=\frac{\mathbf{Y Z} \cdot \mathbf{G K}}{\mathbf{K Z}} \quad \mathbf{A F}:=\mathbf{A G}-\mathbf{F G}$
$\mathbf{K e}:=\frac{\mathbf{G K} \cdot \mathbf{K Z}}{\mathbf{G K}+\mathbf{G a}} \quad \mathbf{M e}:=\frac{\mathbf{A G} \cdot \mathbf{K Z}}{\mathbf{G K}+\mathbf{G a}}$
$\mathbf{B D}:=\frac{(\mathbf{B G}-\mathbf{M e}) \cdot \mathbf{B Y}}{\mathbf{K Z}-\mathbf{K e}} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D}$

$\left(\mathrm{AB}^{4} \cdot \mathrm{AG}^{1}\right)^{\frac{1}{5}}-\mathrm{AC}=0.00000$ $\left(\mathrm{AB}^{3} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{5}}-\mathrm{AD}=0.00000$ $\left(\mathrm{AB}^{2} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{5}}-\mathrm{AE}=0.00000$ $\left(\mathrm{AB}^{1} \cdot \mathrm{AG}^{4}\right)^{\frac{1}{5}}-\mathrm{AF}=0.00000$

If any of a prime root series can be given exactly, every root of the series can be determined exactly.

$A B=1.29117 \mathrm{~cm}$ $A G=7.30394 \mathrm{~cm}$ $A C=1.82599 \mathrm{~cm}$ $A D=2.58233 \mathrm{~cm}$ $\mathrm{AE}=3.65197 \mathrm{~cm}$ $\mathrm{AF}=5.16467 \mathrm{~cm}$
$\left(\mathrm{AB}^{4} \cdot \mathrm{AG}^{1}\right)^{\frac{1}{5}}-\mathrm{AC}=0.00000$
$\left(\mathrm{AB}^{3} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{5}}-\mathrm{AD}=0.00000$
$\left(\mathrm{AB}^{2} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{5}}-\mathrm{AE}=0.00000$
$\left(\mathrm{AB}^{1} \cdot \mathrm{AG}^{4}\right)^{\frac{1}{5}}-\mathbf{A F}=0.00000$



Unit.
AB := $\mathbf{1}$
Given.
$\mathbf{N}:=5$

## 042996

Descriptions.
$\mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B}$
$\mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{F K}:=\mathbf{B} \cdot \mathbf{F O}:=\mathbf{B F} \quad \mathbf{A F}:=\mathbf{B F}+\mathbf{A B}$
$\mathbf{D F}:=\frac{\mathbf{F K} \cdot \mathbf{F O}}{\mathbf{A F}} \quad \mathbf{A K}:=\sqrt{\mathbf{A F}^{2}+\mathbf{F K}^{2}} \quad \mathbf{K O}:=\mathbf{B G}$
HO $:=\frac{\mathbf{A F} \cdot \mathbf{K O}}{\text { AK }} \quad$ DO $:=\frac{\mathbf{A K} \cdot \mathbf{F O}}{\text { AF }} \quad$ DH $:=$ HO - DO
DJ $:=\sqrt{\mathbf{D H} \cdot \mathbf{D O}}$

Definitions.
$\mathbf{A G}-\mathbf{N}=\mathbf{0} \quad \mathbf{B G}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B F}:=\frac{\mathbf{N}-\mathbf{1}}{2} \quad \mathbf{A F}-\left(\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{N}+\frac{\mathbf{1}}{\mathbf{2}}\right)=\mathbf{0}$
$D F-\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)}=0 \quad A K-\frac{\sqrt{2 \cdot\left(\mathbf{N}^{2}+1\right)}}{2}=0$
HO $-\frac{\sqrt{2} \cdot\left(\mathbf{N}^{2}-1\right)}{2 \cdot \sqrt{\mathbf{N}^{2}+1}}=0 \quad$ DO $-\frac{\sqrt{2} \cdot(\mathbf{N}-1) \cdot \sqrt{\mathbf{N}^{2}+1}}{2 \cdot(\mathbf{N}+1)}=0$
DJ is the Geometric name, what is its Algebraic name?

$\sim_{n=2}^{\infty}$

## 043096

Descriptions.

## Unit.

AB := $\mathbf{1}$
Given.
$\mathbf{N}_{1}:=128$ Root $:=8$
$\delta_{m}:=1$.. Root
$\mathbf{B G}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \quad \mathbf{B O}:=\frac{\mathbf{B G}}{\mathbf{2}}$
$A C:=\left(A B^{\text {Root }-1} \cdot A G\right)^{\frac{1}{\text { Root }}} \quad A F:=\left(A B \cdot A G^{\text {Root }-1}\right)^{\frac{1}{\text { Root }}}$
$\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{F G}:=\mathbf{A G}-\mathbf{A F} \quad \mathbf{F X}:=\sqrt{\mathbf{A F}^{\mathbf{2}}+\mathbf{A G}^{\mathbf{2}}}$
$\mathbf{F Y}:=\frac{\mathbf{A F}^{2}}{\mathbf{F X}} \quad \mathbf{B D}:=\frac{\mathbf{F Y} \cdot \mathbf{B G}}{\mathbf{F X}} \quad \mathbf{A D}:=\mathbf{B D}+\mathbf{A B}$
$\mathbf{D G}:=\mathbf{A G}-\mathbf{A D} \quad \mathbf{D K}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}}$
$\mathbf{B K}:=\sqrt{\mathbf{B D}^{\mathbf{2}}+\mathbf{D K}^{\mathbf{2}}} \quad \mathbf{G K}:=\sqrt{\mathbf{D G}^{\mathbf{2}}+\mathbf{D K}^{\mathbf{2}}}$
$\mathbf{B J}:=\frac{\mathbf{B K} \cdot \mathbf{B C}}{\mathbf{B G}} \quad \mathbf{G L}:=\frac{\mathbf{G K} \cdot \mathbf{F G}}{\mathbf{B G}}$

## Geometric Exponential Series of the form

$\frac{\sum_{\delta} N^{\frac{\text { Root- } \delta}{\text { Root }}}}{N^{\frac{\text { Root-1 }}{\text { Root }}}}, \sum_{\delta} N^{\frac{\text { Root- } \delta}{\text { Root }}}$

$$
\text { and } \frac{N^{\frac{\delta+2}{\text { Root }}+N^{\frac{\delta}{\text { Root }}}}}{N^{\frac{1}{\text { Root }}}-N^{\frac{0}{\text { Root }}}}
$$

Generalize some of the ratios found in 010896 and 011696 for the sides of the right triangle.



Definitions.


$\mathbf{B M}:=\frac{\mathbf{B D} \cdot \mathbf{B C}}{\mathbf{B G}} \quad \mathbf{F Q}:=\frac{\mathbf{B D} \cdot \mathbf{F G}}{\mathbf{B G}}$

$\frac{A G}{F Q}=9.598866$	On the left is the   first and last of the   series, on the right
is the entire series.	


$\frac{\mathbf{A G}}{\mathbf{B M}}$
$\frac{A G}{B M}=\mathbf{6 7 4 . 5 0 6 1 6 7}$



122096
Descriptions.
BL :=AL-AB BS := BL $\quad \mathbf{L T}:=\mathbf{B L}$
BH := $\frac{\text { BL }}{\mathbf{2}} \quad$ HL $:=\mathbf{B H} \quad$ BQ $:=\mathbf{B S} \cdot \mathbf{N}_{\mathbf{2}}$
$\mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}} \quad \mathbf{F L}:=\mathbf{A L}-\mathbf{A F} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}$
FP $:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}} \quad$ FN $:=\frac{\mathbf{B Q} \cdot \mathbf{F P}}{\mathbf{B S}} \quad \mathbf{E F}:=\frac{\mathbf{B F} \cdot \mathbf{F N}}{\mathbf{B Q}}$
$\mathbf{E L}:=\mathbf{E F}+\mathbf{F L} \quad$ FG $:=\frac{\mathbf{E F} \cdot \mathbf{F L}}{\mathbf{E L}} \quad \mathbf{G O}:=\frac{\mathbf{F N} \cdot \mathbf{F G}}{\mathbf{E F}}$
$\mathbf{G L}:=\mathbf{F L}-\mathbf{F G} \quad \mathbf{L R}:=\mathbf{B Q} \quad \mathbf{J L}:=\frac{\mathbf{G L} \cdot \mathbf{L R}}{\mathbf{L R}+\mathbf{G O}}$
AJ := AL - JL $\quad$ AJ $=\mathbf{1 . 6 8 1 7 9 3}$
Definitions.
$\left(\mathrm{AL}^{3}\right)^{\frac{1}{4}}-\mathrm{AJ}=0$
AJ $-\left(N_{1}{ }^{\frac{1}{4}}\right)^{3}=0$
$\left.\left(N_{1}\right)^{\frac{1}{4}}-\left(N_{1}\right)^{\frac{1}{4}}\right)^{3}=0$

## Alternate Method Quad Roots

## If $F N: F P$ as $B Q: B S$ then quad roots series can be divided off in the figure.





Unit.
Given.
n := 1 .. 3

040397
Descriptions.
$\mathbf{S}_{1}:=\left(\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ c\end{array}\right) \quad \mathbf{S}_{2}:=\left(\begin{array}{l}b \\ \mathbf{c} \\ a\end{array}\right) \quad \mathbf{S}_{3}:=\left(\begin{array}{l}\mathbf{c} \\ \mathbf{a} \\ b\end{array}\right)$
Is_This_a_Triangle $:=\left(\mathbf{S}_{\mathbf{1}_{1}}+\mathbf{S}_{\mathbf{2}_{1}}>\mathbf{S}_{\mathbf{3}_{\mathbf{1}}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}_{1}}+\mathbf{S}_{\mathbf{3}_{\mathbf{1}}}>\mathbf{S}_{\mathbf{2}} \mathbf{1}\right) \cdot\left(\mathbf{S}_{\mathbf{2}_{\mathbf{1}}}+\mathbf{S}_{\mathbf{3}_{\mathbf{1}}}>\mathbf{S}_{\mathbf{1}_{\mathbf{1}}}\right)$

As was learned in school, the area of a triagle is given by $\frac{1}{2} \cdot B \cdot H$.


And since $\mathbf{B}:=\mathbf{S}_{\mathbf{1}} \quad$ Area is defined as


$\mathbf{1} \cdot \mathrm{B}_{\mathrm{n}} \cdot \mathrm{H}_{\mathrm{n}}$	$\mathbf{A}_{\mathbf{n}}=$	$\mathbf{H}_{\mathbf{n}}=$
2	2.904738	2.904738
0	2.904738	1.936492
0	2.904738	1.452369



## From 04_02_97.MCD I show that, for a given side, the height is given by;

$\frac{\mathbf{1} \cdot \mathbf{B}_{\mathbf{n}} \cdot \mathbf{H}_{\mathbf{n}}}{\mathbf{2}}-\mathbf{A}_{\mathbf{n}}=$	$\mathbf{A}_{\mathbf{n}}=$
0	
0	2.904738   2.904738   2.904738

1.452369

Not changing the height of a given triangle, or the length of the subtended side, what happens to it's area if we halve the angle of one side?

What is the definition of acute, solely in terms of the sides of a triangle? Basically from this it can be argued that Euclid's definition of acute or obtuse was out of order.

Acute $_{n}:=$ if $\left[\sqrt{\left(S_{1}\right)^{2}+\left(S_{2}\right)^{2}}>\mathbf{S}_{3_{n}}, 1,0\right]$
Acute $_{\mathbf{n}}$

0
1
1

$\mathbf{H}_{\mathbf{n}}=$

2.904738
1.936492
1.452369



Acute $2^{n}:=$ if $\left[\sqrt{\left(S_{1_{n}}\right)^{2}+\left(S_{3_{n}}\right)^{\mathbf{2}}}>\mathbf{S}_{\mathbf{2}_{n}}, 1,0\right]$
Acute2 $_{n}=$


Is_This_a_Triangle = 1
Since the greater angle is subtended by the greater side, halving the lesser angle increases the area of the triangle by the greater amount.
$\left(\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}>\mathbf{S}_{\mathbf{3}_{\mathbf{n}}}\right)-\left[\frac{\left(\mathbf{B}_{\mathbf{n}}+\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}\right) \cdot \mathbf{H}_{\mathbf{n}}}{2}-\mathbf{A}_{\mathbf{n}}>\frac{\left(\mathbf{B}_{\mathbf{n}}+\mathbf{S}_{\mathbf{3}_{\mathbf{n}}}\right) \cdot \mathbf{H}_{\mathbf{n}}}{2}-\mathbf{A}_{\mathbf{n}}\right]=$



Given two sides of a triangle, the height and if the angle contained by the two sides is acute or not, find the remaining side. What would happen if you were given just the acute or not, find the remaining side. What would happen if you were given just the it so quickly.
$\mathbf{H}_{\mathbf{n}}=\frac{\sqrt{\mathbf{S}_{\mathbf{1}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{3}_{\mathbf{n}}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{3}_{\mathbf{n}}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{n}}-\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{3}_{\mathbf{n}}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}-\mathbf{S}_{\mathbf{3}_{\mathbf{n}}}}}{\mathbf{2 \cdot \mathbf { S } _ { \mathbf { 1 } _ { n } }}}$
Given $S_{1}, S_{2}$ and $\sqrt{S_{1}{ }^{2}+S_{2}{ }^{2}}>S_{3}$, find $S_{3}$.
Acute $_{\text {n }}=$

0
1
1

## Is_This_a_Triangle $=1$

$\mathbf{S}_{\mathbf{4}_{\mathrm{n}}}:=\sqrt{\left(\mathbf{S}_{\mathbf{2}_{n}}\right)^{2}-\left(\mathbf{H}_{\mathrm{n}}\right)^{2}}$
$\mathbf{S}_{\mathbf{X}_{\mathbf{n}}}:=\mathbf{i f}\left(\right.$ Acute $\left._{\mathbf{n}}, \mathbf{S}_{\mathbf{1}_{\mathbf{n}}}-\mathbf{S}_{\mathbf{4}_{\mathbf{n}}}, \mathbf{S}_{\mathbf{1}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{4}}\right)$
$\mathbf{a} \equiv \mathbf{2} \quad \mathbf{b} \equiv \mathbf{3} \quad \mathbf{c} \equiv 4 \quad \leftarrow$ Plug your values in here.
$S_{3_{n}}:=\sqrt{\left(H_{n}\right)^{2}+\left(S_{X_{n}}\right)^{2}}$



040497
Descriptions.

Unit.
Given.
$\mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{N}_{1}$
$\mathbf{N}_{\mathbf{2}}:=\mathbf{4} \quad \mathrm{AC}:=\mathbf{N}_{\mathbf{2}}$ $\mathbf{N}_{\mathbf{3}}:=\mathbf{3} \quad \mathbf{C D}:=\mathbf{N}_{\mathbf{3}}$
$\mathbf{A D}:=\sqrt{\mathbf{A C}^{2}-\mathbf{C D}^{2}} \quad \mathbf{B D}_{1}:=\mathbf{A B}+\mathbf{A D} \quad \mathbf{B D}_{2}:=\mathbf{A B}-\mathbf{A D}$
$\mathrm{BC}_{1}:=\sqrt{\mathrm{CD}^{2}+\mathrm{BD}_{1}{ }^{2}} \quad \mathrm{BC}_{2}:=\sqrt{\mathrm{CD}^{2}+\mathrm{BD}_{2}{ }^{2}}$
$B C_{1}=8.213252 \quad B C_{2}=3.813461$
$B C_{1}-\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}+2 \cdot N_{1} \cdot \sqrt{N_{2}{ }^{2}-N_{3}{ }^{2}}}=0$
$\mathrm{BC}_{2}-\sqrt{\left(\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}-2 \cdot \mathrm{~N}_{1} \cdot \sqrt{\mathrm{~N}_{2}{ }^{2}-\mathrm{N}_{3}{ }^{2}}\right)}=0$
Definitions.

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{1}}:=\mathbf{A B} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{A C} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{B C}_{\mathbf{1}} \\
& \frac{\sqrt{\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}}}{2 \cdot \mathbf{S}_{\mathbf{1}}}-\mathbf{C D}=\mathbf{0}
\end{aligned}
$$

$A B=2.71667$ in. $\quad N_{1}=2.71667$ in. $A C=2.95665 \mathrm{in} . \quad \mathrm{N}_{2}=2.95665 \mathrm{in}$. $C D=1.90833 \mathrm{in} . \quad \mathrm{N}_{3}=1.90833 \mathrm{in}$ $\mathrm{BC}=1.96260$ in. $\quad \mathrm{N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}=16.12208 \mathrm{in}^{2}$ $\mathrm{BC}_{2}=5.32845 \mathrm{in} .2 \cdot \mathrm{~N}_{1} \cdot \sqrt{\mathrm{~N}_{2}{ }^{2}-\mathrm{N}_{3}{ }^{2}}=12.27028 \mathrm{in}^{2}$


Given the base, one side and the height of a triangle, find both possible lengths of the remaining side.
$B C-\sqrt{\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right)-\left(2 \cdot N_{1} \cdot \sqrt{N_{2}{ }^{2}-N_{3}{ }^{2}}\right)}=0.00000 \mathrm{in}$. $\mathrm{BC}_{2}-\sqrt{\left(\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}\right)+\left(2 \cdot \mathrm{~N}_{1} \cdot \sqrt{\mathrm{~N}^{2}{ }^{2}-\mathrm{N}_{3}{ }^{2}}\right)}=0.00000 \mathrm{in}$.


$$
\mathbf{S}_{\mathbf{I} \mathbf{I}}:=\mathbf{A B} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{A C} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{B C}_{\mathbf{2}}
$$



Unit.
Given.
$\begin{array}{ll}\mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 1 4 8 5 4} & \text { AD }:=\mathbf{N}_{\mathbf{1}} \\ \mathbf{N}_{\mathbf{2}}:=\mathbf{6 . 5 0 8 7 5} & \mathbf{A C}:=\mathbf{N}_{\mathbf{2}}\end{array}$
042897
Descriptions.
$\mathbf{C D}:=\sqrt{\mathrm{AD}^{2}+\mathrm{AC}^{2}} \quad \mathrm{DH}:=\mathrm{CD}$
$\mathbf{C G}:=\mathbf{A D} \quad \mathbf{D G}:=\mathbf{A C} \quad \mathbf{G H}:=\mathbf{D H}-\mathbf{D G} \quad \mathbf{C H}:=\sqrt{\mathbf{G H}^{\mathbf{2}}+\mathbf{C G}^{\mathbf{2}}}$
HJ := CG DJ := DG
FH $:=\frac{\left(\mathbf{H J}^{2}+\mathbf{D H}^{2}\right)-\mathbf{D J}^{2}}{2 \cdot \mathbf{D H}} \quad \mathbf{E F}:=\mathbf{F H} \quad \mathbf{D E}:=\mathbf{D H}-(\mathbf{E F}+\mathbf{F H})$
$\mathbf{A B}:=\mathbf{D E} \quad \mathbf{E G}:=\mathbf{D G}-\mathbf{D E} \quad \mathbf{L M}:=\mathbf{C H} \quad \mathbf{L K}:=\mathbf{E G}$
$\mathbf{K M}:=\sqrt{\mathbf{L M}^{2}-\mathbf{L K}^{2}} \quad \quad \mathbf{B E}:=\mathbf{A D} \quad \mathbf{B K}:=2 \cdot \mathbf{B E} \quad \mathbf{B M}:=\mathbf{B K}+\mathbf{K M}$

$A D=2.51883 \mathrm{~cm} \quad N_{1}=2.51883 \mathrm{~cm}$
$A C=5.20700 \mathrm{~cm} \quad \mathrm{~N}_{2}=5.20700 \mathrm{~cm}$
$\mathrm{CH}=2.58413 \mathrm{~cm} \quad \sqrt{\left(2 \cdot \mathrm{~N}_{1}{ }^{2}+2 \cdot \mathrm{~N}_{2}{ }^{2}\right)-2 \cdot \mathrm{~N}_{2} \cdot \sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}}}=2.58413 \mathrm{~cm}$
$\mathrm{CH}-\sqrt{\left(2 \cdot \mathrm{~N}_{1}{ }^{2}+2 \cdot \mathrm{~N}^{2}{ }^{2}\right)-2 \cdot \mathrm{~N}_{2} \cdot \sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}}}=0.00000 \mathrm{~cm}$
$\mathbf{m} \angle \mathrm{DCA}=25.81490^{\circ}$
$\mathrm{m} \angle \mathrm{CDM}=77.44471^{\circ}$
$\frac{\mathrm{m} \angle \mathrm{CDM}}{\mathrm{m} \angle \mathrm{DCA}}=3.00000$

Some definitions:

$\frac{N_{1}{ }^{2}}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}-\mathbf{F H}=0 \quad \frac{\left(N_{2}{ }^{2}-N_{1}{ }^{2}\right)}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}-\mathbf{D E}=0$
$2 \cdot N_{1}+\frac{\sqrt{\left(2 \cdot N_{2}{ }^{3}-2 \cdot N_{1}{ }^{2} \cdot N_{2}\right) \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}+{N_{1}}^{4}+5 \cdot N_{1}{ }^{2} \cdot N_{2}{ }^{2}-2 \cdot N_{2} \cdot\left(\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}\right)^{3}}}{\sqrt{N_{1}{ }^{2}+{N_{2}}^{2}}}-B M=0$

042997

Exploring trisection produced in the cube root figure. If one places $E$ where they will, they would find the origin of the root series H by projecting through FG. Taking half of KM for BH we find that angle ABC is $1 / 3$ of angle EBC. So, we can not only produce a cube root series from OP but also a trisection as well from the orign which is the same origin for the square root of the figure.

I should write up some plates concerning the point $G$ or $F$ and the different relationships they form with the finished plate.

## Trisection and the Cube Roots



Unit.
AB := 1
Given.
$\mathbf{N}:=\mathbf{5}$

## Descriptions.

## $\mathbf{A H}:=\mathbf{N} \quad \mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{B H}$

$\left.A C:=\left(\mathbf{A B}^{2} \cdot \mathbf{A H}\right)^{\frac{1}{3}} \quad \mathbf{A F}:=(\mathbf{A B} \cdot \mathbf{A H})^{2}\right)^{\frac{1}{3}}$
$\mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \quad \mathbf{C E}:=\frac{\mathbf{C F}}{2} \quad \mathbf{A E}:=\mathbf{A C}+\mathbf{C E}$
$\mathbf{A U}:=\mathbf{C E} \quad$ NV := AU $\quad$ MW := AU
(For the next two equations see 042897.)
$\mathbf{A M}:=\frac{\left(\frac{\mathbf{A E}}{\mathbf{A U}}-\mathbf{1}\right) \cdot\left(\frac{\mathbf{A E}}{\mathbf{A U}}+\mathbf{1}\right) \cdot \mathbf{A U}}{\sqrt{\left(\frac{\mathbf{A E}}{\mathbf{A U}}\right)^{2}+\mathbf{1}}}$
$M R:=2 \cdot A U+A U \cdot \sqrt{\frac{\left(\mathrm{AU}^{2}\right)^{\frac{3}{2}}+5 \cdot \mathrm{AE}^{2} \cdot \sqrt{\mathrm{AU}^{2}}-4 \cdot A E \cdot A U \cdot \sqrt{\mathrm{AE}^{2}+\mathrm{AU}^{2}}}{\left(\mathrm{AE}^{2}+\mathrm{AU}^{2}\right) \cdot \sqrt{\mathrm{AU}^{2}}}}$
$\mathbf{R W}:=\mathbf{M R}-\mathbf{M W} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{F H}:=\mathbf{A H}-\mathbf{A F} \quad \mathbf{C N}:=\frac{\mathbf{B C} \cdot \mathbf{C F}}{\mathbf{B C}+\mathbf{F H}}$

$$
\begin{aligned}
& \mathbf{N P}:=\frac{\mathbf{B J} \cdot \mathbf{C N}}{\mathbf{B C}} \quad \mathbf{P V}:=\mathbf{N P}-\mathbf{N V} \quad \mathbf{A N}:=\mathbf{A C}+\mathbf{C N} \quad \mathbf{U V}:=\mathbf{A N} \\
& \mathbf{U W}:=\mathbf{A M} \quad \frac{\mathbf{R W} \cdot \mathbf{U V}}{\mathbf{U W}}-\mathbf{P V}=\mathbf{0}
\end{aligned}
$$

$\sim_{n=2}^{0}$
Unit. AB:= 1
Given. $X:=12$

081921 Study

## Descriptions.

$\mathbf{A D}:=\frac{\mathbf{A B}}{2} \quad \mathbf{D E}:=\frac{\mathbf{X}}{2 \cdot \mathbf{Y}} \quad \mathbf{A E}:=\mathbf{D E}+\mathbf{A D} \quad \mathbf{A E}=\mathbf{0 . 8}$
$\mathbf{B E}:=\mathbf{A B}-\mathbf{A E} \quad \mathbf{E O}:=\sqrt{\mathbf{A E} \cdot \mathbf{B E}} \quad \mathbf{D G}:=\frac{\mathbf{D E} \cdot \mathbf{A B}}{\mathbf{A B}+\mathbf{E O}}$
GN $:=\frac{\mathbf{E O} \cdot \mathbf{D G}}{\mathbf{D E}} \quad$ FH $:=\mathbf{G N} \quad$ GF $:=\frac{\mathbf{G N}}{2} \quad$ GH $:=\frac{\mathbf{G N}}{2}$
DO := $\frac{1}{2} \quad \mathbf{D P}:=\frac{\mathbf{D O}^{2}}{\mathbf{D E}} \quad \mathbf{B P}:=\mathbf{D P}-\mathbf{A D} \quad$ PE $:=\mathbf{B E}+\mathbf{B P}$
$\mathbf{C P}:=\frac{\mathbf{G N} \cdot \mathbf{P E}}{2 \cdot \mathbf{E O}} \quad \mathbf{B C}:=\mathbf{B P}-\mathbf{C P} \quad \mathbf{B G}:=\mathbf{A D}-\mathbf{D G} \quad \mathbf{C H}:=\mathbf{B G}+\mathbf{B C}-\mathbf{G H}$
$\mathbf{C F}:=\mathbf{B G}+\mathbf{B C}+\mathbf{G H} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \frac{\mathbf{A C}}{\mathrm{BC}}=8 \quad \frac{\mathbf{C H}}{\mathrm{BC}}=2 \quad \frac{\mathbf{C F}}{\mathrm{BC}}=4$
$C H-\left(B C^{2} \cdot A C\right)^{\frac{1}{3}}=0 \quad C F-\left(B C \cdot A C^{2}\right)^{\frac{1}{3}}=0$


Definitions.
$\mathbf{A D}-\frac{\mathbf{1}}{\mathbf{2}}=\mathbf{0} \quad \mathbf{D E}-\frac{\mathbf{X}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{A E}-\frac{\mathbf{X}+\mathbf{Y}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{B E}-\frac{\mathbf{Y}-\mathbf{X}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{E O}-\frac{\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{\mathbf{2} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{D G}-\frac{\mathbf{X}}{2 \cdot \mathbf{Y}+\sqrt{-(\mathbf{X}-\mathbf{Y}) \cdot(\mathbf{X}+\mathbf{Y})}}=\mathbf{0} \quad \mathbf{G N}-\frac{\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{\mathbf{2} \cdot \mathbf{Y}+\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}=\mathbf{0}$ $\mathbf{F H}-\frac{\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{2 \cdot \mathbf{Y}+\sqrt{-(\mathbf{X}-\mathbf{Y}) \cdot(\mathbf{X}+\mathbf{Y})}}=\mathbf{0} \quad \mathbf{G F}-\frac{\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{2 \cdot[2 \cdot \mathbf{Y}+\sqrt{-(\mathbf{X}-\mathbf{Y}) \cdot(\mathbf{X}+\mathbf{Y})}]}=\mathbf{0} \quad \mathbf{G H}-\frac{\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{2 \cdot[2 \cdot \mathbf{Y}+\sqrt{-(\mathbf{X}-\mathbf{Y}) \cdot(\mathbf{X}+\mathbf{Y})}]}=\mathbf{0} \quad \mathbf{D O}-\frac{\mathbf{1}}{\mathbf{2}}=\mathbf{0} \quad \mathbf{D P}-\frac{\mathbf{Y}}{2 \cdot \mathbf{X}}=\mathbf{0} \quad \mathbf{B P}-\frac{\mathbf{Y}-\mathbf{X}}{2 \cdot \mathbf{X}}=\mathbf{0}$




082197
In my files $I$ have the following plate, from what book I do not recall, however, the figure as it was written up there was listed as a "special case," of what I do not recall either. But I want to write it up because it is not a special case of anything, it is actually a plate showing that one can treat every triangle as an eight circle problem, simply add the remaining two sides by recursion of the first. I suspect now that if someone thought this was a special case of first. I suspect now that if someone thought this was a special case of
something, then they did not comprehend the actual relationships, they are something, then they did easily found by compass.
The project would start with the equations from 062793 and 040694 . So, this is a project $I$ am interested in doing and have been for a long time. I might even find the book it came from. Might be interesting to find the equations for all eight circles. Maybe some day.


## Eight Circles and a Forgotten Book.

Steiner Point
## 082297

## Descriptions.

Definitions.


Steiner point solution (a) page 361 Computing in Euclidean Geometry Du and Hwang 1985
D.

${ }^{\text {E }}$


F


Unit.
Given.
$\begin{array}{ll}\mathbf{N}_{1}:=2.66666 & \text { AB }:=\mathbf{N}_{1} \\ \mathbf{N}_{\mathbf{2}}:=1.31473 & \text { EF }:=\mathbf{N}_{\mathbf{2}}\end{array}$
091197 A
$\mathbf{N}_{\mathbf{3}}:=1.26711$
Descriptions.
$\mathbf{A D}:=\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{3}}} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{D J}:=\sqrt{\mathbf{A D} \cdot \mathbf{B D}} \quad \mathbf{A C}:=\frac{\mathbf{A B}}{\mathbf{2}}$
$D C:=\frac{(A C-A D)^{2}}{\sqrt{(A C-A D)^{2}}} \quad C H:=\frac{E F}{2} \quad C J:=A C$
$\mathbf{D G}:=\frac{\mathrm{DJ} \cdot \mathbf{C H}}{\mathbf{C J}} \quad \mathbf{C G}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DC}^{2}} \quad \mathrm{MN}:=2 \cdot \sqrt{\left(\frac{\mathrm{AB}}{2}\right)^{2}-\mathrm{CH}^{2}}$

## Definitions.

$\mathbf{B D}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{3}}-\mathbf{1}\right)}{\mathbf{N}_{\mathbf{3}}}=\mathbf{0} \quad \mathrm{DJ}-\frac{\mathbf{N}_{\mathbf{1}} \cdot \sqrt{\left(\mathbf{N}_{\mathbf{3}}-\mathbf{1}\right)}}{\mathbf{N}_{\mathbf{3}}}=\mathbf{0} \quad \mathrm{AC}-\frac{\mathbf{N}_{\mathbf{1}}}{2}=\mathbf{0}$
$D C-\frac{\mathbf{N}_{1} \cdot \sqrt{\left(\mathbf{N}_{3}-2\right)^{2}}}{2 \cdot \mathbf{N}_{3}}=0 \quad C H-\frac{\mathbf{N}_{2}}{2}=0 \quad C J-\frac{\mathbf{N}_{1}}{2}=0 \quad D G-\frac{\mathbf{N}_{2} \cdot \sqrt{\mathbf{N}_{3}-1}}{\mathbf{N}_{3}}=0$
$\mathbf{C G}-\frac{\sqrt{\left(\mathbf{N}_{3}{ }^{2}-4 \cdot \mathbf{N}_{3}+4\right) \cdot \mathbf{N}_{1}{ }^{2}+4 \cdot \mathbf{N}_{2}{ }^{2} \cdot\left(\mathbf{N}_{3}-1\right)}}{2 \cdot \mathbf{N}_{3}}=0 \quad \mathbf{M N}-\sqrt{\left(N_{1}-N_{2}\right) \cdot\left(N_{1}+N_{2}\right)}=0$

## The Ellipse

## Given that the major axis is $A D$ and the minor axis EF,

 derive the formula for the radius CG, the height BG, and the foci axis MN.
$\mathrm{AB}=2.66667 \mathrm{in}$.
$\mathrm{EF}=1.31473 \mathrm{in}$.
$\mathrm{AD}=2.10453 \mathrm{in}$.
$\frac{\mathrm{AB}}{\mathrm{AD}}=1.26711$
$\mathrm{CH}=0.65736 \mathrm{in}$.
$\mathrm{DG}=0.53625 \mathrm{in}$.
$\mathrm{MN}=2.32004 \mathrm{in}$.
$\mathrm{MN}-2 \cdot \sqrt{\mathrm{AB}^{2}}{ }^{2}-\mathrm{CH}^{2}$
$\mathrm{MN}-\sqrt{(\mathrm{AB}-\mathrm{EF}) \cdot(\mathrm{AB}+\mathrm{EF})}=0.00000 \mathrm{in}$.
$\sim_{n}^{0}$
091197B
Descriptions.
$\mathbf{D E}:=\mathbf{A C}+\mathbf{B C} \quad \mathbf{A H}:=\frac{\mathbf{D E}}{2} \quad \mathbf{A G}:=\frac{\mathbf{A B}}{2} \quad \mathbf{F G}:=\sqrt{\mathbf{A H}^{2}-\mathbf{A G}^{2}}$

## Definitions.

$F G-\frac{\sqrt{\left(\mathbf{S}_{2}-\mathbf{S}_{1}+\mathbf{S}_{3}\right) \cdot\left(\mathbf{S}_{1}+\mathbf{S}_{2}+\mathbf{S}_{3}\right)}}{2}=\mathbf{0}$
The ratio of the ellipse is thus;

$$
\frac{\mathbf{A H}}{\mathbf{F G}}-\frac{\left(\mathbf{S}_{2}+\mathbf{S}_{3}\right)}{\sqrt{\left(\mathbf{S}_{2}-\mathbf{S}_{1}+\mathbf{S}_{3}\right) \cdot\left(\mathbf{S}_{1}+\mathbf{S}_{2}+\mathbf{S}_{3}\right)}}=0
$$

From any point on DE, one can find everything and not once think about $x$ and $y$.
$\mathbf{S}_{\mathbf{1}}:=\mathbf{8 . 1 4 9 1 7} \quad \mathrm{AB}:=\mathbf{S}_{\mathbf{1}}$
$\mathbf{S}_{\mathbf{2}}:=\mathbf{7 . 2 3 7 4 5} \quad \mathrm{AC}:=\mathbf{S}_{\mathbf{2}}$ $\mathbf{S}_{\mathbf{3}}:=\mathbf{2 . 5 8 2 7 7} \quad \mathrm{BC}:=\mathbf{S}_{\mathbf{3}}$

## The Ellipse

Given triangle $A B C$, and $A B$ as base, describe the Ellipse



Unit. A1 := 1

## Given.

$$
\mathbf{W}:=9 \quad Z:=.21569
$$

$$
\mathbf{X}:=20 \quad \mathbf{Y}:=20
$$

091 197C
Love is the functional Conjugate Binary Pair.
Shape adjustment is don by AW.
Descriptions.
$\mathbf{A B}:=\frac{\mathbf{A 1}}{2} \quad \mathbf{B C}:=\mathbf{A B} \quad \mathbf{B D}:=\mathbf{A B} \quad \mathbf{A W}:=\mathbf{A B} \cdot \frac{\mathbf{W}}{\mathbf{X}} \quad \mathbf{B W}:=\mathbf{A B}-\mathbf{A W}$
$\mathbf{B E}:=\mathbf{B W} \quad \mathbf{B F}:=\mathbf{B W} \quad \mathbf{A Z}:=\mathbf{A 1} \cdot \frac{\mathbf{Z}}{\mathbf{Y}} \quad \mathbf{C Z}:=\sqrt{\mathbf{A Z} \cdot(\mathbf{A 1}-\mathbf{A Z})}$
$\mathbf{D Z}:=\mathbf{C Z} \quad \mathbf{B Z}:=\sqrt{\mathbf{B C}^{2}-\mathbf{C Z}^{2}} \quad \mathbf{E G}:=\mathbf{B Z} \cdot \frac{\mathbf{B C}-\mathbf{B W}}{\mathrm{BC}} \quad \mathbf{F H}:=\mathbf{E G}$
$\mathbf{J Z}:=\mathbf{C Z}+\mathbf{E G} \quad \mathbf{K Z}:=\mathbf{D Z}-\mathbf{F H}$

Definitions.
$A B-\frac{1}{2}=0 \quad B C-\frac{1}{2}=0 \quad B D-\frac{1}{2}=0 \quad A W-\frac{W}{2 \cdot X}=0 \quad B W-\frac{X-W}{2 \cdot X}=0$
$\mathbf{B W}-\frac{\mathbf{X}-\mathbf{W}}{2 \cdot \mathbf{X}}=\mathbf{0} \quad \mathbf{B F}-\frac{\mathbf{X}-\mathbf{W}}{2 \cdot \mathbf{X}}=\mathbf{0} \quad \mathbf{A Z}-\frac{\mathbf{Z}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{C Z}-\frac{\sqrt{\mathbf{Z} \cdot(\mathbf{Y}-\mathbf{Z})}}{\mathbf{Y}}=\mathbf{0}$
$\mathbf{D Z}-\frac{\sqrt{Z \cdot(Y-Z)}}{Y}=0 \quad B Z-\frac{\sqrt{(Y-2 \cdot Z)^{2}}}{2 \cdot \mathbf{Y}}=0 \quad E G-\frac{\sqrt{(Y-2 \cdot Z)^{2}} \cdot \mathbf{W}}{2 \cdot \mathbf{Y} \cdot \mathbf{X}}=0$

$\frac{\left(\mathrm{W} \cdot \sqrt{(\mathrm{Y}-2 \cdot \mathrm{Z})^{2}}\right)+\left(\mathbf{2} \cdot \mathbf{X} \cdot \sqrt{\mathbf{Y} \cdot \mathrm{Z} \cdot \mathrm{Z}^{2}}\right)}{(2 \cdot \mathbf{X} \cdot \mathrm{Y})}-\mathrm{JZ}=0.00000 \quad \frac{\left|\left(2 \cdot \mathrm{X} \cdot \sqrt{\mathrm{Y} \cdot \mathrm{Z}-\mathrm{Z}^{2}}\right)-\left(\mathrm{W} \cdot \sqrt{(\mathrm{Y}-2 \cdot \mathrm{Z})^{2}}\right)\right|}{(2 \cdot \mathrm{X} \cdot \mathrm{Y})}-\mathrm{KZ}=0.00000$ $\mathbf{F H}-\frac{\sqrt{(\mathbf{Y}-\mathbf{2} \cdot \mathbf{Z})^{2}} \cdot \mathbf{W}}{\mathbf{2} \cdot \mathbf{Y} \cdot \mathbf{X}}=\mathbf{0}$
$J Z-\frac{W \cdot \sqrt{(Y-2 \cdot Z)^{2}}+2 \cdot X \cdot \sqrt{Y \cdot Z-Z^{2}}}{2 \cdot X \cdot Y}=0 \quad K Z-\frac{2 \cdot X \cdot \sqrt{Y \cdot Z-Z^{2}}-W \cdot \sqrt{(Y-2 \cdot Z)^{2}}}{2 \cdot X \cdot Y}=0$



020298
Descriptions.

Unit.
Given.
N := . 656
$\Delta:=4$
$\delta_{\text {s }}:=0 . . \Delta-1$
$\mathbf{A F}:=2.3754 \quad \mathbf{A O}:=\frac{\mathbf{A F}}{2} \quad \mathbf{A B} \mathbf{0}:=\mathbf{N} \quad \mathbf{B D}_{\mathbf{0}}:=\sqrt{\mathbf{A B} \mathbf{0} \cdot\left(\mathbf{A F}-\mathbf{A B}_{\mathbf{0}}\right)}$
$\mathrm{CE}_{0}:=\frac{\mathrm{BD}_{0}}{2} \quad \mathrm{AC}_{0}:=\frac{\mathrm{AB}_{0}}{2} \quad O C_{0}:=A O-\mathrm{AC}_{0} \quad \mathrm{OE}_{0}:=\sqrt{\left(\mathrm{CE}_{0}\right)^{2}+\left(\mathrm{OC}_{0}\right)^{2}}$


$\mathbf{A D}_{\delta}:=\sqrt{\left(\mathbf{A B}_{\delta}\right)^{2}+\left(\mathbf{B D}_{\delta}\right)^{2}}$

Definitions.
\(\left(\begin{array}{l}1.248304 <br>
0.648825 <br>
0.327541 <br>

0.164163\end{array}\right) \quad\)| Length of cord by |
| :--- |
| progressive |
| bisections. |

I have no idea why I did this figure, it was so long ago. I don't know what I would do with a cord series unless one wanted to see how close one could get to PI starting from some particular angle or the length of some cord of a circle of some lenght at some commensurable angle. $I$ wonder if $I$ will ever get that bored?


Unit.
Given.
$\begin{array}{ll}\mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 9 8 9 5 8} & \text { AE }:=\mathbf{N}_{\mathbf{1}} \\ \mathbf{N}_{\mathbf{2}}:=\mathbf{1 . 8 6 6 9 0} & \text { EG }:=\mathbf{N}_{\mathbf{2}}\end{array}$

## 021098

Descriptions.

$$
\begin{aligned}
& \mathbf{A B}:=\frac{\mathbf{A E}}{2} \quad \mathbf{B J}:=\frac{\mathbf{E G}}{2} \quad \mathbf{B D}:=\mathbf{B J} \\
& \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \quad \mathbf{C E}:=\mathbf{B D} \cdot \frac{\mathbf{A E}}{\mathbf{A D}} \\
& \mathbf{A C}:=\mathbf{A E}-\mathbf{C E} \quad \text { FG }:=\mathbf{E G}-\mathbf{C E}
\end{aligned}
$$



CE $-\frac{N_{1} \cdot N_{2}}{N_{1}+N_{2}}=0.00000$ in. $\quad \frac{A E}{A C}-\frac{N_{1}+N_{2}}{N_{1}}=0.00000$

## Definitions.

$A B-\frac{\mathbf{N}_{1}}{2}=0 \quad B J-\frac{\mathbf{N}_{2}}{2}=0 \quad A D-\left(\frac{\mathbf{N}_{1}}{2}+\frac{\mathbf{N}_{2}}{2}\right)=0$
$\mathrm{CE}-\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}=0 \quad \mathrm{AC}-\frac{\mathrm{N}_{1}{ }^{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}=0$
$F G-\frac{\mathbf{N}_{2}{ }^{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \frac{A E}{A C}-\left(\frac{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{1}}\right)=0 \quad \frac{E G}{F G}-\frac{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{2}}=0$


## 022598A

Descriptions.
HJ $:=\mathbf{H N}-\mathbf{A H} \quad$ FH $:=\frac{\mathbf{A H} \cdot \mathbf{H J}}{\mathbf{A H}+\mathbf{H J}} \quad$ FG $:=\mathbf{F H}$
$\mathbf{A F}:=\mathbf{A H}-\mathbf{F H} \quad \mathbf{D F}:=\frac{\mathbf{A F} \cdot \mathbf{F G}}{\mathbf{A F}+\mathbf{F G}} \quad \mathbf{A D}:=\mathbf{A F}-\mathbf{D F}$
$\mathbf{D E}:=\mathbf{D F} \quad \mathbf{B D}:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D}$
Definitions.
$\frac{\mathbf{A H}}{\mathrm{AF}}-\mathbf{N}_{2}{ }^{1}=0 \quad \frac{\mathrm{AH}}{\mathrm{AD}}-\mathbf{N}_{2}{ }^{2}=0 \quad \frac{\mathrm{AH}}{\mathrm{AB}}-\mathbf{N}_{2}{ }^{\mathbf{3}}=0$
$H N-N_{1} \cdot \mathbf{N}_{2}=0 \quad H J-\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}\right)=0 \quad F H-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}{\mathbf{N}_{\mathbf{2}}}=0$
$F G-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)}{\mathbf{N}_{2}}=0 \quad \mathbf{A F}-\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}=0 \quad \mathrm{DF}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}{\mathbf{N}_{\mathbf{2}}{ }^{2}}=\mathbf{0}$
$A D-\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}^{2}}=0 \quad D E-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right)}{\mathbf{N}_{2}^{2}}=0 \quad B D-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right)}{\mathbf{N}_{2}^{3}}=0$
$A B-\frac{N_{1}}{N_{2}{ }^{3}}=0$

## Alternate Method Root Series

Given a length and a unit, raise that length to any whole power.

## N




Unit.
AH := 1
Sum Divided by One Powered
Given.
$\mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathrm{HM}:=\mathbf{N}_{\mathbf{1}}$
022598B
Descriptions.
$\mathbf{N}_{\mathbf{2}}:=\mathbf{6} \quad$ AN $:=\mathbf{N}_{\mathbf{2}}$
$\mathbf{H O}:=\frac{\mathbf{A H} \cdot \mathbf{H M}}{\mathbf{A N}} \quad \mathbf{A O}:=\mathbf{A H}+\mathbf{H O} \quad \mathbf{A F}:=\frac{\mathbf{A H}^{\mathbf{2}}}{\mathbf{A O}}$
FH $:=\mathbf{A H}-\mathbf{A F} \quad$ FG $:=\mathbf{F H} \quad \mathbf{D F}:=\frac{\mathbf{A F} \cdot \mathbf{F G}}{\mathbf{A F}+\mathbf{F G}}$
$\mathbf{A D}:=\mathbf{A F}-\mathbf{D F} \quad \mathbf{D E}:=\mathbf{D F} \quad \mathbf{B D}:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}}$
$\mathbf{A B}:=\mathbf{A D}-\mathbf{B D}$

Definitions.

$\frac{A H}{A B}-\left(\frac{N_{1}+N_{2}}{N_{2}}\right)^{3}=0 \quad H O-\frac{N_{1}}{N_{2}}=0 \quad A O-\frac{N_{1}+N_{2}}{N_{2}}=0$
$A F-\frac{N_{2}}{N_{1}+N_{2}}=0 \quad F H-\frac{N_{1}}{N_{1}+N_{2}}=0 \quad F G-\frac{N_{1}}{N_{1}+N_{2}}=0$
$D F-\frac{N_{1} \cdot N_{2}}{\left(N_{1}+N_{2}\right)^{2}}=0 \quad A D-\frac{N_{2}^{2}}{\left(N_{1}+N_{2}\right)^{2}}=0 \quad D E-\frac{N_{1} \cdot N_{2}}{\left(N_{1}+N_{2}\right)^{2}}=0$
$B D-\frac{N_{1} \cdot N_{2}{ }^{2}}{\left(N_{1}+N_{2}\right)^{3}}=0 \quad A B-\frac{N_{2}^{3}}{\left(N_{1}+N_{2}\right)^{3}}=0 \quad A B^{\frac{1}{3}}-\frac{N_{2}}{\left(N_{1}+N_{2}\right)}=0$

## 022598C

Descriptions.
These plates sat, I never actually wrote them up, in their directory, but included in the Delian Quest. Because they are so elementary, $I$ assumed that doing math with a geometric figure was known. I was a bit conflicted about this, however, working 12 hours a day for years on end tends to dull the senses. Then, I got to thinking about them again in 2007. I even did a couple of searches on the internet to see if anyone had actually developed doing the math with a simple geometric figure and could not find anything. Then I found scraps in old books found on the Internet Archive where certain operations were fragmented and really undeveloped. Then I started to realize and understand that BAM was not developed as a grammar If it had been, there would be no talk of non-Euclidean Geometry, there would only be embarrassment of its memory.

One can see that it is directly derived from plate $A$ on this date. BAM (Basic Analog Mathematics) has its roots in exponential series.
Definitions.


Given line $A B$, divide it by the equation $\frac{B C+A D}{A D}{ }^{\mathbf{w}}=\mathbf{5 . 0 6 2 5 0}$ where $W$ is a whole number.


CN
022698

Now ain't this just typically human. Some of the more defined plates that led to Basic Analog Mathematics promptly get wrote up in 08162015 . I am on the ball! It appears never even bothered to do a pdf file of these. They are, however, not fundamentally distinct from some previous write ups except, these are series format. So, I think I will forgo the write ups again!

$\sim_{n=2}^{\infty}$
042398
Descriptions.
$\mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A D}:=(\mathbf{A B} \cdot \mathbf{A F})^{\frac{1}{2}} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2}$
$\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D E}:=\mathbf{B E}-\mathbf{B D} \quad \mathbf{E Q}:=\mathbf{B E}$
$\mathbf{D Q}:=\left(\mathrm{DE}^{2}+\mathrm{EQ}^{2}\right)^{\frac{1}{2}} \quad \mathbf{P Q}:=\mathrm{BF} \quad \mathbf{Q M}:=\frac{\mathrm{EQ} \cdot \mathbf{P Q}}{\mathrm{DQ}}$
$\mathbf{D M}:=\mathbf{Q M}-\mathbf{D Q} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{\mathbf{2}}$
$\mathbf{D b}:=\frac{\mathbf{D M}}{2} \quad \mathbf{C M}:=\mathbf{A C} \quad$ ab $:=\frac{\mathbf{C M} \cdot \mathbf{D b}}{\mathbf{D M}}$
$\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{C a}:=\frac{\text { CD }}{2} \quad \mathbf{A a}:=\mathbf{A C}+\mathbf{C a}$
$\mathbf{C H}:=\frac{\mathbf{a b} \cdot \mathbf{A C}}{\mathbf{A a}} \quad \mathbf{A M}:=\mathbf{A D} \quad \mathbf{A c}:=\frac{\mathbf{A M} \cdot \mathbf{C H}}{\mathbf{C M}}$
$\mathbf{H M}:=\mathbf{C M}-\mathbf{C H} \quad \mathbf{H M}-\mathbf{A c}=\mathbf{O}$

Definitions.
$\mathbf{A c}-\frac{\sqrt{\mathbf{N}_{\mathbf{1}}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}{\mathbf{N}_{\mathbf{1}}+\mathbf{4} \cdot \sqrt{\mathbf{N}_{\mathbf{1}}}+\mathbf{1}}=\mathbf{0} \quad \mathbf{H M}-\frac{\sqrt{\mathbf{N}_{\mathbf{1}}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}{\mathbf{N}_{\mathbf{1}}+\mathbf{4} \cdot \sqrt{\mathbf{N}_{\mathbf{1}}}+\mathbf{1}}=\mathbf{0}$

## A Square Root Figure And Triseciton

In this square root figure, what is the radius of the circle with the trisected angle? What is the radius CH?


The traditional paper trisector fits right into this figure.
This figure seems to be just full of surprises.

## $\mathrm{CNHMO}_{2}^{0}$

$\mathbf{A F}-\mathbf{N}_{\mathbf{1}}=\mathbf{0} \quad \mathbf{B F}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)=\mathbf{0} \quad \mathbf{A D}-\sqrt{\mathbf{N}_{\mathbf{1}}}=\mathbf{0}$
$B E-\frac{\mathbf{N}_{1}-\mathbf{1}}{2}=0 \quad B D-\left(\sqrt{\mathbf{N}_{1}}-1\right)=0 \quad D E-\frac{\left(\sqrt{\mathbf{N}_{1}}-1\right)^{2}}{2}=0$
$D Q-\frac{\sqrt{\left(\mathbf{N}_{1}+1\right) \cdot\left(\sqrt{\mathbf{N}_{1}}-1\right)^{2}}}{\sqrt{2}}=0 \quad Q M-\frac{\sqrt{2} \cdot\left(\sqrt{\mathbf{N}_{1}}-1\right)^{2} \cdot\left(\sqrt{\mathbf{N}_{1}}+1\right)^{2}}{2 \cdot \sqrt{\left(\mathbf{N}_{1}+1\right) \cdot\left(\sqrt{\mathbf{N}_{1}}-1\right)^{2}}}=0$
$D M-\frac{\sqrt{2} \cdot \sqrt{\mathbf{N}_{1}} \cdot\left(\sqrt{\mathbf{N}_{1}}-1\right)^{2}}{\sqrt{\left(\mathbf{N}_{1}+1\right) \cdot\left(\sqrt{\mathbf{N}_{1}}-1\right)^{2}}}=0 \quad A E-\frac{1+\mathbf{N}_{1}}{2}=0 \quad A C-\frac{1+\mathbf{N}_{1}}{4}=0$
$\mathbf{D b}-\frac{\sqrt{2} \cdot \sqrt{\mathbf{N}_{1}} \cdot\left(\sqrt{\mathbf{N}_{1}}-1\right)^{2}}{2 \cdot \sqrt{\left(\mathbf{N}_{1}+1\right) \cdot\left(\mathbf{N}_{1}-2 \cdot \sqrt{\mathbf{N}_{1}}+1\right)}}=0 \quad \quad \mathbf{C D}-\frac{4 \cdot \sqrt{\mathbf{N}_{1}}-\mathbf{N}_{1}-1}{4}=0$
$\mathrm{Ca}-\frac{4 \cdot \sqrt{\mathbf{N}_{1}}-\mathbf{N}_{1}-1}{8}=0$
$A a-\frac{N_{1}+4 \cdot \sqrt{N_{1}}+1}{8}=0$

$\mathrm{CH}-\frac{\left(\mathbf{1}+\mathrm{N}_{\mathbf{1}}\right)^{\mathbf{2}}}{4 \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{4} \cdot \sqrt{\mathbf{N}_{\mathbf{1}}}+\mathbf{1}\right)}=\mathbf{0}$


CN
072499

Unit.
AB := 1
Given.
$\mathbf{N}_{\mathbf{1}}$ := 6.429 $\quad$ AD := $\mathbf{N}_{\mathbf{1}}$ $\mathbf{N}_{\mathbf{2}}:=\mathbf{2}$

Descriptions.
$\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B C}:=\frac{\mathbf{B D}}{2} \quad \mathbf{C W}:=\mathbf{B C} \quad \mathbf{C T}:=\mathbf{B C}$
$\mathbf{F V}:=\mathbf{B C} \quad \mathbf{A I}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B I}:=\mathbf{A I}-\mathbf{A B} \quad \mathbf{D I}:=\mathbf{B D}-\mathbf{B I}$
$\mathbf{I R}:=\sqrt{\mathbf{B I} \cdot \mathbf{D I}} \quad \mathbf{A E}:=\mathbf{A I} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{E D}:=\mathbf{A D}+\mathbf{A E}$
$\mathbf{C E}:=\mathbf{A C}+\mathbf{A E} \quad \mathbf{E F}:=\frac{\mathbf{C E}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{B E}:=\mathbf{A E}+\mathbf{A B} \quad \mathbf{E I}:=\mathbf{A E}+\mathbf{A I}$
FI $:=\mathbf{E I}-\mathbf{E F} \quad$ FG $:=\frac{\mathbf{F I} \cdot \mathbf{F V}}{\mathbf{F V}+\mathbf{I R}} \quad \mathbf{E G}:=\mathbf{E F}+\mathbf{F G} \quad \mathbf{G I}:=\mathbf{F I}-\mathbf{F G}$
$\mathbf{G M}:=\frac{\mathbf{F V} \cdot \mathbf{G I}}{\text { FI }} \quad$ Ia $:=\frac{\mathbf{E G} \cdot \mathbf{I R}}{\mathbf{G M}} \quad \mathbf{E L}:=\frac{\mathbf{I a} \cdot \mathbf{E D}}{\mathbf{I a}+\mathbf{D I}} \quad \mathbf{B R}:=\sqrt{\mathbf{B I}^{2}+\mathbf{I R}^{2}}$
$\mathbf{B a}:=\mathbf{I a}-\mathbf{B I} \quad \mathbf{B H}:=\frac{\mathbf{B I} \cdot \mathbf{B E}}{\mathbf{B a}} \quad \mathbf{E H}:=\mathbf{B E}+\mathbf{B H} \quad \mathbf{C I}:=\mathbf{A C}-\mathbf{A I}$
$\mathbf{J O}:=\frac{\text { IR } \cdot \mathbf{C E}}{\mathbf{C I}+\mathbf{I a}} \quad$ CJ $:=\frac{\text { CI } \cdot \mathbf{J O}}{\text { IR }} \quad$ JI $:=\mathbf{C I}-\mathbf{C J}$
$\mathbf{C Y}:=\frac{\text { IR } \cdot \mathbf{C J}}{\mathbf{J I}} \quad \frac{\mathbf{C Y}}{\mathbf{C W}}-\frac{\mathbf{C E}}{\mathbf{E F}}=\mathbf{0}$
$C^{2} \operatorname{cin}^{2}$


In this revision, $I$ have dimmed down the names of those points which are not used in a section which greately facilitates reading of each chapter.

As in the past, you can compare the Arithmetic results produced by both the Sketchpad and Mathcad. One will then have Geometric Names, which is the figure, Algebraic Names used in MathCad, and Arithmetic Names, produced by both.

## A Delian Solution




## Unit.

AB := 2.59047
Given.
AG:= $\mathbf{1 1 . 8 1 3 4 7}$
081199

## Descriptions.

$\mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \mathbf{F G}:=\mathbf{B F} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F}$
FX $:=\mathbf{B F} \quad$ Mf $:=\frac{\sqrt{\mathbf{A F}^{2}+\mathbf{F X}^{2}}}{2} \quad$ Lf $:=\frac{\text { FX }}{2} \quad$ ML $:=\mathbf{M f}-\mathbf{L f}$

FL : $=\frac{\mathbf{A F}}{2}$
$\mathbf{X d}:=\mathbf{F L} \quad$ df $:=\mathbf{L f}$
IX := FX
$\mathbf{M d}:=\mathbf{M f}+\mathbf{d f}$
Definitions.
$\mathbf{B G}=\mathbf{9 . 2 2 3 0 0} \quad \mathrm{BF}=\mathbf{4 . 6 1 1 5 0} \quad \mathbf{F G}=\mathbf{4 . 6 1 1 5 0} \quad \mathbf{A F}=\mathbf{7 . 2 0 1 9 7}$
$\mathbf{F X}=4.61150 \quad \mathbf{M f}=4.27593 \quad \mathrm{Lf}=\mathbf{2 . 3 0 5 7 5} \quad \mathrm{ML}=\mathbf{1 . 9 7 0 1 8}$
$F L=3.60099 \quad X d=3.60099 \quad d f=2.30575 \quad I X=4.61150$
$\mathbf{M d}=\mathbf{6 . 5 8 1 6 8}$

## A Delian Solution

What are the minor and major axis for the ellipse that will give point $Z$ for the cube root?



Descriptions.

$$
\begin{aligned}
& \mathbf{M X}:=\sqrt{\mathbf{X d}^{2}+\mathbf{M d}^{2}} \quad \mathbf{S X}:=\frac{\mathbf{M X} \cdot \mathbf{I X}}{\mathbf{I X}-\mathbf{M L}} \quad \mathbf{L g}:=\frac{\mathbf{F L} \cdot \mathbf{M L}}{\mathbf{M L}+\mathbf{F X}} \\
& \mathbf{Q X}:=\frac{\mathbf{S X}}{2} \quad \mathbf{F g}:=\mathbf{F L}-\mathbf{L g} \quad \mathbf{X g}:=\frac{\mathbf{M X} \cdot \mathbf{F g}}{\mathbf{X d}} \quad \mathbf{Q g}:=\mathbf{Q X}-\mathbf{X g} \\
& \mathbf{K g}:=\frac{\mathbf{X g} \cdot \mathbf{Q g}}{\mathbf{F g}} \quad \mathbf{G K}:=\mathbf{F G}+\mathbf{F g}+\mathbf{K g} \quad \text { GJ }:=\mathbf{B G} \quad \mathbf{G T}:=\frac{\mathbf{F g} \cdot \mathbf{G K}}{\mathbf{F X}} \\
& \mathbf{J T}:=\mathbf{G J}+\mathbf{G T} \quad \text { IJ }:=\mathbf{B F} \quad \text { FP }:=\frac{\mathbf{I J} \cdot \mathbf{G J}}{\mathbf{J T}} \quad \mathbf{O P}:=\frac{\mathbf{I X} \cdot \mathbf{G T}}{\mathbf{J T}}
\end{aligned}
$$

## Definitions.

$\mathbf{M X}=\mathbf{7 . 5 0 2 3 7}$	$\mathbf{S X}=13.09845$	$\mathbf{L g}=1.07793$	$\mathbf{Q X}=\mathbf{6 . 5 4 9 2 2}$
$\mathbf{F g}=\mathbf{2 . 5 2 3 0 6}$	$\mathbf{X g}=\mathbf{5 . 2 5 6 5 9}$	$\mathbf{Q g}=1.29263$	
$\mathbf{K g}=\mathbf{2 . 6 9 3 1 0}$	$\mathbf{G K}=\mathbf{9 . 8 2 7 6 6}$	GJ $=\mathbf{9 . 2 2 3 0 0}$	$\mathbf{G T}=\mathbf{5 . 3 7 6 9 3}$
$\mathbf{J T}=\mathbf{1 4 . 5 9 9 9 3}$	IJ $=\mathbf{4 . 6 1 1 5 0}$	FP $=\mathbf{2 . 9 1 3 1 5}$	$\mathbf{O P}=\mathbf{1 . 6 9 8 3 5}$


$\sim_{n=2}^{0}$

## Descriptions.

$\mathbf{K P}:=\mathbf{F g}+\mathbf{K g}+\mathbf{F P}$
$\mathbf{P i}:=\mathbf{L f}$
$\mathbf{O i}:=\mathbf{O P}+\mathbf{P i} \quad \mathbf{h i}:=\frac{\mathbf{K P} \cdot \mathbf{O i}}{\mathbf{O P}}$
$\mathbf{f i}:=\mathbf{F P}+\mathbf{F L} \quad \mathbf{f h}:=\mathbf{h i}-\mathbf{f i} \quad \mathbf{K O}:=\sqrt{\mathbf{K P}^{\mathbf{2}}+\mathbf{O P}^{\mathbf{2}}} \quad \mathbf{h k}:=\frac{\mathbf{K P} \cdot \mathbf{f h}}{\mathbf{K O}}$ $\mathbf{N f}:=$ Mf $\quad \mathbf{f k}:=\frac{\mathbf{O P} \cdot \mathbf{f h}}{\mathrm{KO}} \quad \mathbf{N k}:=\sqrt{\mathbf{N f}^{2}-\mathrm{fk}^{2}} \quad \mathbf{N h}:=\mathbf{h k}+\mathbf{N k}$ $\mathbf{O h}:=\frac{\mathbf{K O} \cdot \mathbf{O i}}{\mathbf{O P}} \quad \mathbf{N O}:=\mathbf{O h}-\mathbf{N h} \quad \mathbf{K N}:=\mathbf{K O}-\mathbf{N O}$

## Definitions.


$O h=19.57983 \quad$ NO $=\mathbf{3 . 7 9 1 0 0} \quad K N=4.51382$



## Descriptions.

$$
\begin{aligned}
& \mathbf{N 1}:=\frac{\mathbf{O P} \cdot \mathbf{K N}}{\mathbf{K O}} \quad \mathbf{K 1}:=\frac{\mathbf{K P} \cdot \mathbf{K N}}{\mathbf{K O}} \quad \text { FK }:=\mathbf{K P}-\mathbf{F P} \quad \text { F1 }:=\mathbf{F K}-\mathbf{K 1} \\
& \mathbf{N X}:=\sqrt{(\mathbf{F X}+\mathbf{N} \mathbf{1})^{2}+\mathbf{F l}^{\mathbf{2}}} \quad \mathbf{X Y}:=\frac{\mathbf{N X} \cdot \mathbf{I X}}{\mathbf{I X}-\mathbf{N} \mathbf{1}} \quad \mathbf{F m}:=\frac{\mathbf{F 1} \cdot \mathbf{X Y}}{\mathbf{N X}} \quad \mathbf{K m}:=\mathbf{F K}-\mathbf{F m} \\
& \text { Fo }:=\frac{\text { F1 } \cdot \mathbf{F X}}{\text { FX }+\mathbf{N 1}} \quad \mathbf{X o}:=\frac{\text { NX } \cdot \text { Fo }}{\text { F1 }} \quad \text { mo }:=\text { Fm }- \text { Fo } \quad \text { Ym }:=\frac{\text { FX } \cdot \mathbf{m o}}{\text { Fo }} \\
& \text { FI }:=2 \cdot \mathbf{B F} \quad \text { IL }:=\sqrt{\mathbf{F L}^{2}+\mathrm{FI}^{2}} \quad \mathrm{IS}:=\frac{\mathrm{IL} \cdot \mathrm{IX}}{\mathrm{IX}-\mathbf{M L}} \quad \mathrm{In}:=\frac{\mathrm{IS}^{2}-\mathrm{SX}^{2}+\mathrm{IX}^{2}}{2 \cdot \mathrm{IS}}
\end{aligned}
$$

## Definitions.

N1 = 0.92308	Kl = 4.41843	FK $=$ 5.21616	F1 $=0.79773$
NX = 5.59178	XY = 6.99120	Fm = 0.99738	Km $=4.21878$
FO = 0.66468	Xo = 4.65916	mo = 0.33269	Ym $=2.30819$
FI = 9.22300	IL = 9.90105	IS = 17.28632	In $=4.29569$

$\mathrm{N} 1=0.92308 \mathrm{~cm}$ $\mathrm{Kl}=4.41842 \mathrm{~cm}$ FK $=5.21615 \mathrm{~cm}$ F1 $=0.79773 \mathrm{~cm}$ $\mathrm{NX}=5.59178 \mathrm{~cm} \mathrm{mo}=0.33269 \mathrm{~cm}$ $X Y=6.99120 \mathrm{~cm} \mathrm{Ym}=2.30819 \mathrm{~cm}$ Fm $=0.99738 \mathrm{~cm}$ FI $=9.22300 \mathrm{~cm}$ $\mathrm{Km}=4.21878 \mathrm{~cm} \mathrm{IL}=9.90105 \mathrm{~cm}$ Fo $=0.66468 \mathrm{~cm} \quad$ IS $=17.28631 \mathrm{~cm}$ $X o=4.65916 \mathrm{~cm} \quad \mathrm{In}=4.29569 \mathrm{~cm}$


Descriptions.

$$
\begin{aligned}
& \mathbf{X n}:=\sqrt{\mathbf{I X}^{2}-\mathbf{I n}^{2}} \quad \mathbf{Q R}:=\frac{\mathbf{X n} \cdot \mathbf{Q X}}{\mathbf{I S}-\mathbf{I n}} \quad \mathbf{K T}:=\sqrt{\mathbf{G K}^{2}+\mathbf{G T}^{\mathbf{2}}} \quad \mathbf{K Y}:=\frac{\mathbf{K T} \cdot \mathbf{Y m}}{\mathbf{G T}} \\
& \mathbf{K Q}:=\frac{\mathbf{G K} \cdot \mathbf{Q g}}{\mathbf{G T}} \quad \mathbf{R Y}:=\mathbf{K Y}-\mathbf{K Q}+\mathbf{Q R} \quad \text { Xd }:=\mathbf{F L} \quad \mathbf{d p}:=\frac{\mathbf{G K} \cdot \mathbf{X d}}{\mathbf{K T}} \\
& \mathbf{p q}:=\mathbf{Q R} \quad \mathbf{d q}:=\mathbf{d p}-\mathbf{p q} \quad \mathbf{X p}:=\frac{\mathbf{G T} \cdot \mathbf{X d}}{\mathbf{K T}} \quad \mathbf{Q p}:=\mathbf{Q X}-\mathbf{X p} \quad \mathbf{R q}:=\mathbf{Q p} \\
& \text { er }:=\mathbf{d q} \quad \mathbf{R e}:=\mathbf{R Y} \quad \mathbf{R r}:=\sqrt{\mathbf{R e}^{2}-\mathbf{e r}^{2}} \quad \mathbf{R s}:=\frac{\mathbf{R e} \cdot \mathbf{R q}}{\mathbf{R r}}
\end{aligned}
$$

## RY is the radius of the Minor Axis.

Rs is the radius of the Major Axis.
Definitions.

$\mathbf{X n}=1.67719$	QR $=0.84556$	$\mathbf{K T}=11.20242$	$2 \mathrm{KY}=4.80894$
$K Q=2.36260$	$\mathbf{R Y}=3.29189$	$\mathbf{X d}=3.60099$	$\mathbf{d p}=3.15907$
pq = 0.84556	dq = 2.31352	$\mathbf{X p}=1.72840 \quad$ Qp	Qp $=4.82082$
$\mathbf{R q}=4.82082$	er $=2.31352$	$\mathbf{R e}=\mathbf{3 . 2 9 1 8 9} \mathbf{R r}$	$\mathbf{R r}=2.34183$



The first two equations should have been learnt by prior explorations. And they will be repeated demonstrated in following demonstrations. Therefore, here we can, like other equations, simply recall them for the figure.
Descriptions.

$$
\begin{aligned}
& \mathbf{A C}:=\left(\mathbf{A B}^{\left.\mathbf{2} \cdot \mathbf{A G})^{\frac{\mathbf{1}}{\mathbf{3}}} \quad \mathbf{A E}:=(\mathbf{A B} \cdot \mathbf{A G})^{\mathbf{2}}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B}} \begin{array}{l}
\mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{E G}:=\mathbf{B G}-\mathbf{B E} \quad \mathbf{C U}:=\frac{\mathbf{B C} \cdot \mathbf{C E}}{\mathbf{B C}+\mathbf{E G}} \quad \mathbf{B U}:=\mathbf{B C}+\mathbf{C U} \\
\mathbf{G U}:=\mathbf{B G}-\mathbf{B U} \quad \mathbf{U Z}:=\sqrt{\mathbf{B U} \cdot \mathbf{G U}} \quad \mathbf{U W}:=\frac{\mathbf{G K} \cdot \mathbf{U Z}}{\mathbf{G T}} \quad \mathbf{G g}:=\mathbf{G K}-\mathbf{K g} \\
\mathbf{t u}:=\mathbf{Q R} \quad \mathbf{g t}:=\frac{\mathbf{K T} \cdot \mathbf{t u}}{\mathbf{G K}} \quad \mathbf{G t}:=\mathbf{G g}+\mathbf{g t} \quad \mathbf{G W}:=\mathbf{G U}+\mathbf{U W}
\end{array}, l\right.
\end{aligned}
$$

> Is the segment Zv equal to the perpendicular for the ellipse?

## Definitions.

AC $=4.29581$	$\mathbf{A E}=\mathbf{7 . 1 2 3 7 9}$	$\mathrm{BC}=1.70534$	$\mathrm{BE}=4.53332$
$\mathbf{C E}=2.82798$	$\mathrm{EG}=4.68968$	$\mathbf{C U}=0.75413$	$\mathrm{BU}=2.45947$
$\mathbf{G U}=\mathbf{6 . 7 6 3 5 3}$	$\mathrm{UZ}=4.07856$	$\mathbf{U W}=\mathbf{7 . 4 5 4 5 7}$	$\mathbf{G g}=7.13456$

$A C=4.29581 \mathrm{~cm}$ $\mathrm{AE}=7.12379 \mathrm{~cm}$ $B C=1.70534 \mathrm{~cm}$ $\mathrm{BE}=4.53332 \mathrm{~cm}$ $\mathrm{CE}=2.82798 \mathrm{~cm}$ $E G=4.68968 \mathrm{~cm}$ $\mathrm{CU}=0.75413 \mathrm{~cm}$ $B U=2.45947 \mathrm{~cm}$ GU $=6.76353 \mathrm{~cm}$ $U Z=4.07856 \mathrm{~cm}$


## ~~~~

## Descriptions.

$$
\begin{array}{lclll}
\mathbf{W t}:=\mathbf{G W}-\mathbf{G} \mathbf{t} & \mathbf{t v}:=\frac{\mathbf{G T} \cdot \mathbf{W} \mathbf{t}}{\mathbf{K T}} & \mathbf{K t}:=\mathbf{G K}-\mathbf{G} \mathbf{t} & \mathbf{R} \mathbf{t}:=\frac{\mathbf{G T} \cdot \mathbf{K t}}{\mathbf{K T}} \\
\mathbf{R v}:=\mathbf{t v}-\mathbf{R t} & \mathbf{b c}:=\mathbf{2} \cdot \mathbf{R s} & \mathbf{R c}:=\mathbf{R s} \quad \mathbf{c v}:=\mathbf{R} \mathbf{c}+\mathbf{R v} \\
\mathbf{Y w}:=\mathbf{2} \cdot \mathbf{R Y} & \mathbf{W Z}:=\frac{\mathbf{K T} \cdot \mathbf{U Z}}{\mathbf{G T}} & \mathbf{W v}:=\frac{\mathbf{G K} \cdot \mathbf{t v}}{\mathbf{G T}} & \mathbf{Z v}:=|\mathbf{W Z}-\mathbf{W v}|
\end{array}
$$

Definitions.

$\mathbf{W t}=\mathbf{6 . 1 1 9 7 1}$	$\mathbf{t v}=\mathbf{2 . 9 3 7 3 4}$	$\mathrm{Kt}=\mathbf{1 . 7 2 9 2 6}$	$\mathbf{R t}=\mathbf{0 . 8 3 0 0 1}$
$\mathbf{R v}=\mathbf{2 . 1 0 7 3 3}$	$\mathbf{b c}=\mathbf{1 3 . 5 5 3 1 8}$	$\mathbf{R c}=\mathbf{6 . 7 7 6 5 9}$	$\mathbf{c v}=\mathbf{8 . 8 8 3 9 1}$
$\mathbf{Y w}=\mathbf{6 . 5 8 3 7 7}$	$\mathbf{W Z}=\mathbf{8 . 4 9 7 3 7}$	$\mathbf{W v}=\mathbf{5 . 3 6 8 7 0}$	$\mathbf{Z v}=\mathbf{3 . 1 2 8 6 7}$

Given.

$$
\mathbf{N}_{\mathbf{1}}:=\mathbf{Y w} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{b c} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{c v} \quad \mathbf{N}_{\mathbf{4}}:=\mathbf{b c}
$$

Definitions.
$\sqrt{\mathbf{N}_{\mathbf{3}} \cdot\left(\mathbf{N}_{\mathbf{4}}-\mathbf{N}_{\mathbf{3}}\right)} \cdot \frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}}-\mathbf{Z v}=0.00000$
$\mathrm{Wt}=6.11971 \mathrm{~cm}$ tv $=2.93734 \mathrm{~cm}$ $\mathrm{Kt}=1.72926 \mathrm{~cm}$ Rt $=0.83001 \mathrm{~cm}$ $\mathbf{R v}=2.10733 \mathrm{~cm}$ bc $=13.55317 \mathrm{~cm} \quad \mathrm{Vv}=5.36870 \mathrm{~cm}$ $\mathrm{Rc}=6.77659 \mathrm{~cm}$ cv $=8.88391 \mathrm{~cm}$ $\mathrm{Yw}=6.58377 \mathrm{~cm}$ $W Z=8.49737 \mathrm{~cm}$

$\sqrt{N_{3} \cdot\left(N_{4}-N_{3}\right)} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}$ is from $09 / 11 / 97$ The Ellipse for the segment $Z v(B G)$, units divided out.

As one can see, the figure covers the
complete range of cubes and the full range of intersection of the ellipse with the major circle.


Unit $=1.00000$ XY = 0.50076 $X=10.01523$ $\mathbf{Y}=\mathbf{2 0 . 0 0 0 0 0}$
$A B=1.54284 \mathrm{~cm}$ $A C=2.39035 \mathrm{~cm}$ AD $=3.70342 \mathrm{~cm}$ $\mathrm{AE}=5.73777 \mathrm{~cm}$
$\left(\mathrm{AB}^{2}{ }^{\circ} \mathrm{AE}\right)^{1}{ }^{1} \quad \mathrm{AC}=0.00000$
$\left(\mathrm{AB}_{\mathrm{AE}}{ }^{2}\right)_{3}^{1} \quad \mathrm{AD}=0.00000$
$A B=1.00000$
$A C=1.54932$
$A D=2.40039$
$\mathrm{AE}=3.71897$
AE ${ }^{3} \quad \mathrm{AC}=\mathbf{0 . 0 0 0 0 0}$
$\mathrm{AE}^{3} \quad \mathrm{AD}=0.00000$


Unit $=1.00000$
$\mathrm{XY}=0.18220$
$\mathrm{X}=3.64391$
$\mathrm{Y}=20.00000$
$\mathrm{AB}=2.24895 \mathrm{~cm}$
$\mathrm{AC}=4.02907 \mathrm{~cm}$
$\mathrm{AD}=7.21822 \mathrm{~cm}$
$\mathrm{AE}=12.93169 \mathrm{~cm}$
$\left(\mathrm{AB}^{2} \mathrm{AE}\right)^{1} \quad \mathrm{AC}=0.00000$
$\left(\mathrm{ABAAE}^{2}\right)_{3}^{1} \mathrm{AD}=0.00000$
$\mathrm{AB}=1.00000$
$\mathrm{AB}=1.00000$
$\mathrm{AC}=1.79154$
$\mathrm{AD}=3.20960$
$\mathrm{AE}=5.75011$
$\mathrm{AE}^{3} \quad \mathrm{AC}=\mathbf{0 . 0 0 0 0 0}$
$\mathrm{AE}^{3} \mathrm{AD}=\mathbf{0 . 0 0 0 0 0}$

~~~~~~~~
081899
Descriptions.
\(\mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \quad \mathbf{C G}:=\frac{\mathbf{F N} \cdot \mathbf{A C}}{\mathbf{A F}} \quad \mathbf{E F}:=\frac{\mathbf{C F}}{2} \quad \mathbf{E H}:=\frac{\mathbf{F N} \cdot(\mathbf{A C}+\mathbf{E F})}{\mathbf{A F}}\) KN \(:=\frac{\text { EF } \cdot \mathbf{F N}}{\text { EH }} \quad\) JK \(:=\mathbf{C F}-\) KN \(\quad \mathbf{B C}:=\frac{\text { JK } \cdot \mathbf{C G}}{\text { FN }-\mathbf{C G}} \quad\) BF \(:=\mathbf{B C}+\mathbf{C F}\) \(\mathbf{A D}:=\mathbf{A C}+\mathbf{J K} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{J K}\)

Definitions.
\(\mathbf{C F}-\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)=0 \quad\left(\frac{\mathbf{A F}}{\mathbf{A C}}\right)^{2}-\frac{\mathbf{B F}}{\mathbf{B C}}=0 \quad \sqrt{\frac{B F}{B C}}-\frac{\mathbf{A F}}{\mathbf{A C}}=0\)
\(\mathbf{C G}-\frac{\mathbf{N}_{3} \cdot \mathbf{N}_{1}}{\mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{E F}-\frac{\mathbf{N}_{2}-\mathbf{N}_{1}}{2}=0 \quad \mathbf{E H}-\frac{\mathbf{N}_{3} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{2 \cdot \mathbf{N}_{2}}=\mathbf{0}\)
\(K N-\frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}=\mathbf{0} \quad \mathbf{J K}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{1}\right)}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \mathbf{B C}-\frac{\mathbf{N}_{1}{ }^{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=\mathbf{0}\)
\(\mathrm{BF}:=\frac{\mathbf{N}_{\mathbf{2}}{ }^{2}}{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}} \quad \mathrm{AD}-\frac{\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=\mathbf{0} \quad \mathrm{BD}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}=\mathbf{0}\)

Promptly writing this up in 08162015

Exponential series by changing the unit, in other words, the same way as done inside a circle only this circle is getting smaller.

081999

\section*{What about the Names?}

Geometry, Algebra and Arithmetic are each and all binary grammars. All we do when writing up a figure is pair the name for any particular thing or the parts of a thing in terms of each of the convention of names provided by these three systems of grammar to each other. Each of these names are a binary expression, but they each use the convention of names given by a particular grammar. Traditionally, people have approached the topic in terms of precision, which is not right. The distinction is between the perceptible and the intelligible provided by each system of grammar which is expressible by our ability in that grammar system. Grammar cannot, in any wise, change the facts, nor can our ability with a grammar. Stupid people speak of proof as if proof determines the reality, the facts, which is wholly bizzar. All we are doing when pairing names is exercising our ability to do so. Proofing is only our ability to follow the intelligible using perceptible systems of grammar. So, by writing up complex figures one not only pushes their limits, but also learn how to fall back and go on naming in all three conventions. We go from universal expressions to expressions particular to where we are naming.

It is quite natural to become wholly frustrated when on reaches their own particular limits and the limits of even the computer that they may be using.

What is the name of the Ellipse which gives us the cube roots of any number?

Unit.
AB:=1
Given.
\(\mathrm{N}_{1}:=9\)
Descriptions.
\(\mathrm{BN}_{1}:=\mathrm{N}_{1}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BN}_{1}}{2}\)
\(\mathbf{D O}:=\mathbf{B D} \quad \mathbf{A D}:=\mathbf{B D}+\mathbf{A B}\)
\(\mathbf{A C}:=\sqrt{\mathbf{A D}^{2}-\mathbf{D O}^{2}}\)

Definitions.
\(\mathbf{B N}_{1}-\left(\mathbf{N}_{1}-\mathbf{1}\right)=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{N}_{1}-\mathbf{1}}{2}=0\)
DO \(-\frac{\mathbf{N}_{1}-1}{2}=0 \quad A D-\frac{\mathbf{N}_{1}+1}{2}=0\)

\(A C-\sqrt{\left(\frac{N_{1}+1}{2}\right)^{2}-\left(\frac{N_{1}-1}{2}\right)^{2}}=0\)
\(\mathbf{A C}-\sqrt{\mathbf{N}_{1}}=\mathbf{0}\)
Descriptions.
\[
D d:=\frac{A D}{2} \quad D a:=\sqrt{A D^{2}+D O^{2}} \quad \text { ce }:=\frac{D a}{2} \quad \text { de }:=c e-\frac{B D}{2}
\]

Definitions.
Dd \(-\frac{\mathbf{N}_{1}+\mathbf{1}}{4}=0\)
\(\mathrm{Da}-\frac{\sqrt{\mathbf{N}_{1}{ }^{2}+1}}{\sqrt{2}}=0\) \(c e-\frac{\sqrt{2 \cdot\left(\mathbf{N}_{1}{ }^{2}+1\right)}}{4}=0\)
\(d e-\frac{\sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right)}-N_{1}+1}{4}=0\)

\(\mathrm{N}_{\mathbf{1}}=\mathbf{9 . 0 0 0 0 0}\)
Dd \(=2.50000 \quad \frac{N_{1}+1}{4}-\) Dd \(=0.00000\)
\(\mathrm{Da}=6.40312 \frac{\sqrt{\mathrm{~N}_{1}{ }^{2}+1}}{\sqrt{2}}-\mathrm{Da}=0.00000\)
\(\mathrm{ce}=3.20156 \quad \frac{\sqrt{2 \cdot\left(\mathrm{~N}_{1}{ }^{2}+1\right)}}{4}-\mathrm{ce}=0.00000\)
\(\mathrm{de}=1.20156 \quad \frac{\left(\sqrt{2 \cdot\left(\mathrm{~N}_{1}{ }^{2}+1\right)}-\mathrm{N}_{1}\right)+1}{4}-\mathrm{de}=0.00000\)

Descriptions.
\(\mathbf{D F}:=\mathbf{B N}_{\mathbf{1}} \quad \mathbf{F d}:=\sqrt{\mathbf{D d}^{2}+\mathbf{D F}^{\mathbf{2}}}\)
Df:= DO + de \(\quad\) df \(:=\sqrt{D^{2}+\mathbf{D f}^{2}} \quad\) Ff \(:=\) DF - Df \(\mathbf{O g}:=\frac{\mathbf{d f} \cdot \mathbf{D O}}{\text { Ff }}\)
Definitions.
\(D F-\left(N_{1}-1\right)=0 \quad F d-\frac{\sqrt{17 \cdot N_{1}{ }^{2}-30 \cdot N_{1}+17}}{4}=0\)
\(D f-\frac{\left.N_{1}+\sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right.}\right)}{4}=0\)
\(d f-\frac{\sqrt{2 \cdot N_{1}{ }^{2}+\sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right)} \cdot\left(N_{1}-1\right)+2}}{\sqrt{8}}=0\)
\(F f-\frac{\left.3 \cdot N_{1}-\sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right.}\right)}{4}=0\)
\(O g-\frac{\sqrt{2} \cdot\left(N_{1}-1\right) \cdot \sqrt{2 \cdot N_{1}{ }^{2}-\sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right)}+N_{1} \cdot \sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right)}+2}}{2 \cdot\left[3 \cdot N_{1}-\sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right)}-3\right]}=0\)

\(\sim_{n=2}^{0}\)

\section*{Descriptions.}

OI \(:=\frac{\text { Og }}{2} \quad\) FO \(:=\) DO \(\quad\) Fh \(:=\frac{\text { DF } \cdot \text { FO }}{\text { Fd }}\)
\(\mathrm{Oh}:=\sqrt{\mathrm{FO}^{2}-\mathrm{Fh}^{2}} \quad \mathrm{gh}:=\sqrt{\mathrm{Og}^{2}-\mathrm{Oh}^{2}}\)
IJ \(:=\frac{\mathbf{O h} \cdot \mathbf{O I}}{\mathbf{g h}}\)
Definitions.
\(F O-\frac{N_{1}-1}{2}=0 \quad F h-\frac{2 \cdot\left(N_{1}-1\right)^{2}}{\sqrt{17 \cdot N_{1}{ }^{2}-30 \cdot N_{1}+17}}=0\)
\(O h-\frac{\sqrt{\left(N_{1}{ }^{2}-1\right)^{2}}}{2 \cdot \sqrt{17 \cdot N_{1}{ }^{2}-30 \cdot N_{1}+17}}=0\)

Definitions (Arithmetic).
\(\mathrm{OI}-\frac{\sqrt{2} \cdot\left(\mathbf{N}_{1}-1\right) \cdot \sqrt{2 \cdot \mathbf{N}_{1}{ }^{2}-\sqrt{2 \cdot\left(\mathbf{N}_{1}{ }^{2}+1\right)}+N_{1} \cdot \sqrt{2 \cdot\left(\mathbf{N}_{1}{ }^{2}+1\right)}+2}}{4 \cdot\left[3 \cdot N_{1}-\sqrt{2 \cdot\left(\mathbf{N}_{1}{ }^{2}+1\right)}-3\right]}=0\)
\[
\begin{array}{ll}
\mathrm{OI}=4.124556 & \text { FO }=4 \\
\text { Fh }=3.81792 & \text { Oh }=1.1931 \\
\text { gh }=8.162374 & \text { IJ }=0.602889
\end{array}
\]
\(g h-\frac{\left.\sqrt{\left(N_{1}-1\right)^{2} \cdot\left[\left[8 \cdot\left(N_{1}-1\right) \cdot\left(5 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+5\right)\right] \cdot \sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right)}+57 \cdot\left(N_{1}{ }^{4}+1\right)+150 \cdot N_{1}{ }^{2}-124 \cdot N_{1}{ }^{3}-124 \cdot N_{1}\right.}\right]}{\sqrt{\left[4 \cdot\left(17 \cdot N_{1}{ }^{2}-30 \cdot N_{1}+17\right) \cdot\left[11 \cdot\left(N_{1}{ }^{2}+1\right)-18 \cdot N_{1}\right]-6 \cdot \sqrt{2 \cdot\left(N_{1}{ }^{2}+1\right)} \cdot\left(N_{1}-1\right)\right]}}=0\)
\(I J-\frac{\sqrt{2} \cdot \sqrt{-\left(68 \cdot N_{1}{ }^{2}-120 \cdot N_{1}+68\right) \cdot\left[18 \cdot N_{1}-11 \cdot N_{1}{ }^{2}+6 \cdot \sqrt{2} \cdot\left(N_{1}-1\right) \cdot \sqrt{N_{1}{ }^{2}+1}-11\right.} \cdot \sqrt{\left(N_{1}{ }^{2}-1\right)^{2}} \cdot\left(N_{1}-1\right) \cdot \sqrt{2 \cdot N_{1}{ }^{2}-\sqrt{2} \cdot \sqrt{N_{1}{ }^{2}+1}+\sqrt{2} \cdot N_{1} \cdot \sqrt{N_{1}{ }^{2}+1}+2}}{8 \cdot \sqrt{\left(N_{1}-1\right)^{2} \cdot\left(150 \cdot N_{1}{ }^{2}-124 \cdot N_{1}-124 \cdot N_{1}{ }^{3}+57 \cdot N_{1}{ }^{4}+\sqrt{2} \cdot\left(8 \cdot N_{1}-8\right) \cdot \sqrt{N_{1}{ }^{2}+1} \cdot\left(5 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+5\right)+57\right.} \cdot\left(3 \cdot N_{1}-\sqrt{2} \cdot \sqrt{N_{1}{ }^{2}+1}-3\right) \cdot \sqrt{17} \cdot N_{1}{ }^{2}-30 \cdot N_{1}+17}=0\)
 write-up aside for a later date, one which is after mine. As we find in the name of Shadows (Babylon 5,) a definition could become over 10,000 symbols long.

\section*{\(\cos ^{\circ} x^{38}\)}
\[
\mathrm{AB}=1.25400 \mathrm{~cm}
\]

\section*{Definitions (Arithmetic).}
\begin{tabular}{|c|c|}
\hline \(\mathbf{O j}=3.717475\) & \(\mathbf{I j}=1.786711\) \\
\hline \(\mathrm{Ik}=5.786711\) & Hk \(=2.781237\) \\
\hline \(\mathrm{Dj}=0.282525\) & \(\mathrm{HN}_{1}=2.498713\) \\
\hline \(\mathrm{HI}=6.420382\) & HJ \(=7.023271\) \\
\hline \(\mathbf{1 m}=0.952007\) & \(\mathrm{nN}_{1}=5.198884\) \\
\hline
\end{tabular}

\[
\mathrm{N}_{1}=9.00000
\]
\[
\begin{aligned}
& \mathbf{O j}:=\frac{\text { Df } \cdot \mathbf{O I}}{\text { df }} \quad \mathbf{I j}:=\frac{\text { Dd } \cdot \mathbf{O j}}{\text { Df }} \quad \text { Ik }:=\mathbf{D O}+\mathbf{I j} \\
& \text { Hk := } \frac{\text { Dd } \cdot \mathbf{I k}}{\text { Df }} \quad \text { Dj }:=\mathbf{D O}-\mathbf{O j} \quad \mathbf{H N}_{\mathbf{1}}:=\mathbf{H k}-\mathbf{D j} \\
& \mathbf{H I}:=\frac{\mathbf{d f} \cdot \mathbf{I k}}{\text { Df }} \quad \mathbf{H J}:=\mathbf{H I}+\mathbf{I J} \quad \mathbf{l m}:=\frac{\mathbf{D O} \cdot \mathrm{HN}_{\mathbf{1}}}{\mathrm{DF}+\mathrm{HN}_{\mathbf{1}}} \\
& \mathrm{nN}_{1}:=\frac{\mathrm{Df} \cdot \mathrm{HN}_{1}}{\mathrm{Dd}}
\end{aligned}
\]
\(\sim_{n}^{\infty}\)
082999A

The first section of this is simply demonstrating that cube roots are producable as a ratio between BE and BO. In fact, using whole numbers, and a lot of time, one can actually construct an Arithmetic dictionary of such ratios.

Then sometime I am want to I show that AW passes through \(R, Y, S, V, S\) and \(T\).

\section*{UV originates at A.}
and;
The cord ST is equal to CE.
The circle \(R X\) pass through \(R, Y, O, P\) and \(V\).

See E Go!

Descriptions.
\(\mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \mathbf{B O}:=\frac{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{B F}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{G O}:=\mathbf{B G}-\mathbf{B O} \quad \mathbf{O R}:=\sqrt{\mathbf{B O} \cdot \mathbf{G O}}\)
\(\mathbf{F N}:=\mathbf{B F} \quad \mathbf{F O}:=\mathbf{B F}-\mathbf{B O} \quad \mathbf{F P}:=\frac{\mathbf{F O} \cdot \mathbf{F N}}{\mathbf{F N}+\mathbf{O R}} \quad \mathbf{G K}:=\mathbf{B G} \quad \mathbf{B H}:=\mathbf{B G}\)
\(\mathbf{B C}:=\frac{\mathbf{B O} \cdot \mathbf{B H}}{\mathbf{B H}+\mathbf{O R}} \quad \mathbf{G E}:=\frac{\mathbf{G O} \cdot \mathbf{G K}}{\mathbf{G K}+\mathbf{O R}} \quad \mathbf{C E}:=\mathbf{B G}-(\mathbf{B C}+\mathbf{G E})\)
\(\mathbf{B E}:=\mathbf{B C}+\mathbf{C E} \quad \mathbf{A B}:=\frac{\mathbf{B C}^{2}}{\mathbf{C E}-\mathbf{B C}} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \quad \frac{\mathbf{A G}}{\mathbf{A B}}=\mathbf{8}\)
Definitions.
\(B F-\frac{1}{2}=0 \quad B O-\frac{N_{1}}{2 \cdot N_{2}}=0 \quad G O-\frac{2 \cdot N_{2}-N_{1}}{2 \cdot N_{2}}=0\)
\(\mathrm{OR}-\frac{\sqrt{\mathbf{N}_{1} \cdot\left(2 \cdot \mathbf{N}_{2}-\mathbf{N}_{1}\right)}}{2 \cdot \mathbf{N}_{2}}=0 \quad \mathrm{FN}-\frac{1}{2}=0 \quad \mathrm{FO}-\frac{\mathbf{N}_{2}-\mathbf{N}_{1}}{2 \cdot \mathbf{N}_{2}}=0\)
\(F P-\frac{\mathbf{N}_{2}-\mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}^{2}}\right)}=0 \quad G K-1=0 \quad B H-1=0\)
\(B C-\frac{N_{1}}{2 \cdot N_{2}+\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}}=0 \quad G E-\frac{\left(N_{1}-2 \cdot N_{2}\right) \cdot\left(\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}-2 \cdot N_{2}\right)}{N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+4 \cdot N_{2}{ }^{2}}=0\)

\(C E-\frac{\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}}{2 \cdot N_{2}+\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}}=0 \quad B E-\frac{N_{1}+\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}}{2 \cdot N_{2}+\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}}=0 \quad A B-\frac{N_{1}{ }^{2}}{\left(2 \cdot N_{2}+\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}\right) \cdot\left(\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}-N_{1}\right)}=0\)
\(A G-\frac{\sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}} \cdot\left(N_{1}-2 \cdot N_{2}\right)}{N_{1}{ }^{2}+N_{1} \cdot \sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}-2 \cdot N_{2} \cdot \sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}}=0\)
\(\left(\frac{A G}{A B}\right)^{\left(\frac{1}{3}\right)}-\frac{A C}{A B}=0 \quad\left(\frac{A G}{A B}\right)^{\left(\frac{2}{3}\right)}-\frac{A E}{A B}=0\)

I find it very strange that so called mathematicians claim that one cannot abstract cube roots in geomety when every grammar is a binary expression and, since cube roots is simply a two dimensional ratio. I grant that the process to most is complicated, however, complicated and impossible are not the same concept.

I have, by no means, finished the write-up of this figure as I want to find the equations to the remaining structures pointed out in the opening graphic, however, I am still in the early stages of this revision and may come back to it at some later date
\[
N_{1}=2 \quad N_{2}=5
\]
\(\mathrm{AB}-\frac{\mathrm{N}_{1}{ }^{2}}{\left(2 \cdot \mathrm{~N}_{2}+\sqrt{2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathbf{N}_{1}{ }^{2}}\right) \cdot\left(\sqrt{2 \cdot \mathrm{~N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}{ }^{2}}-\mathrm{N}_{1}\right)}=0\)
\(A C-\frac{N_{1} \cdot \sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}}{\left(2 \cdot N_{2} \cdot \sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}-N_{1} \cdot \sqrt{2 \cdot N_{1} \cdot N_{2}-N_{1}{ }^{2}}-N_{1}{ }^{2}\right)}=0\)
\(\mathbf{A E}-\frac{\mathbf{N}_{1} \cdot\left(\mathrm{~N}_{1}-\mathbf{2} \cdot \mathrm{N}_{2}\right)}{\mathbf{N}_{1}{ }^{2}+\mathrm{N}_{1} \cdot \sqrt{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}{ }^{2}}-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \sqrt{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}{ }^{2}}}=0\)

\(\sim_{n=2}^{0}\)
083099A

\section*{Comming Through the Front Door.}

One can prove the Solution to Cube Roots with this figure in a manner suggested as far back as the early Greeks, start with it the figure as proven, and work backward.

\section*{Given. \(\quad \begin{aligned} & \mathbf{y}:=\mathbf{2 0} \\ & \\ & \\ & \mathbf{x}:=\mathbf{7}\end{aligned}\)}

\section*{Descriptions.}
\(\mathbf{B x}:=\mathbf{B y} \cdot \frac{\mathbf{x}}{\mathbf{y}} \quad \mathbf{B E}:=\mathbf{2} \cdot \mathbf{B y} \quad \mathbf{F x}:=\sqrt{\mathbf{B x} \cdot(\mathbf{B E}-\mathbf{B x})} \quad \mathbf{J T}:=\mathbf{B y} \quad \mathbf{G W}:=\frac{\mathbf{F x} \cdot \mathbf{B y}}{(\mathbf{F x}+\mathbf{B E})}\) \(\mathbf{X x}:=\mathbf{G W} \quad \mathbf{x y}:=\mathbf{B y}-\mathbf{B x} \quad \mathbf{F X}:=\mathbf{F x}-\mathbf{X x} \quad \mathbf{M X}:=\frac{\mathbf{F X} \cdot \mathbf{F x}}{\mathbf{x y}} \quad \mathbf{A B}:=\mathbf{M X}-\mathbf{B x}\) \(\mathbf{B C}:=\frac{\mathbf{B x} \cdot \mathbf{B E}}{\mathbf{F x}+\mathbf{B E}} \quad \mathbf{E x}:=\mathbf{B E}-\mathbf{B x} \quad \mathbf{D E}:=\frac{\mathbf{E x} \cdot \mathbf{B E}}{\mathbf{F x}+\mathbf{B E}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A C}:=\mathbf{B C}+\mathbf{A B}\) \(A D:=A E-D E \quad\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-A D=0\) \(\frac{A E}{A B}-\frac{(x-2 \cdot y) \cdot\left(x-2 \cdot y-\sqrt{2 \cdot x \cdot y-x^{2}}\right)}{x \cdot\left(x+\sqrt{2 \cdot x \cdot y-x^{2}}\right)}=0\)

\section*{Descriptions.}
\(B y-1=0 \quad B x-\frac{\mathbf{x}}{\mathbf{y}}=\mathbf{0} \quad \mathbf{B E}-\mathbf{2}=\mathbf{0} \quad \mathbf{F x}-\frac{\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}{\mathbf{y}}=\mathbf{0} \quad \mathbf{J T}-\mathbf{1}=\mathbf{0}\)
\(G W-\frac{\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}{2 \cdot \mathbf{y}+\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}=0 \quad \mathbf{X} \mathbf{x}-\frac{\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}{2 \cdot \mathbf{y}+\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}=0 \quad \mathbf{x y}-\frac{(\mathbf{y}-\mathbf{x})}{\mathbf{y}}=0\)
\(F X-\frac{y \cdot \sqrt{2 \cdot x \cdot y-x^{2}}-x^{2}+2 \cdot x \cdot y}{y \cdot\left(2 \cdot y+\sqrt{2 \cdot x \cdot y-x^{2}}\right)}=0 \quad M X-\frac{\sqrt{x \cdot(2 \cdot y-x)} \cdot\left(x^{2}-y \cdot \sqrt{2 \cdot x \cdot y-x^{2}}-2 \cdot x \cdot y\right)}{y \cdot(x-y) \cdot\left(2 \cdot y+\sqrt{2 \cdot x \cdot y-x^{2}}\right)}=0\)
\(E x-\frac{(2 \cdot y-x)}{y}=0 \quad D E-\frac{2 \cdot(2 \cdot y-x)}{2 \cdot y+\sqrt{-x \cdot(x-2 \cdot y)}}=0 \quad A E-\frac{(2 \cdot y-x) \cdot\left(x-2 \cdot y-\sqrt{2 \cdot x \cdot y-x^{2}}\right)}{(x-y) \cdot\left(2 \cdot y+\sqrt{2 \cdot x \cdot y-x^{2}}\right)}=0\)
\[
\begin{array}{rl}
\mathbf{A B}-\left[\frac{\mathbf{x} \cdot\left(\mathbf{x}+\sqrt{2 \cdot x \cdot y-x^{2}}\right)}{\left(2 \cdot \mathbf{y}+\sqrt{2 \cdot \mathbf{x} \cdot \mathbf{y}-\mathbf{x}^{2}}\right) \cdot(\mathbf{y}-\mathbf{x})}\right]=0 & \mathbf{B C}-\frac{2 \cdot \mathbf{x}}{2 \cdot \mathbf{y}+\sqrt{-\mathbf{x} \cdot(\mathbf{x - 2 \cdot y})}}=0 \\
\mathbf{A C}:=\frac{\mathbf{x} \cdot\left(\mathbf{x}-2 \cdot \mathbf{y}-\sqrt{2 \cdot \mathbf{x} \cdot \mathbf{y}-\mathbf{x}^{2}}\right)}{\left(2 \cdot \mathbf{y}+\sqrt{2 \cdot \mathbf{x} \cdot \mathbf{y}-\mathbf{x}^{2}}\right) \cdot(\mathbf{x}-\mathbf{y})} & \mathbf{A D}-\left[\frac{(x-2 \cdot \mathbf{y}) \cdot\left(x+\sqrt{2 \cdot x \cdot y-x^{2}}\right)}{\left(2 \cdot \mathbf{y}+\sqrt{2 \cdot \mathbf{x} \cdot \mathbf{y}-\mathbf{x}^{2}}\right) \cdot(x-y)}\right]=0
\end{array}
\]

Unit. \(\begin{array}{ll}\text { Gy }:=1 \\ \text { Given. } & y:=20 \\ x:=10\end{array}\)

\section*{Descriptions.}
\(\mathbf{B x}:=\mathbf{B y} \cdot \frac{\mathbf{x}}{\mathbf{y}} \quad \mathbf{B E}:=\mathbf{2} \cdot \mathbf{B y} \quad \mathbf{F x}:=\sqrt{\mathbf{B x} \cdot(\mathbf{B E}-\mathbf{B x})} \quad \mathbf{J T}:=\mathbf{B y} \quad \mathbf{G W}:=\frac{\mathbf{F x} \cdot \mathbf{B y}}{(\mathbf{B E}-\mathbf{F x})}\) \(\mathbf{X x}:=\mathbf{G W} \quad \mathbf{x y}:=\mathbf{B y}-\mathbf{B x} \quad \mathbf{F X}:=\mathbf{F x}-\mathbf{X} \mathbf{x} \quad \mathbf{M X}:=\frac{\mathbf{F X} \cdot \mathbf{F x}}{\mathbf{x y}} \quad \mathbf{A B}:=\mathbf{B} \mathbf{x}-\mathbf{M X}\) \(\mathbf{B C}:=\frac{\mathbf{B x} \cdot \mathbf{B E}}{\mathbf{B E}-\mathbf{F x}} \quad \mathbf{E x}:=\mathbf{B E}-\mathbf{B x} \quad \mathbf{D E}:=\frac{\mathbf{E x} \cdot \mathbf{B E}}{\mathbf{B E}-\mathbf{F x}} \quad \mathbf{A E}:=\mathbf{B E}-\mathbf{A B} \quad \mathbf{A C}:=\mathbf{B C}-\mathbf{A B}\) \(A D:=D E-A E \quad\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-A D=0\) \(\frac{A E}{A B}-\frac{(x-2 \cdot y) \cdot\left(x-2 \cdot y-\sqrt{2 \cdot x \cdot y-x^{2}}\right)}{x \cdot\left(x+\sqrt{2 \cdot x \cdot y-x^{2}}\right)}=0 \quad \begin{aligned} & \text { One can see that the final } \\ & \text { equations are identical. }\end{aligned}\)

\section*{Descriptions.}
\(B y-1=0 \quad B x-\frac{x}{y}=0 \quad B E-2=0 \quad F x-\frac{\sqrt{x \cdot(2 \cdot y-x)}}{y}=0 \quad J T-1=0\)
\(\mathbf{G W}-\frac{\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}{2 \cdot \mathbf{y}-\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}=\mathbf{0} \quad \mathbf{X x}-\frac{\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}{2 \cdot \mathbf{y}-\sqrt{\mathbf{x} \cdot(2 \cdot \mathbf{y}-\mathbf{x})}}=0 \quad \mathbf{x y}-\frac{\mathbf{y}-\mathbf{x}}{\mathbf{y}}=\mathbf{0}\)
\(F X-\frac{y \cdot \sqrt{2 \cdot x \cdot y-x^{2}}+x^{2}-2 \cdot x \cdot y}{y \cdot\left(2 \cdot y-\sqrt{2 \cdot x \cdot y-x^{2}}\right)}=0 \quad M X-\frac{\sqrt{x \cdot(2 \cdot y-x)} \cdot\left(y \cdot \sqrt{2 \cdot x \cdot y-x^{2}}+x^{2}-2 \cdot x \cdot y\right.}{y \cdot(x-y) \cdot\left(\sqrt{2 \cdot x \cdot y-x^{2}}-2 \cdot y\right)}=0\)
\(A B-\frac{x \cdot\left(x-\sqrt{2 \cdot x \cdot y-x^{2}}\right)}{\left(2 \cdot y-\sqrt{2 \cdot x \cdot y-x^{2}}\right) \cdot(x-y)}=0\)
\(B C-\frac{2 \cdot x}{2 \cdot y-\sqrt{-x \cdot(x-2 \cdot y)}}=0 \quad E x-\frac{(2 \cdot y-x)}{y}=0 \quad D E-\frac{2 \cdot(2 \cdot y-x)}{2 \cdot y-\sqrt{x \cdot(2 \cdot y-x)}}=0 \quad A E-\left[2-\frac{x \cdot\left(x-\sqrt{2 \cdot x \cdot y-x^{2}}\right)}{\left(2 \cdot y-\sqrt{2 \cdot x \cdot y-x^{2}}\right) \cdot(x-y)}\right]=0 \quad A C-\left[\frac{x \cdot\left(x-2 \cdot y+\sqrt{2 \cdot x \cdot y-x^{2}}\right)}{\left(2 \cdot y-\sqrt{2 \cdot x \cdot y-x^{2}}\right) \cdot(x-y)}\right]=0\)
\(A D:=D E-A E \quad\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-A D=0\)
\(\mathbf{X Y}=\mathbf{0 . 5 0 0 0 0}\) \(X=10.00000\) \(\mathbf{Y}=\mathbf{2 0 . 0 0 0 0 0}\)
\(A B=1.55941 \mathrm{~cm}\) \(A C=2.70097 \mathrm{~cm}\) \(A D=4.67823 \mathrm{~cm}\) \(\mathrm{AE}=8.10292 \mathrm{~cm}\) \(\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AC}=0.00000\) (AB \(\left.\mathrm{AE}^{2}\right)^{\frac{1}{3}}\)
\({ }^{\frac{1}{3}}-A D=0.00000\) \(B y=4.83117 \mathrm{~cm}\)

Unit. \(C D:=1\)

\section*{Given.}
\(\mathbf{X}\) := 6
\(\mathbf{Y}:=10\)

\section*{Name that Circle}

What is MN?

101799

\section*{Descriptions.}
\(\mathbf{B C}:=\mathbf{C D} \quad \mathbf{B D}:=2 \cdot \mathbf{C D} \quad \mathbf{C X}:=\mathbf{B C} \cdot \frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A D}:=\frac{\mathbf{Y}}{\mathbf{X}}+\mathbf{1} \quad \mathbf{A C}:=\mathbf{A D}-\mathbf{C D}\)
\(\mathbf{C G}:=\mathbf{B C} \quad \mathbf{A G}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C G}^{\mathbf{2}}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{A E}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}}\)
\(\mathbf{C E}:=\mathbf{A C}-\mathbf{A E} \quad \mathbf{a b}:=\mathbf{A G} \quad\) ad \(:=\frac{\mathbf{a b}-\mathbf{A C}}{2} \quad\) ac \(:=\mathbf{C E}+\mathbf{a d}\)
\(\mathbf{c K}:=\sqrt{\mathbf{a c} \cdot(\mathbf{a b}-\mathbf{a c})} \quad \mathbf{E K}:=\mathbf{c K}-\frac{\mathbf{C G}}{2}\)
MN: \(2 \cdot\) EK etc.

\section*{Definitions.}
\(\mathbf{B C}-1=0 \quad B D-2=0 \quad \mathbf{C X}-\frac{\mathbf{X}}{\mathbf{Y}}=0 \quad \mathbf{A D}-\frac{\mathbf{X}+\mathbf{Y}}{\mathbf{X}}=\mathbf{0}\)
\(A C-\frac{Y}{X}=0 \quad C G-1=0 \quad A G-\frac{\sqrt{X^{2}+Y^{2}}}{X}=0 \quad A B-\frac{Y-X}{X}=0\)
\(\mathbf{A E}-\frac{\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{\mathbf{X}}=\mathbf{0} \quad \mathbf{C E}-\frac{\mathbf{Y}-\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}}{\mathbf{X}}=\mathbf{0}\)

\(a b-\frac{\sqrt{X^{2}+Y^{2}}}{X}=0 \quad\) ad \(-\frac{\sqrt{X^{2}+Y^{2}}-Y}{2 \cdot X}=0 \quad a c-\frac{Y+\sqrt{X^{2}+Y^{2}}-2 \cdot \sqrt{Y^{2}-X^{2}}}{2 \cdot X}=0\)
\(c K-\frac{\sqrt{\left(Y+\sqrt{X^{2}+Y^{2}}-2 \cdot \sqrt{Y^{2}-X^{2}}\right) \cdot\left(\sqrt{X^{2}+Y^{2}}-Y+2 \cdot \sqrt{Y^{2}-X^{2}}\right)}}{2 \cdot X}=0 \quad E K-\frac{\sqrt{4 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}+5 \cdot X^{2}-4 \cdot Y^{2}}-X}{2 \cdot X}=0\)
\(M N-\frac{\sqrt{4 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}+5 \cdot X^{2}-4 \cdot Y^{2}}-X}{X}=0 \quad\) etc.

070200
Descriptions.

Unit.
AC := 1
Given.
\(\mathbf{N}_{1}\) := 4
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \delta_{m}:=\mathbf{1} . . \mathbf{N}_{\mathbf{2}}\)
\(\mathbf{A B}:=\frac{\mathbf{A C}}{\mathbf{N}_{1}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}} \quad \mathrm{BE}_{\delta}:=\frac{\mathbf{B D} \cdot \boldsymbol{\delta}}{\mathbf{N}_{2}} \quad \mathrm{CE}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}+\mathbf{B C}^{2}}\)
\(\mathrm{CG}_{\delta}:=\frac{\mathrm{BC} \cdot \mathbf{A C}}{\mathrm{CE}_{\delta}} \quad \mathrm{AD}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BD}^{2}} \quad \mathrm{AG}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathbf{A C}}{\mathrm{CE}_{\delta}} \quad \mathbf{E G}{ }_{\delta}:=\mathrm{CG}_{\delta}-\mathrm{CE}_{\delta} \quad \quad \mathrm{EH}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{EG}_{\delta}}{\mathrm{CE}_{\delta}}\)

\(\mathrm{BK}_{\boldsymbol{\delta}}:=\frac{\mathrm{AB} \cdot \mathrm{BE}_{\boldsymbol{\delta}}}{\mathrm{BD}} \quad \mathrm{CK}_{\boldsymbol{\delta}}:=\mathbf{B C}+\mathrm{BK}_{\boldsymbol{\delta}} \quad \mathrm{CJ}_{\boldsymbol{\delta}}:=\frac{\mathrm{CE}_{\boldsymbol{\delta}} \cdot \mathrm{AC}}{\mathrm{CK}_{\boldsymbol{\delta}}} \quad \mathrm{EJ}_{\boldsymbol{\delta}}:=\mathrm{CJ}_{\boldsymbol{\delta}}-\mathrm{CE}_{\boldsymbol{\delta}}\)

\section*{Definitions.}

In process. POR something or other.

\(\mathbf{E G}_{\boldsymbol{\delta}}=\)
\begin{tabular}{|r|}
\hline 0.238416 \\
\hline 0.204614 \\
\hline 0.151186 \\
\hline 0.081706 \\
\hline 0 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \mathbf{C G}_{\boldsymbol{\delta}}= \\
& \begin{array}{|r|}
\hline 0.993399 \\
\hline 0.974355 \\
\hline 0.944911 \\
\hline 0.907841 \\
\hline 0.866025 \\
\hline
\end{array}
\end{aligned}
\]

\footnotetext{
\begin{tabular}{l}
\(\mathbf{N}_{\mathbf{2}} \cdot \frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)}{\sqrt{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left(\mathbf{\delta}^{\mathbf{2}}+\mathbf{N}_{\mathbf{2}}{ }^{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}{ }^{\mathbf{2}}\right)}}=\) \\
\hline 0.993399 \\
\hline 0.974355 \\
\hline 0.944911 \\
\hline 0.907841 \\
\hline 0.866025 \\
\hline
\end{tabular}
}

\section*{\(C^{2} \cos ^{28}\)}
\begin{tabular}{ll}
\(\mathbf{B E}_{\boldsymbol{\delta}}=\) \\
\begin{tabular}{|r|r|}
\hline 0.086603 \\
\hline 0.173205 \\
\hline 0.259808 \\
\hline 0.34641 \\
\hline 0.433013 \\
\hline
\end{tabular} & \begin{tabular}{|r}
\(\left(\frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)}{\left(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{1}}\right)}\right.\) \\
\hline 0.086603 \\
\hline 0.173205 \\
\hline 0.259808 \\
\hline 0.34641 \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\[
\begin{aligned}
& \frac{\left(\mathbf{N}_{\mathbf{2}}-\boldsymbol{\delta}\right) \cdot \sqrt{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left(\boldsymbol{\delta}^{\left.\mathbf{2}+\mathbf{N}_{\mathbf{2}}^{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}^{\mathbf{2}}\right)}\right.} \mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\boldsymbol{\delta}\right)}{}= \\
& \begin{array}{|}
\hline 0.188746 \\
\hline 0.135837 \\
\hline 0.088192 \\
\hline 0.043481 \\
\hline 0 \\
\hline
\end{array}
\end{aligned}
\]
\(A D=0.5 \quad \sqrt{\frac{1}{\mathbf{N}_{1}}}=0.5\)

\section*{Unit.}

Given.
\(\mathbf{N}_{1}:=1.79201 \quad \mathrm{AB}:=\mathbf{N}_{1}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{1 0 . 4 1 7 4 3} \mathrm{AG}:=\mathbf{N}_{\mathbf{2}}\)
070900
\[
\mathbf{N}_{2}:=10.41743 \text { AG := } \mathbf{N}_{\mathbf{2}}
\]

Descriptions.
\(\mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B}\)
\(\mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{D M}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}}\)
\(\mathbf{A J}:=\mathbf{A D} \quad \mathbf{A K}:=\mathbf{A D} \quad \mathbf{B M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D M}^{2}}\)
\(\mathbf{G M}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D M}^{2}} \quad \mathbf{A F}:=\frac{\mathbf{G M} \cdot \mathbf{A J}}{\mathbf{B M}}\)
\(\mathbf{A C}:=\frac{\mathbf{B M} \cdot \mathbf{A K}}{\mathbf{G M}}\)

Definitions.
\(\left(A B \cdot A G^{3}\right)^{\frac{1}{4}}-A F=0 \quad\left(A B^{3} \cdot A G\right)^{\frac{1}{4}}-A C=0\)

\section*{Alternate Method Quad Roots}
促

Unit.
Given.
\(\begin{array}{ll}\mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 7 3 9 2 6} & \text { AB }:=\mathbf{N}_{\mathbf{1}} \\ \mathbf{N}_{\mathbf{2}}:=\mathbf{1 1 . 7 8 2 5 9} & \text { AF }:=\mathbf{N}_{\mathbf{2}}\end{array}\)
Descriptions.
000720a

\section*{Quad Roots via Tangent Circles.}

i.e., \(A, K, L\) and \(N\) are colinear.

Definitions.
\(\left(A B^{3} \cdot A F\right)^{\frac{1}{4}}-A C=0 \quad\left(A B \cdot A F^{3}\right)^{\frac{1}{4}}-A E=0 \quad\) etc., etc.

\section*{000720b} Descriptions.
\(\mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}\)
\(\mathbf{A M}:=\mathbf{A D} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G}:=\sqrt{\mathbf{D F} \cdot \mathbf{B D}}\)
\(\mathbf{B G}:=\sqrt{\mathbf{D G}^{\mathbf{2}}+\mathbf{B D}^{\mathbf{2}}} \quad \mathbf{A C}:=\frac{\mathbf{B D} \cdot \mathbf{A D}}{\mathbf{D G}}\)

\section*{Definitions.}
\(A C-\left(A B^{3} \cdot A F\right)^{\frac{1}{4}}=0\)

\section*{Quad Roots by equal angles.}

\section*{Given.}

\section*{\(\mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 0 7 3 2 0} \quad \mathrm{AB}:=\mathbf{N}_{\mathbf{1}}\)}
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{1 0 . 5 3 9 8 7} \quad\) AF \(:=\mathbf{N}_{\mathbf{2}}\)

Unit.
AB := 1
Given.
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N}\)
000801a
Descriptions.
\(\mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}}\)
\(\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{N Y}:=\mathbf{D E}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{E Q}:=\mathbf{B E}\)
\(\mathbf{D N}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathrm{NQ}:=\sqrt{\mathrm{DE}^{2}+(\mathbf{D N}+\mathbf{E Q})^{2}}\)
\(\mathbf{Q R}:=\mathbf{A E} \quad \mathbf{O Q}:=\mathbf{B G} \quad\) NO \(:=\sqrt{\mathbf{O Q}^{2}-\mathbf{N Q}^{2}}\)
\(\mathbf{P Q}:=\frac{\mathbf{N O} \cdot \mathbf{2 \cdot Q R}}{\mathbf{O Q}} \quad \mathbf{N P}:=\mathbf{N Q}-\mathbf{P Q} \quad \mathbf{M N}:=\sqrt{\frac{\mathbf{N P}^{\mathbf{2}}}{2}}\)
\(\mathrm{BN}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DN}^{2}} \quad \mathrm{GN}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DN}^{2}}\)
\(\mathbf{G M}:=\mathbf{G N}-\mathbf{M N} \quad \mathbf{F G}:=\frac{\mathbf{B G} \cdot \mathbf{G M}}{\mathbf{G N}} \quad \mathbf{A F}:=\mathbf{A G}-\mathbf{F G}\)

Definitions.
\(\left(\mathbf{A B} \cdot \mathbf{A G} \mathbf{G}^{\frac{1}{4}}-\mathbf{A F}=0\right.\)

\section*{Alternate Method Quad Roots}

\section*{Unit.}

AB := \(\mathbf{1}\)
Given.
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N}\)
080100B
Descriptions.
\(\mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{E Q}:=\mathbf{B E}\)
\(\mathbf{D N}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathbf{B N}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D N}^{2}}\)
\(\mathbf{G N}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D N}^{2}} \quad \mathbf{D E}:=\mathbf{B E}-\mathbf{B D}\)
\(\mathbf{N Q}:=\sqrt{(\mathrm{DN}+\mathbf{E Q})^{2}+\mathrm{DE}^{2}} \quad \mathbf{A N}:=\sqrt{\mathbf{A D}^{2}+\mathrm{DN}^{2}}\)

\(\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A Q}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E Q}^{2}}\)
\(\mathbf{K N}:=\frac{\mathbf{N Q}^{2}+\mathbf{A N}^{2}-\mathbf{A Q}^{2}}{2 \cdot \mathbf{N Q}} \quad \mathbf{K M}:=\mathbf{K N} \quad \mathbf{M N}:=\sqrt{\mathrm{KN}^{2}+\mathrm{KM}^{\mathbf{2}}}\)
\(\mathbf{G M}:=\mathbf{G N}-\mathbf{M N} \quad \mathbf{G F}:=\frac{\mathbf{B G} \cdot \mathbf{G M}}{\mathbf{G N}} \quad \mathbf{A F}:=\mathbf{A} \mathbf{G}-\mathbf{G F}\)

Definitions.
\(\left(A B \cdot A G^{3}\right)^{\frac{1}{4}}-\mathbf{A F}=0\)
\(\sim_{n=2}^{0}\)

\section*{Given.}

AC := . 884
AE := 3.521

\section*{080200}

Descriptions.
\(\mathbf{A D}:=\frac{\mathbf{A E}}{2} \quad \mathbf{E P}:=\mathbf{A E} \quad \mathbf{D E}:=\mathbf{A D} \quad \mathbf{D P}:=\sqrt{\mathbf{E P}^{2}-\mathbf{D E}^{2}}\)
\(\mathbf{F P}:=\mathbf{E P} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C D}:=\mathbf{C E}-\mathbf{D E} \quad \mathbf{C F}:=\sqrt{\mathrm{FP}^{2}-\mathbf{C D}^{2}}-\mathrm{DP}\)
\(\mathbf{P R}:=\mathbf{C F} \quad \mathbf{D R}:=\mathbf{D P}+\mathbf{P R} \quad \mathbf{C R}:=\sqrt{\mathbf{C D}^{2}+\mathbf{D R}^{2}} \quad \mathbf{C S}:=\frac{\mathbf{C D}^{2}}{\mathbf{C R}}\)
\(\begin{array}{lrl}\mathbf{D S}:=\sqrt{\mathbf{C D}^{2}-\mathbf{C S}^{2}} \quad \text { DL }:=\mathbf{A D} & \mathbf{L S}:=\sqrt{\mathbf{D L}^{2}-\mathbf{D S}^{2}} \quad \mathbf{R S}:=\mathbf{C R}-\mathbf{C S} \\ \mathbf{L R}:=\mathbf{R S}+\mathbf{L S} & \mathbf{B D}:=\frac{\mathbf{C D} \cdot \mathbf{L R}}{\mathbf{C R}} & \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{S T}:=\mathbf{L S} \quad \mathbf{R T}:=\mathbf{R S}-\mathbf{S T}\end{array}\)
In the trisection figure given and given
\(A C\) as the Unit what is AB?

\(\begin{aligned} & \text { In trisection the length RT to the } \\ & \text { similarity point is equal to the radius }\end{aligned} \quad \mathbf{R T}-\left(\frac{1}{2}\right) \cdot A E=0\) of the circle.

\section*{Definitions.}

\section*{In Trisection What Is AB?}
\(\mathbf{A D}-\frac{\mathbf{A E}}{2}=\mathbf{0} \quad \mathbf{D P}-\frac{\mathbf{A E}}{2} \cdot \sqrt{3}=0 \quad \mathbf{C F}-\left(\frac{\sqrt{4 \cdot \mathbf{A C} \cdot \mathbf{A E}-4 \cdot \mathbf{A C ^ { 2 } + \mathbf { 3 } \cdot \mathbf { A E }}}{ }^{2}}{2}-\frac{\sqrt{3} \cdot \mathbf{A E}}{2}\right)=0 \quad \mathbf{C E}-(\mathbf{A E}-\mathbf{A C})=0 \quad \mathbf{C D}-\left(\frac{\mathbf{1}}{2} \cdot \mathbf{A E}-\mathbf{A C}\right)=\mathbf{0}\)
\(\mathrm{DR}-\frac{1}{2} \cdot \sqrt{(\mathrm{AE}+2 \cdot \mathbf{A C}) \cdot(3 \cdot \mathbf{A E}-2 \cdot \mathbf{A C})}=0 \quad \mathbf{C R}-\mathbf{A E}=0 \quad \mathbf{C S}-\left(\frac{1}{4}\right) \cdot \frac{(-\mathbf{A E}+2 \cdot \mathbf{A C})^{2}}{\mathrm{AE}}=0 \quad \mathrm{LS}-\frac{1}{4} \cdot \frac{\left(-4 \cdot A C^{2}+4 \cdot A E \cdot A C+A E^{2}\right)}{\mathrm{AE}}=0\)
\(\mathbf{D S}-\frac{1}{4} \cdot \frac{(\mathbf{A E}-\mathbf{2} \cdot \mathbf{A C})}{\mathbf{A E}} \cdot \sqrt{(\mathbf{A E}+2 \cdot \mathbf{A C}) \cdot(\mathbf{3} \cdot \mathbf{A E}-2 \cdot \mathbf{A C})}=\mathbf{0}\)
\(L R-\frac{\left(\mathrm{AE}^{2}-2 \cdot A C^{2}+2 \cdot A E \cdot A C\right)}{A E}=0 \quad \quad R S-\frac{1}{4} \cdot(A E+2 \cdot A C) \cdot \frac{(3 \cdot A E-2 \cdot A C)}{A E}=0\)
\(\mathrm{BD}-\left(\frac{1}{2} \cdot \mathrm{AE}-\frac{3}{\mathrm{AE}} \cdot \mathrm{AC}^{2}+\frac{2}{\mathrm{AE}^{2}} \cdot \mathrm{AC}^{3}\right)=0\)
\(A B-A C^{2} \cdot \frac{(3 \cdot A E-2 \cdot A C)}{A E^{2}}=0\)
\(A B \cdot A E^{2}-A C^{2}(3 \cdot A E-2 \cdot A C)=0\)

080300A
Descriptions.

\section*{Unit.}

AB := 1
Given.
\(\mathrm{N}_{1}:=3\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{2}\)

\section*{On Trisection}

If \(2 \mathrm{IQ}=\mathrm{EK}\) then \(2 \mathrm{JK}=\mathrm{EK}\) and the figure projected from BCD will yield a trisected figure JKL.

Definitions.
\(\frac{\mathbf{3} \cdot \mathbf{N}_{\mathbf{2}}}{\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}}}-\mathbf{B O}=\mathbf{0} \quad \frac{\mathbf{N}_{\mathbf{2}}}{\mathbf{4}} \cdot \frac{\left(\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}}-\mathbf{3}\right)}{\mathbf{N}_{\mathbf{1}}}-\mathbf{D O}=\mathbf{0} \quad \frac{\mathbf{N}_{\mathbf{2}}}{\left(\mathbf{4 \cdot \mathbf { N } _ { 1 })}\right.} \cdot \sqrt{\mathbf{3}} \cdot \sqrt{\mathbf{4} \cdot \mathbf{N}_{1}-\mathbf{3}}-\mathbf{G O}=\mathbf{0} \quad \frac{\mathbf{N}_{\mathbf{2}}}{\mathbf{2}} \cdot \sqrt{\mathbf{3}} \cdot \sqrt{\frac{\mathbf{1}}{\mathbf{N}_{1}}}-\mathbf{B G}=\mathbf{0} \quad \frac{\mathbf{N}_{\mathbf{2}}}{\mathbf{4}} \cdot \sqrt{\mathbf{3}} \cdot \sqrt{\frac{\mathbf{1}}{\mathbf{N}_{1}}}-\mathbf{B S}=\mathbf{0}\)
\(\frac{\sqrt{3} \cdot \mathbf{N}_{2} \cdot\left(\sqrt{4 \cdot \mathbf{N}_{1}-3}-\sqrt{\mathbf{N}_{1}}\right)}{4 \cdot \mathbf{N}_{1}}-\mathbf{G T}=0 \quad \frac{\mathbf{N}_{2}}{4} \cdot \sqrt{\frac{\left(4 \cdot \mathbf{N}_{1}-3\right)}{\mathbf{N}_{1}}}-\mathbf{A S}=0 \quad \frac{\mathbf{N}_{2}}{4} \cdot\left[2-\sqrt{\frac{\left(4 \cdot \mathbf{N}_{1}-3\right)}{\mathbf{N}_{1}}}\right]-\mathbf{E S}=0\)
\(c^{2} \operatorname{cin}^{2}\)
\(\frac{-\mathbf{N}_{2}}{4} \cdot \frac{\left[3 \cdot \sqrt{4 \cdot \mathbf{N}_{1}-3} \cdot \sqrt{\mathbf{N}_{1}}-2 \cdot \sqrt{4 \cdot \mathbf{N}_{1}-3} \cdot \mathbf{N}_{1}\left(\frac{3}{2}\right)+4 \cdot \mathbf{N}_{1}{ }^{2}-3 \cdot \mathbf{N}_{1}\right]}{\left[\mathbf{N}_{1}^{\left(\frac{3}{2}\right)} \cdot\left(-\sqrt{4 \cdot \mathbf{N}_{1}-3}+\sqrt{\mathbf{N}_{1}}\right)\right]}-10=0\)
\(\frac{-\mathbf{N}_{2}}{2} \cdot \frac{\left(\sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1}}\right)}{\left(\sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}-\sqrt{\mathbf{N}_{1}}\right)}-\mathbf{B I}=\mathbf{0}\)
\(\frac{-\mathbf{N}_{2}}{\left(-\mathbf{2} \cdot \sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}+\mathbf{2} \cdot \sqrt{\mathbf{N}_{1}}\right)} \cdot \sqrt{\mathbf{N}_{1}}-\mathbf{A I}=\mathbf{0}\)
\(\frac{\mathbf{N}_{2}}{2} \cdot \sqrt{2-\frac{1}{\sqrt{\mathbf{N}_{1}}} \cdot \sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}}-\mathrm{BE}=0\)

\(\frac{-\mathbf{N}_{2}}{2} \cdot \sqrt{2-\frac{\sqrt{4 \cdot \mathbf{N}_{1}-3}}{\sqrt{\mathbf{N}_{1}}}} \cdot \frac{\sqrt{\mathbf{N}_{1}}}{\left(-\sqrt{4 \cdot \mathbf{N}_{1}-3}+\sqrt{\mathbf{N}_{1}}\right)}-\mathbf{E I}=\mathbf{0}\)
\(\frac{\mathbf{N}_{2}}{4} \cdot \frac{\left(2 \cdot \sqrt{\mathbf{N}_{1}}-\sqrt{4 \cdot \mathbf{N}_{1}-3}\right)}{\left(\sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}-\sqrt{\mathbf{N}_{1}}\right)}-\mathbf{I Q}=0 \quad \frac{\mathbf{N}_{2}}{2} \cdot \frac{\left(2 \cdot \sqrt{\mathbf{N}_{1}}-\sqrt{4 \cdot \mathbf{N}_{1}-3}\right)}{\left(\sqrt{4 \cdot \mathbf{N}_{1}-3}-\sqrt{\mathbf{N}_{1}}\right)}-\mathbf{E K}=0\)
\(\sim_{n=2}^{0}\)
080300B
Descriptions.

\section*{Unit.}

AB:= 1
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{3}\)
\(\mathbf{N}_{\mathbf{2}}\) := \(\mathbf{2}\)
\(\mathbf{A D}:=\mathbf{A B} \quad \mathbf{A P}:=\frac{\mathbf{A D}}{2} \quad \mathbf{B P}:=\mathbf{A B}+\mathbf{A P} \quad \mathbf{B O}:=\frac{\mathbf{B P}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{A E}:=\mathbf{A B}\)
\(\mathbf{D O}:=\mathbf{N}_{\mathbf{2}}-\mathbf{B O} \quad \mathbf{G O}:=\sqrt{\mathbf{B O} \cdot \mathbf{D O}} \quad \mathbf{B G}:=\sqrt{\mathbf{G O}^{2}+\mathbf{B O}^{2}} \quad \mathbf{B S}:=\frac{\mathbf{B G}}{2} \quad\) ER \(:=\mathbf{B S} \quad\) TO \(:=\mathbf{E R}\)
\(\mathbf{G T}:=\mathbf{G O}-\mathbf{T O} \quad \mathbf{A S}:=\sqrt{\mathbf{A B}^{2}-\mathbf{B S}^{2}} \quad \mathbf{E S}:=\mathbf{A E}-\mathbf{A S} \quad \mathbf{B R}:=\mathbf{E S} \quad\) OR \(:=\mathbf{B O}-\mathbf{B R}\)
\(\mathbf{E T}:=\mathbf{O R} \quad \mathbf{I O}:=\frac{\mathbf{E T} \cdot \mathbf{G O}}{\mathbf{G T}} \quad \mathbf{B I}:=\mathbf{I O}-\mathbf{B O} \quad \mathbf{A I}:=\mathbf{B I}+\mathbf{A B} \quad \mathbf{B E}:=\sqrt{\mathbf{E R}^{2}+\mathbf{B R}^{2}}\)
\(\mathbf{G E}:=\mathbf{B E} \quad \mathbf{G I}:=\frac{\mathbf{G E} \cdot \mathbf{G O}}{\mathbf{G T}} \quad \mathbf{E I}:=\mathbf{G I}-\mathbf{G E} \quad \mathbf{A K}:=\mathbf{A I} \quad \mathbf{I K}:=\mathbf{E I} \quad \mathbf{I Q}:=\frac{\mathbf{I K}^{\mathbf{2}}+\mathbf{A I}^{\mathbf{2}}-\mathbf{A K} \mathbf{2}^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{A I}}\)
\(\mathbf{E K}:=\mathbf{A K}-\mathbf{A E} \quad \frac{\mathbf{E K}}{\mathbf{I Q}}=\mathbf{2}\)

Definitions.

\(\frac{\sqrt{3} \cdot \mathbf{N}_{2} \cdot\left(\sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}-\sqrt{\mathbf{N}_{1}}\right)}{4 \cdot \mathbf{N}_{1}}-\mathbf{G T}=0 \quad \frac{\mathbf{N}_{2}}{4} \cdot \sqrt{\frac{\left(4 \cdot \mathbf{N}_{1}-\mathbf{3}\right)}{\mathbf{N}_{1}}}-\mathbf{A S}=0 \quad \frac{\mathbf{N}_{2}}{4} \cdot\left[2-\sqrt{\frac{\left(4 \cdot \mathbf{N}_{1}-\mathbf{3}\right)}{\mathbf{N}_{1}}}\right]-\mathbf{E S}=\mathbf{0}\)

\[
\frac{-N_{2}}{4} \cdot \frac{\left[3 \cdot \sqrt{4 \cdot N_{1}-3} \cdot \sqrt{N_{1}}-2 \cdot \sqrt{4 \cdot N_{1}-3} \cdot N_{1}^{\left(\frac{3}{2}\right)}+4 \cdot N_{1}^{2}-3 \cdot N_{1}\right]}{\left[N_{1}^{\left(\frac{3}{2}\right)} \cdot\left(-\sqrt{4 \cdot N_{1}-3}+\sqrt{N_{1}}\right)\right]}-10=0
\]

\[
\begin{aligned}
& \frac{-\mathbf{N}_{2}}{2} \cdot \frac{\left(\sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1}}\right)}{\left(\sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}-\sqrt{\mathbf{N}_{1}}\right)}-\mathbf{B I}=\mathbf{0} \\
& \left(-2 \cdot \sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}+\mathbf{2} \cdot \sqrt{\mathbf{N}_{1}}\right) \\
& \sqrt{\mathbf{N}_{1}}-\mathbf{A I}=\mathbf{0} \\
& \frac{\mathbf{N}_{2}}{2} \cdot \sqrt{2-\frac{1}{\sqrt{\mathbf{N}_{1}}} \cdot \sqrt{4 \cdot \mathbf{N}_{1}-\mathbf{3}}}-\mathbf{B E}=\mathbf{0}
\end{aligned}
\]
\(\frac{\mathbf{N}_{\mathbf{2}}}{\mathbf{2}} \cdot \sqrt{\frac{-\left(-\mathbf{2} \cdot \sqrt{\mathbf{N}_{\mathbf{1}}}+\sqrt{\left.\mathbf{4 \cdot \mathbf { N } _ { \mathbf { 1 } } - \mathbf { 3 }}\right)}\right.}{\sqrt{\mathbf{N}_{\mathbf{1}}}}} \cdot \frac{\sqrt{\mathbf{4 \cdot \mathbf { N } _ { \mathbf { 1 } } - \mathbf { 3 }}}}{\left(\sqrt{4 \cdot \mathbf{N}_{\mathbf{1}}-\mathbf{3}}-\sqrt{\mathbf{N}_{\mathbf{1}}}\right)}-\mathbf{G I}=\mathbf{0}\)

080400A

With the following construction, one can see that square roots is directly involved with what is called angle trisection. Is there a reasonable method of projecting to the square? Probably not, but what the heck?

I am going to figure this out and then I am going to order the equations a little different at the start to see what happens to all the definitions.

This is the A plate, or the first of six.
What will be demonstrated are the
differences in the choice of what one uses for a unit to write the figure up.

Trisection and Square Roots

\(m \angle A B C=60.00000\)
\(\mathrm{m} \angle \mathrm{DFE}=76.93495^{\circ}\)
\(\mathrm{m} \angle \mathrm{BFE}=25.64498^{\circ}\)
\(\mathrm{m} \angle \mathrm{CFB}=25.64498^{\circ}\)
\(\mathrm{m} \angle \mathrm{DFC}=25.64498^{\circ}\)
\(\frac{m \angle D F E}{m \angle B F E}=3.00000\)
\(m \angle \mathrm{DFE}-(\mathrm{m} \angle \mathrm{BFE}+\mathrm{m} \angle \mathrm{CFB}+\mathrm{m} \angle \mathrm{DFC})=0.00000^{\circ}\)

\section*{Unit.}

Given.
\(\mathbf{N}_{1}:=1.90557 \quad \mathrm{AB}:=\mathrm{N}_{1}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{1 2 . 0 1 2 6 5} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{2}}\)
Descriptions.
\(\mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B}\)
\(\mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}}\)
\(\mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathbf{E O}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{E Q}:=\frac{\mathbf{E O}^{2}}{\mathbf{A E}}\)
\(\mathrm{DE}:=\mathrm{AE}-\mathrm{AD} \quad \mathrm{DM}:=\sqrt{\mathrm{DE}^{2}+\mathrm{BE}^{2}} \quad \mathrm{HM}:=\frac{\mathrm{BE} \cdot \mathrm{BF}}{\mathrm{DM}}\)
\(\mathbf{D H}:=\mathbf{H M}-\mathbf{D M} \quad \mathbf{C D}:=\frac{\mathbf{D E} \cdot \mathbf{D H}}{\mathrm{DM}} \quad \mathbf{C E}:=\mathbf{D E}+\mathbf{C D} \quad \mathrm{BC}:=\mathbf{B E}-\mathbf{C E}\)
\(\mathbf{E N}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{K G}:=\frac{2 \cdot \mathbf{E Q} \cdot \mathbf{B E}}{\mathbf{E O}} \quad \mathbf{A G}:=\mathbf{A E}-\mathbf{K G}\)

\[
\mathbf{C S}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{A G}}{\mathbf{A E}} \quad \mathbf{A S}:=\mathbf{A E}-(\mathbf{D E}+\mathbf{C D}+\mathbf{C S}) \quad \mathbf{B S}:=\mathbf{A S}-\mathbf{A B}
\]

Definitions:
\(\mathbf{N}\)
\(\mathbf{A B}-\mathbf{N}_{\mathbf{1}}=\mathbf{0} \quad \mathbf{A F}-\mathbf{N}_{\mathbf{2}}=\mathbf{0} \quad \mathbf{A D}-\sqrt{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0} \quad \mathbf{B D}-\left(\sqrt{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}-\mathbf{N}_{\mathbf{1}}\right)=\mathbf{0}\)
\(\mathbf{B F}-\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)=\mathbf{0} \quad \mathbf{D F}-\left(\mathbf{N}_{\mathbf{2}}-\sqrt{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}\right)=\mathbf{0} \quad \mathrm{DJ}-\sqrt{\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)-\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0}\)

\(C^{2} \cos ^{2}\)
\(D E-\frac{\mathbf{N}_{1}+\mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}}{2}=0 \quad \mathrm{DM}-\frac{\sqrt{\left.\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2}{ }^{2}+\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)\right]}}{\sqrt{2}}=0\) \(H M-\frac{\sqrt{2} \cdot\left(N_{1}-N_{2}\right)^{2}}{2 \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot \sqrt{N_{1} \cdot N_{2}} \cdot\left(N_{1}+N_{2}\right)+2 \cdot N_{1} \cdot N_{2}}}=0\)
\(\mathbf{D H}-\frac{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right) \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}-\mathbf{2} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}}{\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\mathbf{2} \cdot \sqrt{\left.\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}\right)}\right.}}=\mathbf{0}\)
\(\mathbf{C D}-\frac{\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}} \cdot\left(\mathbf{N}_{1}{ }^{2}+6 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}\right)-4 \cdot \mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}-4 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}{ }^{2}}{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}\right)}=0\)
\(\mathbf{C E}-\frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)^{\mathbf{2}}}{\mathbf{2} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}=\mathbf{0} \quad \mathbf{B C}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}}=\mathbf{0} \quad\) EN \(-\frac{\sqrt{\mathbf{3}} \cdot \sqrt{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)^{2}}}{2}=\mathbf{0}\)
\(K G-\frac{\left(N_{1}-N_{2}\right)^{2}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad A G-\frac{2 \cdot N_{1} \cdot N_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \operatorname{CS}-\frac{\mathbf{N}_{1} \cdot N_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0\)
\(A S-\frac{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}{ }^{\mathbf{2}}+\mathbf{6} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{2}}{ }^{2}\right)}{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)^{\mathbf{3}}}=\mathbf{0} \quad \mathbf{B S}-\frac{\mathbf{N}_{\mathbf{1}}{ }^{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{3} \cdot \mathbf{N}_{\mathbf{2}}\right)}{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)^{\mathbf{3}}}=\mathbf{0}\)

\(\sim_{n=2}^{0}\)
080400B
This is the B plate, or the second of six.

\section*{Unit.}

Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{1 . 9 0 5 5 7} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{1 0 . 1 0 7 0 8} \quad B F:=\mathbf{N}_{\mathbf{2}}\)
Descriptions.
\(\mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}}\)
\(\mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EO}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AE}:=\mathrm{BE}+\mathrm{AB} \quad \mathrm{EQ}:=\frac{\mathbf{E O}^{2}}{\mathrm{AE}}\)
\(\mathrm{DE}:=\mathbf{A E}-\mathbf{A D} \quad \mathrm{DM}:=\sqrt{\mathrm{DE}^{2}+\mathrm{BE}^{2}} \quad \mathrm{HM}:=\frac{\mathrm{BE} \cdot \mathrm{BF}}{\mathrm{DM}}\)
\(\mathbf{D H}:=\mathbf{H M}-\mathbf{D M} \quad \mathbf{C D}:=\frac{\mathbf{D E} \cdot \mathbf{D H}}{\mathbf{D M}} \quad \mathbf{C E}:=\mathbf{D E}+\mathbf{C D} \quad \mathbf{B C}:=\mathbf{B E}-\mathbf{C E}\)
\(\mathbf{E N}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{K G}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{B E}}{\mathbf{E O}} \quad \mathbf{A G}:=\mathbf{A E}-\mathbf{K G}\)

\(\mathbf{C S}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{A G}}{\mathbf{A E}} \quad \mathbf{A S}:=\mathbf{A E}-(\mathbf{D E}+\mathbf{C D}+\mathbf{C S}) \quad \mathbf{B S}:=\mathbf{A S}-\mathbf{A B}\)

Definitions:
\(\mathbf{N}\)
\(\mathbf{A B}-\mathbf{N}_{\mathbf{1}}=\mathbf{0} \quad \mathbf{B F}-\mathbf{N}_{\mathbf{2}}=\mathbf{0} \quad \mathbf{A F}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0}\)
\(\mathbf{A D}-\sqrt{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}=\mathbf{0} \quad \mathbf{B D}-\left[\sqrt{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}-\mathbf{N}_{\mathbf{1}}\right] \quad \mathbf{D F}-\left[\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\sqrt{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}\right]=\mathbf{0}\)
DJ \(-\sqrt{\left[\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot N_{1}} \cdot\left(2 \cdot N_{1}+N_{2}\right)-2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{1}{ }^{2}\right]}=0\)
\(\mathrm{BE}-\frac{\mathbf{N}_{2}}{2}=0 \quad \mathrm{EO}-\frac{\mathbf{N}_{2}}{4}=0\)
\(A E-\frac{2 \cdot N_{1}+N_{2}}{2}=0 \quad E Q-\frac{\mathbf{N}_{2}{ }^{2}}{8 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0\)
\(\mathrm{DE}-\frac{2 \cdot \mathrm{~N}_{1}+\mathrm{N}_{2}-2 \cdot \sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2} \cdot \mathrm{~N}_{1}}}{2}=0\)

\(\mathrm{DM}-\frac{\sqrt{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{2}-4 \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}} \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}}{2}=0\)
\(H M-\frac{\mathbf{N}_{2}{ }^{2}}{\sqrt{2 \cdot\left(2 \cdot N_{1}+N_{2}\right)^{2}-4 \cdot \sqrt{N_{1}{ }^{2}+N_{2} \cdot \mathbf{N}_{1}} \cdot\left(2 \cdot N_{1}+\mathbf{N}_{2}\right)}}=0\)
\(\mathbf{D H}-\frac{\sqrt{2} \cdot\left[\sqrt{\left.\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1} \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)-\mathbf{2} \cdot \mathbf{N}_{1}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}\right]}\right.}{\left.\sqrt{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left[2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}\right.}\right]}=\mathbf{0}\)
\(C D-\frac{\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}} \cdot\left(\mathbf{8} \cdot \mathbf{N}_{1}{ }^{2}+\mathbf{8} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}\right)-\mathbf{4} \cdot \mathbf{N}_{1} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}}\right)}=0\)
\(\mathrm{CE}-\frac{\mathbf{N}_{2}{ }^{2}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad \mathrm{BC}-\frac{\mathrm{N}_{1} \cdot \mathbf{N}_{2}}{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \mathrm{EN}-\frac{\sqrt{3} \cdot \sqrt{\mathbf{N}_{2}{ }^{2}}}{2}=0\)
\(K G-\frac{\mathbf{N}_{2}{ }^{2}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0\)
\(A G-\frac{2 \cdot N_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}}=\mathbf{0}\)
\(\mathbf{C S}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}^{2} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0\)
\(A S-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(8 \cdot \mathbf{N}_{1}{ }^{2}+8 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}\right)}{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0\)

\(B S-\frac{\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2} \cdot\left(\mathbf{4} \cdot \mathbf{N}_{1}+\mathbf{3} \cdot \mathbf{N}_{2}\right)}{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0\)

080400C

This is the \(C\) plate, or the third of six.

\section*{Trisection and Square Roots}

Unit.
AB :=

\section*{AB := 1}

\section*{Given.}
\[
\mathbf{N}_{1}:=12.01265 \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{1}}
\]

Descriptions.
\(\mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B}\)
\(\mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}}\)
\(\mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathbf{E O}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{E Q}:=\frac{\mathbf{E O}^{2}}{\mathbf{A E}}\)
\(\mathrm{DE}:=\mathrm{AE}-\mathrm{AD} \quad \mathrm{DM}:=\sqrt{\mathrm{DE}^{2}+\mathrm{BE}^{2}} \quad \mathrm{HM}:=\frac{\mathrm{BE} \cdot \mathrm{BF}}{\mathrm{DM}}\)
\(\mathbf{D H}:=\mathbf{H M}-\mathbf{D M} \quad \mathbf{C D}:=\frac{\mathrm{DE} \cdot \mathbf{D H}}{\mathrm{DM}} \quad \mathbf{C E}:=\mathrm{DE}+\mathrm{CD} \quad \mathrm{BC}:=\mathrm{BE}-\mathrm{CE}\)
\(\mathbf{E N}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{K G}:=\frac{2 \cdot \mathbf{E Q} \cdot \mathbf{B E}}{\mathbf{E O}} \quad \mathbf{A G}:=\mathbf{A E}-\mathbf{K G}\)

\(\mathbf{C S}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{A G}}{\mathbf{A E}} \quad \mathbf{A S}:=\mathbf{A E}-(\mathbf{D E}+\mathbf{C D}+\mathbf{C S}) \quad \mathbf{B S}:=\mathbf{A S}-\mathbf{A B}\)

\section*{Definitions:}
\(\mathbf{N}\)
\(\mathbf{1 - 1}=\mathbf{0} \quad \mathbf{A F}-\mathbf{N}_{\mathbf{1}}=\mathbf{0} \quad \mathbf{A D}-\sqrt{\mathbf{N}_{\mathbf{1}}}=\mathbf{0} \quad \mathbf{B D}-\left(\sqrt{\mathbf{N}_{\mathbf{1}}}-\mathbf{1}\right)=\mathbf{0}\)
\(\mathbf{B F}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)=\mathbf{0}\)
DF \(-\left(\mathbf{N}_{\mathbf{1}}-\sqrt{\mathbf{N}_{\mathbf{1}}}\right)=\mathbf{0}\)
DJ \(-\sqrt{\sqrt{\mathbf{N}_{\mathbf{1}}} \cdot\left(\sqrt{\mathbf{N}_{\mathbf{1}}}-\mathbf{1}\right)^{\mathbf{2}}}=\mathbf{0}\)
\(\mathrm{BE}-\frac{\mathbf{N}_{\mathbf{1}}-\mathbf{1}}{2}\)
EO \(-\frac{\mathbf{N}_{1}-\mathbf{1}}{4}=0\)
\(A E-\frac{1+N_{1}}{2}=0\)
\(E Q-\frac{\left(1-N_{1}\right)^{2}}{8 \cdot\left(1+N_{1}\right)}=0\)
\(C^{2} \cos ^{2}\)
\[
A G-\frac{2 \cdot 1 \cdot N_{1}}{1+N_{1}}=0 \quad \operatorname{CS}-\frac{1 \cdot N_{1} \cdot\left(1-N_{1}\right)^{2}}{\left(1+N_{1}\right)^{3}}=0
\]

\[
A S-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}{ }^{2}+6 \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}{\left(1+\mathbf{N}_{1}\right)^{3}}=\mathbf{0} \quad \mathbf{B S}-\frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left(\mathbf{3} \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}{\left(1+\mathbf{N}_{\mathbf{1}}\right)^{3}}=\mathbf{0}
\]
\(\mathbf{N}\)
\[
\begin{aligned}
& \mathbf{D E}-\frac{1+\mathbf{N}_{1}-2 \cdot \sqrt{\mathbf{N}_{1}}}{2}=0 \quad \text { DM }-\frac{\sqrt{\left(\mathbf{N}_{1}+\mathbf{1}\right) \cdot\left(\sqrt{\mathbf{N}_{1}}-\mathbf{1}\right)^{2}}}{\sqrt{2}}=0 \\
& \mathbf{H M}-\frac{\sqrt{2} \cdot\left(\mathbf{1}-\mathbf{N}_{1}\right)^{2}}{2 \cdot \sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right) \cdot\left(\sqrt{\mathbf{N}_{1}}-\mathbf{1}\right)^{2}}}=\mathbf{0} \quad \mathbf{D H}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\mathbf{N}_{1}} \cdot\left(\sqrt{\mathbf{N}_{\mathbf{1}}}-1\right)^{2}}{\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right) \cdot\left(\sqrt{\mathbf{N}_{1}}-\mathbf{1}\right)^{2}}}=\mathbf{0} \\
& \mathbf{C D}-\frac{\sqrt{\mathbf{N}_{1}} \cdot\left(\sqrt{\mathbf{N}_{1}}-\mathbf{1}\right)^{4}}{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right) \cdot\left(\sqrt{\mathbf{N}_{\mathbf{1}}}-\mathbf{1}\right)^{2}}=0 \quad \operatorname{CE}-\frac{\left(\mathbf{1}-\mathbf{N}_{1}\right)^{2}}{2 \cdot\left(\mathbf{1}+\mathbf{N}_{\mathbf{1}}\right)}=0 \\
& \mathbf{B C}-\frac{1 \cdot\left(\mathbf{N}_{1}-1\right)}{1+\mathbf{N}_{1}}=0 \quad \text { EN }-\frac{\sqrt{3} \cdot \sqrt{\left(1-\mathbf{N}_{1}\right)^{2}}}{2}=0 \quad \mathrm{KG}-\frac{\left(1-\mathbf{N}_{1}\right)^{2}}{2 \cdot\left(1+\mathbf{N}_{1}\right)}=0
\end{aligned}
\]
\(\sim_{n}^{0}\)
080400D

This is the \(D\) plate, or the forth of six.

Unit.
Given.
\(\mathbf{N}_{1}:=1.90557 \quad\) AB \(:=\mathbf{N}_{\mathbf{1}}\)

Descriptions.
\(\mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}}\)
\(\mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E O}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{E Q}:=\frac{\mathbf{E O}^{2}}{\mathbf{A E}}\)
\(\mathrm{DE}:=\mathbf{A E}-\mathbf{A D} \quad \mathrm{DM}:=\sqrt{\mathrm{DE}^{2}+\mathrm{BE}^{2}} \quad \mathrm{HM}:=\frac{\mathrm{BE} \cdot \mathrm{BF}}{\mathrm{DM}}\)
\(\mathbf{D H}:=\mathbf{H M}-\mathbf{D M} \quad \mathbf{C D}:=\frac{\mathbf{D E} \cdot \mathbf{D H}}{\mathbf{D M}} \quad \mathbf{C E}:=\mathbf{D E}+\mathbf{C D} \quad \mathbf{B C}:=\mathbf{B E}-\mathbf{C E}\)
\(\mathbf{E N}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{K G}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{B E}}{\mathbf{E O}} \quad \mathbf{A G}:=\mathbf{A E}-\mathbf{K G}\)

\(\mathbf{C S}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{A G}}{\mathbf{A E}} \quad \mathbf{A S}:=\mathbf{A E}-(\mathbf{D E}+\mathbf{C D}+\mathbf{C S}) \quad \mathbf{B S}:=\mathbf{A S}-\mathbf{A B}\)

Definitions:
N。
\(\mathbf{A B}-\mathbf{N}_{\mathbf{1}}=\mathbf{0} \quad \mathbf{B F}-\mathbf{N}_{\mathbf{2}}=\mathbf{0} \quad \mathbf{A F}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0}\)
\(\mathbf{A D}-\sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}=\mathbf{0} \quad \mathbf{B D}-\left[\sqrt{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}-\mathbf{N}_{\mathbf{1}}\right] \quad \mathbf{D F}-\left[\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\sqrt{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}\right]=\mathbf{0}\)
\(D J-\sqrt{\left[\sqrt{N_{1}{ }^{2}+N_{2} \cdot N_{1}} \cdot\left(2 \cdot N_{1}+N_{2}\right)-2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{1}{ }^{2}\right]}=0\)
\(\mathrm{BE}-\frac{\mathbf{N}_{2}}{2}=0 \quad \mathrm{EO}-\frac{\mathrm{N}_{2}}{4}=0\)
\(A E-\frac{2 \cdot N_{1}+N_{2}}{2}=0 \quad E Q-\frac{N_{2}^{2}}{8 \cdot\left(2 \cdot N_{1}+N_{2}\right)}=0\)
\(\mathrm{DE}-\frac{2 \cdot \mathrm{~N}_{1}+\mathrm{N}_{2}-2 \cdot \sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2} \cdot \mathrm{~N}_{1}}}{2}=0\)
\(c^{2} \cos ^{38}\)
\(\mathrm{DM}-\frac{\sqrt{2 \cdot\left(2 \cdot \mathrm{~N}_{1}+\mathrm{N}_{2}\right)^{2}-4 \cdot \sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2} \cdot \mathrm{~N}_{1}} \cdot\left(2 \cdot \mathrm{~N}_{1}+\mathrm{N}_{2}\right)}}{2}=0\)
\(H M-\frac{N_{2}{ }^{2}}{\sqrt{2 \cdot\left(2 \cdot N_{1}+N_{2}\right)^{2}-4 \cdot \sqrt{N_{1}{ }^{2}+N_{2} \cdot N_{1}} \cdot\left(2 \cdot N_{1}+N_{2}\right)}}=0\)
\(\mathrm{DH}-\frac{\sqrt{\mathbf{2} \cdot\left[\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{1}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)-\mathbf{2} \cdot \mathbf{N}_{1}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}\right]}}{\sqrt{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left[\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}\right]}}=\mathbf{0}\)

\(K G-\frac{\mathbf{N}_{2}{ }^{2}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad \mathbf{A G}-\frac{2 \cdot \mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \mathrm{CS}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}{ }^{2} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0\)
\(\mathbf{A S}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{8} \cdot \mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{8} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{2}}{ }^{\mathbf{2}}\right)}{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}\right)^{\mathbf{3}}}=\mathbf{0}\)
\(\mathrm{BS}-\frac{\mathrm{N}_{1}{ }^{2} \cdot \mathbf{N}_{2} \cdot\left(\mathbf{4} \cdot \mathrm{~N}_{1}+\mathbf{3} \cdot \mathbf{N}_{2}\right)}{\left(2 \cdot \mathbf{N}_{1}+\mathrm{N}_{2}\right)^{3}}=\mathbf{0}\)

\(\mathbf{N}\)
\(\sim_{n=2}^{0}\)
080400E

This is the \(E\) plate, or the fifth of six.

Unit.
BF := 1
Given.
\(\mathbf{N}:=4\)
\(\begin{array}{lll}\mathbf{A F}:=\mathbf{N}+\mathbf{B F} & \mathbf{A D}:=\sqrt{\mathbf{N} \cdot \mathbf{A F}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{N} \\ \mathbf{B F}:=\mathbf{A F} & \mathbf{N} & \mathbf{D F}:=\mathbf{A F}\end{array}\)
\(\mathrm{BE}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E O}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A E}:=\mathrm{BE}+\mathrm{N} \quad\) EQ \(:=\frac{\mathbf{E O}^{2}}{\mathbf{A E}}\)

\(\mathbf{E N}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{K G}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{B E}}{\mathbf{E O}} \quad \mathbf{A G}:=\mathbf{A E}-\mathbf{K G}\)
\(\mathbf{C S}:=\frac{2 \cdot \mathbf{E Q} \cdot \mathbf{A G}}{\mathbf{A E}} \quad \mathbf{A S}:=\mathbf{A E}-(\mathbf{D E}+\mathbf{C D}+\mathbf{C S}) \quad \mathbf{B S}:=\mathbf{A S}-\mathbf{N}\)
Definitions:
N.
\(\mathbf{N}-\mathbf{N}=\mathbf{0} \quad \mathbf{A F}-(\mathbf{N}+\mathbf{1})=\mathbf{0} \quad \mathbf{A D}-\sqrt{\mathbf{N}^{2}+\mathbf{N}}=\mathbf{0} \quad \mathbf{B D}-\left(\sqrt{\mathbf{N}^{2}+\mathbf{N}}-\mathbf{N}\right)=\mathbf{0}\)
\(\mathbf{B F}-(\mathbf{N}+\mathbf{1}-\mathbf{N})=\mathbf{0} \quad \mathbf{D F}-[\mathbf{N}+\mathbf{1}-\sqrt{\mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}]=\mathbf{0} \quad \mathbf{D J}-\sqrt{(\mathbf{2} \cdot \mathbf{N}+\mathbf{1}) \cdot \sqrt{\mathbf{N}^{2}+\mathbf{N}}-\left(\mathbf{2} \cdot \mathbf{N}^{\mathbf{2}+\mathbf{2} \cdot \mathbf{N}}\right)}=\mathbf{0}\)
\(B E-2^{-1}\)
\(\mathbf{E O}-2^{-2}=0\)
\(\mathbf{A E}-\frac{2 \cdot \mathbf{N}+\mathbf{1}}{2}=\mathbf{0}\)
\(E Q-\frac{1}{8 \cdot(2 \cdot \mathbf{N}+1)}=0\)
\(\sim_{N=0}^{0}\)
\(\mathbf{D E}-\frac{2 \cdot \mathbf{N}-2 \cdot \sqrt{\mathbf{N}^{2}+\mathbf{N}}+\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{D M}-\frac{\sqrt{2 \cdot(2 \cdot \mathbf{N}+1) \cdot[2 \cdot \mathbf{N}-2 \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}+1}]}{2}=\mathbf{0}\)
\(\mathbf{H M}-\left[(\mathbf{4} \cdot \mathbf{N}+\mathbf{2}) \cdot[\mathbf{2} \cdot \mathbf{N}-\mathbf{2} \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}+\mathbf{1}]^{\frac{-\mathbf{1}}{\mathbf{2}}}=\mathbf{0}\right.\)
\(\mathbf{D H}-\frac{(\mathbf{2} \cdot \mathbf{N}+\mathbf{1}) \cdot\left(\sqrt{\left.\mathbf{2} \cdot \sqrt{\mathbf{N}^{2}+\mathbf{N}}\right)-\mathbf{2} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}} \sqrt{[(\mathbf{2} \cdot \mathbf{N}+\mathbf{1}) \cdot[\mathbf{2} \cdot \mathbf{N}-\mathbf{2} \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}+\mathbf{1}]}\right.}{\mathbf{0}}\)
\(\mathbf{C D}-\frac{\left(8 \cdot \mathbf{N}^{2}+8 \cdot N+1\right) \cdot \sqrt{\mathbf{N}^{2}+N}-\left(8 \cdot \mathbf{N}^{3}+12 \cdot \mathbf{N}^{2}+4 \cdot N\right)}{(2 \cdot N+1) \cdot\left(2 \cdot \mathbf{N}-2 \cdot \sqrt{\mathbf{N}^{2}+\mathbf{N}}+1\right)}=0\)
\[
\begin{aligned}
& \mathbf{C E}-\frac{1}{2 \cdot(2 \cdot N+1)}=\mathbf{0} \\
& \mathbf{B C}-\frac{\mathbf{N}}{\mathbf{2} \cdot \mathbf{N}+\mathbf{1}}=\mathbf{0} \\
& \text { EN }-\frac{\sqrt{3}}{2}=0 \\
& \mathbf{K G}-\frac{\mathbf{1}}{2 \cdot(\mathbf{2} \cdot \mathbf{N}+\mathbf{1})}=\mathbf{0} \\
& \mathbf{A G}-\frac{\mathbf{2} \cdot \mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}{2 \cdot \mathbf{N}+\mathbf{1}}=\mathbf{0} \\
& \operatorname{CS}-\frac{\mathbf{N} \cdot(\mathbf{N}+1)}{(2 \cdot \mathbf{N}+1)^{3}}=0 \\
& A S-\frac{N \cdot(N+1) \cdot\left(8 \cdot \mathbf{N}^{2}+8 \cdot N+1\right)}{(2 \cdot N+1)^{3}}=0 \quad B S-\frac{\mathbf{N}^{2} \cdot(4 \cdot N+3)}{(2 \cdot N+1)^{3}}=0
\end{aligned}
\]

\(\mathbf{N}\)
\(\sim_{N=0}^{0}\)
080400F

This is the F plate, or the sixth of six.

\(\mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}}\)
\(\mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E O}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{E Q}:=\frac{\mathbf{E O}^{2}}{\mathbf{A E}}\)
\(\begin{array}{ll}\mathbf{D E}:=\mathbf{A E}-\mathbf{A D} & \mathbf{D M}:=\sqrt{\mathbf{D E}^{2}+\mathbf{B E}^{2}} \quad \mathrm{HM}:=\frac{\mathbf{B E} \cdot \mathbf{B F}}{\mathbf{D M}} \\ \mathbf{D H}:=\mathbf{H M}-\mathbf{D M} & \mathbf{C D}:=\frac{\mathbf{D E} \cdot \mathbf{D H}}{\mathbf{D M}} \quad \mathbf{C E}:=\mathbf{D E}+\mathbf{C D} \quad \mathbf{B C}:=\mathbf{B E}-\mathbf{C E}\end{array}\)
\(\mathbf{E N}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{K G}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{B E}}{\mathbf{E O}} \quad \mathbf{A G}:=\mathbf{A E}-\mathbf{K G}\)
\(\mathbf{C S}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{A G}}{\mathbf{A E}} \quad \mathbf{A S}:=\mathbf{A E}-(\mathbf{D E}+\mathbf{C D}+\mathbf{C S}) \quad \mathbf{B S}:=\mathbf{A S}-\mathbf{A B}\)

Definitions:
\(\mathbf{N}\)
\(\mathbf{A B}-\mathbf{N}=\mathbf{0} \quad \mathbf{B F}-\mathbf{1}=\mathbf{0} \quad \mathbf{A F}-(\mathbf{N}+\mathbf{1})=\mathbf{0}\)
\(\mathbf{A D}-\sqrt{\mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{B D}-\sqrt{\mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{N} \quad \mathbf{D F}-[\mathbf{N}+\mathbf{1}-\sqrt{\mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}]=\mathbf{0}\)
DJ \(-\sqrt{\sqrt{N^{2}+1 \cdot N} \cdot(2 \cdot N+1)-2 \cdot N-2 \cdot N^{2}}=0 \quad B E-\frac{1}{2}=0 \quad\) EO \(-\frac{1}{4}=0\)
\(A E-\frac{2 \cdot N+1}{2}=0 \quad E Q-\frac{\mathbf{1}^{2}}{8 \cdot(2 \cdot \mathbf{N}+1)}=0\)
\(\mathbf{D E}-\frac{2 \cdot \mathbf{N}+1-2 \cdot \sqrt{\mathbf{N}^{2}+1 \cdot \mathbf{N}}}{2}=0\)
\(C^{2}{ }^{2}\)
\(D M-\frac{\sqrt{(4 \cdot \mathbf{N}+2) \cdot\left(2 \cdot \mathbf{N}-2 \cdot \sqrt{\mathbf{N}^{2}+\mathbf{N}}+1\right)}}{2}=0\)
\(H M-\frac{\sqrt{2}}{2 \cdot \sqrt{(2 \cdot N+1) \cdot\left(2 \cdot N-2 \cdot \sqrt{N^{2}+N}+1\right)}}=0\)
\(\mathbf{D H}-\frac{(2 \cdot \mathbf{N}+1) \cdot \sqrt{2 \cdot \mathbf{N}^{2}+2 \cdot \mathbf{N}}-[2 \cdot \sqrt{2} \cdot \mathbf{N} \cdot(\mathbf{N}+1)]}{\sqrt{(2 \cdot \mathbf{N}+1) \cdot\left(2 \cdot \mathbf{N}-2 \cdot \sqrt{\mathbf{N}^{2}+\mathbf{N}}+1\right)}}=\mathbf{0}\)
\(C D-\frac{\left(8 \cdot \mathbf{N}^{2}+8 \cdot N+1\right) \cdot \sqrt{\mathbf{N}^{2}+\mathbf{N}}-4 \cdot \mathbf{N} \cdot(\mathbf{N}+1) \cdot(2 \cdot \mathbf{N}+1)}{(2 \cdot \mathbf{N}+1) \cdot\left(2 \cdot \mathbf{N}+1-2 \cdot \sqrt{\mathbf{N}^{2}+\mathbf{N}}\right)}=0\)
\(\mathbf{C E}-\frac{1}{4 \cdot \mathbf{N}+2}=0 \quad \mathbf{B C}-\frac{\mathbf{N}}{2 \cdot \mathbf{N}+1}=0 \quad \mathbf{E N}-\frac{\sqrt{3}}{2}=0\)
\(K G-\frac{1}{4 \cdot \mathbf{N}+2}=0 \quad A G-\frac{2 \cdot \mathbf{N} \cdot(\mathbf{N}+1)}{2 \cdot \mathbf{N}+1}=0 \quad \mathbf{C S}-\frac{\mathbf{N} \cdot(\mathbf{N}+1)}{(2 \cdot \mathbf{N}+1)^{3}}=0\)
\(A S-\frac{N \cdot(N+1) \cdot\left(8 \cdot \mathbf{N}^{2}+8 \cdot N+1\right)}{(2 \cdot N+1)^{3}}=0 \quad \quad B S-\frac{\mathbf{N}^{2} \cdot(4 \cdot \mathbf{N}+3)}{(2 \cdot \mathbf{N}+1)^{3}}=0\)

\(\mathbf{N}\)

CN
080700
Descriptions.

Unit.
AB := 1
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{9} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{B D}:=\mathbf{N}_{\mathbf{2}}\)

Proportion Series II

Divide \(A B\) into the same ratio as \(A B: C D\).

\(\sim_{n}^{0}\)
000822A

\section*{Descriptions.}

This square root figure affords another approach to proofing the Archimedean Paper Trisecter.
\[
\begin{aligned}
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G}:=\sqrt{\mathbf{B D} \cdot \mathbf{A D}} \quad \mathbf{B C}:=\frac{\mathbf{A B}}{2} \\
& \mathbf{C D}:=\mathbf{B D}+\mathbf{B C} \quad \mathbf{D F}:=\frac{\mathbf{C D}}{2} \quad \mathbf{B G}:=\mathbf{D G}-\mathbf{B D} \\
& \mathbf{C G}:=\mathbf{B C}-\mathbf{B G} \quad \mathbf{G W}:=\sqrt{\mathbf{C G}^{2}+\mathbf{B C}^{\mathbf{2}}} \quad \mathbf{O W}:=\frac{\mathbf{B C} \cdot \mathbf{A B}}{\mathbf{G W}} \\
& \mathbf{G O}:=\mathbf{O W}-\mathbf{G W} \quad \mathbf{G U}:=\frac{\mathbf{C G} \cdot \mathbf{G O}}{\mathbf{2 \cdot \mathbf { G W }}} \quad \mathbf{D U}:=\mathbf{D G}-\mathbf{G U} \\
& \text { OT }:=\frac{\text { BC } \cdot \text { GO }}{\text { GW }} \quad \text { US }:=\sqrt{\left(\frac{\text { DF }}{2}\right)^{2}-\left(\frac{\text { OT }}{2}\right)^{2}} \quad \text { DS }:=\mathbf{D U}-\text { US } \\
& \text { JR }:=\frac{\text { OT } \cdot \mathbf{D F}}{2 \cdot D S} \quad \text { JF }:=\frac{\text { DF } \cdot \mathbf{J R}}{\text { OT }} \quad \text { EJ }:=\mathbf{D F}-\mathbf{J F} \\
& \text { FR:= } \frac{\text { 2.US } \cdot \mathbf{J R}}{\mathbf{O T}} \quad \mathbf{D R}:=\mathbf{D F}+\mathbf{F R} \quad \text { ER }:=\sqrt{\mathbf{E J}^{2}-\mathbf{J R}^{2}} \\
& \mathbf{D E}:=\mathbf{D R}-\mathbf{E R} \quad \mathbf{D E}-\mathbf{E J}=\mathbf{0}
\end{aligned}
\]

Unit.
AB := 1
Given.

\section*{Square Root and the Archimedean}

Paper Trisecter.

\begin{tabular}{ccccc}
DE & BD & 1 & DG & N \\
DE \(=\mathbf{0 . 3 8 6 3 4}\) & BD \(=\mathbf{0 . 6 9 7 8 3}\) & DG \(=1.08848\) & \(N=1.69783\)
\end{tabular}
\[
\frac{(2 \cdot N-1) \cdot\left(\left((2 \cdot N-1) \cdot \sqrt{N^{2}-N}+2 \cdot N\right)-2 \cdot N^{2}\right)}{\left(\left((4 \cdot N-2) \cdot \sqrt{N^{2}-N}+4 \cdot N\right)-4 \cdot N^{2}\right)+1}=0.38634 \frac{(2 \cdot N-1) \cdot\left(\left((2 \cdot N-1) \cdot \sqrt{N^{2}-N}+2 \cdot N\right)-2 \cdot N^{2}\right)}{\left(\left((4 \cdot N-2) \cdot \sqrt{N^{2}-N}+4 \cdot N\right)-4 \cdot N^{2}\right)+1}-D E=0.00000
\]

\section*{As one can see, the APT actually multiplies an angle.}

Definitions.
\(\mathbf{B D}-(\mathbf{N}-1)=\mathbf{O} \quad \mathbf{D G}-\sqrt{\mathbf{N}^{2}-\mathbf{N}}=\mathbf{0} \quad \mathbf{B C}-\frac{1}{2}=\mathbf{0} \quad \mathbf{C D}-\frac{2 \cdot \mathbf{N}-1}{2}=\mathbf{0} \quad \mathbf{D F}-\frac{2 \cdot \mathbf{N}-1}{4}=\mathbf{0} \quad \mathbf{B G}-\left(\sqrt{\mathbf{N}^{2}-\mathbf{N}}-\mathbf{N}+\mathbf{1}\right)=0 \quad \mathbf{C G}-\frac{2 \cdot \mathbf{N}-2 \cdot \sqrt{\mathbf{N}^{2}-\mathbf{N}}-\mathbf{1}}{2}=\mathbf{0}\) \(\mathbf{G W}-\frac{\sqrt{(2 \cdot \mathbf{N}-1) \cdot\left(2 \cdot \mathbf{N}-2 \cdot \sqrt{\mathbf{N}^{2}-\mathbf{N}}-1\right)}}{\sqrt{2}}=0 \quad \mathbf{O W}-\frac{\sqrt{2}}{2 \cdot \sqrt{(2 \cdot \mathbf{N}-1) \cdot\left(2 \cdot \mathbf{N}-2 \cdot \sqrt{\left.\mathbf{N}^{2}-\mathbf{N}-1\right)}\right.}}=\mathbf{O} \quad \mathbf{G O}-\frac{(2 \cdot \mathbf{N}-\mathbf{1}) \cdot\left(\sqrt{2} \cdot \sqrt{\mathbf{N}^{2}-\mathbf{N}}\right)-\mathbf{2} \cdot \sqrt{2} \cdot \mathbf{N} \cdot(\mathbf{N}-\mathbf{1})}{\sqrt{(2-4 \cdot \mathbf{N}) \cdot \sqrt{\mathbf{N}^{2}-\mathbf{N}}+(2 \cdot \mathbf{N}-\mathbf{1})^{2}}}=\mathbf{0}\)

\(E J-\frac{(2 \cdot N-1) \cdot\left[(2 \cdot N-1) \cdot \sqrt{N^{2}-N}+2 \cdot N^{2}-2 \cdot \mathbf{N}^{2}\right]}{(4 \cdot N-2) \cdot \sqrt{N^{2}-N}+4 \cdot N-4 \cdot N^{2}+1}=0 \quad F R-\frac{\left(2 \cdot N-2 \cdot \sqrt{N^{2}-N}-1\right) \cdot\left(4 \cdot N^{2}-4 \cdot N-1\right)}{4 \cdot\left[(4 \cdot N-2) \cdot \sqrt{N^{2}-N}+4 \cdot N^{2}-4 \cdot N^{2}+1\right]}=0 \quad D R-\frac{\sqrt{N^{2}-N}}{(4 \cdot N-2) \cdot \sqrt{N^{2}-N}+4 \cdot N-4 \cdot N^{2}+1}=0\)
\(E R-\frac{\sqrt{4 \cdot N^{2} \cdot(N-1)^{2}} \cdot\left[(4-8 \cdot N) \cdot \sqrt{N^{2}-N}+8 \cdot N^{2}-8 \cdot N+1\right.}{\sqrt{\left(48 \cdot N^{2}-32 \cdot N^{3}-8 \cdot N-4\right) \cdot \sqrt{N^{2}-N}+32 \cdot N^{4}-64 \cdot N^{3}+28 \cdot N^{2}+4 \cdot N+1}}=0\)
Here is where Mathcad 15 Uncle call Uncle! It cannot reduce the following equation and \(I\) am at a loss as to how to effect reductions for it in the time \(I\) am willing to spend on it.
\(\mathbf{D E}-\left[\frac{\sqrt{\mathbf{N} \cdot(\mathbf{N}-1)}}{(4 \cdot \mathbf{N}-2) \cdot \sqrt{\mathbf{N} \cdot(\mathbf{N}-1)}+4 \cdot \mathbf{N}-4 \cdot \mathbf{N}^{2}+1}-\frac{2 \cdot \sqrt{\mathbf{N}^{2} \cdot(\mathbf{N}-1)^{2} \cdot\left[(4-8 \cdot \mathbf{N}) \cdot \sqrt{N \cdot(N-1)}+8 \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+1\right.}}{\sqrt{\left(48 \cdot \mathbf{N}^{2}-32 \cdot \mathbf{N}^{3}-\mathbf{8} \cdot \mathbf{N}-4\right) \cdot \sqrt{N \cdot(N-1)}+32 \cdot \mathbf{N}^{4}-64 \cdot \mathbf{N}^{3}+28 \cdot \mathbf{N}^{2}+4 \cdot N+1}}\right]=0\)
\(\mathbf{D E}-\mathbf{E J}=\mathbf{0}\)

If you ask Mathcad to reduce the above equation, it will simply spred it out over several pages and quit.

Unit.
Show the trisection in a circle for any square root that also divides the circle into six equal cords.
\(\mathbf{N}:=1.43693 \quad\) AC \(:=\mathbf{N}\)

\section*{000822B}

In the 2015 revision of the \(D Q\), I got as fars as a blank Mathcad template like this one. So, yea, I have put doing this off for a special long time

\section*{Descriptions.}
\(\mathbf{B O}:=\frac{\mathbf{A B}}{\mathbf{2}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{D O}:=\mathbf{B O}\)
\(\mathrm{CO}:=\mathrm{BO}+\mathrm{BC} \quad \mathrm{CD}:=\sqrt{\mathrm{CO}^{2}+\mathrm{DO}^{2}}\)
\(\mathrm{DF}:=\frac{\mathrm{DO} \cdot \mathbf{A B}}{\mathrm{CD}} \quad \mathrm{CF}:=\mathrm{CD}-\mathrm{DF} \quad \mathrm{CH}:=\frac{\mathrm{CD} \cdot \mathrm{CF}}{\mathrm{CO}}\)
\(\mathbf{B H}:=\mathbf{C H}-\mathbf{B C} \quad \mathbf{G O}:=\mathrm{BO} \quad \mathbf{C N}:=\frac{\mathrm{CO}^{2}-\mathrm{GO}^{2}+\mathrm{CH}^{2}}{2 \cdot \mathbf{C O}}\)
\(\mathbf{G N}:=\sqrt{\mathbf{C H}^{2}-\mathbf{C N}^{2}} \quad \mathbf{B N}:=\mathbf{C N}-\mathbf{B C}\)

To be completed by simply dividing the cords, GCH and KBH. This should help show that angle trisection, the entire developed
figure is a proportion to the square root figure.

\section*{Definitions.}
\(\mathrm{m} \angle \mathrm{KCH}=15.47574^{\circ}\) \(\mathrm{m} / \mathrm{MBH}=22.73787^{\circ}\)
\(\mathrm{m} \angle \mathrm{GBH}=68.21360^{\circ}\) \(\mathbf{m} \angle \mathrm{MBH}=22.73787^{\circ}\) m \(\angle\) GBH \(m / \mathrm{MBH}=3.00000\) \(\mathrm{m} \angle \mathrm{EGF}=\mathbf{3 0 . 0 0 0 0 0}\) \(\mathrm{m} \angle \mathrm{KJM}=60.00000^{\circ}\) \(\mathrm{N}=1.43693\)

Unit.
AB := 1
Given.
\(\mathbf{N}:=.3 \quad \mathbf{B C}:=\mathbf{N}\)

\section*{082300}

Descriptions.
\(\mathbf{A C}:=\mathbf{A B}-\mathbf{N} \quad \mathbf{B E}:=\frac{\mathbf{B C}}{2} \quad \mathbf{A E}:=\mathbf{A C}+\mathbf{B E}\)
\(\mathrm{AN}:=\sqrt{\mathrm{BE}^{2}+\mathrm{AE}^{2}} \quad \mathrm{FN}:=\frac{\mathrm{BE} \cdot \mathrm{BC}}{\mathrm{AN}} \quad \mathrm{DE}:=\frac{\mathrm{BE}^{2}}{\mathrm{AE}}\)
\(\mathrm{BD}:=\mathrm{BE}+\mathrm{DE} \quad \mathrm{AD}:=\mathrm{AB}-\mathrm{BD} \quad \mathrm{AH}:=\frac{\mathrm{AE}^{2}-\mathrm{BE}^{2}+\mathrm{AD}^{2}}{2 \cdot \mathbf{A E}}\)
\(\mathbf{B H}:=\mathbf{A B}-\mathbf{A H} \quad \mathbf{C H}:=\mathbf{B C}-\mathbf{B H}\)

\section*{Definitions.}
\(\mathbf{A C}-(\mathbf{1}-\mathbf{N})=\mathbf{0} \quad \mathbf{B E}-\frac{\mathbf{N}}{2}=\mathbf{0} \quad \mathbf{A E}-\left[\frac{(2-N)}{2}\right]=\mathbf{0}\)
\(A N-\frac{\sqrt{N^{2}-2 \cdot N+2}}{\sqrt{2}}=0 \quad F N-\frac{\sqrt{2} \cdot N^{2}}{2 \cdot \sqrt{N^{2}-2 \cdot N+2}}=0\)

\section*{Trisection In A Square Root Figure}

Given the square root figure drawn for trisection, what is AR given AB and AD? A slightly different apprach than the one on 04.

\(D E-\frac{N^{2}}{2 \cdot(2-N)}=0\)
\(\mathbf{B D}-\left[\frac{\mathbf{N}}{(2-\mathbf{N})}\right]=\mathbf{0} \quad \mathbf{A D}-\left[\frac{2 \cdot(1-\mathbf{N})}{(2-\mathbf{N})}\right]=0 \quad \mathbf{A H}-\frac{(1-\mathbf{N}) \cdot\left(\mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+\mathbf{8}\right)}{(2-\mathbf{N})^{3}}=0\)
\(\mathbf{B H}-\left[\frac{\mathrm{N} \cdot(4-3 \cdot N)}{(2-N)^{3}}\right]=0 \quad \mathbf{C H}-\frac{\mathrm{N} \cdot(4-\mathrm{N}) \cdot(1-\mathrm{N})^{2}}{(2-N)^{3}}=0\)
\(C^{\circ} \mathrm{M} \pi \mathrm{S}_{3}\)

\(\mathrm{N}=0.64490\)
\(\qquad\)

Unit.
Given.
Descriptions.
Definitions.
090100Z

I have had this plate in and out of revisions since 00 but it is so simple and straight forward, \(I\)
just like looking at it.

And the figure can be expanded and this I find interesting.

0

\(\sim_{n}^{0}\)
BG:= 1
Given.
\(\mathbf{N}_{\mathbf{1}}\) := \(\mathbf{8}\)
090300A
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{1 0}\)
Descriptions.
\(\mathrm{BE}:=\frac{\mathrm{BG}}{2} \quad \mathrm{EM}:=\mathrm{BE} \quad \mathrm{BO}:=\sqrt{2 \cdot \mathrm{BE}^{2}} \quad \mathrm{EN}:=\mathrm{BE} \quad \mathrm{EK}:=\frac{\mathrm{BE} \cdot \mathrm{BE}}{\mathrm{BO}}\) \(\mathbf{K N}:=\mathbf{E N}-\mathbf{E K} \quad \mathbf{B K}:=\frac{\mathbf{B O}}{2} \quad \mathbf{B N}:=\sqrt{\mathbf{B K}^{2}+\mathrm{KN}^{2}} \quad \mathrm{BD}:=\frac{\mathbf{B N}^{2}}{\mathrm{BG}} \quad \mathrm{BC}:=\mathrm{BD}-\mathrm{BD} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}\) \(\mathbf{C G}:=\mathbf{B G}-\mathbf{B C} \quad \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C G}} \quad \mathbf{A J}:=\mathbf{B E} \quad \mathbf{A C}:=\sqrt{\mathbf{A J}^{2}-\mathbf{C J}^{2}} \quad \mathbf{A B}:=\mathbf{A C}-\mathbf{B C}\)
\(\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{J H}:=\frac{\mathbf{C J}^{2}}{\mathbf{A J}} \quad \mathbf{A H}:=\mathbf{A J}-\mathbf{J H} \quad \mathbf{A L}:=\frac{\mathbf{A H} \cdot \mathbf{A E}}{\mathbf{A C}} \quad \mathbf{J L}:=\mathbf{A L}-\mathbf{A J}\) \(\mathbf{L M}:=\mathbf{J L} \quad \mathbf{A M}:=\mathbf{A L}+\mathbf{L M} \quad \mathbf{A F}:=\frac{\mathbf{A H} \cdot \mathbf{A M}}{\mathbf{A C}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D}\) \(\mathbf{C J}=0.168616 \quad \mathrm{BD}=0.146447 \quad \mathrm{DF}=0.610136 \quad \mathrm{BF}=0.756583\) \(\mathrm{BC}=\mathbf{0 . 0 2 9 2 8 9} \quad \mathrm{CG}=0.970711 \quad \mathrm{AB}=0.441421 \quad \mathrm{DF}=0.610136\)
Definitions.

\section*{Ratios In Trisection}

How does BF vary with BC? How does DF vary with BC?
\(\mathrm{BC}-\frac{(\sqrt{2}-2) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}{4 \cdot \mathbf{N}_{2}}=0 \quad \mathrm{BE}-\frac{1}{2}=0 \quad\) EM \(-\frac{1}{2}=0 \quad\) BO \(-\frac{\sqrt{2}}{2}=0 \quad\) EN \(-\frac{1}{2}=0\)
\(\mathbf{E K}-\frac{\sqrt{2}}{4}=0 \quad \mathbf{K N}-\left(\frac{1}{2}-\frac{\sqrt{2}}{4}\right)=0 \quad \mathbf{B K}-\frac{\sqrt{2}}{4}=0 \quad \mathbf{B N}-\frac{\sqrt{2-\sqrt{2}}}{2}=0\)

\(\mathbf{A B}-\frac{\mathbf{N}_{2} \cdot(\sqrt{2}-1)-\mathbf{N}_{1} \cdot(\sqrt{2}-2)}{2 \cdot \mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{A E}-\frac{\sqrt{2} \cdot \mathbf{N}_{2}-\mathbf{N}_{1} \cdot(\sqrt{2}-2)}{2 \cdot \mathbf{N}_{2}}=0 \quad \mathbf{J H}-\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left[\mathbf{N}_{1} \cdot(2 \cdot \sqrt{2}-\mathbf{3})-\mathbf{N}_{2}\right]}{4 \cdot \mathbf{N}_{2}{ }^{2}}=\mathbf{0} \quad \mathbf{A H}-\frac{\left[\mathbf{N}_{2}+\mathbf{N}_{1} \cdot(\sqrt{2}-1)\right]{ }^{2}}{4 \cdot \mathbf{N}_{2}{ }^{2}}=\mathbf{0}\)
\(A L-\frac{\left(2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{1}{ }^{2}\right) \cdot \sqrt{2}+3 \cdot N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}}{2 \cdot N_{2}^{2}}=0 \quad J L-\frac{N_{1} \cdot\left[N_{2} \cdot(2 \cdot \sqrt{2}-2)-N_{1} \cdot(2 \cdot \sqrt{2}-3)\right]}{2 \cdot N_{2}^{2}}=0 \quad \mathbf{L M}-\frac{\mathbf{N}_{1} \cdot\left[N_{2} \cdot(2 \cdot \sqrt{2}-2)-N_{1} \cdot(2 \cdot \sqrt{2}-3)\right]}{2 \cdot N_{2}^{2}}=0\)
\(\overbrace{n \rightarrow 2}^{0}\)
\(B F-\frac{\left(\frac{7 \cdot \sqrt{2}}{4}+\frac{5}{2}\right) \cdot\left(3 \cdot N_{1}+N_{2}-2 \cdot \sqrt{2} \cdot N_{1}\right) \cdot\left(4 \cdot N_{1}-3 \cdot N_{2}-3 \cdot \sqrt{2} \cdot N_{1}+2 \cdot \sqrt{2} \cdot N_{2}\right)^{2}}{N_{2}{ }^{3}}=0\)
\(\mathbf{A M}-\left[\frac{\left(\mathbf{N}_{\mathbf{2}}+\sqrt{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}}\right) \cdot\left[\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{1}} \cdot(\mathbf{3} \cdot \sqrt{\mathbf{2}}-\mathbf{4})\right]}{2 \cdot \mathbf{N}_{\mathbf{2}}{ }^{2}}\right]=\mathbf{0} \quad \mathbf{A F}-\frac{\sqrt{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}+\sqrt{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}+\sqrt{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{3} \cdot \sqrt{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}}\right)}{4 \cdot \mathbf{N}_{\mathbf{2}}{ }^{\mathbf{3}}}=\mathbf{0}\)
\(\mathbf{D F}-\left[\frac{3 \cdot \mathbf{N}_{1} \cdot\left[\left(\frac{20}{3}-\frac{14 \cdot \sqrt{2}}{3}\right) \cdot \mathbf{N}_{1}{ }^{2}+(6 \cdot \sqrt{2}-8) \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+(2-\sqrt{2}) \cdot \mathbf{N}_{2}{ }^{2}\right]}{4 \cdot \mathbf{N}_{2}{ }^{3}}\right]=0\)
\(\frac{B F}{B C}=25.831354 \quad \frac{D F}{B C}=20.831354\)
\(\frac{B F}{B C}-\frac{4 \cdot\left(\frac{7 \cdot \sqrt{2}}{4}+\frac{5}{2}\right) \cdot\left(3 \cdot N_{1}+N_{2}-2 \cdot \sqrt{2} \cdot N_{1}\right) \cdot\left(4 \cdot \mathbf{N}_{1}-3 \cdot N_{2}-3 \cdot \sqrt{2} \cdot \mathbf{N}_{1}+2 \cdot \sqrt{2} \cdot \mathbf{N}_{2}\right)^{2}}{\mathbf{N}_{2}{ }^{2} \cdot(\sqrt{2}-2) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}=0\)
\(\frac{\mathrm{DF}}{\mathrm{BC}}-\frac{\left(6 \cdot \mathrm{~N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}-3 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}{ }^{2}+4 \cdot \sqrt{2} \cdot \mathrm{~N}_{1}{ }^{3}-6 \cdot \mathrm{~N}_{1}{ }^{3}-6 \cdot \sqrt{2} \cdot \mathrm{~N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}\right)}{\mathrm{N}_{2}{ }^{2} \cdot\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)}=0\)

Unit.
BC:= \(\mathbf{1}\)
Given.
\(\mathbf{N}_{\mathbf{1}}\) := \(\mathbf{1 0}\)
090300B
Descriptions.
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{8}\)
\(\mathrm{BD}:=\frac{\mathrm{BC}}{2} \quad \mathrm{DE}:=\mathrm{BD} \quad \mathrm{BE}:=\sqrt{2 \cdot \mathrm{BD}^{2}} \quad \mathrm{DK}:=\frac{\mathrm{BD}^{2}}{\mathrm{BE}} \quad \mathrm{BK}:=\mathrm{BD}-\mathrm{DK} \quad \mathrm{KJ}:=\mathrm{BK} \cdot \frac{\mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{1}}\)
\(\mathbf{C K}:=\mathbf{B D}+\mathbf{D K} \quad \mathbf{C J}:=\mathbf{C K}+\mathbf{K J} \quad \mathbf{B J}:=\mathbf{B C}-\mathbf{C J} \quad \mathbf{H J}:=\sqrt{\mathbf{C J} \cdot \mathbf{B J}} \quad \mathbf{A J}:=\sqrt{\mathbf{B D}^{2}-\mathbf{H J}^{2}}\)
\(\mathbf{A B}:=\mathbf{A J}-\mathbf{B J} \quad \mathbf{A B}=\mathbf{0 . 4 4 1 4 2 1} \quad\) AN \(:=\frac{\mathbf{A J} \cdot(\mathbf{B D}+\mathbf{A B})}{\mathbf{B D}} \quad\) HN \(:=\mathbf{A N}-\mathbf{B D} \quad\) MN \(:=\mathbf{H N}\)
AM \(:=\mathbf{A N}+\) MN \(\quad\) MP \(:=\frac{\text { HJ } \cdot \mathbf{A M}}{\text { BD }} \quad\) MP \(=0.429145 \quad \frac{\text { HJ }}{\text { MP }}=0.392912\)
\(\mathbf{B R}:=\frac{\mathbf{H J} \cdot \mathbf{A B}}{\mathbf{A J}} \quad \mathbf{A P}:=\frac{\mathbf{A B} \cdot \mathbf{M P}}{\mathbf{B R}} \quad \mathbf{B P}:=\mathbf{A P}-\mathbf{A B} \quad \mathbf{C P}:=\mathbf{B C}-\mathbf{B P} \quad \mathbf{K P}:=\mathbf{B P}-\mathbf{B K}\)

Definitions.
\(\mathrm{BD}-\frac{1}{2}=0 \quad \mathrm{DE}-\frac{1}{2}=0 \quad \mathrm{BE}-\frac{1}{\sqrt{2}}=0 \quad \mathrm{DK}-\frac{\sqrt{2}}{4}=0 \quad B K-\frac{2-\sqrt{2}}{4}=0\)
\(K J-\frac{\mathbf{N}_{2} \cdot(2-\sqrt{2})}{4 \cdot \mathbf{N}_{1}}=0 \quad C K-\frac{2+\sqrt{2}}{4}=0 \quad C J-\frac{N_{1} \cdot(\sqrt{2}+2)-N_{2} \cdot(\sqrt{2}-2)}{4 \cdot \mathbf{N}_{1}}=0\)
CK = 0.8535
\(\mathrm{KJ}=0.11716\)
CJ \(=0.97071\) \(\mathrm{AC}=1.44142\)
\(\mathbf{B J}-\frac{\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right) \cdot(\sqrt{2}-2)}{4 \cdot \mathbf{N}_{1}}=\mathbf{0} \quad \mathbf{H J}-\frac{\sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+3 \cdot \mathbf{N}_{2}-2 \cdot \sqrt{2} \cdot \mathbf{N}_{2}\right)}}{2 \cdot \sqrt{2} \cdot \mathbf{N}_{1}}=\mathbf{0}\)
\(\mathbf{A J}-\frac{\mathbf{N}_{1}+\mathbf{N}_{2} \cdot(\sqrt{2}-1)}{2 \cdot \sqrt{2} \cdot \mathbf{N}_{1}}=0 \quad \mathbf{A B}-\left[\frac{\mathbf{N}_{1} \cdot(\sqrt{2}-1)-\mathbf{N}_{2} \cdot(\sqrt{2}-2)}{2 \cdot \mathbf{N}_{1}}\right]=0\)
\(A N-\frac{2 \cdot N_{2} \cdot\left(N_{1}-N_{2}\right) \cdot \sqrt{2}+N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+3 \cdot N_{2}^{2}}{2 \cdot N_{1}^{2}}=0 \quad H N-\frac{N_{2} \cdot\left[N_{1} \cdot(2 \cdot \sqrt{2}-2)-N_{2} \cdot(2 \cdot \sqrt{2}-3)\right]}{2 \cdot N_{1}{ }^{2}}=\mathbf{0} \quad \mathbf{A M}-\left[\frac{\left(N_{1}+\sqrt{2} \cdot \mathbf{N}_{2}\right) \cdot\left[N_{1}+N_{2} \cdot(3 \cdot \sqrt{2}-4)\right]}{2 \cdot N_{1}{ }^{2}}\right]=0\)
\(\sim_{\sim}^{\sim}\)
\(\mathbf{M P}-\frac{\left(\mathbf{N}_{1}+\sqrt{2} \cdot \mathbf{N}_{2}\right) \cdot \sqrt{2 \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+3 \cdot \mathbf{N}_{2}-2 \cdot \sqrt{2} \cdot \mathbf{N}_{2}\right)} \cdot\left(\mathbf{N}_{1}-4 \cdot \mathbf{N}_{2}+\mathbf{3} \cdot \sqrt{2} \cdot \mathbf{N}_{2}\right)}{4 \cdot \mathbf{N}_{1}{ }^{\mathbf{3}}}=0 \quad \mathbf{B R}-\frac{\sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{3} \cdot \mathbf{N}_{2}-2 \cdot \sqrt{2} \cdot \mathbf{N}_{2}\right) \cdot\left[\mathbf{N}_{1} \cdot(\sqrt{2}-\mathbf{1})-\mathbf{N}_{2} \cdot(\sqrt{2}-2)\right]}}{2 \cdot \mathbf{N}_{1} \cdot\left[\mathbf{N}_{1}+\mathbf{N}_{2} \cdot(\sqrt{2}-\mathbf{1})\right]}=0\)
\(\mathbf{A P}-\frac{\left(\mathbf{N}_{1}+\sqrt{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{2}}\right) \cdot \sqrt{\left(\mathbf{2} \cdot \mathbf{N}_{1}-\mathbf{2} \cdot \mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{3} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{2} \cdot \sqrt{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{2}}\right) \cdot\left[\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}} \cdot(\sqrt{\mathbf{2}}-\mathbf{1})\right] \cdot\left[\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}} \cdot(\mathbf{3} \cdot \sqrt{\mathbf{2}}-\mathbf{4})\right]}}{\mathbf{4 \cdot \mathbf { N } _ { 1 }}{ }^{\mathbf{3}} \cdot \sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{3} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{2} \cdot \sqrt{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{2}}\right)}}=\mathbf{0}\)
\(\mathbf{B P}-\frac{\left[\left(\frac{\sqrt{2}}{8}+\frac{1}{4}\right) \cdot\left[\mathbf{N}_{1}-\mathbf{N}_{2} \cdot(2 \cdot \sqrt{2}-3)\right] \cdot\left[\mathbf{N}_{2} \cdot(2 \cdot \sqrt{2}-2)-\mathbf{N}_{\mathbf{1}} \cdot(\sqrt{2}-2)\right]^{2}\right]}{\mathbf{N}_{1}{ }^{\mathbf{3}}}=\mathbf{0}\)
\(\mathbf{C P}-\frac{\left(\frac{1}{4}-\frac{\sqrt{2}}{8}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left[\mathbf{N}_{1} \cdot(\sqrt{2}+2)+\mathbf{N}_{2} \cdot(2 \cdot \sqrt{2}-2)\right]^{2}}{\mathbf{N}_{1}{ }^{3}}=0\)
\(K P-\frac{3 \cdot N_{2} \cdot\left[(2-\sqrt{2}) \cdot N_{1}{ }^{2}+(6 \cdot \sqrt{2}-8) \cdot N_{1} \cdot N_{2}+\left(\frac{20}{3}-\frac{14 \cdot \sqrt{2}}{3}\right) \cdot \mathbf{N}_{2}{ }^{2}\right]}{4 \cdot N_{1}{ }^{3}}=0\)
\(\frac{\mathbf{B P}}{\mathbf{B J}}-\frac{(12 \cdot \sqrt{2}+17) \cdot\left[\mathbf{N}_{1}-\mathbf{N}_{2} \cdot(2 \cdot \sqrt{2}-3)\right] \cdot\left[\mathbf{N}_{2} \cdot(3 \cdot \sqrt{2}-4)-\mathbf{N}_{1} \cdot(2 \cdot \sqrt{2}-3)\right]^{2}}{\mathbf{N}_{1}{ }^{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}=\mathbf{0}\)
\(\frac{K P}{B J}-\frac{\left(\frac{3 \cdot \sqrt{2}}{2}+3\right) \cdot N_{2} \cdot\left[(2-\sqrt{2}) \cdot N_{1}{ }^{2}+(6 \cdot \sqrt{2}-8) \cdot N_{1} \cdot N_{2}+\left(\frac{20}{3}-\frac{14 \cdot \sqrt{2}}{3}\right) \cdot N_{2}{ }^{2}\right]}{N_{1}{ }^{2} \cdot\left(N_{1}-N_{2}\right)}=0\)

Which means that you can write a simple program using whole numbers for \(N 1\) and N2 to find BJ as a unit to name BP and then you will know the name of BJ. A ratio is a unit conversion.
\[
\frac{B J}{B K}=0.2 \quad \frac{B J}{B K}-\frac{N_{1}-N_{2}}{N_{1}}=0 \quad N_{1}=10 \quad N_{2}=8 \quad \frac{1}{1000000000000000}=1 \times 10^{-15}
\]

Which is the ratio one uses all the time when dividing a simple segment. I trust one can write a program to find any given ratio with it? N 1 simply sets the precision of the Arithmetic name.
\[
-\frac{3 \cdot 8 \cdot\left[(2-\sqrt{2}) \cdot 10^{2}+(6 \cdot \sqrt{2}-8) \cdot 10 \cdot 8+\left(\frac{20}{3}-\frac{14 \cdot \sqrt{2}}{3}\right) \cdot 8^{2}\right]}{3}=0
\]
\(4 \cdot 10^{3}\)

\section*{Unit.}

BC := 1
Given.
\(\mathbf{N}:=\mathbf{2}\)
091600
Descriptions.
\(\mathbf{B J}:=\mathbf{N} \quad \mathbf{B E}:=\sqrt{\mathbf{B C} \cdot \mathbf{B J}} \quad \mathbf{C J}:=\mathbf{B J}-\mathbf{B C} \quad \mathbf{C I}:=\frac{\mathbf{C J}}{2}\)
IO \(:=\mathbf{C I} \quad\) NO \(:=\mathbf{C J} \quad \mathbf{C R}:=\mathbf{C J} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C}\)
\(\mathbf{E I}:=\mathbf{C I}-\mathbf{C E} \quad \mathbf{E J}:=\mathbf{C J}-\mathbf{C E} \quad\) EL \(:=\sqrt{\mathbf{C E} \cdot \mathbf{E J}}\)
\(\mathbf{E G}:=\frac{\mathbf{E I} \cdot \mathbf{E L}}{\mathbf{E L}+\mathbf{I O}} \quad \mathbf{G I}:=\mathbf{E I}-\mathbf{E G} \quad \mathbf{G O}:=\sqrt{\mathbf{G I}^{\mathbf{2}}+\mathbf{I O}}{ }^{\mathbf{2}}\)
OP \(:=\mathbf{G O} \quad\) IP \(:=\mathbf{I O}+\mathbf{O P} \quad\) EF \(:=\frac{\mathbf{E I} \cdot \mathbf{E L}}{\mathbf{E L}+\mathbf{I P}} \quad\) FI \(:=\mathbf{E I}-\mathbf{E F}\)
FO \(:=\sqrt{\mathrm{FI}^{2}+\mathrm{IO}^{2}} \quad\) OK \(:=\frac{\mathrm{IO} \cdot \mathrm{NO}}{\text { FO }} \quad\) FK \(:=\mathbf{O K}-\mathrm{FO}\)
FQ \(:=\frac{\text { FI } \cdot \mathbf{F K}}{\text { FO }} \quad\) QI \(:=\mathbf{F Q}+\mathbf{F I} \quad \mathbf{C Q}:=\mathbf{C I}-\mathbf{Q I} \quad\) QJ \(:=\mathbf{C J}-\mathbf{C Q}\)
\(\mathbf{Q K}:=\sqrt{\mathbf{C Q} \cdot \mathbf{Q J}} \quad \mathbf{C D}:=\frac{\mathbf{C Q} \cdot \mathbf{C R}}{\mathbf{C R}+\mathbf{Q K}} \quad \mathbf{B D}:=\mathbf{C D}+\mathbf{B C}\)
\(\left(B C^{2} \cdot B J\right)^{\frac{1}{3}}-B D=4.486958 \times 10^{-6}\)
Definitions.

\section*{Goshdarn Good Pencil}

\(\sim_{n}^{\infty}\)
091800A
Descriptions.

Unit.
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad\) BC \(:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{C J}:=\mathbf{B C} \quad\) GK \(:=\mathbf{C J}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{G H}:=\mathbf{N}_{\mathbf{2}} \quad\) GM \(:=\mathbf{G H}\)
\(\mathbf{N}_{\mathbf{3}}:=\mathbf{8} \quad\) CG:= \(\mathbf{N}_{\mathbf{3}} \quad\) JK := CG
\(\mathbf{B H}:=\mathbf{B C}+\mathbf{C G}+\mathbf{G H} \quad \mathbf{B E}:=\frac{\mathbf{B H}}{2} \quad \mathbf{K M}:=\mathbf{G M}-\mathbf{G K}\)
\(\mathbf{J K}:=\mathbf{C G} \quad \mathbf{A G}:=\frac{\mathbf{J K} \cdot \mathbf{G M}}{\mathbf{K M}} \quad \mathbf{A H}:=\mathbf{A G}+\mathbf{G H}\)
\(\mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E}\)
Definitions.
\(\mathbf{B H}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0} \quad \mathbf{B E}-\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{2}}}{2}=\mathbf{0} \quad \mathbf{K M}-\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)=\mathbf{0}\)
\(\mathbf{A G}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}}=\mathbf{0} \quad \mathbf{A H}-\frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}}=\mathbf{0}\)
\(\mathbf{A B}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{3}}\right)}{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}=\mathbf{0} \quad \mathbf{A E}-\frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)^{\mathbf{2}}+\mathbf{N}_{\mathbf{3}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}{\mathbf{2} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}=\mathbf{0}\)

\section*{Midpoints and Similarity Points}

What is \(A E\) given the radius of the two circles and the difference between their centers? (External Unit).

091800B Descriptions.
\(\mathbf{B E}:=\frac{\mathbf{B H}}{\mathbf{2}} \quad \mathbf{B C}:=\mathbf{B H} \cdot \frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{G H}:=\mathbf{B H} \cdot \frac{\mathbf{N}_{\mathbf{3}}}{\mathbf{N}_{\mathbf{4}}} \quad \mathbf{C G}:=\mathbf{B H}-(\mathbf{B C}+\mathbf{G H})\) \(\mathbf{C J}:=\mathbf{B C} \quad \mathbf{G M}:=\mathbf{G H} \quad \mathbf{G K}:=\mathbf{C J} \quad \mathbf{K M}:=\mathbf{G M}-\mathbf{G K} \quad \mathbf{J K}:=\mathbf{C G}\) \(\mathbf{A G}:=\frac{\mathbf{J K} \cdot \mathbf{G M}}{\mathbf{K M}} \quad \mathbf{A H}:=\mathbf{A G}+\mathbf{G H} \quad \mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E}\)

\section*{Midpoints and Similarity Points}

What is AE if given the difference between their extremes and the radius given as a ratio of that segment? (Internal Unit).

Definitions.

\(\mathbf{A G}-\frac{\mathbf{N}_{\mathbf{3}} \cdot\left(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{4}}+\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{4}}\right)}{\mathbf{N}_{\mathbf{4}} \cdot\left(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{4}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}\right)}=\mathbf{0} \quad \mathbf{A H}-\frac{\mathbf{N}_{\mathbf{3}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)}{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{4}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}}=\mathbf{0} \quad \mathbf{A B}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{\mathbf{3}}-\mathbf{N}_{\mathbf{4}}\right)}{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{4}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}}=\mathbf{0}\)
\(\mathbf{A E}-\frac{\mathbf{4} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{3}}-\mathbf{N}_{1} \cdot \mathbf{N}_{4}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}}{2 \cdot\left(\mathbf{N}_{1} \cdot \mathbf{N}_{4}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}\right)}=\mathbf{0}\)

Unit.
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{1 1 . 6 9 4 5 8} \quad \mathrm{BE}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{2 . 9 6 9 1 6} \quad B C:=\mathbf{N}_{\mathbf{2}}\)
000920A
Descriptions.
\(\mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{C H}:=\mathrm{BD}\)
\(\mathrm{DH}:=\sqrt{\mathrm{BD}^{2}+\mathrm{CD}^{2}} \quad \mathrm{DG}:=\frac{\mathbf{D H}^{2}}{2 \mathrm{BD}} \quad \mathrm{AD}:=\frac{\mathbf{B D} \cdot \mathbf{D G}}{\mathbf{C D}}\)
\(\mathbf{A E}:=\mathbf{A D}+\mathbf{B D} \quad \mathbf{A B}:=\mathbf{A E}-\mathbf{B E} \quad \mathbf{A C}:=\mathbf{B C}+\mathbf{A B}\)
\(\mathbf{A C}-\sqrt{\mathbf{A B} \cdot \mathbf{A E}}=\mathbf{0}\)

Definitions.
\(\mathrm{BD}-\frac{\mathrm{N}_{1}}{2}=0 \quad \mathrm{CD}-\left(\frac{\mathrm{N}_{1}-2 \cdot \mathrm{~N}_{2}}{2}\right)=0 \quad \mathrm{CH}-\frac{\mathrm{N}_{1}}{2}=0\)
\(\mathrm{DH}-\frac{\sqrt{\mathrm{N}_{1}{ }^{2}-2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}+2 \cdot \mathrm{~N}_{2}{ }^{2}}}{\sqrt{2}}=0\)
\(D G-\frac{N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+2 \cdot N_{2}{ }^{2}}{2 \cdot N_{1}}=0\)
\(A D-\frac{N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+2 \cdot N_{2}^{2}}{2 \cdot\left(N_{1}-2 \cdot N_{2}\right)}=0 \quad A E-\frac{\left(N_{1}-N_{2}\right)^{2}}{N_{1}-2 \cdot N_{2}}=0\)
\(A B-\frac{\mathbf{N}_{2}{ }^{2}}{\mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}}=0 \quad A C-\frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}{\mathbf{N}_{1}-\mathbf{2} \cdot \mathbf{N}_{2}}=0\)

\section*{Squaring}

\section*{Is \(A C\) the square root of \(A B \times A E\) ?}

Given \(B C\), find \(A B\) such that \(A B \times A E\) is the square root.
This plate solves for the figure using a traditional square root figure.
The next two plates, which I put off doing until now, will approach the figure differently and the last might be a surprise but it was what \(I\) was pondering when \(I\) set up the original figure for solving cube roots. The last figure will actuall glue both of these figures together. Now, if one had glued them both together, one would be hard pressed to prove that cube roots are impossible in geometry as the compound figure makes the claim rather dubious.

\(\sim_{n=2}^{0}\)
092000B
Descriptions.
Is \(A C\) the square root of \(A B \times A E\) ?
Given \(B C\), find \(A B\) such that \(A B \times A E\) is the square root.
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{2 0}\)
\(\mathrm{DE}:=\frac{\mathbf{B E}}{2} \quad \mathrm{BD}:=\mathrm{DE} \quad \mathrm{CD}:=\mathrm{BD} \cdot \frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}}\)
\(\mathbf{C E}:=\mathbf{C D}+\mathrm{DE} \quad \mathrm{DF}:=\sqrt{\mathrm{CD}^{2}+\mathrm{BD}^{2}}\)
\(\mathbf{D G}:=\frac{\mathbf{D F}}{2} \quad \mathbf{A D}:=\frac{\mathbf{D F} \cdot \mathbf{D G}}{\mathbf{C D}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E}\)
\(\mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{A C}:=\mathbf{A D}-\mathbf{C D}\)

\section*{Definitions.}
\(\mathrm{DE}-\frac{1}{2}=0 \quad \mathrm{BD}-\frac{1}{2}=0 \quad \mathrm{CD}-\frac{\mathrm{N}_{1}}{2 \cdot \mathrm{~N}_{2}}\)
\(C E-\frac{\mathbf{N}_{1}+N_{2}}{2 \cdot N_{2}}=0 \quad D F-\frac{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}{2 \cdot N_{2}}=0\)
\(D G-\frac{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}{4 \cdot N_{2}}=0 \quad A D-\frac{N_{1}{ }^{2}+N_{2}{ }^{2}}{4 \cdot N_{1} \cdot N_{2}}=0 \quad A E-\frac{\left(N_{1}+N_{2}\right)^{2}}{4 \cdot N_{1} \cdot N_{2}}=0\)
\(A B-\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}{4 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}=0 \quad A C-\frac{\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{4 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}=0\)
\(A B \cdot A E-\frac{\left(N_{1}-N_{2}\right)^{2}}{4 \cdot N_{1} \cdot N_{2}} \cdot \frac{\left(N_{1}+N_{2}\right)^{2}}{4 \cdot N_{1} \cdot N_{2}}=0 \quad A C-\sqrt{\frac{\left(N_{1}+N_{2}\right)^{2} \cdot\left(N_{1}-N_{2}\right)^{2}}{16 \cdot N_{1}{ }^{2} \cdot N_{2}^{2}}}=0 \quad A C-\frac{\left(N_{2}-N_{1}\right) \cdot\left(N_{1}+N_{2}\right)}{4 \cdot N_{1} \cdot N_{2}}=0\)

092000B
I am not going to write this up as it is obvious. One will notice that the part of the figure with the green in it is a figure in the Elements involving complements. The original two ways to express the same figure produces a cube root figure, but one which is not exactly as we would hope for The figure does, however, disprove the claim that cube roots cannot be done at all when it is actually a primive.

Cube Root Primitive

111300
Descriptions.

Unit. Definitions.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{A D}:=\mathbf{N}_{\mathbf{2}}\)
\(\mathbf{N}_{\mathbf{3}}:=\mathbf{1} \quad \mathrm{DE}:=\mathbf{N}_{\mathbf{3}}\)

\section*{For Two Right Triangles.}

Given \(A B, D E, A D\) find \(B E, A C, C D, C E, B C\).
BAD and BED are right.
\[
\begin{aligned}
& \mathbf{B D}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A D}^{2}} \quad \mathbf{B F}:=\frac{\mathbf{A B}^{2}}{\mathbf{B D}} \quad \mathbf{D G}:=\frac{\mathbf{D E}^{2}}{\mathbf{B D}} \quad \mathbf{B E}:=\sqrt{\mathbf{B D}^{2}-\mathbf{D E}^{2}} \\
& \mathbf{A F}:=\sqrt{\mathbf{A B}^{2}-\mathbf{B F}^{2}} \\
& \mathbf{E G}:=\sqrt{\mathbf{D E}^{\mathbf{2}}-\mathbf{D G}^{\mathbf{2}}} \quad \mathbf{F G}:=\mathbf{B D}-(\mathbf{B F}+\mathbf{D G}) \\
& \text { EJ }:=\text { FG } \quad \text { FJ }:=\mathbf{E G} \quad \mathbf{A J}:=\mathbf{A F}-\mathbf{F J} \quad \mathbf{A E}:=\sqrt{\mathbf{E J}^{\mathbf{2}}+\mathbf{A J}^{\mathbf{2}}} \\
& S_{1}:=A D \quad S_{2}:=\mathrm{DE} \quad \mathrm{~S}_{3}:=\mathrm{AE} \quad \mathrm{AH}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot S_{1}} \\
& \mathbf{E H}:=\sqrt{\mathbf{A E}^{2}-\mathbf{A H}^{2}} \quad \mathbf{C H}:=\frac{\mathbf{E H} \cdot \mathbf{A H}}{\mathbf{A B}+\mathbf{E H}} \quad \mathbf{A C}:=\mathbf{A H}-\mathbf{C H} \\
& \mathbf{C E}:=\frac{\mathbf{A C} \cdot \mathbf{D E}}{\mathbf{A B}} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{B C}:=\mathbf{B E}-\mathbf{C E}
\end{aligned}
\]

Definitions:
\(\mathrm{BE}-\sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}-\mathrm{N}_{3}{ }^{2}}=\mathbf{0}\)
\(\frac{N_{1} \cdot\left(N_{1}{ }^{2} \cdot N_{2}-N_{2} \cdot N_{3}{ }^{2}+N_{2}{ }^{3}-N_{1} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}\right)}{N_{1} \cdot N_{2}{ }^{2}+N_{1}{ }^{3}+N_{3} \cdot \sqrt{N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}+N_{1}{ }^{2} \cdot N_{3}{ }^{2}-N_{2}{ }^{2} \cdot N_{3}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}}}-A C=0\)
\(N_{2}+\frac{N_{1} \cdot N_{2} \cdot N_{3}{ }^{2}-N_{2} \cdot\left(N_{1}{ }^{3}+N_{1} \cdot N_{2}{ }^{2}\right)+N_{1}{ }^{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}}{N_{1} \cdot N_{2}{ }^{2}+N_{1}{ }^{3}+N_{3} \cdot \sqrt{N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}+N_{1}{ }^{2} \cdot N_{3}{ }^{2}-N_{2}{ }^{2} \cdot N_{3}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}}}}-C D=0\)

\(\frac{N_{3} \cdot\left(N_{1}{ }^{2} \cdot N_{2}-N_{2} \cdot N_{3}{ }^{2}+N_{2}{ }^{3}-N_{1} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}\right)}{N_{1} \cdot N_{2}{ }^{2}+N_{1}{ }^{3}+N_{3} \cdot \sqrt{N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}+N_{1}{ }^{2} \cdot N_{3}{ }^{2}-N_{2}{ }^{2} \cdot N_{3}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}}}-\mathbf{C E}=0\)
\(B C-\left(\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}+\frac{N_{2} \cdot N_{3}{ }^{3}-N_{2}{ }^{3} \cdot N_{3}-N_{1}{ }^{2} \cdot N_{2} \cdot N_{3}+N_{1} \cdot N_{3}{ }^{2} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}}{N_{1} \cdot N_{2}{ }^{2}+N_{1}{ }^{3}+N_{3} \cdot \sqrt{N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}+N_{1}{ }^{2} \cdot N_{3}{ }^{2}-N_{2}{ }^{2} \cdot N_{3}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}}}\right)=0\)

112700
Descriptions.
Let us suppose that we have any unit, or thing and we want to parse that thing into units, any number of units at all, we must first define the unit. In the following case, our starting unit, or thing is \(A\) to 1 . Now when we parse it, we are defining smaller units. We do not want to call them fractions, or have to deal with fractions, so we rename our thing in terms of a given number of our new chosen unit, AB. This figure shows how to proceed to parse A1 into a 2 N exponential series. We do this, as said, by creating a fraction, and giving the unit of that fraction the name of our new working unit. In short, we are converting base systems. We go from base 1 , always to some other base. The base is named for the number of units it contains, or subsets of our given set.
In this case, 8 is a subset of 1 , and every member of 1 , is defined in terms of 1 .
\(A B:=\frac{A 1}{N} \quad A B\) is a member of the set \(A 1\).
\(\mathbf{B F}:=\sqrt{\mathbf{A B} \cdot(\mathbf{A 1}-\mathbf{A B})} \quad \mathbf{A F}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B F}^{2}} \quad \mathbf{A D}:=\mathbf{A F}\)
\(\mathbf{D H}:=\sqrt{\mathbf{A D} \cdot(\mathbf{A 1}-\mathbf{A D})} \quad \mathbf{A H}:=\sqrt{\mathbf{A D}^{2}+\mathbf{D H}^{2}} \quad \mathbf{A E}:=\mathbf{A H}\)
\(\mathbf{A G}:=\mathbf{A D} \quad \mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A H}}\)

Unit.
A1 := 1
Given.
\(\mathbf{N}:=8\)

\section*{Any 2N root series.}

This is just 112293 with lipstick and a dress. I have always felt a bit of annoyance with those who write Algebra books claiming that exponential series is a pure conceptual abstraction which has no geometric figure to demonstrate it. Apparently those writers do not even know simple geometry. I do not mind someone being ignorant, but when such words are in school books it is disinformation and misleading of students. I had never lernt geometry when I read that in a school book, however I was still amazed at the author putting words into a text which could not have possibly been true. Euclid gave his readers individual components to work with, the readers inability to combine those components together to figure our their interaction is not the fault of Euclid, it is the stupidity and lazyness of the reader.

Definitions.
\(\frac{A 1}{A B}=8 \quad \frac{A 1}{A C}=4.756828 \quad \frac{A 1}{A D}=2.828427 \quad \frac{A 1}{A E}=1.681793 \quad C:=\frac{A 1}{A C} \quad D:=\frac{A 1}{A D} \quad E:=\frac{A 1}{A E} \quad N^{\frac{3}{4}}-C=0 \quad N^{\frac{2}{4}}-D=0 \quad N^{\frac{1}{4}}-E=0 \quad E t c\)

\footnotetext{
Now we can think of \(A 1\) as being a class or a noun, and \(B, C, D, E\), members of that class, or its defining characteristics.
}

112800A
\(\mathbf{N}:=\mathbf{3}\)
EJ := N
Descriptions.
\[
\begin{array}{lll}
\mathbf{H J}:=\frac{\mathbf{J K} \cdot \mathbf{E J}}{\mathbf{J K}+\mathbf{E J}} & \mathbf{E H}:=\mathbf{E J}-\mathbf{H J} & \mathbf{G H}:=\frac{\mathbf{E H} \cdot \mathbf{H J}}{\mathbf{E H}+\mathbf{H J}} \\
\mathbf{E G}:=\mathbf{E H}-\mathbf{G H} & \mathbf{F G}:=\frac{\mathbf{E G} \cdot \mathbf{G H}}{\mathbf{E G}+\mathbf{G H}} & \mathbf{E F}:=\mathbf{E G}-\mathbf{F G} \\
\mathbf{D E}:=\frac{\mathbf{E F} \cdot \mathbf{A E}}{\mathbf{E F}+\mathbf{A E}} & \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} & \mathbf{C D}:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}} \\
\mathbf{A C}:=\mathbf{A D}-\mathbf{C D} & \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{C D}}{\mathbf{A C}+\mathbf{C D}} & \mathbf{A B}:=\mathbf{A C}-\mathbf{B C}
\end{array}
\]

Definitions.
AEAB \(=\left(\begin{array}{cccc}1 & 4 & 16 & 64 \\ 1 & 3.25 & 10.5625 & 34.328125 \\ 1 & 2.6875 & 7.222656 & 19.410889 \\ 1 & 2.265625 & 5.133057 & 11.629581\end{array}\right)\)

\section*{Means On Means}

Modify 02/28/98 for Mean proportionals between E and J.
As I have always found this little exercise quite useless, I have decided on a B writeup aimed at helping to explain how to use things like this in template making for geometric progression. My templates tend all to be arithmetic in expression, however, using them to construct one which effects geometric progression is quite easy. So, try to reflect on what the plate is demonstrating.
\[
\mathbf{M}:=\mathbf{0} . . \mathbf{3} \quad \mathbf{P}:=\mathbf{0} . . \mathbf{3} \quad \mathbf{A E A B}_{\mathbf{M}, \mathbf{P}}:=\left[\frac{\mathbf{N}^{\mathbf{M}+\mathbf{1}}}{(\mathbf{N}+\mathbf{1})^{\mathbf{M}}}+\mathbf{1}\right]^{\mathbf{P}}
\]

\(\mathrm{AEAB}_{3,3}-\frac{\mathrm{AE}}{\mathrm{AB}}=0 \quad \mathrm{AEAB}_{3,2}-\frac{\mathrm{AE}}{\mathrm{AC}}=0 \quad \mathrm{AEAB}_{3,1}-\frac{\mathrm{AE}}{\mathrm{AD}}=0 \quad \mathrm{AEAB}_{3}, 0-\frac{\mathrm{AE}}{\mathrm{AE}}=0\)
\(\sim_{n \rightarrow 2}^{0}\)
112900A
Descriptions for Division.
\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{A H}:=\mathbf{N}_{\mathbf{1}}
\]
\[
\mathbf{N}_{\mathbf{2}}:=\mathbf{1 2} \quad \mathbf{C J}:=\mathbf{N}_{\mathbf{2}}
\]
\[
\begin{aligned}
& \mathbf{A B}:=\frac{\mathbf{A H}}{(\mathbf{C J}+\mathbf{A H})} \cdot \mathbf{A C} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \\
& \mathbf{B D}:=\mathbf{B C} \quad \mathbf{C G}:=\frac{\mathbf{B D} \cdot \mathbf{A C}}{\mathbf{A B}} \quad \mathbf{C G}=\mathbf{4}
\end{aligned}
\]

\section*{Definitions.}
\[
\begin{aligned}
& A B-\frac{\mathbf{N}_{1}}{\left(\mathbf{N}_{2}+\mathbf{N}_{1}\right)}=0 \quad B C-\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \\
& B D-\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad C G-\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}}=0
\end{aligned}
\]

\section*{Multiplication and Division-Line By A Line}

Given some unit, and two differences, multiply or divide the one difference by the other.
For Division

Descriptions for Multiplication.
\(\mathbf{C O}:=\mathbf{C G} \quad \mathbf{B D}:=\frac{\mathbf{C G} \cdot \mathbf{A C}}{\mathbf{A C}+\mathbf{C O}}\)
\(\mathbf{B C}:=\mathbf{B D} \quad \mathbf{A B}:=\mathbf{A C}-\mathbf{B C} \quad \mathbf{B F}:=\frac{\mathbf{A H} \cdot \mathbf{B C}}{\mathbf{A C}}\)
\(\mathbf{C J}:=\mathbf{B F} \cdot \frac{\mathbf{A C}}{\mathbf{A B}} \quad \mathbf{C J}-\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}=\mathbf{0} \quad \mathbf{C J}=\mathbf{3 5}\)

Definitions.
\(\mathrm{CO}-\mathbf{N}_{2}=0 \quad \mathrm{BD}-\frac{\mathbf{N}_{2}}{\mathbf{N}_{2}+1}=0\)
\(B C-\frac{\mathbf{N}_{2}}{\mathbf{N}_{2}+1}=0 \quad A B-\frac{1}{\mathbf{N}_{2}+1}=0\)
\(\mathrm{BF}-\frac{\mathrm{N}_{1} \cdot \mathbf{N}_{2}}{\mathbf{N}_{2}+1}=0 \quad \mathrm{CJ}-\mathbf{N}_{1} \cdot \mathbf{N}_{2}=0\)
\(\mathbf{C J}-\mathbf{N}_{1} \cdot \mathbf{N}_{2}=\mathbf{0} \quad \mathbf{C J}=\mathbf{3 5}\)

\section*{Multiplication and Division-Line By A Line}

Given some unit, and two differences, multiply or divide the one difference by the other.
For Division:

120500
Descriptions.
\(\begin{array}{ll}\text { Unit. } & \\ \mathbf{N}_{\mathbf{3}}:=\mathbf{1} & \mathbf{C E}:=\mathbf{N}_{\mathbf{3}} \\ \text { Given. } & \\ \mathbf{N}_{\mathbf{1}}:=\mathbf{5} & \mathbf{B C}:=\mathbf{N}_{\mathbf{1}} \\ \mathbf{N}_{\mathbf{2}}:=\mathbf{2 5} & \mathbf{A C}:=\mathbf{N}_{\mathbf{2}} \\ \mathbf{N}_{\mathbf{4}}:=\mathbf{=} & \mathbf{E F}:=\mathbf{N}_{\mathbf{4}}\end{array}\)
\(\mathrm{BD}:=\frac{\mathrm{EF} \cdot \mathrm{BC}}{\mathrm{CE}} \quad \mathrm{CF}:=\sqrt{\mathrm{CE}^{2}-\mathrm{EF}^{2}}\)
\(\mathbf{C D}:=\frac{\mathbf{C F} \cdot \mathbf{B C}}{\mathbf{C E}} \quad \mathbf{A D}:=\mathbf{A C}-\mathbf{C D}\)
\(\mathbf{A B}:=\sqrt{\mathrm{BD}^{2}+\mathrm{AD}^{2}} \quad \mathrm{AB}=20.82051\)

\section*{Definitions.}
\(\mathbf{A B}-\frac{\sqrt{\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{2}}{ }^{2} \cdot \mathbf{N}_{\mathbf{3}}-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}} \cdot \sqrt{\mathbf{N}_{\mathbf{3}}{ }^{2}-\mathbf{N}_{\mathbf{4}}{ }^{2}}}}{\sqrt{\mathbf{N}_{\mathbf{3}}}}=\mathbf{0}\)

From an observer \(C\), the distance to star \(A\) and \(B\) are known, a reference CEF has been constructed, find the difference between the two stars.

010101
Descriptions.
\(\mathbf{A B}:=\mathbf{A C}-\mathbf{B C}\)
\(\mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}}\)
\(\mathbf{C D}:=\sqrt{\mathbf{B D}^{2}+\mathbf{B C}^{2}}\)

Definitions.
\(\sqrt{\left(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{2}\right)}-\mathbf{C D}=\mathbf{0}\)

Square Root, common segment common

\section*{endpoint.}

Alternate method for common segment common
endpoint square root. \(\sqrt{A C \cdot B C}=C D\)

042101
Descriptions.
\(\mathrm{BC}:=\sqrt{\mathrm{AB}^{2}+\mathrm{AC}^{2}} \quad \mathrm{CG}:=\frac{\mathrm{CD}^{2}}{\mathrm{BC}} \quad \mathrm{BF}:=\frac{\mathrm{AB}^{2}}{\mathrm{BC}}\)
\(\mathbf{B G}:=\mathbf{B C}-\mathbf{C G} \quad \mathbf{C F}:=\mathbf{B C}-\mathbf{B F}\)
\(\mathbf{A F}:=\sqrt{\mathbf{A B}^{2}-\mathbf{B F}^{2}}\)
\(\mathbf{D G}:=\sqrt{\mathbf{C D}^{2}-\mathbf{C G}^{2}} \quad \mathbf{F H}:=\frac{\mathbf{B G} \cdot \mathbf{A F}}{\mathbf{D G}} \quad \mathbf{C H}:=\mathbf{C F}+\mathbf{F H}\)
\(\mathbf{B D}:=\sqrt{\mathbf{B G}^{\mathbf{2}}+\mathbf{D G}^{\mathbf{2}}} \quad \mathbf{A H}:=\frac{\mathbf{B D} \cdot \mathbf{F H}}{\mathbf{B G}} \quad \mathbf{B E}:=\frac{\mathbf{A H} \cdot \mathbf{B C}}{\mathbf{C H}}\)
\(\mathbf{D E}:=\mathbf{B D}-\mathbf{B E} \quad \mathbf{C E}:=\frac{\mathbf{A C} \cdot \mathbf{B C}}{\mathbf{C H}} \quad \mathbf{A E}:=\mathbf{A C}-\mathbf{C E}\)

Definitions.
\(\sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}-\mathrm{BC}=0 \quad \frac{\mathrm{~N}_{2}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{CG}=0\)
H
\(\frac{N_{1}{ }^{2}}{\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}}}-\mathrm{BF}=0 \quad \frac{\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}-\mathrm{N}_{2}{ }^{2}\right)}{\sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{BG}=0 \quad \frac{\mathrm{~N}_{3}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{CF}=0 \quad \frac{\mathrm{~N}_{1} \cdot \mathrm{~N}_{3}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{AF}=0\)

\(\frac{N_{3} \cdot\left[N_{1} \cdot\left(N_{1}{ }^{2}-N_{2}{ }^{2}+N_{3}{ }^{2}\right) \cdot \sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}}+N_{2} \cdot N_{3} \cdot \sqrt{\left[\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right) \cdot\left(N_{1}{ }^{2}-N_{2}{ }^{2}+N_{3}{ }^{2}\right)\right.}\right]}{N_{2} \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{3}{ }^{2}} \cdot \sqrt{\left({N_{1}}^{2}+\mathbf{N}_{3}{ }^{2}\right) \cdot\left(\mathbf{N}_{1}{ }^{2}-\mathbf{N}_{2}{ }^{2}+\mathbf{N}_{3}{ }^{2}\right)}}-\mathbf{C H}=\mathbf{O}\)

\section*{Three Given Five Taken}

Given AB, CD, AC and that CDB, and BAC are right angles, what are \(\mathrm{BD}, \mathrm{AE}, \mathrm{CE}, \mathrm{BE}\), DE?

\(\sim_{n=2}^{0}\)
The Five Sought:
\(\sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}-\mathrm{N}_{\mathbf{2}}{ }^{2}}-\mathrm{BD}=0\)
\(N_{2} \cdot \frac{\left(\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}} \cdot N_{3}-N_{1} \cdot N_{2}\right)}{\left(N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}} \cdot N_{1}\right)}-D E=0\)
\(N_{1} \cdot \frac{\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}{\left(N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}^{2}} \cdot N_{1}\right)}-\mathbf{B E}=0\)
\(N_{3}-\frac{N_{2} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}{\left(N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}} \cdot N_{1}\right)}-A E=0\)
\(\frac{N_{2} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}{N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}^{2}-N_{2}^{2}} \cdot N_{1}}-C E=0\)

\(\sim_{n}^{0}\)
042201
Descriptions.

Unit.
AB:= \(\mathbf{1}\)
Given.
Given \(A B\) as unit, \(A D\) and \(D C\), what is EF and DF?

\(\mathrm{AD}:=\frac{\mathbf{A B}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{C D}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{2}} \quad \mathbf{D E}:=2 \mathrm{CD} \quad \mathrm{AF}:=\mathrm{AB} \quad \mathbf{C F}:=\mathrm{CD}\)
\(\mathbf{A C}:=\sqrt{\mathbf{A D}^{2}+\mathbf{C D}^{2}} \quad \mathbf{A G}:=\frac{\mathrm{AC}^{2}+\mathrm{AF}^{2}-\mathrm{CF}^{2}}{2 \cdot \mathbf{A F}} \quad \mathbf{C G}:=\sqrt{\mathrm{AC}^{2}-\mathrm{AG}^{2}}\)
\(\mathbf{D H}:=\mathbf{C D}-\frac{\mathbf{C G} \cdot\left(\mathbf{A D}^{2}+\mathbf{C D}^{2}\right)}{\mathbf{C D} \cdot \mathbf{C G}+\sqrt{\mathbf{A D}^{2}+\mathbf{C D}^{2}-\mathbf{C G}^{2}} \cdot \mathbf{A D}} \quad \mathbf{A H}:=\mathbf{A D} \cdot \frac{\left(\mathbf{A D}^{2}+\mathbf{C D}^{2}\right)}{\left(\mathbf{C D} \cdot \mathbf{C G}+\sqrt{\mathbf{A D}^{2}+\mathbf{C D}^{2}-\mathbf{C G}^{2} \cdot \mathbf{A D}}\right)}\)
FH \(:=\mathbf{A F}-\mathbf{A H} \quad\) HJ \(:=\frac{\text { DH } \cdot \mathbf{F H}}{\text { AH }} \quad\) DJ \(:=\mathbf{D H}+\mathbf{H J} \quad\) EJ \(:=\mathbf{D E}-\mathbf{D J} \quad\) FJ \(:=\frac{\text { AD } \cdot \mathbf{F H}}{\text { AH }}\)
\(\mathbf{E F}:=\sqrt{\mathbf{F J}^{2}+\mathbf{E J}^{2}} \quad \mathbf{D F}:=\sqrt{\mathbf{D J}^{2}+\mathbf{F J}^{2}}\)
Definitions.
\(\frac{A B}{N_{1}}-A D=0 \quad A B \cdot N_{2}-C D=0 \quad(2 A B) \cdot N_{2}-D E=0 \quad A B \cdot \frac{\sqrt{\left(1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right)}}{N_{1}}-A C=0\)
\(\frac{1}{2} \cdot A B \cdot \frac{\left(1+N_{1}{ }^{2}\right)}{N_{1}{ }^{2}}-A G=0 \quad A B \cdot \frac{\sqrt{\left(2 \cdot N_{1}{ }^{2} \cdot N_{2}+N_{1}{ }^{2}-1\right) \cdot\left(2 \cdot N_{1}{ }^{2} \cdot N_{2}-N_{1}{ }^{2}+1\right)}}{2 \cdot N_{1}{ }^{2}}-C G=0\)

\(A B \cdot \frac{N_{2} \cdot N_{1}{ }^{3}+N_{2} \cdot N_{1}-\sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-1-N_{1}^{4}}}{N_{1}{ }^{3}+N_{1}{ }^{2} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}^{2}-1-N_{1}^{4}}+N_{1}}-D H=0 \quad 2 \cdot A B \cdot \frac{\left(1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right)}{\left(N_{1} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}^{2}+4 \cdot N_{1}^{4} \cdot N_{2}^{2}-1-N_{1}{ }^{2}}+1+N_{1}^{2}\right.}-A H=0\)
\(A B-2 \cdot A B \cdot \frac{\left(1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right)}{\left(N_{1} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}^{2}-1-N_{1}^{4}}+1+N_{1}^{2}\right)}-F H=0\)

Unit.
AB := 1
Given.
\(\mathbf{N}:=.36307 \quad\) BC \(:=\mathbf{N}\)
042301A
\(\mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A G}:=\frac{\mathbf{A B}}{\mathbf{2}} \quad \mathbf{G M}:=\sqrt{\mathbf{3} \cdot \mathbf{A G}}{ }^{\mathbf{2}} \quad \mathbf{C G}:=\mathbf{A C}-\mathbf{A G}\)
\(\mathbf{C N}:=\sqrt{\mathbf{C G}^{2}+\mathbf{A G}^{2}} \quad\) NO \(:=\frac{\mathbf{A G} \cdot \mathbf{A B}}{\mathbf{C N}} \quad \mathbf{C O}:=\mathbf{C N}-\mathrm{NO}\)
\(\mathbf{C E}:=\frac{\mathbf{C N} \cdot \mathbf{C O}}{\mathbf{C G}} \quad \mathbf{G E}:=\mathbf{C G}-\mathbf{C E} \quad \mathbf{J S}:=\sqrt{(\mathbf{A B}+\mathbf{G E}) \cdot(\mathbf{A B}-\mathbf{G E})}\)
\(\mathbf{E J}:=\mathbf{J S}-\mathbf{G M} \quad \mathbf{C J}:=\sqrt{\mathbf{C E}^{2}+\mathbf{E J}^{2}} \quad \mathbf{C L}:=\frac{\mathbf{C G} \cdot \mathbf{C E}}{\mathbf{C J}}\)

Definitions.
\(\mathbf{A C}-(1+\mathbf{N})=0 \quad \mathbf{A G}-\frac{1}{2}=0 \quad \mathbf{G M}-\frac{\sqrt{3}}{2}=0\)
\(\mathbf{C G}-\frac{2 \cdot \mathbf{N}+1}{2} \quad \mathbf{C N}-\frac{\sqrt{2 \cdot \mathbf{N}^{2}+2 \cdot N+1}}{\sqrt{2}}=0\)
\(\mathrm{NO}-\frac{\sqrt{2}}{2 \cdot \sqrt{2 \cdot \mathbf{N}^{2}+2 \cdot \mathbf{N}+1}}=0 \quad \mathrm{CO}-\frac{\sqrt{2} \cdot \mathbf{N} \cdot(\mathbf{N}+1)}{\sqrt{2 \cdot \mathbf{N}^{2}+2 \cdot \mathbf{N}+1}}=0\)
\(\mathbf{C E}-\frac{\mathbf{2} \cdot \mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}{2 \cdot \mathbf{N}+\mathbf{1}}=\mathbf{0} \quad \mathbf{G E}-\frac{1}{2 \cdot(\mathbf{2} \cdot \mathbf{N}+\mathbf{1})}=\mathbf{0}\)
\(\mathbf{J S}-\frac{\sqrt{(4 \cdot \mathbf{N}+1) \cdot(4 \cdot \mathbf{N}+3)}}{2 \cdot(2 \cdot \mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{E J}-\frac{\sqrt{16 \cdot \mathbf{N}^{2}+16 \cdot \mathbf{N}+3}-\sqrt{3} \cdot(\mathbf{2} \cdot \mathbf{N}+1)}{4 \cdot \mathbf{N}+2}=0\)
\(\mathbf{C J}-\frac{\sqrt{2 \cdot \mathbf{N} \cdot\left(2 \cdot \mathbf{N}^{2}+\mathbf{3} \cdot \mathbf{N}+4\right)+\mathbf{3}-\sqrt{[\mathbf{3} \cdot(4 \cdot \mathbf{N}+\mathbf{3}) \cdot(4 \cdot \mathbf{N}+\mathbf{1})]}}}{\sqrt{4 \cdot \mathbf{N}+2}}=\mathbf{0}\)
\(\mathbf{C L}-\frac{2 \cdot \sqrt{2} \cdot \mathbf{N} \cdot(\mathbf{N}+1) \cdot\left(\mathbf{N}+\frac{1}{2}\right)}{\sqrt{2 \cdot \mathbf{N}+1} \cdot \sqrt{2 \cdot \mathbf{N} \cdot\left(2 \cdot \mathbf{N}^{2}+\mathbf{3} \cdot \mathbf{N}+4\right)+\mathbf{3}-\sqrt{[\mathbf{3} \cdot(4 \cdot \mathbf{N}+\mathbf{3}) \cdot(\mathbf{4} \cdot \mathbf{N}+\mathbf{1})]}}}=\mathbf{0}\)

\section*{Counterpoint}

When I origionally did part of this, it was a mess. I have taken it upon myself to keep the figure and title.

\section*{Unit.}

AB:= 1
Given.
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N}\)

\section*{042401A}

Descriptions.
\[
\begin{aligned}
& \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A K}:=\mathbf{A F} \\
& \mathbf{F K}:=\mathbf{B F} \quad \mathbf{A E}:=\frac{2 \mathbf{A K}^{\mathbf{2}}-\mathbf{F K}^{2}}{2 \mathbf{A F}} \quad \mathbf{A J}:=\mathbf{A E} \quad \mathbf{J K}:=\mathbf{A K}-\mathbf{A J} \\
& \mathbf{H J}:=\mathbf{J K} \quad \mathbf{A H}:=\mathbf{A K}-(\mathbf{J K}+\mathbf{H J}) \quad \mathbf{A C}:=\frac{\mathbf{A E} \cdot \mathbf{A H}}{\mathbf{A K}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \\
& \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{E G}:=\mathbf{B G}-\mathbf{B E} \quad \mathbf{E K}:=\sqrt{\mathbf{B E} \cdot \mathbf{E G}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \\
& \mathbf{C G}:=\mathbf{B G}-\mathbf{B C} \quad \mathbf{C H}:=\sqrt{\mathbf{B C} \cdot \mathbf{C G}} \quad \mathbf{D E}:=\frac{\mathbf{C E} \cdot \mathbf{E K}}{\mathbf{E K}+\mathbf{C H}} \\
& \mathbf{D F}:=\mathbf{2} \cdot \mathbf{D E} \quad \mathbf{H M}:=\sqrt{\mathbf{C E}}{ }^{\mathbf{2}+(\mathbf{E K}+\mathbf{C H})^{2}}
\end{aligned}
\]

Does HM intersect at D? What is the Algebraic name of HM in relation to \(A B\) and \(A G\) ?

\section*{\(\sim_{n}^{0}\)}

Definitions.
\(\mathbf{N}-\mathbf{1 - B G}=\mathbf{0}\) \(\frac{1}{2} \cdot \mathbf{N}-\frac{1}{2}-\mathbf{B F}=\mathbf{0}\)
\(\frac{1}{2}+\frac{1}{2} \cdot \mathbf{N}-\mathbf{A F}=0 \quad \frac{1}{4} \cdot \frac{\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+1\right)}{(1+\mathbf{N})}-\mathbf{A E}=0\)
\(\frac{1}{4} \cdot \frac{\left(\mathbf{1}-\mathbf{2} \cdot \mathbf{N}+\mathbf{N}^{2}\right)}{(\mathbf{1}+\mathbf{N})}-\mathbf{J K}=\mathbf{0} \quad 2 \cdot \frac{\mathbf{N}}{(1+\mathbf{N})}-\mathbf{A H}=\mathbf{0}\)
\(\frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{3}} \cdot N-A C=0 \quad \frac{1}{4} \cdot\left(N^{2}+6 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}-C E=0\)
\(\frac{\mathbf{1}}{4} \cdot(\mathbf{N}+\mathbf{3}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1 + N})}-\mathbf{B E}=\mathbf{0} \quad \frac{\mathbf{1}}{\mathbf{4}} \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})}-\mathbf{E G}=\mathbf{0}\)
\((\mathbf{3} \cdot \mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})^{\mathbf{3}}}-\mathbf{B C}=\mathbf{0} \quad \frac{\mathbf{1}}{\mathbf{4}} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1 + N})}-\mathbf{E K}=\mathbf{0}\)

\(\mathbf{N}^{\mathbf{2}} \cdot(\mathbf{N}+\mathbf{3}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})^{3}}-\mathbf{C G}=\mathbf{0} \quad \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})^{3}}-\mathbf{C H}=\mathbf{0}\)
\(\frac{1}{4} \cdot \frac{(N-1)^{2}}{(1+N)}-\mathbf{D E}=0 \quad \frac{1}{2} \cdot \frac{(N-1)^{2}}{(N+1)}-D F=0\)
\(\frac{1}{2} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{\left(\mathbf{1}+\mathbf{6} \cdot \mathbf{N}+\mathbf{N}^{2}\right)}{(\mathbf{1}+\mathbf{N})^{2}}-\mathbf{H M}=\mathbf{0}\)

Unit.
AB := 1
Given.
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N}\)

\section*{042401B}

Descriptions.
\(\mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{A B}}{2} \quad \mathbf{G F}:=\mathbf{B G}+\mathbf{B F} \quad \mathbf{G K}:=\mathbf{G F}\)
\(\mathbf{F K}:=\mathbf{B F} \quad \mathbf{E G}:=\frac{\mathbf{2 G K} \mathbf{2}^{2}-\mathbf{F K}^{2}}{2 \mathbf{G F}} \quad\) GJ \(:=\mathbf{E G} \quad \mathbf{J K}:=\mathbf{G K}-\mathbf{G J} \quad \mathbf{H J}:=\mathbf{J K}\)
\(\mathbf{G H}:=\mathbf{G K}-(\mathbf{J K}+\mathbf{H J}) \quad \mathbf{C G}:=\frac{\mathbf{E G} \cdot \mathbf{G H}}{\mathbf{G K}} \quad \mathbf{C E}:=\mathbf{E G}-\mathbf{C G}\)

\(\mathbf{B C}:=\mathbf{A B}-\mathbf{A C} \quad \mathbf{C H}:=\sqrt{\mathbf{B C} \cdot \mathbf{A C}} \quad \mathbf{D E}:=\frac{\mathbf{C E} \cdot \mathbf{E K}}{\mathbf{E K}+\mathbf{C H}}\)
\(\mathrm{DF}:=2 \cdot \mathrm{DE} \quad \mathrm{HM}:=\sqrt{\mathrm{CE}^{2}+(\mathrm{EK}+\mathrm{CH})^{2}}\)
Does HM intersect at D? What is the Algebraic name of HM in relation to \(A B\) and \(A G\) ?

\section*{\(\sim_{n}^{0}\)}

Definitions.
\(\mathbf{B G}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B F}-\frac{1}{2}=\mathbf{0} \quad \mathbf{G F}-\frac{2 \cdot \mathbf{N}-1}{2}=\mathbf{0} \quad \mathbf{G K}-\frac{2 \cdot \mathbf{N}-1}{2}=\mathbf{0}\)
\(\mathbf{F K}-\frac{1}{2}=0 \quad E G-\frac{8 \cdot \mathbf{N}^{2}-8 \cdot N+1}{4 \cdot(2 \cdot N-1)}=0 \quad G J-\frac{8 \cdot \mathbf{N}^{2}-8 \cdot N+1}{4 \cdot(2 \cdot N-1)}=0\)
\(\mathbf{J K}-\frac{1}{4 \cdot(2 \cdot \mathbf{N}-\mathbf{1})}=\mathbf{0} \quad \mathbf{H J}-\frac{1}{4 \cdot(2 \cdot \mathbf{N}-\mathbf{1})}=\mathbf{0} \quad \mathbf{G H}-\frac{2 \cdot \mathbf{N} \cdot(\mathbf{N}-\mathbf{1})}{2 \cdot \mathbf{N}-\mathbf{1}}=\mathbf{0}\)
\(\mathbf{C G}-\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot\left(\mathbf{8} \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+\mathbf{1}\right)}{(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})^{3}}=\mathbf{O} \quad \mathbf{C E}-\frac{\mathbf{8} \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+\mathbf{1}}{4 \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})^{3}}=\mathbf{0}\)

\(A C-\frac{N^{2} \cdot(4 \cdot N-3)}{(2 \cdot N-1)^{3}}=0 \quad B C-\frac{(4 \cdot N-1) \cdot(N-1)^{2}}{(2 \cdot N-1)^{3}}=0\)

\(\mathbf{C H}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot N-3)}}{(2 \cdot \mathbf{N}-1)^{3}}=0 \quad \begin{aligned} & \text { Mathcad claims that this is solvable, however, it was spread over several pages and I do } \\ & \text { not know what to make of that; however, if it is right, then there you go for trisection. }\end{aligned}\)
\(\mathbf{D E}-\frac{1}{4 \cdot(2 \cdot \mathbf{N}-1)}=\mathbf{0} \quad \mathbf{D F}-\frac{2}{4 \cdot(2 \cdot \mathbf{N}-1)}=0 \quad\) HM \(-\frac{\left(8 \cdot \mathbf{N}^{2}-8 \cdot \mathbf{N}+1\right)}{2 \cdot(2 \cdot \mathbf{N}-1)^{2}}=\mathbf{0}\)

\section*{Unit.}

AB := 1
Given.
Descriptions.
\(\mathbf{N}:=\mathbf{5 . 7 6 8} \quad\) AJ \(:=\mathbf{N}\)
042501A
What is the Algebraic name of the circle HM? Does point \(N\) divide DR in half?

BJ \(:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B H}:=\frac{\mathbf{B J}}{2} \quad\) HR \(:=\mathbf{B H}\)
\(\mathbf{H P}:=\frac{\mathbf{H R}}{2} \quad\) GO \(:=\mathbf{H P} \quad\) AH \(:=\mathbf{A B}+\mathbf{B H}\)
\(\mathbf{A O}:=\mathbf{A H} \quad \mathbf{A G}:=\sqrt{\mathbf{A O}^{2}-\mathbf{G O}^{2}}\)
\(\mathbf{H Q}:=\mathbf{B H} \quad \mathbf{A Q}:=\mathbf{A H} \quad \mathbf{F H}:=\frac{\mathbf{H Q}^{2}}{2 \cdot \mathbf{A H}}\)
\(\mathbf{A F}:=\mathbf{A H}-\mathbf{F H} \quad \mathbf{F M}:=\frac{\mathbf{G O} \cdot \mathbf{A F}}{\mathbf{A G}}\)
\(\mathbf{H J}:=\mathbf{B H} \quad\) FJ \(:=\mathbf{F H}+\mathbf{H J} \quad\) BF \(:=\mathbf{B J}-\mathbf{F J}\)
\(F \mathbf{F Q}:=\sqrt{\mathbf{B F} \cdot \mathbf{F J}} \quad \mathbf{M Q}:=\mathbf{F Q}-\mathbf{F M} \quad \mathbf{H M}:=\sqrt{\mathbf{F H}^{2}+\mathrm{FM}^{2}}\)

\(\mathbf{H M}-\mathbf{M Q}=\mathbf{0} \quad \mathbf{D H}:=\frac{\mathbf{H R}^{\mathbf{2}}}{\mathbf{A H}} \quad \frac{\mathbf{D H}}{2}-\mathbf{F H}=\mathbf{0}\)

\section*{Definitions.}
\(\mathbf{B J}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B H}-\frac{1}{2} \cdot(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{H P}-\frac{\mathbf{1}}{\mathbf{4}} \cdot(\mathbf{N}-\mathbf{1})=\mathbf{0}\)
\(\mathbf{A H}-\frac{1}{2} \cdot(1+\mathbf{N})=0 \quad \mathbf{A G}-\frac{1}{4} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}=0 \quad \frac{1}{4} \cdot \frac{(\mathbf{N}-1)^{2}}{(1+\mathbf{N})}-\mathbf{F H}=\mathbf{0}\)
\(\mathbf{A F}-\frac{1}{4} \cdot \frac{\left(1+\mathbf{6} \cdot \mathbf{N}+\mathbf{N}^{2}\right)}{(\mathbf{1}+\mathbf{N})}=\mathbf{0} \quad \mathbf{F M}-\frac{1}{4} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{\left(1+\mathbf{6} \cdot \mathbf{N}+\mathbf{N}^{2}\right)}{[(1+\mathbf{N}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}]}=\mathbf{0}\)
\(c^{2} \mathrm{c}^{2} \mathrm{~S}_{3}\)
\(\mathbf{B F}-\frac{\mathbf{1}}{\mathbf{4}} \cdot(\mathbf{N}+\mathbf{3}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})}=\mathbf{0}\)
\(\mathbf{F J}-\frac{1}{4} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}{(\mathbf{1}+\mathbf{N})}=\mathbf{0}\)
\(\mathbf{F Q}-\frac{\mathbf{1}}{\mathbf{4}} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})}=\mathbf{0}\)
\(\mathbf{M Q}-\frac{\mathbf{1}}{\mathbf{2}} \cdot(\mathbf{1}+\mathbf{N}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}=\mathbf{0}\)
\(\mathbf{H M}-\frac{1}{2} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{1}+\mathbf{N})}{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}=\mathbf{0}\)

\(\mathrm{DH}-\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)}=0 \quad \mathrm{FH}-\frac{(\mathbf{N}-1)^{2}}{4 \cdot(\mathbf{N}+1)}=0\)

042501B

Unit.
AB:= \(\mathbf{1}\)
Given.
Descriptions.
\(\mathbf{N}:=\mathbf{6} \quad\) AJ \(:=\mathbf{N}\)

What is the Algebraic name of the circle HM? Does point N divide DR in half?

BJ := AJ \(-\mathbf{A B} \quad \mathbf{B H}:=\frac{\mathbf{A B}}{2} \quad\) HR \(:=\mathbf{B H}\)
\(\mathbf{H P}:=\frac{\mathbf{H R}}{2} \quad\) GO \(:=\mathbf{H P} \quad \mathbf{J H}:=\mathbf{B J}+\mathbf{B H}\)
JO \(:=\mathbf{J H} \quad \mathrm{JG}:=\sqrt{\mathbf{J O}^{2}-\mathbf{G O}^{2}}\)
\(\mathbf{H Q}:=\mathbf{B H} \quad \mathrm{JQ}:=\mathrm{JH} \quad \mathrm{FH}:=\frac{\mathbf{H Q}^{2}}{2 \cdot \mathbf{J H}}\)
\(\mathbf{A H}:=\mathbf{B H} \quad\) FJ \(:=\mathbf{J H}-\mathbf{F H} \quad\) FM \(:=\frac{\mathbf{G O} \cdot \mathbf{F J}}{\mathbf{J G}}\)
\(\mathbf{A F}:=\mathbf{F H}+\mathbf{A H} \quad \mathbf{B F}:=\mathbf{A B}-\mathbf{A F} \quad \mathbf{F Q}:=\sqrt{\mathbf{B F} \cdot \mathbf{A F}}\)
\(\mathbf{M Q}:=\mathbf{F Q}-\mathbf{F M} \quad \mathbf{H M}:=\sqrt{\mathbf{F H}^{2}+\mathbf{F M}^{2}}\)
\(\mathbf{H M}-\mathbf{M Q}=\mathbf{0} \quad \mathbf{D H}:=\frac{\mathbf{H R}^{2}}{\mathbf{J H}} \quad \frac{\mathbf{D H}}{2}-\mathbf{F H}=\mathbf{0}\)

Definitions.
BJ \(-(\mathbf{N}-1)=0 \quad\) BH \(-\frac{1}{2}=0 \quad\) HR \(-\frac{1}{2}=0\)
HP \(-\frac{1}{4}=0 \quad\) GO \(-\frac{1}{4}=0 \quad\) JH \(-\frac{2 \cdot N-1}{2}=0\)
JO \(-\frac{2 \cdot N-1}{2}=0 \quad J G-\frac{\sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)}}{4}=0\)
\(\mathrm{HQ}-\frac{1}{2}=0 \quad \mathrm{JQ}-\frac{2 \cdot \mathrm{~N}-1}{2}=0 \quad \mathrm{FH}-\frac{1}{4 \cdot(2 \cdot \mathrm{~N}-1)}=0\)
\(\mathbf{A H}-\frac{1}{2}=0 \quad\) FJ \(-\frac{8 \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+1}{4 \cdot(2 \cdot \mathbf{N}-1)}=\mathbf{0}\)
\(\mathbf{F M}-\frac{8 \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+1}{4 \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-\mathbf{3})} \cdot(2 \cdot \mathbf{N}-1)}=0\)

\(\mathbf{A F}-\frac{4 \cdot \mathbf{N}-1}{4 \cdot(2 \cdot \mathbf{N}-1)}=\mathbf{0} \quad \mathbf{B F}-\frac{4 \cdot \mathbf{N}-\mathbf{3}}{4 \cdot(2 \cdot \mathbf{N}-1)}=\mathbf{0}\)
\(\mathbf{F Q}-\frac{\sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-\mathbf{3})}}{4 \cdot(2 \cdot \mathbf{N}-1)}=\mathbf{O} \quad \mathbf{M Q}-\frac{2 \cdot \mathbf{N}-1}{2 \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-\mathbf{3})}}=\mathbf{0}\)
\(\mathbf{H M}-\frac{(2 \cdot \mathbf{N}-1)}{\sqrt{4 \cdot(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-3)}}=\mathbf{0} \quad \mathbf{D H}-\frac{1}{2 \cdot(2 \cdot \mathbf{N}-1)}=\mathbf{0}\)
\(\mathbf{H M}-\mathbf{M Q}=\mathbf{0} \quad \frac{\mathrm{DH}}{2}-\mathbf{F H}=\mathbf{0}\)

\section*{Unit.}

AB:= \(\mathbf{1}\)
Given.
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A D}:=\mathbf{N}\)

\section*{042901A}

Descriptions.
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B C}:=\frac{\mathbf{B D}}{2} \quad \mathbf{C R}:=\mathbf{B C}\)
\(\mathbf{C P}:=\mathbf{B C} \quad \mathbf{C D}:=\mathbf{B C} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{C G}:=\frac{\mathbf{C P}^{2}}{\mathbf{A C}}\)
\(A G:=A C-C G \quad A V:=A G \quad C V:=B C \quad C F:=\frac{\mathbf{C V}^{2}+A C^{2}-A V^{2}}{2 A C}\)
\(\mathbf{B F}:=\mathbf{B C}-\mathbf{C F} \quad \mathbf{D F}:=\mathbf{C F}+\mathbf{C D} \quad\) FV \(:=\sqrt{\mathbf{B F} \cdot \mathbf{D F}} \quad \mathbf{C E}:=\frac{\mathbf{C F} \cdot \mathbf{C R}}{\mathbf{C R}-\mathbf{F V}}\)
\(\mathbf{B E}:=\mathbf{C E}-\mathbf{B C} \quad \mathbf{B G}:=\mathbf{B C}-\mathbf{C G} \quad \mathbf{E F}:=\mathbf{B E}+\mathbf{B F} \quad \mathbf{E G}:=\mathbf{B E}+\mathbf{B G}\)
\(\mathbf{G L}:=\frac{\mathbf{F V} \cdot \mathbf{E G}}{\mathbf{E F}} \quad \mathbf{G S}:=\frac{\mathbf{C G} \cdot \mathbf{G L}}{\mathbf{C R}} \quad \mathbf{C J}:=\frac{\mathbf{C G}^{\mathbf{2}}}{\mathbf{G S}+\mathbf{C G}}\)
\(\mathbf{J T}:=\frac{\mathbf{G L} \cdot \mathbf{C J}}{\mathbf{C G}}\)

Does the difference \(C J\) and
JT each have but one
Algebraic name?

\(\mathbf{C M}:=\frac{\mathbf{C R}}{2} \quad \mathbf{A K}:=\mathbf{A C} \quad \mathbf{K Q}:=\mathbf{C M}\)
\(\mathbf{A Q}:=\sqrt{\mathbf{A K}^{2}-\mathbf{K Q}^{2}} \quad \mathbf{C U}:=\frac{\mathbf{K Q} \cdot \mathbf{A C}}{\mathbf{A Q}}\)
\(\mathbf{C Z}:=\frac{\mathbf{C E} \cdot \mathbf{C U}}{\mathbf{C M}} \quad \mathbf{A U}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C U}^{2}}\)
\(\mathbf{A Z}:=\mathbf{C Z}-\mathbf{A C} \quad \mathbf{A E}:=\mathbf{C E}-\mathbf{A C}\)
\(\mathbf{A J}:=\frac{\mathbf{A C} \cdot \mathbf{A E}}{\mathbf{A Z}} \quad \mathbf{J C}:=\mathbf{A C}-\mathbf{A J}\)
\(\mathbf{T J}:=\frac{\mathbf{C U} \cdot \mathbf{A J}}{\mathbf{A C}}\)
\(\mathbf{J C}-\mathbf{C J}=\mathbf{0}\)
\(\mathbf{J T}-\mathbf{T J}=\mathbf{0}\)

\section*{\(\sim_{n=2}^{0}\)}
\[
\mathbf{N}-\mathbf{5}=\mathbf{0} \quad \mathbf{A D}-\mathbf{N}=\mathbf{0}
\]

Definitions.
\(\mathbf{B D}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B C}-\frac{\mathbf{N}-1}{2}=0 \quad \mathbf{C R}-\frac{\mathbf{N}-1}{2}=\mathbf{0} \quad \mathbf{C P}-\frac{\mathbf{N}-1}{2}=0\) \(\mathbf{C D}-\frac{\mathbf{N}-1}{2}=0 \quad A C-\frac{\mathbf{N}+1}{2} \quad \mathbf{C G}-\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)}=0 \quad A G-\frac{2 \cdot N}{N+1}=0\) \(A V-\frac{2 \cdot N}{N+1}=0 \quad C V-\frac{N-1}{2}=0 \quad C F-\frac{\left(N^{2}+4 \cdot N+1\right) \cdot(N-1)^{2}}{2 \cdot(N+1)^{3}}=0\)
\(\mathbf{B F}-\frac{(\mathbf{3} \cdot \mathbf{N}+1) \cdot(\mathbf{N}-1)}{(\mathbf{N}+\mathbf{1})^{3}}=0 \quad \mathbf{D F}-\frac{\mathbf{N}^{2} \cdot(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+1)^{3}}=0\)
\(\mathbf{F V}-\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(\mathbf{N}+\mathbf{1})^{\mathbf{3}}}=\mathbf{0}\)
\(\mathbf{C E}-\frac{(\mathbf{N}-1)^{2} \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}{2 \cdot\left[\mathbf{3} \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right]}=0\)
\(\mathbf{B E}-\frac{(\mathbf{N}-1) \cdot\left(\mathbf{N} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}-3 \cdot \mathbf{N}-1\right)}{3 \cdot \mathbf{N}-2 \cdot \mathbf{N} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1}=0 \quad B G-\frac{\mathbf{N}-1}{\mathbf{N}+1}=0\)

\(E F-\frac{\sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot N+3} \cdot \mathbf{N} \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right) \cdot(N-1)^{2}}{(N+1)^{3} \cdot\left(3 \cdot \mathbf{N}-2 \cdot N \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot N+3}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right)}=0\)
\[
E G-\frac{N \cdot(N-1)^{2} \cdot\left(N+\sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot N+3}+1\right)}{(N+1) \cdot\left(3 \cdot \mathbf{N}-2 \cdot \mathbf{N} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot N+3}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right)}=0
\]

\(\mathbf{G S}-\frac{\mathbf{N} \cdot(\mathbf{N}-1)^{2} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot\left(\mathbf{N}+\sqrt{\mathbf{3 \cdot \mathbf { N } ^ { 2 } + 1 0 \cdot \mathbf { N } + 3}+1}\right)}{(\mathbf{N}+\mathbf{1})^{2} \cdot\left(\mathbf{N}^{2}+\mathbf{4} \cdot \mathbf{N}+1\right) \cdot \sqrt{3 \cdot \mathbf{N}^{2}+\mathbf{1 0} \cdot \mathbf{N}+3}}=\mathbf{0}\)
\(C J-\frac{N^{4}+2 \cdot N^{3}-6 \cdot N^{2}+2 \cdot N+1}{14 \cdot N \cdot(N+1)+2 \cdot N^{3}+4 \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N+2}=0\)
\(\mathbf{J T}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot\left(\mathbf{N}+\sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}+1\right)}{\mathbf{7} \cdot \mathbf{N} \cdot(\mathbf{N}+1)+\mathbf{N}^{3}+2 \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3} \cdot \mathbf{N}+1}=0\)

\section*{\(c^{2} \operatorname{cin}^{38}\)}
\(\mathbf{C M}-\frac{\mathrm{N}-1}{4}=\mathbf{0} \quad \mathbf{A K}-\frac{\mathrm{N}+1}{2}=0\)
\(K Q-\frac{\mathbf{N}-\mathbf{1}}{4}=\mathbf{0} \quad \mathbf{A Q}-\frac{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{4}=\mathbf{0}\)
\(\mathbf{C U}-\frac{(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{N}-\mathbf{1})}{\mathbf{2} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}=\mathbf{0}\)
\(\mathbf{C Z}-\frac{(\mathbf{N}-1)^{2} \cdot(\mathbf{N}+1) \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot\left[\mathbf{3} \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+\mathbf{1}\right]}=\mathbf{0}\)
\(\mathbf{A U}-\frac{(\mathbf{N}+\mathbf{1})^{2}}{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}=\mathbf{0}\)
\(A Z-\frac{\left[\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left(N^{3}+3 \cdot N^{2}+3 \cdot N+1\right)-2 \cdot N \cdot\left(N^{3}+5 \cdot N^{2}+4 \cdot N+5\right)-2\right] \cdot(N+1)}{4 \cdot N \cdot(N+3) \cdot(3 \cdot N+1)-\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left(2 \cdot N^{3}+6 \cdot N^{2}+6 \cdot N+2\right)}=0\)
\(A E-\frac{\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left(N^{2}+N\right)-\left(N+6 \cdot N^{2}+N^{3}\right)}{3 N+N^{2}+N^{3}}=0\)

\(A J-\frac{3 \cdot N^{2}-\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left[N \cdot(N+1) \cdot\left(N^{4}+14 \cdot N^{3}+34 \cdot N^{2}+14 \cdot N+1\right)\right]+N^{2} \cdot\left(3 \cdot N^{5}+28 \cdot N^{4}+117 \cdot N^{3}+216 \cdot N^{2}+117 \cdot N+28\right)}{2 \cdot N^{2} \cdot\left(N^{6}+11 \cdot N^{5}+41 \cdot N^{4}+75 \cdot N^{3}+75 \cdot N^{2}+41 \cdot N+11\right)-\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left[N^{2} \cdot\left(N^{4}+10 \cdot N^{3}+35 \cdot N^{2}+36 \cdot N+35\right)+10 \cdot N+1\right]+2}=0\)
\(J C-\frac{18 \cdot N-\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left(N^{7}+9 \cdot N^{6}+15 \cdot N^{5}-25 \cdot N^{4}-25 \cdot N^{3}+15 \cdot N^{2}+9 \cdot N+1\right)+48 \cdot N^{2}-2 \cdot N^{3}-132 \cdot N^{4}-2 \cdot N^{5}+48 \cdot N^{6}+18 \cdot N^{7}+2 \cdot N^{8}+2}{44 \cdot N+164 \cdot N^{2}+300 \cdot N^{3}+300 \cdot N^{4}+164 \cdot N^{5}+44 \cdot N^{6}+4 \cdot N^{7}-\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left(2 \cdot N^{6}+20 \cdot N^{5}+70 \cdot N^{4}+72 \cdot N^{3}+70 \cdot N^{2}+20 \cdot N+2\right)+4}\)
\(T J-\frac{99 \cdot N^{5}-25 \cdot N^{2}-89 \cdot N^{3}-99 \cdot N^{4}-3 \cdot N+89 \cdot N^{6}+25 \cdot N^{7}+3 \cdot N^{8}+\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left(33 \cdot N^{3}-14 \cdot N^{6}-33 \cdot N^{5}-N^{7}+14 \cdot N^{2}+N^{2}\right)}{2 \cdot(N+1)}=0\)
\(\mathbf{T} \mathbf{J}-\mathbf{J} \mathbf{T}=\mathbf{0}\)
\[
\mathbf{J T}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot\left(\mathbf{N}+\sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}+1\right)}{7 \cdot \mathbf{N} \cdot(\mathbf{N}+1)+\mathbf{N}^{3}+2 \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3} \cdot \mathbf{N}+1}=0
\]

Unit.
\(A B:=1\)
Given.
\(\mathbf{N}:=1.22457 \quad \mathbf{A D}:=\mathbf{N}\)

\section*{042901B}

Descriptions.
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B C}:=\frac{\mathbf{A B}}{2} \quad \mathbf{C R}:=\mathbf{B C}\)
\(\mathbf{C P}:=\mathbf{B C} \quad \mathbf{A C}:=\mathbf{B C} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{C G}:=\frac{\mathbf{C P}^{2}}{\mathbf{C D}}\)
DG \(:=\mathbf{C D}-\mathbf{C G} \quad\) DV \(:=\mathrm{DG} \quad \mathbf{C V}:=\mathrm{BC} \quad \mathbf{C F}:=\frac{\mathbf{C V}^{2}+\mathrm{CD}^{2}-\mathrm{DV}^{2}}{2 C D}\)
\(\begin{array}{llll}\mathbf{B F}:=\mathbf{B C}-\mathbf{C F} & \mathbf{A F}:=\mathbf{C F}+\mathbf{A C} & \text { FV }:=\sqrt{\mathbf{B F} \cdot \mathbf{A F}} & \text { CE }:=\frac{\mathbf{C F} \cdot \mathbf{C R}}{\mathbf{C R}-\mathbf{F V}} \\ & & & \end{array}\)
\(\begin{array}{llll}\mathbf{B F}:=\mathbf{B C}-\mathbf{C F} & \mathbf{A F}:=\mathbf{C F}+\mathbf{A C} & \mathbf{F V}:=\sqrt{\mathbf{B F} \cdot \mathbf{A F}} & \mathbf{C E}:=\frac{\mathbf{C F} \cdot \mathbf{C R}}{\mathbf{C R}-\mathbf{F V}} \\ \mathbf{B E}:=\mathbf{C E}-\mathbf{B C} & \mathbf{B G}:=\mathbf{B C}-\mathbf{C G} & \mathbf{E F}:=\mathbf{B E}+\mathbf{B F} & \mathbf{E G}:=\mathbf{B E}+\mathbf{B G}\end{array}\)
GL \(:=\frac{\mathbf{F V} \cdot \mathbf{E G}}{\mathbf{E F}} \quad \mathbf{G S}:=\frac{\mathbf{C G} \cdot \mathbf{G L}}{\mathbf{C R}} \quad \mathbf{C J}:=\frac{\mathbf{C G}^{\mathbf{2}}}{\mathbf{G S}+\mathbf{C G}}\)
\(\mathbf{J T}:=\frac{\mathbf{G L} \cdot \mathbf{C J}}{\mathbf{C G}}\)

Does the difference \(C J\) and
JT each have but one
Algebraic name?

CN
\(\mathbf{C M}:=\frac{\mathbf{C R}}{2} \quad\) DK \(:=\mathbf{C D} \quad K Q:=\mathbf{C M}\) \(\mathbf{D Q}:=\sqrt{\mathbf{D K}^{2}-\mathrm{KQ}^{2}} \quad \mathbf{C U}:=\frac{\mathrm{KQ} \cdot \mathbf{C D}}{\mathrm{DQ}}\)
\(\mathbf{C Z}:=\frac{\mathbf{C E} \cdot \mathbf{C U}}{\mathbf{C M}} \quad \mathbf{D U}:=\sqrt{\mathbf{C D}^{2}+\mathbf{C U}^{2}}\)
\(\mathbf{D Z}:=\mathbf{C Z}-\mathbf{C D} \quad \mathbf{D E}:=\mathbf{C E}-\mathbf{C D}\)
DJ := \(\frac{\text { CD.DE }}{\text { DZ }} \quad\) JC \(:=\mathbf{C D}-\mathbf{D J}\)
TJ \(:=\frac{\mathbf{C U} \cdot \mathbf{D J}}{\mathbf{C D}}\)
\(\mathbf{J C}-\mathbf{C J}=\mathbf{0}\)
\(\mathbf{J T}-\mathbf{T J}=\mathbf{0}\)

\section*{\(\sim_{n=2}^{0}\)}

Definitions.
\(\mathbf{B D}-(\mathbf{N}-1)=0 \quad \mathbf{B C}-\frac{1}{2}=0 \quad \mathbf{C R}-\frac{1}{2}=0 \quad \mathbf{C P}-\frac{1}{2}=0 \quad A C-\frac{1}{2}=0 \quad C D-\frac{2 \cdot N-1}{2}=0\)
\(\mathbf{C G}-\frac{1}{2 \cdot(2 \cdot \mathbf{N}-1)}=0 \quad \mathrm{DG}-\frac{2 \cdot \mathbf{N} \cdot(\mathbf{N}-1)}{2 \cdot \mathbf{N}-1}=0 \quad \mathrm{DV}-\frac{2 \cdot \mathbf{N} \cdot(\mathbf{N}-1)}{2 \cdot \mathbf{N}-1}=0 \quad \mathrm{CV}-\frac{1}{2}=0\)
\(C F-\frac{6 \cdot N^{2}-6 \cdot N+1}{2 \cdot(2 \cdot N-1)^{3}}=0 \quad B F-\frac{(4 \cdot N-1) \cdot(N-1)^{2}}{(2 \cdot N-1)^{3}}=0 \quad A F-\frac{N^{2} \cdot(4 \cdot N-3)}{(2 \cdot N-1)^{3}}\)
\(\mathbf{F V}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-\mathbf{3})}}{(2 \cdot \mathbf{N}-1)^{3}}=0 \quad \mathbf{C E}-\frac{6 \cdot \mathbf{N}^{2}-6 \cdot \mathbf{N}+1}{\left(4 \cdot \mathbf{N}-4 \cdot \mathbf{N}^{2}\right) \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-3)}+2 \cdot(2 \cdot \mathbf{N}-1)^{3}}=0\)

\(B E-\frac{(N-1) \cdot\left(5 \cdot N+N \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}-4 \cdot N^{2}-1\right)}{\left(2 \cdot N-2 \cdot N^{2}\right) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}+8 \cdot N^{3}-12 \cdot N^{2}+6 \cdot N-1}=0 \quad B G-\frac{N-1}{2 \cdot N-1}=0\)
\(E F-\frac{\sqrt{16 \cdot N^{2}-16 \cdot N+3} \cdot N \cdot(N-1) \cdot\left(6 \cdot N^{2}-6 \cdot N+1\right)}{(2 \cdot N-1)^{3} \cdot\left(2 \cdot N-2 \cdot N^{2}\right) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}+(2 \cdot N-1)^{3} \cdot\left[(2 \cdot N-1)^{3}\right]}=0\)
0
\(E G-\frac{N \cdot(N-1) \cdot\left(2 \cdot N+\sqrt{16 \cdot N^{2}-16 \cdot N+3}-1\right)}{(2 \cdot N-1) \cdot\left[\left(8 \cdot N^{3}-12 \cdot N^{2}+6 \cdot N-1\right)+\left(2 \cdot N-2 \cdot N^{2}\right) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}\right.}=\)
\(\mathbf{G L}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-\mathbf{3})} \cdot\left(2 \cdot \mathbf{N}+\sqrt{16 \cdot \mathbf{N}^{2}-16 \cdot \mathbf{N}+3}-1\right)}{(2 \cdot \mathbf{N}-1) \cdot\left(6 \cdot \mathbf{N}^{2}-\mathbf{6} \cdot \mathbf{N}+1\right) \cdot \sqrt{16 \cdot \mathbf{N}^{2}-16 \cdot \mathbf{N}+3}}=\mathbf{0}\)
\(\mathbf{G S}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-3)} \cdot\left(2 \cdot \mathbf{N}+\sqrt{16 \cdot \mathbf{N}^{2}-16 \cdot N+3}-1\right)}{(2 \cdot N-1)^{2} \cdot\left(6 \cdot \mathbf{N}^{2}-6 \cdot N+1\right) \cdot \sqrt{16 \cdot \mathbf{N}^{2}-16 \cdot N+3}}=0\)
\(C J-\frac{\sqrt{16 \cdot N^{2}-16 \cdot N+3} \cdot\left(6 \cdot N^{2}-6 \cdot N+1\right)}{\left(4 \cdot N^{2}-4 \cdot N\right) \cdot\left(\sqrt{16 \cdot N^{2}-16 \cdot N+3}\right)^{2}+\left(32 \cdot N^{3}-48 \cdot N^{2}+20 \cdot N-2\right) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}}=0\)
\(J T-\frac{N \cdot(N-1) \cdot\left(2 \cdot N+\sqrt{16 \cdot N^{2}-16 \cdot N+3}-1\right)}{\left(2 \cdot \mathbf{N}^{2}-2 \cdot N\right) \cdot \sqrt{16 \cdot \mathbf{N}^{2}-16 \cdot N+3}+(2 \cdot N-1) \cdot\left(8 \cdot \mathbf{N}^{2}-8 \cdot N+1\right)}=0\)
\(c^{2} \cos ^{38}\)
\(\mathrm{CM}-\frac{1}{4}=0 \quad \mathrm{DK}-\frac{2 \cdot \mathrm{~N}-1}{2}=0 \quad \mathrm{KQ}-\frac{1}{4}=0\)
\(\mathbf{D Q}-\frac{\sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-3)}}{4}=\mathbf{C} \quad \mathbf{C U}-\frac{2 \cdot \mathbf{N}-1}{2 \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-3)}}=\mathbf{0}\)
\(\mathbf{C Z}-\frac{(2 \cdot N-1) \cdot\left(6 \cdot \mathbf{N}^{2}-6 \cdot N+1\right)}{(2 \cdot \mathbf{N}-1)^{3} \cdot \sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)}+(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-3) \cdot\left(2 \cdot \mathbf{N}-2 \cdot \mathbf{N}^{2}\right)}=0\)
\(D U-\frac{(2 \cdot N-1)^{2}}{\sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)}}=0\)
\(D Z-\frac{2 \cdot N \cdot\left(32 \cdot N^{4}-80 \cdot N^{3}+82 \cdot N^{2}-43 \cdot N+11\right)-(2 \cdot N-1)^{4} \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}-2}{2 \cdot(2 \cdot N-1)^{3} \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}-4 \cdot N \cdot(N-1) \cdot(4 \cdot N-3) \cdot(4 \cdot N-1)}=0\)

\(D E-\frac{N \cdot(N-1) \cdot(2 \cdot N-1) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}-N \cdot(N-1) \cdot\left(8 \cdot N^{2}-8 \cdot N+1\right)}{\left(2 \cdot N-2 \cdot N^{2}\right) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}+8 \cdot N^{3}-12 \cdot N^{2}+6 \cdot N-1}=0\)
\(J C-\frac{\left(6 \cdot N^{2}-6 \cdot N+1\right) \cdot\left(16 \cdot N^{3}-24 \cdot N^{2}+10 \cdot N-1\right) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}-\left(6 \cdot N^{2}-6 \cdot N+1\right) \cdot\left(64 \cdot N^{4}-128 \cdot N^{3}+86 \cdot N^{2}-22 \cdot N+2\right)}{\left[8 \cdot N \cdot(N-1) \cdot\left(32 \cdot N^{4}-64 \cdot N^{3}+53 \cdot N^{2}-21 \cdot N+4\right)+2\right] \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}+-4 \cdot\left(8 \cdot N^{2}-8 \cdot N+1\right) \cdot(2 \cdot N-1)}=0\)
\(D J-\frac{N \cdot(N-1) \cdot(2 \cdot N-1) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3} \cdot\left(64 \cdot N^{4}-128 \cdot N^{3}+82 \cdot N^{2}-18 \cdot N+1\right)-N \cdot(N-1) \cdot(4 \cdot N-3) \cdot(4 \cdot N-1) \cdot\left(32 \cdot N^{4}-64 \cdot N^{3}+42 \cdot N^{2}-10 \cdot N+1\right)}{\sqrt{16 \cdot N^{2}-16 \cdot N+3} \cdot\left(128 \cdot N^{6}-384 \cdot N^{5}+468 \cdot N^{4}-296 \cdot N^{3}+100 \cdot N^{2}-16 \cdot N+1\right)-(2 \cdot N-1)}=\left(16 \cdot N^{2}-16 \cdot N+2\right) \quad\)
\(T J-\frac{N \cdot(N-1) \cdot(4 \cdot N-3) \cdot(4 \cdot N-1) \cdot\left(32 \cdot N^{4}-64 \cdot N^{3}+42 \cdot N^{2}-10 \cdot N+1\right)-N \cdot(N-1) \cdot(2 \cdot N-1) \cdot\left(64 \cdot N^{4}-128 \cdot N^{3}+82 \cdot N^{2}-18 \cdot N+1\right) \cdot \sqrt{16} \cdot N^{2}-16 \cdot N+3}{2 \cdot\left(8 \cdot N^{2}-8 \cdot N+1\right) \cdot(2 \cdot N-1)^{5} \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}-(4 \cdot N-3) \cdot(4 \cdot N-1) \cdot\left[4 \cdot N \cdot(N-1) \cdot\left(32 \cdot N^{4}-64 \cdot N^{3}+53 \cdot N^{2}-21 \cdot N+4\right)+1\right]}=0\)
\(C_{2}^{\circ} \operatorname{cin}^{3}\)

(\(\begin{aligned} & \text { Unit. } \\ & \text { GB:=1 } \\ & N:=4 \quad A E:=N\end{aligned}\) 050601A
Descriptions.
\(\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \quad \mathbf{A J}:=\mathbf{A O} \quad \mathbf{J O}:=\mathbf{B O}\)
\(\mathbf{G O}:=\frac{\mathbf{J O}}{2} \quad \mathbf{A G}:=\sqrt{\mathbf{A O}^{2}-\mathbf{G O}^{2}} \quad \mathbf{A P}:=\frac{\mathbf{A G}^{\mathbf{2}}}{\mathbf{A O}} \quad \mathbf{O P}:=\mathbf{A O}-\mathbf{A P} \quad \mathbf{N O}:=\mathbf{2 . O P}\)
AN:= AO - NO JM:= NO HO := BO HJ := 2•JM AH := AJ - HJ
\(\mathbf{A C}:=\frac{\mathbf{A N} \cdot \mathbf{A H}}{\text { AJ }} \quad \mathbf{C H}:=\sqrt{\mathbf{A H}^{2}-\mathbf{A C}^{2}} \quad \mathbf{H Q}:=\mathbf{2} \cdot \mathbf{C H} \quad \mathbf{C N}:=\mathbf{A N}-\mathbf{A C}\)
\(\mathrm{JN}:=\frac{\mathrm{CH} \cdot \mathrm{AJ}}{\mathrm{AH}} \quad \mathrm{CQ}:=\mathrm{CH} \quad \mathrm{JQ}:=\sqrt{(\mathrm{CQ}+\mathrm{JN})^{2}+\mathrm{CN}^{2}} \quad \mathrm{OR}:=\frac{\mathrm{JO}^{2}+\mathrm{HO}^{2}-\mathrm{HJ}^{2}}{2 \cdot \mathrm{HO}}\)
\(J R:=\sqrt{\mathbf{J O}^{2}-\text { OR }^{2}} \quad\) FO \(:=\frac{\mathrm{JO} \cdot \mathbf{G O}}{\mathrm{OR}} \quad\) FJ \(:=\) FO \(\quad\) DQ \(:=\frac{\mathrm{JQ} \cdot \mathbf{C Q}}{\mathbf{C Q}+\mathbf{J N}} \quad\) DF:= JQ-(DQ+FJ)
FH:= HO - FO \(\quad\) FG \(:=\frac{\text { JR. GO }}{\mathbf{O R}} \quad\) AF \(:=\mathbf{A G}-\mathbf{F G}\)

\section*{\(\sim_{n}^{0}\)}

Definitions.
\(\mathbf{A E}-\mathbf{N}=\mathbf{0} \quad \mathbf{B E}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B O}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A O}-\frac{\mathbf{N}+\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A G}-\frac{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{4}=\mathbf{0}\)
\(A P-\frac{(3 \cdot N+1) \cdot(\mathbf{N}+3)}{8 \cdot(\mathbf{N}+1)}=0 \quad O P-\frac{(N-1)^{2}}{8 \cdot(N+1)}=0 \quad N O-\frac{(N-1)^{2}}{4 \cdot(N+1)}=0 \quad A N-\frac{N^{2}+6 \cdot N+1}{4 \cdot(N+1)}=0\)
\(\mathbf{H J}-\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)}=\mathbf{0} \quad \mathbf{A H}-\frac{2 \cdot \mathbf{N}}{\mathbf{N}+1}=0 \quad \mathbf{A C}-\frac{\mathbf{N} \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}{(\mathbf{N}+1)^{3}}=0 \quad \mathbf{C H}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot \sqrt{\mathbf{N}+\mathbf{3} \cdot \sqrt{3 \cdot N+1}}}{(\mathbf{N}+1)^{3}}=\mathbf{0}\)
\(\mathbf{H Q}-\frac{2 \cdot \mathbf{N} \cdot(\mathbf{N}-1) \cdot \sqrt{\mathbf{N}+3} \cdot \sqrt{3 \cdot \mathbf{N}+1}}{(\mathbf{N}+1)^{3}}=0 \quad \mathbf{C N}-\frac{(\mathbf{N}-1)^{2} \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}{4 \cdot(\mathbf{N}+1)^{3}}=0 \quad \mathrm{JN}-\frac{\sqrt{\mathbf{N}+\mathbf{3} \cdot \sqrt{3 \cdot N+1} \cdot(\mathbf{N}-1)}}{4 \cdot(\mathbf{N}+\mathbf{1})}=0\)

\(J Q-\frac{(N-1) \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}{2 \cdot(\mathbf{N}+1)^{2}}=0 \quad O R-\frac{(N-1) \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}{4 \cdot(\mathbf{N}+1)^{2}}=0 \quad J R-\frac{(N-1)^{2} \cdot \sqrt{N+3} \cdot \sqrt{3 \cdot N+1}}{4 \cdot(\mathbf{N}+1)^{2}}=0\)
FO \(-\frac{(N-1) \cdot(N+1)^{2}}{2 \cdot\left(N^{2}+6 \cdot N+1\right)}=0 \quad D Q-\frac{2 \cdot N \cdot(N-1)}{(N+1)^{2}}=0 \quad D F-\frac{2 \cdot N \cdot(N-1)}{N^{2}+6 \cdot N+1}=0 \quad F H-\frac{2 \cdot N \cdot(N-1)}{N^{2}+6 \cdot N+1}=0\)
\(\mathbf{F G}-\frac{(\mathbf{N}-1)^{2} \cdot \sqrt{\mathbf{N}+\mathbf{3}} \cdot \sqrt{\mathbf{3 \cdot N}+1}}{4 \cdot\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+1\right)}=\mathbf{0} \quad \mathbf{G O}-\frac{\mathbf{N}-1}{4}=\mathbf{0}\)
\(A F-\frac{\left(2 \cdot \mathbf{N}-\mathbf{N}^{2}-1\right) \cdot \sqrt{3 \cdot N+1} \cdot \sqrt{N+3}+\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right) \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}}{4 \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}=0\)

\(\sim_{n}^{0}\)
Unit.
AB \(=1\)
Given.
\(\mathbf{N}:=1.46595 \quad\) AE := N
050601B
Descriptions.
\(\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{A B}}{2} \quad \mathbf{E O}:=\mathbf{B E}+\mathbf{B O} \quad \mathbf{E J}:=\mathbf{E O}\)
\(\mathbf{J O}:=\mathbf{B O} \quad\) GO \(:=\frac{\mathbf{J O}}{2} \quad \mathbf{E G}:=\sqrt{\mathbf{E O}^{2}-\mathbf{G O}^{2}}\)

\section*{Just some Algebraic Names}

\(E P:=\frac{E G^{2}}{E O} \quad\) OP \(:=E O-E P \quad\) NO \(:=2 \cdot O P\)
EN := EO - NO JM := NO HO := BO \(\quad\) HJ \(:=2 \cdot \mathbf{J M} \quad\) EH \(:=\) EJ - HJ
EC \(:=\frac{\text { EN } \cdot \mathbf{E H}}{\text { EJ }} \quad \mathbf{C H}:=\sqrt{\mathbf{E H}^{2}-\text { EC }^{2}} \quad\) HQ \(:=2 \cdot \mathbf{C H} \quad\) CN \(:=\mathbf{E N}-\mathbf{E C}\)
\(\mathrm{JN}:=\frac{\mathrm{CH} \cdot \mathrm{EJ}}{\mathrm{EH}} \quad \mathrm{CQ}:=\mathrm{CH} \quad \mathrm{JQ}:=\sqrt{(\mathrm{CQ}+\mathrm{JN})^{2}+\mathrm{CN}^{2}} \quad \mathrm{OR}:=\frac{\mathrm{JO}^{2}+\mathrm{HO}^{2}-\mathrm{HJ}^{2}}{2 \cdot \mathrm{HO}}\)
\(\mathbf{J R}:=\sqrt{\mathbf{J O}^{2}-\mathbf{O R}^{2}} \quad\) FO \(:=\frac{\mathbf{J O} \cdot \mathbf{G O}}{\mathbf{O R}} \quad\) FJ \(:=F O \quad \mathbf{D Q}:=\frac{\mathbf{J Q} \cdot \mathbf{C Q}}{\mathbf{C Q}+\mathbf{J N}}\)
\(\mathbf{D F}:=\mathbf{J Q}-(\mathbf{D Q}+\mathbf{F J}) \quad \mathbf{F H}:=\mathbf{H O}-\mathbf{F O} \quad \mathbf{F G}:=\frac{\mathbf{J R} \cdot \mathbf{G O}}{\mathbf{O R}} \quad \mathbf{E F}:=\mathbf{E G}-\mathbf{F G}\)

~~~~~~

\section*{Definitions.}
\(\mathbf{B E}-(\mathbf{N}-1)=0 \quad \mathbf{B O}-\frac{1}{2}=0 \quad\) EO \(-\frac{2 \cdot \mathbf{N}-1}{2}=0 \quad\) EJ \(-\frac{2 \cdot \mathbf{N}-1}{2}=0\)
\(J O-\frac{1}{2}=0 \quad\) GO \(-\frac{1}{4}=0 \quad E G-\frac{\sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)}}{4}=0\)
\(E P-\frac{(4 \cdot N-1) \cdot(4 \cdot N-3)}{8 \cdot(2 \cdot N-1)}=0 \quad O P-\frac{1}{8 \cdot(2 \cdot N-1)}=0 \quad N O-\frac{1}{4 \cdot(2 \cdot N-1)}=0\)

\(\mathbf{E N}-\frac{8 \cdot \mathbf{N}^{2}-8 \cdot \mathbf{N}+1}{4 \cdot(2 \cdot \mathbf{N}-1)}=0 \quad \mathrm{JM}-\frac{1}{4 \cdot(2 \cdot \mathbf{N}-1)}=0 \quad \mathrm{HO}-\frac{1}{2}=0 \quad H J-\frac{1}{2 \cdot(2 \cdot \mathbf{N}-1)}=0\)
\(\mathbf{E H}-\frac{2 \cdot \mathbf{N} \cdot(\mathbf{N}-1)}{2 \cdot \mathbf{N}-1}=\mathbf{0} \quad \mathbf{E C}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot\left(8 \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+1\right)}{(2 \cdot \mathbf{N}-\mathbf{1})^{3}}=0 \quad \mathbf{C H}-\frac{\mathbf{N} \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(4 \cdot \mathbf{N}-3} \cdot(\mathbf{N}-1)}{(2 \cdot \mathbf{N}-1)^{3}}=0\)
\(H Q-\frac{2 \cdot N \cdot(N-1) \cdot \sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)}}{(2 \cdot N-1)^{3}}=0 \quad C N-\frac{8 \cdot \mathbf{N}^{2}-8 \cdot N+1}{4 \cdot(2 \cdot N-1)^{3}}=0 \quad J N-\frac{\sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)}}{4 \cdot(2 \cdot N-1)}=0\)
\(C Q-\frac{N \cdot \sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)} \cdot(N-1)}{(2 \cdot N-1)^{3}}=0 \quad J Q-\frac{\left(8 \cdot N^{2}-8 \cdot N+1\right)}{2 \cdot(2 \cdot N-1)^{2}}=0 \quad O R-\frac{8 \cdot N^{2}-8 \cdot N+1}{4 \cdot(2 \cdot N-1)^{2}}=0\)
\(J R-\frac{\sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)}}{4 \cdot(2 \cdot N-1)^{2}}=0 \quad F O-\frac{(2 \cdot N-1)^{2}}{2 \cdot\left(8 \cdot \mathbf{N}^{2}-8 \cdot N+1\right)}=0 \quad F J-\frac{H O}{4 \cdot\left(-\mathrm{HJ}^{2}+\mathrm{HO}^{2}+\mathrm{JO}^{2}\right)}=0\)
\(D Q-\frac{2 \cdot N \cdot(N-1)}{(2 \cdot N-1)^{2}}=0 \quad D F-\frac{2 \cdot N \cdot(N-1)}{8 \cdot N^{2}-8 \cdot N+1}=0 \quad F H-\frac{2 \cdot N \cdot(N-1)}{8 \cdot N^{2}-8 \cdot N+1}=0\)
\(\mathbf{F G}-\frac{\sqrt{(4 \cdot N-1) \cdot(4 \cdot \mathbf{N}-3)}}{4 \cdot\left(8 \cdot \mathbf{N}^{2}-8 \cdot \mathbf{N}+1\right)}=0 \quad \mathbf{E F}-\frac{2 \cdot \sqrt{16 \cdot \mathbf{N}^{2}-16 \cdot \mathbf{N}+3} \cdot \mathbf{N} \cdot(\mathbf{N}-1)}{8 \cdot \mathbf{N}^{2}-8 \cdot \mathbf{N}+1}=0\)




050701 EP

\section*{Unit.}

AB := \(\mathbf{1}\)

\section*{What is an Angle?}

\section*{Given.}
\(\mathrm{N}_{1}:=\frac{\mathrm{AB}}{10}\)
Descriptions.
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{8}\)
\(\mathbf{A Q}:=\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}} \quad \mathbf{B Q}:=\mathbf{A B}-\mathbf{A Q} \quad \mathbf{D Q}:=\sqrt{\mathbf{B Q} \cdot \mathbf{A Q}}\) \(A O:=\frac{A B}{2} \quad A Y:=\sqrt{2 \cdot A O^{2}} \quad O Q:=A Q-A O\)
\(\mathbf{D Y}:=\sqrt{(\mathbf{A O}+\mathbf{D Q})^{2}+\mathbf{O Q}^{2}} \quad\) OR \(:=\frac{\mathbf{O Q} \cdot \mathbf{A O}}{\mathbf{A O}+\mathbf{D Q}}\)
\(\mathbf{Q R}:=\mathbf{O Q}-\mathbf{O R} \quad \mathbf{K S}:=\frac{\mathbf{A Y} \cdot(\mathbf{D Q}+\mathbf{A O})}{\mathbf{D Y}}\)
\(\mathbf{G K}:=\mathbf{K S}-\mathbf{A O} \quad \mathbf{G R}:=\frac{\mathbf{Q R} \cdot \mathbf{G K}}{\mathbf{D Q}} \quad \mathbf{G O}:=\mathbf{G R}+\mathbf{O R}\) \(\mathbf{C O}:=\frac{\mathbf{A O}^{\mathbf{2}}}{\mathbf{G O}} \quad \mathbf{B C}:=\mathbf{C O}-\mathbf{A O} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}\)

\(\mathrm{AC}=1.61803\)
\(\mathrm{N}_{2}=8.00000\)
\(\mathrm{N}_{\mathbf{1}}=\mathbf{1 0 . 0 0 0 0 0}\)

\section*{Definitions.}
\(A Q-N_{1} \cdot N_{2}=0 \quad B Q-\left(1-N_{1} \cdot N_{2}\right)=0 \quad D Q-\sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}{ }^{2}}=0\)
\(A O-\frac{1}{2}=0 \quad A Y-\frac{1}{\sqrt{2}}=0 \quad O Q-\frac{2 \cdot N_{1} \cdot N_{2}-1}{2}=0 \quad D Y-\frac{\sqrt{\left.4 \cdot \sqrt{-N_{1} \cdot N_{2} \cdot\left(N_{1} \cdot N_{2}-1\right.}\right)+2}}{2}=0 \quad O R-\frac{2 \cdot N_{1} \cdot N_{2}-1}{2 \cdot\left(2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}{ }^{2}}+1\right)}=0\)
\(Q R-\frac{\sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}{ }^{2}} \cdot\left(2 \cdot N_{1} \cdot N_{2}-1\right)}{2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}{ }^{2}}+1}=0 \quad K S-\frac{2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}{ }^{2}}+1}{2 \cdot \sqrt{2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}{ }^{2}}+1}}=0 \quad G K-\frac{\sqrt{2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}{ }^{2}}+1}-1}{2}=0\)
\(\mathbf{G R}-\frac{\left(\sqrt{2 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}{ }^{2}}+1}-1\right) \cdot\left(2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-1\right)}{2 \cdot\left(2 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}^{2}}+1\right)}\)
\(G O-\frac{N_{1} \cdot N_{2}-\frac{1}{2}}{\sqrt{2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}^{2}}+1}}=0 \quad C O-\frac{\sqrt{2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}^{2}}+1}}{2 \cdot\left(2 \cdot N_{1} \cdot N_{2}-1\right)}=0\)
\(B C-\frac{\sqrt{2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot N_{2}{ }^{2}}+1}-2 \cdot N_{1} \cdot N_{2}+1}{4 \cdot N_{1} \cdot N_{2}-2}=0 \quad A C-\frac{2 \cdot N_{1} \cdot N_{2}+\sqrt{2 \cdot \sqrt{N_{1} \cdot N_{2}-N_{1}{ }^{2} \cdot \mathbf{N}_{2}{ }^{2}}+1}-1}{2 \cdot\left(2 \cdot N_{1} \cdot N_{2}-1\right)}=0 \quad A C-\frac{N_{2}+\sqrt{5} \cdot \sqrt{\sqrt{10} \cdot N_{2}-N_{2}{ }^{2}}+5-5}{2 \cdot N_{2}-10}=0\)

0507013
Descriptions.
\(\mathbf{A C}:=\frac{\mathbf{A B}}{2} \quad \mathbf{B F}:=\sqrt{2 \cdot \mathbf{A C}^{2}}\)
\(\mathbf{B G}:=\frac{\mathbf{B F}}{2} \quad \mathbf{C H}:=\mathbf{A C} \quad \mathbf{C G}:=\mathbf{B G}\)
\(\mathbf{G H}:=\mathbf{C H}-\mathbf{C G} \quad \mathbf{B H}:=\sqrt{\mathbf{B G}^{\mathbf{2}}+\mathbf{G H}^{\mathbf{2}}}\)
\(\mathbf{B D}:=\frac{\mathbf{B H}^{2}}{\mathrm{AB}} \quad \mathbf{C E}:=\frac{\mathbf{A B}-(4 \cdot \mathrm{BD})}{2}\)

\section*{Definitions.}
\(\mathbf{A C}-\frac{1}{2}=0 \quad \mathbf{B F}-\frac{\sqrt{2}}{2}=0\)
\(B G-\frac{\sqrt{2}}{4}=0 \quad C H-\frac{1}{2}=0 \quad C G-\frac{\sqrt{2}}{4}=0\)
\(\mathbf{G H}-\frac{2-\sqrt{2}}{4}=\mathbf{0}\)
\(\mathrm{BH}-\frac{\sqrt{2-\sqrt{2}}}{2}=0\)
\(B D-\frac{2-\sqrt{2}}{4}=0 \quad C E-\frac{\sqrt{2}-1}{2}=0\)

\section*{Angles by Ellipse:}

\(\sim_{n=2}^{0}\)
Unit.
AN := 1
Given.
\(\mathbf{N}:=\mathbf{5 . 5 2}\)
0507012
Descriptions.
EN \(:=\frac{\mathbf{A N}}{2} \quad\) ET \(:=\mathbf{E N} \quad\) EV \(:=\mathbf{E N} \quad\) EG \(:=\frac{\mathbf{A N}}{\mathbf{N}} \quad\) EP \(:=\mathbf{E G}\)
\(\mathbf{G T}:=\sqrt{\mathbf{E G}^{2}+\mathbf{E T}^{\mathbf{2}}} \quad \mathbf{G O}:=\frac{\mathbf{E G}^{2}}{\mathbf{G T}} \quad \mathbf{G X}:=\mathbf{G T}-2 \cdot \mathbf{G O} \quad \mathbf{J X}:=\frac{\mathbf{E T} \cdot \mathbf{G X}}{\mathbf{G T}}\)
GJ \(:=\frac{\mathbf{E G} \cdot \mathbf{G X}}{\mathbf{G T}} \quad \frac{\mathbf{E T}}{\mathbf{E P}}-\frac{\mathbf{J X}}{\mathbf{G} \mathbf{J}}=\mathbf{0} \quad \mathbf{J V}:=\mathbf{J X} \quad\) EJ \(:=\mathbf{E G}+\mathbf{G} \mathbf{J}\)
\(\mathbf{T V}:=\sqrt{\mathbf{E T}^{2}-2 \cdot \mathbf{E T} \cdot \mathbf{J V}+\mathbf{J V}^{2}+\mathbf{E J ^ { 2 }}} \quad \mathbf{E Q}:=\frac{\mathbf{E J} \cdot \mathbf{E G}}{\mathbf{E V}} \quad \mathbf{G Q}:=\frac{\mathbf{J V} \cdot \mathbf{E Q}}{\mathbf{E J}}\)
\(\mathbf{G Q}-\mathbf{G J}=\mathbf{0} \quad \frac{\mathbf{E T}}{\mathbf{T V}}-\frac{\mathbf{G T}}{2 \cdot \mathbf{E G}}=0 \quad \mathbf{T V}-\frac{2 \cdot \mathbf{A N}}{\sqrt{\mathbf{N}^{2}+4}}=0\)
Definitions.
\(\mathbf{E N}-\frac{1}{2}=\mathbf{0} \quad \mathbf{E T}-\frac{1}{2}=0 \quad\) EV \(-\frac{1}{2}=0 \quad\) EG \(-\frac{1}{\mathrm{~N}}=0 \quad\) EP \(-\frac{1}{\mathrm{~N}}=\mathbf{0}\)
\(\mathbf{G T}-\frac{\sqrt{\mathbf{N}^{2}+4}}{2 \cdot \mathbf{N}}=0 \quad G O-\frac{2}{N \cdot \sqrt{\mathbf{N}^{2}+4}}=0 \quad G X-\frac{(N-2) \cdot(\mathbf{N}+2)}{2 \cdot \mathbf{N} \cdot \sqrt{\mathbf{N}^{2}+4}}=0 \quad J X-\frac{(N-2) \cdot(N+2)}{2 \cdot\left(N^{2}+4\right)}=0\)
\(\mathbf{G J}-\frac{(\mathbf{N}-2) \cdot(\mathbf{N}+2)}{\mathbf{N} \cdot\left(\mathbf{N}^{2}+4\right)}=0 \quad \frac{\mathbf{E T}}{\mathbf{E P}}-\frac{\mathbf{J X}}{\mathbf{G J}}=0 \quad \mathbf{J V}-\frac{(\mathbf{N}-2) \cdot(\mathbf{N}+2)}{2 \cdot\left(\mathbf{N}^{2}+4\right)}=0 \quad E \mathbf{E J}-\frac{2 \cdot \mathbf{N}}{\mathbf{N}^{2}+4}=0\)
\(T V-\frac{2}{\sqrt{N^{2}+4}}=0 \quad E Q-\frac{4}{N^{2}+4}=0 \quad G Q-\frac{(N-2) \cdot(N+2)}{N \cdot\left(N^{2}+4\right)}=0\)

\section*{(}

\section*{0507013}

Descriptions.
AE \(:=\frac{\mathbf{A L}}{2} \quad\) ER \(:=\mathbf{A E} \quad\) NR \(:=\mathbf{E R} \quad\) FN \(:=\frac{\text { NR }}{2} \quad\) EN \(:=\mathbf{A E}\)
EF \(:=\sqrt{\mathrm{EN}^{2}-\mathrm{FN}^{2}} \quad \mathrm{DE}:=\mathbf{A E} \quad \mathrm{DF}:=\mathrm{DE}-\mathrm{EF} \quad \mathrm{DN}:=\sqrt{\mathrm{DF}^{2}+\mathrm{FN}^{2}}\)
\(\mathbf{A N}:=\mathbf{D N} \quad \mathbf{A B}:=\frac{\mathbf{A N}^{2}}{\mathbf{A L}} \quad \mathbf{E L}:=\mathbf{A E} \quad \mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B N}:=\sqrt{\mathbf{A N}^{2}-\mathbf{A B}^{2}}\)
\(\mathbf{E J}:=\frac{\mathbf{B N} \cdot \mathbf{E L}}{\mathbf{B L}} \quad \mathbf{G H}:=\mathbf{A E}-(\mathbf{E J}+\mathbf{2} \cdot \mathbf{A B})\)

\section*{Definitions.}

FN \(-\frac{1}{4}=\mathbf{0} \quad \mathbf{E F}-\frac{\sqrt{3}}{4}=0 \quad\) DF \(-\frac{2-\sqrt{3}}{4}=\mathbf{0} \quad \mathbf{A N}-\frac{\sqrt{2} \cdot(\sqrt{3}-1)}{4}=0\)
\(\frac{2-\sqrt{3}}{4}-\mathbf{A B}=0 \quad \frac{\sqrt{3}+2}{4}-\mathbf{B L}=0 \quad \frac{1}{4}-\mathbf{B N}=0 \quad \frac{1}{2 \cdot \sqrt{3}+4}-\mathbf{E J}=0 \quad \frac{\sqrt{3}}{2 \cdot \sqrt{3}+4}-\mathbf{G H}=\mathbf{0}\)

\section*{Trisection:}



An Elliptic Progression takes place on a finite length of line. An Elliptic Progression may be defined in terms of a number of diameters of smaller circles, each defined by the same angle from the circumferance of the larger circle, from the center of a circle to its perimeter. When the sum of the number of those diameters minus one half the starting diameter are equal to the radius of the larger circle, the angle that defined the smaller circles will divide the larger circle evenly and the same number of times as the total number of smaller circles.
\(\mathbf{E K}:=\mathbf{C E} \quad \mathbf{E H}:=\mathbf{C E} \quad \mathbf{A E}:=\sqrt{\mathbf{C E}^{2}-\mathbf{A C}^{2}}\)
\(\mathbf{A H}:=\mathbf{E H}-\mathbf{A E} \quad\) AT \(:=\mathbf{A H} \quad \mathbf{E U}:=\frac{\mathbf{A T} \cdot \mathbf{E K}}{\mathbf{A C}}\)
\(\frac{\mathbf{E K}}{\mathbf{E U}}=5.027339 \quad 1+\sqrt{2}+\sqrt{2} \cdot \sqrt{2+\sqrt{2}}=5.027339\)

\section*{Definitions.}
\(\frac{\mathbf{E K}}{\mathbf{E U}}-(1+\sqrt{2}+\sqrt{2} \cdot \sqrt{2+\sqrt{2}})=0\)
\(\mathbf{C P}-\sqrt{2}=\mathbf{0} \quad \mathbf{E P}-\sqrt{2}=\mathbf{0} \quad \mathbf{C E}-\sqrt{2} \cdot \sqrt{2+\sqrt{2}}=\mathbf{0}\)
\(\mathbf{A E}-(\sqrt{2}+1)=\mathbf{0} \quad \mathbf{A H}-(\sqrt{2} \cdot \sqrt{2+\sqrt{2}}-1-\sqrt{2})=\mathbf{0}\)
\(\mathbf{E U}-(2-\sqrt{\sqrt{2}+2}) \cdot(\sqrt{2}+2)=\mathbf{0}\)


U
0507013B
Descriptions.
\(\mathbf{A E}:=\frac{\mathbf{A L}}{2} \quad\) AR \(:=\sqrt{2 \cdot \mathbf{A E}^{2}}\)
\(\mathbf{A M}:=\frac{\mathbf{A R}}{2} \quad\) EO \(:=\mathbf{A E} \quad \mathbf{E M}:=\mathbf{A M}\)
\(\mathbf{M O}:=\mathbf{E O}-\mathbf{E M} \quad \mathbf{A O}:=\sqrt{\mathbf{A M}^{\mathbf{2}}+\mathbf{M O}^{\mathbf{2}}}\)
\(\mathbf{A Y}:=\frac{\mathbf{A O}}{2} \quad \mathbf{E Y}:=\sqrt{\mathbf{A E}^{2}-\mathbf{A Y}}{ }^{\mathbf{2}}\)
EN \(:=\mathbf{A E} \quad\) NY \(:=\mathbf{E N}-\mathbf{E Y} \quad\) AN \(:=\sqrt{\mathbf{A Y} \mathbf{Y}^{2}+\mathbf{N Y}^{2}}\)
\(\mathbf{A P}:=\frac{\mathbf{A N}^{2}}{\mathbf{A L}} \quad \mathbf{N P}:=\sqrt{\mathbf{A N}^{2}-\mathbf{A P}}{ }^{2} \quad \mathbf{E S}:=\frac{\mathbf{N P} \cdot \mathbf{A E}}{\mathbf{A L}-\mathbf{A P}}\)


Definitions.
\(\mathbf{A R}-\frac{\sqrt{2}}{2}=0 \quad \mathbf{A M}-\frac{\sqrt{2}}{4}=0 \quad\) MO \(-\frac{2-\sqrt{2}}{4}=0 \quad\) AO \(-\frac{\sqrt{2-\sqrt{2}}}{2}=0\)
\(A Y-\frac{\sqrt{2-\sqrt{2}}}{4}=0 \quad E Y-\frac{\sqrt{\sqrt{2}+2}}{4}=0 \quad N Y-\frac{2-\sqrt{\sqrt{2}+2}}{4}=0\)
\(\mathbf{A N}-\frac{\sqrt{2-\sqrt{\sqrt{2}+2}}}{2}=0 \quad \mathbf{A P}-\frac{2-\sqrt{2+\sqrt{2}}}{4}=0 \quad \mathbf{N P}-\frac{\sqrt{2-\sqrt{2}}}{4}=0\)
\(E S-\frac{\sqrt{2-\sqrt{2}}}{2 \cdot(\sqrt{\sqrt{2}+2}+2)}=0\)

0507014
Descriptions.
\[
\begin{aligned}
& \mathbf{A E}:=\frac{\mathbf{A G}}{2} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C J}:=\sqrt{\mathbf{A C} \cdot \mathbf{C G}} \\
& \mathbf{E L}:=\mathbf{A E} \quad \mathbf{C E}:=\mathbf{A C} \quad \mathbf{J L}:=\sqrt{\mathbf{E L} \mathbf{L}^{2}-\mathbf{2} \cdot \mathbf{E L} \cdot \mathbf{C J}+\mathbf{C J}^{2}+\mathbf{C E}^{2}} \\
& \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}^{2}} \quad \mathbf{G J}:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}^{2}} \quad \mathbf{A L}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E L}^{2}}
\end{aligned}
\]

Outtake Four: Some Names


\section*{Definitions.}
\(\mathbf{A E}-\frac{1}{2}=\mathbf{0} \quad \mathbf{A C}-\frac{1}{4}=\mathbf{0} \quad \mathbf{C G}-\left(1-\frac{1}{4}\right)=\mathbf{0} \quad \mathbf{C J}-\frac{1}{4} \cdot \sqrt{3}=\mathbf{0}\)
\(\boldsymbol{J L}-\left(\frac{1}{4} \cdot \sqrt{6}-\frac{1}{4} \cdot \sqrt{2}\right)=0 \quad\) AJ \(-\frac{1}{2}=0 \quad\) GJ \(-\frac{1}{2} \cdot \sqrt{3}=0 \quad\) AL \(-\frac{1}{2} \cdot \sqrt{2}=0\)


Unit.
AL := \(\mathbf{1}\)

0507013
Descriptions.

\section*{Alternate Method: Pentasection Or}

\section*{Irrational Rationals}

Irrational means the inability of a grammar to provide a name for a given thing. Many things are then irrational in Arithmetic due to the principles of the naming convention. Algebraic naming solves the problem by incorporating operands as part of a name. Algebra provides a degree of rationality then that is not achievable by Arithmetic. The following are some Algebraic names.
\(\mathbf{A E}:=\frac{\mathbf{A L}}{2} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{C E}:=\mathbf{A C} \quad \mathbf{E R}:=\mathbf{A E} \quad \mathbf{C R}:=\sqrt{\mathbf{C E}^{2}+\mathbf{E R}^{\mathbf{2}}} \quad \mathbf{C J}:=\mathbf{C R}\)
\(\mathbf{E J}:=\mathbf{C J}-\mathbf{C E} \quad \mathbf{J R}:=\sqrt{\mathbf{E J}^{2}+\mathbf{E R}^{2}} \quad \mathbf{N R}:=\mathbf{J R} \quad\) EN \(:=\mathbf{A E} \quad \mathbf{E M}:=\frac{\mathbf{E N}^{2}+\mathbf{E R}^{2}-\mathbf{N R}^{2}}{2 \cdot \mathbf{E R}}\)
\(\mathbf{K N}:=\mathbf{E M} \quad \mathbf{E K}:=\sqrt{\mathbf{E N}^{2}-\mathbf{K N}^{2}} \quad\) EL \(:=\mathbf{A E} \quad \mathbf{K L}:=\mathbf{E L}-\mathbf{E K} \quad \mathbf{L N}:=\sqrt{\mathbf{K L}^{2}+\mathbf{K N}^{2}}\)
\(\mathbf{E G}:=\frac{\mathbf{E J}}{2} \quad \mathbf{G L}:=\mathbf{E L}-\mathbf{E G} \quad \mathbf{A G}:=\mathbf{A E}+\mathbf{E G} \quad \mathbf{G P}:=\sqrt{\mathbf{A G} \cdot \mathbf{G L}}\)
\(\mathbf{P R}:=\sqrt{\mathbf{E R}^{2}-\mathbf{2} \cdot \mathbf{E R} \cdot \mathbf{G P}+\mathbf{G P}^{2}+\mathbf{E G}{ }^{2}} \quad \mathbf{P R}-\mathbf{L N}=\mathbf{0} \quad \mathbf{A N}:=\sqrt{\mathbf{A L}^{2}-\mathbf{L N}}{ }^{\mathbf{2}}\)

Definitions:
\(\mathbf{A E}-\frac{1}{2}=\mathbf{0} \quad \mathbf{A C}-\frac{1}{4}=\mathbf{0} \quad \mathbf{C R}-\frac{1}{4} \cdot \sqrt{5}=\mathbf{0} \quad \mathbf{E J}-\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right)=\mathbf{0}\)

\(\mathbf{J R}-\frac{\sqrt{2} \cdot \sqrt{5-\sqrt{5}}}{4}=0 \quad\) EM \(-\left(\frac{\sqrt{5}}{8}-\frac{1}{8}\right)=0 \quad\) EK \(-\frac{1}{2} \cdot \sqrt{\frac{\sqrt{5}}{8}+\frac{5}{8}}=0\)
\(\mathbf{K L}-\left(\frac{1}{2}-\frac{\sqrt{2} \cdot \sqrt{\sqrt{5}+5}}{8}\right)=0 \quad \mathbf{L N}-\frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}=0 \quad\) EG \(-\left(\frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}\right)=0\)
\(\mathbf{G L}-\left(\frac{5}{8}-\frac{1}{8} \cdot \sqrt{5}\right)=\mathbf{0} \quad \mathbf{A G}-\left(\frac{3}{8}+\frac{1}{8} \cdot \sqrt{5}\right)=0 \quad \mathbf{G P}-\frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}=0\)
\(\mathbf{P R}-\frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}=\mathbf{0} \quad\) AN \(-\frac{1}{4} \cdot \sqrt{8+2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}=\mathbf{0}\)

0

I had intended to someday write this figure up, it is chock full of fixed intersections which are part of the figure, you just have to find them. Here it is, some eighteen years later. I know that some eighteen years later. I know that
there are a lot of circles in it, but in order there are a lot of circles in it, but in orde
to writhe this figure up, \(I\) need a round tuit.

\(\sim_{n=2}^{\infty}\)
Unit.
AB := 1
Given.
\(\mathrm{N}_{1}\) := 1.20194
\(N_{2}:=1.93482\)
Descriptions.
\(\mathbf{A S}:=\frac{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}{2 \cdot \mathbf{N}_{2}} \quad \mathbf{A S}=\mathbf{0 . 8 1 0 6 0 8} \quad \mathbf{S T}:=\sqrt{\mathbf{A S} \cdot(\mathbf{A B}-\mathbf{A S})} \quad \mathbf{A O}:=\frac{\mathbf{A B}}{2}\)
\(O Q:=A O \quad\) OP \(:=A O \quad\) OS \(:=A S-A O \quad\) PS \(:=\sqrt{O S^{2}+O P^{2}} \quad\) CO \(:=\frac{\text { OP }^{2}}{O S}\)
\(\mathrm{AC}:=\mathrm{CO}+\mathrm{AO} \quad \mathrm{CW}:=\mathrm{CO} \quad \mathrm{OW}:=\mathrm{AO} \quad \mathrm{OX}:=\frac{\mathrm{CO}^{2}+\mathrm{OW}^{2}-\mathrm{CW}^{2}}{2 \cdot \mathrm{CO}}\)
\(\mathrm{FW}:=2 \cdot \mathbf{O X} \quad \mathbf{C F}:=\mathbf{C W}-\mathrm{FW} \quad \mathrm{CI}:=\frac{\mathbf{C F}}{2} \quad \mathrm{FO}:=\mathrm{AO} \quad \mathrm{EO}:=\frac{\mathrm{CO}^{2}+\mathrm{FO}^{2}-\mathrm{CF}^{2}}{2 \cdot \mathbf{C O}}\) \(\mathbf{B O}:=\mathbf{A O} \quad \mathbf{B E}:=\mathbf{B O}-\mathbf{E O} \quad \mathbf{A E}:=\mathbf{A O}+\mathbf{E O} \quad \mathbf{E F}:=\sqrt{\mathbf{A E} \cdot \mathbf{B E}} \quad \mathbf{C E}:=\mathbf{C F}\) DF \(:=\frac{\text { FO } \cdot \mathbf{E F}}{\text { EO }} \quad\) FH \(:=\frac{\text { DF }}{2} \quad\) DE \(:=\frac{\text { EF } \cdot \text { DF }}{\text { FO }} \quad\) DO \(:=\) EO + DE \(\quad\) GH \(:=\frac{\text { DO }}{2}\) \(\mathbf{G B}_{1}:=\frac{\mathbf{G H}}{2} \quad \mathbf{A A}_{1}:=\frac{\mathbf{E O} \cdot \mathbf{O P}}{\mathbf{O P}-\mathbf{E F}}+\mathbf{A O} \quad \mathbf{A A}_{1}=1.475247 \quad\) OA \(_{1}:=\mathbf{A A}_{1}-\mathbf{A O}\) \(\mathrm{PA}_{1}:=\sqrt{\mathrm{OA}_{1}{ }^{2}+\mathrm{OP}^{2}} \quad \mathrm{EA}_{1}:=\mathrm{OA}_{1}-\mathbf{E O} \quad \mathrm{FA}_{1}:=\frac{\mathrm{PA}_{1} \cdot \mathbf{E F}}{\mathrm{OP}} \quad\) FJ \(:=\frac{\mathrm{FA}_{1}}{2}\) \(\mathbf{c}_{\mathbf{1}}:=\mathrm{AO} \quad \mathbf{c}_{\mathbf{2}}:=\mathrm{GB}_{\mathbf{1}} \quad \mathbf{c}_{\mathbf{3}}:=\mathbf{F H} \quad \mathbf{c}_{\mathbf{4}}:=\mathbf{C I} \quad \mathbf{c}_{\mathbf{5}}:=\mathrm{FJ}\)
\[
c_{1}=0.5 \quad c_{2}=0.153949 \quad c_{3}=0.179725
\]
\(c_{4}=0.247133 \quad c_{5}=0.319863\)

\(0^{\circ} 85\)
\(c_{4}=0.247133 \quad c_{5}=0.319863\)

Definitions.
\(A S-\frac{\mathbf{N}_{1}+\mathbf{N}_{2}}{2 \cdot \mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{S T}-\frac{\sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)}}{2 \cdot \mathbf{N}_{2}}=0 \quad\) AO \(-\frac{1}{2}=0\)
\(O Q-\frac{1}{2}=0 \quad O P-\frac{1}{2}=0 \quad O S-\frac{N_{1}}{2 \cdot N_{2}}=0 \quad P S-\frac{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}{2 \cdot N_{2}}=0\)
\(\mathrm{CO}-\frac{\mathrm{N}_{2}}{2 \cdot \mathrm{~N}_{1}}=0 \quad \mathrm{AC}-\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{2 \cdot \mathrm{~N}_{1}}=0 \quad \mathrm{CW}-\frac{\mathrm{N}_{2}}{2 \cdot \mathrm{~N}_{1}}=0\)
\(\mathrm{OW}-\frac{1}{2}=0 \quad \mathrm{OX}-\frac{\mathrm{N}_{1}}{4 \cdot \mathrm{~N}_{2}}=0 \quad \mathrm{FW}-\frac{\mathrm{N}_{1}}{2 \cdot \mathrm{~N}_{2}}=0\)
\(\mathbf{C F}-\frac{\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}=\mathbf{0} \quad \mathrm{CI}-\frac{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}\right)}{4 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}=0\)
FO \(-\frac{1}{2}=0 \quad E O-\frac{N_{1} \cdot\left(3 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}\right)}{4 \cdot N_{2}^{3}}=0 \quad B O-\frac{1}{2}=0\)
\(B E-\frac{\left(N_{1}+2 \cdot N_{2}\right) \cdot\left(\mathbf{N}_{1}-N_{2}\right)^{2}}{4 \cdot N_{2}^{3}}=0 \quad A E-\frac{\left(2 \cdot N_{2}-N_{1}\right) \cdot\left(\mathbf{N}_{1}+N_{2}\right)^{2}}{4 \cdot N_{2}^{3}}=0\)
\(\mathbf{E F}-\frac{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right) \cdot \sqrt{\left(2 \cdot \mathbf{N}_{2}-\mathbf{N}_{1}\right) \cdot\left(\mathbf{N}_{1}+2 \cdot \mathbf{N}_{2}\right)}}{4 \cdot \mathbf{N}_{2}^{3}}=\mathbf{0}\)
\(\mathbf{C E}-\frac{\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}\right)}{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0}\)




DO \(-\left[\frac{\mathbf{N}_{2}{ }^{3}}{N_{1} \cdot\left(3 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}\right)}\right]=0 \quad G H-\frac{N_{2}^{3}}{2 \cdot N_{1} \cdot\left(3 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}\right)}=0\)
\(\mathrm{GB}_{1}-\frac{\mathrm{N}_{2}^{3}}{4 \cdot \mathrm{~N}_{1} \cdot\left(3 \cdot{N_{2}}^{2}-\mathrm{N}_{1}^{2}\right)}=0\)
\(A A_{1}-\frac{\left(N_{1}+N_{2}\right) \cdot\left[N_{1} \cdot \sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}}-N_{2} \cdot \sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}}-\left(N_{1}-2 \cdot N_{2}\right) \cdot\left(N_{1}+N_{2}\right)\right]}{2 \cdot\left(N_{1}{ }^{2} \cdot \sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}}-N_{2}{ }^{2} \cdot \sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}}+2 \cdot N_{2}{ }^{3}\right)}=0\)
\(\mathrm{OA}_{1}-\frac{\mathrm{N}_{1} \cdot\left(3 \cdot N_{2}{ }^{2}-\mathrm{N}_{1}{ }^{2}\right)}{2 \cdot\left({N_{1}}^{2} \cdot \sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}}-{N_{2}}^{2} \cdot \sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}}+2 \cdot N_{2}{ }^{3}\right)}=0\)
\(P A_{1}-\frac{\sqrt{N_{2}{ }^{3}} \cdot\left[\sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}} \cdot\left(N_{1}-N_{2}\right) \cdot\left(N_{1}+N_{2}\right)+2 \cdot N_{2}{ }^{3}\right.}{\sqrt{6 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-N_{1}{ }^{6}-9 \cdot N_{1}{ }^{2} \cdot N_{2}{ }^{4}+8 \cdot N_{2}{ }^{6}+4 \cdot \sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}} \cdot N_{2}{ }^{3} \cdot\left(N_{1}-N_{2}\right) \cdot\left(N_{1}+N_{2}\right)}}=0\)
\(E A_{1}-\frac{\sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}} \cdot N_{1} \cdot\left(N_{1}-N_{2}\right) \cdot\left(N_{1}+N_{2}\right) \cdot\left(N_{1}{ }^{2}-3 \cdot N_{2}{ }^{2}\right)}{4 \cdot N_{2}{ }^{3} \cdot\left[\sqrt{4 \cdot N_{2}{ }^{2}-N_{1}{ }^{2}} \cdot\left(N_{1}-N_{2}\right) \cdot\left(N_{1}+N_{2}\right)+2 \cdot N_{2}{ }^{3}\right]}=0\)





Unit. BG:= \(\mathbf{1}\)

\section*{Given.}
\(\mathbf{N}:=\mathbf{9} \quad \mathbf{A G}:=\mathbf{N}\)
051301
Descriptions.
\(\mathbf{A B}:=\mathbf{A G}-\mathbf{B G} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F}\)
AN := AF \(\quad \mathbf{A K}:=\mathbf{A N} \quad\) FK \(:=\mathbf{B F}\)
\(\mathbf{A E}:=\frac{\mathbf{A K}^{2}+\mathbf{A F}^{2}-\mathbf{F K}^{2}}{2 \cdot \mathbf{A F}} \quad \mathbf{A I}:=\mathrm{AE} \quad \mathrm{IK}:=\mathbf{A K}-\mathbf{A I}\) \(\mathbf{H I}:=\mathbf{I K} \quad \mathbf{A H}:=\mathbf{A K}-(\mathbf{H I}+\mathbf{I K}) \quad \mathbf{A C}:=\frac{\mathbf{A E} \cdot \mathbf{A H}}{\mathbf{A K}}\) \(\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B}\)

Definitions.
\(\mathbf{N}-1-\mathbf{A B}=\mathbf{0} \quad \frac{1}{2}-\mathbf{B F}=0 \quad \frac{1}{2} \cdot(2 \cdot \mathbf{N}-1)-\mathbf{A F}=0\)
\(\frac{1}{4} \cdot \frac{\left(8 \cdot \mathbf{N}^{2}-8 \cdot N+1\right)}{(2 \cdot N-1)}-\mathbf{A E}=0 \quad \frac{1}{4} \cdot \frac{1}{(2 \cdot N-1)}-I K=0\)
\(\mathbf{2} \cdot \mathbf{N} \cdot \frac{(\mathbf{N}-1)}{(2 \cdot \mathbf{N}-1)}-\mathbf{A H}=0 \quad \frac{\left(\mathbf{8} \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+\mathbf{1}\right)}{(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})^{3}} \cdot \mathbf{N} \cdot(\mathbf{N}-1)-\mathbf{A C}=\mathbf{0}\)
\((N-1)^{2} \cdot \frac{(4 \cdot N-1)}{(2 \cdot N-1)^{3}}-B C=0 \quad \frac{1}{4} \cdot \frac{(-3+4 \cdot N)}{(2 \cdot N-1)}-B E=0\)
\(\frac{1}{4} \cdot \frac{(-3+4 \cdot N)}{(2 \cdot N-1)}-B E=0\)


Unit.
AB := \(\mathbf{1}\)
Given.
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N}\)

\section*{051401}

Descriptions.
\(\mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{B G}}{2} \quad\) NO \(:=\mathbf{B O} \quad \mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \quad \mathbf{A M}:=\mathbf{A O}\)
\(\mathbf{A F}:=\frac{\mathbf{A M}^{2}+\mathbf{A O}^{2}-\mathbf{N O}^{2}}{2 \cdot \mathbf{A O}} \quad \mathbf{A K}:=\mathbf{A F} \quad \mathbf{K M}:=\mathbf{A M}-\mathbf{A F} \quad\) JK \(:=\mathbf{K M}\)
\(\mathbf{A J}:=\mathbf{A M}-(\mathbf{J K}+\mathbf{K M}) \quad \mathbf{A D}:=\frac{\mathbf{A F} \cdot \mathbf{A J}}{\mathbf{A M}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G}:=\mathbf{B G}-\mathbf{B D}\)
DJ \(:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathbf{O T}:=\mathbf{D J} \quad\) OP \(:=\mathbf{B O} \quad\) DO \(:=\mathbf{B O}-\mathbf{B D} \quad\) PT \(:=\mathbf{O P}-\mathbf{O T}\)
\(\mathbf{O U}:=\frac{\mathbf{D O} \cdot \mathbf{O P}}{\mathbf{P T}} \quad \mathbf{B U}:=\mathbf{O U}-\mathbf{B O} \quad \mathbf{A U}:=\mathbf{B U}-\mathbf{A B} \quad \mathbf{D U}:=\mathbf{A U}+\mathbf{A D}\)
\(\mathbf{P U}:=\sqrt{\mathbf{O U}^{2}+\mathbf{O P}}{ }^{\mathbf{2}} \quad \mathbf{J U}:=\frac{\mathbf{P U} \cdot \mathbf{D U}}{\mathbf{O U}} \quad \mathbf{J P}:=\mathbf{P U}-\mathbf{J U} \quad \mathbf{A P}:=\sqrt{\mathbf{A O}^{2}+\mathbf{O P}}{ }^{\mathbf{2}}\)
\(\mathbf{A S}:=\frac{\mathbf{A O ^ { 2 }}}{\mathbf{A P}} \mathbf{P S}:=\mathbf{A P}-\mathbf{A S} \quad \mathbf{H S}:=\mathbf{P S} \quad \mathbf{A H}:=\mathbf{A P}-(\mathbf{P S}+\mathbf{H S}) \quad \mathbf{C H}:=\frac{\mathbf{O P} \cdot \mathbf{A H}}{\mathbf{A P}}\)
\(\mathbf{A C}:=\frac{\mathbf{A O} \cdot \mathbf{A H}}{\mathbf{A P}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{C U}:=\mathbf{B U}+\mathbf{B C} \quad \mathbf{H U}:=\sqrt{\mathbf{C U}^{2}+\mathbf{C H}^{2}}\)
\(\mathbf{U V}:=\frac{\mathbf{C U} \cdot \mathbf{O U}}{\mathbf{H U}} \quad \mathbf{H V}:=\mathbf{U V}-\mathbf{H U} \quad \mathbf{Q V}:=\mathbf{H V} \quad \mathbf{Q U}:=\mathbf{H U}+(\mathbf{H V}+\mathbf{Q V})\)
\(\mathbf{O R}:=\frac{\mathbf{C H} \cdot \mathbf{O U}}{\mathbf{C U}} \quad \mathbf{R U}:=\frac{\mathbf{H U} \cdot \mathbf{O U}}{\mathbf{C U}} \quad \mathbf{Q R}:=\mathbf{Q U}-\mathbf{R U} \quad \mathbf{R W}:=\frac{\mathbf{C H} \cdot \mathbf{Q R}}{\mathbf{H U}}\)
\(\mathbf{Q W}:=\frac{\mathbf{C U} \cdot \mathbf{Q R}}{\mathbf{H U}} \quad \mathbf{P W}:=\mathbf{O P}-(\mathbf{O R}+\mathbf{R W}) \quad \mathbf{P Q}:=\sqrt{\mathbf{P W} \mathbf{W}^{2}+\mathbf{Q W}}{ }^{\mathbf{2}} \quad \mathbf{G U}:=\mathbf{B O}+\mathbf{O U}\)

For any given QLX, XLZ is \(1 / 3\) of that angle. What are the Algebraic names in this figure for the cords \(Q X\) and \(X Z\) ?

On Trisection


Definitions.
\(\mathbf{B G}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B O}-\frac{\mathbf{N}-1}{2}=\mathbf{0} \quad \mathbf{N O}-\frac{\mathbf{N}-\mathbf{1}}{2}=0 \quad \mathbf{A O}-\frac{\mathbf{N}+1}{2}=0 \quad \mathbf{A M}-\frac{\mathrm{N}+1}{2}=0\) \(A F-\frac{N^{2}+6 \cdot N+1}{4 \cdot(N+1)}=0 \quad A K-\frac{N^{2}+6 \cdot N+1}{4 \cdot(N+1)}=0 \quad K M-\frac{(N-1)^{2}}{4 \cdot(N+1)}=0 \quad J K-\frac{(N-1)^{2}}{4 \cdot(N+1)}=0\)
\(A J-\frac{2 \cdot N}{N+1}=0 \quad A D-\frac{N \cdot\left(\mathbf{N}^{2}+6 \cdot N+1\right)}{(N+1)^{3}}=0 \quad B D-\frac{(3 \cdot N+1) \cdot(N-1)}{(N+1)^{3}}=0 \quad D G-\frac{\mathbf{N}^{2} \cdot(N+3) \cdot(N-1)}{(N+1)^{3}}=0\)
\(\mathbf{D J}-\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(\mathbf{N}+\mathbf{1})^{\mathbf{3}}}=\mathbf{0} \quad \mathbf{O T}-\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(\mathbf{N}+\mathbf{1})^{3}}=\mathbf{0} \quad \mathbf{O P}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0}\)
\(\mathbf{D O}-\frac{\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)^{3}}=0 \quad \mathbf{P T}-\frac{(\mathbf{N}-1) \cdot\left[3 \cdot \mathbf{N}-2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right]}{2 \cdot(\mathbf{N}+1)^{3}}=0\)
\(O U-\frac{(N-1)^{2} \cdot\left(N^{2}+4 \cdot N+1\right)}{2 \cdot\left[3 \cdot N-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N^{2}+N^{3}+1\right]}=0 \quad B U-\frac{(N-1) \cdot\left(N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}-3 \cdot N-1\right)}{3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1}=0\)
\(A U-\frac{N \cdot\left(N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}-6 \cdot N-N^{2}+\sqrt{3 \cdot N^{2}+10 \cdot N+3}-1\right)}{3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1}=0 \quad D U-\frac{\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N \cdot\left(N^{2}+4 \cdot N+1\right) \cdot(N-1)^{2}}{(N+1)^{3} \cdot\left(3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1\right.}=0\)
\(P U-\frac{\sqrt{(N-1)^{2} \cdot(N+1)^{3}} \cdot\left[3 \cdot \mathbf{N}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right]}{\sqrt{2 \cdot\left[\mathbf{N}^{6}+6 \cdot \mathbf{N}^{5}+3 \cdot N \cdot\left(9 \cdot \mathbf{N}^{3}+20 \cdot \mathbf{N}^{2}+9 \cdot N+2\right)+1\right]-8 \cdot N \cdot(N+1)^{3} \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}}}=0\)
\(J U-\frac{\sqrt{2} \cdot N \cdot \sqrt{(N-1)^{2} \cdot(N+1)^{3}} \cdot\left[3 \cdot N-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N^{2}+N^{3}+1\right] \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot\left[3 \cdot N-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right]}{(N+1)^{3} \cdot \sqrt{6 \cdot \mathbf{N}^{5}+N^{6}+3 \cdot N \cdot\left(9 \cdot N^{3}+20 \cdot N^{2}+9 \cdot N+2\right)-4 \cdot N \cdot(N+1)^{3} \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+1} \cdot\left(3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1\right)}\)

\(J P-\left[\frac{\sqrt{2} \cdot \sqrt{(N-1)^{2} \cdot(N+1)^{3}} \cdot\left(3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1\right)}{\left(3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1\right)}\left(2 \cdot(N+1)^{3} \cdot \sqrt{\left(N^{6}+6 \cdot N^{5}+27 \cdot N^{4}+60 \cdot N^{3}+27 \cdot N^{2}+6 \cdot N+1\right)-4 \cdot N \cdot(N+1)^{3} \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}}\right]=0\right.\)
\(A P-\frac{\sqrt{N^{2}+1}}{\sqrt{2}}=0 \quad A S-\frac{\sqrt{2} \cdot(N+1)^{2}}{4 \cdot \sqrt{N^{2}+1}}=0 \quad P S-\frac{\sqrt{2} \cdot(N-1)^{2}}{4 \cdot \sqrt{N^{2}+1}}=0 \quad H S-\frac{\sqrt{2} \cdot(N-1)^{2}}{4 \cdot \sqrt{N^{2}+1}}=0\)
\(A H-\frac{\sqrt{2} \cdot \mathbf{N}}{\sqrt{N^{2}+1}}=0 \quad C H-\frac{N \cdot(N-1)}{N^{2}+1}=0 \quad A C-\frac{N \cdot(N+1)}{N^{2}+1}=0 \quad B C-\frac{N-1}{N^{2}+1}=0\)
\(\mathbf{C U}-\frac{\mathrm{N} \cdot(\mathrm{N}-1)^{2} \cdot\left(\mathbf{N} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}-2 \cdot \mathbf{N}+\sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}\right)}{\left(\mathbf{N}^{2}+1\right) \cdot\left(3 \cdot \mathbf{N}-2 \cdot \mathbf{N} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right)}=0\)
\(H U-\frac{\left.2 \cdot N \cdot(N-1) \cdot \sqrt{(N+1) \cdot\left(3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1\right.}\right)}{\sqrt{\left(N^{2}+1\right) \cdot\left[N^{6}+\left(6 \cdot N^{5}+27 \cdot N^{4}+60 \cdot N^{3}+27 \cdot N^{2}+6 \cdot N+1\right)-4 \cdot N \cdot(N+1)^{3} \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}\right.}}=0\)


~~~~
\(\mathbf{H V}-(\mathbf{U V}-\mathbf{H U})=\mathbf{0}\)
\(\mathbf{Q V}-\mathbf{H V}=\mathbf{0} \quad \mathbf{Q U}-[\mathbf{H U}+(\mathbf{H V}+\mathbf{Q V})]=\mathbf{0}\)
\(\mathbf{O R}-\frac{\mathbf{C H} \cdot \mathbf{O U}}{\mathbf{C U}}=0 \quad \mathbf{R U}-\frac{\mathbf{H U} \cdot \mathbf{O U}}{\mathbf{C U}}=0\)
\(\mathbf{Q R}-(\mathbf{Q U}-\mathbf{R U})=\mathbf{0} \quad \mathbf{R W}-\frac{\mathbf{C H} \cdot \mathbf{Q R}}{\mathbf{H U}}=\mathbf{0} \quad \mathbf{Q W}-\frac{\mathbf{C U} \cdot \mathbf{Q R}}{\mathbf{H U}}=\mathbf{0}\)
\(\mathbf{P W}-[\mathbf{O P}-(\mathbf{O R}+\mathbf{R W})]=\mathbf{0}\)

\(\mathbf{P Q}-\frac{(\mathbf{N}-1) \cdot \sqrt{14 \cdot \mathbf{N}+32 \cdot \mathbf{N}^{2}+14 \cdot \mathbf{N}^{3}+2 \cdot \mathbf{N}^{4}-(\mathbf{N}+1) \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)+2}}{\left.2 \cdot \sqrt{(\mathbf{N}+1) \cdot\left[3 \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right.}\right]}=\mathbf{0}\)
\(\mathbf{G U}-\left[\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot\left(\mathbf{3 \cdot N + \mathbf { N } ^ { 2 } - \sqrt { 3 \cdot \mathbf { N } ^ { 2 } + 1 0 \cdot N + 3 })}\right.}{3 \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1}\right]=0\)
\(\sim_{n}^{0}\)

\section*{Unit.}

AB := 1
Given.
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N}\)

\section*{052201A}

\section*{Descriptions.}
\(\mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{F K}:=\mathbf{B F} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F}\)
\(A K:=\sqrt{A F^{2}+F K K^{2}} \quad A J:=\frac{A F^{2}}{A K} \quad J K:=A K-A J \quad H J:=J K\)
\(\mathbf{A H}:=\mathbf{A K}-(\mathbf{J K}+\mathbf{H J}) \quad \mathbf{A C}:=\frac{\mathbf{A F} \cdot \mathbf{A H}}{\mathbf{A K}} \quad \mathbf{E M}:=\frac{\mathbf{B F}}{2} \quad\) FL \(:=2 \cdot \mathbf{A F}\)
\(\mathbf{E F}:=\frac{\mathbf{F L}-\sqrt{\mathbf{F L}^{2}-4 \cdot \mathbf{E M}^{2}}}{2} \quad \mathbf{A E}:=\mathbf{A F}-\mathbf{E F} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C H}:=\frac{\mathbf{F K} \cdot \mathbf{A H}}{\mathbf{A K}}\)
\(\mathbf{H M}:=\sqrt{(\mathbf{E M}+\mathbf{C H})^{2}+\mathrm{CE}^{2}} \quad \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathbf{E M}}{\mathrm{EM}+\mathbf{C H}} \quad \mathrm{DF}:=\mathrm{DE}+\mathbf{E F}\)

\section*{Definitions.}
\(\mathbf{B G}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B F}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{F K}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A F}-\frac{\mathbf{N}+\mathbf{1}}{2}=\mathbf{0}\)

\(A K-\frac{\sqrt{\mathbf{N}^{2}+1}}{\sqrt{2}}=0 \quad A J-\frac{\sqrt{2} \cdot(N+1)^{2}}{4 \cdot \sqrt{N^{2}+1}}=0 \quad J K-\frac{\sqrt{2} \cdot(N-1)^{2}}{4 \cdot \sqrt{N^{2}+1}}=0 \quad H J-\frac{\sqrt{2} \cdot(N-1)^{2}}{4 \cdot \sqrt{N^{2}+1}}=0 \quad A H-\frac{\sqrt{2} \cdot N}{\sqrt{N^{2}+1}}=0 \quad A C-\frac{N \cdot(N+1)}{N^{2}+1}=0\)
\(\mathbf{E M}-\frac{\mathbf{N}-\mathbf{1}}{4}=\mathbf{0} \quad \mathbf{F L}-(\mathbf{N}+\mathbf{1}) \quad \mathbf{E F}-\frac{\mathbf{2} \cdot \mathbf{N}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{2}}{4}=\mathbf{0} \quad \mathbf{A E}-\frac{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{4}=\mathbf{0} \quad \mathbf{C E}-\frac{\left(\mathbf{N}^{2}+\mathbf{1}\right) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{4} \cdot \mathbf{N} \cdot(\mathbf{N}+\mathbf{1})}{4 \cdot\left(\mathbf{N}^{2}+\mathbf{1}\right)}=\mathbf{0}\)
\(\mathbf{C H}-\frac{\mathbf{N} \cdot(\mathbf{N}-1)}{\mathbf{N}^{2}+1}=\mathbf{0} \quad \mathbf{H M}-\frac{\sqrt{(\mathbf{N}+1)} \cdot\left(3 \cdot \mathbf{N}-2 \cdot \mathbf{N} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}^{+3}}+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}+1\right)}{2 \cdot \sqrt{\mathbf{N}^{2}+1}}=0 \quad \mathbf{D E}-\frac{\left(\mathbf{N}^{2}+1\right) \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}-\left(4 \cdot \mathbf{N}^{2}+4 \cdot N\right)}{4 \cdot\left(\mathbf{N}^{2}+4 \cdot N^{2}+1\right)}=0\)
\(D F-\frac{3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1}{2 \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right)}=0\)

\section*{Unit.}

AB := 1
Given.
\[
\mathbf{N}:=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N}
\]

052201B
Descriptions.

\section*{Segment DF And HM}

Given \(A B\) and AG, what is HM and DF?
\(\mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{A B}}{2} \quad \mathbf{F K}:=\mathbf{B F} \quad \mathbf{G F}:=\mathbf{A G}-\mathbf{B F}\)
\(\mathbf{G K}:=\sqrt{\mathbf{G F}^{\mathbf{2}}+\mathbf{F K}^{\mathbf{2}}} \quad \mathbf{G J}:=\frac{\mathbf{G F}^{\mathbf{2}}}{\mathbf{G K}} \quad\) JK \(:=\mathbf{G K}-\mathbf{G J} \quad\) HJ \(:=\mathbf{J K}\)
\(\mathbf{G H}:=\mathbf{G K}-(\mathbf{J K}+\mathbf{H J}) \quad \mathbf{C G}:=\frac{\mathbf{G F} \cdot \mathbf{G H}}{\mathbf{G K}} \quad \mathbf{E M}:=\frac{\mathbf{B F}}{2} \quad \mathbf{F L}:=\mathbf{2} \cdot \mathbf{G F}\)
\[
\mathbf{E F}:=\frac{\mathbf{F L}-\sqrt{\mathbf{F L}^{2}-\mathbf{4} \cdot \mathbf{E M}^{2}}}{2} \quad \mathbf{G E}:=\mathbf{G F}-\mathbf{E F} \quad \mathbf{C E}:=\mathbf{G E}-\mathbf{C G} \quad \mathbf{C H}:=\frac{\mathbf{F K} \cdot \mathbf{G H}}{\mathbf{G K}}
\]
\(\mathrm{HM}:=\sqrt{(\mathrm{EM}+\mathrm{CH})^{2}+\mathrm{CE}^{2}}\)
DE \(:=\frac{\mathbf{C E} \cdot \mathbf{E M}}{\mathbf{E M}+\mathbf{C H}}\)
\(\mathbf{D F}:=\mathbf{D E}+\mathbf{E F}\)

Definitions.
\(\mathbf{B G}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B F}-\frac{1}{2}=0 \quad \mathbf{F K}-\frac{1}{2}=0 \quad \mathbf{G F}-\frac{2 \cdot \mathbf{N}-1}{2}=0\)

\(G K-\frac{\sqrt{2 \cdot N^{2}-2 \cdot N+1}}{\sqrt{2}}=0 \quad G J-\frac{\sqrt{2} \cdot(2 \cdot N-1)^{2}}{4 \cdot \sqrt{2 \cdot N^{2}-2 \cdot N+1}}=0 \quad J K-\frac{\sqrt{2}}{4 \cdot \sqrt{2 \cdot N^{2}-2 \cdot N+1}}=0\)
\(H J-\frac{\sqrt{2}}{4 \cdot \sqrt{2 \cdot \mathbf{N}^{2}-2 \cdot N+1}}=0 \quad G H-\frac{\sqrt{2} \cdot N \cdot(N-1)}{\sqrt{2 \cdot N^{2}-2 \cdot N+1}}=0 \quad C G-\frac{N \cdot(N-1) \cdot(2 \cdot N-1)}{2 \cdot N^{2}-2 \cdot N+1}=0\)

\(D F-\frac{\left(2 \cdot N-2 \cdot N^{2}\right) \cdot \sqrt{16 \cdot N^{2}-16 \cdot N+3}+(2 \cdot N-1)^{3}}{2 \cdot\left(6 \cdot \mathbf{N}^{2}-6 \cdot N+1\right)}=0\)

Unit.

\section*{Given.}

\section*{\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A H}:=\mathbf{N}\)}

Do KP and JQ intersect at D?

\section*{052701A}

Descriptions.
\(\mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \quad \mathbf{B G}:=\frac{\mathbf{B H}}{2} \quad \mathbf{G N}:=\mathbf{B G} \quad \mathbf{G M}:=\mathbf{B G}\)
\(\mathbf{G P}:=\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \quad \mathbf{A M}:=\mathbf{A G} \quad \mathbf{F G}:=\frac{\mathbf{G M}^{2}+\mathbf{A G}^{2}-\mathbf{A M}^{2}}{\mathbf{2} \cdot \mathbf{A G}}\)
\(\mathbf{A F}:=\mathbf{A G}-\mathbf{F G} \quad \mathbf{A L}:=\mathbf{A F} \quad \mathbf{L M}:=\mathbf{A M}-\mathbf{A L} \quad \mathbf{K L}:=\mathbf{L M}\)
\(\mathbf{A K}:=\mathbf{A M}-(\mathbf{L M}+\mathbf{K L}) \quad \mathbf{A C}:=\frac{\mathbf{A F} \cdot \mathbf{A K}}{\mathbf{A M}} \quad \mathbf{C K}:=\sqrt{\mathbf{A K}^{\mathbf{2}}-\mathbf{A C}}{ }^{\mathbf{2}}\)
\(\mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{D G}:=\frac{\mathbf{C G} \cdot \mathbf{G P}}{(\mathbf{G P}+\mathbf{C K})}\)

Definitions.

\(\mathbf{B H}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B G}-\frac{(\mathbf{N}-\mathbf{1})}{2}=\mathbf{0} \quad \mathbf{G N}-\frac{(\mathbf{N}-\mathbf{1})}{2}=\mathbf{0} \quad \mathbf{G M}-\frac{(\mathbf{N}-\mathbf{1})}{2}=\mathbf{0}\) \(\mathbf{G P}-\frac{(\mathbf{N}-\mathbf{1})}{2}=0 \quad \mathbf{A G}-\frac{\mathbf{N}+1}{2}=0 \quad \mathbf{A M}-\frac{\mathbf{N}+1}{2}=0 \quad \mathbf{F G}-\frac{(\mathbf{N}-1)^{2}}{4 \cdot(\mathbf{N}+1)}=0\)
\(A F-\frac{\mathbf{N}^{2}+6 \cdot N+1}{4 \cdot(N+1)}=0 \quad A L-\frac{N^{2}+6 \cdot N+1}{4 \cdot(N+1)}=0 \quad L M-\frac{(N-1)^{2}}{4 \cdot(N+1)}=0\)
\(K L-\frac{(\mathbf{N}-1)^{2}}{4 \cdot(\mathbf{N}+\mathbf{1})}=0 \quad \mathbf{A K}-\frac{\mathbf{2} \cdot \mathbf{N}}{\mathbf{N}+\mathbf{1}}=0 \quad \mathbf{A C}-\frac{\mathbf{N} \cdot\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+1\right)}{(\mathbf{N}+1)^{3}}=0\)
\(\mathbf{C K}-\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}}{(\mathbf{N}+\mathbf{1})^{3}}=0 \quad \mathbf{C G}-\frac{\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)^{3}}=0\)
\(\mathbf{D G}-\frac{(\mathbf{N}-1)^{2} \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}{2 \cdot\left[(\mathbf{N}+1)^{3}+2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}\right]}=0\)

052701A
Descriptions.
\(\mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \quad \mathbf{B G}:=\frac{\mathbf{A B}}{\mathbf{2}} \quad \mathbf{G N}:=\mathbf{B G} \quad \mathbf{G M}:=\mathbf{B G}\)
GP \(:=\mathbf{B G} \quad \mathbf{G H}:=\mathbf{A H}-\mathbf{B G} \quad \mathbf{H M}:=\mathbf{G H} \quad \mathbf{F G}:=\frac{\mathbf{G M}^{\mathbf{2}}+\mathbf{G H}^{\mathbf{2}}-\mathbf{H M}^{2}}{\mathbf{2 \cdot G H}}\)
FH \(:=\mathbf{G H}-\mathbf{F G} \quad\) HL \(:=\mathbf{F H} \quad \mathbf{L M}:=\mathbf{H M}-\mathbf{H L} \quad\) KL \(:=\mathbf{L M}\)
\(\mathbf{H K}:=\mathbf{H M}-(\mathbf{L M}+\mathbf{K L}) \quad \mathbf{C H}:=\frac{\mathbf{F H} \cdot \mathbf{H K}}{\mathbf{H M}} \quad \mathbf{C K}:=\sqrt{\mathbf{H K}^{2}-\mathbf{C H}^{2}}\)
\(\mathbf{C G}:=\mathbf{G H}-\mathbf{C H} \quad \mathbf{D G}:=\frac{\mathbf{C G} \cdot \mathbf{G P}}{(\mathbf{G P}+\mathbf{C K})}\)

\section*{Definitions.}
\(\mathbf{B H}-(\mathbf{N}-1)=\mathbf{0} \quad \mathbf{B G}-\frac{1}{2}=0 \quad\) GN \(-\frac{1}{2}=0 \quad\) GM \(-\frac{1}{2}=0\)

\section*{Point of Intersection}

Given.
\(\mathbf{N}:=\mathbf{1 . 2 6 8 1 0} \quad \mathbf{A H}:=\mathbf{N}\)

\(\mathbf{G P}-\frac{1}{2}=0 \quad \mathbf{G H}-\frac{2 \cdot \mathbf{N}-1}{2}=0 \quad \mathbf{H M}-\frac{2 \cdot N-1}{2}=0\)
\(F G-\frac{1}{4 \cdot(2 \cdot N-1)}=0 \quad F H-\frac{8 \cdot N^{2}-8 \cdot N+1}{4 \cdot(2 \cdot N-1)}=0 \quad H L-\frac{8 \cdot N^{2}-8 \cdot N+1}{4 \cdot(2 \cdot N-1)}=0\)
\(\mathbf{L M}-\frac{1}{4 \cdot(2 \cdot N-1)}=0 \quad K L-\frac{1}{4 \cdot(2 \cdot \mathbf{N}-1)}=0 \quad \mathbf{H K}-\frac{2 \cdot \mathbf{N} \cdot(\mathbf{N}-1)}{2 \cdot \mathbf{N}-1}=0\)
\(\mathbf{C H}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot\left(8 \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+1\right)}{(2 \cdot \mathbf{N}-1)^{3}}=0 \quad \mathbf{C K}-\frac{\mathbf{N} \cdot(\mathbf{N}-1) \cdot \sqrt{(4 \cdot \mathbf{N}-1) \cdot(\mathbf{4} \cdot \mathbf{N}-\mathbf{3})}}{(2 \cdot \mathbf{N}-\mathbf{1})^{3}}=\mathbf{0}\)
\(\mathbf{C G}-\frac{6 \cdot \mathbf{N}^{2}-6 \cdot \mathbf{N}+1}{2 \cdot(2 \cdot \mathbf{N}-1)^{3}}=0 \quad \mathbf{D G}-\frac{6 \cdot \mathbf{N}^{2}-6 \cdot \mathbf{N}+1}{2 \cdot\left[\left(2 \cdot \mathbf{N}^{2}-2 \cdot N\right) \cdot \sqrt{(4 \cdot N-1) \cdot(4 \cdot N-3)}+(2 \cdot \mathbf{N}-1)^{3}\right]}=0\)
No, I am not drawing this the other way. \(\underline{m} \angle \mathrm{DBF}=\mathbf{6 . 0 0 0 0 0}\) m \(\angle \mathrm{ABC}\) \(\mathrm{m} \angle \mathrm{DEC}=115.11689^{\circ}\) \(\mathrm{m} \angle \mathrm{DEG}=19.18615^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{DEC}}{\mathrm{m} \angle \mathrm{DEG}}=6.00000\)

\(\sim_{n=2}^{0}\)
Unit.
AB:=1
Given.

\section*{What is AV and ST?}

Given any angle BHP, the unit which defines it will lay between \(\mathbf{W}\) and V .

0530011 A
Descriptions.
\(\mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B H}:=\frac{\mathbf{B J}}{2} \quad \mathbf{A H}:=\mathbf{A B}+\mathbf{B H} \quad \mathbf{A Q}:=\mathbf{A H}\)
\(\mathbf{P Q}:=\frac{\mathbf{B H}^{\mathbf{2}}}{\mathbf{A Q}} \quad \mathbf{H M}:=\mathbf{B H} \quad \mathbf{A P}:=\mathbf{A Q}-\mathbf{P Q} \quad \mathbf{A C}:=\frac{\mathbf{A P}^{\mathbf{2}}+\mathbf{A H}^{\mathbf{2}}-\mathbf{B H}^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{A H}}\)
\(\mathbf{C P}:=\sqrt{\mathbf{A P}^{2}-\mathbf{A C}^{2}} \quad \mathbf{H K}:=\mathbf{B H} \quad \mathbf{C H}:=\mathbf{A H}-\mathbf{A C} \quad \mathbf{C K}:=\sqrt{\mathbf{C H}^{2}+\mathbf{H K}^{2}}\)
\(\mathbf{H V}:=\frac{\mathbf{H K} \cdot \mathbf{H M}}{\mathbf{C H}} \quad \mathbf{A V}:=\mathbf{A H}-\mathbf{H V} \quad \mathbf{S T}:=\frac{\mathbf{C P} \cdot \mathbf{A V}}{\mathbf{A P}}\)

Definitions.
\(\mathbf{A J}-\mathbf{N}_{1}=\mathbf{0} \quad \mathbf{B J}-\left(\mathbf{N}_{1}-\mathbf{1}\right)=\mathbf{0} \quad \mathbf{B H}-\frac{\mathbf{N}_{1}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A H}-\frac{\mathbf{N}_{1}+\mathbf{1}}{2}=\mathbf{0}\)

\(A Q-\frac{N_{1}+1}{2}=0 \quad P Q-\frac{\left(N_{1}-1\right)^{2}}{2 \cdot\left(N_{1}+1\right)}=0 \quad H M-\frac{N_{1}-1}{2}=0 \quad A P-\frac{2 \cdot N_{1}}{N_{1}+1}=0\)
\(A C-\frac{N_{1} \cdot\left(N_{1}{ }^{2}+6 \cdot N_{1}+1\right)}{\left(N_{1}+1\right)^{3}}=0 \quad C P-\frac{N_{1} \cdot\left(N_{1}-1\right) \cdot \sqrt{\left(N_{1}+3\right) \cdot\left(3 \cdot N_{1}+1\right)}}{\left(N_{1}+1\right)^{3}}=0 \quad H K-\frac{\mathbf{N}_{1}-1}{2}=0\)
N
\(\mathrm{CH}-\frac{\left(\mathrm{N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{1}+1\right) \cdot\left(\mathrm{N}_{1}-1\right)^{2}}{2 \cdot\left(N_{1}+1\right)^{3}}=0 \quad \mathrm{CK}-\frac{\left(\mathrm{N}_{1}-1\right) \cdot \sqrt{N_{1}{ }^{6}+6 \cdot N_{1}{ }^{5}+9 \cdot N_{1}{ }^{4}+9 \cdot N_{1}{ }^{2}+6 \cdot N_{1}+1}}{\sqrt{2} \cdot\left(N_{1}+1\right)^{3}}=0\)
\(H V-\frac{\left(N_{1}+1\right)^{3}}{2 \cdot\left(N_{1}^{2}+4 \cdot N_{1}+1\right)}=0\)
\(A V-\frac{N_{1} \cdot\left(N_{1}+1\right)}{N_{1}{ }^{2}+4 \cdot N_{1}+1}=0\)
\(S T-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}-1\right) \cdot \sqrt{\left(\mathbf{N}_{1}+\mathbf{3}\right) \cdot\left(\mathbf{3} \cdot \mathbf{N}_{1}+\mathbf{1}\right)}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}{ }^{2}+4 \cdot \mathbf{N}_{1}+\mathbf{1}\right)}=0\)
\(\mathbf{A V}-\frac{(\mathbf{A B}+\mathbf{B J}) \cdot(\mathbf{A B}+\mathbf{B J}+\mathbf{A B})}{\mathbf{A B}^{2}+\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{B J}+4 \cdot \mathbf{A B}+\mathbf{B J}^{2}+4 \cdot \mathbf{B J}+\mathbf{A B}}=0\)

Unit.

\section*{What is AV and ST?}

AB := 1
Given.

\section*{Given any angle BHP, the unit which defines it will lay between \(\mathbf{W}\) and V .}
\[
\mathbf{N}_{\mathbf{1}}:=1.47027 \quad \text { AJ }:=\mathbf{N}_{\mathbf{1}}
\]

0530011B
Descriptions.
\(\mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B H}:=\frac{\mathbf{A B}}{2} \quad \mathbf{J H}:=\mathbf{A J}-\mathbf{B H} \quad \mathbf{J Q}:=\mathbf{J H}\)
\(\mathrm{PQ}:=\frac{\mathrm{BH}^{2}}{\mathrm{JQ}} \quad \mathbf{H M}:=\mathrm{BH} \quad \mathrm{JP}:=\mathrm{JQ}-\mathbf{P Q} \quad \mathrm{CJ}:=\frac{\mathrm{JP}^{2}+\mathrm{JH}^{2}-\mathrm{BH}^{2}}{2 \cdot \mathrm{JH}}\)
\(\mathbf{C P}:=\sqrt{\mathbf{J P}^{2}-\mathbf{C J}^{2}} \quad \mathrm{HK}:=\mathbf{B H} \quad \mathbf{C H}:=\mathbf{J H}-\mathbf{C J} \quad \mathbf{C K}:=\sqrt{\mathbf{C H}^{2}+\mathbf{H K}^{2}}\)
HV \(:=\frac{\text { HK } \mathbf{H M}}{\text { CH }} \quad\) JV \(:=\mathbf{J H}-\mathbf{H V} \quad\) ST \(:=\frac{\text { CP } \cdot \mathbf{J V}}{\text { JP }}\)

Definitions.
\(\mathbf{A J}-\mathbf{N}_{1}=\mathbf{0} \quad\) BJ \(-\left(\mathbf{N}_{1}-1\right)=\mathbf{0} \quad \mathbf{B H}-\frac{1}{2}=\mathbf{0} \quad \mathbf{J H}-\frac{2 \cdot \mathbf{N}_{1}-1}{2}\)

\(J Q-\frac{2 \cdot N_{1}-1}{2}=0 \quad P Q-\frac{1}{2 \cdot\left(2 \cdot N_{1}-1\right)}=0 \quad H M-\frac{1}{2}=0 \quad J P-\frac{2 \cdot N_{1} \cdot\left(N_{1}-1\right)}{2 \cdot N_{1}-1}=0\)
\(\mathbf{C J}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{8} \cdot \mathbf{N}_{1}{ }^{2}-\mathbf{8} \cdot \mathbf{N}_{1}+\mathbf{1}\right)}{\left(\mathbf{2} \cdot \mathbf{N}_{1}-\mathbf{1}\right)^{\mathbf{3}}}=\mathbf{0} \quad \mathbf{C P}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot \sqrt{\left(4 \cdot \mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{4} \cdot \mathbf{N}_{1}-\mathbf{3}\right)}}{\left(\mathbf{2} \cdot \mathbf{N}_{1}-\mathbf{1}\right)^{\mathbf{3}}}=\mathbf{0}\)
\(\mathbf{N}\) 。
\(H K-\frac{1}{2}=0 \quad C H-\frac{6 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+1}{2 \cdot\left(2 \cdot N_{1}-1\right)^{3}}=0 \quad C K-\frac{\sqrt{2 \cdot N_{1} \cdot\left(N_{1}-1\right) \cdot\left[16 \cdot N_{1}{ }^{3} \cdot\left(N_{1}-2\right)+37 \cdot N_{1}{ }^{2}-21 \cdot N_{1}+6\right.}+1}{\sqrt{2} \cdot\left(2 \cdot N_{1}-1\right)^{3}}=0\)
\(H V-\frac{\left(2 \cdot N_{1}-1\right)^{3}}{2 \cdot\left(6 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+1\right)}=0 \quad J V-\frac{N_{1} \cdot\left(2 \cdot N_{1}-1\right) \cdot\left(N_{1}-1\right)}{6 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+1}=0 \quad S T-\frac{N_{1} \cdot\left(N_{1}-1\right) \cdot \sqrt{\left(4 \cdot N_{1}-1\right) \cdot\left(4 \cdot N_{1}-3\right)}}{2 \cdot\left(2 \cdot N_{1}-1\right) \cdot\left(6 \cdot N_{1}{ }^{2}-6 \cdot N_{1}+1\right)}=0\)

\section*{Unit.} Given. Descriptions. Definitions.
060101
\(S_{1}:=6.00604 \quad S_{2}:=4.02167 \quad S_{3}:=3.38667\)
\(\mathbf{A E}:=\mathbf{S}_{1} \quad \mathbf{A G}:=\mathbf{S}_{\mathbf{2}} \quad \mathbf{E G}:=\mathbf{S}_{\mathbf{3}}\)
\(\mathrm{AC}:=\frac{\mathrm{AG}^{2}+\mathrm{AE}^{2}-\mathrm{EG}^{2}}{2 \mathrm{AE}}\)
\(\mathbf{A H}:=\frac{\mathbf{A C} \cdot \mathbf{A E}}{\mathbf{A G}} \quad \mathbf{G H}:=\mathbf{A H}-\mathbf{A G}\)
\(\mathbf{H J}:=\mathbf{G H} \quad \mathbf{G J}:=\mathbf{G H}+\mathbf{H J}\)
Some Algebraic Names:

\section*{A Small Extrapolation}

Given AE, AG, and EG, what is the Algebraic name of the segment GJ?

\(\frac{\mathrm{S}_{2}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{2 \mathrm{~S}_{1}}-\mathrm{AC}=0 \quad \frac{\mathrm{~S}_{1}{ }^{2}+\mathrm{S}_{2}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{2 \mathrm{~S}_{2}}-\mathrm{AH}=0 \quad \frac{\mathrm{~S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{2 \mathrm{~S}_{2}}-\mathrm{GH}=0\)
\(\frac{S_{1}{ }^{2}-S_{2}{ }^{2}-S_{3}{ }^{2}}{S_{2}}-G J=0\)

Unit.
AB:= \(\mathbf{1}\)
Given.
\(\mathbf{N}:=\mathbf{5 . 7 2 7} \quad \mathbf{A G}:=\mathbf{N}\)
060201A
Descriptions.
\(\mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F}\)
\(\mathbf{A E}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B}\)
\(\mathbf{F N}:=\mathbf{B F} \quad \mathbf{E F}:=\mathbf{B F}-\mathbf{B E} \quad \mathbf{E N}:=\sqrt{\mathbf{F N}^{2}+\mathbf{E F}^{2}}\)
\(\mathbf{N O}:=\frac{\mathbf{F N}^{2}}{\mathbf{E N}} \quad \mathbf{N I}:=\mathbf{2} \cdot \mathbf{N O} \quad \mathbf{E I}:=\mathbf{N I}-\mathbf{E N}\)
\(\mathbf{D E}:=\frac{\mathbf{E F} \cdot \mathbf{E I}}{\mathbf{E N}}\)

\section*{Units From Both Sides}

Start with AB as unit and find. . . . then start with . . . as unit and find \(A B\).

Definitions.
\(\mathbf{B G}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B F}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A F}-\frac{\mathbf{N}+\mathbf{1}}{2}=\mathbf{0}\)
\(\mathbf{A E}-\sqrt{\mathbf{N}}=\mathbf{0} \quad \mathbf{B E}-(\sqrt{\mathbf{N}}-\mathbf{1})=\mathbf{0} \quad \mathbf{F N}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0}\)
\(\mathbf{E F}-\frac{(\sqrt{\mathbf{N}}-\mathbf{1})^{2}}{2}=\mathbf{0} \quad \mathbf{E N}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\mathbf{N}+\mathbf{1}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{2}=\mathbf{0} \quad \mathbf{N O}-\frac{\sqrt{\mathbf{2}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1}) \cdot(\sqrt{\mathbf{N}}+\mathbf{1})^{\mathbf{2}}}{4 \cdot \sqrt{\mathbf{N}+\mathbf{1}}}=\mathbf{0}\)
\(\mathbf{N I}-\frac{\sqrt{\mathbf{2}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1}) \cdot(\sqrt{\mathbf{N}}+\mathbf{1})^{\mathbf{2}}}{2 \cdot \sqrt{\mathbf{N}+\mathbf{1}}}=\mathbf{0} \quad \mathbf{E I}-\frac{\sqrt{\mathbf{2}} \cdot \sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{\sqrt{\mathbf{N}+\mathbf{1}}}=\mathbf{0} \quad \mathbf{D E}-\frac{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})^{2}}{\mathbf{N}+\mathbf{1}}=\mathbf{0}\)

Unit.
BG:= \(\mathbf{1}\)
Given.
\(\mathbf{N}:=\mathbf{2}\)
060201B
Descriptions.
\(\mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{\mathbf{N}} \quad \mathbf{E F}:=\mathbf{B F}-\mathbf{B E}\)
FN \(:=\mathbf{B F} \quad \mathbf{E N}:=\sqrt{\mathbf{E F}^{2}+\mathbf{F N}^{2}} \quad \mathbf{N P}:=\frac{\mathrm{EN}}{2}\)
\(\mathbf{L N}:=\frac{\mathbf{E N} \cdot \mathbf{N P}}{\mathbf{E F}} \quad \mathbf{A F}:=\mathbf{L N} \quad \mathbf{A B}:=\mathbf{A F}-\mathbf{B F}\)
\(A B=0.125\)

Definitions.

\section*{Units From Both Sides}

Start with AB as unit and find. . . . then start with . . . as unit and find AB.

\[
\frac{\mathbf{B G}}{2}-\mathbf{B F}=\mathbf{0} \quad \frac{\mathbf{B G}}{(2 \cdot \mathbf{N})}-\mathbf{B E}=\mathbf{0} \quad \frac{\mathbf{B G}}{2} \cdot \frac{(\mathbf{N}-\mathbf{1})}{\mathbf{N}}-\mathbf{E F}=\mathbf{0}
\]
\[
\frac{B G}{2} \cdot \frac{\sqrt{2 \cdot \mathbf{N}^{2}-2 \cdot N+1}}{N}-\mathbf{E N}=0 \quad \frac{B G}{4} \cdot \frac{\sqrt{2 \cdot N^{2}-2 \cdot N+1}}{N}-N P=0
\]
\[
\frac{\mathbf{B G}}{4} \cdot \frac{\left(\mathbf{2} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N}+\mathbf{1}\right)}{[\mathbf{N} \cdot(\mathbf{N}-\mathbf{1})]}-\mathbf{L N}=0 \quad \frac{\mathbf{B G}}{\mathbf{4} \cdot \mathbf{N} \cdot(\mathbf{N}-\mathbf{1})}-\mathbf{A B}=\mathbf{0}
\]

\section*{Descriptions.}
\(\mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \mathbf{B D}:=\frac{\mathbf{B F}}{\mathbf{N}} \quad \mathbf{D G}:=\mathbf{B G}-\mathbf{B D}\)
\(\mathbf{D I}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D} \quad \mathbf{F N}:=\mathbf{B F}\)

EF \(:=\frac{\text { DF } \cdot \mathbf{F N}}{\text { FN }+ \text { DI }} \quad\) EN \(:=\sqrt{\mathbf{E F}^{2}+\mathbf{F N}^{2}} \quad\) NP \(:=\frac{\text { EN }}{2}\)
\(\mathbf{L N}:=\frac{\mathbf{E N} \cdot \mathbf{N P}}{\mathbf{E F}} \quad \mathbf{A F}:=\mathbf{L N} \quad \mathbf{A B}:=\mathbf{A F}-\mathbf{B F}\)
\(A B=0.5\)

\section*{Units From Both Sides}

Start with AB as unit and find. . . . then start with . .
. as unit and find AB.

Definitions.
\(\mathbf{B D}-\frac{1}{2} \cdot \frac{\mathbf{B G}}{\mathbf{N}}=\mathbf{0} \quad \mathbf{D G}-\frac{1}{2} \cdot \mathbf{B G} \cdot \frac{(2 \cdot \mathbf{N}-1)}{\mathbf{N}}=\mathbf{0} \quad \mathbf{D I}-\frac{1}{(2 \cdot \mathbf{N})} \cdot \mathbf{B G} \cdot \sqrt{2 \cdot \mathbf{N}-\mathbf{1}}=\mathbf{0}\)
\(\mathbf{D F}-\frac{1}{2} \cdot \mathbf{B G} \cdot \frac{(\mathbf{N}-\mathbf{1})}{\mathbf{N}}=\mathbf{0} \quad \mathbf{E F}-\frac{1}{2} \cdot \mathbf{B G} \cdot \frac{(\mathbf{N}-1)}{(\mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1})}=0 \quad \mathbf{N P}-\frac{1}{4} \cdot \mathbf{B G} \cdot \sqrt{2} \cdot \sqrt{\frac{\mathbf{N}}{(\mathbf{N}+\sqrt{2 \cdot N-1})}}=0\)
\(\mathbf{E N}-\frac{1}{2} \cdot \mathbf{B G} \cdot \sqrt{2} \cdot \sqrt{\frac{\mathbf{N}}{(\mathbf{N + \sqrt { 2 \cdot N - 1 })}}}=\mathbf{0}\)
\(\mathbf{L N}-\frac{1}{2} \cdot \mathbf{B G} \cdot \frac{\mathbf{N}}{(\mathbf{N}-\mathbf{1})}=\mathbf{0}\)
\(A B-\frac{1}{2} \cdot \frac{B G}{(N-1)}=0\)
\(\rightarrow \sim n_{2}^{\infty}\)

\section*{Unit.}

BE := 1
Given.
\(\mathbf{N}:=4\)
060301
Descriptions.
\(\mathbf{B D}:=\frac{\mathrm{BE}}{2} \quad \mathbf{B C}:=\frac{\mathbf{B E}}{\mathbf{N}} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C}\) \(\mathbf{C G}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{A C}:=\frac{\mathbf{C G}^{\mathbf{2}}}{\mathbf{C D}}\) \(\mathbf{A F}:=\mathbf{A C} \quad \mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{D F}:=\mathbf{B D}\) \(\mathrm{DK}:=\frac{\mathrm{DF}^{2}+\mathrm{AD}^{2}-\mathbf{A F}^{2}}{2 \mathbf{A D}} \quad \mathbf{B K}:=\mathbf{B D}-\mathbf{D K}\) \(\mathbf{C K}:=\mathbf{B C}-\mathbf{B K}\)

\section*{Isolating A Problem}

If one is given point \(F\), then finding point \(G\) would lead straightway to the solution. How is BK related to BC?

\section*{Definitions}
\(\frac{\mathbf{N}-\mathbf{1}}{\mathbf{N}}-\mathbf{C E}=\mathbf{0} \quad \frac{\sqrt{\mathbf{N}-1}}{\mathbf{N}}-\mathbf{C G}=\mathbf{0} \quad \frac{\mathbf{N}-\mathbf{2}}{2 \cdot \mathbf{N}}-\mathbf{C D}=\mathbf{0}\)
\(\frac{\mathbf{2} \cdot(\mathbf{N}-\mathbf{1})}{\mathbf{N} \cdot(\mathbf{N}-\mathbf{2})}-\mathbf{A C}=\mathbf{0} \quad \frac{\mathbf{N}}{2 \cdot(\mathbf{N}-\mathbf{2})}-\mathbf{A D}=\mathbf{0} \quad \frac{(\mathbf{N}-2) \cdot\left(\mathbf{N}^{2}+2 \cdot \mathbf{N}-2\right)}{2 \cdot \mathbf{N}^{3}}-\mathbf{D K}=\mathbf{0}\)
\(\frac{3 \cdot \mathbf{N}-2}{\mathbf{N}^{3}}-\mathbf{B K}=\mathbf{0} \quad \frac{(\mathbf{N}-1) \cdot(\mathbf{N}-2)}{\mathbf{N}^{3}}-\mathbf{C K}=0 \quad \frac{B K}{B C}-\frac{(3 \cdot \mathbf{N}-2)}{\mathbf{N}^{2}}=0\)

\section*{or any point C on BD, FCG is \(1 / 3\) of the angle} FDH, will the Algebraic Name for DM remain constant if one 'steps back to it' from \(D\) ?

060301
Descriptions.
\(\mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{B C}:=\frac{\mathbf{B D}}{\mathbf{N}} \quad \mathbf{A C}:=\frac{\mathbf{1}}{2} \cdot \frac{\mathbf{B E}}{\mathbf{N}} \cdot \frac{(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})}{(\mathbf{N}-\mathbf{1})}\)
\(\mathbf{C M}:=\frac{\mathbf{1}}{\mathbf{4}} \cdot \mathbf{B E} \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{\mathbf{N}^{3}} \quad \mathbf{A M}:=\mathbf{A C}-\mathbf{C M}\)
\(\mathbf{A F}:=\mathbf{A C} \quad \mathbf{F M}:=\sqrt{\mathbf{A F}^{2}-\mathbf{A M}^{2}} \quad \mathbf{A D}:=\frac{1}{2} \cdot \mathbf{B E} \cdot \frac{\mathbf{N}}{(\mathbf{N}-\mathbf{1})}\)
FK \(:=\frac{\mathbf{A D}^{2}-A C^{2}-\mathbf{B D}^{2}}{A C} \quad\) FK \(=0.375\)

\section*{Definitions.}
\(\mathbf{B D}-\frac{1}{2}=0 \quad \mathbf{B C}-\frac{1}{2 \cdot \mathbf{N}}=0 \quad A C-\frac{2 \cdot \mathbf{N}-1}{2 \cdot \mathbf{N} \cdot(\mathbf{N}-1)}=0\)
\(\mathbf{C M}-\frac{(\mathbf{N}-1) \cdot(2 \cdot \mathbf{N}-1)}{4 \cdot \mathbf{N}^{3}}=0 \quad \mathbf{A M}-\frac{(2 \cdot \mathbf{N}-1) \cdot\left(\mathbf{N}^{2}+2 \cdot \mathbf{N}-1\right)}{4 \cdot \mathbf{N}^{3} \cdot(\mathbf{N}-1)}=0\)
\(\mathbf{A F}-\frac{2 \cdot \mathbf{N}-1}{2 \cdot \mathbf{N} \cdot(\mathbf{N}-\mathbf{1})}=\mathbf{0} \quad \mathbf{F M}-\frac{\sqrt{(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{3} \cdot \mathbf{N}-\mathbf{1})} \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})}{4 \cdot \mathbf{N}^{3}}=\mathbf{0}\)

\(\mathbf{A D}-\frac{\mathbf{N}}{2 \cdot(\mathbf{N}-\mathbf{1})}=\mathbf{0} \quad \mathbf{F K}-\frac{\mathbf{N}-\mathbf{1}}{2 \cdot \mathbf{N}}=\mathbf{0}\)
\(\sim_{n=2}^{0}\)
061001

Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{5}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{3}\)

For Any \(\mathrm{N}_{1} \cdot \mathrm{~N}_{\mathbf{2}}\)

\[
\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)-\mathbf{B F}=\mathbf{0} \quad \frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)}{2}-\mathbf{B E}=\mathbf{0}
\]
\[
\frac{1}{2} \cdot N_{2} \cdot\left(N_{1}+1\right)-A E=0 \quad \frac{1}{2} \cdot N_{2} \cdot \frac{\left(N_{1}-1\right)^{2}}{\left(N_{1}+1\right)}-D E=0
\]
\(\left.\left.\frac{\mathbf{1}}{\mathbf{2}} \cdot \sqrt{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)-\mathbf{E M}=\mathbf{0} \quad \frac{\mathbf{N}_{\mathbf{2}} \cdot\left[\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{3}\right.}\right) \cdot\left(\mathbf{3} \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}{\mathbf{2} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)} \mathbf{1}\right)\right]-\mathbf{M Q}=\mathbf{0}\)
\(\frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left[\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{3}\right) \cdot\left(\mathbf{3} \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}-\sqrt{\mathbf{3}}-\sqrt{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{1}}\right]}{\mathbf{2 \cdot (\mathbf { N } _ { \mathbf { 1 } } + \mathbf { 1 })}}-\mathbf{D G}=\mathbf{0}\)

Unit.
AF := \(\mathbf{1}\)
Given. \(\mathbf{N}_{1}\) :=4
082601
Descriptions.

Elipse By Parallels

\[
\mathbf{C E}-\left(\frac{1}{N_{2}}-\frac{1}{2}\right)=0 \quad \operatorname{CG}-\frac{1}{2} \cdot \frac{\sqrt{\left(N_{2}-2\right)^{2} \cdot N_{1}^{2}+4 \cdot\left(N_{2}-1\right)}}{\left(N_{1} \cdot N_{2}\right)}=0
\]

Four Curves and Procrastination.

\section*{102201}

I had sketched this out over 18 years ago and have put off writing it up for some very good reasons, the most prominate is because of the way I wanted to wecause of the way I wanted to write it up. Normally I aim for between one and four variables
for this novel; this one I need for this novel; this one I need
six. For the work Basic Analog six. For the work Basic Anal variables is not unusual, but here it is. For BAM, I set my limit on 8 , which is twice that I set for this work.
I am so motivated to write this up that when I got to it in this Delian Quest revision, I put this project aside and did the projects OTOH (On The Other Hand), Alice Innocent Plays and Conducts Bach, and Sergio Vosh Goshen Inkscapes Durer, which took me over a month to do. I was curious about the state of ABC notation and Vector Graphics which have been on my mind for some 20 years now.

\(\begin{array}{llll}\mathbf{R}_{1} & \mathbf{R}_{2} & \mathbf{R}_{3}\end{array}\)
also made some new Windows 95 and 98 virtual boxes which have all the software, and more, that I started these projects with.

I am not even going to go through all of this, just the major portion.

AH EF CD
\begin{tabular}{lll}
Unit \(=1.00000\) & EF \(=0.80000\) & CD \(=0.70000\) \\
AH \(=0.30000\) & \(N_{3}=8.00000\) & \(N_{5}=\mathbf{7 . 0 0 0 0 0}\) \\
\(N_{1}=6.00000\) & \(N_{4}=10.00000\) & \(N_{6}=10.00000\) \\
\(N_{2}=20.00000\) &
\end{tabular}

Unit.
AB := 1
Given.
\(\mathbf{N}_{1}:=6 \quad \mathbf{N}_{2}:=20\)
\(\begin{array}{ll}\mathbf{N}_{\mathbf{3}}:=\mathbf{8} & \mathbf{N}_{\mathbf{4}}:=\mathbf{1 0} \\ \mathbf{N}_{\mathbf{5}}:=\mathbf{7} & \mathbf{N}_{\mathbf{6}}:=\mathbf{1 1}\end{array}\)
Descriptions.
\(\mathrm{AH}:=\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}} \quad\) EF \(:=\frac{\mathbf{N}_{\mathbf{3}}}{\mathbf{N}_{\mathbf{4}}} \quad \mathrm{CD}:=\frac{\mathbf{N}_{\mathbf{5}}}{\mathbf{N}_{\mathbf{6}}} \quad \mathrm{AC}:=\frac{\mathbf{A B}}{\mathbf{2}}\)
\(\mathbf{C P}:=\mathbf{A C} \quad \mathbf{C H}:=\sqrt{(\mathbf{A C}-\mathbf{A H})^{2}} \quad \mathbf{D H}:=\sqrt{\mathbf{C D}^{2}+\mathbf{C H}^{2}}\)
\(\mathbf{C U}:=\frac{\mathrm{CD} \cdot \mathrm{CH}}{\mathrm{DH}} \quad \mathrm{PU}:=\sqrt{\mathbf{C P}^{2}-\mathrm{CU}^{2}} \quad \mathrm{HU}:=\frac{\mathbf{C H}^{2}}{\mathrm{DH}}\)
HP := PU - HU DP \(:=\mathbf{D H}+\mathbf{H P} \quad\) DX \(:=\frac{\text { CD.DP }}{\text { DH }}\)
DF \(:=\frac{\text { EF }}{2} \quad\) CX \(:=\mathbf{D X}-\mathbf{C D} \quad\) CW \(:=\frac{\text { DF } \cdot \mathbf{C X}}{\text { DX }}\)
GJ := \(\mathbf{2} \cdot \mathbf{C W} \quad\) Etc.

Definitions.
\(\mathrm{AH}-\frac{\mathrm{N}_{1}}{\mathbf{N}_{2}}=0 \quad \mathrm{EF}-\frac{\mathbf{N}_{3}}{\mathbf{N}_{4}}=0 \quad \mathrm{CD}-\frac{\mathbf{N}_{5}}{\mathbf{N}_{6}}=0 \quad \mathrm{AC}-\frac{1}{2}\)

\(C P-\frac{1}{2}=0 \quad C H-\frac{\sqrt{\left(2 \cdot N_{1}-N_{2}\right)^{2}}}{2 \cdot N_{2}}=0 \quad D H-\frac{\sqrt{\left(4 \cdot N_{5}{ }^{2}+N_{6}{ }^{2}\right) \cdot N_{2}^{2}+4 \cdot N_{1} \cdot N_{6}{ }^{2} \cdot\left(N_{1}-N_{2}\right)}}{2 \cdot N_{2} \cdot N_{6}}=0 \quad C U-\frac{N_{5} \cdot \sqrt{\left(N_{2}-2 \cdot N_{1}\right)^{2}}}{\sqrt{N_{2}{ }^{2} \cdot\left(4 \cdot N_{5}^{2}+N_{6}{ }^{2}\right)+4 \cdot N_{1} \cdot N_{6}{ }^{2} \cdot\left(N_{1}-N_{2}\right)}}=0\)
\(\mathrm{PU}-\frac{\sqrt{\mathrm{N}_{6}{ }^{2} \cdot\left(2 \cdot \mathrm{~N}_{1}-\mathrm{N}_{2}\right)^{2}-16 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{5}{ }^{2} \cdot\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)}}{2 \cdot \sqrt{\left(2 \cdot \mathrm{~N}_{1}-\mathrm{N}_{2}\right)^{2} \cdot \mathrm{~N}_{6}{ }^{2}+4 \cdot \mathrm{~N}_{2}{ }^{2} \cdot \mathrm{~N}_{5}{ }^{2}}}=0 \quad \mathrm{HU}-\frac{\mathrm{N}_{6} \cdot\left(2 \cdot \mathrm{~N}_{1}-\mathrm{N}_{2}\right)^{2}}{2 \cdot \mathrm{~N}_{2} \cdot \sqrt{\mathrm{~N}_{2}{ }^{2} \cdot\left(4 \cdot \mathrm{~N}_{5}{ }^{2}+\mathrm{N}_{6}{ }^{2}\right)+4 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{6}{ }^{2} \cdot\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)}}=0\)

\section*{\(\sim_{n \rightarrow 2}^{0}\)}
\(H P-\frac{N_{2} \cdot \sqrt{\left(2 \cdot N_{1}-N_{2}\right)^{2} \cdot N_{6}{ }^{2}-16 \cdot N_{1} \cdot N_{5}{ }^{2} \cdot\left(N_{1}-N_{2}\right)}-N_{6} \cdot\left(2 \cdot N_{1}-N_{2}\right)^{2}}{2 \cdot N_{2} \cdot \sqrt{N_{2}{ }^{2} \cdot\left(4 \cdot N_{5}{ }^{2}+N_{6}{ }^{2}\right)+4 \cdot N_{1} \cdot N_{6}{ }^{2} \cdot\left(N_{1}-N_{2}\right)}}=0\)
\(D P-\frac{4 \cdot N_{2} \cdot N_{5}^{2}+N_{6} \cdot \sqrt{N_{6}{ }^{2} \cdot\left(2 \cdot N_{1}-N_{2}\right)^{2}-16 \cdot N_{1} \cdot N_{5}^{2} \cdot\left(N_{1}-N_{2}\right)}}{2 \cdot N_{6} \cdot \sqrt{\left(2 \cdot N_{1}-N_{2}\right)^{2} \cdot N_{6}{ }^{2}+4 \cdot N_{2}{ }^{2} \cdot N_{5}^{2}}}=0\)
\(D X-\frac{N_{2} \cdot N_{5} \cdot\left[4 \cdot N_{2} \cdot N_{5}{ }^{2}+N_{6} \cdot \sqrt{N_{6}{ }^{2} \cdot\left(2 \cdot N_{1}-N_{2}\right)^{2}-16 \cdot N_{1} \cdot N_{5}{ }^{2} \cdot\left(N_{1}-N_{2}\right)}\right]}{N_{6} \cdot\left[\left(2 \cdot N_{1}-N_{2}\right)^{2} \cdot N_{6}{ }^{2}+4 \cdot N_{2}{ }^{2} \cdot N_{5}{ }^{2}\right]}=0\)

\(\mathrm{CW}-\frac{\left.\mathrm{N}_{3} \cdot \mathrm{~N}_{6} \cdot\left[\sqrt{\mathrm{~N}_{6}{ }^{2} \cdot\left(\mathrm{~N}_{2}-2 \cdot N_{1}\right)^{2}-16 \cdot N_{1} \cdot N_{5}{ }^{2} \cdot\left(N_{1}-N_{2}\right.}\right) \cdot N_{2}-N_{6} \cdot\left(2 \cdot N_{1}-N_{2}\right)^{2}\right]}{2 \cdot N_{2} \cdot N_{4} \cdot\left[4 \cdot N_{2} \cdot N_{5}{ }^{2}+N_{6} \cdot \sqrt{N_{6}{ }^{2} \cdot\left(N_{2}-2 \cdot N_{1}\right)^{2}-16 \cdot N_{1} \cdot N_{5}{ }^{2} \cdot\left(N_{1}-N_{2}\right)}\right]}=0\)
\(G J-\frac{N_{3} \cdot N_{6} \cdot\left[\sqrt{N_{6}{ }^{2} \cdot\left(N_{2}-2 \cdot N_{1}\right)^{2}-16 \cdot N_{1} \cdot N_{5}{ }^{2} \cdot\left(N_{1}-N_{2}\right)} \cdot N_{2}-N_{6} \cdot\left(2 \cdot N_{1}-N_{2}\right)^{2}\right]}{N_{2} \cdot N_{4} \cdot\left[4 \cdot N_{2} \cdot N_{5}{ }^{2}+N_{6} \cdot \sqrt{N_{6}{ }^{2} \cdot\left(N_{2}-2 \cdot N_{1}\right)^{2}-16 \cdot N_{1} \cdot N_{5}{ }^{2} \cdot\left(N_{1}-N_{2}\right)}\right]}=0\)
\(\begin{array}{cc}\text { AH } & \text { EF } \quad \text { CD } \\ \text { Unit }=1.00000 & \\ \text { - }\end{array}\) \(\mathrm{AH}=\mathbf{0 . 3 0 0 0 0}\) \(\mathrm{N}_{1}=6.00000\) \(\mathrm{N}_{\mathbf{2}}=20.00000\)

EF \(=0.80000\) \(\mathrm{N}_{3}=8.00000\) \(\mathrm{N}_{4}=\mathbf{1 0 . 0 0 0 0 0}\)

CD \(=0.63636\) \(\mathrm{N}_{5}=7.00000\) \(\mathrm{N}_{6}=11.00000\)

\section*{Unit}

AB := 1
Given.
\(\mathbf{N}:=\mathbf{7} \quad \mathbf{A F}:=\mathbf{N}\)
010202
Descriptions.
\(\mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B}\)
\(\mathrm{AJ}:=\mathrm{AE} \quad \mathrm{EJ}:=\mathrm{BE} \quad \mathrm{Ea}:=\frac{\mathbf{E J}^{2}+\mathbf{A E}^{2}-\mathbf{A J}^{2}}{2 \cdot \mathbf{A E}}\)
\(\mathbf{G b}:=\mathbf{E a} \quad \mathbf{G} \mathbf{J}:=\mathbf{2} \cdot \mathbf{G b} \quad \mathbf{A G}:=\mathbf{A J}-\mathbf{G} \mathbf{J}\)
\(\mathbf{A a}:=\mathbf{A E}-\mathbf{E a} \quad \mathbf{A U}:=\frac{\mathbf{A a} \cdot \mathbf{A G}}{\mathbf{A J}}\)
\(J a:=\sqrt{\mathbf{A J}^{2}-\mathbf{A a}^{\mathbf{2}}} \quad \mathbf{G U}:=\frac{\mathrm{Ja} \cdot \mathbf{A G}}{\mathbf{A J}}\)
\(\mathbf{U a}:=\mathbf{A a}-\mathbf{A U} \quad \mathbf{J O}:=\sqrt{\mathbf{U a}^{\mathbf{2}}+(\mathbf{G U}+\mathbf{J a})^{\mathbf{2}}}\)
JN := \(\frac{\mathbf{J O} \cdot \mathbf{E a}}{\mathbf{U a}} \quad \mathbf{J N}-\mathbf{B E}=\mathbf{0}\)

From 4/29/94 \(O P:=\sqrt{J a^{2}-2 \cdot J a \cdot G U+G U^{2}+U^{2}}\)
\(\mathbf{O P}-\mathbf{2} \cdot \mathbf{E a}=\mathbf{0} \quad\) NO := JO \(+\mathbf{J N} \quad \mathbf{E U}:=\mathbf{U a}+\mathbf{E a}\)
\(\mathbf{E N}:=\sqrt{\mathbf{N O}^{\mathbf{2}}-\mathbf{E U}^{\mathbf{2}}} \quad \mathbf{E L}:=\mathbf{B E} \quad \mathbf{L N}:=\mathbf{E N}-\mathbf{E L}\)

Definitions.
\(\mathbf{N}-\mathbf{1}-\mathbf{B F}=\mathbf{0} \quad \frac{\mathbf{N}-\mathbf{1}}{2}-\mathbf{B E}=\mathbf{0} \quad \frac{\mathbf{N}+\mathbf{1}}{2}-\mathbf{A E}=\mathbf{0}\)
\(\frac{(\mathbf{N}-1)^{2}}{4 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{E a}=\mathbf{0} \quad \frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{G J}=0 \quad \frac{\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+1}{4 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{A a}=\mathbf{0}\)
\(\frac{\mathbf{2} \cdot \mathbf{N}}{\mathbf{N}+\mathbf{1}}-\mathbf{A G}=\mathbf{0} \quad \frac{\mathbf{N} \cdot\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+\mathbf{1}\right)}{(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{A U}=\mathbf{0} \quad \frac{(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{4 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{J a}=\mathbf{0}\)
\(\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{G U}=\mathbf{0} \quad \frac{\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+\mathbf{1}\right) \cdot(\mathbf{N}-\mathbf{1})^{2}}{4 \cdot(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{U a}=\mathbf{0}\)
\(\frac{(N-1) \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}{2 \cdot(\mathbf{N}+1)^{2}}-J O=0 \quad \frac{\mathbf{N}-1}{2}-J N=0 \quad \frac{(N-1)^{2}}{2 \cdot(N+1)}-O P=0\)
\(\frac{(N-1) \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}{(N+1)^{2}}-\mathbf{N O}=0 \quad \frac{(N-1)^{2} \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right)}{2 \cdot(N+1)^{3}}-\mathbf{E U}=\mathbf{0}\)
\(\frac{(\mathbf{N}-\mathbf{1}) \cdot\left(\mathbf{N}^{2}+\mathbf{4} \cdot \mathbf{N}+\mathbf{1}\right) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{2 \cdot(\mathbf{N}+\mathbf{1})^{\mathbf{3}}}-\mathbf{E N}=\mathbf{0}\)

\(\frac{(\mathbf{N}-\mathbf{1}) \cdot\left(\mathbf{N}^{2}+\mathbf{4} \cdot \mathbf{N}+\mathbf{1}\right) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{2 \cdot(\mathbf{N}+\mathbf{1})^{3}}-\frac{\mathbf{N}-\mathbf{1}}{2}-\mathbf{L N}=\mathbf{0}\)
\(\sim_{062002 A}^{0} N\)
Descriptions.

Unit.
AC:= \(\mathbf{1}\)
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{4} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{C E}:=\mathbf{N}_{\mathbf{2}}\)

\section*{Easy Power-Line}

For any two intersecting circles, the power-line BJ intersects their common tangents AC at midpoint.

FH := AF \(\quad \mathbf{E H}:=\mathbf{C E} \quad \mathbf{A D}:=\mathbf{C E} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D}\)
\(\mathbf{E J}:=\mathbf{C E} \quad\) FJ \(:=\mathbf{A F} \quad \mathbf{D E}:=\mathbf{A C} \quad \mathbf{E F}:=\sqrt{\mathbf{D F}^{2}+\mathbf{D E}^{2}}\)
\(\mathbf{E G}:=\frac{\mathbf{E J}^{2}+\mathbf{E F}^{2}-\mathbf{F J}^{2}}{2 \cdot \mathbf{E F}} \quad \mathbf{E M}:=\frac{\mathrm{DF} \cdot \mathbf{E G}}{\mathrm{EF}} \quad \mathbf{C M}:=\mathbf{C E}+\mathbf{E M}\)
\(\mathbf{G M}:=\frac{\mathbf{D E} \cdot \mathbf{E G}}{\mathbf{E F}} \quad \mathbf{C K}:=\mathbf{G M} \quad \mathbf{G K}:=\mathbf{C M} \quad \mathbf{B K}:=\frac{\mathbf{D F} \cdot \mathbf{G K}}{\mathbf{D E}}\)
\(\mathbf{B C}:=\mathbf{C K}+\mathbf{B K} \quad \mathbf{B C}-\frac{\mathbf{A C}}{2}=\mathbf{0}\)

Definitions.
\(\mathbf{F H}-\mathbf{N}_{1}=\mathbf{0} \quad \mathbf{E H}-\mathbf{N}_{2}=\mathbf{0} \quad \mathbf{A D}-\mathbf{N}_{2}=\mathbf{0}\)
\(\mathbf{D F}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0} \quad \mathbf{E J}-\mathbf{N}_{\mathbf{2}}=\mathbf{0} \quad \mathbf{F J}-\mathbf{N}_{\mathbf{1}}=\mathbf{0}\)
\(\mathbf{D E}-\mathbf{1}=\mathbf{0} \quad \mathbf{E F}-\sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}+\mathbf{1}}=\mathbf{0}\)
\(\mathbf{E G}-\frac{1-2 \cdot \mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}{2 \cdot \sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}+1}}=\mathbf{0} \quad \mathbf{E M}-\frac{\left[1-2 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)\right] \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{\mathbf{2}}\right)}{2 \cdot\left[\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}+\mathbf{1}\right]}=\mathbf{0}\)
\(\mathbf{C M}-\frac{\mathbf{N}_{1}+\mathbf{N}_{2}}{2 \cdot\left[\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}+\mathbf{1}\right]}=0 \quad \mathbf{G M}-\frac{1-2 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}{2 \cdot\left[\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}+1\right]}=0\)

\(\mathbf{C K}-\frac{1-2 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}{2 \cdot\left[\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}+1\right]}=0 \quad G K-\frac{\mathbf{N}_{1}+\mathbf{N}_{2}}{2 \cdot\left[\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}+1\right]}=0\)
\(B K-\frac{\left(N_{1}+N_{2}\right) \cdot\left(N_{1}-N_{2}\right)}{2 \cdot\left(N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}+1\right)}=0 \quad B C-\frac{1}{2}=0\)

062002B
062002B
Descriptions.
\(\mathrm{AE}:=\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}} \quad \mathrm{BF}:=\frac{\mathbf{N}_{\mathbf{3}}}{\mathbf{N}_{\mathbf{4}}} \quad \mathrm{BN}:=\mathrm{AE}\)
\(\mathbf{F N}:=\mathbf{B F}-\mathbf{B N} \quad \mathbf{E F}:=\sqrt{\mathbf{A B}^{2}+\mathbf{F N}^{2}}\)
\(\mathbf{E H}:=\frac{\mathbf{E F}^{2}+\mathbf{A E}^{2}-\mathrm{BF}^{2}}{2 \cdot \mathbf{E F}} \quad \mathbf{A O}:=\frac{\mathbf{A B} \cdot \mathbf{E H}}{\mathbf{E F}}\)
EM \(:=\frac{\mathbf{F N} \cdot \mathbf{E H}}{\mathbf{E F}} \quad\) HO \(:=\mathbf{A E}+\mathbf{E M}\)
\(\mathbf{K O}:=\frac{\mathbf{F N} \cdot \mathbf{H O}}{\mathbf{A B}} \quad \mathbf{A B}-(\mathbf{A O}+\mathbf{K O})=\mathbf{0 . 5}\)

\section*{Definitions.}
\(A E-\frac{N_{1}}{N_{2}}=0 \quad B F-\frac{N_{3}}{N_{4}}=0 \quad B N-\frac{N_{1}}{N_{2}}=0\)

\section*{On the Other Hand}

Have you ever pondered a figure in terms not of the particulars but of the concept of parallel lines? What does parallel mean? Between any two objects there is one, and only one, difference. If this is not true, what does it mean for existence itself? Is it not a self-referential fallacy? And since this is obvious, what does it say for so called non-Euclidean Geometers? If one cannot master the first prnciple of reasoning, can one ever know when they are speaking and thinking gibberish?
\(\mathbf{F N}-\left(\frac{\mathbf{N}_{\mathbf{3}}}{\mathbf{N}_{\mathbf{4}}}-\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}}\right)=\mathbf{O} \quad \mathbf{F N}-\frac{\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}-\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{4}}}{\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{4}}}=\mathbf{0}\)
\(E F-\frac{\sqrt{\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right) \cdot N_{4}{ }^{2}+N_{2} \cdot N_{3} \cdot\left(N_{2} \cdot N_{3}-2 \cdot N_{1} \cdot N_{4}\right)}}{N_{2} \cdot N_{4}}=0\)
\(A O-\frac{N_{4} \cdot\left[\left(2 \cdot N_{1}{ }^{2}+N_{2}{ }^{2}\right) \cdot N_{4}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3}\right]}{2 \cdot\left[\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right) \cdot N_{4}{ }^{2}+N_{2} \cdot N_{3} \cdot\left(N_{2} \cdot N_{3}-2 \cdot N_{1} \cdot N_{4}\right)\right]}=0\)
\(\mathrm{HO}-\frac{\mathrm{N}_{2} \cdot \mathrm{~N}_{4} \cdot\left(\mathrm{~N}_{1} \cdot \mathrm{~N}_{4}+\mathrm{N}_{2} \cdot \mathrm{~N}_{3}\right)}{2 \cdot\left[\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}\right) \cdot \mathrm{N}_{4}{ }^{2}+\mathrm{N}_{2} \cdot \mathrm{~N}_{3} \cdot\left(\mathrm{~N}_{2} \cdot \mathrm{~N}_{3}-\mathbf{2} \cdot \mathrm{N}_{1} \cdot \mathrm{~N}_{4}\right)\right]}=0\)
\(\mathrm{EH}-\frac{\left(2 \cdot \mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}\right) \cdot \mathrm{N}_{4}{ }^{2}-2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{3} \cdot \mathrm{~N}_{4}}{2 \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{4} \cdot \sqrt{\mathrm{~N}_{4}{ }^{2} \cdot\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}\right)+\mathrm{N}_{2} \cdot \mathrm{~N}_{3} \cdot\left(\mathrm{~N}_{2} \cdot \mathrm{~N}_{3}-2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{4}\right)}}=0\)
\(E M-\frac{\left(N_{2} \cdot N_{3}-N_{1} \cdot N_{4}\right) \cdot\left[\left(2 \cdot N_{1}{ }^{2}+N_{2}{ }^{2}\right) \cdot N_{4}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3}\right]}{2 \cdot \mathbf{N}_{2} \cdot\left[\left(\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2}{ }^{2}\right) \cdot \mathbf{N}_{4}{ }^{2}+N_{2} \cdot \mathbf{N}_{3} \cdot\left(\mathbf{N}_{2} \cdot \mathbf{N}_{3}-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{4}\right)\right]}=0\)
\(K O-\frac{N_{2}{ }^{2} \cdot N_{3}{ }^{2}-\left(N_{1} \cdot N_{4}\right)^{2}}{2 \cdot\left[\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right) \cdot N_{4}{ }^{2}+N_{2} \cdot N_{3} \cdot\left(N_{2} \cdot N_{3}-2 \cdot N_{1} \cdot N_{4}\right)\right]}=0 \quad A B-\frac{1}{2}=0.5\)

Between any two objects there is one, and only one, difference such that the operations equitable to both, become half the difference between them and this is called their power.
\(\sim_{n}^{0}\)
071902

\section*{Descriptions.}

\section*{Unit.}

AX := 1
Given.
\(\mathbf{N}_{\mathbf{1}}:=9 \quad \mathbf{N}_{\mathbf{2}}:=12\)
\(N_{\mathbf{3}}:=4 \quad N_{4}:=11\)

\section*{On Linear Division}

If \(\mathbf{G}\) were at A , then one would have the simple textbook method, however, if one took any point \(G\) on the
perpendicular to AB , the results would be the same.
\(\mathbf{A B}:=\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A G}:=\frac{\mathbf{N}_{\mathbf{3}}}{\mathbf{N}_{\mathbf{4}}} \quad \mathbf{B G}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A G}^{2}}\)
I do not memorize equations; every time I have to use an equation from Pythagorus Revisited, I have to look it up.
\(\mathrm{BD}:=\frac{\mathrm{BG}^{2}+\mathrm{AB}^{2}-\mathbf{B G}^{2}}{2 \cdot \mathbf{B G}}\) Or again; \(\mathrm{BD}_{1}:=\frac{\mathrm{AB}^{2}}{2 \cdot \mathbf{B G}}\)
\(\mathbf{B E}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B G}} \quad \mathrm{DE}:=\frac{\mathrm{AG} \cdot \mathbf{B E}}{\mathbf{A B}} \quad \mathrm{EF}:=\frac{\mathrm{AG} \cdot \mathrm{DE}}{\mathrm{AB}}\)
\(\mathbf{B F}:=\mathbf{B E}+\mathbf{E F} \quad \mathbf{B F}-\frac{\mathrm{AB}}{2}=\mathbf{0}\)

\section*{Definitions.}
\(A B-\frac{N_{1}}{N_{2}}=0 \quad A G-\frac{N_{3}}{N_{4}}=0\)

\(B G-\frac{\sqrt{N_{1}{ }^{2} \cdot N_{4}{ }^{2}+N_{2}{ }^{2} \cdot N_{3}{ }^{2}}}{N_{2} \cdot N_{4}}=0 \quad B D-\frac{N_{1}{ }^{2} \cdot N_{4}}{2 \cdot N_{2} \cdot \sqrt{N_{1}{ }^{2} \cdot N_{4}{ }^{2}+N_{2}{ }^{2} \cdot N_{3}{ }^{2}}}=0\)
Unit \(=1.00000\)
\(\mathrm{x}_{\mathrm{X}}=1.00000 \quad\) AG \(=0.36364\) \(\begin{array}{ll}A B=0.75000 & A G=0.36364 \\ N_{3}=4.00000\end{array}\) \(\begin{array}{ll}\mathrm{N}_{1}=9.00000 & \mathrm{~N}_{3}=4.00000 \\ \mathbf{N}_{\mathbf{2}}=12.00000 & \mathrm{~N}_{4}=11.00000\end{array}\)
\(\mathrm{BE}-\frac{\mathrm{N}_{1}^{3} \cdot \mathrm{~N}_{4}^{2}}{2 \cdot \mathrm{~N}_{2} \cdot\left({N_{1}}^{2} \cdot{N_{4}}^{2}+{N_{2}}^{2} \cdot{N_{3}}^{2}\right)}=0\)
\(\mathrm{DE}-\frac{\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{3} \cdot \mathrm{~N}_{4}}{2 \cdot\left(\mathrm{~N}_{1}{ }^{2} \cdot \mathrm{~N}_{4}{ }^{2}+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{3}{ }^{2}\right)}=0\)
\(E F-\frac{N_{1} \cdot N_{2} \cdot N_{3}{ }^{2}}{2 \cdot\left(N_{1}{ }^{2} \cdot N_{4}{ }^{2}+N_{2}{ }^{2} \cdot N_{3}{ }^{2}\right)}=0 \quad B F-\frac{N_{1}}{2 \cdot N_{2}}=0\)

Unit. C1 := 1
Given.
\(\mathbf{X}:=\mathbf{7}\)
\(\mathbf{Y}:=\mathbf{2 0}\)

\section*{090702A}

\section*{Descriptions.}

B1 \(:=\mathbf{C 1} \quad\) H1 \(:=\mathbf{C 1} \quad\) BC \(:=2 \cdot \mathbf{C 1} \quad\) GH \(:=\) BC \(\quad\) X1 \(:=\) B1 \(\cdot \frac{\mathbf{X}}{\mathbf{Y}}\)
\(\mathrm{HX}:=\sqrt{\mathrm{X1}^{2}+\mathrm{H} \mathbf{1}^{2}} \quad \mathrm{HV}:=\mathrm{H} 1 \cdot \frac{\mathbf{G H}}{\mathrm{HX}} \quad \mathrm{N} 1:=\mathrm{X} 1 \cdot \frac{\mathrm{HV}}{\mathrm{HX}}\)
GN \(:=\sqrt{C 1^{2}+\mathrm{N}^{2}} \quad\) A1 \(:=\frac{\mathrm{C} 1^{2}}{\mathrm{~N} 1} \quad\) AC \(:=\mathrm{C} 1+\mathrm{A} 1\)
\(A B:=A C-B C \quad \frac{A C}{A B}=4.313609\)

\section*{Definitions.}
\(\mathbf{B 1}-\mathbf{1}=\mathbf{0} \quad \mathbf{H 1}-\mathbf{1}=\mathbf{0} \quad \mathbf{B C}-2=0 \quad\) GH \(-2=0 \quad \mathbf{X 1}-\frac{\mathbf{X}}{\mathbf{Y}}=0\)
\[
H X-\frac{\sqrt{X^{2}+Y^{2}}}{Y}=0 \quad H V-\frac{2 \cdot Y}{\sqrt{X^{2}+Y^{2}}}=0 \quad N 1-\frac{2 \cdot X \cdot Y}{X^{2}+Y^{2}}=0
\]
\(G N-\frac{\sqrt{X^{4}+6 \cdot X^{2} \cdot Y^{2}+Y^{4}}}{\left(X^{2}+Y^{2}\right)}=0 \quad A 1-\frac{X^{2}+Y^{2}}{2 \cdot X \cdot Y}=0 \quad A C:=\frac{(X+Y)^{2}}{2 \cdot X \cdot Y}\)
\(A B-\frac{(X-Y)^{2}}{2 \cdot X \cdot Y}=0 \quad \frac{A C}{A B}-\frac{(X+Y)^{2}}{(X-Y)^{2}}=0\)

\section*{Given X1 find AC}

Unit. \(A B:=1\)

Given.
X := 15
\(\mathbf{Y}:=20\)

\section*{Trisection Illusion}

Basically, one is simply adding one half of angle CBH to it.

Description.
\(\mathbf{B C}:=\mathbf{A B} \quad \mathbf{C D}:=\frac{\mathbf{B C}}{2} \quad \mathbf{D X}:=\mathbf{C D} \cdot \frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B X}:=\mathbf{C D}+\mathbf{D X}\)
\(\mathbf{A X}:=\mathbf{A B}+\mathbf{C D}+\mathbf{D X} \quad \mathbf{H X}:=\sqrt{\mathbf{A X} \cdot(\mathbf{2} \cdot \mathbf{A B}-\mathbf{A X})}\)
\(\mathbf{H M}:=\sqrt{\mathbf{A X}^{2}+\mathbf{H X}^{2}} \quad \mathbf{B M}:=\mathbf{A B}+\mathbf{H M} \quad \mathbf{E M}:=\mathbf{H X} \cdot \frac{\mathbf{B M}}{\mathbf{A B}}\)
\(\mathbf{B E}:=\mathbf{B X} \cdot \frac{\mathbf{E M}}{\mathbf{H X}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A M}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E M}^{2}}\)
\(\mathbf{A K}:=\frac{\mathbf{A E}^{\mathbf{2}}}{\mathbf{A M}} \quad \mathbf{K M}:=\mathbf{A M}-\mathbf{A K} \quad \mathbf{A J}:=\mathbf{A M}-\mathbf{2} \cdot \mathbf{K M}\)
\(\mathbf{A F}:=\frac{\mathbf{A E} \cdot \mathbf{A M}}{\mathbf{A J}} \quad\) FO \(:=\mathbf{A F} \cdot \frac{\mathbf{E M}}{\mathbf{A E}} \quad\) FO \(=1.957661\)
Definitions.
\(B C-1=0 \quad C D-\frac{1}{2}=0 \quad D X-\frac{X}{2 \cdot Y}=0 \quad B X-\frac{X+Y}{2 \cdot Y}=0\)
\(\mathbf{A X}-\frac{\mathbf{X}+\mathbf{3} \cdot \mathbf{Y}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{H X}-\frac{\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{3} \cdot \mathbf{Y})}}{2 \cdot \mathbf{Y}}=0 \quad \mathbf{H M}-\frac{\sqrt{\mathbf{X}+\mathbf{3} \cdot \mathbf{Y}}}{\sqrt{\mathbf{Y}}}=0\)

\(A M-\frac{\sqrt{\left(X^{2}+4 \cdot X \cdot Y+3 \cdot Y^{2}\right) \cdot \sqrt{X+3 \cdot Y}+4 \cdot X \cdot Y^{\frac{3}{2}}-X \cdot\left(X+3 \cdot Y^{\frac{3}{2}}+Y \cdot\left(X+3 \cdot Y^{\frac{3}{2}}+12 \cdot Y^{\frac{5}{2}}\right.\right.}}{\sqrt{2} \cdot \sqrt{Y^{\frac{5}{2}}}}=0\)

Name the segement in red.
092102
Descriptions.
\(\mathbf{B C}:=2 \cdot \mathbf{C 1} \quad \mathrm{~B} 1:=\mathbf{C 1} \quad \mathrm{X} 1:=\mathrm{B} 1 \cdot \frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{M X}:=\sqrt{\mathbf{C 1} 1^{2}+\mathbf{X 1} 1^{2}}\)
\(A 1:=\frac{C 1^{2}}{X 1} \quad A C:=A 1+C 1 \quad H K:=2 \cdot B C\)
\(\mathbf{H S}:=\mathrm{BC}+\mathbf{X 1} \quad\) aS \(:=\sqrt{\mathrm{HS} \cdot(\mathrm{HK}-\mathrm{HS})} \quad \mathrm{E} 1:=\sqrt{\mathrm{BC}^{2}-\mathrm{C1}^{2}}\)
\(C D:=E 1 \quad\) d1 \(:=\frac{\mathrm{C1}^{2}}{\mathrm{CD}} \quad\) aX \(:=\mathrm{aS}-\mathrm{E} 1\)
\(\mathrm{ad}:=\sqrt{(\mathrm{d} 1+\mathrm{aX})^{\mathbf{2}}+\mathbf{X 1} \mathbf{1}^{2}}\)

\section*{Definitions.}
\(\mathbf{B C}-\mathbf{2}=\mathbf{0} \quad \mathbf{B 1}-\mathbf{1}=\mathbf{0} \quad \mathbf{X} 1-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0}\)
\(M X-\frac{\sqrt{X^{2}+Y^{2}}}{Y}=0 \quad A 1-\frac{Y}{X}=0 \quad A C-\frac{X+Y}{X}=0\)

\(\mathbf{H K}-4=\mathbf{0} \quad \mathbf{H S}-\frac{\mathbf{X}+2 \cdot \mathbf{Y}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{a S}-\frac{\sqrt{(2 \cdot \mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+2 \cdot \mathbf{Y})}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{E} 1-\sqrt{3}=\mathbf{0} \quad \mathbf{C D}-\sqrt{3}=0 \quad \mathrm{~d} 1-\frac{1}{\sqrt{3}}=\mathbf{0} \quad \mathbf{a X}-\frac{\sqrt{4 \cdot \mathbf{Y}^{2}-\mathbf{X}^{2}}-\sqrt{3} \cdot \mathbf{Y}}{\mathbf{Y}}=\mathbf{0}\)
\(\operatorname{ad}-\frac{2 \cdot \sqrt{4 \cdot Y-\sqrt{3} \cdot \sqrt{4 \cdot Y^{2}-X^{2}}}}{\sqrt{3 \cdot Y}}=0\)
\(\begin{array}{ll}\text { Unit. } & C 1:=1 \\ \text { Given. } & x:=5 \\ & Y:=20\end{array}\)
Descriptions.
\(\mathbf{B C}:=2 \cdot \mathbf{C 1} \quad\) A1 \(:=\frac{\mathbf{Y}}{\mathbf{X}} \quad\) AC \(:=\mathrm{A} 1+\mathrm{C} 1 \quad \mathrm{X} 1:=\mathrm{C} 1 \cdot \frac{\mathbf{X}}{\mathbf{Y}}\)
\(\mathrm{a} 1:=\frac{\mathrm{C} 1}{2} \quad \mathrm{aA}:=\sqrt{\mathrm{A1}^{2}-\mathrm{a} 1^{2}} \quad \mathrm{~b} 1:=\frac{\mathrm{a} 1^{2}}{\mathrm{~A} 1} \quad \mathrm{ab}:=\mathrm{aA} \cdot \frac{\mathrm{a} 1}{\mathrm{~A} 1}\)
\(\mathbf{G K}:=\mathbf{2} \cdot \mathbf{a b} \quad \mathbf{G 1}:=\mathbf{2} \cdot \mathbf{b} \mathbf{1} \quad \mathbf{A G}:=\mathbf{A 1}-\mathbf{G} \mathbf{1}\)
\(\mathbf{A K}:=\sqrt{\mathbf{G K}^{2}+\mathbf{A G}^{\mathbf{2}}} \quad \mathbf{P 1}:=\mathbf{G K} \cdot \frac{\mathbf{A 1}}{\mathbf{A K}} \quad \mathbf{A P}:=\frac{\mathbf{A G} \cdot \mathbf{P 1}}{\mathbf{G K}}\)
\(\mathbf{P K}:=\mathbf{A K}-\mathbf{A P} \quad \mathbf{K N}:=\mathbf{2} \cdot \mathbf{P K} \quad \mathbf{A N}:=\mathbf{A K}-\mathbf{K N}\)
\(\mathbf{A F}:=\mathbf{A G} \cdot \frac{\mathbf{A N}}{\mathbf{A K}} \quad \mathbf{F N}:=\mathbf{G K} \cdot \frac{\mathbf{A N}}{\mathbf{A K}} \quad \mathbf{F 1}:=\mathbf{A 1}-\mathbf{A F} \quad\) FH \(:=\mathbf{F} 1+\mathbf{G 1}\)

\section*{Pair of Blue Balls}

Jc \(:=\mathbf{G K}-\mathbf{F N} \quad\) DH \(:=\) FH \(\cdot \frac{\mathbf{G K}}{\mathbf{J c}} \quad\) D1 \(:=\) DH \(-\mathbf{G 1} \quad\) Md \(:=\mathbf{C 1}-\mathbf{F N} \quad\) E1 \(:=\) F1 \(\cdot \frac{\mathbf{C 1}}{\mathbf{M d}}\)
\(\mathbf{D E}:=\mathbf{D 1}-\mathbf{E} 1 \quad\) EO \(:=\mathbf{G K} \cdot \frac{\mathbf{D E}}{\mathbf{D H}} \quad\) DO \(:=\sqrt{\mathbf{D E}^{2}+\mathbf{E O}^{2}} \quad\) Ee \(:=\mathbf{2} \cdot \mathbf{D E} \quad\) e1 \(:=\mathbf{D 1}-\mathbf{E e}\)
e1 \(-(\mathbf{D O}+\mathbf{X 1})=0\)

\section*{Definitions.}
\(B C-2=0 \quad A 1-\frac{Y}{X}=0 \quad A C-\frac{X+Y}{X}=0 \quad X 1-\frac{X}{Y}=0 \quad\) a1 \(-\frac{1}{2}=0\)
\(a \mathbf{a}-\frac{\sqrt{(2 \cdot \mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+2 \cdot \mathbf{Y})}}{2 \cdot \mathbf{X}}=0 \quad b 1-\frac{\mathbf{X}}{4 \cdot \mathbf{Y}}=0 \quad \mathbf{a b}-\frac{\sqrt{(2 \cdot \mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+2 \cdot \mathbf{Y})}}{4 \cdot \mathbf{Y}}=0\)
\(\mathbf{G K}-\frac{\sqrt{(2 \cdot \mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+2 \cdot \mathbf{Y})}}{2 \cdot \mathbf{Y}}=0 \quad \mathbf{G} 1-\frac{\mathbf{X}}{2 \cdot \mathbf{Y}}=0 \quad A G-\frac{2 \cdot \mathbf{Y}^{2}-\mathbf{X}^{2}}{2 \cdot X \cdot \mathbf{Y}}=0 \quad A K-\frac{Y}{X}=0\)
\(P 1-\frac{\sqrt{(2 \cdot Y-X) \cdot(X+2 \cdot Y)}}{2 \cdot \mathbf{Y}}=0 \quad A P-\frac{2 \cdot \mathbf{Y}^{2}-X^{2}}{2 \cdot X \cdot Y}=0 \quad P K-\frac{X}{2 \cdot \mathbf{Y}}=0 \quad K N-\frac{X}{Y}=0\)
\(C^{2} \operatorname{cin}^{38}\)
\(A N-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{X \cdot \mathbf{Y}}=0 \quad \mathbf{A F}-\frac{\left(\mathbf{X}^{2}-2 \cdot \mathbf{Y}^{2}\right) \cdot(\mathbf{X}-\mathbf{Y}) \cdot(\mathbf{X}+\mathbf{Y})}{2 \cdot X \cdot \mathbf{Y}^{3}}=0 \quad F 1-\frac{X \cdot\left(3 \cdot \mathbf{Y}^{2}-\mathbf{X}^{2}\right)}{2 \cdot \mathbf{Y}^{3}}=0\)
\(\mathbf{F N}-\frac{\sqrt{(\mathbf{2} \cdot \mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{2} \cdot \mathbf{Y})} \cdot(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{2 \cdot \mathbf{Y}^{\mathbf{3}}}=\mathbf{0} \quad \mathbf{F H}-\frac{\mathbf{X} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{2} \cdot \mathbf{Y})}{2 \cdot \mathbf{Y}^{\mathbf{3}}}=\mathbf{0}\)
\(J c-\frac{X^{2} \cdot \sqrt{4 \cdot Y^{2}-X^{2}}}{2 \cdot Y^{3}}=0 \quad D H-\frac{\sqrt{(2 \cdot Y-X) \cdot(X+2 \cdot Y)} \cdot(2 \cdot Y-X) \cdot(X+2 \cdot Y)}{2 \cdot X \cdot Y \cdot \sqrt{4 \cdot Y^{2}-X^{2}}}=0 \quad D 1-\frac{2 \cdot Y^{2}-X^{2}}{X \cdot Y}=0\)
\(M d-\frac{X^{2} \cdot \sqrt{4 \cdot Y^{2}-X^{2}}-Y^{2} \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+2 \cdot Y^{3}}{2 \cdot Y^{3}}=0 \quad E 1-\frac{X \cdot\left(3 \cdot Y^{2}-X^{2}\right)}{\left(X^{2}-Y^{2}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+2 \cdot Y^{3}}=0\)

\(D E-\frac{(X-Y) \cdot(X+Y) \cdot\left[\left(2 \cdot Y^{2}-X^{2}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+X^{2} \cdot Y-4 \cdot Y^{3}\right]}{X \cdot Y \cdot\left[\left(X^{2}-Y^{2}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+2 \cdot Y^{3}\right]}=0 \quad E O-\frac{(Y-X) \cdot(X-2 \cdot Y) \cdot(X+2 \cdot Y) \cdot(X+Y) \cdot\left(X^{2}-2 \cdot Y^{2}+Y \cdot \sqrt{4 \cdot Y^{2}-X^{2}}\right)}{\mathbf{Y} \cdot(X-2 \cdot \mathbf{Y}) \cdot(X+2 \cdot Y) \cdot\left[\left(X^{2}-Y^{2}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+2 \cdot Y^{3}\right]}=0\)
DO \(-\frac{2 \cdot \sqrt{(X-Y)^{2} \cdot(X+Y)^{2}} \cdot\left[\left(2 \cdot X^{2} \cdot Y_{-4} \cdot Y^{3}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+X^{4}-5 \cdot X^{2} \cdot Y^{2}+8 \cdot Y^{4}\right]}{X \cdot \sqrt{\left(4 \cdot X^{2} \cdot Y^{3}-4 \cdot Y^{5}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+6 \cdot X^{4} \cdot Y^{2}-X^{6}-9 \cdot X^{2} \cdot Y^{4}+8 \cdot Y^{6}}}=0\)
\(E e-\frac{2 \cdot(X-Y) \cdot(X+Y) \cdot\left[\left(2 \cdot Y^{2}-X^{2}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+X^{2} \cdot Y-4 \cdot Y^{3}\right]}{X \cdot Y \cdot\left[\left(X^{2}-Y^{2}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+2 \cdot Y^{3}\right]}=0\)
\(e 1-\frac{\left(X^{4}-3 \cdot X^{2} \cdot Y^{2}+2 \cdot Y^{4}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+8 \cdot X^{2} \cdot Y^{3}-2 \cdot X^{4} \cdot Y-4 \cdot Y^{5}}{X \cdot Y \cdot\left[\left(X^{2}-Y^{2}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+2 \cdot Y^{3}\right]}=0\)
\(\frac{2 \cdot \sqrt{(X-Y)^{2} \cdot(X+Y)^{2} \cdot\left[\left(2 \cdot X^{2} \cdot Y-4 \cdot Y^{3}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+X^{4}-5 \cdot X^{2} \cdot Y^{2}+8 \cdot Y^{4}\right]}}{\frac{X \cdot \sqrt{\left(4 \cdot X^{2} \cdot Y^{3}-4 \cdot Y^{5}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+6 \cdot X^{4} \cdot Y^{2}-X^{6}-9 \cdot X^{2} \cdot Y^{4}+8 \cdot Y^{6}}}{\frac{\left(X^{4}-3 \cdot X^{2} \cdot Y^{2}+2 \cdot Y^{4}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+8 \cdot X^{2} \cdot Y^{3}-2 \cdot X^{4} \cdot Y-4 \cdot Y^{5}}{Y}}} \underset{X \cdot Y \cdot\left[\left(X^{2}-Y^{2}\right) \cdot \sqrt{4 \cdot Y^{2}-X^{2}}+2 \cdot Y^{3}\right]}{X}=1\)
Mathcad cannot reduce this equation. It can divide
them and come up with the correct arithmetic, 1. It can subtract them and again come up with the correct arithmetic, but it cannot reduce them to either 0 or 1 , which is a logical process.

\section*{Unit.}

AD := \(\mathbf{1}\) Given. N := 1.5
021603
Descriptions.
AB \(:=\frac{\mathbf{A D}}{2}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B C}:=\frac{\mathbf{B D}}{\mathbf{N}}\)
\(\mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}\)
\(\mathbf{A F}:=\mathbf{A D} \quad \mathbf{C F}:=\sqrt{\mathbf{A F}^{2}-\mathbf{A C}^{2}}\)
\(\mathrm{FI}:=\sqrt{\mathbf{C D}^{2}+\mathbf{C F}^{2}}\)

From AD project a
trisection to EH.
Make AD the unit.

DI:=2.CF AI := AD
\(\mathbf{A L}:=\frac{\left(2 \mathbf{A D}^{2}-\mathbf{D I}^{2}\right)}{2 \cdot \mathbf{A D}}\)
\(\mathbf{F J}:=\mathbf{A C}-\mathbf{A L} \quad \mathbf{I L}:=\sqrt{\mathbf{A I}^{\mathbf{2}}-\mathbf{A L}^{\mathbf{2}}}\)
IJ \(:=\mathbf{I L}-\mathbf{C F} \quad\) EL \(:=\frac{\text { FJ.IL }}{\text { IJ }}\)
\(\mathbf{A E}:=\mathbf{A L}+\mathbf{E L} \quad \mathbf{E I}:=\frac{\mathbf{F I} \cdot \mathbf{I L}}{\mathbf{I J}}\)
\(\mathbf{E F}:=\mathbf{E I}-\mathbf{F I}\)

\(C^{2} \cos ^{3}\)
\(\mathbf{F G}:=\frac{\mathbf{E F}^{2}+\mathbf{A F}^{2}-\mathbf{A E}^{2}}{-\mathbf{A F}}\)
\(\mathbf{A G}:=\mathbf{A F}+\mathbf{F G}\)
AN \(:=\frac{\mathbf{A C} \cdot \mathbf{A G}}{\mathbf{A F}}\)
\(\mathbf{E N}:=\mathbf{A E}-\mathbf{A N} \quad \mathbf{F M}:=\frac{\mathbf{F G}}{2}\)

\(\mathbf{F M}-\mathbf{E N}=\mathbf{0}\)
Definitions. In the following definitions, one should remember, \(N\) is not something which is a part of the figure, it is an assertion you make of the figure.
\(\mathbf{A B}-\frac{1}{2}=0 \quad \mathbf{B D}-(\mathbf{N}-1)=0 \quad \mathbf{B C}-\frac{\mathbf{N}-\mathbf{1}}{\mathbf{N}}=0 \quad \mathbf{C D}-\frac{(\mathbf{N}-1)^{2}}{\mathbf{N}}=0\)
\(\mathbf{A C}-\frac{\mathbf{3} \cdot \mathbf{N}-2}{2 \cdot \mathbf{N}}=\mathbf{0} \quad \mathbf{A F}-1=\mathbf{0} \quad \mathbf{C F}-\frac{\sqrt{(2-\mathbf{N}) \cdot(\mathbf{5} \cdot \mathbf{N}-2)}}{2 \cdot \mathbf{N}}=\mathbf{0}\)
\(F I-\frac{\sqrt{4 \cdot \mathbf{N}^{3}-16 \cdot \mathbf{N}^{2}+19 \cdot N-4}}{2 \cdot \sqrt{\mathbf{N}}}=\mathbf{0} \quad\) DI \(-\frac{\sqrt{(2-\mathbf{N}) \cdot(5 \cdot \mathbf{N}-2)}}{\mathbf{N}}=\mathbf{0}\)
\(A I-1=0 \quad A L-\frac{7 \cdot N^{2}-12 \cdot N+4}{2 \cdot N^{2}}=0 \quad F J-\frac{(2 \cdot N-1) \cdot(2-N)}{N^{2}}=0\)

\(I L-\frac{\sqrt{(5 \cdot N-2) \cdot(2-N)} \cdot(3 \cdot N-2)}{2 \cdot N^{2}}=0 \quad I J-\frac{\sqrt{12 \cdot N-5 \cdot N^{2}-4} \cdot(N-1)}{N^{2}}=0\)
\(\mathbf{E L}-\frac{(2-\mathbf{N}) \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1}) \cdot(\mathbf{3} \cdot \mathbf{N}-\mathbf{2}) \cdot \sqrt{(\mathbf{2 - N}) \cdot(\mathbf{5} \cdot \mathbf{N}-\mathbf{2})}}{2 \cdot \mathbf{N}^{2} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{12 \cdot \mathbf{N}-\mathbf{5} \cdot \mathbf{N}^{2}-4}}=0 \quad \mathbf{A E}-\frac{\mathbf{N}}{2 \cdot(\mathbf{N}-\mathbf{1})}=\mathbf{0}\)
\(\mathbf{E I}-\frac{(3 \cdot N-2) \cdot \sqrt{-(N-2) \cdot(5 \cdot N-2)} \cdot \sqrt{4 \cdot \mathbf{N}^{3}-16 \cdot \mathbf{N}^{2}+19 \cdot \mathbf{N}-4}}{4 \cdot \sqrt{N} \cdot(\sqrt{N}-1) \cdot(\sqrt{N}+1) \cdot \sqrt{12 \cdot N-5 \cdot \mathbf{N}^{2}-4}}=0 \quad E F-\frac{\sqrt{N} \cdot \sqrt{4 \cdot \mathbf{N}^{3}-16 \cdot \mathbf{N}^{2}+19 \cdot N-4}}{4 \cdot(\sqrt{N}-1) \cdot(\sqrt{N}+1)}=0\)

\(\cos ^{\circ} 4{ }^{88}\)
\(F G-\frac{\left(16 \cdot \mathrm{~N}^{3}-4 \cdot \mathrm{~N}^{4}-31 \cdot \mathrm{~N}^{2}+36 \cdot \mathrm{~N}-16\right)}{16 \cdot(\mathrm{~N}-1)^{2}}=0\)
\(A G-\frac{N \cdot(1-2 \cdot N) \cdot\left(2 \cdot \mathbf{N}^{2}-7 \cdot \mathbf{N}+4\right)}{16 \cdot(\mathbf{N}-1)^{2}}=0\)
\(A N-\frac{(1-2 \cdot N) \cdot(3 \cdot N-2) \cdot\left(2 \cdot N^{2}-7 \cdot N+4\right)}{32 \cdot(N-1)^{2}}=0\)

\(E N-\frac{12 \cdot N^{4}-56 \cdot N^{3}+93 \cdot N^{2}-58 \cdot N+8}{32 \cdot(N-1)^{2}}=0\)
\(F M-\frac{16 \cdot \mathrm{~N}^{3}-4 \cdot \mathrm{~N}^{4}-31 \cdot \mathrm{~N}^{2}+36 \cdot \mathrm{~N}-16}{32 \cdot(\mathrm{~N}-1)^{2}}=0\)
\(\mathbf{F M}-\mathbf{E N}=\mathbf{0}\)
\(\frac{(2 \cdot \mathbf{N}-3) \cdot(1-2 \cdot \mathbf{N}) \cdot\left(2 \cdot \mathbf{N}^{2}-5 \cdot \mathbf{N}+4\right)}{16 \cdot(\mathbf{N}-1)^{2}}=0\)
\(16 \cdot(N-1)^{2}=4\)
\((2 \cdot N-3) \cdot(1-2 \cdot N) \cdot\left(2 \cdot N^{2}-5 \cdot N+4\right)=0\)
\(36 \cdot N^{3}-8 \cdot N^{4}-62 \cdot N^{2}+47 \cdot N-12\)
\(36 \cdot \mathrm{~N}^{3}-8 \cdot \mathrm{~N}^{4}-62 \cdot \mathrm{~N}^{2}+47 \cdot \mathrm{~N}-12=0\)
Solve for \(N\).

Two of these solutions are not even part of the grammar. If one finds anyone who defends them, as them, show me how complete induction and deduction of a unit cannot produce anything more than a recursion of that unit.

Unit. \(A B:=1\)
Given. \(\mathbf{X}:=11\)

021903
Descriptions.
\(\mathbf{A C}:=2 \cdot \mathbf{A B} \quad \mathbf{A F}:=\frac{\mathbf{A B}}{2} \quad \mathbf{C F}:=\mathbf{A C}-\mathbf{A F} \quad \mathbf{F X}:=\mathbf{C F} \cdot \frac{\mathbf{X}}{\mathbf{Y}}\)
\(\mathbf{A X}:=\mathbf{A F}+\mathbf{F X} \quad \mathbf{C X}:=\mathbf{A C}-\mathbf{A X} \quad \mathbf{H X}:=\sqrt{\mathbf{A X} \cdot \mathbf{C X}}\)
\(\mathbf{C H}:=\sqrt{\mathrm{HX}^{2}+\mathbf{C X}^{2}} \quad \mathbf{C T}:=\frac{\mathbf{C H}}{2} \quad\) BT \(:=H X \cdot \frac{\mathbf{C T}}{\mathbf{C X}}\)
\(\mathbf{B O}:=\mathbf{H X} \cdot \frac{\mathbf{A B}}{\mathbf{C H}} \quad\) MO \(:=\mathbf{C X} \cdot \frac{\mathbf{A B}}{\mathbf{C H}} \quad\) BS \(:=2 \cdot \mathbf{B O}\)
\(\mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \quad \mathbf{O X}:=\mathbf{A O}-\mathbf{A X} \quad \mathbf{D X}:=\mathbf{O X} \cdot \frac{\mathbf{H X}}{\mathbf{H X}-\mathbf{M O}}\)
\(\mathbf{A D}:=\mathbf{A X}+\mathbf{D X} \quad \mathbf{H T}:=\mathbf{C T} \quad \mathbf{M T}:=\mathbf{A B}-\mathbf{B T}\)
\(\mathbf{H M}:=\sqrt{\mathbf{H T}^{2}+\mathbf{M T}^{2}} \quad \mathbf{J M}:=\frac{\mathbf{H M}}{2}\)
\[
\mathbf{Y}:=\mathbf{2 0}
\]

Twin Circles in an Isosceles Triangle

Definitions.
Due to the state of mathematics today, in order to insure that each of these equations is technically correct, I would have to repair everyone where Mathcad preferred the absurd construction resulting in imaginary numbers, which \(I\) only did on the last equation. As one can see, in Mathead arranging by the alphabet trumps correct grammar and Mathcad will simply use a minus sign to justify the absurdity. I do some corrections along the way, but not all as I don't think anyone can live long enough having to correct automated stupidity. A computer will simply execute its programming commensurate with the wit of a programmer.
\(\mathbf{A C}-2=\mathbf{0} \quad \mathbf{A F}-\frac{1}{2}=\mathbf{0} \quad \mathbf{C F}-\left(\mathbf{3} \cdot 2^{-1}\right)=\mathbf{0} \quad \mathbf{F X}-\frac{\mathbf{3} \cdot \mathbf{X}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{A X}-\frac{\mathbf{3} \cdot \mathbf{X}+\mathbf{Y}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{C X}-\frac{\mathbf{3} \cdot(\mathbf{Y}-\mathbf{X})}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{H X}-\frac{\sqrt{\mathbf{3} \cdot(\mathbf{3} \cdot \mathbf{X}+\mathbf{Y}) \cdot(\mathbf{Y}-\mathbf{X})}}{2 \cdot \mathbf{Y}}=\mathbf{0}\) \(\mathbf{C H}-\frac{\sqrt{\mathbf{3} \cdot(\mathbf{Y}-\mathbf{X})}}{\sqrt{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{C T}-\frac{\sqrt{\mathbf{3} \cdot(\mathbf{Y}-\mathbf{X})}}{2 \cdot \sqrt{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{B T}-\frac{\sqrt{\mathbf{3}} \cdot \sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(9 \cdot \mathbf{X}+\mathbf{3} \cdot \mathbf{Y})}}{\mathbf{6} \cdot \sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}}=\mathbf{0} \quad \mathbf{B O}-\frac{\sqrt{\mathbf{3} \cdot \sqrt{-(\mathbf{X}-\mathbf{Y}) \cdot(\mathbf{9} \cdot \mathbf{X}+\mathbf{3} \cdot \mathbf{Y})}}}{\mathbf{6} \cdot \sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}}=\mathbf{0} \quad \mathbf{M O}-\frac{\sqrt{\mathbf{3}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}}{2 \cdot \sqrt{\mathbf{Y}}}=\mathbf{0}\) \(\mathbf{B S}-\frac{\sqrt{\mathbf{3}} \cdot \sqrt{-(\mathbf{X}-\mathbf{Y}) \cdot(\mathbf{9} \cdot \mathbf{X}+\mathbf{3} \cdot \mathbf{Y})}}{\mathbf{3} \cdot \sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}}=\mathbf{0} \quad \mathbf{A O}-\frac{6 \cdot \sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}+\sqrt{\mathbf{3}} \cdot \sqrt{\mathbf{6} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{9} \cdot \mathbf{X}^{2}+\mathbf{3} \cdot \mathbf{Y}^{2}}}{6 \cdot \sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}}=\mathbf{0} \quad \mathbf{O X}-\frac{\sqrt{\mathbf{Y}-\mathbf{X}} \cdot(\mathbf{Y}-\mathbf{3} \cdot \mathbf{X})+\sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{3} \cdot \mathbf{X}^{2}+\mathbf{Y}^{2}}}{2 \cdot \mathbf{Y} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}}=\mathbf{0}\)

\(\mathbf{D X}-\frac{\left(\mathbf{3} \cdot \mathbf{X} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}-\mathbf{Y} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}-\sqrt{\mathbf{Y}} \cdot \sqrt{2 \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{3} \cdot \mathbf{X}^{2}+\mathbf{Y}^{2}}\right) \cdot \sqrt{((\mathbf{Y}-\mathbf{X})) \cdot(\mathbf{9} \cdot \mathbf{X}+\mathbf{3} \cdot \mathbf{Y})}}{\mathbf{2 \cdot \mathbf { Y }} \cdot \sqrt{\mathbf{Y}-\mathbf{X}} \cdot[\sqrt{\mathbf{3}} \cdot \sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}-\sqrt{((\mathbf{Y}-\mathbf{X})) \cdot(\mathbf{9} \cdot \mathbf{X}+\mathbf{3} \cdot \mathbf{Y})}]}=\mathbf{0}\)
\(\left.\mathbf{A D}-\frac{2 \cdot \sqrt{Y} \cdot \sqrt{Y-X} \cdot \sqrt{2 \cdot X \cdot Y-3 \cdot \mathbf{X}^{2}+Y^{2}} \cdot \sqrt{3}}{2 \cdot \sqrt{Y} \cdot\left(\sqrt{Y-X} \cdot \sqrt{6 \cdot X \cdot Y-9 \cdot X^{2}+3 \cdot Y^{2}}-\sqrt{3} \cdot \mathbf{Y}^{\frac{3}{2}}+\sqrt{3} \cdot \mathbf{X} \cdot \sqrt{Y}\right.}\right)=0\)
\(\mathbf{H T}-\frac{\sqrt{3 \cdot(\mathbf{Y}-\mathbf{X})}}{2 \cdot \sqrt{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{M T}-\frac{\mathbf{3} \cdot\left(2 \cdot \sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}-\sqrt{-3 \cdot \mathbf{X}^{2}+2 \cdot \mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}}\right)}{6 \cdot \sqrt{\mathbf{Y}} \cdot \sqrt{\mathbf{Y}-\mathbf{X}}}=\mathbf{0}\)
\(\mathbf{H M}-\frac{\sqrt{\sqrt{\mathbf{Y}-\mathbf{X}} \cdot \sqrt{2 \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{3} \cdot \mathbf{X}^{2}+\mathbf{Y}^{2}}+\mathbf{2} \cdot \mathbf{X} \cdot \sqrt{\mathbf{Y}}-\mathbf{2} \cdot \mathbf{Y}^{\frac{\mathbf{3}}{2}}}}{\sqrt{\sqrt{\mathbf{Y}} \cdot(\mathbf{X}-\mathbf{Y})}}=\mathbf{0}\)
\(J M-\frac{\sqrt{2 \cdot Y^{\frac{3}{2}}-2 \cdot X \cdot \sqrt{Y}-\sqrt{Y-X} \cdot \sqrt{2 \cdot X \cdot Y-3 \cdot X^{2}+Y^{2}}}}{2 \cdot \sqrt{\sqrt{Y} \cdot(Y-X)}}=0\)

022803
If \(D\) were between EF, then it would be the point sought for angle trisection. When it is moved between \(A\) and \(C\) the locus \(A D\) is formed. This locus is not straight, but it is fairly straight.

Even if a large segment is used from two points on \(A D\), say \(G H\) for an intercept, this drawing program claims that I have attained a trisection for any angle.

If a very small segment is taken, as below, tolerance is beyond the drawing program. What does it look like using Algebra? Trisection to within millionths, in some circumstances, may be tolerable.

As the different points of intersection is not actually viewable on the finer figure, the rougher figure will be used for drawings, but the equations will refer to the finer.

\section*{Fair Pencil Construction}

~~~~~~~
Unit.
AC:=1
Given.
Descriptions.
\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{2}
\]
\[
\mathbf{N}_{\mathbf{2}}:=\mathbf{4}
\]

AO \(:=\frac{\mathbf{A C}}{2}\)
\(\mathbf{A B}:=\frac{\mathbf{A C}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B}\)
\(\mathbf{B E}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}} \quad \mathrm{DE}:=\frac{\mathbf{B E}}{2}\)
\(\mathbf{B O}:=\mathbf{A O}-\mathbf{A B} \quad \mathbf{G O}:=\mathbf{A O}\)
\(\mathrm{DL}:=\frac{\mathrm{BO} \cdot \mathbf{D E}}{\mathbf{G O}-\mathbf{B E}} \quad \mathbf{E L}:=\sqrt{\mathrm{DL}^{2}+\mathrm{DE}^{2}}\)
\(\mathbf{L N}:=\mathbf{E L} \quad \mathbf{L M}:=\frac{\mathbf{L N}}{\mathbf{N}_{1}} \quad \mathbf{D M}:=\mathbf{D L}+\mathbf{L M} \quad \mathbf{E M}:=\sqrt{\mathbf{D E}^{2}+\mathbf{D M}^{2}} \quad\) EP \(:=\frac{\mathbf{E M} \cdot \mathbf{B E}}{\mathbf{D E}}\)
\(\mathbf{B P}:=\frac{\mathbf{D M} \cdot \mathbf{B E}}{\mathbf{D E}} \quad \mathbf{P O}:=\mathbf{B P}+\mathbf{B O}\)
\(\mathbf{E H}:=\frac{\mathrm{AO}^{2}+\mathbf{E P}^{2}-\mathbf{P O}^{2}}{-\mathbf{E P}}\)
\(\mathbf{H P}:=\mathbf{E P}+\mathbf{E H} \quad \mathbf{P R}:=\frac{\mathbf{B P} \cdot \mathbf{H P}}{\mathbf{E P}}\)

\(\mathbf{O R}:=\mathbf{P R}-\mathbf{P O} \quad \mathbf{B Q}:=\mathbf{B O}-\mathbf{O R}\)
\(\mathbf{H R}:=\frac{\mathbf{B E} \cdot \mathbf{H P}}{\mathbf{E P}} \quad \mathbf{B T}:=\frac{\mathbf{B Q} \cdot \mathbf{B E}}{\mathbf{H R}-\mathbf{B E}}\)
\(\mathbf{E T}:=\sqrt{\mathbf{B E}^{2}+\mathbf{B T}^{2}} \quad \mathbf{P T}:=\mathbf{B P}-\mathbf{B T} \quad \mathbf{P S}:=\frac{\mathbf{P T}^{2}+\mathbf{E P}^{2}-\mathbf{E T}^{2}}{2 \cdot \mathbf{E P}} \quad \mathbf{E S}:=\mathbf{E P}-\mathbf{P S} \quad \mathbf{S T}:=\sqrt{\mathbf{E T}^{2}-\mathbf{E S}^{2}}\)
\(\mathbf{K M}:=\frac{\mathbf{S T} \cdot \mathbf{E M}}{\mathbf{E S}} \quad\) EI \(:=\frac{\mathbf{E T}}{2} \quad\) EK \(:=\frac{\text { ET } \cdot \mathbf{E M}}{\text { ES }} \quad\) OT \(:=\mathbf{B T}+\mathbf{B O}\)


IW \(:=\) EIDI \(:=\sqrt{\mathbf{E I}^{2}-\mathbf{D E}^{2}} \quad\) DW \(:=\mathbf{D I}+\mathbf{I W}\)
\(\mathrm{EW}:=\sqrt{\mathbf{D E}^{2}+\mathbf{D W}^{2}} \quad \mathrm{EZ}:=\frac{\mathrm{EW} \cdot \mathrm{BE}}{\mathrm{DE}} \quad \mathrm{BZ}:=\frac{\mathrm{DW} \cdot \mathrm{BE}}{\mathrm{DE}}\)
\(\mathrm{OZ}:=\mathrm{BZ}+\mathrm{BO} \quad \mathrm{TW}:=\sqrt{\mathrm{ET}^{2}-\mathrm{EW}^{2}}\)
\(\mathbf{E X}:=\frac{\mathbf{A O}{ }^{2}+\mathbf{E Z} Z^{2}-\mathbf{O Z}}{}{ }^{2} \quad \mathrm{XZ}:=\mathbf{E Z}+\mathbf{E X}\)

\(\mathbf{Z a}:=\frac{\mathbf{B Z} \cdot \mathbf{X Z}}{\mathbf{E Z}} \quad \mathbf{O a}:=\mathbf{Z a}-\mathbf{O Z} \quad \mathbf{B b}:=\mathbf{B O}-\mathbf{O a}\)
\(\mathbf{X a}:=\frac{\mathbf{B E} \cdot \mathbf{X Z}}{\mathrm{EZ}} \quad \mathrm{BU}:=\frac{\mathrm{Bb} \cdot \mathbf{B E}}{\mathrm{Xa}-\mathbf{B E}} \quad \mathrm{EU}:=\sqrt{\mathrm{BE}^{2}+\mathrm{JUZ}}:=\mathrm{BZ}-\mathrm{BU} \quad \mathrm{Zc}:=\frac{\mathrm{UZ}^{2}+\mathrm{EZ}^{2}-\mathbf{E U}^{2}}{2 \cdot \mathbf{E Z}}\)
\(\mathbf{U c}:=\sqrt{\mathbf{U Z} \mathbf{Z}^{2}-\mathbf{Z} \mathbf{c}^{\mathbf{2}}} \quad \mathbf{V W}:=\frac{\mathbf{U c} \cdot \mathbf{E W}}{\mathbf{E Z}-\mathbf{Z c}} \quad \mathbf{O U}:=\mathbf{B U}+\mathbf{B O} \quad \mathbf{I M}:=\mathbf{D M}-\mathbf{D I} \quad \mathbf{I K}:=\mathbf{E K}-\mathbf{E I}\)
\(\mathrm{Ig}:=\frac{\mathrm{IK}}{} \mathbf{2}^{2}+\mathrm{IM}^{2}-\mathrm{KM}^{2} \quad \mathrm{EV}:=\frac{\mathrm{EU} \cdot \mathbf{E W}}{\mathrm{EZ}-\mathrm{IM}} \quad\) TU \(:=\mathbf{O T}-\mathbf{O U} \quad \mathrm{UV}:=\mathbf{E V}-\mathbf{E U}\)
\(\mathbf{T V}:=\mathbf{V W}-\mathbf{T W} \quad \mathbf{U h}:=\frac{\mathbf{U V}^{2}+\mathbf{T U}^{2}-\mathbf{T V}^{2}}{2 \cdot \mathbf{T U}} \quad \mathrm{Kg}:=\sqrt{\mathbf{I K}^{\mathbf{2}}-\mathbf{I g}^{2}}\)
\(\mathbf{K e}:=\mathbf{D E}-\mathbf{K g} \quad \mathbf{V h}:=\sqrt{\mathbf{U V}^{2}-\mathbf{U h}^{2}} \quad \mathbf{D g}:=\mathbf{D I}+\mathbf{I g} \quad \mathbf{B h}:=\mathbf{B U}+\mathbf{U h}\)
eh \(:=\mathbf{B h}-\mathbf{D g} \quad\) ef \(:=\frac{\mathbf{e h} \cdot \mathbf{K e}}{(\mathbf{K e}+\mathbf{V h})} \quad\) Bf \(:=\mathbf{D g}+\) ef \(\quad\) Of \(:=\mathbf{B f}+\mathbf{B O}\)
Om \(:=\frac{\mathbf{A O}^{2}}{2 \cdot \mathbf{O f}} \mathbf{E j}:=\frac{\mathbf{A O}^{2}}{\mathrm{Of}} \quad \mathbf{O m}-\frac{\mathrm{Ej}}{2}=0 \quad \mathrm{Ef}:=\sqrt{\mathrm{BE}^{2}+\mathrm{Bf}^{2}} \quad \mathrm{Ek}:=\frac{\mathrm{AO}^{2}+\mathrm{Ef}^{2}-\mathrm{Of}^{2}}{-\mathbf{E f}}\)
\(\mathbf{O m}-\frac{\mathbf{E k}}{2}=-2.639125 \times 10^{-12} \quad \frac{E k}{E j}=1\)


And so the
Trisection is
accurate to within a
few decimal places.
30 degree angle
shown.

CN
Unit.
Given.
\(\Delta:=22\)
\(\delta:=0\).. \(\Delta\) \(\mathbf{N}:=2\)
030503
Descriptions.
CF := \(1 \quad\) CO := \(\frac{\text { CF }}{2}\)
\(C D:=\frac{C O}{N} \quad\) DO \(:=C O-C D\)
\(\mathbf{D F}:=\mathbf{D O}+\mathbf{C} \mathbf{D G}:=\sqrt{\mathbf{C D} \cdot \mathbf{D F}}\)

\(\mathbf{E H}_{\mathbf{0}}:=\sqrt{(\mathbf{C O}+\mathbf{E O} \mathbf{0}) \cdot(\mathbf{C O}-\mathbf{E O} \mathbf{0})}\)

\section*{The Gravitating Answer}


How many itterations to go beyond 15 decimal places precision in trisection? The itteration is from AO where GH determines a new \(A\).


The displayed precision is for 15 decimal places. Trisection is beyond that. Since the physical world is quantitized, physical
trisection is possible.


One can see how rapidly each
recursion increases precision. And so for any required precision, one can trisect an angle grearter than that, relatively rapidly--espectially if one combine yesterdays plate with
today's.


030803
Descriptions.

\section*{Unit.}

DF:= 1 Given.
\(\mathbf{N}:=2\)

DO := \(\frac{\mathbf{D F}}{\mathbf{2}} \quad \mathbf{D x}:=\frac{\mathbf{D O}}{\mathbf{N}}\)
\(\mathbf{O x}:=\mathbf{D O}-\mathbf{D x} \quad \mathbf{F x}:=\mathbf{D F}-\mathbf{D x}\)
\(\mathbf{G x}:=\sqrt{\mathbf{D x} \cdot \mathbf{F x}} \quad \mathbf{A O}:=\frac{\mathbf{O x} \cdot \mathbf{D O}}{\mathbf{D O}-\mathbf{G x}}\)
HO := DO LO := \(\frac{\text { HO }}{2}\)
\(\mathbf{E x}:=\frac{\mathbf{O x} \cdot \mathbf{G x}}{\mathbf{G x}+\mathbf{D O}} \quad \mathbf{O b}:=\frac{\mathbf{L O}^{\mathbf{2}}}{\mathbf{A O}}\)
\(\mathrm{Lb}:=\sqrt{\mathrm{LO}^{2}-\mathbf{O b}^{2}} \quad \mathbf{a b}:=\frac{\mathbf{E x} \cdot \mathbf{L b}}{\mathbf{G x}}\)
\(\mathbf{A a}:=\mathbf{A O}+\mathbf{a b}-\mathbf{O b}\)
\(\mathbf{A x}:=\mathbf{A O}-\mathbf{O x} \quad \mathbf{A E}:=\mathbf{A x}+\mathbf{E x}\)
\(\mathbf{K c}:=\frac{\mathbf{L b} \cdot \mathbf{A E}}{\mathbf{A a}} \quad \mathbf{C c}:=\frac{\mathbf{A O} \cdot \mathbf{K c}}{\mathbf{D O}}\)
\(\mathrm{Ec}:=\frac{\mathbf{a b} \cdot \mathbf{A E}}{\mathrm{Aa}} \quad \mathbf{C E}:=\mathbf{C c}+\mathbf{E c} \quad \mathrm{AC}:=\mathbf{A E}-\mathbf{C E}\)
\(\mathbf{A B}:=\frac{\mathbf{A C}}{2}\)

\section*{Nothing Saved}

\section*{Is anything saved by}

\section*{starting from a much more} precise point for itteration demonstrated in 0305?


\(\mathbf{B O}_{\mathbf{0}}:=\mathbf{A O}-\mathbf{A B}\)
\(\mathrm{NO}_{0}:=\frac{\mathrm{DO}^{2}}{2 \mathrm{BO}_{\mathbf{0}}}\)
\(\mathbf{N x}_{\mathbf{0}}:=\mathbf{O x}-\mathbf{N O}_{\mathbf{0}}\)
\(\mathbf{H N}_{\mathbf{0}}:=\sqrt{\left(\mathbf{D O}+\mathbf{N O}_{\mathbf{0}}\right) \cdot\left(\mathbf{D O}-\mathbf{N O}_{\mathbf{0}}\right)}\)

\(\sim_{n=2}^{0}\)
\(\mathbf{B x}_{\Delta}:=\mathbf{B O}_{\Delta}-\mathbf{O x}\)
\(\mathbf{B G}:=\sqrt{\mathbf{G x}^{2}+\left(\mathrm{Bx}_{\Delta}\right)^{2}}\)
\(\mathbf{G H}:=\frac{\mathbf{D O}^{\mathbf{2}}+\mathbf{B G}^{\mathbf{2}}-\left(\mathbf{B O}_{\Delta}\right)^{\mathbf{2}}}{-\mathbf{B G}}\)
\(\mathrm{NO}_{\Delta}-\frac{\mathbf{G H}}{2}=\mathbf{0}\)
\begin{tabular}{l} 
NO \({ }_{\boldsymbol{\delta}}-\frac{\mathbf{G H}}{\mathbf{2}}=\) \\
\hline \begin{tabular}{|r}
-0.000733072475044 \\
\hline-0.000166174134206 \\
\hline-0.000037668619212 \\
\hline-0.000008538782769 \\
\hline-0.000001935584914 \\
\hline-0.000000438761479 \\
\hline-0.000000099459153 \\
\hline-0.000000022545559 \\
\hline-0.000000005110663 \\
\hline-0.000000001158493 \\
\hline-0.000000000262609 \\
\hline-0.000000000059529 \\
\hline-0.000000000013494 \\
\hline
\end{tabular} \\
\hline
\end{tabular}


Although one starts off in a
more precise spot, not
much in the way of steps
for 15 decimal place
precision is saved. The
steps are a waste of time.


031503

\section*{Descriptions.}

This figure may appear to many to be very counter intuitive, so I will show the construction step by step. I think way back then is the only other time I drew this. I have lost count on how many ways one can actually draw a figure demonstrating trisection. Why the so called intellectuals still claim it is impossible is way beyond me and my talent.
\(X\) will range between the center and first half of that segment giving one 30 working degrees.

From that point I will draw the second circle to the center of the first which will produce a second point of intersection with the diameter. From that point I will draw two more circles to produce the line that terminates on the base like. I immediately have my square root point of the figure and I have the point

I will construct two lines with opposing endpoints which will produce a point which is suspended in the air it seems.

Trisection and Square Roots


With that skinny long \(T\), we are going to make an equilateral triangle.


That equilateral triangle is the triangle in a figure that demonstrates angle trisection.

And as you have seen for yourself, it just fell out of the sky.

I will not make another plate with all the dressing. One may say, this is just lunch to go.

And so, angle trisection is actually a well documented part of geometry, all one has to do is find the write ups at the end of their instrument of choice.

\(\mathrm{m} \angle \mathrm{A} 1 \mathrm{~B}=68.93920^{\circ}\) \(\mathrm{m} \angle \mathrm{C} 1 \mathrm{~A}=22.97973^{\circ}\) \(\mathrm{m} \angle \mathrm{C} 1 \mathrm{D}=22.97973^{\circ}\) \(\mathrm{m} \angle \mathrm{D} 1 \mathrm{~B}=22.97973^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{A} 1 \mathrm{~B}}{\mathrm{~m} \angle \mathrm{C1A}}\)
m \(\angle \mathrm{C} 1 \mathrm{~A}\)
m \(\angle \mathrm{BA} 1=21.06080^{\circ}\) \(\mathrm{m} \angle 1 \mathrm{AC}=7.02027^{\circ}\) m \(\angle \mathrm{CAF}=7.02027^{\circ}\) \(\mathrm{m} \angle \mathrm{FAB}=7.02027^{\circ}\) \(\underline{m} \angle \mathrm{BA} 1\) \(\mathbf{m} \angle 1 \mathrm{AC}=3.00000\)
\(\sim_{n \rightarrow 2}^{0}\)
031503
Descriptions.

Unit.
BO := 1
Given.
\(\mathbf{Y}:=\mathbf{2 0}\)

AB \(:=2 \cdot \mathbf{B O} \quad\) NO \(:=\frac{\mathbf{X}}{2 \cdot \mathbf{Y}} \quad\) EO \(:=\) BO \(\quad\) AO \(:=\mathbf{B O}\)
FO \(:=\frac{\text { EO }}{2} \quad\) GO \(:=\frac{\text { NO }}{2} \quad\) FG \(:=\sqrt{F^{2}-\text { GO }^{2}}\)
\(\mathrm{CO}:=\frac{\mathbf{F O}^{\mathbf{2}}}{\mathbf{G O}} \quad \mathrm{CO}=1.818182 \quad \mathrm{AC}:=\mathrm{AO}+\mathrm{CO}\)
\(\mathbf{O Y}:=2 \cdot \mathbf{N O} \quad \mathbf{H P}:=\mathbf{A B} \quad \mathbf{O P}:=\sqrt{\mathbf{A B}^{2}-\mathbf{B O}^{2}}\)
\(\mathbf{O P}=1.732051 \quad \mathrm{MP}:=\sqrt{A B^{2}-\mathrm{OY}^{2}} \quad \mathrm{MP}=1.922888\)
MO := MP - OP MO \(=0.190838 \quad\) HJ \(:=2 \cdot\) MO
\(\mathbf{C Y}:=\mathbf{C O}-\mathbf{O Y} \quad \frac{\mathbf{A C}}{\mathbf{C Y}}=\mathbf{2 . 2 2 2 2 2 2} \quad \mathbf{A Y}:=\mathbf{A O}+\mathbf{O Y}\)
\(\frac{A C}{O Y}=5.123967 \quad \frac{A B}{A Y}=1.290323\) etc.

\section*{Definitions.}
\(A B-2=0 \quad\) NO \(-\frac{X}{2 \cdot Y}=0 \quad\) EO \(-1=0 \quad\) AO \(-1=0 \quad\) FO \(-\frac{1}{2}=0\)

\(\frac{\mathrm{XY}}{2}-\mathrm{N}=0.00000\)
\(C=1.81818\)
\(O P=-1.73205\) MP \(=1.92289\)
\(\mathbf{G O}-\frac{X}{4 \cdot Y}=0 \quad F G-\frac{\sqrt{4 \cdot Y^{2}-X^{2}}}{4 \cdot Y}=0 \quad \mathbf{C O}-\frac{Y}{X}=0 \quad A C-\frac{X+Y}{X}=0\)
\(O Y-\frac{X}{Y}=0 \quad H P-2=0 \quad O P-\sqrt{3}=0 \quad M P-\frac{\sqrt{4 \cdot Y^{2}-X^{2}}}{Y}=0 \quad M O-\frac{\sqrt{4 \cdot Y^{2}-X^{2}}-\sqrt{3} \cdot Y}{Y}=0 \quad H J-2 \cdot \frac{\sqrt{4 \cdot Y^{2}-X^{2}}-\sqrt{3} \cdot Y^{\prime}}{Y}=0\)
\(\mathbf{C Y}-\frac{\mathbf{Y}^{2}-\mathbf{X}^{2}}{\mathbf{X} \cdot \mathbf{Y}}=0 \quad \mathbf{A Y}-\frac{\mathbf{X}+\mathbf{Y}}{\mathbf{Y}}=0 \quad \frac{\mathbf{A C}}{\mathbf{C Y}}-\frac{\mathbf{Y}}{(\mathbf{Y}-\mathbf{X})}=0 \quad \frac{\mathbf{A C}}{\mathbf{O Y}}-\frac{\mathbf{Y} \cdot(\mathbf{X}+\mathbf{Y})}{\mathbf{X}^{2}}=0 \quad \frac{\mathbf{A B}}{\mathbf{A Y}}-\frac{2 \cdot \mathbf{Y}}{\mathbf{X}+\mathbf{Y}}=0\)
\(\sim_{n=2}^{0}\)
032303

\section*{Descriptions.}
\(\mathbf{A N}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A D}:=\mathbf{A B} \quad \mathbf{D N}:=\sqrt{\mathbf{A D}^{2}+\mathbf{A N}^{2}} \quad \mathbf{C K}:=\frac{\mathbf{A N} \cdot \mathbf{2} \cdot \mathbf{A D}}{\mathbf{D N}}\)
KO \(:=\frac{(\mathbf{A N} \cdot \mathbf{C K})}{\text { DN }} \quad \mathbf{C O}:=\frac{\text { AD } \cdot \text { KO }}{\text { AN }} \quad\) AP \(:=\mathbf{C O} \quad \mathbf{A O}:=A B-K O\)
\(\mathbf{A K}:=\sqrt{\mathbf{3}} \quad \mathbf{H N}:=\frac{\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{A O}}{\mathbf{A K}+\mathbf{A O}} \quad \mathbf{H N}=\mathbf{0 . 5 8 9 6 4 4}\)
\(\mathbf{A G}:=\frac{\mathbf{C O} \cdot \mathbf{A K}}{\mathbf{A K}+\mathbf{A O}} \quad \mathbf{A G}=\mathbf{0 . 4 8 6 3 3} \quad\) etc.

\section*{Definitions.}
\(\mathbf{A N}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A D}-1=0 \quad \mathbf{D N}-\frac{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}{\mathbf{Y}}=0 \quad \mathbf{C K}-\frac{2 \cdot \mathbf{X}}{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}=0\)
\(K O-\frac{2 \cdot X^{2}}{X^{2}+Y^{2}}=0 \quad \operatorname{CO}-\frac{2 \cdot X \cdot Y}{X^{2}+Y^{2}}=0\)
\(A P-\frac{2 \cdot X \cdot Y}{X^{2}+Y^{2}}=0\)
\(A O-\frac{Y^{2}-X^{2}}{X^{2}+Y^{2}}=0 \quad A K-\sqrt{3}=0 \quad H N-\frac{2 \cdot\left(Y^{2}-X^{2}\right)}{\left(X^{2}+Y^{2}\right) \cdot(\sqrt{3}-1)+2 \cdot Y^{2}}=0\)
\(\mathbf{A G}-\frac{2 \cdot \sqrt{3} \cdot \mathbf{X} \cdot \mathbf{Y}}{\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right) \cdot(\sqrt{3}-1)+2 \cdot \mathbf{Y}^{2}}=0\)
etc.

\section*{Figure in a Figure.}

AB:= 1
Given.
\(\mathbf{Y}:=20\)



\section*{Four Siblings}

\section*{When looking for the equalateral triangle which} produces trisection in a right angle, we may come to meet its four lazy siblings.
\[
\frac{4 \cdot \mathbf{Y} \cdot \sqrt{\mathbf{X} \cdot(\mathrm{Y}-\mathrm{X})}}{\mathrm{Y} \cdot(2 \cdot \sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathrm{X})}+\sqrt{3} \cdot \mathbf{Y})}-\mathrm{JK}=0.00000
\]



Unit. AB :=1

\section*{Descriptions.}
\(\mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{2}} \quad \mathbf{D F}:=\sqrt{\mathbf{A D} \cdot(\mathbf{2} \cdot \mathbf{A B}-\mathbf{A D}) \quad \mathbf{B H}:=\mathbf{A D} \cdot \frac{\mathbf{A B}}{\mathbf{D F}}, ~}\) \(\mathbf{A H}:=\mathbf{A B}+\mathbf{B H} \quad \mathbf{A E}:=\frac{\mathbf{A B}^{2}}{\mathbf{A H}} \quad \mathbf{B E}:=\mathbf{A B}-\mathbf{A E} \quad \mathbf{E G}:=\mathbf{A E}\) \(\mathbf{B G}:=\sqrt{\mathbf{E G}^{2}+\mathbf{B E}^{2}}\)

Definitions.
\[
\begin{aligned}
& \mathbf{A D}-\frac{1}{2}=\mathbf{0} \\
& \mathbf{D F}-\frac{\sqrt{3}}{\sqrt{4}}=\mathbf{0} \quad \mathbf{B H}-\frac{\sqrt{3}}{3}=\mathbf{0} \\
& \mathbf{A H}-\left(\frac{\sqrt{3}}{3}+\mathbf{1}\right)=\mathbf{0} \\
& \mathbf{B E}-\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right)=\mathbf{A E}-\left(\frac{3}{2}-\frac{\sqrt{3}}{2}\right)=\mathbf{0} \\
& \mathbf{B G}-\sqrt{4-2 \cdot \sqrt{3}}=\mathbf{0}
\end{aligned}
\]

UB:=1 \(\begin{array}{ll}\text { Unit. } & A B:=15 \\ \text { Given. } & x:=20\end{array}\)
Descriptions.
\(\mathbf{A C}:=\mathbf{2} \cdot \mathbf{A B} \quad \mathbf{A M}:=\frac{\mathbf{A B}}{2} \quad \mathbf{C M}:=\mathbf{A C}-\mathbf{A M} \quad \mathbf{M N}:=\sqrt{\mathbf{A M} \cdot \mathbf{C M}}\)
\(\mathbf{B F}:=\mathbf{2} \cdot \mathbf{M N} \quad \mathbf{A X}:=\mathbf{A C} \cdot \frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{C X}:=\mathbf{A C}-\mathbf{A X} \quad \mathbf{D X}:=\sqrt{\mathbf{A X} \cdot \mathbf{C X}}\)
\(\mathbf{B X}:=\mathbf{A X}-\mathbf{A B} \quad \mathbf{B G}:=\mathbf{B X} \cdot \frac{\mathbf{B F}}{\mathbf{B F}+\mathbf{D X}} \quad \mathbf{G H}:=\mathbf{D X} \cdot \frac{\mathbf{B G}}{\mathbf{B X}}\)
\(\mathbf{J K}:=\mathbf{A C} \cdot \frac{\mathbf{D X}-\mathbf{G H}}{\mathbf{D X}}\)

Definitions.
\(A C-2=0 \quad A M-\frac{1}{2}=0 \quad C M-3 \cdot 2^{-1}=0\)
\(\mathbf{M N}-\sqrt{\left(3 \cdot 2^{-2}\right)}=\mathbf{0} \quad \mathbf{B F}-\sqrt{\mathbf{3}}=\mathbf{0} \quad \mathbf{A X}-\mathbf{2} \cdot \frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{C X}-\frac{2 \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{D X}-\frac{2 \cdot \sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B X}-\frac{2 \cdot \mathbf{X}-\mathbf{Y}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{B G}-\frac{\sqrt{\mathbf{3} \cdot(\mathbf{2} \cdot \mathbf{X}-\mathbf{Y})}}{2 \cdot \sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}+\sqrt{\mathbf{3} \cdot \mathbf{Y}}}=\mathbf{0} \quad \mathbf{G H}-\frac{2 \cdot \sqrt{\mathbf{3}} \cdot \sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}}{2 \cdot \sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}+\sqrt{\mathbf{3} \cdot \mathbf{Y}}}=\mathbf{0}\)
\(\mathbf{J K}-\frac{4 \cdot \mathbf{Y} \cdot \sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}}{\mathbf{Y} \cdot[2 \cdot \sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}+\sqrt{\mathbf{3}} \cdot \mathbf{Y}]}=\mathbf{0}\)


\section*{When looking for the equalateral triangle which} produces trisection in a right angle, we may come to meet its four lazy siblings.

\section*{Four Siblings Plate A}
\begin{tabular}{c} 
\\
\(\mathbf{M}\) \\
\hline
\end{tabular}

\section*{Four Siblings Plate B}

Descriptions.
\(\mathbf{A C}:=\mathbf{2} \cdot \mathbf{A B} \quad \mathbf{A X}:=\mathbf{A C} \cdot \frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B X}:=\mathbf{A X}-\mathbf{A B}\)
\(\mathbf{G X}:=\sqrt{\mathbf{A B}^{\mathbf{2}}+\mathbf{B X}^{\mathbf{2}}} \quad \mathbf{D F}:=\mathbf{B X} \cdot \frac{\mathbf{A C}}{\mathbf{G X}} \quad \mathbf{F H}:=\mathbf{B X} \cdot \frac{\mathbf{D F}}{\mathbf{G X}}\)
\(\mathbf{B H}:=\mathbf{A B}-\mathbf{F H} \quad \mathbf{D X}:=\frac{\mathbf{G X} \cdot \mathbf{B H}}{\mathbf{A B}}\)
\(\mathbf{J K}:=\mathbf{D X} \cdot \sqrt{4-2 \cdot \sqrt{3}}\)

\section*{Definitions.}
\(A C-2=0\)
\[
\mathbf{A X}-2 \cdot \frac{\mathbf{X}}{\mathbf{Y}}=0 \quad \mathbf{B X}-\frac{2 \cdot \mathbf{X}-\mathbf{Y}}{\mathbf{Y}}=\mathbf{0}
\]
\(G X-\frac{\sqrt{2 \cdot\left(2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}\right)}}{Y}=0\)
\(D F-\frac{\sqrt{2} \cdot(2 \cdot X-Y)}{\sqrt{2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}}}=0 \quad F H-\frac{(2 \cdot X-Y)^{2}}{2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}}=0\)
\(B H-\frac{2 \cdot X \cdot(Y-X)}{2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}}=0 \quad D X-\frac{2 \cdot \sqrt{2} \cdot \mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y} \cdot \sqrt{2 \cdot \mathbf{X}^{2}-\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}}}=0\)
\(J K-\frac{4 \cdot \sqrt{2-\sqrt{3}} \cdot X \cdot(Y-X)}{Y \cdot \sqrt{2 \cdot X^{2}-2 \cdot X \cdot Y+Y^{2}}}=0\)

CNTM
Unit. \(\mathbf{A B}:=1\) Given.
X := 13
\(Y:=18\)
Descriptions.
\(\mathbf{A C}:=2 \cdot \mathbf{A B} \quad \mathbf{A E}:=\mathbf{A C} \quad \mathbf{B E}:=\sqrt{3} \quad \mathbf{A X}:=\mathbf{A C} \cdot \frac{\mathbf{X}}{\mathbf{Y}}\)
\(\mathbf{B X}:=\mathbf{A X}-\mathbf{A B} \quad \mathbf{E X}:=\sqrt{\mathbf{B E}^{2}+\mathbf{B X}^{2}} \quad \mathbf{B N}:=\mathbf{B E} \cdot \frac{\mathbf{B X}}{\mathbf{E X}}\)
\(\mathbf{N X}:=\frac{\mathbf{B X}^{2}}{\mathbf{E X}} \quad\) NO \(:=\sqrt{\mathbf{A B}^{2}-\mathbf{B N}^{2}} \quad \mathbf{D E}:=\mathbf{E X}+\mathbf{N O}-\mathbf{N X}\)
\(\mathbf{D X}:=\mathbf{D E}-\mathbf{E X} \quad \mathbf{D G}:=\mathbf{B E} \cdot \frac{\mathbf{D X}}{\mathbf{E X}} \quad \mathbf{B G}:=\sqrt{\mathbf{A B}^{\mathbf{2}}-\mathbf{D G}^{\mathbf{2}}}\)
\(\mathbf{H X}:=\mathbf{A E}-\mathbf{E X} \quad \mathbf{F X}:=\mathbf{B X} \cdot \frac{\mathbf{H X}}{\mathbf{E X}} \quad \mathbf{B F}:=\mathbf{B X}+\mathbf{F X}\)
\(\mathbf{B M}:=\mathbf{A B} \cdot \frac{\mathbf{B F}}{\mathbf{B G}} \quad \mathbf{D M}:=\mathbf{A B}-\mathbf{B M} \quad \mathbf{J K}:=\mathbf{2} \cdot \mathbf{D M}\)

Definitions.

\section*{Four Siblings Plate C}
\[
2 \cdot \frac{\sqrt{\left(5 \cdot Y^{2}-4 \cdot X^{2}\right)+3 \cdot Y \cdot \sqrt{\left(8 \cdot X \cdot Y-8 \cdot X^{2}\right)+Y^{2}}+4 \cdot X \cdot Y-2} \cdot \sqrt{2} \cdot \sqrt{\left(X^{2} \cdot X \cdot Y\right)+Y^{2}}}{\sqrt{\left(5 \cdot Y^{2}-4 \cdot X^{2}\right)+3 \cdot Y \cdot \sqrt{\left(8 \cdot X \cdot Y-8 \cdot X^{2}\right)+Y^{2}}+4 \cdot X \cdot Y}}-J K=0.00000
\]
\(\mathbf{A C}-2=0 \quad \mathbf{A E}-2=0 \quad \mathbf{B E}-\sqrt{\mathbf{3}}=0 \quad \mathbf{A X}-2 \cdot \frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0}\)
\(B X-\frac{2 \cdot X-Y}{Y}=0 \quad E X-\frac{2 \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}{Y}=0 \quad B N-\frac{\sqrt{3} \cdot(2 \cdot X-Y)}{2 \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}=0\)
\(N X-\frac{(2 \cdot X-Y)^{2}}{2 \cdot Y \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}=0 \quad N O-\frac{\sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}}{2 \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}=0\)
\(D E-\frac{3 \cdot Y+\sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}}{2 \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}=0 \quad D X-\frac{Y \cdot \sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}-Y^{2}-4 \cdot X^{2}+4 \cdot X \cdot Y}{2 \cdot Y \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}=0\)
\(c^{2} \cos ^{3} e^{3}\)
\(\mathbf{D G}-\frac{\sqrt{3} \cdot\left(\mathbf{Y} \cdot \sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+\mathbf{Y}^{2}}-\mathbf{Y}^{2}-4 \cdot \mathbf{X}^{2}+4 \cdot \mathbf{X} \cdot \mathbf{Y}\right)}{4 \cdot\left(\mathbf{X}^{2}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}\right)}=0\)
\(\mathbf{H X}-\frac{2 \cdot\left(\mathbf{Y}-\sqrt{\mathbf{X}^{2}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}}\right)}{\mathbf{Y}}=\mathbf{0}\)
\(B G-\frac{(2 \cdot X-Y) \cdot \sqrt{5 \cdot Y^{2}-4 \cdot X^{2}+3 \cdot Y \cdot \sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}+4 \cdot X \cdot Y}}{2 \cdot \sqrt{2} \cdot\left(X^{2}-X \cdot Y+Y^{2}\right)}=0\)
\(\mathbf{F X}-\frac{(2 \cdot \mathbf{X}-\mathbf{Y}) \cdot\left(\mathbf{Y}-\sqrt{\mathbf{X}^{2}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}}\right)}{\mathbf{Y} \cdot \sqrt{\mathbf{X}^{2}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}}}=\mathbf{0} \quad \mathbf{B F}-\frac{2 \cdot \mathbf{X}-\mathbf{Y}}{\sqrt{\mathbf{X}^{2}-\mathbf{X} \cdot \mathbf{Y}+\mathbf{Y}^{2}}}=\mathbf{0}\)
\(B M-\frac{2 \cdot \sqrt{2} \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}{\sqrt{5 \cdot Y^{2}-4 \cdot X^{2}+3 \cdot Y \cdot \sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}+4 \cdot X \cdot Y}}=0\)
\(D M-\frac{\sqrt{5 \cdot Y^{2}-4 \cdot X^{2}+3 \cdot Y \cdot \sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}+4 \cdot X \cdot Y}-2 \cdot \sqrt{2} \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}{\sqrt{5 \cdot Y^{2}-4 \cdot X^{2}+3 \cdot Y \cdot \sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}+4 \cdot X \cdot Y}}=0\)
\(J K-2 \cdot \frac{\sqrt{5 \cdot Y^{2}-4 \cdot X^{2}+3 \cdot Y \cdot \sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}+4 \cdot X \cdot Y}-2 \cdot \sqrt{2} \cdot \sqrt{X^{2}-X \cdot Y+Y^{2}}}{\sqrt{5 \cdot Y^{2}-4 \cdot X^{2}+3 \cdot Y \cdot \sqrt{8 \cdot X \cdot Y-8 \cdot X^{2}+Y^{2}}+4 \cdot X \cdot Y}}=0\)


Unit \(=1.00000\) \(\mathrm{XY}=\mathbf{0 . 2 2 2 2 2}\) \(X=4.00000\) \(\mathrm{Y}=18.00000\)


Unit. Given.

040903

\section*{Descriptions.}

Definitions.
So called Fractal Geometry is concerned with the recursion of the perceptible, however it does not compare much with the recursion of an intelligible. And so, one may find, in the recursion a hidden message, from the impossible to packman, it is all just playing one tune, binary recursion is binary recursion.

\section*{PacMan}

Animation writeup



Unit.
Given.
Descriptions. Definitions.

Lardner was wholly unaware that the problem actually descibes an ellipse which means that it is not indeterminate at all.

\section*{An Indeterminate Problem Reduced}

\section*{To An Equation}

Page 5 of A Treatise on Algebraic Geometry by Rev. Dionysius Lardner, 1831

Given the base \(A B\), and the sum of the sides ( \(A C\) and \(B C\) ) of a
triangle, to find the vertex ( \(C\) ).
Let \(A B=a, A C=y\), and \(C B=x\), and the the excess of the sum of the sides above the base be \(d\).
\(\therefore y+x=a+b\).
Any values of \(y\) and \(x\), which fulfill the conditions of this
equation, represent the sides of the triangle, whose vertex solves the problem.

Perhaps this problem is indeterminate is because the author did not have a clue that a point ( C ) is not a magnitude. How does one find a non-magnitude from magnitues? Only by establishing a co-ordinate system.

\section*{09/11/97 The Ellipse}

Given that the major axis is \(A D\) and the minor axis \(E F\), derive the formula for the radius CG, the height \(B G\), and the foci axis MN.

\[
\frac{\sqrt{4 \cdot N_{2}-4+N_{2}}{ }^{2} \cdot N_{1}{ }^{2}-4 \cdot N_{2} \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{2}}{2 \cdot N_{1} \cdot N_{2}}-C G=0 \quad \frac{\sqrt{N_{2}-1}}{\left(N_{2} \cdot N_{1}\right)}-B G=0 \quad \frac{\sqrt{\left(N_{1}{ }^{2}-1\right)}}{N_{1}}-M N=0
\]


Unit.
Given. \(\quad \mathbf{N}:=1.454\)
AD := \(\mathbf{3 . 0 7 3}\)
120103A
Descriptions.
\(\mathbf{D H}:=\mathbf{A D} \quad \mathbf{B D}:=\frac{\mathbf{A D}}{\mathbf{N}} \quad \mathbf{B H}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DH}^{2}} \quad \mathrm{HI}:=\frac{\mathbf{B H}}{2}\)
\(\mathbf{E H}:=\frac{\mathbf{B H} \cdot \mathbf{H I}}{\mathbf{D H}} \quad \mathbf{D E}:=\mathbf{D H}-\mathbf{E H} \quad\) DF \(:=\mathbf{2} \cdot \mathbf{D E} \quad\) FH \(:=\mathbf{D H}-\mathbf{D F}\)
HJ \(:=\frac{\mathbf{D H} \cdot \mathbf{F H}}{\mathbf{B H}} \quad \mathbf{G J}:=\frac{\mathbf{B D} \cdot \mathbf{H J}}{\mathbf{B H}} \quad \mathbf{G H}:=\frac{\mathbf{D H} \cdot \mathbf{H J}}{\mathbf{B H}} \quad \mathbf{D G}:=\mathbf{D H}-\mathbf{G H}\)
\(\mathbf{C D}:=\mathbf{G J} \quad \mathbf{B C}:=\mathbf{B D}-\mathbf{C D} \quad \frac{\mathbf{D G}}{\mathbf{B C}}-\frac{\mathbf{B C}}{\mathbf{G H}}=\mathbf{0} \quad \frac{\mathbf{B C}}{\mathbf{G H}}-\frac{\mathbf{G H}}{\mathbf{G} \mathbf{J}}=\mathbf{0}\)
\(\left(\frac{D G}{G J}\right)^{\left(\frac{1}{3}\right)}-\frac{D G}{B C}=0 \quad \frac{A D}{N^{3}+N}-G J=0 \quad \frac{A D \cdot N^{2}}{N^{2}+1}-D G=0\)

\(D G+D G^{\left(\frac{1}{3}\right)} \cdot G J^{\left(\frac{2}{3}\right)}-A D=0 \quad \frac{D G \cdot N^{2}+D G}{N^{2}}-A D=0\)
\(N-\left(\frac{D G}{G J}\right)^{\left(\frac{1}{3}\right)}=0 \quad \frac{A D}{N}=2.11348 \quad \frac{D G+\mathbf{D G}^{\left(\frac{1}{3}\right)} \cdot G J^{\left(\frac{2}{3}\right)}}{\left(\frac{D G}{G J}\right)^{\left(\frac{1}{3}\right)}}=2.11348\)
\[
D G{ }^{\left(\frac{2}{3}\right)} \cdot G J J^{\left(\frac{1}{3}\right)}+G J=2.11348
\]
\(A D=2.45833\) in. \(A B=0.76777 \mathrm{in}\). \(D B=1.69056 \mathrm{in}\). \(\frac{\mathrm{AD}}{\mathrm{DB}}=1.45415\)
\(B D=1.69056 \mathrm{in}\). \(\mathrm{EH}=1.81046 \mathrm{in}\). \(\mathrm{HJ}=0.95793 \mathrm{in}\). DG = 1.66903 in . GJ \(=0.54280 \mathrm{in}\). \(\frac{\mathrm{DG}}{\mathrm{GJ}}=3.07487\)


120103B
Descriptions.
\(\mathbf{D H}:=\mathbf{A D} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B}\)
\[
\mathrm{BH}:=\sqrt{\mathbf{B D}^{2}+\mathrm{DH}^{2}} \quad \mathbf{H I}:=\frac{\mathbf{B H}}{2} \quad \mathbf{E H}:=\frac{\mathbf{B H} \cdot \mathbf{H I}}{\mathbf{D H}} \quad \mathbf{D E}:=\mathrm{DH}-\mathbf{E H}
\] DF \(:=\mathbf{2} \cdot \mathbf{D E} \quad\) FH \(:=\mathbf{D H}-\mathbf{D F} \quad\) HJ \(:=\frac{\mathbf{D H} \cdot \mathbf{F H}}{\mathbf{B H}} \quad\) GJ \(:=\frac{\mathbf{B D} \cdot \mathbf{H J}}{\mathbf{B H}}\) \(\mathbf{G H}:=\frac{\mathbf{D H} \cdot \mathbf{H J}}{\mathbf{B H}} \quad \mathbf{D G}:=\mathbf{D H}-\mathbf{G H} \quad \mathbf{C D}:=\mathbf{G J} \quad \mathbf{B C}:=\mathbf{B D}-\mathbf{C D}\) \(\frac{\mathbf{D G}}{\mathbf{B C}}-\frac{\mathbf{B C}}{\mathbf{G H}}=\mathbf{0} \quad \frac{\mathbf{B C}}{\mathbf{G H}}-\frac{\mathbf{G H}}{\mathbf{G} \mathbf{J}}=\mathbf{0} \quad\left(\frac{\mathbf{D G}}{\mathbf{G} J}\right)^{\left(\frac{1}{3}\right)}-\frac{\mathbf{D G}}{\mathbf{B C}}=0\) \(\frac{A D^{3}}{\left(2 \cdot A D^{2}-2 \cdot A D \cdot A B+A B^{2}\right)}-D G=0 \quad\left(\frac{A D}{B D}\right)^{3}-\frac{D G}{C D}=0\)
\(\frac{(A D-A B)^{3}}{A B^{2}-2 \cdot A B \cdot A D+2 \cdot A D^{2}}-C D=0 \quad \frac{A D^{3}}{(A D-A B)^{3}}=3.076703\)
\(\frac{\mathbf{D G}}{\mathbf{C D}}=3.076703 \quad\left(\frac{\mathbf{A D}}{\mathbf{A D}-\mathbf{A B}}\right)^{3}-\frac{\mathbf{D G}}{\mathbf{C D}}=0\)



Unit.
Given. \(\quad \mathbf{X}:=13\)
120103C

\section*{Descriptions.}
\(A B:=\frac{\mathbf{Y}}{\mathbf{Y}} \quad \mathbf{A C}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B C}:=\sqrt{\mathbf{A B}^{2}+\mathrm{AC}^{2}} \quad \mathbf{B C}=1.192686\)
\(\begin{array}{llll}\mathbf{B D}:=\frac{\mathbf{B C}}{2} \quad \mathrm{DE}:=\frac{\mathbf{A C} \cdot \mathbf{B D}}{\mathbf{A B}} & \mathrm{BE}:=\frac{\mathrm{BC} \cdot \mathrm{BD}}{\mathrm{AB}} & \mathrm{BE}=0.71125 \\ \mathbf{A E}:=\mathbf{A B}-\mathbf{B E} \quad \mathrm{AF}:=\mathbf{2} \cdot \mathbf{A E} & \mathbf{B F}:=\mathbf{A B}-\mathbf{A F} & \mathbf{B G}:=\frac{\mathbf{A B} \cdot \mathbf{B F}}{\mathbf{B C}}\end{array}\)
\(\mathbf{B G}=\mathbf{0 . 3 5 4 2 4 2} \quad \mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B G}}{\mathbf{B C}} \quad \mathbf{B H}=\mathbf{0 . 2 9 7 0 1 2}\)
\(\mathbf{G H}:=\frac{\mathbf{A C} \cdot \mathbf{B G}}{\mathbf{B C}} \quad \mathbf{G H}=\mathbf{0 . 1 9 3 0 5 8} \quad \mathbf{A H}:=\mathbf{A B}-\mathbf{B H}\)
\(\mathbf{A J}:=\mathbf{A H}+\mathbf{G H} \quad \mathbf{H M}:=\sqrt{\mathbf{A H} \cdot \mathbf{G H}} \quad \mathbf{H M}=\mathbf{0 . 3 6 8 3 9 8}\)
AO := HM AP := HM \(\quad \mathbf{N P}:=\mathbf{H M} \quad \mathbf{A R}:=\mathbf{G H} \quad\) GR \(:=\mathbf{A H}\)
APNO := AP \({ }^{\mathbf{2}}\) APNO \(=\mathbf{0 . 1 3 5 7 1 7}\) AHGR \(:=\) AH \(\cdot \mathbf{G H}\) AHGR \(=\mathbf{0 . 1 3 5 7 1 7}\)
APNO - AHGR \(=0 \quad \mathbf{C R}:=\mathbf{A C}-\mathbf{A R} \quad \frac{\mathbf{C R}}{\mathbf{A H}}=0.65 \quad \frac{\mathbf{G H}}{\mathbf{B H}}=\mathbf{0 . 6 5}\)
\(\left(\frac{\mathbf{G H}}{\mathbf{A H}}\right)^{\frac{1}{3}}-\frac{\mathbf{G H}}{\mathbf{B H}}=0 \quad\left(\frac{\mathbf{G H}}{\mathbf{A P}}\right)^{2}-\frac{\mathbf{G H}}{\mathbf{A H}}=0\)


Definitions.
\(A B-1=0 \quad A C-\frac{X}{Y}=0 \quad B C-\frac{\sqrt{X^{2}+Y^{2}}}{Y}=0 \quad B D-\frac{\sqrt{X^{2}+Y^{2}}}{2 \cdot Y}=0\) \(\mathrm{DE}-\frac{\mathrm{X} \cdot \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}{2 \cdot \mathbf{Y}^{2}}=0 \quad \mathrm{BE}-\frac{\mathbf{X}^{2}+\mathbf{Y}^{2}}{2 \cdot \mathbf{Y}^{2}}=0 \quad \mathrm{AE}-\frac{(\mathbf{Y}-X) \cdot(\mathbf{X}+\mathbf{Y})}{2 \cdot \mathbf{Y}^{2}}=0\) \(A F-\frac{(Y-X) \cdot(X+Y)}{\mathbf{Y}^{2}}=0 \quad B F-\frac{X^{2}}{\mathbf{Y}^{2}}=0 \quad B G-\frac{X^{2}}{Y \cdot \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}=0\) \(B H-\frac{X^{2}}{X^{2}+Y^{2}}=0 \quad G H-\frac{X^{3}}{Y \cdot\left(X^{2}+Y^{2}\right)}=0 \quad A H-\frac{Y^{2}}{X^{2}+Y^{2}}=0\) \(A J-\frac{(X+Y) \cdot\left(\mathbf{X}^{2}-X \cdot Y+Y^{2}\right)}{Y \cdot\left(X^{2}+Y^{2}\right)}=0 \quad \mathbf{H M}-\frac{\sqrt{X^{3} \cdot \mathbf{Y}}}{\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}=0\) \(A O-\frac{\sqrt{X^{3} \cdot Y}}{\left(X^{2}+Y^{2}\right)}=0 \quad A P-\frac{\sqrt{X^{3} \cdot Y}}{\left(X^{2}+Y^{2}\right)}=0 \quad N P-\frac{\sqrt{X^{3} \cdot Y}}{\left(X^{2}+Y^{2}\right)}=0\) \(A R-\frac{X^{3}}{Y \cdot\left(X^{2}+Y^{2}\right)}=0 \quad G R-\frac{Y^{2}}{X^{2}+Y^{2}}=0 \quad A P N O-\frac{X^{3} \cdot Y}{\left(X^{2}+Y^{2}\right)^{2}}=0\)
\(\mathrm{AHGR}-\frac{X^{3} \cdot \mathrm{Y}}{\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{2}}=0 \quad \mathrm{CR}-\frac{X \cdot Y}{X^{2}+\mathrm{Y}^{2}}=0 \quad \frac{\mathrm{CR}}{\mathrm{AH}}-\frac{X}{Y}=0\)
\(\frac{\mathbf{G H}}{\mathbf{B H}}-\frac{X}{Y}=0 \quad\left(\frac{G H}{\mathbf{A H}}\right)^{\frac{1}{3}}-\frac{X}{Y}=0 \quad\left(\frac{G H}{A P}\right)^{2}-\frac{X^{3}}{Y^{3}}=0\)
\(A B=10.52500 \mathrm{~cm}\) \(B C=12.55302 \mathrm{~cm}\) DE \(=4.07973 \mathrm{~cm}\) \(\mathrm{BE}=7.48591 \mathrm{~cm}\) \(\mathrm{AE}=3.03909 \mathrm{~cm}\)
\(\mathrm{XY}=0.65000\)
\(X=13.00000\)
\(\mathrm{Y}=20.00000\)
\(\frac{\mathrm{CR}}{\mathrm{AH}}-\frac{\mathrm{X}}{\mathrm{Y}}=0.00000\)
\(\frac{\mathrm{GH}}{\mathrm{AH}}^{\frac{1}{3}}-\frac{\mathrm{X}}{\mathrm{Y}}=0.00000\)

\(\frac{\mathrm{GH}}{\mathrm{BH}}-\frac{\mathrm{X}}{\mathrm{Y}}=\mathbf{0 . 0 0 0 0 0}\)
\[
\frac{\mathbf{G H}^{2}}{\mathbf{A P}^{2}}-\frac{\mathbf{X}^{3}}{\mathbf{Y}^{3}}=0.00000
\]
\(\mathrm{AH}=7.39895 \mathrm{~cm}\) AJ \(=9.43088 \mathrm{~cm}\) HM \(=3.87739 \mathrm{~cm}\) AO \(=3.87739 \mathrm{~cm}\) AP \(=3.87739 \mathrm{~cm}\)
\(\mathrm{y}_{\mathrm{c}}=0.65000\) \(\mathrm{B}=1.00000\)
 \(B F=4.44681 \mathrm{~cm}\)
\(B G=3.72840 \mathrm{~cm}\) GH \(=2.03194 \mathrm{~cm}\) \(\mathrm{BH}=3.12605 \mathrm{~cm}\)
\(A H=0.70299 \quad A R=0.19306\) AJ \(=0.89605 \quad\) GR \(=0.70299\) HM \(=0.36840 \quad\) APNO \(=0.13572\) AO \(=0.36840 \quad\) AHGR \(=0.13572\) \(A P=0.36840 \quad C R=0.45694\) \(\mathrm{NP}=0.36840 \quad \mathrm{BH}=0.29701\)
DE- \(\frac{\mathbf{X} \cdot \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}{2 \cdot \mathbf{Y}^{2}}=0.00000\)
BE- \(\frac{X^{2}+Y^{2}}{2 \cdot Y^{2}}=0.00000\)
\(\mathrm{AE}-\frac{(\mathrm{Y}-\mathrm{X}) \cdot(\mathrm{X}+\mathrm{Y})}{2 \cdot \mathrm{Y}^{2}}=\mathbf{0 . 0 0 0 0 0}\)
\(\mathrm{AF}-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{\mathbf{Y}^{2}}=\mathbf{0 . 0 0 0 0 0}\)
\(\mathrm{BF}-\frac{\mathrm{X}^{\mathbf{2}}}{\mathrm{Y}^{2}}=0.00000\)
BG- \(\frac{\mathbf{X}^{2}}{\mathbf{Y} \cdot \sqrt{\mathbf{X}^{2}+\mathrm{Y}^{2}}}=\mathbf{0 . 0 0 0 0 0}\)
\(\mathrm{BH}-\frac{\mathrm{X}^{2}}{\mathrm{X}^{2}+\mathrm{Y}^{2}}=0.00000\)
GH- \(\frac{\mathbf{X}^{3}}{\mathbf{Y} \cdot\left(\mathbf{X}^{2}+\mathrm{Y}^{2}\right)}=\mathbf{0 . 0 0 0 0 0}\)
\(\mathrm{AH}-\frac{\mathrm{Y}^{2}}{\mathrm{X}^{2}+\mathrm{Y}^{2}}=0.00000\)
AJ- \(\frac{(\mathbf{X}+\mathbf{Y}) \cdot\left(\left(\mathbf{X}^{2}-\mathbf{X} \cdot \mathbf{Y}\right)+\mathbf{Y}^{2}\right)}{\mathbf{Y} \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}=\mathbf{0 . 0 0 0 0 0}\)

CR \(=4.80931 \mathrm{~cm}\) \(\mathrm{CR}=4.80931 \mathrm{~cm}\)
\(\mathrm{BH}=3.12605 \mathrm{~cm}\)
\(\qquad\)
\(\sqrt{X^{3} \cdot \mathbf{Y}}\)
\(\frac{\sqrt{X^{3} \cdot \mathbf{Y}}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=\mathbf{0 . 3 6 8 4 0}\)
\(\mathrm{AB}-\frac{\mathbf{Y}}{\mathbf{Y}}=0.00000\)
AC \(-\frac{\mathbf{X}}{\mathbf{Y}}=0.00000\)
BC- \(\frac{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}}{\mathbf{Y}}=\mathbf{0 . 0 0 0 0 0}\)
AO- \(-\frac{\sqrt{X^{3} \cdot \mathbf{Y}}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=0.00000\)
HM- \(\frac{\sqrt{\mathbf{X}^{3} \cdot \mathbf{Y}}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=0.00000\)
AO- \(-\frac{\sqrt{\mathbf{X}^{3} \cdot \mathbf{Y}}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=0.00000\)
HM- \(\frac{\sqrt{\mathbf{X}^{3} \cdot \mathbf{Y}}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=0.00000\)
AP- \(\frac{\sqrt{\mathbf{X}^{3} \cdot \mathbf{Y}}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=\mathbf{0 . 0 0 0 0 0}\)
NP- \(\frac{\sqrt{\mathbf{X}^{3} \cdot \mathbf{Y}}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=\mathbf{0 . 0 0 0 0 0}\)
AR- \(\frac{\mathbf{X}^{3}}{\mathbf{Y} \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}=0.00000\)
GR- \(\frac{\mathbf{Y}^{2}}{\mathbf{X}^{2}+\mathbf{Y}^{2}}=\mathbf{0 . 0 0 0 0 0}\)
APNO- \(\frac{X^{3} \cdot \mathbf{Y}}{\left(X^{2}+Y^{2}\right)^{2}}=0.00000\)
AHGR- \(\frac{X^{3} \cdot \mathbf{Y}}{\left(X^{2}+Y^{2}\right)^{2}}=0.00000\)
CR- \(\frac{\mathbf{X} \cdot \mathbf{Y}}{X^{2}+Y^{2}}=0.00000\)
\(\mathbf{X}^{\mathbf{2}+\mathbf{Y}^{2}}=\mathbf{0 . 0 0 0 0 0}\)
\(N P=3.87739 \mathrm{~cm}\)
\(A R=2.03194 \mathrm{~cm}\)
GR \(=7.39895 \mathrm{~cm}\)
Area APNO \(=15.03418\) cm\(^{2}\)
Area APNO \(=15.03418 \mathrm{~cm}^{2}\)


Unit.
Given. \(\quad \mathbf{X}:=11\)
\(\mathbf{Y}:=20\)
120103D

\section*{Descriptions.}
\(\mathbf{A B}:=\frac{\mathbf{Y}}{\mathbf{Y}} \quad \mathbf{A X}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B X}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A X}} \quad \mathbf{B E}:=\frac{\mathbf{B X}}{2} \quad \mathbf{B F}:=\frac{\mathbf{B X} \cdot \mathbf{B E}}{\mathbf{A B}}\) \(\mathbf{A G}:=\frac{\mathbf{A X} \cdot \mathbf{A B}}{\mathbf{B X}} \quad \mathbf{G O}:=\frac{\mathbf{A G}^{2}}{\mathbf{A X}} \quad \mathbf{A O}:=\frac{\mathbf{A X} \cdot \mathbf{A G}}{\mathbf{B X}} \quad \mathbf{B D}:=\frac{\mathbf{A B}}{2} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D}\) \(\mathbf{D O}:=\mathbf{B D}-\mathbf{A O} \quad \mathbf{D E}:=\frac{\mathbf{A X} \cdot \mathbf{B D}}{\mathbf{A B}} \quad \mathbf{D P}:=\frac{\mathbf{D O} \cdot \mathbf{D E}}{\mathbf{G O}} \quad \mathbf{A J}:=\frac{\mathbf{D E} \cdot \mathbf{D F}}{\mathbf{D P}+\mathbf{D F}}\) \(\mathbf{B N}:=\frac{\mathbf{A B} \cdot \mathbf{A J}}{\mathbf{A X}} \quad \mathbf{A N}:=\mathbf{A B}-\mathbf{B N} \quad \mathbf{J N}:=\sqrt{\mathbf{A J}^{2}+\mathbf{A N}^{2}} \quad \mathbf{J M}:=\frac{\mathbf{J N}}{2}\)
Definitions.
Definitions.
\(A B-\frac{Y}{Y}=0 \quad A X-\frac{X}{Y}=0 \quad B X-\sqrt{\left(\frac{Y}{Y}\right)^{2}+\left(\frac{X}{Y}\right)^{2}}=0 \quad B E-\frac{\sqrt{\left(\frac{Y}{Y}\right)^{2}+\left(\frac{X}{Y}\right)^{2}}}{2}=0\) \(B F-\frac{X^{2}+Y^{2}}{2 \cdot Y^{2}}=0 \quad A G-\frac{X}{Y \cdot \sqrt{\frac{X^{2}}{Y^{2}}+1}}=0 \quad G O-\frac{X \cdot Y}{X^{2}+Y^{2}}=0 \quad A O-\frac{X^{2}}{X^{2}+Y^{2}}=0\) \(\mathbf{B D}-\frac{1}{2}=0 \quad \mathbf{D F}-\frac{\mathbf{X}^{2}}{2 \cdot \mathbf{Y}^{2}}=0 \quad\) DO \(-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{2 \cdot\left(\mathbf{X}^{2}+\mathbf{Y}^{2}\right)}=0 \quad D E-\frac{X}{2 \cdot Y}=0\)

\(D P-\frac{(Y-X) \cdot(X+Y)}{4 \cdot Y^{2}}=0 \quad A J-\frac{X^{3}}{Y \cdot\left(X^{2}+Y^{2}\right)}=0 \quad B N-\frac{X^{2}}{X^{2}+Y^{2}}=0 \quad A N-\frac{Y^{2}}{X^{2}+Y^{2}}=0\)
\(J N-\sqrt{\frac{X^{4}-X^{2} \cdot Y^{2}+Y^{4}}{Y^{2} \cdot\left(x^{2}+Y^{2}\right)}}=0 \quad J M-\frac{\sqrt{\frac{X^{4}-X^{2} \cdot Y^{2}+Y^{4}}{Y^{2} \cdot\left(x^{2}+Y^{2}\right)}}}{2}=0\)


02

Descriptions.
\(\mathbf{A K}:=\mathbf{A D} \quad \mathbf{A J}:=\mathbf{A D} \quad \mathbf{A H}:=\frac{\sqrt{2 \cdot \mathbf{A D}^{2}}}{2}\)
\(\mathbf{H J}:=\mathbf{A J}-\mathbf{A H} \quad \mathbf{A C}:=\mathbf{A H}\)
\(\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad\) FJ \(:=2 \cdot \mathbf{C D}\)
AF := AJ - FJ AB := AF
\(\mathbf{D K}:=\sqrt{\mathbf{2} \cdot \mathbf{A K}^{\mathbf{2}}} \quad \mathbf{A K}+\mathbf{A B}-\mathbf{D K}=\mathbf{0}\)
\(\frac{\mathrm{AB}}{\mathrm{CD}}=1.414214 \quad \frac{\mathrm{DK}}{\mathrm{AD}}=1.414214 \sqrt{2}=1.414214\)

Unit. \(\begin{aligned} & \text { UE :=1 } \\ & \text { Given }\end{aligned}\) Given.

\section*{Descriptions.}

AO := AE AL \(:=\frac{\mathbf{A O}}{2}\)
\(\mathbf{A M}:=\mathbf{A E} \quad \mathbf{M L}:=\sqrt{\mathbf{A M}^{\mathbf{2}}-\mathbf{A L}}{ }^{\mathbf{2}}\)
\(\mathbf{A D}:=\mathbf{M L} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D}\)
\(\mathbf{D K}:=\mathbf{D E} \quad \mathbf{D M}:=\mathbf{A L} \quad \mathbf{A H}:=\frac{\mathbf{A M} \cdot \mathbf{D K}}{\mathbf{D M}}\) \(\frac{\mathrm{AH}}{\mathrm{DE}}=2\)

03


CN

\section*{Unit.}
\(\mathbf{A E}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A E}\)
en \(A E, A G, A\)
Given.
\(\mathbf{N}:=\mathbf{3} \quad \mathbf{A C}:=\mathbf{N}\)
031704
Descriptions.
DE := AE 2 CJ := AE
\(\mathbf{C E}:=\sqrt{\mathrm{AE}^{2}+\mathrm{AC}^{2}}\)
\(\mathbf{C G}:=\mathrm{AE} \quad\) FG \(:=\frac{\mathrm{DE} \cdot \mathbf{C G}}{\mathbf{C E}}\)
Definitions.
JL := FG JM := \(\frac{\mathbf{J L}^{2}}{2 \cdot \mathbf{C J}}\)
\(\mathbf{C M}:=\mathbf{C J}-\mathbf{J M} \quad \mathbf{L M}:=\sqrt{\mathbf{J L}^{2}-\mathbf{J M}^{2}} \quad\) NO \(:=\mathbf{A C}\)


On given any AE, AC find the diameter of the Circle.
\(\mathbf{C N}:=\frac{\mathrm{CM} \cdot \mathrm{NO}}{\mathrm{LM}} \quad\) AO \(:=\mathrm{CN} \quad\) EO \(:=\mathrm{AO}+\mathrm{AE} \quad\) OP \(:=\frac{\mathbf{A E}^{2}}{\mathrm{LM}}\)

Major := EO Minor := OP Major = 5
\(\frac{\mathrm{N}^{2}+1}{2}=0 \quad\) Minor \(=1.666667\)
Major \(-\frac{\mathbf{N}}{2}=0 \quad\) Minor \(-\frac{N^{2}+1}{2 \cdot N}=0\)
\(\frac{\text { Major }}{\text { Minor }}-\mathbf{N}=\mathbf{0}\)
\(\overline{\text { Minor }}-\mathbf{N}=\mathbf{0}\)

Cosers
Unit.
AB := 1
Given.
032004
Descriptions.
\(\mathbf{A D}:=\mathbf{N} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{B D}}{2} \quad \mathbf{A O}:=\mathbf{A B}+\mathbf{B O}\)
FO \(:=\) BO \(\quad\) AF \(:=\mathbf{A O} \quad\) FK \(:=\frac{\mathbf{F O}^{2}}{2 \cdot \mathbf{A F}} \quad\) EF \(:=2 \cdot \mathbf{F K}\)
\(\mathbf{M O}:=\mathbf{F K} \quad \mathbf{A M}:=\mathbf{A O}-\mathbf{M O} \quad \mathbf{F M}:=\sqrt{\mathbf{A F}^{2}-\mathbf{A M}^{2}} \quad\) GO \(:=\mathbf{B O}\)
\(\mathbf{A E}:=\mathbf{A F}-\mathbf{E F} \quad \mathbf{E N}:=\frac{\mathbf{F M} \cdot \mathbf{A E}}{\mathbf{A F}} \quad \mathbf{A N}:=\frac{\mathbf{A M} \cdot \mathbf{A E}}{\mathbf{A F}} \quad\) NO \(:=\mathbf{A O}-\mathbf{A N}\)
\(\mathbf{Z O}:=\frac{\mathbf{N O} \cdot \mathbf{G O}}{\mathbf{G O}-\mathbf{E N}} \quad \mathbf{A Z}:=\mathbf{Z O}-\mathbf{A O} \quad \mathbf{Z N}:=\mathbf{Z O}-\mathbf{N O} \quad \mathbf{G Z}:=\sqrt{\mathbf{Z O} \mathbf{O}^{\mathbf{2}}+\mathbf{G O} \mathbf{O}^{\mathbf{2}}}\)

EG := \(\frac{\mathbf{G Z} \cdot \mathbf{N O}}{\text { ZO }} \quad\) EG \(=1.323879\)
Definitions.
\(\mathbf{A D}-\mathbf{N}=\mathbf{0} \quad \mathbf{B D}-(\mathbf{N}-\mathbf{1})=\mathbf{0} \quad \mathbf{B O}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A O}-\frac{\mathbf{N}+1}{2}=\mathbf{0} \quad \mathbf{F O}-\frac{\mathbf{N}-\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{A F}-\frac{\mathbf{N}+\mathbf{1}}{2}=\mathbf{0} \quad \mathbf{F K}-\frac{(\mathbf{N}-\mathbf{1})}{\mathbf{4} \cdot(\mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{E F}-\frac{(\mathbf{N}-\mathbf{1})}{2 \cdot(\mathbf{N}+1)}=\mathbf{0}\)
\(\mathbf{M O}-\frac{(\mathbf{N}-\mathbf{1})^{2}}{4 \cdot(\mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{A M}-\frac{\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+\mathbf{1}}{4 \cdot(\mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{F M}-\frac{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot(\mathbf{N}-\mathbf{1})}{4 \cdot(\mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{G O}-\frac{\mathbf{N}-\mathbf{1}}{\mathbf{2}}=\mathbf{0} \quad \mathbf{A E}-\frac{\mathbf{2} \cdot \mathbf{N}}{\mathbf{N}+\mathbf{1}}=\mathbf{0} \quad \mathbf{E N}-\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(\mathbf{N}+\mathbf{1})} \mathbf{3} \quad \mathbf{0}\)

\(Z N-\frac{\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right) \cdot(N-1)^{2}}{(N+1)^{3} \cdot\left(3 \cdot N-2 \cdot N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+3 \cdot N^{2}+N^{3}+1\right)}=0 \quad G Z-\frac{\sqrt{(N-1)^{2} \cdot(N+1)^{3} \cdot\left[3 \cdot N-2 \cdot N \cdot \sqrt{[(N+3) \cdot(3 \cdot N+1)]}+3 \cdot N^{2}+N^{3}+1\right]}}{\sqrt{2 \cdot\left[N^{6}+\left[27 \cdot\left(N^{4}+N^{2}\right)+6 \cdot\left(N^{5}+N\right)+60 \cdot N^{3}+1\right]-4 \cdot N \cdot(N+1)\right.}{ }^{3} \cdot \sqrt{[(N+3) \cdot(3 \cdot N+1)]}}=0\)



\section*{032304 \\ Descriptions.}
\(\mathrm{DF}_{1}:=\frac{\mathbf{N}_{3}{ }^{2}+\mathbf{N}_{2}{ }^{2}-\mathbf{N}_{1}{ }^{2}}{\mathbf{N}_{\mathbf{2}}}\)
\(C D:=C F-F_{1} \quad \mathbf{N}_{\mathbf{4}}:=\mathbf{C D}\)
\(\mathrm{DF}_{2}:=\frac{\mathrm{N}_{3}{ }^{2}+\mathrm{N}_{4}{ }^{2}-\mathrm{N}_{1}{ }^{2}}{\mathbf{N}_{4}}\)

Given \(A C, A B\) and either point of contact, \(D\) or \(F\) from any \(C\), what is the lenght of the cord DF cut off by a line from any C?
Given.
\(\mathrm{N}_{1}\) := 1.708
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{1 . 6 4 9} \quad \mathbf{C F}:=\mathbf{N}_{\mathbf{2}}\) \(\mathbf{N}_{\mathbf{3}}:=\mathbf{1 . 2 4} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{3}}\)

\(\sim_{N=2}^{0}\)

\section*{Unit.}

CE := 1
Given.
N:= 4

0405043
Descriptions.
\(\mathrm{CO}:=\frac{\mathrm{CE}}{2} \quad \mathrm{CD}:=\frac{\mathrm{CE}}{\mathrm{N}}\)
DO := CO - CD
DN \(:=\sqrt{(\mathbf{C O}+\mathbf{D O}) \cdot(\mathbf{C O}-\mathbf{D O})}\)
AD \(:=\frac{\text { DO } \cdot \mathbf{D N}}{\mathbf{C O}-\mathbf{D N}} \quad\) DM \(:=\frac{\mathbf{D N}}{2}\)

\section*{All this extra work and I have lost} accuracy from 022803!

\(\mathrm{AN}:=\sqrt{\mathrm{AD}^{2}+\mathrm{DN}^{2}} \quad \mathrm{HL}:=\frac{\mathrm{AN}}{2} \quad \mathrm{LA}:=\frac{\mathrm{HL}}{2} \quad \mathrm{Ok}:=\sqrt{\mathrm{CO}^{2}-\mathrm{DO}^{2}} \quad \mathrm{Ck}:=\mathrm{CO}-\mathrm{Ok}\)
Fm \(:=\frac{\mathbf{C k} \cdot \mathrm{HL}}{\mathbf{C O}} \quad \mathrm{Jm}:=\frac{\text { DO } \cdot \mathrm{HL}}{\mathrm{CO}}\)
JF \(:=\sqrt{\mathrm{Fm}^{2}+\mathrm{Jm}^{2}} \quad\) Fn \(:=\frac{\mathrm{JF}}{2}\)
Fo \(:=\frac{\text { Fm } \cdot \text { Fn }}{\text { JF }} \quad\) Lo \(:=\) HL - Fo
no \(:=\frac{\mathrm{Jm}}{2} \quad \mathrm{Ln}:=\sqrt{\mathrm{no}^{2}+\mathrm{Lo}^{2}}\)
Iq := \(\frac{\text { no•HL }}{\text { Ln }} \quad\) Lq \(:=\frac{\text { Lo } \cdot \mathbf{H L}}{\text { Ln }}\)
\(\mathbf{F q}:=\mathbf{H L}-\mathbf{L q} \quad\) FI \(:=\sqrt{\mathbf{I q}^{2}+\mathbf{F q}^{2}} \quad\) Fr \(:=\frac{\mathbf{F I}}{2}\)
Fs \(:=\frac{\text { Fq } \cdot \mathbf{F r}}{\text { FI }} \quad\) Ls \(:=\mathbf{H L}-\mathbf{F s}\)
\(\mathrm{Lr}:=\sqrt{\mathrm{HL}^{2}-\mathrm{Fr}^{2}} \quad \mathrm{Lb}:=\frac{\mathrm{HL}^{2}}{2 \cdot \mathrm{Lr}} \quad\) rs \(:=\frac{\mathrm{Iq}}{2}\)


\[
\mathbf{L v}:=\frac{\mathbf{L s} \cdot \mathbf{H L}}{\mathbf{L r}} \quad \mathbf{H v}:=\frac{\mathbf{r s} \cdot \mathbf{H L}}{\mathbf{L r}}
\]
\(\mathbf{L v}:=\frac{\mathbf{L s} \cdot \mathbf{H L}}{\mathbf{L r}} \quad \mathbf{F v}:=\mathbf{H L}-\mathbf{L v}\)
FH \(:=\sqrt{\mathbf{H v}^{2}+\mathrm{Fv}^{2}} \quad\) Ft \(:=\frac{\mathrm{FH}}{2}\)
Lf \(:=\frac{\mathbf{H L}}{2} \quad\) Fu \(:=\frac{\text { Fv } \cdot \mathbf{F t}}{\text { FH }} \quad\) tu \(:=\frac{\mathbf{H v}}{2}\)
\(\mathrm{Lu}:=\mathrm{HL}-\mathrm{Fu} \quad \mathrm{Lt}:=\sqrt{\mathrm{Lu}^{2}+\mathrm{tu}^{2}}\)
\(\mathbf{L g}:=\frac{\mathbf{L t} \cdot \mathbf{L f}}{\mathbf{L u}} \quad\) MN \(:=\frac{\text { DN }}{2} \quad\) NL \(:=\frac{\text { AN }}{2}\)
\(\mathbf{M L}:=\sqrt{\mathbf{N L}^{\mathbf{2}}-\mathbf{M N}^{2}} \quad \mathbf{M b}:=\mathbf{M L}+\mathbf{L b}\)
\(\mathbf{N b}:=\sqrt{\mathbf{M N}^{2}+\mathbf{M b}^{\mathbf{2}}}\)
\(\mathrm{Nc}:=\frac{\mathrm{CO}^{2}+(\mathbf{2} \cdot \mathbf{N b})^{2}-(\mathbf{2} \cdot \mathbf{M b}+\mathrm{DO})^{2}}{-2 \cdot \mathbf{N b}}\)

\(\mathbf{c w}:=\frac{\mathbf{M N} \cdot(\mathbf{N b}+\mathbf{N c})}{\mathbf{N b}}+\mathbf{M N} \quad \mathbf{D w}:=\frac{\mathbf{2} \cdot \mathbf{M b} \cdot(\mathbf{2} \cdot \mathbf{N b}+\mathbf{N c})}{\mathbf{2} \cdot \mathbf{N b}}-\mathbf{2} \cdot \mathbf{M b}\)
Ow := Dw - DO \(\quad\) Dx \(:=\) Dw -2.Ow \(\quad \mathrm{Ma}_{1}:=\frac{\mathrm{Dx} \cdot \mathrm{DN}}{2 \cdot(\mathbf{c w}-\mathrm{DN})}\)
\(\mathbf{N a} \mathbf{1}_{1}:=\sqrt{\mathbf{M N}^{2}+\left(\mathbf{M a}_{1}\right)^{\mathbf{2}}} \quad\) ba \(_{\mathbf{1}}:=\mathbf{M b}-\mathbf{M a}_{\mathbf{1}}\)
\(\mathrm{Nz}:=\frac{\left(N a_{1}\right)^{2}+\mathrm{Nb}^{2}-\left(\mathrm{ba}_{1}\right)^{2}}{2 \cdot \mathbf{N b}} \quad \mathrm{za}{ }_{1}:=\sqrt{\left(\mathrm{Na}_{1}\right)^{2}-N z^{2}} \quad\) be \(:=\frac{\mathrm{za}}{1} \cdot \mathrm{Nb}\)

\(\mathbf{M g}:=\mathbf{M L}+\mathbf{L g} \quad \mathbf{N g}:=\sqrt{\mathbf{M N}^{2}+\mathbf{M g}^{2}}\)
\(\mathrm{Nh}:=\frac{\mathrm{CO}^{2}+(2 \cdot \mathrm{Ng})^{2}-(2 \cdot \mathrm{Mg}+\mathrm{DO})^{2}}{-2 \cdot \mathbf{N g}}\)

\(\mathbf{h b}_{1}:=\frac{\mathbf{M N} \cdot(\mathbf{N g}+\mathbf{N h})}{\mathbf{N g}}+\mathbf{M N} \quad \mathrm{Db}_{1}:=\frac{\mathbf{2} \cdot \mathbf{M g} \cdot(\mathbf{2} \cdot \mathbf{N g}+\mathbf{N h})}{2 \cdot \mathbf{N g}}-\mathbf{2} \cdot \mathbf{M g}\)
\(\mathrm{Ob}_{1}:=\mathrm{Db}_{1}-\mathrm{DO} \quad \mathrm{Dc}_{1}:=\mathrm{Db}_{1}-2 \cdot \mathrm{Ob}_{1} \quad \mathrm{Md}_{1}:=\frac{\mathrm{Dc}}{1} \cdot \mathrm{DN}\)
\(\mathrm{Nd}_{1}:=\sqrt{\mathbf{M N}^{2}+\left(\mathrm{Md}_{1}\right)^{2}} \quad \operatorname{gd}_{1}:=\mathbf{M g}-\mathrm{Md}_{1} \quad \mathrm{Ne}_{1}:=\frac{\left(\mathrm{Nd}_{1}\right)^{2}+\mathbf{N g}^{2}-\left(\mathrm{gd}_{1}\right)^{2}}{2 \cdot \mathbf{N g}}\)
ed \(_{1}:=\sqrt{\left(\mathrm{Nd}_{1}\right)^{2}-\left(\mathrm{Ne}_{1}\right)^{2}} \quad \mathrm{gj}:=\frac{\mathrm{ed}_{1} \cdot \mathrm{Ng}}{\mathrm{Ne}_{1}} \quad \mathrm{Ne}:=\frac{\mathrm{Na}_{1} \cdot \mathrm{Nb}}{\mathrm{Nz}}\)
\(\mathbf{e a}_{\mathbf{1}}:=\mathbf{N e}-\mathbf{N a} \mathbf{1}_{1}\)
\(b f_{1}:=\frac{b e^{2}+b a_{1}{ }^{2}-e a_{1}{ }^{2}}{2 \cdot b a_{1}}\)

ef \(_{1}:=\sqrt{b^{2}-\text { bf }_{1}{ }^{\mathbf{2}}}\)
\(\mathrm{Nj}:=\frac{\mathrm{Nd}_{1} \cdot \mathrm{Ng}}{\mathrm{Ne}_{1}} \quad \mathrm{jd}_{1}:=\mathbf{N j}-\mathrm{Nd}_{1}\)
\(\mathrm{gg}_{1}:=\frac{\mathrm{gj}^{2}+\mathrm{gd}_{1}{ }^{2}-\mathrm{jd}_{1}{ }^{2}}{2 \cdot \mathrm{gd}_{1}}\)
\(\mathrm{jg}_{1}:=\sqrt{\mathrm{gj}^{2}-\mathrm{gg}_{1}{ }^{2}}\)


\(\mathbf{M g}_{\mathbf{1}}:=\mathbf{M g}-\mathbf{g g}_{\mathbf{1}} \quad \mathbf{M f}_{\mathbf{1}}:=\mathbf{M b}-\mathbf{b f}_{\mathbf{1}}\)
\(\mathbf{j h}_{\mathbf{1}}:=\mathbf{M f}_{\mathbf{1}}-\mathbf{M g}_{\mathbf{1}} \quad\) eh \(_{\mathbf{1}}:=\mathbf{e f}_{\mathbf{1}}-\mathbf{j g}_{\mathbf{1}}\)
\(\mathrm{ej}:=\sqrt{\mathrm{jh}_{1}{ }^{2}+\mathrm{eh}_{1}{ }^{2}} \quad \mathrm{Bj}_{1}:=\mathrm{DM}-\mathrm{jg}_{1}\)
\(\mathrm{jj}_{\mathbf{1}}:=\frac{\mathrm{jh}_{\mathbf{1}} \cdot \mathrm{Bj}_{\mathbf{1}}}{\mathbf{e h}_{\mathbf{1}}} \quad \mathbf{B D}:=\mathbf{M g}_{\mathbf{1}}+\mathrm{jj}_{\mathbf{1}} \quad\) BO \(:=\mathbf{B D}+\mathbf{D O}\)
\(\mathrm{BN}:=\sqrt{\mathrm{DN}^{2}+\mathrm{BD}^{2}}\)
\(\mathrm{NR}:=\frac{\mathrm{CO}^{2}+\mathrm{BN}^{2}-\mathrm{BO}^{2}}{-\mathrm{BN}}\)
\(\mathbf{B k}_{\mathbf{0}}:=\frac{\mathbf{B D} \cdot(\mathbf{B N}+\mathbf{N R})}{\mathbf{B N}}\)
\(\mathbf{O k}_{\mathbf{0}}:=\mathbf{B O}-\mathbf{B k}_{\mathbf{0}}\)


NR-2. \(\mathbf{O k}_{\mathbf{O}}=\mathbf{- 0 . 0 0 0 0 0 0 0 0 0 0 1 9 5 8 1}\)

\section*{Compared to 022803}

19591
Om \(-\frac{\mathrm{Ek}}{2}=-0.000000000002639\),

041904A
I once worked on a project I called Eloi, which was about the different ways to construct an ellipse, the different equations one would have to use to make that figure, and the different ways one could solve for those ellipses. And this entertained me until I started thinking about the figure 8 locus. One can draw the figure eight as a locus between a straight line and a cirlce.

All of this applies to science and mechanics when one is writing up equations to the motion of objects; How do you comprehend what you are seeing?

This plate series is called the Straight Line Ellipse because it reduces the ellipse to a single linear action between \(X\) and \(Y\) axies. In other words, we draw what some would claim to be a trig function, which is actually a linear function, one just doess not see it. When every possible grammar is effected by complete induction and deduction of a unit, one should keep the unit in mind instead of obfuscating it with particular names which factually do not apply. One is always in danger of claiming that there are many different mathematics, yet the same single unit makes them all; this amounts to a thing is different from itself, and if one is stupid, it produces the modern mathematician.

As one can see by the last figure, the major and minor axis do not determine the resulting figure, meaning the shape is independent of the axis, but when it is shaped, or created is. The resulting figure, a photon, or a burst of energy, or one can say a pulse, is the product of a simple tic, toc, tic of two objects, an oscilation. At a certain point they interact, and release an elliptical signiture, or temporarily existing third object. This means one can spend a lot of time claiming that mechanics is wave mechanics, or quantum mechanics, or that these names both miss the point; how you write an object up does not create a new grammar, unless you are really stupid. Grammar is not a theory, and if you are teaching theory, you may as well elect a Pope.

What is more important, we start to get back to fundamentals in linguistic fact, between any two limits is one, and only one relative difference, which is not only called a unit, but even observed by Plato. We can obfuscate it, like all of the other ways we can produce an ellipse, but those figures do not express the fundamental ellipse.



Descriptions.

Unit.
AC := \(\mathbf{1}\)
Given.
\(\mathrm{R}_{1}:=3\)
\(\mathbf{R}_{\mathbf{2}}:=\mathbf{2}\)

\section*{Straight Line Ellipse: Cardinal}


Definitions.
\(A D-\frac{\sqrt{R_{1}{ }^{2}-2 \cdot R_{1}+R_{2}{ }^{2}}}{R_{1} \cdot R_{2}}=0\)


\section*{Unit.}
\(\mathbf{A C}:=1 \quad \mathbf{B E}:=\mathbf{A C}\)
Given.
\(\mathrm{N}_{1}:=.5 \quad \mathrm{AB}:=\mathrm{N}_{1}\)
041904C
\(\mathbf{N}_{\mathbf{2}}:=.3 \quad \mathrm{BD}:=\mathbf{N}_{\mathbf{2}}\)
Descriptions.
\(\mathbf{A E}:=\sqrt{\mathbf{B E}^{2}-\mathbf{A B}^{2}}\)
\(\mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathbf{D H}:=\frac{\mathbf{A E} \cdot \mathbf{B D}}{\mathbf{B E}}\)
\(\mathbf{A H}:=\mathbf{A B}-\mathbf{B H} \quad \mathbf{A D}:=\sqrt{\mathbf{A H}^{\mathbf{2}}+\mathbf{D H}^{\mathbf{2}}}\)

Definitions.
\(\mathbf{A E}-\sqrt{\left(\mathbf{1}-\mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}=\mathbf{0}\)
\(\mathbf{B H}-\mathbf{N}_{\mathbf{1}} \cdot \mathrm{N}_{\mathbf{2}}=\mathbf{0}\)
\(\mathbf{D H}-\sqrt{\left(\mathbf{1 -} \mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)} \cdot \mathbf{N}_{\mathbf{2}}=\mathbf{0}\)
\(\mathbf{A H}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}\right)=\mathbf{0}\)
\(A D-\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}{ }^{2} \cdot N_{2}+N_{2}{ }^{2}}=0\)

Straight Line Ellipse: Ordinal


( Given. \(\mathbf{N}_{\mathbf{1}}\) := \(\mathbf{3}\)
031405
Descriptions.
\(\mathbf{A D}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{D V}:=\mathbf{A C}\)
\(\mathbf{A V}:=\sqrt{\mathbf{A D}^{2}+\mathbf{D V}^{2}} \quad \mathbf{A F}:=2 \cdot \mathbf{A C}\)
\(\mathbf{V X}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{A Y}:=\frac{\mathbf{A V} \cdot \mathbf{A C}}{\mathbf{A C}-\mathbf{V X}}\)
\(\mathbf{A G}:=\frac{\mathbf{A D} \cdot \mathbf{A Y}}{\mathbf{A V}} \quad \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A C}+\mathbf{A D}}\)
\(\mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{B G}:=\mathbf{B C}+\mathbf{C G}\)
\(\mathrm{BE}:=\frac{\mathrm{BG}}{2} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \quad \mathrm{ES}:=\mathrm{BE}\)
\(\mathbf{C S}:=\sqrt{\mathbf{E S}^{2}-\mathbf{C E}^{2}} \quad \mathbf{C R}:=\frac{\mathbf{D V} \cdot \mathbf{A C}}{\mathbf{A D}}\)
\(\mathbf{E U}:=\frac{\mathbf{E S} \cdot \mathbf{C R}}{\mathbf{C S}} \quad\) EZ \(:=\mathbf{E U}\)

\section*{Definitions.}
\(E Z-\frac{\sqrt{\mathbf{N}_{1}{ }^{2}-1}}{\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=0\)
\(\mathbf{B G}-\frac{2 \cdot \mathbf{N}_{1}}{\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=\mathbf{0}\)

\section*{Another Ellipse}

The locus formed by \(N\) and \(I\) as
determined by \(L\) provides an ellipse. Provide an Algebraic name for the Major and Minor Axis.



\section*{0932305}

Descriptions.

MN: \(\mathbf{2} \cdot \mathbf{A B}\)
\(\mathbf{D E}:=\mathbf{B E}-\mathbf{B D} \quad \mathbf{A G}:=\mathbf{A B}\)
\(\mathbf{E P}:=\frac{\mathbf{A G} \cdot \mathbf{B E}}{\mathbf{A B}} \quad \mathbf{E N}:=\mathbf{A B}\)
\(\mathbf{N L}:=\frac{\mathbf{D E} \cdot(\mathbf{E P}+\mathbf{E N})}{\mathbf{E P}}\)
CE := NL CD := CE - DE

\section*{Definitions.}
\(\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{\mathbf{2}}\right)}{\mathbf{N}_{\mathbf{1}}}-\mathbf{C D}=\mathbf{0}\)

Unit.
AB:=1
Given.
\(\mathbf{N}_{1}:=\mathbf{2} \quad \mathrm{BE}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathrm{N}_{2}:=.5 \quad\) BD \(:=\mathrm{N}_{2} \quad\) An Ellipse



032905
Descriptions.

Unit.
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{1 . 9 1 6 7} \quad \mathrm{AC}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=.3244 \quad \mathrm{CD}:=\mathbf{N}_{\mathbf{2}}\)
\(\mathbf{N}_{\mathbf{3}}:=.437\)
\(\mathbf{C E}:=\mathbf{C D} \quad \mathbf{C G}:=\sqrt{\mathbf{C E} \cdot \mathbf{A C}} \quad \mathbf{G H}:=\mathbf{2} \cdot \mathbf{C G}\)
\(\mathbf{C I}:=\mathbf{C G}-\mathbf{G I} \quad \mathbf{A D}:=\mathbf{A C}-\mathbf{C D} \quad \mathbf{A I}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C I}^{2}} \quad \mathbf{A M}:=\frac{\mathbf{A D}}{2}\)
\(\mathbf{D M}:=\mathbf{A M} \quad \mathbf{D U}:=\frac{\mathbf{C I} \cdot \mathbf{A D}}{\mathbf{A I}} \quad \mathbf{A U}:=\frac{\mathbf{A C} \cdot \mathbf{A D}}{\mathbf{A I}} \quad\) IU \(:=\mathbf{A I}-\mathbf{A U} \quad \mathbf{A L}:=\frac{\mathbf{D U} \cdot \mathbf{A I}}{\mathbf{I U}}\)
\(\mathbf{I L}:=\sqrt{\mathbf{A I}^{\mathbf{2}}+\mathbf{A L}^{\mathbf{2}}} \quad \mathbf{D I}:=\sqrt{\mathbf{D U}^{2}+\mathbf{I U}^{2}} \quad\) DL \(:=\mathbf{I L}-\mathbf{D I} \quad\) DV \(:=\frac{\mathbf{C D} \cdot \mathbf{D L}}{\text { DI }}\)
\(\mathbf{M V}:=\mathbf{D V}-\mathbf{D M} \quad \mathbf{A V}:=\mathbf{A M}-\mathbf{M V} \quad \mathbf{L V}:=\sqrt{\mathbf{A L}^{\mathbf{2}}-\mathbf{A V}^{\mathbf{2}}} \quad \mathbf{M T}:=\mathbf{L V}\)
\(\mathbf{A G}:=\sqrt{\mathbf{C G}^{2}+\mathbf{A C}^{\mathbf{2}}} \quad \mathbf{D W}:=\frac{\mathbf{C G} \cdot \mathbf{A D}}{\mathbf{A G}} \quad \mathbf{A W}:=\frac{\mathbf{A C} \cdot \mathbf{A D}}{\mathbf{A G}} \quad \mathbf{G W}:=\mathbf{A G}-\mathbf{A W}\)
AN \(:=\frac{\mathbf{D W} \cdot \mathbf{A G}}{\mathbf{G W}} \quad \mathbf{M N}:=\sqrt{\mathbf{A N}^{2}-\mathbf{A M}^{2}} \quad\) ON \(:=\mathbf{2} \cdot \mathbf{M N}\)


\section*{Definitions.}
\(\mathrm{ON}-\sqrt{\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right)^{2} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}}=\mathbf{O}\)
\(\sim_{n=2}^{0}\)

\section*{032905B}

Descriptions.
\(\mathbf{C E}:=\mathbf{B C} \quad \mathbf{B D}:=\mathbf{B C} \quad \mathbf{C v}:=\frac{\mathbf{C E} \cdot \mathbf{v}}{\mathbf{u}} \quad \mathbf{B x}:=\frac{\mathbf{B D} \cdot \mathbf{x}}{\mathbf{w}} \quad \mathbf{v x}:=\sqrt{\mathbf{B C}^{2}+(\mathbf{C v}-\mathbf{B x})^{2}} \quad \mathbf{A C}:=\frac{\mathbf{B C} \cdot \mathbf{C v}}{\mathbf{C v}-\mathbf{B x}}\) \(\mathbf{A E}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C E}^{2}} \quad \mathbf{A z}:=\mathbf{A E} \cdot \frac{\mathbf{z}}{\mathbf{y}} \quad \mathbf{A J}:=\frac{\mathbf{A C} \cdot \mathbf{A z}}{\mathbf{A E}} \quad \mathbf{J z}:=\frac{\mathbf{C E} \cdot \mathbf{A J}}{\mathbf{A C}} \quad \mathbf{C J}:=\mathbf{A C}-\mathbf{A J}\)
\(\mathrm{Cz}:=\sqrt{\mathrm{Jz}^{2}+\mathrm{CJ}^{2}} \quad \mathrm{Ez}:=\mathrm{AE}-\mathbf{A z} \quad \mathrm{Kz}:=\frac{\mathrm{Cz}^{2}+\mathrm{Ez}^{2}-\mathrm{CE}^{2}}{2 \cdot \mathrm{Cz}} \quad \mathrm{EK}:=\sqrt{\mathrm{Ez}^{2}-\mathrm{Kz}^{2}}\)
\(\mathrm{CF}:=\mathrm{EK} \cdot \frac{\mathrm{Cz}}{\mathrm{Kz}} \quad \mathrm{Fz}:=\frac{\mathrm{Ez} \cdot \mathrm{Cz}}{\mathrm{Kz}} \quad \mathrm{CK}:=\mathbf{C z}-\mathrm{Kz} \quad \mathrm{CM}:=\frac{\mathrm{CK} \cdot \mathbf{C v}}{\mathrm{CE}} \quad \mathrm{Mv}:=\frac{\mathrm{EK} \cdot \mathrm{Cv}}{\mathrm{CE}} \quad \mathrm{CN}:=\mathrm{Mv}\)
\(\mathbf{N v}:=\mathbf{C M} \quad \mathbf{F N}:=\mathbf{C F}-\mathbf{C N} \quad \mathbf{C H}:=\frac{\mathbf{N v} \cdot \mathbf{C F}}{\mathbf{F N}} \quad \mathbf{M z}:=\mathbf{C z}-\mathbf{C M} \quad \mathbf{v z}:=\sqrt{\mathbf{M v}^{2}+\mathbf{M z}^{2}} \quad \mathbf{G v}:=\frac{\mathbf{v z} \cdot \mathbf{N v}}{\mathbf{M z}}\)
Unit. BC := 1
Given. \(\mathbf{z}:=\mathbf{7} \quad \mathbf{x}:=6 \quad \mathrm{v}:=12\)
\[
\mathbf{y}:=20 \quad \mathbf{w}:=20 \quad \mathbf{u}:=20
\]

\section*{Parcing project for 032905b, using just straight lines.}

\section*{Definitions.}
\(C E-1=0 \quad B D-1=0 \quad C v-\frac{v}{u}=0 \quad B x-\frac{x}{w}=0 \quad v x-\frac{\sqrt{u^{2} \cdot w^{2}+u^{2} \cdot x^{2}-2 \cdot u \cdot v \cdot w \cdot x+v^{2} \cdot w^{2}}}{u \cdot w}=0 \quad A C-\frac{v \cdot w}{(v \cdot w-u \cdot x)}=0 \quad A E-\frac{\sqrt{u^{2} \cdot x^{2}-2 \cdot u \cdot v \cdot w \cdot x+2 \cdot v^{2} \cdot w^{2}}}{(v \cdot w-u \cdot x)}=0\)

\(C z-\frac{\sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}{y \cdot(v \cdot w-u \cdot x)}=0\)
\(K z-\frac{2 \cdot u^{2} \cdot x^{2} \cdot y \cdot z-2 \cdot u^{2} \cdot x^{2} \cdot z^{2}-4 \cdot u \cdot v \cdot w \cdot x \cdot y \cdot z+4 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y^{2}+6 \cdot v^{2} \cdot w^{2} \cdot y \cdot z-4 \cdot v^{2} \cdot w^{2} \cdot z^{2}}{2 \cdot y \cdot(u \cdot x-v \cdot w) \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}=0\)
\(E K-\frac{v \cdot w \cdot(y-z)}{\sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}=0 \quad C F-\frac{v \cdot w \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}{v^{2} \cdot w^{2} \cdot y-u^{2} \cdot x^{2} \cdot z-2 \cdot v^{2} \cdot w^{2} \cdot z+2 \cdot u \cdot v \cdot w \cdot x \cdot z}=0\)
\(c^{2} \mathrm{c}^{2} \mathrm{~S}_{8}\)
\(F z-\frac{\sqrt{u^{2} \cdot x^{2}-2 \cdot u \cdot v \cdot w \cdot x+2 \cdot v^{2} \cdot w^{2}} \cdot\left(u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}\right)}{y \cdot(u \cdot x-v \cdot w) \cdot\left(u^{2} \cdot x^{2} \cdot z-v^{2} \cdot w^{2} \cdot y+2 \cdot v^{2} \cdot w^{2} \cdot z-2 \cdot u \cdot v \cdot w \cdot x \cdot z\right)}=0\)
\(C K-\frac{z \cdot(v \cdot w-u \cdot x)}{\sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}=0\)
\(C M-\frac{v \cdot z \cdot(v \cdot w-u \cdot x)}{u \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}=0\)
\(N v-\frac{v \cdot z \cdot(v \cdot w-u \cdot x)}{u \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}=0\)
\(M v-\frac{v^{2} \cdot w \cdot(y-z)}{u \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}=0\)
\(C N-\frac{v^{2} \cdot w \cdot(y-z)}{u \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}=0\)
\(F N-\left[\begin{array}{r}v \cdot w \cdot\left(u^{3} \cdot x^{2}-2 \cdot u^{2} \cdot v \cdot w \cdot x-u^{2} \cdot v \cdot x^{2}+2 \cdot u \cdot v^{2} \cdot w^{2}+2 \cdot u \cdot v^{2} \cdot w \cdot x-2 \cdot v^{3} \cdot w^{2}\right) \cdot z^{2} \ldots \\ +v \cdot w \cdot\left(y \cdot u^{2} \cdot v \cdot x^{2}-2 \cdot y \cdot u \cdot v^{2} \cdot w^{2}-2 \cdot y \cdot u \cdot v^{2} \cdot w \cdot x+3 \cdot y \cdot v^{3} \cdot w^{2}\right) \cdot z-v \cdot w^{2} \cdot\left(v^{3} \cdot w^{2} \cdot y^{2}-u \cdot v^{2} \cdot w^{2} \cdot y^{2}\right) \\ u \cdot\left(v^{2} \cdot w^{2} \cdot y-u^{2} \cdot x^{2} \cdot z-2 \cdot v^{2} \cdot w^{2} \cdot z+2 \cdot u \cdot v \cdot w \cdot x \cdot z\right) \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}\end{array}\right]=0\)
\(C H-\frac{v \cdot z \cdot(u \cdot x-v \cdot w) \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}{\left(w^{2} \cdot y^{2}-3 \cdot w^{2} \cdot y \cdot z+2 \cdot w^{2} \cdot z^{2}\right) \cdot v^{3}+\left(2 \cdot u \cdot w^{2} \cdot y \cdot z-u \cdot w^{2} \cdot y^{2}-2 \cdot u \cdot w^{2} \cdot z^{2}+2 \cdot u \cdot x \cdot w \cdot y \cdot z-2 \cdot u \cdot x \cdot w \cdot z^{2}\right) \cdot v^{2}+\left(u^{2} \cdot x^{2} \cdot z^{2}-y \cdot u^{2} \cdot x^{2} \cdot z+2 \cdot w \cdot u^{2} \cdot x \cdot z^{2}\right) \cdot v-u^{3} \cdot x^{2} \cdot z^{2}}=0 \quad(2)\)
\(M z-\left[\frac{u^{3} \cdot x^{2} \cdot z^{2}-2 \cdot u^{2} \cdot v \cdot w \cdot x \cdot z^{2}-u^{2} \cdot v \cdot x^{2} \cdot y \cdot z+u \cdot v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot u \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot u \cdot v^{2} \cdot w^{2} \cdot z^{2}+2 \cdot u \cdot v^{2} \cdot w \cdot x \cdot y \cdot z-v^{3} \cdot w^{2} \cdot y \cdot z}{u \cdot y \cdot(v \cdot w-u \cdot x) \cdot \sqrt{u^{2} \cdot x^{2} \cdot z^{2}-2 \cdot u \cdot v \cdot w \cdot x \cdot z^{2}+v^{2} \cdot w^{2} \cdot y^{2}-2 \cdot v^{2} \cdot w^{2} \cdot y \cdot z+2 \cdot v^{2} \cdot w^{2} \cdot z^{2}}}\right]=0\)



Descriptions.
Definitions.

\section*{Writeup project for 032905}

\section*{Unit}

\section*{Given}

Another way to do cube roots, one which the ancients were looking for, is accomplished by crossing an isosceles triangle with a right triangle. I put off investigating it for some future date. What it does say is that cube roots are not impossible, but perhaps difficult. I found this while examining the figure of the preceeding ellipse.


What can be said, however, is that the figure can be used to prove my original construction which would be much, much shorter than the original. However, my interest was no longer on the Delian Quest, but it was cooking to arrive at BAM, and this took time but once it did happen, what unfolded is a work which I probably have no time to finish, it consists of thousands of pages and covers all of how to use it for even logical operations.

The Delian Quest, essentially conquered, is making me comprehend that it is only the door to a much bigger place. The Delian Quest contains the search, the climax, and the after glow, but the results is contained in the volumes of BAM.

One has to remark, though, it is a very beautiful figure. Very simple, straightforward, and reasonable.

Filling in the rest of the figure, we see it.
\begin{tabular}{|c|c|}
\hline E &  \\
\hline  & \begin{tabular}{l}
\[
\mathrm{EF}=3.25858 \mathrm{~cm}
\] \\
D
\[
\begin{aligned}
& A F=1.80823 \mathrm{~cm} \\
& \mathrm{FG}=10.58224 \mathrm{~cm} \\
& \left(\mathrm{AF}^{2} \cdot \mathrm{FG}\right)^{\frac{1}{3}}-\mathrm{EF}=0.00000 \\
& \mathrm{FH}=3.25858 \mathrm{~cm} \\
& \mathrm{FI}=5.87223 \mathrm{~cm} \\
& \left(\mathrm{AF}^{2} \cdot \mathrm{FG}\right)^{\frac{1}{3}}-\mathrm{FH}=0.00000 \\
& \left(\mathrm{AF}^{\frac{1}{2}} \mathrm{FG}^{2}\right)^{\frac{1}{3}}-\mathrm{FI}=0.00000
\end{aligned}
\]
\end{tabular} \\
\hline
\end{tabular}

It might be said that a elliptial construct proved the head of the figure, and another proved its hands.


\section*{Given.}
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{A H}:=\mathbf{N}_{\mathbf{1}}\)

\section*{Descriptions.}
\(\mathbf{B H}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A H}^{2}} \quad \mathbf{G O}:=\frac{\mathbf{A B} \cdot \mathbf{2} \cdot \mathbf{A B}}{\mathbf{B H}} \quad \mathbf{H O}:=\mathbf{B H}-\mathbf{G O}\)
\(\mathbf{D H}:=\frac{\mathbf{B H} \cdot \mathbf{B H}}{\mathbf{H O}} \quad \mathbf{A C}:=\frac{\mathbf{A B} \cdot \mathbf{D H}}{\mathbf{B H}} \quad \mathbf{B O}:=\sqrt{\mathbf{B H}^{2}-\mathbf{H O}^{2}}\)
\(\mathbf{D G}:=\frac{\mathbf{B O} \cdot \mathbf{B H}}{\mathbf{H O}} \quad \mathbf{D E}:=\frac{\mathbf{B H} \cdot \mathbf{D G}}{\mathbf{A B}} \quad \mathbf{C D}:=\frac{\mathbf{D G}^{2}}{\mathrm{DE}}\)

\(\mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CE}:=\mathrm{DE}-\mathrm{CD} \quad \mathrm{N}_{1}{ }^{\mathbf{3}}-\frac{\mathrm{CE}}{\mathrm{BC}}=0\)
Definitions.
\(\mathrm{BH}-\sqrt{\mathrm{N}_{1}{ }^{2}+1}=0 \quad \mathrm{GO}-\frac{2}{\sqrt{\mathrm{~N}_{1}{ }^{2}+1}}=0 \quad \mathrm{HO}-\frac{\left(\mathrm{N}_{1}-1\right) \cdot\left(\mathrm{N}_{1}+1\right)}{\sqrt{\mathrm{N}_{1}{ }^{2}+1}}=0\)
\(D H-\frac{\left(\sqrt{N_{1}{ }^{2}+1}\right)^{3}}{\left(N_{1}-1\right) \cdot\left(N_{1}+1\right)}=0 \quad A C-\frac{N_{1}{ }^{2}+1}{\left(N_{1}-1\right) \cdot\left(N_{1}+1\right)}=0 \quad B O-\frac{2 \cdot N_{1}}{\sqrt{N_{1}{ }^{2}+1}}=0\)
\(D G-\frac{2 \cdot N_{1} \cdot \sqrt{N_{1}{ }^{2}+1}}{\left(\mathbf{N}_{1}-1\right) \cdot\left(\mathbf{N}_{1}+1\right)}=0 \quad D E-\frac{2 \cdot N_{1} \cdot\left(\mathbf{N}_{1}{ }^{2}+1\right)}{\left(\mathbf{N}_{1}-1\right) \cdot\left(\mathbf{N}_{1}+1\right)}=0\)
\(\mathrm{CD}-\frac{2 \cdot \mathbf{N}_{1}}{\left(\mathbf{N}_{1}-1\right) \cdot\left(\mathbf{N}_{1}+1\right)}=0\)
\(\mathrm{BC}-\frac{2}{\left(\mathbf{N}_{1}-1\right) \cdot\left(\mathbf{N}_{1}+1\right)}=0 \quad \mathrm{CE}-\frac{2 \cdot \mathbf{N}_{1}{ }^{3}}{\left(\mathbf{N}_{1}-1\right) \cdot\left(\mathbf{N}_{1}+1\right)}=0 \quad \mathbf{N}_{1}^{3}-\mathbf{N}_{1}^{3}=0\)

Cosers
Given.
\(\mathrm{N}_{2}:=4\)
Descriptions.
\(\mathbf{B N}:=\frac{\mathbf{B C}}{\mathbf{N}_{\mathbf{2}}} \quad \mathrm{KN}:=\frac{\mathbf{C D}}{\mathbf{N}_{\mathbf{2}}}\)
\(\mathbf{C G}:=\mathbf{A C}+\mathbf{A B} \quad \mathbf{G N}:=\mathbf{2} \cdot \mathbf{A B}+\frac{\mathbf{B C}}{\mathbf{N}_{\mathbf{2}}}\)
NR \(:=\frac{\mathbf{C E} \cdot \mathbf{G N}}{\mathbf{C G}}\)


Definitions.
\(\left[\mathbf{N}_{1}{ }^{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)\right]-\frac{\mathbf{N R}}{\mathbf{B N}}=\mathbf{0}\)
\(N_{1}{ }^{3} \cdot N_{2}-\left(N_{2}-1\right) \cdot N_{1}=26 \quad \frac{N R}{B N}=26\)
\(\mathbf{B N}-\frac{\mathbf{2}}{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}=\mathbf{0} \quad \mathbf{K N}-\frac{\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}=\mathbf{0}\)
\(\mathbf{C G}-\frac{2 \cdot \mathbf{N}_{1}{ }^{2}}{\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=\mathbf{0} \quad \mathbf{G N}-\left[\frac{2 \cdot\left(\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{1}{ }^{2}-\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right)}{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}\right]=0\)
\(\mathbf{N R}-\frac{\mathbf{2} \cdot \mathbf{N}_{1} \cdot\left(\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{1}{ }^{2}-\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right)}{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=\mathbf{0}\)


\section*{Unit.}

AB := \(\mathbf{1}\)
Given.
\(\mathrm{N}_{1}\) := . 15
\(\mathrm{N}_{2}:=.6\)
Descriptions.

\section*{Just Another Ellipse}

Given the difference between the foci and difference between the proportional radii, etc., etc.
\(\mathbf{C D}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{D E}:=\mathbf{2} \cdot \mathbf{C D} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{B C}:=\mathbf{A B}-\mathbf{N}_{\mathbf{2}}\)
\(\mathbf{F G}:=\mathbf{D E}+\mathbf{A B} \quad \mathbf{A E}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D}\)
\(\mathbf{A H}:=\mathbf{A E} \quad \mathbf{B H}:=\mathbf{B D}\)
\(\mathbf{A J}:=\frac{\mathbf{A B}^{2}+\mathbf{A H}^{2}-\mathbf{B H}^{2}}{2 \cdot \mathbf{A B}} \quad \mathbf{H J}:=\sqrt{\mathbf{A H}^{2}-\mathbf{A J}^{2}}\)

\section*{Definitions.}
\(\mathbf{A E}=\mathbf{0 . 7 5} \quad \mathbf{B D}=\mathbf{0 . 5 5}\)
\(A J=0.63 \quad H J=0.40694\)
\(C D-\mathbf{N}_{1}=0 \quad D E-2 \cdot N_{1}=0 \quad A C-N_{2}=0 \quad B C-\left(1-N_{2}\right)=0\)
\(\mathbf{F G}-\left(\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)=\mathbf{0} \quad \mathbf{A E}-\left(\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{1}}\right)=\mathbf{0} \quad \mathbf{B D}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right)=\mathbf{0}\)
\(\mathbf{A H}-\left(\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{1}}\right)=\mathbf{0} \quad \mathbf{B H}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right)=\mathbf{0}\)
\(\mathbf{A J}-\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{1}+\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}\right)=\mathbf{0} \quad \mathbf{H J}-\sqrt{4 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot\left(\mathbf{1 - N _ { 2 }}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{1}\right)}=\mathbf{0}\)
\[
\begin{aligned}
& \begin{array}{lllllll} 
& & & B D & & \\
\hline
\end{array} \\
& \text { Unit }=1.00000 \\
& \mathrm{AB}=1.00000 \quad \mathrm{AE}=\mathbf{0 . 7 5 0 0 0} \\
& \mathrm{N}_{1}=\mathbf{0 . 1 5 0 0 0} \quad \mathrm{N}_{2}=\mathbf{0 . 6 0 0 0 0} \quad \mathrm{BD}=0.55000 \\
& \mathrm{X}=3.00000 \quad \mathrm{X}=12.00000 \quad \mathrm{AJ}=\mathbf{0 . 6 3 0 0 0} \\
& \mathbf{Y}=\mathbf{2 0 . 0 0 0 0 0} \quad \mathbf{Y}=\mathbf{2 0 . 0 0 0 0 0} \quad \text { HJ }=\mathbf{0 . 4 0 6 9 4}
\end{aligned}
\]
\(\overbrace{n \rightarrow 2}^{0}\)

\section*{Unit.}

CD := 1
Given.
\(\mathbf{N}_{\mathbf{1}}:=.278 \quad\) EF:= \(\mathbf{N}_{\mathbf{1}}\)
041205A
Descriptions.
\(\mathbf{C O}:=\frac{\mathbf{C D}}{2} \quad \mathbf{C E}:=\frac{\mathbf{C D}}{\mathbf{N}_{2}} \quad \mathbf{C G}:=\mathbf{C E}+\mathbf{E F}\)
DH:= CD-CG+2•EF CI := CG \(\quad\) DI \(:=\mathbf{D H}\)
IO \(:=\frac{\sqrt{2 \cdot \mathrm{CI}^{2}-\mathrm{CD}^{2}+2 \cdot \mathrm{DI}^{2}}}{2}\)
\(\mathbf{I P}:=\frac{\sqrt{(-\mathbf{C D}+\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}+\mathbf{C I})(\mathbf{C D}-\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}-\mathbf{C I})}}{2 \cdot \mathbf{C D}}\)

Definitions.
\(\mathbf{2} \cdot \frac{\sqrt{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{1}+\mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}}{\mathbf{N}_{\mathbf{2}}}-\mathbf{I P}=\mathbf{0}\)

\section*{Mixing methods of naming}

\(\sim_{N=3}^{\infty}\) 041205B
Descriptions.
\(\mathbf{C O}:=\frac{\mathbf{C D}}{2} \quad\) EF \(:=\mathrm{N}_{1}\)
\(\mathbf{C E}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{C G}:=\mathbf{C E}+\mathbf{E F} \quad \mathbf{D H}:=\mathbf{C D}-\mathbf{C G}+\mathbf{2} \cdot \mathbf{E F}\)
\(\mathbf{C I}:=\mathbf{C G} \quad\) DI \(:=\mathrm{DH} \quad\) IO \(:=\frac{\sqrt{2 \cdot \mathrm{CI}^{2}-\mathrm{CD}^{2}+2 \cdot \mathrm{DI}^{2}}}{2}\)
\(\mathbf{I P}:=\frac{\sqrt{(-\mathbf{C D}+\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}+\mathbf{C I})(\mathbf{C D}-\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}-\mathbf{C I})}}{2 \cdot \mathbf{C D}}\)

Definitions.
\(\mathbf{2} \cdot \sqrt{\left[-\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)\right]}-\mathbf{I P}=\mathbf{0}\)
Unit.
CD := 1
Given.
\(\mathrm{N}_{\mathbf{1}}:=.278\)
\(\mathbf{N}_{\mathbf{2}}:=.3\)


\(041305 b\)
Descriptions.
\[
\left(\sqrt{\mathbf{N}_{\mathbf{1}}}\right)^{\mathbf{3}}
\]

DH := 1
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{3 6} \quad \mathbf{F H}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{D F}:=\mathbf{D H}+\mathbf{F H} \quad \mathbf{A D}:=\frac{\mathbf{D F}}{\mathbf{2}} \quad \mathbf{E H}:=\sqrt{\mathbf{D H} \cdot \mathbf{F H}}\)
\(\mathbf{H I}:=\frac{\mathbf{E H} \cdot \mathbf{A D}}{\mathbf{F H}} \quad \mathbf{H M}:=\mathbf{E H}-\mathbf{2} \cdot(\mathbf{E H}-\mathbf{H I})\)
\(\mathrm{DE}:=\sqrt{\mathrm{DH}^{2}+\mathrm{EH}^{2}} \quad \mathrm{EF}:=\sqrt{\mathrm{FH}^{2}+\mathrm{EH}^{2}}\)


\section*{Definitions.}
\(\frac{F H}{H M}=216 \quad\left(\frac{F H}{D H}\right)^{1.5}=216 \quad \frac{F H}{H M}-\left(\frac{D H}{H M}\right)^{3}=0 \quad \frac{F H}{H M}-\left(\frac{E F}{D E}\right)^{3}=0\)
\(\mathbf{D F}-\left(1+\mathbf{N}_{1}\right)=\mathbf{0} \quad \mathbf{A D}-\frac{1+\mathbf{N}_{1}}{2}=\mathbf{0} \quad \mathbf{E H}-\sqrt{\mathbf{N}_{1}}=\mathbf{0}\)
\(H I-\frac{\mathrm{N}_{1}+1}{2 \cdot \sqrt{\mathrm{~N}_{1}}}=0 \quad H M-\frac{1}{\sqrt{\mathrm{~N}_{1}}}=0\)
\(\left.\mathbf{D E}-\sqrt{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}=\mathbf{0} \quad \mathbf{E F}-\sqrt{\left[\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)\right.}\right]=\mathbf{0}\)
\(N_{1}{ }^{\frac{3}{2}}=216 \quad\left(N_{1}\right)^{1.5}=216 \quad N_{1}{ }^{\frac{3}{2}}-\left(\sqrt{N_{1}}\right)^{3}=0 \quad N_{1}{ }^{\frac{3}{2}}-\left[\frac{\left.\sqrt{N_{1} \cdot\left(\mathbf{N}_{1}+1\right.}\right)}{\sqrt{N_{1}+1}}\right]^{3}=0\)
Mathcad 15 will not reduce this last one.
One can see the taxing of logic in terms of precision on the computer.
\(N_{1}{ }^{\frac{3}{2}}-\left(\frac{F H}{H M}\right)=3.694822 \times 10^{-13} \quad\left(N_{1}\right)^{1.5}-\left[\left(\frac{F H}{D H}\right)^{1.5}\right]=0 \quad N_{1}{ }^{\frac{3}{2}}-\left(\frac{D H}{H M}\right)^{3}=1.13687 \times 10^{-12} \quad N_{1}{ }^{\frac{3}{2}}-\left(\frac{\mathrm{EF}}{\mathrm{DE}}\right)^{3}=0\)


Unit. AB := 1
Given.
\(X:=4\)
\(\mathbf{Y}:=20\)

\section*{Straight Cubes}

Historically, the search for a figure which expresses cubes and cube roots has gone as far back as Plato, this figure demonstrates that the solution never found is due to the unit as traditionally used in constructions has to be not linear, but planer, i.e. the unit is proportional to the figure. There are at least three different structures in this figure which expresses the same ratio, I simply write up the major one.

\section*{Descriptions.}
\(\mathbf{A C}:=\mathbf{2} \cdot \mathbf{A B} \quad \mathbf{J X}:=\mathbf{A C} \cdot \frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{K X}:=\mathbf{A C}-\mathbf{J X} \quad \mathbf{M X}:=\sqrt{\mathbf{J X} \cdot \mathbf{K X}}\)
\(\mathbf{K M}:=\sqrt{\mathbf{M X}^{2}+\mathbf{K X}^{\mathbf{2}}} \quad \mathbf{M T}:=\frac{\mathbf{K M}}{2} \quad\) GM \(:=\mathbf{K M} \cdot \frac{\mathbf{M T}}{\mathbf{M X}}\)
\(\mathbf{H M}:=2 \cdot \mathbf{G M} \quad \mathbf{H X}:=\mathbf{H M}-\mathbf{M X} \quad\left(\frac{\mathbf{M X}}{\mathbf{J X}}\right)^{\mathbf{3}}-\frac{\mathbf{H X}}{\mathbf{J X}}=\mathbf{0}\)
Definitions.
\(A C-2=0 \quad J X-2 \cdot \frac{\mathbf{X}}{\mathbf{Y}}=0 \quad K X-\frac{2 \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{M X}-\frac{\sqrt{4 \cdot \mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{K M}-\frac{\sqrt{4 \cdot(\mathbf{Y}-\mathbf{X})}}{\sqrt{\mathbf{Y}}}=\mathbf{0}\)
\(\mathbf{M T}-\frac{\sqrt{\mathbf{Y}-\mathbf{X}}}{\sqrt{\mathbf{Y}}}=\mathbf{0} \quad \mathbf{G M}-\frac{\mathbf{Y}-\mathbf{X}}{\sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}}=\mathbf{0} \quad \mathbf{H M}-\frac{\mathbf{2} \cdot(\mathbf{Y}-\mathbf{X})}{\sqrt{\mathbf{X} \cdot(\mathbf{Y}-\mathbf{X})}}=\mathbf{0}\)
\(H X-\frac{2 \cdot(X-Y)^{2}}{Y \cdot \sqrt{X \cdot Y-X^{2}}}=0 \quad \frac{M X}{J X}-\frac{\sqrt{X \cdot Y-X^{2}}}{X}=0 \quad \frac{H X}{J X}-\frac{(X-Y)^{2}}{X \cdot \sqrt{X \cdot Y-X^{2}}}=0\)
\(\left(\frac{\sqrt{X \cdot Y-\mathbf{X}^{2}}}{X}\right)^{\mathbf{X}}=8 \quad \frac{(X-Y)^{2}}{X \cdot \sqrt{X \cdot Y-X^{2}}}=8\)
\(\frac{(Y-X) \cdot \sqrt{X \cdot Y-X^{2}}}{\mathbf{X}^{2}}-\frac{(X-Y)^{2}}{X \cdot \sqrt{X \cdot Y-X^{2}}}=0\)


042205

\section*{Descriptions.}
\[
\begin{array}{ll}
\mathbf{E I}:=\frac{\mathbf{D E}-\mathbf{F I}}{2} & \text { DI }:=\mathbf{D E}-\mathbf{E I} \\
\mathbf{E P}:=\sqrt{\mathbf{E I} \cdot \mathbf{D I}} & \text { AQ }:=\mathbf{E P}
\end{array}
\]

Definitions.
\(\mathbf{A Q}-\frac{\mathbf{1}}{\mathbf{2}} \cdot \sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)}=\mathbf{0}\)

\section*{Given the major axis and} the difference between the two foci, whatis the minor axis?
\(E D=2.083 \mathrm{in}\).
FI \(=1.787 \mathrm{in}\).
\(A Q=0.535 \mathrm{in}\).
\(A Q-\frac{\sqrt{(E D+F I) \cdot(E D-F I)}}{2}=0.000 \mathrm{in}\).
~~~~

\section*{042305A}

\section*{Descriptions.}

It seems that the bottom two figures came to mind while I was examining an ellipse. This consist of three different applications. This write-will be Plate A.

Is there a perfect way to write-up an ellipse? This whole ellipse is wholly determined by the ratio AB to AC.

\section*{Sum of Area}

042305A
Descriptions of ellipse
Plate A.
AB := 1
Given.
Y := 20
\(\mathbf{X}:=17\)
\(\mathbf{A C}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A C}=\mathbf{0 . 8 5} \quad \mathbf{B C}:=\mathbf{A B}-\mathbf{A C} \quad \mathbf{B P}:=\mathbf{2} \cdot \mathbf{A B}\)
\(\mathbf{A F}:=\sqrt{(\mathbf{B P}-\mathbf{B C}) \cdot \mathbf{B C}} \quad \mathbf{A F}=\mathbf{0 . 5 2 6 7 8 3} \quad \mathbf{C O}:=\mathbf{2} \cdot \mathbf{A C}\) \(\mathbf{N M}:=\mathbf{2} \cdot \mathbf{B C}\)

Descriptions AE, either CM or NO has to be given.
Given NO: NO := . 63455
CM := CO - NO + NM DO := NO CE := CM

Unit \(=\mathbf{1 . 0 0 0 0 0}\) XY \(=0.85000\) \(X=17.00000\) \(\mathrm{Y}=20.00000\) \(\mathrm{AB}=1.00000\) \(\mathrm{AC}=\mathbf{0 . 8 5 0 0 0}\) AD \(=0.64114\) \(A E=0.76743\) \(A F=0.52678\) \(C M=1.36545\) NO \(=0.63455\) \(\sqrt{\mathbf{A D}^{2}+\mathbf{A E}^{2}}-\mathbf{A B}=\mathbf{0 . 0 0 0 0 0}\)
\(\mathrm{AD}:=\frac{\sqrt{2 \cdot \mathrm{DO}^{2}-\mathrm{CO}^{2}+2 \cdot \mathrm{CE}^{2}}}{2} \quad\) (Pythagoras Revisted) \(\quad \mathrm{AD}=0.641135\)
\(\mathbf{D P}:=\mathbf{A B}+\mathbf{A D} \quad \mathbf{B D}:=\mathbf{B P}-\mathbf{D P} \quad \mathbf{A E}:=\sqrt{\mathbf{D P} \cdot \mathbf{B D}} \quad \mathbf{A E}=\mathbf{0 . 7 6 7 4 2 8}\)
\(\sqrt{{A D^{2}}^{2}+A E^{2}}-\mathbf{A B}=0\)
Definitions. The equation for \(A D\) is indifferent as to which side, \(D O\) or \(C D\), of the elliptical triangle given.
\(A C-\frac{X}{Y}=0 \quad B C-\frac{\mathbf{Y}-X}{Y}=0 \quad B P-2=0 \quad A F-\frac{\sqrt{\mathbf{Y}^{2}-X^{2}}}{Y}=0 \quad \mathbf{C O}-\frac{2 \cdot X}{Y}=0\)
\(N M-\frac{2 \cdot(Y-X)}{Y}=0 \quad C M-(2-N O)=0 \quad D O-N O=0 \quad C E-(2-N O)=0 \quad A D-\frac{\sqrt{N O \cdot Y^{2} \cdot(N O-2)-X^{2}+2 \cdot Y^{2}}}{Y}=0\)
\(D P-\frac{Y+\sqrt{N O^{2} \cdot Y^{2}-2 \cdot N O \cdot Y^{2}-X^{2}+2 \cdot Y^{2}}}{Y}=0 \quad B D-\frac{Y-\sqrt{N^{2} \cdot Y^{2}-2 \cdot N O \cdot Y^{2}-X^{2}+2 \cdot Y^{2}}}{Y}=0 \quad A E-\frac{\sqrt{Y^{2}+\left(2 \cdot N O \cdot Y^{2}-N O^{2} \cdot \mathbf{Y}^{2}+X^{2}-2 \cdot Y^{2}\right)}}{Y}=0\)

042305B
Descriptions.

\section*{Unit.}

AB := \(\mathbf{1}\)
\(\mathbf{B E}:=\mathbf{A B}\)
Given.
Y := 20
Descriptions. \(\quad \mathbf{X}:=12\)
\(\mathbf{B C}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A E}:=\mathbf{2} \cdot \mathbf{A B} \quad\) MN \(:=\mathbf{A E} \quad \mathbf{F N}:=\mathbf{A B}+\mathbf{B C}\)
\(\mathbf{F G}:=\sqrt{(\mathbf{M N}-\mathbf{F N}) \cdot \mathbf{F N}} \quad \mathbf{B D}:=\mathbf{F G}\)
\(A B^{2}-\left(B C^{2}+B D^{2}\right)=0\)

Definitions.
\[
\begin{aligned}
& \mathbf{B C}-\frac{\mathbf{X}}{\mathbf{Y}}=0 \quad \mathbf{A E}-2=0 \quad \mathbf{M N}-2=0 \\
& \mathbf{F N}-\frac{\mathbf{X}+\mathbf{Y}}{\mathbf{Y}}=0 \quad \mathbf{F G}-\frac{\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}}{\mathbf{Y}}=0 \\
& \mathbf{B D}-\frac{\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}}{\mathbf{Y}}=\mathbf{0}
\end{aligned}
\]

Sum of Area
Plate B.

Unit.
AD := 1
\(\mathbf{A E}:=\mathbf{A D}\)
Given.
\[
\begin{aligned}
& \mathbf{Y}:=\mathbf{2 0} \\
& \mathbf{X}:=\mathbf{1 2}
\end{aligned}
\]

Descriptions.

\section*{Sum of Area}

Plate C.

X := 12
\(\mathbf{A B}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A B}=\mathbf{0 . 6} \quad \mathbf{B E}:=\mathbf{A B}+\mathbf{A E} \quad \mathbf{D E}:=\mathbf{2} \cdot \mathbf{A D}\)
\(\mathbf{B D}:=\mathbf{D E}-\mathbf{B E} \quad \mathbf{A C}:=\sqrt{\mathbf{B E} \cdot \mathbf{B D}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B}\)
\(A D^{2}-\left(2 \cdot A B^{2}+2 \cdot A B \cdot B C+B C^{2}\right)=0\)
Definitions.
\(A B-\frac{X}{Y}=0 \quad B E-\frac{X+Y}{Y}=0 \quad D E-2=0\)
\(\mathbf{B D}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A C}-\frac{\sqrt{\mathbf{Y}^{2}-X^{2}}}{\mathbf{Y}}=0\)
\(B C-\frac{\sqrt{Y^{2}-X^{2}}-X}{Y}=0\)
\(A D^{2}-\left(2 \cdot A B^{2}+2 \cdot A B \cdot B C+B C^{2}\right)=0\)

Unit. AB := 1
Given.
\(\begin{array}{ll}\mathbf{x}:=\mathbf{9} & \mathbf{z}:=\mathbf{1 5} \\ \mathbf{w}:=\mathbf{2 0} & \mathbf{y}:=\mathbf{1 0}\end{array}\)

\section*{A January Ellipse}
\(\mathbf{H} \mathbf{x}-\frac{\sqrt{(\mathbf{w}+\mathbf{x}) \cdot(\mathbf{w}-\mathbf{x})}}{\mathbf{w}}=\mathbf{0}\)
\(\mathbf{G x}-\frac{\mathbf{x} \cdot \sqrt{(\mathbf{w}-\mathbf{x}) \cdot(\mathbf{w}+\mathbf{x})} \cdot \mathbf{y}}{\mathbf{w} \cdot[\mathbf{y} \cdot \sqrt{(\mathbf{w}-\mathbf{x}) \cdot(\mathbf{w}+\mathbf{x})}+\mathbf{w} \cdot \mathbf{z}]}=\mathbf{0}\)
\(\mathbf{D G}-\frac{\sqrt{(\mathbf{w}-\mathbf{x}) \cdot(\mathbf{w}+\mathbf{x})} \cdot \mathbf{z}}{\mathbf{y} \cdot \sqrt{(\mathbf{w}-\mathbf{x}) \cdot(\mathbf{w}+\mathbf{x})}+\mathbf{w} \cdot \mathbf{z}}=\mathbf{0}\)
\(\mathbf{B F}-\frac{\mathbf{x} \cdot \mathbf{z}}{\mathbf{w} \cdot \mathbf{z}-\mathbf{y} \cdot \sqrt{(\mathbf{w}-\mathbf{x}) \cdot(\mathbf{w}+\mathbf{x})}}=\mathbf{0}\)
\(F x-\frac{\sqrt{w^{2}-x^{2}} \cdot x \cdot y}{\left|w^{2} \cdot z-w \cdot y \cdot \sqrt{w^{2}-x^{2}}\right|}=0\)
\(E F-\frac{w \cdot z \cdot \sqrt{w^{2}-x^{2}}}{\left|w^{2} \cdot z-w \cdot y \cdot \sqrt{w^{2}-x^{2}}\right|}=0\)

\(\sim_{n}\)

Unit. \(A B:=1\)
Given. \(\quad X:=15\) \(\mathbf{Y}:=20\)
012906

\section*{Descriptions.}
\(\mathbf{A C}:=\mathbf{2} \cdot \mathbf{A B} \quad \mathbf{B X}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A X}:=\mathbf{A B}+\mathbf{B X} \quad \mathbf{C X}:=\mathbf{A C}-\mathbf{A X}\)
\(\mathbf{E X}:=\sqrt{\mathbf{A X} \cdot \mathbf{C X}} \quad \mathbf{F X}:=\frac{\mathbf{B X} \cdot \mathbf{E X}}{\mathbf{A B}+\mathbf{E X}} \quad \mathbf{B D}:=\mathbf{E X} \cdot \frac{\mathbf{A B}}{\mathbf{F X}}\)
\(\mathbf{B F}:=\mathbf{B X}-\mathbf{F X} \quad \mathbf{B H}:=\frac{\mathbf{B F}}{2} \quad \mathbf{A H}:=\mathbf{A B}+\mathbf{B H} \quad \mathbf{C H}:=\mathbf{A C}-\mathbf{A H}\)
\(\mathbf{H K}:=\sqrt{\mathbf{A H} \cdot \mathbf{C H}} \quad \mathbf{D H}:=\mathbf{B D}-\mathbf{B H} \quad \mathbf{D K}:=\sqrt{\mathbf{H K}^{2}+\mathbf{D H}^{2}}\)
DJ \(:=\mathbf{D H} \cdot \frac{\mathbf{D K}}{\mathbf{B D}} \quad \mathbf{J K}:=\mathbf{D K}-\mathbf{D J} \quad \mathbf{D M}:=\mathbf{D K}-\mathbf{2} \cdot \mathbf{J K}\)

\section*{Given CX what is CN?}

\(\mathbf{D N}:=\mathbf{D H} \cdot \frac{\mathbf{D M}}{\mathbf{D K}} \quad \mathbf{B N}:=\mathbf{B D}-\mathbf{D N} \quad \mathbf{C N}:=\mathbf{A B}-\mathbf{B N}\)
Definitions.
\(\mathbf{A C}-\mathbf{2}=\mathbf{0} \quad \mathbf{B X}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A X}-\frac{\mathbf{X}+\mathbf{Y}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{C X}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{E X}-\frac{\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{F X}-\frac{\mathbf{X} \cdot \sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{\mathbf{Y} \cdot[\mathbf{Y}+\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}=\mathbf{0} \quad \mathbf{B D}-\frac{\mathbf{Y}+\sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{\mathbf{X}}=\mathbf{0}\)
\(\mathbf{B F}-\frac{\mathbf{X}}{\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}}=\mathbf{0} \quad \mathbf{B H}-\frac{\mathbf{X}}{2 \cdot\left(\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}=0 \quad \mathbf{A H}:=\frac{\mathbf{X}+2 \cdot \mathbf{Y}+2 \cdot \sqrt{\mathbf{Y}^{2}-X^{2}}}{2 \cdot\left(\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)} \quad \mathbf{C H}-\frac{2 \cdot \mathbf{Y}-\mathbf{X}+2 \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}}{2 \cdot\left(\mathbf{Y}+\sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}\right)}=0\)

\(D J-\frac{\left(4 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-3 \cdot X^{2}+4 \cdot Y^{2}\right) \cdot \sqrt{\left(4 \cdot X^{2} \cdot Y-8 \cdot Y^{3}\right)} \cdot \sqrt{Y^{2}-X^{2}}+8 \cdot X^{2} \cdot Y^{2}-X^{4}-8 \cdot Y^{4}}{2 \cdot X \cdot\left(Y+\sqrt{Y^{2}-X^{2}}\right) \cdot\left[Y+\sqrt{-(X-Y) \cdot(X+Y)} \cdot \sqrt{X^{2}-2 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-2 \cdot Y^{2}}\right.}=0 \quad J K-\frac{\sqrt{8 \cdot X^{2} \cdot Y^{2}-8 \cdot Y^{4}-X^{4}-8 \cdot Y^{3} \cdot \sqrt{Y^{2}-X^{2}}+4 \cdot X^{2} \cdot Y \cdot \sqrt{Y^{2}-X^{2}} \cdot X}=0}{2 \cdot \sqrt{X^{2}-2 \cdot Y} \cdot \sqrt{Y^{2}-X^{2}}-2 \cdot Y^{2} \cdot\left(2 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-X^{2}+2 \cdot Y^{2}\right)}=0\)
\(c^{2} \mathrm{c}^{2} \mathrm{~S}^{8}\)
DM \(-\frac{2 \cdot \sqrt{\left(4 \cdot X^{2} \cdot Y-8 \cdot Y^{3}\right) \cdot \sqrt{\mathbf{Y}^{2}-X^{2}}+8 \cdot \mathbf{X}^{2} \cdot \mathbf{Y}^{2}-\mathrm{X}^{4}-8 \cdot \mathbf{Y}^{4}} \cdot\left(\mathbf{X}^{2}-\mathbf{Y} \cdot \sqrt{\mathbf{Y}^{2}-\mathrm{X}^{2}}-\mathrm{Y}^{2}\right)}{3}=0\)
\[
X \cdot\left(x^{2}-2 \cdot y \cdot \sqrt{Y^{2}-x^{2}}-2 \cdot y^{2}\right)^{\frac{3}{2}}
\]

DN \(-\frac{\left(4 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-3 \cdot X^{2}+4 \cdot Y^{2}\right) \cdot\left(X^{2}-Y \cdot \sqrt{Y^{2}-X^{2}}-Y^{2}\right)}{X \cdot\left(Y+\sqrt{Y^{2}-X^{2}}\right) \cdot\left(X^{2}-2 \cdot Y \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}-2 \cdot Y^{2}\right)}=0\)
\(B N-\frac{X \cdot\left(2 \cdot X^{2}-3 \cdot Y \cdot \sqrt{Y^{2}-X^{2}}-3 \cdot Y^{2}\right)}{3 \cdot X^{2} \cdot Y-4 \cdot Y^{3}+X^{2} \cdot \sqrt{Y^{2}-X^{2}}-4 \cdot Y^{2} \cdot \sqrt{Y^{2}-X^{2}}}=0\)
\(\mathbf{C N}-\frac{(\mathbf{Y}-\mathbf{X}) \cdot\left[(\mathbf{X}+4 \cdot \mathbf{Y}) \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}+\mathbf{X} \cdot \mathbf{Y}-2 \cdot \mathbf{X}^{2}+4 \cdot \mathbf{Y}^{2}\right]}{\left(4 \cdot \mathbf{Y}^{2}-\mathbf{X}^{2}\right) \cdot \sqrt{\mathbf{Y}^{2}-\mathbf{X}^{2}}+4 \cdot \mathbf{Y}^{3}-\mathbf{3} \cdot \mathbf{X}^{2} \cdot \mathbf{Y}}=0\)

102606A
Unit.
AB := 1
Given.
\(\mathbf{Y}:=20\)

Descriptions.
\(\mathbf{X}:=9\)
\(\mathbf{A N}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A K}:=\mathbf{A B} \quad \mathbf{A F}:=\mathbf{A B} \quad \mathbf{K N}:=\sqrt{\mathbf{A N}^{2}+\mathbf{A K}^{2}}\)
FG := \(\frac{\text { AN } \cdot 2 \cdot A B}{\text { KN }} \quad\) FG \(=0.820729\)
\(\mathbf{G H}:=\frac{\mathbf{A B} \cdot \mathbf{F G}}{\mathbf{K N}} \quad \mathbf{G H}=\mathbf{0 . 7 4 8 4 4 1} \quad\) GO \(:=\mathbf{G H}-\mathbf{A N}\)
FH := \(\frac{\mathbf{A N} \cdot \mathbf{F G}}{\mathbf{K N}} \quad \mathbf{A H}:=\mathbf{A F}-\mathbf{F H} \quad \mathbf{A H}=\mathbf{0 . 6 6 3 2 0 2}\)
\(\mathbf{C N}:=\frac{\mathbf{G O} \cdot \mathbf{A B}}{\mathbf{F H}} \quad \mathbf{A C}:=\mathbf{C N}+\mathbf{A N} \quad \mathbf{A C}=\mathbf{1 . 3 3 6 1 1 1}\)
AJ := GH \(\quad\) CJ \(:=\mathbf{A C}-\mathbf{A J} \quad\) CE \(:=\mathbf{C J} \quad\) CE \(=\mathbf{0 . 5 8 7 6 7}\)
\(\sqrt{\mathbf{A C} \cdot \mathbf{A J}}=1 \quad\) Circles are to each other as their radii.
Definitions.
\(\mathbf{A N}-\frac{\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A K}-\mathbf{1}=\mathbf{0} \quad \mathbf{A F}-\mathbf{1}=\mathbf{0}\)
\(K N-\frac{\sqrt{X^{2}+Y^{2}}}{Y}=0 \quad F G-\frac{2 \cdot X}{\sqrt{X^{2}+Y^{2}}}=0\)
\(G H-\frac{2 \cdot X \cdot Y}{X^{2}+Y^{2}}=0 \quad G O-\frac{X \cdot Y^{2}-X^{3}}{Y \cdot\left(X^{2}+Y^{2}\right)}=0 \quad F H-\frac{2 \cdot X^{2}}{X^{2}+Y^{2}}=0 \quad A H-\frac{Y^{2}-X^{2}}{X^{2}+Y^{2}}=0 \quad \mathbf{C N}-\frac{Y^{2}-X^{2}}{2 \cdot X \cdot Y}=0 \quad \begin{aligned} & \pi \cdot A B^{2}=3.141593 \\ & \pi \cdot A C C^{2}=5.608349\end{aligned}\)
\(A C-\frac{X^{2}+Y^{2}}{2 \cdot X \cdot Y}=0 \quad A J-\frac{2 \cdot X \cdot Y}{X^{2}+Y^{2}}=0\)
\(C J-\frac{(X-Y)^{2} \cdot(X+Y)^{2}}{2 \cdot X \cdot Y \cdot\left(X^{2}+Y^{2}\right)}=0\)
\(C E-\frac{(X-Y)^{2} \cdot(X+Y)^{2}}{2 \cdot X \cdot Y \cdot\left(X^{2}+Y^{2}\right)}=0\)
\[
\pi \cdot \mathbf{A \mathbf { J } ^ { 2 }}=1.759806
\]

Unit \(=1.00000\) XY \(=0.45000\) \(\mathrm{X}=9.00000\) \(\mathrm{Y}=20.00000\) \(\mathrm{AB}=1.00000\) AN \(=0.45000\) FG \(=0.82073\) GH \(=0.74844\) AJ \(=0.74844\) \(\mathrm{AH}=0.66320\) CE = 0.58767 \(\mathrm{AC}=1.33611\) \(\sqrt{\text { AC•AJ }}=1.00000\) \(\frac{\mathrm{X}}{\mathrm{Y}}=0.45000\) AN \(-\frac{X}{Y}=0.00000\) \(\pi \cdot \mathrm{AB}^{2}=3.14159\) \(\pi \cdot A C^{2}=5.60835\) \(\pi \cdot \mathrm{AJ}^{2}=1.75981\) \(\sqrt{\left(\pi \cdot \mathbf{A C}^{2}\right) \cdot\left(\pi \cdot \mathbf{A J}^{2}\right)}-\left(\pi \cdot \mathbf{A B}^{2}\right)=0.00000\)

\[
\sqrt{\pi \cdot A \mathbf{J}^{2} \cdot \pi \cdot A \mathbf{C}^{2}}-\pi \cdot \mathbf{A B ^ { 2 }}=0
\]

CN

\section*{102606B}

\section*{Descriptions.}

Unit.
AB := \(\mathbf{1}\)
Given.
\(\mathbf{Y}:=\mathbf{2 0}\)
\(\mathbf{A C}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B C}:=\mathbf{A B}-\mathbf{A C}\)
\(\mathrm{BH}:=\frac{\mathrm{BC}^{2}}{2 \cdot \mathrm{AB}} \quad\) (Pythagoras Revisited) \(\quad \mathrm{BH}=0.15125\)
\(\mathbf{B D}:=\mathbf{2} \cdot \mathbf{B H} \quad \mathbf{A D}:=\mathbf{A B}-\mathbf{B D} \quad\) FG \(:=\mathbf{B D}\)
\(\sqrt{\mathbf{A B} \cdot \mathbf{B D}}-\mathbf{B C}=\mathbf{0}\)
Definitions.
\[
\begin{aligned}
& \mathbf{A C}-\frac{\mathbf{X}}{\mathbf{Y}}=0 \quad \mathbf{B C}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=0 \quad \mathbf{B H}-\frac{(\mathbf{X}-\mathbf{Y})^{2}}{2 \cdot \mathbf{Y}^{2}}=0 \\
& \mathbf{B D}-\frac{(\mathbf{X}-\mathbf{Y})^{2}}{\mathbf{Y}^{2}}=0 \quad \mathbf{A D}-\frac{\mathbf{X} \cdot(2 \cdot \mathbf{Y}-\mathbf{X})}{\mathbf{Y}^{2}}=0 \\
& \mathbf{F G}-\frac{(\mathbf{X}-\mathbf{Y})^{2}}{\mathbf{Y}^{2}}=0
\end{aligned}
\]

\section*{Angles and Area Plate B}

\(\sim_{n}^{\infty}\)
110706 Sketchbook A
Descriptions.
\(\mathbf{A E}:=\mathbf{A C}\)
\(\mathbf{D E}:=\sqrt{\mathbf{A E}^{2}-\mathbf{A D}^{2}} \quad \mathbf{A F}:=\frac{\mathbf{A E}}{2}\)
\(\mathbf{A G}:=\frac{\mathbf{A E} \cdot \mathbf{A F}}{\mathbf{A D}} \quad \mathbf{A H}:=\mathbf{A G} \quad \mathbf{A I}:=\frac{\mathbf{A C}}{2}\)
AJ \(:=\frac{\mathbf{A I} \cdot \mathbf{A C}}{\mathbf{A H}} \quad \mathbf{A J}-\mathbf{N}_{\mathbf{1}}=\mathbf{0}\)
\(\mathbf{C J}:=\sqrt{\mathrm{AC}^{2}-\mathrm{AJ}^{2}} \quad \mathrm{CJ}=4.305244\)

\section*{Definitions.}
\(A E-\mathbf{N}_{\mathbf{2}}=\mathbf{0}\)
\(D E-\sqrt{N_{2}{ }^{2}-N_{1}{ }^{2}}=0 \quad A F-\frac{N_{2}}{2}=0\)
\(A G-\frac{\mathbf{N}_{2}{ }^{2}}{2 \cdot \mathrm{~N}_{1}}=0 \quad \mathrm{AH}-\frac{\mathrm{N}_{\mathbf{2}}{ }^{2}}{2 \cdot \mathrm{~N}_{1}}=0 \quad \mathrm{AI}-\frac{\mathrm{N}_{\mathbf{2}}}{2}=0\)
\(\mathrm{AJ}-\mathrm{N}_{1}=\mathbf{0} \quad \mathrm{CJ}-\sqrt{\mathrm{N}_{2}{ }^{2}-\mathrm{N}_{1}{ }^{2}}=\mathbf{0}\)

\section*{Going around in a circle}

What is the tanget to AD from C? Although no one in their right mind would do this for a circle, it is essential as an introduction to finding the inverse ellilpse for any external point to it.

There are, as one can notice, a great deal of work left for some future time to do, this was one of them. These sketches are usually only complete to show what the finished project is aiming at, or to indicate the need for parsing to construct many individual projects.

B

Really? Is this as far as you got on this project?
2008-0611

Unit. \(A B:=1\)
Given. \(X:=8 \quad W:=14\)
\(Y:=20 \quad Z:=20\)

\section*{110806}

\section*{Descriptions.}
\(\mathbf{A C}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A D}:=\frac{\mathbf{X}}{2 \cdot \mathbf{Y}} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{D E}:=\sqrt{\mathbf{A D} \cdot \mathbf{B D}}\) \(\mathbf{F G}:=\mathbf{A B}-\mathbf{2} \cdot \mathbf{A D} \quad \mathbf{H J}:=\mathbf{F G} \quad \mathbf{H M}:=\frac{\mathbf{H J} \cdot \mathbf{W}}{\mathbf{Z}} \quad \mathbf{F K}:=\mathbf{H M}+\mathbf{A D}\)
\[
\text { FN }:=\mathbf{F K} \quad \text { GM }:=\mathbf{A B}-\mathbf{F K} \quad \mathbf{G N}:=\mathbf{G M}
\]

Definitions.
\(A C-\frac{1}{2}=0 \quad A D-\frac{X}{2 \cdot Y}=0 \quad B D-\frac{2 \cdot Y-X}{2 \cdot Y}=0\)
\(\mathbf{D E}-\frac{\sqrt{\mathbf{X} \cdot(2 \cdot \mathbf{Y}-\mathbf{X})}}{2 \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{F G}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{H J}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0}\) \(\mathbf{H M}-\frac{\mathbf{W} \cdot(\mathbf{Y}-\mathbf{X})}{\mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{F K}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X}+\mathbf{X} \cdot \mathbf{Z}}{2 \cdot \mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0}\)
\(\mathbf{F N}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X}+\mathbf{X} \cdot \mathbf{Z}}{2 \cdot \mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0}\)
\(\mathbf{G M}-\frac{\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{X} \cdot \mathbf{Z}+\mathbf{2} \cdot \mathbf{Y} \cdot \mathbf{Z}}{2 \cdot \mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0}\)

\(\mathrm{AB}=10.63083 \mathrm{~cm} \quad \mathrm{HJ}=6.37850 \mathrm{~cm}\) \(A C=5.31542 \mathrm{~cm} \quad H M=4.46495 \mathrm{~cm}\) \(A D=2.12617 \mathrm{~cm} \quad F K=6.59112 \mathrm{~cm}\) \(B D=8.50467 \mathrm{~cm} \quad \mathrm{FN}=6.59112 \mathrm{~cm}\) \(\mathrm{DE}=4.25233 \mathrm{~cm} \quad \mathrm{GM}=4.03972 \mathrm{~cm}\) FG \(=6.37850 \mathrm{~cm} \quad G N=4.03972 \mathrm{~cm}\)
\(\mathrm{AB}=\mathbf{1 . 0 0 0 0 0} \quad \mathrm{HM}=\mathbf{0 . 4 2 0 0 0}\) \(\mathrm{AC}=\mathbf{0 . 5 0 0 0 0}\) \(\mathrm{BD}=0.8000 \quad \mathrm{FN}=0.62000\) EE \(=0.80000 \quad\) GM \(=0.38000\) FG \(=0.60000\) GN \(=0.38000\)

AC \(-\frac{1}{2}=0.00000\)
\(\mathrm{AD}-\frac{\mathrm{X}}{2 \cdot \mathrm{Y}}=0.00000\)
BD- \(\frac{2 \cdot Y-X}{2 \cdot Y}=0.00000\)
DE- \(\frac{\sqrt{X \cdot(2 \cdot Y-X)}}{2 \cdot Y}=0.00000\)
FG- \(\frac{\mathbf{Y}-\mathrm{X}}{\mathbf{Y}}=\mathbf{0 . 0 0 0 0 0}\)
\(\mathrm{HM}-\frac{\mathrm{W} \cdot(\mathrm{Y}-\mathrm{X})}{\mathrm{Y} \cdot \mathrm{Z}}=\mathbf{0 . 0 0 0 0 0}\)
FK- \(\frac{(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{Y}-\mathbf{2} \cdot \mathrm{W} \cdot \mathbf{X})+\mathbf{X} \cdot \mathbf{Z}}{\mathbf{2} \cdot \mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0 . 0 0 0 0 0}\)
FN- \(\frac{(2 \cdot \mathrm{~W} \cdot \mathrm{Y}-2 \cdot \mathrm{~W} \cdot \mathrm{X})+\mathrm{X} \cdot \mathrm{Z}}{2 \cdot \mathrm{Y} \cdot \mathrm{Z}}=0.00000\)
GM- \(\frac{(2 \cdot W \cdot X-2 \cdot W \cdot Y \cdot X \cdot Z)+2 \cdot Y \cdot Z}{2 \cdot Y \cdot Z}=0.00000\)
GN- \(\frac{(\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X}-2 \cdot \mathbf{W} \cdot \mathbf{Y} \cdot \mathbf{X} \cdot \mathbf{Z})+\mathbf{2} \cdot \mathrm{Y} \cdot \mathbf{Z}}{2 \cdot \mathrm{Y} \cdot \mathrm{Z}}=\mathbf{0 . 0 0 0 0 0}\)

Unit.
DF:= 1
Given.
\(\mathbf{N}_{\mathbf{1}}:=.49 \quad \mathbf{A I}:=\mathbf{N}_{\mathbf{1}}\)
060807A
Descriptions.
AF \(:=\frac{\text { DF }}{2} \quad\) AN \(:=\mathbf{A I} \quad\) AD \(:=\mathbf{A F}\)
FI \(:=\sqrt{\mathbf{A F}^{2}+\mathbf{A I}^{\mathbf{2}}} \quad \mathbf{D E}:=\frac{\mathbf{A I} \cdot \mathbf{D F}}{\mathbf{F I}}\)
DH \(:=\frac{\mathbf{D E}^{2}}{\mathbf{D F}} \quad\) GH \(:=\mathrm{DH}\)
\(\mathbf{G N}:=\mathbf{A D}-(\mathbf{A N}+\mathbf{G H}+\mathbf{D H})\)

Definitions.

\(\frac{1}{2}-\mathbf{A F}=\mathbf{0} \quad \frac{1}{2} \cdot \sqrt{1+4 \cdot \mathbf{N}_{1}{ }^{2}}-\mathbf{F I}=\mathbf{0}\)
\(2 \cdot \frac{N_{1}}{\sqrt{1+4 N_{1}{ }^{2}}}-D E=0 \quad 4 \cdot \frac{N_{1}{ }^{2}}{\left(1+4 \cdot N_{1}{ }^{2}\right)}-D H=0\)
\(\frac{\left(2 \cdot N_{1}+1\right) \cdot\left(1-4 \cdot N_{1}-4 \cdot N_{1}{ }^{2}\right)}{2 \cdot\left(4 \cdot N_{1}{ }^{2}+1\right)}-G N=0\)

060807B

Unit.
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 3 8 6 6 7} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{1}}\) \(\mathbf{N}_{\mathbf{2}}:=\mathbf{2 . 0 5 1 9 9} \quad \mathbf{A I}:=\mathbf{N}_{\mathbf{2}}\) \(\mathbf{N}_{\mathbf{3}}\) := \(\mathbf{3 . 5 7 0 3 9}\) \(\mathbf{N}_{4}:=.94919\) CD := \(\mathbf{N}_{\mathbf{4}}\)
\(\mathbf{C E}:=\mathbf{N}_{\mathbf{3}}\)

\section*{Equation for an Ellipse}

061307

\section*{Descriptions}

Definitions.

\section*{Twin Cresent Ellipse}

The blue circle is always tangent to both and its center is always on the ellipse, Therefore, it always resides in a cresant and, it switches between inclusion and exclusion at the intersection of all three for each of the other circles. This means that it is aways excluded from an area included in the other two.

In this ellipse, the foci, \(A\) and \(B\), are the first thing drawn. Then one establishes a ratio with the unit. This affords one with a simple equation for the radii from the foci without even having to write it us, the arithmetic reveals the all. The ellipse is produced by the center of the circle CD. This is probably one of the simplest equations for an ellipse. One effectively has an ellipse produced by conjugate cresants by a circle always tangent to both. The figure might start you thinking about an alternate perspective to cosmology.
CN
Unit.
AB := 1
Given.
\(\mathbf{X}:=7 \quad Z:=12\)
062007A

\section*{Descriptions.}
\(\mathbf{A C}:=\mathbf{2} \cdot \mathbf{A B} \quad \mathbf{B C}:=\mathbf{A B} \quad \mathbf{B X}:=\mathbf{B C} \cdot \frac{\mathbf{X}}{\mathbf{W}} \quad \mathbf{A X}:=\mathbf{A B}+\mathbf{B X}\)
\(\mathbf{B Z}:=\mathbf{B C} \cdot \frac{\mathbf{Z}}{\mathbf{Y}} \quad \mathbf{A Z}:=\mathbf{A B}+\mathbf{B Z} \quad \mathbf{E Z}:=\sqrt{\mathbf{A Z} \cdot(\mathbf{A C}-\mathbf{A Z})}\)
\(\mathbf{G Z}:=B X \cdot \frac{\mathbf{E Z}}{\mathbf{B C}} \quad \mathbf{B J}:=\frac{\mathbf{B C}^{2}}{2 \cdot \mathbf{B Z}} \quad B K:=2 \cdot B J\)
\(\mathbf{K Z}:=\mathbf{B K}-\mathbf{B Z} \quad \mathbf{G K}:=\sqrt{\mathbf{G Z} \mathbf{Z}^{2}+\mathbf{K Z} \mathbf{Z}^{2}}\)

Definitions.
\(\mathbf{A C}-2=\mathbf{0} \quad \mathbf{B C}-1 \quad \mathbf{B X}-\frac{\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{A X}-\frac{\mathbf{W}+\mathbf{X}}{\mathbf{W}}=\mathbf{0}\)
\(\mathbf{B Z}-\frac{\mathbf{Z}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{A Z}-\frac{\mathbf{Y}+\mathbf{Z}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{E Z}-\frac{\sqrt{(\mathbf{Y}-\mathbf{Z}) \cdot(\mathbf{Y}+\mathbf{Z})}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{G Z}-\frac{\mathbf{X} \cdot \sqrt{(\mathbf{Y}-\mathbf{Z}) \cdot(\mathbf{Y}+\mathbf{Z})}}{\mathbf{W} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{B J}-\frac{\mathbf{Y}}{2 \cdot \mathbf{Z}}=\mathbf{0} \quad \mathbf{B K}-\frac{\mathbf{Y}}{\mathbf{Z}}=\mathbf{0}\)
\(\mathbf{K Z}-\frac{(\mathbf{Y}-\mathbf{Z}) \cdot(\mathbf{Y}+\mathbf{Z})}{\mathbf{Y} \cdot \mathbf{Z}}=\mathbf{0}\)
\(\mathbf{G K}-\frac{\sqrt{(\mathbf{Y}-Z) \cdot(\mathbf{Y}+Z) \cdot\left(\mathbf{W}^{2} \cdot \mathbf{Y}^{2}-\mathbf{W}^{2} \cdot \mathbf{Z}^{2}+\mathbf{X}^{2} \cdot Z^{2}\right)}}{\mathbf{W} \cdot \mathbf{Y} \cdot \mathbf{Z}}=0\)

Tangent from Major Axis

062007B
Descriptions.

Unit.

\section*{AB := \(\mathbf{1}\)}

Given.
\(\mathbf{N}_{1}:=.39368 \quad\) AI \(:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{1 . 2 5 1 7 0} \quad \mathbf{A D}:=\mathbf{N}_{\mathbf{2}}\)

AJ \(:=\frac{A D}{2} \quad\) From 080193
\(\mathbf{E K}:=\frac{\mathbf{A B} \cdot \sqrt{(2 \cdot \mathbf{A J}-\mathbf{A B}) \cdot(2 \cdot \mathbf{A J}+\mathbf{A B})}}{\mathbf{2} \cdot \mathbf{A J}}\)
\(\mathbf{A K}:=\sqrt{\mathbf{A B}^{2}-\mathbf{E K}} \quad \quad \mathbf{D K}:=\mathbf{A D}-\mathbf{A K} \quad \mathbf{F K}:=\frac{\mathbf{A I} \cdot \mathbf{E K}}{\mathbf{A B}}\)
\(\mathbf{D F}:=\sqrt{\mathbf{D K}^{2}+\mathbf{F K}^{2}} \quad \mathbf{A G}:=\sqrt{\mathbf{A B}^{2}-\mathbf{A I}^{2}} \quad \mathbf{A H}:=\mathbf{A G} \quad \mathbf{H K}:=\mathbf{A H}+\mathbf{A K}\)
\(\mathbf{G K}:=\mathbf{A G}-\mathbf{A K} \quad \mathbf{F G}:=\sqrt{\mathbf{F K}^{\mathbf{2}}+\mathbf{G K}^{\mathbf{2}}} \quad\) FM \(:=\mathbf{F G} \quad \mathbf{F H}:=\sqrt{\mathbf{H K}^{\mathbf{2}}+\mathbf{F K}^{\mathbf{2}}}\)
\(\mathbf{H M}:=\mathbf{F H}-\mathbf{F M} \quad\) HO \(:=\frac{\mathbf{H K} \cdot \mathbf{H M}}{\mathbf{F H}} \quad \mathbf{G H}:=\mathbf{2} \cdot \mathbf{A H} \quad\) GO \(:=\mathbf{G H}-\mathbf{H O}\)
MO := \(\frac{\text { FK } \cdot \text { HM }}{\text { FH }} \quad \frac{\text { GO }}{\text { MO }}-\frac{\text { DK }}{\text { FK }}=0\)

Definitions.
\(\mathbf{N}_{\mathbf{1}} \cdot \frac{\sqrt{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right)}}{\mathbf{N}_{\mathbf{2}}}-\mathbf{F K}=\mathbf{0}\)

\section*{Tangent from Major Axis}

\(\sim_{n=2}^{0}\)
062007C
\(\mathbf{B E}:=\mathbf{A B} \quad \mathbf{B X}:=\frac{\mathbf{X}}{\mathbf{W}} \quad \mathbf{A X}:=\mathbf{A B}+\mathbf{B X} \quad \mathbf{B Z}:=\frac{\mathbf{Z}}{\mathbf{Y}}\)
\(\mathbf{X Z}:=B X-B Z \quad C D:=2 \cdot B X \quad C F:=X Z\)
\(\mathbf{D F}:=\mathbf{C D}-\mathbf{C F} \quad\) FG \(:=\sqrt{\mathbf{C F} \cdot \mathbf{D F}} \quad\) BN \(:=\frac{\mathbf{B E} \cdot \mathbf{B X}}{2 \cdot \mathbf{F G}}\)
\(\mathbf{B P}:=\mathbf{2} \cdot \mathbf{B N} \quad \mathbf{F H}:=\mathbf{B E} \cdot \frac{\mathbf{F G}}{\mathbf{B X}} \quad \mathbf{M P}:=\mathbf{B P}-\mathbf{F H}\)
\(\mathbf{B R}:=\mathbf{B Z} \cdot \frac{\mathbf{B P}}{\mathbf{M P}} \quad \mathbf{P R}:=\sqrt{\mathbf{B P}^{2}+\mathbf{B R}^{2}}\)
Definitions.
\(\mathbf{B E}-\mathbf{1}=\mathbf{0} \quad \mathbf{B X}-\frac{\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{A X}-\frac{\mathbf{W}+\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{B Z}-\frac{\mathbf{Z}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{X Z}-\frac{\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}}{\mathbf{W} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{C D}-\mathbf{2} \cdot \frac{\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{C F}-\frac{\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z}}{\mathbf{W} \cdot \mathbf{Y}}=0\)
\(\mathbf{D F}-\frac{\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}}{\mathbf{W} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{F G}-\frac{\sqrt{(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}) \cdot(\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}}{\mathbf{W} \cdot \mathbf{Y}}=\mathbf{0}\)
\(\mathbf{B N}-\frac{\mathbf{X} \cdot \mathbf{Y}}{2 \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}) \cdot(\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}}=\mathbf{0}\)
\(\mathbf{B P}-\frac{\mathbf{X} \cdot \mathbf{Y}}{\sqrt{(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}) \cdot(\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}}=\mathbf{0}\)
\(\mathbf{F H}-\frac{\sqrt{(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}) \cdot(\mathbf{X} \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}}{\mathbf{X} \cdot \mathbf{Y}}=\mathbf{0}\)
\(\mathrm{BR}-\frac{\mathbf{X}^{2} \cdot \mathbf{Y} \cdot \sqrt{\mathbf{X}^{2} \cdot \mathbf{Y}^{2}-\mathbf{W}^{2} \cdot Z^{2}}}{\mathbf{W}^{2} \cdot Z \cdot \sqrt{(\mathbf{W} \cdot Z+\mathbf{X} \cdot \mathbf{Y}) \cdot(X \cdot Y-W \cdot Z)}}=0\)
\[
\mathbf{P R}-\frac{\mathbf{X} \cdot \mathbf{Y} \cdot \sqrt{\left(\mathbf{W}^{4} \cdot \mathbf{Z}^{2}-\mathbf{W}^{2} \cdot \mathbf{X}^{2} \cdot \mathbf{Z}^{2}+\mathbf{X}^{4} \cdot \mathbf{Y}^{2}\right)}}{\mathbf{W}^{2} \cdot \mathbf{Z} \cdot \sqrt{(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}) \cdot(X \cdot \mathbf{Y}-\mathbf{W} \cdot \mathbf{Z})}}=\mathbf{0}
\]

AB :=
Given
\(\begin{array}{ll}\mathbf{X}:=\mathbf{2 0} & Z:=\mathbf{1 0} \\ \mathbf{W}:=\mathbf{6} & \mathbf{Y}:=\mathbf{4}\end{array}\)

\section*{Descriptions.}
\[
\mathbf{M P}-\frac{\mathbf{w}^{2} \cdot Z^{2}}{\mathbf{X} \cdot \mathbf{Y} \cdot \sqrt{\mathbf{X}^{2} \cdot \mathbf{Y}^{2}-\mathbf{W}^{2} \cdot \mathbf{Z}^{2}}}=0
\]

\(\frac{\mathbf{X} \cdot \mathbf{Y}}{\sqrt{(\mathbf{W} \cdot \mathbf{Z}+\mathbf{X} \cdot \mathbf{Y}) \cdot(\mathrm{X} \cdot \mathrm{Y}-\mathrm{W} \cdot \mathbf{Z})}}-\mathrm{BP}=\mathbf{0 . 0 0 0 0 0}\) \(\mathbf{X}^{2} \cdot \mathbf{Y} \mathbf{x}^{2} \mathbf{Y}^{2}-\mathbf{W}^{2} \cdot \mathbf{Z}^{2}\)
\(\frac{X^{2} \cdot Y \cdot \sqrt{X^{2} \cdot Y^{2}-W^{2} \cdot Z^{2}}}{W^{2} \cdot Z \cdot \sqrt{(W \cdot Z+X \cdot Y) \cdot(X \cdot Y-W \cdot Z)}}-B R=0.00000\)
\(\frac{X \cdot Y \cdot \sqrt{\left(W^{4} \cdot Z^{2}-W^{2} \cdot X^{2} \cdot Z^{2}\right)+X^{4} \cdot Y^{2}}}{\mathbf{W}^{2} \cdot Z \cdot \sqrt{(W \cdot Z+X \cdot Y) \cdot(X \cdot Y-W \cdot Z)}}-P R=0.00000\)

CN
062007D
Descriptions.

Unit.
AB := 1
Given.
\(\mathbf{N}_{1}:=.40636 \quad\) AI \(:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=.60804 \quad \mathrm{AD}:=\mathbf{N}_{\mathbf{2}}\)
\(\mathbf{A J}:=\frac{\mathbf{A D}}{\mathbf{2}} \quad \mathbf{P K}:=\frac{\mathbf{A I} \cdot \sqrt{(\mathbf{2} \cdot \mathbf{A J}-\mathbf{A I}) \cdot(\mathbf{2} \cdot \mathbf{A J}+\mathbf{A I})}}{\mathbf{2} \cdot \mathbf{A J}} \quad \mathbf{A K}:=\sqrt{\mathbf{A I}^{\mathbf{2}}-\mathbf{P K}^{\mathbf{2}}}\)
\(\mathbf{D K}:=\mathbf{A D}-\mathbf{A K} \quad \mathbf{F K}:=\frac{\mathbf{P K} \cdot \mathbf{A B}}{\mathbf{A I}} \quad \mathbf{D F}:=\sqrt{\mathbf{D K}^{2}+\mathrm{FK}^{2}} \quad \mathbf{A G}:=\sqrt{\mathbf{A B}^{2}-\mathbf{A I}^{2}}\)
\(\mathbf{A H}:=\mathbf{A G} \quad \mathbf{H R}:=\mathbf{A H}+\mathbf{F K} \quad \mathbf{G R}:=\mathbf{A G}-\mathbf{F K} \quad \mathbf{F G}:=\sqrt{\mathbf{A K}^{\mathbf{2}}+\mathbf{G R}^{2}} \quad\) FM \(:=\mathbf{F G}\)
\(\mathbf{F H}:=\sqrt{\mathbf{H R}^{2}+\mathbf{A K}^{2}} \quad \mathbf{H M}:=\mathbf{F H}-\mathbf{F M} \quad\) HO \(:=\frac{\mathbf{H R} \cdot \mathbf{H M}}{\mathbf{F H}} \quad\) GH \(:=\mathbf{2} \cdot \mathbf{A H}\)
\(\mathbf{G O}:=\mathbf{G H}-\mathbf{H O} \quad\) MO \(:=\frac{\mathbf{A K} \cdot \mathbf{H M}}{\mathbf{F H}} \quad \frac{\text { GO }}{\mathbf{M O}}-\frac{\mathbf{F K}}{\mathbf{D K}}=\mathbf{0}\)

Definitions.
\(\frac{\sqrt{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{1}}\right)}}{\mathbf{N}_{\mathbf{2}}}-\mathbf{F K}=\mathbf{0}\)
Major \(:=\mathbf{N}_{\mathbf{1}} \cdot \frac{\sqrt{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right)}}{\mathbf{N}_{\mathbf{2}}}\)

Tangent from Minor Axis

Unit.
AB := 1
Given.
\(\mathbf{N}_{1}:=.64776 \quad\) AC \(:=\mathbf{N}_{1}\)
\(\mathbf{N}_{2}:=.5444 \quad\) EJ := \(\mathbf{N}_{2}\)
062407A

\section*{Descriptions}
\(\mathbf{A J}:=\sqrt{\mathbf{A B}^{2}-\mathbf{A C}^{2}} \quad \mathrm{FI}:=(\mathbf{A B}-\mathbf{E J})+\mathbf{A B} \quad \mathbf{D E}:=\sqrt{\mathbf{A J}^{2}-(\mathbf{A B}-\mathbf{E J})^{2}}\)
\(\mathbf{A N}:=\frac{\sqrt{\mathbf{D E}^{2} \cdot(\mathbf{D E}+\mathbf{A B}) \cdot(-\mathbf{D E}+\mathbf{A B})}}{\mathbf{D E}} \quad \mathbf{D N}:=\mathbf{A B}-\mathbf{A N} \quad \mathbf{G J}:=\mathbf{E J}-\mathbf{D N}\)
\(\mathbf{H I}:=\mathbf{F I}-\mathbf{D N} \quad \mathbf{G L}:=\frac{\mathbf{G J} \cdot \mathbf{2} \cdot \mathbf{D E}}{\mathbf{G} \mathbf{J}+\mathbf{H I}} \quad\) HL \(:=\mathbf{2} \cdot \mathbf{D E}-\mathbf{G L}\)
\(\mathbf{J L}:=\sqrt{\mathbf{G L} \mathbf{L}^{2}+\mathbf{G J} \mathbf{J}^{\mathbf{2}}}\)
IL \(:=\sqrt{\mathbf{H I}^{\mathbf{2}}+\mathbf{H L}^{\mathbf{2}}}\)
\((\mathbf{J L}+\mathbf{I L})-2 \cdot \mathbf{A B}=\mathbf{0}\)

\section*{Definitions:}

\section*{Found on the Internet}

Found the construction, now I explore it with Algebra.

\(A J-\sqrt{\left(1-N_{1}{ }^{2}\right)}=0 \quad F I-\left(2-N_{2}\right)=0 \quad D E-\sqrt{\left(2 \cdot N_{2}-N_{2}{ }^{2}-N_{1}{ }^{2}\right)}=0\)
\(\left.\sqrt{\left(N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1\right.}\right)-A N=0 \quad\left(\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}-N_{2}+1\right)-H I=0\)
\(1-\sqrt{\left(\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{2}+1\right)}-\mathbf{D N}=\mathbf{0} \quad \mathbf{N}_{2}+\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{2}+1}-\mathbf{1}-\mathbf{G J}=\mathbf{0}\)
\(\frac{\sqrt{2 \cdot N_{2}-N_{2}{ }^{2}-N_{1}{ }^{2}} \cdot\left(N_{2}+\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}-1\right.}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}}-G L=0 \quad \frac{\sqrt{2 \cdot N_{2}-N_{2}{ }^{2}-N_{1}{ }^{2}} \cdot\left(\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}-N_{2}+1\right.}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}}-\mathbf{H L}=0\)
\(\frac{\sqrt{N_{1}{ }^{2}-4 \cdot N_{2}+2 \cdot N_{2}{ }^{2}+2 \cdot\left(N_{2}-1\right) \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}+2}}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}}-J L=0 \quad \frac{\sqrt{N_{1}{ }^{2}-4 \cdot N_{2}+2 \cdot N_{2}{ }^{2}-2 \cdot\left(N_{2}-1\right) \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}+2}}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-2 \cdot N_{2}+1}}\)
\(\sim_{n=2}^{0}\)
Unit.
\(\mathrm{AB}:=1\)
Given.
\(\mathbf{W}:=20 \quad Y:=20\)
062407B

Descriptions.
\(\begin{array}{llll}\mathbf{A X}:=\frac{\mathbf{X}}{\mathbf{W}} & \mathbf{A Z}:=\frac{\mathbf{Z}}{\mathbf{Y}} & \mathbf{B X}:=\mathbf{A B}-\mathbf{A X} \quad \mathbf{A C}:=\mathbf{2} \cdot \mathbf{A B}\end{array}\)
\(\mathbf{B H}:=\mathbf{B X} \quad \mathbf{C Z}:=\mathbf{A C}-\mathbf{A Z} \quad \mathbf{M Z}:=\sqrt{\mathbf{A Z} \cdot \mathbf{C Z}}\)
\(\mathbf{G Z}:=\mathbf{B X} \cdot \frac{\mathbf{M Z}}{\mathbf{A B}} \quad \mathbf{B Z}:=\mathbf{A B}-\mathbf{A Z} \quad \mathbf{B N}:=\frac{\mathbf{A B}}{2} \quad \mathbf{B E}:=\mathbf{A B} \cdot \frac{\mathbf{B N}}{\mathbf{B Z}}\)
\(\mathbf{B O}:=\mathbf{2} \cdot \mathbf{B E} \quad \mathbf{O Z}:=\mathbf{B O}-\mathbf{B Z} \quad \mathbf{G O}:=\sqrt{\mathbf{O Z} \mathbf{Z}^{2}+\mathbf{G Z} \mathbf{Z}^{2}}\)

\section*{Definitions.}
\(\mathbf{A X}-\frac{\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{A Z}-\frac{\mathbf{Z}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B X}-\frac{\mathbf{W}-\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{A C}-\mathbf{2}=\mathbf{0}\)
\(\mathbf{B H}-\frac{\mathbf{W}-\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{C Z}-\frac{\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{M Z}-\frac{\sqrt{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{G Z}-\frac{(\mathbf{W}-\mathbf{X}) \cdot \sqrt{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}}{\mathbf{W} \cdot \mathbf{Y}}=\mathbf{0} \quad \mathbf{B Z}-\frac{\mathbf{Y}-\mathbf{Z}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B N}-\frac{\mathbf{1}}{\mathbf{2}}=\mathbf{0}\)
\(\mathbf{B E}-\frac{\mathbf{Y}}{\mathbf{2} \cdot(\mathbf{Y}-\mathbf{Z})}=\mathbf{0} \quad \mathbf{B O}-\frac{\mathbf{Y}}{\mathbf{Y}-\mathbf{Z}}=\mathbf{0} \quad \mathbf{O Z}-\frac{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}{\mathbf{Y} \cdot(\mathbf{Y}-\mathbf{Z})}=\mathbf{0}\)
\(G O-\frac{\sqrt{Z \cdot(2 \cdot Y-Z)} \cdot\left[\left(\mathbf{X}^{2}-\mathbf{2} \cdot \mathbf{W} \cdot \mathbf{X}\right) \cdot \mathbf{Z}^{2}+\left(4 \cdot \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{Y}-\mathbf{2} \cdot \mathbf{X}^{2} \cdot \mathbf{Y}\right) \cdot \mathbf{Z}+\mathbf{Y}^{\mathbf{2}} \cdot(\mathbf{W}-\mathbf{X})^{2}\right]}{\mathbf{W} \cdot \mathbf{Y} \cdot(\mathbf{Y}-\mathbf{Z})}=0\)

Found on the Internet
Writeup \(A\) and its figure were rather a bit bad and awkward.

\(\mathrm{X}=13.00000\)
\(\mathrm{w}=20.00000\)
\(\mathbf{W}=\mathbf{2 0 . 0 0 0 0 0} \quad \mathrm{Y}=\mathbf{2 0 . 0 0 0 0 0}\)
\(\frac{(W-X) \cdot \sqrt{Z \cdot(2 \cdot Y-Z)}}{W \cdot Y}-G Z=0.00000\)
\(\frac{\mathrm{Z} \cdot(\mathbf{2} \cdot \mathrm{Y}-\mathrm{Z})}{\mathrm{Y} \cdot(\mathrm{Y}-\mathrm{Z})}-\mathrm{OZ}=0.00000\)
 W•Y•(Y-Z)
\(\sim_{n=0}^{0}\)
Unit.
\(A B:=1\)
Given.
\[
\begin{array}{ll}
\mathbf{X}:=\mathbf{8} & \mathbf{Y}:=\mathbf{2 0} \\
\mathbf{W}:=\mathbf{2 0} & \mathbf{Z}:=\mathbf{9}
\end{array}
\]

062407C
Descriptions.
\(\mathbf{A X}:=\frac{\mathbf{X}}{\mathbf{W}} \quad \mathbf{A Z}:=\frac{\mathbf{Z}}{\mathbf{Y}} \quad \mathbf{C Z}:=\sqrt{\mathbf{A Z} \cdot(\mathbf{2 A B}-\mathbf{A Z})}\)
\(\mathbf{B X}:=\mathbf{A B}-\mathbf{A X} \quad \mathrm{BZ}:=\mathbf{A B}-\mathbf{A Z} \quad \mathrm{FZ}:=\frac{\mathrm{CZ}^{2}}{\mathrm{BZ}}\)
\(\mathbf{D Z}:=\mathbf{B X} \cdot \frac{\mathbf{C Z}}{\mathbf{A B}} \quad \mathbf{D F}:=\sqrt{\mathbf{F Z}^{2}+\mathbf{D Z}^{\mathbf{2}}}\)
Definitions.
\(\mathbf{A X}-\frac{\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{A Z}-\frac{\mathbf{Z}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{C Z}-\frac{\sqrt{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}}{\mathbf{Y}}=\mathbf{0}\)
\(\mathbf{B X}-\frac{\mathbf{W}-\mathbf{X}}{\mathbf{W}}=\mathbf{0} \quad \mathbf{B Z}-\frac{\mathbf{Y}-\mathbf{Z}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{F Z}-\frac{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}{\mathbf{Y} \cdot(\mathbf{Y}-\mathbf{Z})}=\mathbf{0}\)
\(\mathbf{D Z}-\frac{(\mathbf{W}-\mathbf{X}) \cdot \sqrt{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{Y}-\mathbf{Z})}}{\mathbf{W} \cdot \mathbf{Y}}=\mathbf{0}\)
\(\mathbf{D F}-\frac{\sqrt{\mathbf{Z} \cdot(\mathbf{2} \cdot \mathbf{Y}-Z) \cdot\left[\mathbf{Y}^{2} \cdot \mathbf{W}^{2}+\left(4 \cdot \mathbf{X} \cdot \mathbf{Y} \cdot \mathbf{Z}-\mathbf{2} \cdot \mathbf{X} \cdot \mathbf{Y}^{2}-2 \cdot \mathbf{X} \cdot \mathbf{Z}^{2}\right) \cdot \mathbf{W}+\mathbf{X}^{2} \cdot(\mathbf{Y}-\mathbf{Z})^{2}\right.}}{\mathbf{W} \cdot \mathbf{Y} \cdot(\mathbf{Y}-\mathbf{Z})}=\mathbf{0}\)

\section*{Found on the Internet}

Found the construction, now I explore it with Algebra. The raw construction was found on the internet. I added the structures required for writing it up in my usual algebraic method.

\section*{My Name is John.}

Hello. My name is John and I am going to explain how to multiply and divide a line by a line in Geometry. Now, if you are going to ask me if I am a geometer, I have to reply by myth. Explanation by myth is one the ancient Greek's methods of teaching by discourse.

Once upon a time, God created man; They created him male and female, in the image of God. Or one can say, male and female created They him, which is rather awkward, but it does have that ancient New England flair to it. At any rate, once upon a time is not this time. It came to pass as men multiplied on the earth that men started to work for a living and not being god's themselves needed a way to designate each other and so individuals, which are not, by definition man started calling each other by their craft. That is where we got Mr. Smith and Mr. Clark, etc. A vestige of this remains today. Not being man, we tend to think of each other by an assigned craft. I work in a factory, but my name is Clark. The conflict of course is why I spend the entirety of my wages in therapy.

Now this works to my advantage. I have learned that individuals calling themselves geometers (I am personally hoping for the day I become part of man) cannot multiply and divide a line by a line. So, I guess one could say, that a geometer is someone who cannot do the math, which is really a sign for some serious expenditure on therapyand, if those in mind-field knew what they were doing, the outlay would be advantageous. Too bad they cannot define a man. Now a nonEuclidean Geometer is someone who not only cannot do the math, they demand, as part of their initiation rights, that one will never be able to do the math. So, in due respect to non-Euclidean Geometers, please stop reading and go back to your scribbling-and contradicting yourself. Doing geometry inside of or on the outside of a tennis ball, or a Frisbee, makes me think that one has spent way to many days on the court, spiking one's tea, and certainly missing the ball.

Now, if your like me, a factory worker, and someone were to give you two lines and say,

Hey, you (He is hairy and has a club). Here are two lines, show me how to multiply one by the other, and after that, show me how to divide one by the other.

I would look at the man, think for a moment and draw a blank. What the heck does he mean? Then I would say, I am sorry, but I don't understand
what you mean. The man would leave off and I would go get another cup of coffee.

If I were a bit strange, I would consult Euclid's Elements and find to my dismay, the chap could do the math, but seems to have left this off for some reason, probably because it was too easy (so who don't lie for a friend?). Now, I happen to have in my possession a number of unpublished manuscripts which does have the answer in them and they are full of doing the math. I acquired them from the God's (and for those of you interested, the Delian Problem does have a solution-and it has something to do with Plato under extending himself). If it should be discovered that I am stealing a bit of fire, and giving it to man, please don't tell where you got it from. I have learned from first hand experience, you don't want to mess with Them-they be giants-really, really, big giants.

Now I am not going to explain this exactly as it was explained to me, as I have a poor memory. Please bear with me.

If I were given two lines, and asked to compare them, I would look at them and say;

well, \(A B\) is shorter than CE. I mean, what can you do with two lines anyway. Reminds me of when I was a kid asking my mother what could I do with seven cents, realizing early on I was three cents short of a dime. If I were Euclid I would subtract one from the other and find that CE \(A B=C D\), or if you're a top down programmer, \(C E-A B=D E\). If I move CE off a ways,

I would say that \(\mathrm{CE}-\mathrm{AB}=\mathrm{CD}\), or DE which ever you choose. NonEuclidean Geometers, like Einstein, claim that this equality, this simultaneity, is not true and that at some point of moving AB and CE apart, as if it were part of the equation, does mysterious things to these segments. It amounts to a thief's logic-moving CE off sufficiently will make \(A B\) infinitely greater than \(C E\) 'cause we exact a kind of tribute on it and subtract that tribute as we go. It amounts to constructing a square say, of 25 square inches or so, and claiming if we repeat it enough, well, it just plain disappears-we wore it out. While on the other hand, there are those who claim that if I assert a point an infinite number of times, I can create a line. You know, like waving a knife in the air an infinite number of times an making a salad. This is the kind of mentality that makes credit card lenders rich. As I said, non-Euclidean Geometers are really crooked bankers in disguise-or really lousy cooks. A basic fact of abstraction, when you really know that a boundary is not the difference (a point is that which has not part), a form is in fact absolute, you know you can never attribute difference to that form, the form is applied as a boundary to any given difference-material. The cut is not the cutted! Wow, that was trashy!

Now if I had \(A B\), and wanted to construct \(C E\) from it.

I could transfer one segment at a time

using parallel lines, but this is not multiplication, it is multiple processes, or simply addition. Parallel lines gives us the ability to do multiple additions, which is again not multiplication. One sign of that is that we have to assert each unit point in constructing CE. We have to assert each unit point just to do the parallels. Duh!

One of the things our ancient quibbling buddies, the Greeks, did tell us is that in order to multiply and divide, we have to have a unit. This is just part of plain simple Arithmetic. And they also said that when dealing with numbers in multiplication and division we were dealing with square and oblong (rectangular) numbers. Keep these ideas in mind. A square, an oblong, and a unit. Euclid drew a number of them. We will have need of them. For the moment let us learn what they did say about ratio,
which we will also need. Now, if in constructing CE, we stayed up too late;-

and made a mistake in drawing-or were simply dyslexic;

we would discover the ratio. As AB is to CD , so AF is to DF . And by George-(if you remember, he too was a hairy fellow and curious), One learns how to take any multiple and divide another segment of any length by the same multiple. From multiple addition, we have a kind of multiple division, but it is not division, it is still just a plain ratio, of anther segment.

Now, as AB is to GH , so to DE is to HI , etc., etc. This is all fine and good, but, we still have not really learned how to multiply and divide. That is because these ratio's work regardless of the notion of unit, or square. Unless you are a crooked banker or a non-Euclidean Geometer, or a bad cook, this relationship is always true. There is one, and only one, difference between two points.

We are building our ideas up, one standard at a time. Intellectually, we fail, at the point we cannot abstract and use a standard-or what Plato called form because a boundary is not a difference and by definition (not a difference) always true. The divergence of language itself, starts with the inability to establish a standard even for a name. Many linguists call it the "growth" of language when meaning changes, but then they are non-Euclidean Geometers at heart also. What do they say of a government that has got its constitution saying exactly the opposite of what is written? If you want to reduce them to rubble, ask them outright, Why can one word be or not be predicated of another? Or again, if definition is conventional, and meaning can never be conventional, what in the heck does meaning have to do with definition? or even language? They will either get a funny look on their face mumbling to themselves, or start babbling non-sense to you. I have some books by the gods on that topic also. It is really simple, . . . but not here, not now.

Multiplication and division rely on a standard in unit. So lets add that and see where we go.

At the outset the figure is very shy and unassuming. If you saw it laying in the street, you would hardly be pressed to pick it up. We have placed our segments the difference of our chosen unit apart, and we do have a square. No offence to Descartes who tried to find what I am doing, we don't have a number line, but a lined number. First time I ever seen a studious use of cross hairs actually miss the target.

It don't look like much, but it can not only multiply and divide, one can use it to do much in the way of exponential manipulation as well. Let us take a closer look as to what the figure tells us.

This is how we perform multiplication. Given \(A C\) as our unit, \(A B \times C D\) \(=\mathrm{AH}\). In order to see this using the Arithmetic Grammar system, We divide AC by AC and get 1 , our Unit. We then divide AB by AC which gives AB in terms of our unit. We then divide CE by AC and acquire that in units, and again for AH . We will find that by using the notion of Unit, Square and Oblong Numbers, which is incorporated in the idea of ratio, we can Multiply. And we can do what no binary calculator will ever do, we do it exactly. What about division?

Wouldn't you know it, there is a triplicate ratio in the figure! Right under our pencil. Didn't Euclid write that it was the hardest thing to do in geometry? Well, I have never taken geometry in school and set out to comprehend the triplicate ratio, guess I got somewhere. Going through our steps as before, we find that \(A B \div C D=A Q\). Each of these steps is proven individually in Euclid. I suspect he was like Plato and wanted to see if his readers were smart enough to add and subtract ideas. And again, no binary computer will ever be up to Geometry, as Geometry is exact.

One can do a whole lot with this figure, through various projections. One can do a lot in the way of exponential manipulation. Try that with cross hairs! Some of the methods one will find in those unpublished books I was talking about. I don't know how long the gods will let me work on them, in fact, if it were not for Them, I would have been killed over thirty years ago. Imagine that, I am a walking contradiction, a living dead man. At any rate, I hope you have fun playing with the figure.

Now this is not the place to show the solution to the Delian Problem. My god, if one is just learning the simple four, by adding multiplication and division to our list of addition and subtraction, it may be too difficult realize a revolution in Euclidean Geometry based upon a standard long ago recognized but left unemployed-just like these. I will put the idea in the Geometer's Sketchpad file.

I hope I have made it clear that through multiple addition and subtraction, one leads into the understanding of ratio, just like Euclid did, but it is still a step away from multiplication and division. Those depend upon a respect for, and understanding of a standard in definition. We learn to add, and subtract. These teach us ratio-it is part of them. We learn about the units which is taught by them also. This then leads to multiplication and division and our primary four are thus established.

I do have some food for thought though. Using the facts of conventions in language, can you count the ways non-Euclidean geometries commit self-referential errors in simple logic? Apparently not, they are popular. Maybe it has something to do with linguist waving their knife in the air constructing sentences. What is prediction? Maybe I will read it to you sometime. The solution was once written on a Temple "Know Thyself." I will say this, as a sense system, the human mind is suppose to abstract form and create things with it. To deny form as the foundation for thought is simply a sign of dysfunction. I know, look at me.

\section*{Multiplication And Division of Lines}
1. An unit is that by virtue of which each of the things that exist is called one. Euclid's Elements

The Basic figures in this little thing are written up in my work Threee Pieces of Paper, or The Delian Quest. This is not a formal presentation, is a presentation of craft basics.

John Clark

312
(c) JClark8659@hotmail.com

Printed via import to MS Word.

\section*{Following the Yellow Brick Road}

\section*{Introduction}

Maybe I am too dogmatic, but I think one should have geometry teach one something of basic math. One should be able to add, subtract, multiply and divide with lines. These can provide proofs and constructible.

The figures can be modified in various ways to produce various results. I present a few here. The main figure is composed of the notion of common unit, and that multiplication and division works with square numbers, which is distinct from squaring a number. The square thus constructed provides the properties needed for multiplication and division.

I once read, in an Algebra book, that exponential notation had nothing to do with Geometry, that it was a pure mental abstract. What am I, then, to do with all the figures I have come up with that display the principles?

I would also like to see how the four basic operations of Math hold up in "non-Euclidean" Geometries. In fact, as part of their presentation, I think the four basic operations of mathematics should be a requirement. Perhaps by teaching the remaining two in geometry, something about reality and standards of thought will be learned.

The material in this little flyer is not new to me, it is part of four works I am currently engaged in, The Delian Quest, which is essentially completed, it needs some lipstick and a dress, Three Pieces of Paper, Eloi, and something with a puny Latin name.

Oh, and no, I have never studied geometry in an institution-I have never seen ideas survive in an institution. I have and probably will be again, be institutionalized at my own request.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Function Contents} & Page & \multicolumn{5}{|l|}{Function Link to Introdution} & Page \\
\hline & \multicolumn{5}{|l|}{(\(\left.\mathrm{N}_{1} \cdot \mathrm{~N}_{2}\right)-\mathrm{N}_{3}=0.00000\)} & Link tor & & & & & & \\
\hline & \[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=1.13725
\] & \(\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1}}=1.87931\) & \multicolumn{3}{|l|}{\[
\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{2}}=2.13725
\]} & Link tor & \(\frac{\mathrm{N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{5}=0.00000\) & \(\mathrm{N}_{2}{ }^{2} \mathrm{~N}_{6}\) & \(=0.00000\) & & & Link to 11 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{1}{N_{1}}-N_{3}=0.00000
\]} & Link to 3 & \(\sqrt{2}-\mathrm{N}_{5}=0.00000\) & \(\frac{\sqrt{2} \cdot \mathbf{N}_{1}}{\mathrm{~N}_{2}}\) & \(\mathrm{N}_{6}=0.00000\) & & \(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{\sqrt{2}}-\mathrm{N}_{7}=0.00000\) & Link to 12 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}}{N_{2}{ }^{2}}-N_{4}=0.00000 \quad \frac{N_{1}}{N_{2}{ }^{3}}-N_{5}=0.00000
\]} & Eink to4 & \(\mathrm{N}_{5}-2^{0.75}=0.00000\) & \(\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)\) & \(\mathrm{N}_{5}-\mathrm{N}_{6}=0.00\) & & \(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{5}}-\mathrm{N}_{7}=0.00000\) & Link to 13 \\
\hline & \multicolumn{5}{|l|}{2. \(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}-\mathrm{N}_{4}=0.00000\)} & Link tos & \(\mathrm{N}_{1}{ }^{0.5}-\mathrm{N}_{2}=0.00000\) & \(\mathrm{N}_{1}{ }^{0.25}\) & \(-\mathrm{N}_{3}=0.00000\) & & \(\mathrm{N}_{1}{ }^{0.125-\mathrm{N}_{4}}=0.00000\) & Link to 14 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}{ }^{2}}{\left(N_{2}+N_{1}\right) \cdot N_{2}}-N_{3}=0.00000
\]} & Link to 6 & \(\frac{\mathrm{N}_{1}{ }^{0.5}}{\mathrm{~N}_{2}{ }^{0.5}}-\mathrm{N}_{3}=0.00000\) & \(\frac{\mathrm{N}_{1}{ }^{0.25}}{\mathrm{~N}_{2}{ }^{0.75}}\) & \(-\mathrm{N}_{4}=0.00000\) & & \({ }_{1}^{0.5} \mathrm{~N}_{2}{ }^{1.5}-\mathrm{N}_{5}=0.00000\) & Link to 15 \\
\hline & \multicolumn{5}{|l|}{\(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}+\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}\right)-\mathrm{N}_{3}=0.00000\)} & Eink to7 & \[
\frac{N_{1}{ }^{2}}{\left(N_{1}+N_{2}\right) \cdot N_{2}}-L_{1}=0.0
\] & .00000 & \[
\frac{\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}-\mathrm{M}
\] & \[
I_{1}=0.0
\] & .00000 & Link to 16 \\
\hline & \multicolumn{5}{|l|}{\[
\mathrm{N}_{3}{ }^{2}-\frac{\mathrm{BC}}{\mathrm{BD}}=0.00000 \quad \mathrm{~N}_{3}{ }^{3}-\frac{\mathrm{BC}}{\mathrm{BE}}=0.00000 \quad \mathrm{~N}_{3}{ }^{4}-\frac{\mathrm{BC}}{\mathrm{BF}}=0.00000
\]} & Link to \({ }^{\text {a }}\) & & & & & & \\
\hline & \multicolumn{5}{|l|}{\[
\frac{\mathrm{N} 4_{2}}{\mathrm{~N} 2_{2}}=1.39420 \quad \frac{\mathrm{~N} 2_{2}}{\mathrm{~N} 1_{2}}=1.39420 \quad \frac{\mathrm{~N} 1_{2}}{\text { Unit }_{2}}=1.39420 \quad \frac{\text { Unit }_{2}}{\mathrm{~N} 3_{2}}=1.39420
\]} & Eink to 9 & \[
\frac{N_{1}{ }^{2}}{N_{2} \cdot\left(N_{1}+1\right)}-L_{1}=0.00
\] & 0000 & \(\frac{\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{1}+\mathbf{1}}-\mathrm{M}_{1}\) & = 0.00 & 0000 & Link to 17 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}{ }^{2}}{N_{2}}-N_{5}=0.00000 \quad \frac{N_{1}{ }^{3}}{N_{2}{ }^{2}}-N_{6}=0.00000 \quad \frac{N_{2}{ }^{2}}{N_{1}}-N_{7}=0.00000
\]} & Link to 10 & \[
\frac{\mathrm{N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{4}}-\mathrm{N}_{7}=0.00000
\] & \(\mathrm{N}_{2}{ }^{4}-\mathrm{N}_{8}\) & = 0.00000 & & \({ }^{-1} \mathrm{~N}_{25}=0.00000\) & \multirow[t]{2}{*}{\(\xrightarrow{\text { Eink to } 18}\)} \\
\hline & \multicolumn{5}{|l|}{} & & \[
\frac{\mathrm{N}_{2}{ }^{4}}{\mathrm{~N}_{1}}-\mathrm{N}_{26}=\mathbf{0 . 0 0 0 0 0}
\] & \multicolumn{2}{|l|}{\[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{27}=0.00000
\]} & \multicolumn{2}{|l|}{\[
\frac{\mathrm{N}_{2}{ }^{7}}{\mathrm{~N}_{1}}-\mathrm{N}_{8}=0.00000
\]} & \\
\hline
\end{tabular}

\(\frac{\mathrm{U}_{\text {nit }}}{0 \mathrm{~N}_{4}}=2.50000\)
\(\frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1}}=2.50000\)
\(\frac{\mathrm{U}_{\text {nit }}}{\mathbf{U n i t}^{N_{4}}}=1.66667\)
\(\frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathbf{N}_{2}}=1.66667\)

Divide
N1 by N2
\begin{tabular}{|c|c|c|c|}
\hline N1 & & \multicolumn{2}{|l|}{N2} \\
\hline 1 & 16 & 1 & 16 \\
\hline 2 & 17 & 2 & 17 \\
\hline 3 & 18 & 3 & 18 \\
\hline 4 & 19 & 4 & 19 \\
\hline 5 & 20 & 5 & 20 \\
\hline 6 & 21 & 6 & 21 \\
\hline 7 & 22 & 7 & 22 \\
\hline 8 & 23 & 8 & 23 \\
\hline 9 & 24 & 9 & 24 \\
\hline 10 & 25 & 10 & 25 \\
\hline 11 & 26 & 11 & 26 \\
\hline 12 & 27 & 12 & 27 \\
\hline 13 & 28 & 13 & 28 \\
\hline 14 & 29 & 14 & 29 \\
\hline 15 & 30 & 15 & 30 \\
\hline & 31 & & 31 \\
\hline
\end{tabular}

\(\mathrm{N}_{1}=3.00000\)
\(\mathrm{~N}_{2}=2.00000\)
\(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=1.50000\)
\(\mathrm{~N}_{3}=1.50000\)
\(\mathrm{~N}_{4}=0.75000 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{4}=0.00000\)
\(\mathrm{~N}_{5}=0.37500 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}{ }^{3}}-\mathrm{N}_{5}=\mathbf{0 . 0 0 0 0 0}\)
etc.

\[
\begin{gathered}
\mathrm{N}_{1}=2.00000 \\
\mathrm{~N}_{2}=2.00000 \\
\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}=4.00000 \\
\mathrm{~N}_{3}=4.00000 \\
\mathrm{~N}_{4}=6.00000 \\
2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}-\mathrm{N}_{4}=0.00000
\end{gathered}
\]

N2

- 3

Adding a figure to a figure.

I tossed this together, so it is not perfect-it just looks good
\begin{tabular}{|c|c|c|c|}
\hline N & & \multicolumn{2}{|c|}{N2} \\
\hline 1 & [16] & 1 & 16 \\
\hline 2 & 17 & 12 & 17 \\
\hline 3 & 18 & 3 & 18 \\
\hline 4 & 19 & 4 & 19 \\
\hline 5 & \(\underline{20}\) & 5 & \(\underline{20}\) \\
\hline 6 & 21 & 6 & \({ }^{21}\) \\
\hline 0 & 22 & 0 & [22] \\
\hline [8] & [23 & 8 & \(\underline{23}\) \\
\hline [& [24 & 0 & 24 \\
\hline 10 & \({ }^{25}\) & 10 & 25 \\
\hline 回 & \({ }^{26}\) & 罒 & \({ }^{26}\) \\
\hline 12 & [27] & [12] & 27 \\
\hline 13 & \({ }^{28}\) & 13 & \({ }^{28}\) \\
\hline [14) & 20 & (14) & \(\underline{29}\) \\
\hline 15 & 130 & 15 & 30 \\
\hline & [3] & & 31 \\
\hline
\end{tabular}

\begin{tabular}{rl}
Unit \(=1.00000\) & \(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{3}=0.00000\) \\
\(\mathrm{~N}_{1}=2.00000\) & \(\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000\) \\
\(\mathrm{~N}_{2}=2.30952\) & \\
\(\mathrm{~N}_{3}=0.86598\) & \\
\(\mathrm{~N}_{4}=4.61905\) & \\
& \\
\(\mathrm{~N}_{5}=0.74992\) & \(\frac{\mathrm{~N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{5}=\mathbf{0 . 0 0 0 0 0}\) \\
\(\mathrm{N}_{6}=5.33390\) & \(\mathrm{~N}_{2}{ }^{2}-\mathrm{N}_{6}=\mathbf{0 . 0 0 0 0 0}\)
\end{tabular}

\begin{tabular}{|c|c|}
\hline Unit \(=1.00000\) & \\
\hline \(\mathrm{N}_{1}=2.00000\) & \\
\hline \(\mathrm{N}_{2}=1.41421\) & \(\mathrm{N}_{1}{ }^{\mathbf{0} .5}-\mathrm{N}_{2}=0.00000\) \\
\hline \(\mathrm{N}_{3}=1.18921\) & \(\mathrm{N}_{1}{ }^{0.25}-\mathrm{N}_{3}=0.00000\) \\
\hline \(\mathrm{N}_{4}=1.09051\) & \(\mathrm{N}_{1}{ }^{\mathbf{0 . 1 2 5}}\) - \(\mathrm{N}_{4}=0.00000\) \\
\hline
\end{tabular}

Unit \(=1.00000\)
\(\mathrm{~N}_{1}=1.77542\)
\(\mathrm{~N}_{2}=1.51695\)

\(\mathrm{~N}_{3}=1.08185 \quad \frac{\mathrm{~N}_{1}{ }^{0.5}}{\mathrm{~N}_{2}{ }^{0.5}}-\mathrm{N}_{3}=0.00000\)
\(\mathrm{~N}_{4}=0.84450 \quad \frac{\mathrm{~N}_{1}{ }^{0.25}}{\mathrm{~N}_{2} .{ }^{0.75}}-\mathrm{N}_{4}=0.00000\)
\(\mathrm{~N}_{5}=2.48947\)

Unit \(=1.00000\)
\(\mathrm{N}_{1}=1.00000\)
\(N_{2}=2.00000 \quad \frac{N_{1}}{N_{2}}-N_{3}=0.00000\)
\(\mathrm{N}_{\mathbf{3}}=\mathbf{0 . 5 0 0 0 0}\)
\(\mathrm{N}_{4}=\mathbf{2 . 0 0 0 0 0} \quad \mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=\mathbf{0 . 0 0 0 0 0}\)
\(L_{1}=0.16667 \quad \frac{N_{1}{ }^{2}}{\left(N_{1}+N_{2}\right) \cdot N_{2}}-L_{1}=0.00000\)
\(M_{1}=0.66667 \quad \frac{N_{1}{ }^{2} \cdot N_{2}}{N_{1}+N_{2}}-M_{1}=0.00000\)

\[
\begin{array}{ll}
\mathrm{U}_{1}=1.00000 \\
\mathrm{~N}_{1}=2.00000 \\
\mathrm{~N}_{2}=2.00000 & \\
\mathrm{~N}_{3}=1.00000 & \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=1.00000 \\
\mathrm{~N}_{4}=4.00000 \quad \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000 \\
\mathrm{U}[1] / \mathrm{U}_{2}=0.25000 \\
\mathrm{~N}_{5}=2.00000 & \\
\mathrm{~N}_{6}=2.00000 & \\
\mathrm{~N}_{7}=0.25000 & \frac{\mathrm{~N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{4}}-\mathrm{N}_{7}=0.00000 \\
\mathrm{~N}_{8}=16.00000 & \mathrm{~N}_{2}{ }^{4}-\mathrm{N}_{8}=0.00000 \\
\mathrm{U}_{2}=1.00000 & \\
\mathrm{~N}_{25}=8.00000 & \mathrm{~N}_{2}{ }^{3}-\mathrm{N}_{25}=0.00000 \\
\mathrm{~N}_{26}=8.00000 & \frac{\mathrm{~N}_{2}{ }^{4}}{\mathrm{~N}_{1}}-\mathrm{N}_{26}=0.00000 \\
\mathrm{~N}_{27}=1.00000 & \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{27}=0.00000 \\
\mathrm{~N}_{8}=64.00000 & \frac{\mathrm{~N}_{2}{ }^{7}}{\mathrm{~N}_{1}}-\mathrm{N}_{8}=0.00000
\end{array}
\]

\begin{tabular}{|c|c|}
\hline Unit \(=1.00000\) & \\
\hline \(\mathrm{N}_{1}=1.72159\) & \[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{3}=0.00000
\] \\
\hline \(\mathrm{N}_{2}=\mathbf{2 . 1 2 5 0 0}\) & \(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000\) \\
\hline \(\mathrm{N}_{3}=0.81016\) & \[
\frac{N_{1}}{N_{2}}=0.81016
\] \\
\hline \(\mathrm{N}_{4}=3.65838\) & \\
\hline \(\mathrm{N}_{5}=0.57386\) & \\
\hline \(\mathrm{N}_{6}=1.14773\) & \\
\hline \(\mathrm{N}_{7}=0.70833\) & \\
\hline \(\mathrm{N}_{8}=1.41667\) & \\
\hline \(\mathrm{N}_{9}=1.21946\) & \[
\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\frac{1}{3}\right)-\mathrm{N}_{9}=0.00000
\] \\
\hline \(\mathrm{N}_{10}=2.43892\) & \[
\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\frac{2}{3}\right)-\mathrm{N}_{10}=0.00000
\] \\
\hline
\end{tabular}

Unit \(=\mathbf{1 . 0 0 0 0 0}\)
\(\mathrm{N}_{1}=1.37056\)
\(\mathrm{N}_{2}=1.73096\)
\(\mathrm{N}_{3}=0.79179 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=0.79179\)
\(\mathrm{N}_{4}=2.37239 \quad \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}=2.37239\)
\[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=0.79179
\]
\(N_{5}=0.60565 \quad N_{1} \cdot\left(\frac{N_{1}}{N_{1}+N_{2}}\right)-N_{5}=0.00000\)
\(N_{6}=0.76491 \quad N_{1} \cdot\left(\frac{N_{2}}{N_{1}+N_{2}}\right)-N_{6}=0.00000\)
\(N_{7}=1.04835 \quad N_{1} \cdot N_{2} \cdot\left(\frac{N_{1}}{N_{1}+N_{2}}\right)-N_{7}=0.00000\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Unit \(=1.00000\)} \\
\hline \(\mathrm{N}_{1}=2.00000\) & 1 \\
\hline \(\mathrm{N}_{2}=1.41421\) & \(\mathrm{N}_{1}{ }^{2}-\mathrm{N}_{2}=0.00000\) \\
\hline & 1 \\
\hline \(\mathrm{N}_{3}=1.18921\) & \(\mathrm{N}_{1}{ }^{4}-\mathrm{N}_{3}=0.00000\) \\
\hline \multirow{3}{*}{\(\mathrm{N}_{4}=1.09051\)} & 1 \\
\hline & \(\mathrm{N}_{1}{ }^{\mathbf{8}}-\mathrm{N}_{4}=0.00000\) \\
\hline & etc. \\
\hline
\end{tabular}

The computational speed by straight edge and compass outdoes long hand by factors. The computational accuracy exceeds that of any binary computer. The understanding as to what numbers mean cannot be outdone. Yet, instead of improving Euclid, they made a mess of it.

What led me to this solution was not Euclid, it was my own geometry play-especially doing the formula's and solution to a power line In order to solve for the power line, I actually had to know how to divide a square by a line. That coupled with the feeling that one should know the basic mathematical operations in geometry, as a starter made me break down and simply do it.

Geometry is still undefined. It is undefined because, as we know, a set can be constructed in only two ways, by enumeration and by definition. By saying that Euclidean Geometry only uses two tools, the straight edge and compass, we have enumerated its set. To define it, one would have to say, Geometry is that language by which we speak where there is one, and only one difference between two points.

This change not only defines Euclidean Geometry, but we find that it has been short changed for a long time. A straight edge does indeed give us one and only one difference between two points, and so does a compass, these are the unit and universe of discourse in the subject. However, there is yet one more tool, that tool that gives us every ratio inbetween the unit and the universe, the ellipes. There is indeed one and only one difference between the two points called the foci of an ellipse.

If one can accept that, one can then understand my solution to the Delian Problem. A figure that gives one every aspect of an ellipse and one simply has to lay it down. Accepting that definition also takes something that is implied in Euclidean Geometry and makes it explicit, the ability to add, to do the math.

I hope you have fun.

\(\sim_{n=2}^{0}\)
052108
Descriptions.

Unit.
\(\mathrm{BE}:=1\)
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 8 6 2 9 2} \mathrm{AB}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=.74482 \quad \mathrm{BD}:=\mathbf{N}_{\mathbf{2}}\)
\(\mathbf{A D}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B D}^{2}} \quad \mathbf{D G}:=\frac{\mathbf{B D}^{2}}{\mathbf{A D}}\)
\(\mathbf{B H}:=\mathbf{B E} \quad \mathbf{B G}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{A D}}\)
\(\mathbf{G H}:=\sqrt{\mathbf{B H}^{\mathbf{2}}-\mathbf{B G}^{\mathbf{2}}} \quad \mathbf{A C}:=\mathbf{A D}+\mathbf{G H}-\mathbf{D G}\)

\section*{Definitions.}
\(\frac{\sqrt{\mathrm{AB}^{2} \cdot \mathrm{BE}^{2}+\mathrm{BD}^{2} \cdot \mathrm{BE}^{2}-\mathrm{AB}^{2} \cdot \mathrm{BD}^{2}}+\mathrm{AB}^{2}}{\sqrt{\mathrm{AB}^{2}+\mathrm{BD}^{2}}}-\mathrm{AC}=\mathbf{0}\)
\(\mathrm{AC}-\frac{\mathrm{N}_{1}{ }^{2}+\sqrt{\mathrm{N}_{1}{ }^{2}-\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}{ }^{2}+\mathrm{N}_{2}{ }^{2}}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}}}=0\)

052208

\section*{Unit.}

Given.
\(\mathbf{N}_{1}:=\mathbf{8 . 1 7 8 2 5} \quad \mathrm{AB}:=\mathbf{N}_{\mathbf{1}}\) \(\mathbf{N}_{\mathbf{2}}:=\mathbf{2 . 3 6 2 4 0} \quad \mathrm{BC}:=\mathbf{N}_{\mathbf{2}}\) \(\mathrm{N}_{3}:=. \mathbf{3 6 9 1 2}\)

\section*{Descriptions.}
\(\mathbf{A D}:=\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}} \quad \mathbf{D E}:=\mathbf{A D} \cdot \mathbf{N}_{\mathbf{3}} \quad \mathbf{A E}:=\mathbf{A D}-\mathbf{D E}\)
\(\mathbf{B E}:=\mathbf{A B}-\mathbf{A E} \quad \mathbf{A C}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B C}^{2}} \quad \mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B C}}{\mathbf{A C}}\)
\(\mathbf{B G}:=\mathbf{B E} \quad \mathbf{C H}:=\frac{\mathbf{B C}^{2}}{\mathbf{A C}} \quad \mathbf{G H}:=\sqrt{\mathbf{B G}^{2}-\mathbf{B H}^{2}} \quad \mathbf{F H}:=\mathbf{G H}\)
\(\mathbf{A F}:=\mathbf{A C}+\mathbf{F H}-\mathbf{C H} \quad \mathbf{A F}=\mathbf{1 1 . 7 5 3 3 3 1}\)

\section*{Definitions.}
\(\mathbf{A D}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0} \quad \mathbf{D E}-\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right) \cdot \mathbf{N}_{\mathbf{3}}=\mathbf{0}\)
\(\mathbf{A E}-\left[\left(\mathbf{N}_{\mathbf{3}}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)\right]=\mathbf{0} \quad \mathbf{B E}-\left(\mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{3}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}\right)=\mathbf{0}\)
\(A C-\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}=0 \quad B H-\frac{N_{1} \cdot N_{2}}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}=0\)
\(\mathrm{BG}-\left(\mathrm{N}_{2}+\mathrm{N}_{1} \cdot \mathrm{~N}_{3}-\mathrm{N}_{2} \cdot \mathrm{~N}_{3}\right)=0 \quad \mathrm{CH}-\frac{\mathbf{N}_{\mathbf{2}}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathbf{N}_{2}{ }^{2}}}=0\)
\(G H-\frac{\sqrt{N_{3}{ }^{2} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right) \cdot\left(N_{1}-N_{2}\right)^{2}+2 \cdot N_{3} \cdot N_{2} \cdot\left(N_{1}-N_{2}\right) \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right)+N_{2}{ }^{4}}}{\sqrt{\mathbf{N}_{1}{ }^{2}+N_{2}{ }^{2}}}=0 \quad F H-\frac{\sqrt{N_{3}{ }^{2} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right) \cdot\left(N_{1}-N_{2}\right)}{ }^{2}+2 \cdot N_{3} \cdot N_{2} \cdot\left(N_{1}-N_{2}\right) \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right)+N_{2}{ }^{4}}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}=0\)
\(A F-\frac{N_{1}{ }^{2}+\sqrt{N_{3}{ }^{2} \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right) \cdot\left(N_{1}-N_{2}\right)^{2}+2 \cdot N_{3} \cdot N_{2} \cdot\left(N_{1}-N_{2}\right) \cdot\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right)+N_{2}{ }^{4}}}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}=0\)

Unit.
\(N_{1}:=1.40187 \quad A B:=N_{1}\)
\(\mathbf{N}_{\mathbf{2}}:=2.31398 \quad \mathrm{AC}:=\mathbf{N}_{2}\)
\(\mathbf{N}_{\mathbf{3}}:=\mathbf{1 . 1 3 3 4 8} \quad \mathrm{CD}:=\mathbf{N}_{\mathbf{3}}\)
For a straight line ellipse and three givens.
a: \(A B, A C, C D\)

\section*{Descriptions}
\(\mathbf{D E}:=\mathbf{A B} \quad \mathbf{C E}:=\sqrt{\mathbf{D E}^{2}-\mathbf{C D}^{2}}\)
\(\mathbf{D F}:=\frac{\mathbf{D E} \cdot \mathbf{A C}}{\mathbf{C E}} \quad \mathbf{B G}:=\mathbf{D F}-\mathbf{A B}\)

Definitions.
\(\mathbf{B G}-\mathbf{N}_{\mathbf{1}} \cdot\left(\frac{\mathbf{N}_{\mathbf{2}}}{\sqrt{\mathbf{N}_{1}{ }^{2}-\mathbf{N}_{\mathbf{3}}{ }^{2}}}-\mathbf{1}\right)=\mathbf{0}\)

060208B

Unit.
Given.
\(\begin{array}{ll}\mathbf{N}_{\mathbf{1}}:=.8249 & \text { CE }:=\mathbf{N}_{\mathbf{1}} \\ \mathbf{N}_{\mathbf{2}}:=\mathbf{2 . 3 1 3 9 8} & \text { AC }:=\mathbf{N}_{\mathbf{2}}\end{array}\)
\(\mathbf{N}_{\mathbf{3}}:=\mathbf{1 . 1 3 3 4 8} \quad \mathbf{C D}:=\mathbf{N}_{\mathbf{3}}\)

For a straight line ellipse and three givens.
b: CE, AC, CD.

\section*{Descriptions.}
\(\mathrm{AB}:=\sqrt{\mathrm{CD}^{2}+\mathrm{CE}^{2}} \quad \mathrm{DE}:=\mathrm{AB}\)
\(\mathbf{D F}:=\frac{\mathbf{D E} \cdot \mathbf{A C}}{\mathbf{C E}} \quad \mathbf{B G}:=\mathbf{D F}-\mathbf{A B}\)

\section*{Definitions.}
\(\mathbf{B G}-\frac{\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{\mathbf{3}}{ }^{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}{\mathbf{N}_{\mathbf{1}}}=\mathbf{0}\)

Unit.
Given.
\begin{tabular}{rlrl}
\(\mathbf{N}_{\mathbf{1}}\) & \(:=\mathbf{1 . 4 0 1 8 7}\) & & \(\mathbf{A B}:=\mathbf{N}_{\mathbf{1}}\) \\
\(\mathbf{N}_{\mathbf{2}}\) & \(:=\mathbf{2 . 3 1 3 9 8}\) & & \(\mathbf{A C}:=\mathbf{N}_{\mathbf{2}}\) \\
\(\mathbf{N}_{\mathbf{3}}\) & \(:=.8249\) & & \(\mathbf{C E}:=\mathbf{N}_{\mathbf{3}}\)
\end{tabular}

For a straight line ellipse and three givens.

\section*{Descriptions.}
\(\mathrm{DE}:=\mathrm{AB} \quad \mathrm{DF}:=\frac{\mathrm{DE} \cdot \mathbf{A C}}{\mathbf{C E}}\)
\(\mathbf{B G}:=\mathbf{D F}-\mathbf{A B}\)

Definitions.
\(\mathbf{B G}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{\mathbf{3}}}=\mathbf{O}\)
c: AB, AC, CE

Descriptions. Definitions.

Unit.
Given.

Procrastinated Write up for 060308
Angles are expressible as an elliptical progression, and they show very arithmetic properties to one another.

Unit. Given.

\section*{Parcing project for 061308 a}

See about writing up a proof of the figure using the fact that from the center of the two roots, point \(E\), a simple construct will produce the intersection \(B\) for the figure. And chect to see how the point \(E\) moves during Gemini roots.

Unit.
Given.

\section*{Parcing project for 061308b}

Descriptions.
Definitions.

\section*{Looking at mass in eliptical motions from a different point of view}

How you understand the ellipes determines how you think an object moving in that orbit ought to be comprehended and written up as a law of nature, however ponder this fact. The velocity of \(D\) is a constant; it determines the velocity of \(A\), the object you can see orbiting say the sun. However, the velocity of \(A\) exhibits the same characteristics of a planet or asteroid, slingshot effect and all. The velocity is still due to the constant velocity of \(D\). The current understanding of planitary interaction is not correct.

\section*{On angle trisection.}

\section*{Parcing project. There is a whole series of plates here, write them up.}

020511

Descriptions.

\section*{Rant}

Percentages, ratio's, proportions, currency conversion, number conversion, etc. Let us say we have a zillion and one items we which to tanslate from one system of measure to another. How can we do all of the items at one and the same time? Well, if you are a non-Euclidean Geometer, you cannot, you are screwed. In fact, if you are a non-Euclidean Geometer, you are claiming that a unit differs from itself and are way too stupid to realize an obvios fact. So, no, I am not entrusting anything to them. And since they are supported by, if not every educational institution, then almost every-one, I had to drop out of school at an early age. The explicit and the tacit admission of their doctrines by our social structure even made me a social outcast. I say, they can argue with the foundation of their own psychology, Language.

Therefore, I do not believe that what is needed is a write-up demonstrating proportion, again. Maybe I was just entertaining a rant.

What do you think the sentence, As \(A\) is to \(B\), so too, \(C\) is to \(D\), means? And if you claim that is is not true, citing the mentally lame as authorities for that claim, why is it you prefer a moron over countless examples in your daily life?

Why do you suffer your religious leaders, your political leaders, your teachers and your schools to teach the lies?

It is not because you are mentally functional. All of my ranting can never change the fact that man is still being made, that his mind is still incapable of doing simple operations.

Therefore, in order to put something constructive here, I will put a digitalization of The Science of Absolute Space, a title which is wholly indicative of someone who is illiterate.

\section*{THE SCIENCE ABSOLUTE OF SPACE}

\section*{Bolyai János}

\section*{THE SCIENCE ABSOLUTE OF SPACE}

Independent of the Truth or Falsity of Euclid's Axiom XI (which can never be decided a priori). JOHN BOLYAI TRANSLATED FROM THE LATIN BY DR. GEORGE BRUCE HALSTED PRESIDENT OF THE TEXAS ACADEMY OF SCIENCE FOURTH EDITION. VOLUME THREE OF THE NEOMONIC SERIES PUBLISHED AT

THE NEOMON
2407 Guadalupe Street
AUSTIN, TEXAS, U. S. A. 1896

\section*{TRANSLATOR'S INTRODUCTION.}

The immortal Elements of Euclid was already in dim antiquity a classic, regarded as absolutely perfect, valid without restriction.

Elementary geometry was for two thousand years as stationary, as fixed, as peculiarly Greek, as the Parthenon. On this foundation pure science rose in Archimedes, in Apollonius, in Pappus; struggled in Theon, in Hypatia; declined in Proclus; fell into the long decadence of the Dark Ages.

The book that monkish Europe could no longer understand was then taught in Arabic by Saracen and Moor in the Universities of Bagdad and Cordova.

To bring the light, after weary, stupid centuries, to western Christendom, an Englishman, Adelhard of Bath, journeys, to learn Arabic, through Asia Minor, through Egypt, back to Spain. Disguised as a Mohammedan student, he got into Cordova about 1120, obtained a Moorish copy of Euclid's Elements, and made a translation from the Arabic into Latin.

\section*{TRANSLATOR'S INTRODUCTION}

The first printed edition of Euclid, published in Venice in 1482, was a Latin version from the Arabic. The translation into Latin from the Greek, made by Zamberti from a MS. of Theon's revision, was first published at Venice in 1505.

Twenty - eight years later appeared the editio princeps in Greek, published at Basle in 1533 by John Hervagius, edited by Simon Grynaeus. This was for a century and three-quarters the only printed Greek text of all the books, and from it the first English translation (1570) was made by "Henricus Billingsley," afterward Sir Henry Billingsley, Lord Mayor of London in 1591.

And even today, 1895, in the vast system of examinations carried out by the British Government, by Oxford, and by Cambridge, no proof of a theorem in geometry will be accepted which infringes Euclid's sequence of propositions.

Nor is the work unworthy of this extraordinary immortality.
Says Clifford : "This book has been for nearly twenty-two centuries the encouragement and guide of that scientific thought which is one thing with the progress of man from a worse to a better state.

\section*{TRANSLATORS INTRODUCTION.}
v
"The encouragement; for it contained a body of knowledge that was really known and could be relied on.
"The guide; for the aim of every student of every subject was to bring his knowledge of that subject into a form as perfect as that which geometry had attained."

But Euclid stated his assumptions with the most painstaking candor, and would have smiled at the suggestion that he claimed for his conclusions any other truth than perfect deduction from assumed hypotheses. In favor of the external reality or truth of those assumptions he said no word.

Among Euclid's assumptions is one differing from the others in prolixity, whose place fluctuates in the manuscripts.

Peyrard, on the authority of the Vatican MS., puts it among the postulates, and it is often called the parallel-postulate. Heiberg, whose edition of the text is the latest and best (Leipzig, 1883-1888), gives it as the fifth postulate.

James Williamson, who published the closest translation of Euclid we have in English, indicating, by the use of italics, the words not in the original, gives this assumption as eleventh among the Common Notions.

\section*{TRANSLATOR' S INTRODUCPTION.}

Bolyai speaks of it as Euclid's Axiom XI. Todhunter has it as twelfth of the Axioms.
Clavius (1574) gives it as Axiom 13.
The Harpur Euclid separates it by forty-eight pages from the other axioms.
It is not used in the first twenty-eight propositions of Euclid. Moreover, when at length used, it appears as the inverse of a proposition already demonstrated, the seventeenth, and is only needed to prove the inverse of another proposition already demonstrated, the twenty-seventh.

Now the great Lambert expressly says that Proklus demanded a proof of this assumption because when inverted it is demonstrable.

All this suggested, at Europe's renaissance, not a doubt of the necessary external reality and exact applicability of the assumption, but the possibility of deducing it from the other assumptions and the twenty-eight propositions already proved by Euclid without it.

Euclid demonstrated things more axiomatic by far. He proves what every dog knows, that any two sides of a triangle are together greater than the third.

Yet after he has finished his demonstration, that straight lines making with a transversal equal alternate angles are parallel, in order to

\section*{TRANSLATOR' S INTRODUCTION.}
vii
prove the inverse, that parallels cut by a transversal make equal alternate angles, he brings in the unwieldy assumption thus translated by Williamson (Oxford, 1781) :
"11. And if a straight line meeting two straight lines make those angles which are inward and upon the same side of it less than two right angles, the two straight lines being produced indefinitely will meet each other on the side where the angles are less than two right angles."

As Staeckel says, "it requires a certain courage to declare such a requirement, alongside the other exceedingly simple assumptions and postulates." But was courage likely to fail the man who, asked by King Ptolemy if there were no shorter road in things geometric than through his Elements? answered, "To geometry there is no special way for kings!"

In the brilliant new light given by Bolyai and Lobachevski we now see that Euclid understood the crucial character of the question of parallels.

There are now for us no better proofs of the depth and systematic coherence of Euclid's masterpiece than the very things which, their cause unappreciated, seemed the most noticeable blots on his work.

Sir Henry Savile, in his Praelectiones on Euclid, Oxford, 1621, p. 140, says : "In pulcherrimo Geometriae corpore duo sunt naevi, duae labes . . ." etc., and these two blemishes are the theory of parallels and the doctrine of proportion; the very points in the Elements which now arouse our wondering admiration. But down to our very nineteenth century an ever renewing stream of mathematicians tried to wash away the first of these supposed stains from the most beauteous body of Geometry.

The year 1799 finds two extraordinary young men striving thus
"To gild refined gold, to paint the lily,
To cast a perfume o'er the violet."
At the end of that year Gauss from Braunschweig writes to Bolyai Farkas in Klausenburg (Kolozsvár) as follows : [Abhandlungen der Koeniglichen Gesellschaft der Wissenschaften zu Goettingen, Bd. 22, 1877.]
"I very much regret, that I did not make use of our former proximity, to find out more about your investigations in regard to the first grounds of geometry; I should certainly thereby have spared myself much vain labor, and would have become more restful than any one, such
as I, can be, so long as on such a subject there yet remains so much to be wished for.
In my own world thereon I myself have advanced far (though my other wholly heterogeneous employments leave me little time therefore) but the way, which I have hit upon, leads not so much to the goal, which one wishes, as much more to making doubtful the truth of geometry.

Indeed I have core upon much, which with most no doubt would pass for a proof, but which in my eyes proves as good as nothing.

For example, if one could prove, that a rectilineal triangle is possible, whose content may be greater, than any given surface, then I am in condition, to prove with perfect rigor all geometry.

Most would indeed let that pass as an axiom; I not; it might well be possible, that, how far apart soever one took the three vertices of the triangle in space, yet the content was always under a given limit.

I have more such theorems, but in none do I find anything satisfying."
From this letter we clearly see that in 1799 Gauss was still trying to prove that Euclid's is the only non-contradictory system of geometry,
and that it is the system regnant in the external space of our physical experience.
The first is false; the second can never be proven.
Before another quarter of a century, Bolyai János, then unborn, had created another possible universe; and, strangely enough, though nothing renders it impossible that the space of our physical experience may, this very year, be satisfactorily shown to belong to Bolyai János, yet the same is not true for Euclid.

To decide our space is Bolyai's, one need only show a single rectilineal triangle whose anglesum measures less than a straight angle. And this could be shown to exist by imperfect measurements, such as human measurements must always be. For example, if our instruments for angular measurement could be brought to measure an angle to within one millionth of a second, then if the lack were as great as two millionths of a second, we could make certain its existence.

But to prove Euclid's system, we must show that a triangle's angle-sum is exactly a straight angle, which nothing human can ever do.

However this is anticipating, for in 1799 it seems that the mind of the elder Bolyai, Bolyai Farkas, was in precisely the same state as
that of his friend Gauss. Both were intensely trying to prove what now we know is indemonstrable. And perhaps Bolyai got nearer than Gauss to the unattainable. In his "Kurzer Grundriss eines Versuchs," etc., p. 46, we read : "Koennten jede 3 Punkte, die nicht in einer Geraden sind, in eine Sphaere fallen, so waere das Eucl. Ax. XI. bewiesen." Frischauf calls this "das anschaulichste Axiom." But in his Autobiography written in Magyar, of which my Life of Bolyai contains the first translation ever made, Bolyai Farkas says : "Yet I could not become satisfied with my different treatments of the question of parallels, which was ascribable to the long discontinuance of my studies, or more probably it was due to myself that I drove this problem to the point which robbed my rest, deprived me of tranquillity."

It is well-nigh certain that Euclid tried his own calm, immortal genius, and the genius of his race for perfection, against this self-same question. If so, the benign intellectual pride of the founder of the mathematical school of the greatest of universities, Alexandria, would not let the question cloak itself in the obscurities of the infinitely great or the infinitely small. He would say to himself : "Can I prove

\section*{TRANSLATOR' S INTRODUCTION.}
this plain, straightforward, simple theorem : "those straights which are produced indefinitely from less than two right angles meet." [This is the form which occurs in the Greek of Eu. I. 29.]

Let us not underestimate the subtle power of that old Greek mind. We can produce no Venus of Milo. Euclid's own treatment of proportion is found as flawless in the chapter which Stolz devotes to it in 1885 as when through Newton it first gave us our present continuous numbersystem.

But what fortune had this genius in the fight with its self-chosen simple theorem? Was it found to be deducible from all the definitions, and the nine "Common Notions," and the five other Postulates of the immortal Elements? Not so. But meantime Euclid went ahead without it through twenty-eight propositions, more than half his first book. But at last came the practical pinch, then as now the triangle's angle-sum.

He gets it by his twenty-ninth theorem : "A straight falling upon two parallel straights makes the alternate angles equal."

But for the proof of this he needs that recalcitrant proposition which has how long been keeping him awake nights and waking

\section*{TRANSLATOR'S INTRODUCTION.}
xiii
him up mornings? Now at last, true man of science, he acknowledges it indemonstrable by spreading it in all its ugly length among his postulates.

Since Schiaparelli has restored the astronomical system of Eudoxus, and Hultsch has published the writings of Autolycus, we see that Euclid knew surface-spherics, was familiar with triangles whose angle-sum is more than a straight angle. Did he ever think to carry out for himself the beautiful system of geometry which comes from the contradiction of his indemonstrable postulate; which exists if there be straights produced indefinitely from less than two right angles yet nowhere meeting; which is real if the triangle's angle-sum is less than a straight angle?

Of how naturally the three systems of geometry flow from just exactly the attempt we suppose Euclid to have made, the attempt to demonstrate his postulate fifth, we have a most romantic example in the work of the Italian priest, Saccheri, who died the twenty-fifth of October, 1733. He studied Euclid in the edition of Clavius, where the fifth postulate is given as Axiom 13. Saccheri says it should not be called an axiom, but ought to be demonstrated. He tries this seemingly simple
task; but his work swells to a quarto book of 101 pages.
Had he not been overawed by a conviction of the absolute necessity of Euclid's system, he might have anticipated Bolyai János, who ninety years later not only discovered the new world of mathematics but appreciated the transcendent import of his discovery.

Hitherto what was known of the Bolyais came wholly from the published works of the father Bolyai Farkas, and from a brief article by Architect Fr. Schmidt of Budapest "Aus dem Leben zweier ungarischer Mathematiker, Johann und Wolfgang Bolyai von Bolya." Grunert's Archiv, Bd. 48, 1868, p. 217.

In two communications sent me in September and October 1895, Herr Schmidt has very kindly and graciously put at my disposal the results of his subsequent researches, which I will here reproduce. But meantime I have from entirely another source come most unexpectedly into possession of original documents so extensive, so precious that I have determined to issue them in a separate volume devoted wholly to the life of the Bolyais; but these are not used in the sketch here given.

Bolyai Farkas was born February 9th, 1775, at Bolya, in that part of Transylvania
(Erdély) called Székelyföld. He studied first at Enyed, afterward at Klausenburg (Kolozsvár), then went with Baron Simon Kemény to Jena and afterward to Goettingen. Here he met Gauss, then in his 19th year, and the two formed a friendship which lasted for life.

The letters of Gauss to his friend were sent by Bolyai in 1855 to Professor Sartorius von Walterhausen, then working on his biography of Gauss. Everyone who met Bolyai felt that he was a profound thinker and a beautiful character.

Benzenberg said in a letter written in 1801 that Bolyai was one of the most extraordinary men he had ever known.

He returned home in 1799, and in January, 1804, was made professor of mathematics in the Reformed College of Maros-Vásárhely. Here for 47 years of active teaching he had for scholars nearly all the professors and nobility of the next generation in Erdély.

Sylvester has said that mathematics is poesy.
Bolyai's first published works were dramas.
His first published book on mathematics was an arithmetic :
Az arithmetica eleje. 8 vo. i- xvi, \(1-162 \mathrm{pp}\). The copy in the library of the Reformed College is enriched with notes by Bolyai János .

Next followed his chief work, to which he constantly refers in his later writings. It is in Latin, two volumes, 8 vo , with title as - follows :

TENTAMEN | JUVENTUTEM STUDIOSAM IN ELEMENTA MATHESEOS PURAE, ELEMENTARIS AC | SUBLIMIORIS, METHODO INTUITIVA, EVIDENTIA- | QUE HUIC PROPRIA, INTRODUCENDI. |

CUM APPENDICE TRIPLICI. | Auctore Professore Matheseos et Physices Chemiaeque | Publ. Ordinario. | Tomus Primus. | Maros Vasarhelyini. 1832. | Typis Collegii Reformatorum per JOSEPHUM, et | SIMEONEM KALI de felsö Vist. | At the back of the title : Imprimatur. | M. Vásárhelyini Die | 12 Octobris, 1829. [Paulus Horváth m. p. | Abbas, Parochus et Censor | Librorum.

Tomus Secundus. | Maros Vasarhelyini. 1833.
The first volume contains :
Preface of two pages : Lectori salutem.
A folio table : Explicatio signorumn.
Index rerum (I-XXXII). Errata (XXXIII-XXXVII).
Pro tyronibus prima vice legentibus notanda sequentia (XXXVIII-LII).
Errores (LIII-LXVI).

\section*{TRANSLATOR’ S INTRODUCTION.}
xvii
Scholion (LXVII - LXXIV).
Pluriium errorum haud animadversorum numerous minuitur (LXXV-LXXVI). Recensio per auctorem ipsum facta (LXXVII-LXXVIII).

Errores recentius detecti (L X X V-XCVIII).
Now comes the body of the text (pages 1-502).
Then, with special paging, and a new title page, comes the immortal Appendix, here given in English.

Professors Staeckel and Engel make a mistake in their "Parallellinien" in supposing that this Appendix is referred to in the title of " Tentamen." On page 241 they quote this title, including the words "Cum appendice triplici," and say : "In dem dritten Anhange, der nur 28 Seiten umfasst, hat Johann Bolyai seine neue Geometrie entwickelt."

It is not a third Appendix, nor is it referred to at all in the words "Cum appendice triplici."
These words, as explained in a prospectus in the Magyar language, issued by Bolyai Farkas, asking for subscribers, referred to a real triple Appendix, which appears, as it
xviii TRANSLATOR'S INTRODUCTION.
should, at the end of the book Tomus Secundus, pp. 265-322.
The now world renowned Appendix by Bolyai János was an afterthought of the father, who prompted the son not "to occupy himself with the theory of parallels," as Staeckel says, but to translate from the German into Latin a condensation of his treatise, of which the principles were discovered and properly appreciated in 1823, and which was given in writing to Johann Walter von Eckwehr in 1825.

The father, without waiting for Vol. II, inserted this Latin translation, with separate paging (1 - 26), as an Appendix to his Vol. I, where, counting a page for the title and a page "Explicatio signorum," it has twenty-six numbered pages, followed by two unnumbered pages of Errata.

The treatise itself, therefore, contains only twenty-four pages-the most extraordinary two dozen pages in the whole history of thought! Milton received but a paltry \(£ 5\) for his Paradise Lost; but it was at least plus \(£ 5\).

Bolyai János, as we learn from Vol. II, p. 384, of "Tentamen," contributed for the

\section*{TRANSLATOR'S INTRODUCTION.}
xix
printing of his eternal twenty-six pages, 104 florins 50 kreuzers.
That this Appendix was finished considerably before the Vol. I, which it follows, is seen from the references in the text, breathing a just admiration for the Appendix and the genius of its author.

Thus the father says, p. 452 : Elegans est conceptus similium, quem J. B. Appendicis Auctor dedit. Again, p. 489 : Appendicis Actor, rem acumine singulari aggressus, Geometriam pro omni casu absolute veram posuit; quamvis e magna mole, tantum summe necessaria, in Appendice hujus tomi exhibuerit, multis (ut tetraedri resolutione generali, pluribusque aliis disquisitionibus elegantibus) brevitatis studio omissis.

And the volume ends as follows, p. 502 : Nec operae pretium est plura referre; quum res tota exaltiori contemplationis puncto, in ima penetranti oculo, tractetur in Appendice sequente, a quovis fideli veritatis purae alumno diagna legi.

The father gives a brief resumé of the results of his own determined, life-long, desperate efforts to do that at which Saccheri, J. H. Lambert, Gauss also had failed, to establish Euclid' theory of parallels a priori.

\section*{TRANSLATOR'S INTRODUCTION.}

He says, p. 490 : "Tentamina idcirco quae olim feceram, breviter exponenda veniunt; ne saltem alius quis operam eandem perdat." He anticipates J. Delboeuf's "Prolégoménes philosophiques de la géométrie et solution des postulats," with the full consciousness in addition that it is not the solution, - that the final solution has crowned not his own intense efforts, but the genius of his son.

This son's Appendix which makes all preceding space only a special case, only a species under a genus, and so requiring a descriptive adjective, Euclidean, this wonderful production of pure genius, this strange Hungarian flower, was saved for the world after more than thirty-five years of oblivion, by the rare erudition of Professor Richard Baltzer of Dresden, afterward professor in the University of Giessen. He it was who first did justice publicly to the works of Lobachevski and Bolyai.

Incited by Baltzer, in 1866 J. Hoüel issued a French translation of Lobachevski's Theory of Parallels, and in a note to his Preface says : "M. Richard Baltzer, dans la seconde édition de ses excellents Elenents de Geometrie, a, le premier, introduit ces notions exactes à la place qu'elles doivent occuper," Honor to

\section*{TRANSLATOR'S INTRODUCTION.}
xxi
Baltzer! But alas! father and son were already in their graves!
Fr. Schmidt in the article cited (1868) says : "It was nearly forty years before these profound views were rescued from oblivion, and Dr. R. Baltzer, of Dresden, has acquired imperishable titles to the gratitude of all friends of science as the first to draw attention to the works of Bolyai, in the second edition of his excellent Elemente der Mathematik (1866-67). Following the steps of Baltzer, Professor Hoüel, of Bordeaux, in a brochure entitled, Essai critique sur les principes fondamentaux de la Géométrie élémentaire, has given extracts from Bolyai's book, which will help in securing for these new ideas the justice they merit."

The father refers to the son's Appendix again in a subsequent book, Urtan elemei kezdöknek [Elements of the science of space for beginners] (\(1850-51\)), pp. 48. In the College are preserved three sets of figures for this book, two by the author and one by his grandson, a son of János.

The last work of Bolyai Farkas; the only one composed in German, is entitled,

\section*{Kurzer Grundriss eines Versuchs}
I. Die Arithmetik, durch zvekmässig konstruirte
xxii

\section*{TRANSLATOR' S INTRODUCTION.}

Begriffe, von eingebildeten und unendlich-kleinen Grössen gereinigt, anschaulich und logischstreng darzustellen.
II. In der Geometrie, die Begriffe der geraden Linie, der Ebene, des Winkels allgemein, der winkellosen Formen, und der Krummen, der verschiedenen Arten der Gleichheit u. d. gl. nicht nur scharf zu bestimmen; sondern auch ihr Seyn im Raume zu beweisen : und da die Frage, ob zwey von der dritten geschnittene Geraden, wenn die summe der inneren Winkel nicht \(=2 R\), sich schneiden oder nicht? neimand auf der Erde ohne ein Axiom (wie Euklid das XI) aufzustellen, beantworten wird; die davon unabhängige Geometrie abzusondern; und eine auf die \(J a-\) Antwort, andere auf das Nein so zu bauen, das die Formeln der letzten, auf ein Wink auch in der ersten gültig seyen.

Nach ein lateinischen Werke von 1829, M. Vásérhely, und eben daselbst gedruckten ungrischen.

Maros Vásárhely 1851. 8vo. pp. 88.
In this book he says, referring to his son's Appendix : "Some copies of the work published here were sent at that time to Vienna, to Berlin, to Goettingen From Goettingen the giant of mathematics, who from

\section*{TRLANSLATOR'S INTRODUCTION.}
xxiii
his pinnacle embraces in the same view the stars and the abysses, wrote that he was surprised to see accomplished what he had begun, only to leave it behind in his papers."

This refers to 1832 . The only other record that Gauss ever mentioned the book is a letter from Gerling, written October 31st, 1851, to Wolfgang Boylai, on receipt of a copy of "Kurzer Grundriss." Gerling, a scholar of Gauss, had been from 1817 Professor of Astronomy at Marburg. He writes : "I do not mention my earlier occupation with the theory of parallels, for already in the year 1810-1812 with Gauss, as earlier 1809 with J. F. Pfaff I had learned to perceive how all previous attempts to prove the Euclidean axiom had miscarried. I had then also obtained preliminary knowledge of your works, and so, when I first [1820] had to print something of my view thereon, I wrote it exactly as it yet stands to read on page 187 of the latest edition.
'"We had about this time [1819] here a law professor, Schweikart, who was formerly in Charkov, and had attained to similar ideas, since without help of the Euclidean axiom he developed in its beginnings a geometry which he called Astralgeometry. What he communicated to me thereon I sent to Gauss, who
xxiv
TRANSLATOR'S INTRODUCTION.
then informed me how much farther already had been attained on this way, and later also expressed himself about the great acquisition, which is offered to the few expert judges in the Appendix to your book."

The "latest edition" mentioned appeared in 1851, and the passage referred to is: "This proof [of the parallel-axiom] has been sought in manifold ways by acute mathematicians, but yet until now not found with complete sufficiency. So long as it fails, the theorem, as all founded on it, remains a hypothesis, whose validity for our life indeed is sufficiently proven by experience, whose general, necessary exactness, however, could be doubted without absurdity."

Alas! that this feeble utterance should have seemed sufficient for more than thirty years to the associate of Gauss and Schweikart, the latter certainly one of the independent discoverers of the non-Euclidean geometry. But then, since neither of these sufficiently realized the transcendent importance of the matter to publish any of their thoughts on the subject, a more adequate conception of the issues at stake could scarcely be expected of the scholar and colleague. How different with Bolyai János and Lobachévski, who claimed

\section*{TRANSLATOR'S INTRODUCTION.}
xxv
at once, unflinchingly, that their discovery marked an epoch in human thought so momentous as to be unsurpassed by anything recorded in the history of philosophy or of science, demonstrating as had never been proven before the supremacy of pure reason at the very moment of overthrowing what had forever seemed its surest possession, the axioms of geometry.

On the 9th of March, 1832, Bolyai Farkas was made corresponding member in the mathematics section of the Magyar Academy.

As professor he exercised a powerful influence in his country.
In his private life he was a type of true originality. He wore roomy black Hungarian pants, a white flannel jacket, high boots, and a broad hat like an old-time planter's. The smoke-stained wall of his antique domicile was adorned by pictures of his friend Gauss, of Schiller, and of Shakespeare, whom he loved to call the child of nature. His violin was his constant solace.

He died November 20th, 1856. It was his wish that his grave should bear no mark. The mother of Bolyai János , née, Arkosi Benkö Zsuzsanna, was beautiful, fascinating,
xxvi

\section*{TRANSLATOR’ S INTRODUCTION.}
of extraordinary mental capacity, but always nervous.
János, a lively, spirited boy, was taught mathematics by his father. His progress was marvelous. He required no explanation of theorems propounded, and made his own demonstrations for them, always wishing his father to go on. "Like a demon, he always pushed me on to tell him more."

At 12, having passed the six classes of the Latin school, he entered the philosophiccurriculum, which he passed in two years with great distinction.

When about 13, his father, prevented from meeting his classes, sent his son in his stead. The students said they liked the lectures of the son better than those of the father. He already played exceedingly well on the violin.

In his fifteenth year he went to Vienna to K. K. Ingenieur-Akademie.
In August, 1823, he was appointed "souslieutenant" and sent to Temesvár, where he was to present himself on the 2 nd of September.

From Temesvár, on November 3rd, 1823, János wrote to his father a letter in Magyar, of which a French translation was sent me by Professor Koncz József on February 14th,

\section*{TRANSLATOR'S INTRODUCTION.}
xxvii
1895. This will be given in full in my life of Bolyai; but here an extract will suffice :
"'My Dear and Good Father. "I have so much to write about my new inventions that it is impossible for the moment to enter into great details, so I write you only on one-fourth of a sheet. I await your answer to my letter of two sheets; and perhaps I would not have written you before receiving it, if 1 had not wished to address to you the letter I am writing to the Baroness, which letter I pray you to send her.
"First of all I reply to you in regard to the binominal.
'Now to something else, so far as space permits. I intend to write, as soon as I have put it into order, and when possible to publish, a work on parallels.
"At this moment it is not yet finished, but the way which I have followed promises me with certainty the attainment of the goal, if it in general is attainable. It is not yet attained, but I have discovered such magnificent things that I am myself astonished at them.
"It would be damage eternal if they were
xxviii
TRANSLATOR'S INTRODUCTION.
lost. When you see them, my father, you yourself will acknowledge it. Now I can not say more, only so much : that from nothing I have created another wholly new world. All that I have hitherto sent you compares to this only as a house of cards to a castle.
"P. S.-I dare to judge absolutely and with conviction of these works of my spirit before you, my father; I do not fear from you any false interpretation (that certainly I would not merit), which signifies that, in certain regards, I consider you as a second self."

Prom the Bolyai MSS., now the property of the College at Maros-Vásárhely, Fr. Schmidt has extracted the following statement by János :
"First in the year 1823 have I pierced through the problem in its essence, though also afterwards completions yet were added.
"I communicated in the year 1825 to my former teacher, Herr Johann Walter von Eckwehr (later k. k. General) [in the Austrian Army], a written treatise, which is still in his hands.
"On the prompting of my father I translated my treatise into the Latin language, and

\section*{TRANSLATOR'S INTRODUCTION.}
xxix
it appeared as Appendix to the Tentamen, 1832."
The profound mathematical ability of Bolyai János showed itself physically not only in his handling of the violin, where he was a master, but also of arms, where he was unapproachable.

It was this skill, combined with his haughty temper, which caused his being retired as Captain on June 16th, 1833, though it saved him from the fate of a kindred spirit, the lamented Galois, killed in a duel when only 19. Bolyai, when in garrison with cavalry officers, was provoked by thirteen of them and accepted all their challenges on condition that he be permitted after each duel to play a bit on his violin. He came out victor from his thirteen duels, leaving his thirteen adversaries on the square.

He projected a universal language for speech as we have it for music and for mathematics.
He left parts of a book entitled : Principia doctrinae novae quantitatum imaginariarum perfectae uniceque satisfacientis, aliaeque disquisitiones analyticae et analytico-geometricae cardinales gravissimaeque; auctore

Johan. Bolyai de eadem, C. R. austriaco castrensium captaneo pensionato.
Vindobonae vel Maros Vásárhelyini, 1853.
Bolyai Farkas was a student at Goettingen from 1796 to 1799.
In 1799 he returned to Kolozsvár, where Bolyai János was born December 18th, 1802.
He died January 27th, 1860, four years after his father.
In 1894 a monumental stone was erected on his long-neglected grave in Maros-Vásárhely by the Hungarian Mathematico-Physical Society.

\section*{APPENDIX.}

SCIENTIAM SPATII absolute veram exhibens :
a veritate aut falsitate Axiomatis XI Euclidei
(a priori haud unquam decidenda)
independentemn. adjecta ad casum falsitatis, quadratura circuli geometrica.
Auctore JOHANNE BOLYAI de eadem, Geometrarum in Exercitu Caesareo Regio Austriaco

Castrensium Capitaneo.

\section*{EXPLANATION OF SIGNS.}

The straight \(A B\) means the aggregate of all points situated in the same straight line with A and B.
The sect \(A B\) means that piece of the straight AB between the points A and B .
The ray \(A B\) means that half of the straight AB which commences at the point A and contains the point B .
The plane \(A B C\) means the aggregate of all points situated in the same plane as the three points (not in a straight) A, B, C.
The hemi-plane \(A B C\) means that half of the plane \(A B C\) which starts from the straight AB and contains the point C .
\(A B C\) means the smaller of the pieces into which the plane ABC is parted by the rays \(\mathrm{BA}, \mathrm{BC}\), or the non-reflex angle of which the sides are the rays \(\mathrm{BA}, \mathrm{BC}\).
ABCD (the point D being situated within \(\angle \mathrm{ABC}\), and the straights \(\mathrm{BA}, \mathrm{CD}\) not intersecting) means the portion of \(\angle \mathrm{ABC}\) comprised between ray BA , sect BC , ray CD ; while BACD designates the portion of the plane ABC comprised between the straights AB and CD .
\(\perp\) is the sign of perpendicularity.
\(\|\) is the sign of parallelism.
\(\angle\) means angle.
rt. \(\angle\) is right angle.
st. \(\angle\) is straight angle.
\(\cong\) is the sign of congruence, indicating that two magnitudes are superposable.
\(\mathrm{AB} П \mathrm{CD}\) means \(\angle \mathrm{CAB}=\angle \mathrm{ACD}\).
\(x \mathrm{Y} a\) means \(x\) converges toward the limit \(a\).
\(\Delta\) is triangle.
\(\odot r\) means the [circumference of the] circle of radius r .
area \(\odot r\) means the area of the surface of the circle of radius \(r\).
[Not Mentioned: \(\square, \infty\)]

\section*{THE SCIENCE ABSOLUTE OF SPACE.}

§1. If the ray AM is not cut by the ray [3] BN , situated in the same plane, but is cut by every ray BP comprised in the angle ABN , we will call ray BN parallel to ray AM ; this is designated by \(\mathrm{BN} \| \mathrm{AM}\);

It is evident that there is one such ray \(B N\), and only one, passing through any point B (taken outside of the straight AM), and that the sum of the angles \(\mathrm{BAM}, \mathrm{ABN}\) can not exceed a st. \(\angle\); for in moving BC around B until \(\mathrm{BAM}+\) \(\mathrm{ABC}=\mathrm{st} . \angle\), somewhere ray BC first does not cut ray AM , and it is then \(\mathrm{BC} \|\) AM. It is clear that \(B N \| E M\), wherever the point \(E\) be taken on the straight AM (supposing in all such cases AM > AE).

If while the point \(C\) goes away to infinity on ray \(A M\), always \(C D=C B\), we Fig. 1. will have constantly \(\mathrm{CDB}=(\mathrm{CBD}<\mathrm{NBC})\); but \(\mathrm{NBC} Y 0\); and so also ADB Y 0.
§ 2. If \(\mathrm{BN} \| \mathrm{AM}\), we will have also \(\mathrm{CN} \| \mathrm{AM}\). For take D anywhere in MACN. If C is on ray

Eig. 9. \(B N\), ray \(B D\) cuts ray \(A M\), since \(B N \| A M\), and so also ray \(C D\) cuts ray \(A M\). But if \(C\) is on ray \(B R\) take \(B Q \| C D\); \(B Q\) falls within the \(\angle A B N\) (§1), and cuts ray AM; and so also ray CD cuts ray AM. Therefore every ray CD (in ACN) cuts, in each case, the ray AM, without CN itself cutting ray AM. Therefore always CN \| AM.
§ 3. (Fig. 2.) If \(B R\) and \(C S\) and each \| \(A M\), and \(C\) is not on the ray \(B R\), then ray BR and ray CS do not intersect. For if ray BR and ray CS had a common point D, then (§ 2) DR and DS would be each \|AM, and ray DS (§ 1) would fall on ray DR , and C on the ray BR (contrary to the hypothesis).
§ 4. If MAN \(>M A B\), we will have for every point \(B\) of ray \(A B\), a point
 \(C\) of ray \(A M\), such that \(B C M=N A M\).

For (by § 1) is granted BDM > NAM, and so that MDP \(=\) MAN, and B falls in

\section*{SCIENCE ABSOLUTE OF SPACE.}

NADP. If therefore NAM is carried along AM until ray AN arrives on ray DP, ray AN will somewhere have necessarily passed through B , and some \(\mathrm{BCM}=\mathrm{NAM}\).
§ 5. If \(\mathrm{BN} \| \mathrm{AM}\), there is on the straight [4] AM a point F such that \(\mathrm{FM} \Pi \mathrm{BN}\). For by \(\S 1\) is granted \(\mathrm{BCM}>\mathrm{CBN}\); and if \(\mathrm{CE}=\mathrm{CB}\), and so \(\mathrm{EC} П \mathrm{BC}\); evidently

Fig. 4. \(B E M<E B N\). The point P is moved on EC, the angle BPM always being called \(u\), and the angle PBN always \(v\), evidently \(u\) is at first less than the corresponding \(v\), but afterwards greater. Indeed \(u\) increases continuously from BEM to BCM; since (by \(\sim 4\)) there exists no angle > BEM and \(<\mathrm{BCM}\), to which \(u\) does not at some time become equal. Likewise v decreases continuously from EBN to CBN. There is therefore on EC a point F such that \(\mathrm{BFM}=\mathrm{FBN}\).
§ 6. If BN || AM and E anywhere in the straight AM, and G in the straight BN; then GN \| EM and EM \| GN. For (by § 1) BN \| EM, whence (by § 2) GN \| EM. If moreover FM П BN (§ 5); then MFBN \(\cong\) NBFM, and consequently (since BN \| FM) also FM \| BN, and (by what precedes) EM \| GN.
§ 7. If BN and CP are each || AM , and C not on the straight BN ; also \(\mathrm{BN} \| \mathrm{CP}\). For the rays BN and CP do not intersect (§ 3); but AM, BN and CP either are or are not in the same plane; and in the first case, AM either is or is not within BNCP.

If \(\mathrm{AM}, \mathrm{BN}, \mathrm{CP}\) are coplanar, and AM falls within BNCP; then every ray BQ (in NBC) cuts the ray \(A M\) in some point \(D\) (since \(B N \| A M\)); moreover, since DM \| CP (§6), the ray DQ will cut the ray CP, and so BN \| CP.

But if BN and CP are on the same side of AM; then one of them, for example
 CP , falls between the two other straights BN, AM : but every ray BQ (in NBA) cuts the ray AM, and so also the straight CP. Therefore BN \| CP.

If the planes MAB, MAC make an angle; then CBN and ABN have in common nothing but the ray BN , while the ray AM (in ABN) and the ray BN , and so also NBC and the ray AM have nothing in common.

But hemi-plane BCD , drawn through any ray BD (in NBA), cuts the ray AM , since ray

BQ cuts ray AM (as \(\mathrm{BN} \| \mathrm{AM}\)). Therefore in revolving the hemi-plane BCD around BC until it begins to leave the ray AM, the hemi-plane BCD at last will fall upon the hemi-plane \(B C N\). For the same reason this same will fall upon hemiplane BCP. Therefore BN falls in BCP. Moreover, if BR \| CP; then (because also AM \| CP) by like reasoning, BR falls in BAM, and also (since BR \|CP) in BCP . Therefore the straight BR , being common to the two planes MAB, PCB, of course is the straight BN , and hence \(\mathrm{BN} \| \mathrm{CP}\).*

If therefore \(C P \| A M\), and \(B\) exterior to the plane \(C A M\); then the intersection BN of the planes BAM, BCP is \(\|\) as well to AM as to CP.

although \(\mathrm{BN} \| \mathrm{CP}\). But every ray BQ (in CBN) cuts ray CP ; and so ray BQ cuts also ray AM . Consequently BN || AN.
§ 9. If BN II AM, and MAP \(\perp \mathrm{MAB}\), and the \(\angle\), which NBD makes with NBA (on that side of MABN, where MAP is) is \(<\mathrm{rt} . \angle\); then MAP and NBD intersect.

For let \(\angle \mathrm{BAM}=\mathrm{rt} . \angle\), and \(\mathrm{AC} \perp \mathrm{BN}\) (whether or not C falls on B),

Fig. 9. and \(\mathrm{CE} \perp \mathrm{BN}\) (in NBD); by hypothesis \(\angle \mathrm{ACE}<\mathrm{rt} . \angle\), and \(\mathrm{AF}(\perp \mathrm{CE})\) will fall in ACE.

Let ray AP be the intersection of the hemi-planes ABF, AMP (which have the point A common); since \(\mathrm{BAM} \perp \mathrm{MAP}, \angle \mathrm{BAP}=\angle \mathrm{BAM}=\) rt. \(\angle\).

If finally the hemi-plane ABF is placed upon the hemi-plane \(\mathrm{ABM}(\mathrm{A}\) and \(B\) remaining), ray \(A P\) will fall on ray \(A M\); and since \(A C \perp B N\), and sect \(\mathrm{AF}<\) sect AC , evidently sect AF will terminate within ray BN , and so BF falls in ABN . But in this position, ray BF cuts ray AP (because \(\mathrm{BN} \| \mathrm{AM}\)); and so ray AP and ray BF intersect also in the original position; and the point of section is common to the hemi-planes MAP and NBD. Therefore the hemi-planes MAP and NBD intersect. Hence follows
easily that the hemi-planes MAP and NBD intersect if the sum of the interior angles which they make with MABN is \(<\mathrm{st} . \angle\).
\(\S\) 10. If both BN and \(\mathrm{CP} \|\) П AM ; also is \(\mathrm{BN} \| \Pi \mathrm{CP}\).

For either MAB and MAC make an angle, or they are in a plane.

If the first; let the hemi-plane QDF bisect \(\perp\) sect AB ; then \(\mathrm{DQ} \perp \mathrm{AB}\), and so \(\mathrm{DQ} \| \mathrm{AM}\) (§8); likewise if hemiplane ERS bisects \(\perp\) sect AC, is ER \(\|\) AM; whence (§ 7) DQ \| ER.

Hence follows easily (by § 9), the hemi-planes QDF and ERS intersect, and have (§ 7) their intersection FS \| DQ , and (on account of BN \| DQ) also FS \| BN. Moreover (for any point of FS) FB = FA = FC, and the straight FS falls in the plane TGF, bisecting \(\perp\) sect BC. But (by § 7) (since FS \| BN) also GT \| BN . In the same way is proved GT \(\| \mathrm{CP}\). Meanwhile GT bisects \(\perp\) sect BC; and so TGBN \(\cong\) \(\operatorname{TGCP}\) (§ 1), and BN \| П СР.

If BN , AM and CP are in a plane, let (falling without this plane) FS || \(\Pi \mathrm{AM}\); then (from

\section*{SCIENCE ABSOLUTE OF SPACE.}
what precedes) FS \(\| \perp\) both to BN and to CP , and so also \(\mathrm{BN} \| \perp \mathrm{CP}\).
\(\S\) 11. Consider the aggregate of the point A , and all points of which any one B is such, that if BN || AM, also BN П AM; call it F ; but the intersection of F with any plane containing the sect AM call L.

F has a point, and one only, on any straight || AM; and evidently L is divided by ray AM into two congruent parts.

Call the ray AM the axis of L. Evidently also, in any plane containing the sect AM, there is for the axis ray AM a single L . Call any L of this sort the L of this ray AM (in the plane considered, being understood). Evidently by revolving L around AM we describe the F of which ray AM is called the axis, and in turn F may be ascribed to the axis ray \(A M\).
\(\S\) 12. If B is anywhere on the L of ray AM , and \(\mathrm{BN} \| П \mathrm{AM}(\S 11)\); then the L of ray AM and the L of ray BN coincide. For suppose, in distinction, \(\mathrm{L}^{\prime}\) the L of ray BN . Let C be anywhere in \(L^{\prime}\), and \(\mathrm{CP} \| \Pi \mathrm{BN}(\S 11)\). Since \(\mathrm{BN} \| \Pi \mathrm{AM}\), so \(\mathrm{CP} \| \Pi \mathrm{AM}(\S 10)\), and so C also will fall on L. And if C is anywhere on L , and \(\mathrm{CP} \| \Pi \mathrm{AM}\); then \(\mathrm{CP} \| \boldsymbol{\Pi B N}^{(\S 10) ; \text { and } \mathrm{C} \text { also falls on } \mathrm{L}^{\prime}}\) (§ 11). Thus L and \(\mathrm{L}^{\prime}\) are the
same; and every ray \(B N\) is also axis of \(L\), and between all axes of this \(L\), is \(\Pi\).
The same is evident in the same way of \(F\).
§ 13. If \(\mathrm{BN} \| \mathrm{AM}\), and \(\mathrm{CP} \| \mathrm{DQ}\), and \(\angle \mathrm{BAM}+\angle \mathrm{ABN}=\) st. \(\angle\); then also \(\angle \mathrm{DCP}+\angle \mathrm{CDQ}=\) st. \(\angle\).

For let \(\mathrm{EA}=\mathrm{EB}\), and \(\mathrm{EFM}=\mathrm{DCP}\) (§ 4). Since \(\angle \mathrm{BAM}+\angle \mathrm{ABN}=\) st. \(\angle=\angle \mathrm{ABN}+\angle \mathrm{ABG}\), we have \(\angle \mathrm{EBG}=\angle \mathrm{EAF}\); and so if also \(\mathrm{BG}=\mathrm{AF}\), then \(\Delta \mathrm{EBG} \cong \triangle \mathrm{EAF}, \angle \mathrm{BEG}=\angle \mathrm{AEF}\) and G will fall on the ray FE . Moreover \(\angle \mathrm{GFM}+\angle \mathrm{FGN}=\) st. \(\angle\) (since \(\angle \mathrm{EGB}=\angle \mathrm{EFA}\)).

Also GN || FM (§ 6).
Therefore if MFRS \(\cong \mathrm{PCDQ}\), then RS \| GN (§ 7), and \(R\) falls within or without the sect \(F G\) (unless sect \(C D=\) sect \(F G\), where the thing now is evident).
I. In the first case \(\angle \mathrm{FRS}\) is not \(>\) (st. \(\angle-\angle \mathrm{RFIM}=\angle \mathrm{FGN}\)), since RS || FM. But as RS \| GN , also \(\angle \mathrm{FRS}\) is not \(\angle \angle \mathrm{FGN}\); and so \(\angle \mathrm{FRS}=\angle \mathrm{FGN}\), and \(\angle \mathrm{RFM}+\angle \mathrm{FRS}=\angle \mathrm{GFM}+\)
\(\angle \mathrm{FGN}=\) st. \(\angle\). Therefore also \(\angle \mathrm{DCP}+\angle \mathrm{CDQ}=\) st. \(\angle\).
II. If R falls without the sect FG ; then \(\angle \mathrm{NGR}=\angle \mathrm{MFR}\), and let \(\mathrm{MFGN} \cong \mathrm{NGHL} \cong \mathrm{LHKO}\), and so on, until FK \(=\) FR or begins to be \(>\) FR. Then KO \| HL \| FM (§7).

If K falls on R , then KO falls on RS (§ 1); and so \(\angle \mathrm{RFM}+\angle \mathrm{FRS}=\angle \mathrm{KFM}+\angle \mathrm{FKO}=\) \(\angle \mathrm{KFM}+\angle \mathrm{FGN}=\mathrm{st} . \angle\); but if R falls within the sect HK , then (by I) \(\angle \mathrm{RHL}+\angle \mathrm{KRS}=\) st. \(\angle=\) \(\angle \mathrm{RFM}+\angle \mathrm{FRS}=\angle \mathrm{DCP}+\angle \mathrm{CDQ}\).
§ 14. If \(\mathrm{BN} \| \mathrm{AM}\), and \(\mathrm{CP} \| \mathrm{DQ}\), and \(\angle \mathrm{BAM}+\angle \mathrm{ABN}<\) st. \(\angle\); then also \(\angle \mathrm{DCP}+\angle \mathrm{CDQ}<\) st. \(\angle\).

For if \(\angle \mathrm{DCP}+\angle \mathrm{CDQ}\) were not \(<\) st. \(\angle\), and so (by § 1) were \(=\) st. \(\angle\), then (by \(\S 13\)) also \(\angle \mathrm{BAM}+\angle \mathrm{ABN}=\) st. \(\angle\) (contra hyp.).
15. Weighing §§ 13 and 14 , the System of Geometry resting on the hypothesis of the truth of Euclid's Axiom XI is called \(\Sigma\); and the system founded on the contrary hypothesis is \(S\).

All things which are not expressly said to be in \(\Sigma\) or in \(S\), it is understood are enunciated absolutely, that is are asserted true whether \(\Sigma\) or \(S\) is reality.
§16. If AM is the axis of any \(L\); then \(L\), in \(\Sigma\) is a straight \(\perp A M\).
For suppose BN an axis from any point B of L ; in \(\Sigma, \angle \mathrm{BAM}+\angle \mathrm{ABN}=\)
 st. \(\angle\), and so \(\angle \mathrm{BAM}=\mathrm{rt} . \angle\).

And if C is any point of the straight AB , and \(\mathrm{CP} \| \mathrm{AM}\); then (by § 13) CP \(\Pi\) AM, and so C on L (§ 11).

But in S, no three points A, B, C on L or on F are in a straight. For some one of the axes AM, BN, CP (e.g. AM) falls between the two others; and then (by § 14) \(\angle \mathrm{BAM}\) and \(\angle \mathrm{CAM}\) are each \(<\mathrm{rt} . \angle\).
§ 17. L in \(S\) also is a line, and \(F\) a surface. For (by § 11) any plane \(\perp\) to the axis ray AM (through any point of \(F\)) cuts \(F\) in [the circumference of] a circle, of which the plane (by § 14) is \(\perp\) to no other axis ray \(B N\). If we revolve \(F\) about \(B N\), any point of \(F\) (by § 12) will remain on F , and the section of F with a plane not \(\perp\) ray BN will describe a surface; and whatever be the points \(\mathrm{A}, \mathrm{B}\) taken on it, F can so be congruent to itself that A falls upon B (by § 12); therefore F is a uniform surface.

Hence evidently (by §§ 11 and 12) L is a uniform line.*
§ 18. The intersection with F of any plane, drawn through a point A of F obliquely to the axis AM , is, in S, a circle.

For take A, B, C, three points of this section, and BN, CP, axes; AMBN and AMCP make an angle, for otherwise the plane determined by A, B, C (from § 16) would contain AM, (contra hyp.). Therefore the planes bisecting \(\perp\) the sects \(\mathrm{AB}, \mathrm{AC}\) intersect (§ 10) in some axis ray FS (of F), and \(\mathrm{FB}=\mathrm{FA}=\mathrm{FC}\).

absolutely for \(S\) and for \(\Sigma\).

Make \(\mathrm{AH} \perp \mathrm{FS}\), and revolve FAH about FS; A will describe a circle of radius HA, passing, through B and C , and situated both in F and in the plane ABC ; nor have F and the plane ABC anything in common but \(\odot \mathrm{HA}(\S 16)\).

It is also evident that in revolving the portion FA of the line L (as radius) in F around F , its extremity will describe \(\odot \mathrm{HA}\).
* It is not necessary to restrict the demonstration to the system S; since it may easily be so set forth, that it holds
§ 19. The perpendicular BT to the axis BN of L (falling in the plane of L) is, in \(\mathrm{S}, \mathrm{N}\) tangent

Fig. 14. to L. For L has in ray BT no point except B (§ 14), but if BQ falls in TBN, then the center of the section of the plane through BQ perpendicular to TBN with the F of ray \(\mathrm{BN}(\S 18)\) is evidently located on ray BQ ; and if sect BQ is a diameter, evidently ray BQ cuts in Q the line L of ray BN .
§ 20. Any two points of F determine a line L (§§ 11 and 18); and since (from \(\S 16\) and 19) L is \(\perp\) to all its axes, every \(\angle\) of lines L in F is equal to the \(\angle\) of the planes drawn through its sides perpendicular to F .
21. Two L form lines, ray AP and ray BD , in the same F , making with a third L form AB , a sum of interior angles \(<\)

Fig. 15. st. \(\angle\), intersect.
(By line AP in F , is to be understood the line L drawn through \(A\) and \(P\), but by ray AP that half of this line beginning at A , in which P falls.)

For if \(\mathrm{AM}, \mathrm{BN}\) are axes of F , then the hemiplanes AMP, BND intersect (§ 9); and F cuts
their intersection (by §§ 7 and 11); and so also ray AP and ray BD intersect.
From this it is evident that Euclid's Axiom XI and all things which are claimed in geometry and plane trigonometry hold good absolutely in F, L lines being substituted in place of straights : therefore the trigonometric functions are taken here in the same sense as in \(\Sigma\); and the circle of which the L form radius \(=r\) in F , is \(2 \pi r\); and likewise area of \(\odot r\) (in F\()=\pi r^{2}\) (by \(\pi\) understanding \(1 / 2 \odot 1\) in F , or the known \(3.1415926 \ldots\))
\(\S 22\). If ray AB were the L of ray AM , and C on ray AM ; and the \(\angle \mathrm{CAB}\) (formed by the straight ray AM and the L form line ray AB), carried first along the ray
 AB , then along the ray BA , always forward to infinity : the path CD of \(C\) will be the line \(L\) of \(C M\).

For let D be any point in line CD (called later \(\mathrm{L}^{\prime}\), let DN be \(\| \mathrm{CM}\), and \(B\) the point of \(L\) falling on the straight \(D N\). We shall have \(B N \Pi\) AM , and sect \(\mathrm{AC}=\) sect BD , and so \(\mathrm{DN} \Pi \mathrm{CM}\), consequently D in \(\mathrm{L}^{\prime}\). But if \(D\) in \(L^{\prime}\) and \(D N \| C M\), and \(B\) the point of \(L\) on the straight \(D N\); we shall have \(\mathrm{AM} П \mathrm{BN}\) and \(\mathrm{CM} П \mathrm{DN}\), whence manifestly sect \(\mathrm{BD}=\) sect AC,

\section*{SCIENCE ABSOLUTE OF SPACE.}
and D will fall on the path of the point C , and \(\mathrm{L}^{\prime}\) and the line CD are the same. Such an \(\mathrm{L}^{\prime}\) is designated by L' 8 L .
\(\S\) 23. If the L form line \(\mathrm{CDF} 8 \mathrm{ABE}(\S 22)\), and \(\mathrm{AB}=\mathrm{BE}\), and the rays \(\mathrm{AM}, \mathrm{BN}, \mathrm{EP}\) are axes; manifestly \(C D=D F\); and if any three points \(A, B, E\) are of line \(A B\), and \(A B=n . C D\), we shall also have \(\mathrm{AE}=\mathrm{n} . \mathrm{CF}\); and so (manifestly even for \(\mathrm{AB}, \mathrm{AE}, \mathrm{DC}\) incommensurable), \(\mathrm{AB}: \mathrm{CD}=\) \(\mathrm{AE}: \mathrm{CF}\), and \(\mathrm{AB}: \mathrm{CD}\) is independent of \(A B\), and completely determined by \(A C\).

This ratio AB : CD is designated by the capital letter (as X) corresponding to the small letter (as X) by which we represent the sect AC.
\(\S 24\). Whatever be \(x\) and \(y,(\S 23), \mathrm{Y}=\mathrm{X}^{\frac{\mathrm{x}}{\mathrm{y}}}\).
For, one of the quantities \(x, y\) is a multiple of the other (e. g. \(y\) of \(x\)), or it is not.
If \(y=\mathrm{n} . x\), take \(x=\mathrm{AC}=\mathrm{CG}=\mathrm{GH}=\& \mathrm{c}\)., until we get \(\mathrm{AH}=y\).
Moreover, take CD 8 GK 8 HL.
We have ((§ 23) \(\mathrm{X}=\mathrm{AB}: \mathrm{CD}-\mathrm{CD}: \mathrm{GK}=\mathrm{GK}: \mathrm{HL}\); and so
\[
\frac{\mathrm{AB}}{\mathrm{HL}}=\left(\frac{\mathrm{AB}}{\mathrm{CD}}\right)^{\mathrm{n}}
\]
or \(Y=X^{n}=X^{\frac{y}{x}}\).
If \(x, y\) are multiples of \(i\), suppose \(x=m i\), and \(y=n i\); (by the preceding) \(\mathrm{X}=\mathrm{I}^{\mathrm{m}}, \mathrm{Y}=\mathrm{I}^{\mathrm{n}}\), consequently
\[
Y=X^{\frac{n}{m}}=X^{\frac{y}{x}}
\]

The same is easily extended to the case of the incommensurability of \(x\) and \(y\).
But if \(q=y-x\), manifestly \(Q=Y: X\). It is also manifest that in \(\Sigma\), for any \(x\), we have \(X=1\), but in \(S\) is \(X>1\), and for any \(A B\) and \(A B E\) there is such a \(C D F 8 A B\), that \(C D F=A B\), whence AMBN \(\cong A M E P\), though the first be any multiple of the second; which indeed is singular, but evidently does not prove the absurdity of S .
§ 25. In any rectilineal triangle, the circles with radii equal to its sides are as the sines of the opposite angles.

Fig. 17.

For take \(\angle \mathrm{ABC}=\mathrm{rt} . \angle\), and \(\mathrm{AM} \perp \mathrm{BAC}\), and BN and \(\mathrm{CP} \| \mathrm{AM}\); we shall have \(C A B \perp A M B N\), and so (since \(C B \perp A M B N\), consequently \(\mathrm{CPBN} \perp \mathrm{AMBN}\).

Suppose the F of ray CP cuts the straights BN , AM respectively in D and E , and the bands CPBN, CPAM, BNAM along the L form lines CD, CE, DE. Then (§ 20) \(\angle \mathrm{CDE}=\) the angle of NDC, NDE, and so \(=\mathrm{rt} . \angle\); and by like reasoning \(\angle \mathrm{CED}=\mathrm{CAB}\). But (by § 21) in the L line \(\triangle \mathrm{CDE}\) (supposing always here the radius \(=1\)),
\[
\mathrm{EC}: \mathrm{DC}=1: \sin \mathrm{DEC}=: \sin \mathrm{CAB}
\]

Also (by § 21)
\(\mathrm{EC}: \mathrm{DC}=\odot \mathrm{EC}: \odot \mathrm{DC}(\) in F\()=\odot \mathrm{AC}: \odot \mathrm{BC}(\S 18)\); and so is also
\[
\odot \mathrm{AC}: \odot \mathrm{BC}-1: \sin \mathrm{CAB}
\]
whence the theorem is evident for any triangle.
§ 26. In any spherical triangle, the sines of the sides are as the sines of the angles opposite.

Fig. 18.

For take \(\angle \mathrm{ABC}=\mathrm{rt} . \angle\), and \(\mathrm{CED} \perp\) to the radius OA of the sphere. We shall have \(\mathrm{CED} \perp \mathrm{AOB}\), and (since also \(\mathrm{BOC} \perp \mathrm{BOA}\)), \(\mathrm{CD} \perp \mathrm{OB}\). But in the triangles CEO, CDO (by § 25) \(\odot E C: \odot O C: \odot D C=\sin\) COE \(: 1: \sin\) \(\mathrm{COD}=\sin \mathrm{AC}: 1: \sin \mathrm{BC}\); meanwhile also (§ 25) \(\odot \mathrm{EC}: \odot \mathrm{DC}=\sin\) CDE : \(\sin\) CED. Therefore, \(\sin \mathrm{AC}: \sin \mathrm{BC}=\sin \mathrm{CDE}: \sin \mathrm{CED}\); but \(\mathrm{CDE}=\mathrm{rt} . \angle=\mathrm{CBA}\), and \(\mathrm{CED}=\mathrm{CAB}\). Consequently
\[
\sin \mathrm{AC}: \sin \mathrm{BC}=1: \sin \mathrm{A} .
\]

Spherical trigonometry, lowing from this, is thus established independently of Axiom XI.
\(\S\) 27. If \(A C\) and \(B D\) are \(\perp A B\), and \(C A B\) is carried along the straight \(A B\); we shall have, designating by CD the path of the point C ,
\[
\mathrm{CD}: \mathrm{AB}=\sin u: \sin v .
\]

For take \(\mathrm{DE} \perp \mathrm{CA}\); in the triangles \(\mathrm{ADE}, \mathrm{ADB}\) (by § 25) \(\odot \mathrm{ED}: \odot \mathrm{AD}: \odot \mathrm{AB}=\sin u: 1: \sin v\).

In revolving BACD about \(\mathrm{AC}, \mathrm{B}\) describes \(\odot \mathrm{AB}\), and D describes \(\odot E D\); and designate here by \(s \odot \mathrm{CD}\) the path of the said CD. Moreover, let there be any polygon BFG .
. . inscribed in \(\odot A B\).
Passing through all the sides \(\mathrm{BF}, \mathrm{FG}, \& \mathrm{c}\)., planes \(\perp\) to \(\odot \mathrm{AB}\) we form also a polygonal figure of the same number of sides in \(s \odot \mathrm{CD}\), and we may demonstrate, as in \(\S 23\), that \(\mathrm{CD}: \mathrm{AB}=\mathrm{DH}\) : \(\mathrm{BF}=\mathrm{HK}: \mathrm{FG}, \& \mathrm{c}\). , and so
\[
\mathrm{DH}+\mathrm{HK} \& \mathrm{c} .: \mathrm{BF}+\mathrm{FG} \& \mathrm{c} .:=\mathrm{CD}: \mathrm{AB} .
\]

If each of the sides \(\mathrm{BF}, \mathrm{FG} \ldots\). . approaches the limit zero, manifestly
\[
\begin{aligned}
& \mathrm{BF}+\mathrm{FG}+\ldots \mathrm{Y} \odot \mathrm{AB} \\
& \mathrm{DH}+\mathrm{HK}+\ldots \odot \mathrm{ED} .
\end{aligned}
\]

Therefore also \(\odot \mathrm{ED}: \odot \mathrm{AB}=\mathrm{CD}: \mathrm{AB}\). But we had \(\odot \mathrm{ED}: \odot \mathrm{AB}=\sin u: \sin v\). Consequently
\[
\mathrm{CD}: \mathrm{AB}=\sin u: \sin v .
\]

If AC goes away from BD to infinity, \(\mathrm{CD}: \mathrm{AB}\), and so also \(\sin u: \sin v\) remains constant; but \(u \mathrm{Y} \mathrm{rt} . \angle(\S 1)\), and if \(\mathrm{DM} \| \mathrm{BN}, v \mathrm{Y} z\); whence \(\mathrm{CD}: \mathrm{AB}=1: \sin z\).

The path called CD will be denoted by CD 8 AB .
§ 28. If \(\mathrm{BN} \| \Pi \mathrm{AM}\), and C in ray AM , and \(\mathrm{AC}=x\). we shall have (§ 23)

\[
\mathrm{X}=\sin u: \sin v .
\]

For if CD and AE are \(\perp \mathrm{BN}\), and \(\mathrm{BF} \perp \mathrm{AM}\); we shall have (as in § 27)
\[
\odot \mathrm{BF}: \odot \mathrm{DC}=\sin u: \sin v .
\]

But evidently \(\mathrm{BF}=\mathrm{AE}\) : therefore
\(\odot \mathrm{EA}: \odot \mathrm{CD}=\sin u: \sin v\).
But in the F form surfaces of AM and CM (cutting AMBN in AB and
CG) (by § 21)
\[
\odot \mathrm{EA}: \odot \mathrm{DC}=\mathrm{AB}: \mathrm{CG}=\mathrm{X}
\]

Therefore also
\[
\mathrm{X}=\sin u: \sin v
\]
§ 29. If \(\angle \mathrm{BAM}-\mathrm{rt} . \angle\), and sect \(\mathrm{AB}=y\), and \(\mathrm{BN} \| \mathrm{AM}\), we shall have in S

Fig. 21.
\[
\mathrm{Y}=\operatorname{cotan} 1 / 2 u
\]

For, if sect \(\mathrm{AB}=\) sect AC , and \(\mathrm{CP} \| \mathrm{AM}\) (and so \(\mathrm{BN} \| \mathrm{CP}\)), and \(\angle \mathrm{PCD}=\angle \mathrm{QCD}\); there is given (§19) \(\mathrm{DS} \perp\) ray CD , so that \(\mathrm{DS} \| \mathrm{CP}\), and so (§ 1) DT \| CQ. Moreover, if BE \(\perp\) ray DS, then (§ 7) DS \| BN, and so (§6)

BN \| ES, and (since DT \| CG) BQ \| ET; consequently (§1) \(\angle \mathrm{EBN}=\angle \mathrm{EBQ}\). Let BCF be an L-line of BN, and FG, DH, CK, EL, L form lines of FT, DT, CQ and ET; evidently (§ 22) HG \(=\mathrm{DF}=\mathrm{DK}=\mathrm{HC}\); therefore,
\[
\mathrm{CG}=2 \mathrm{CH}=2 v .
\]

Likewise it is evident \(\mathrm{BG}-2 \mathrm{BL}=2 z\).
But \(\mathrm{BC}=\mathrm{BG}-\mathrm{CG}\); wherefore \(y=z-v\), and so \((\S 24) \mathrm{Y}=\mathrm{Z}: \mathrm{V}\).
Finally (§ 28)
\[
\begin{aligned}
& \mathrm{Z}=: \sin 1 / 2 \mathrm{u}, \\
& \text { and } \mathrm{V}=: \sin (\mathrm{rt} . \angle-1 / 2 u), \\
& \text { consequently } \mathrm{Y}-\operatorname{cotan} 1 / 2 u .
\end{aligned}
\]
\(\S 30\). However, it is easy to see (by § 25) that the solution of the problem of Plane Trigonometry, in S, requires the expression of the circle in terms of the radius; but this can by
 obtained by the rectification of \(L\).

Let \(\mathrm{AB}, \mathrm{CM}, \mathrm{C}^{\prime} \mathrm{M}^{\prime}\) be \(\perp\) ray AC , and B anywhere in ray AB ; we shall have (§ 25)
\[
\begin{gathered}
\sin u: \sin v=\odot p: \odot y \\
\text { and } \sin u^{\prime}: \sin v^{\prime}=\odot p^{\prime}: \odot y^{\prime} \\
\text { and so } \frac{\sin u}{\sin v} \cdot \odot y=\frac{\sin u^{\prime}}{\sin v^{\prime}} \cdot \odot y^{\prime} .
\end{gathered}
\]

Fig. 22.

But (by § 27) \(\sin v: \sin v^{\prime}=\cos u: \cos u^{\prime}\);
consequently \(\frac{\sin u}{\sin u} \cdot \odot y=\frac{\sin u^{\prime}}{\sin u^{\prime}} \cdot \odot y^{\prime} ;\) or \(\odot y: \odot y^{\prime}=: \tan u^{\prime}: \tan u=\tan w: \tan w^{\prime}\).
Moreover, take CN and \(\mathrm{C}^{\prime} \mathrm{N}^{\prime} \| \mathrm{AB}\), and \(\mathrm{CD}, \mathrm{C}^{\prime} \mathrm{D}^{\prime}\) L-form lines \(\perp\) straight AB ; we shall have also (§21)
\[
\begin{aligned}
\odot y: \odot y^{\prime} & =r: r^{\prime}, \text { and so } \\
r: r^{\prime} & =\tan w: \tan w^{\prime}
\end{aligned}
\]

Now let p beginning from A increase to infinity; then \(w \mathrm{Y} z\), and \(w^{\prime} \mathrm{Y} z^{\prime}\), whence also \(r: r^{\prime}=\) \(\tan z: \tan z^{\prime}\).

Designate by \(i\) the constant
\(r: \tan z\) (independent of \(r\));
whilst \(y \mathrm{Y} 0\),
\[
\frac{r}{y}=\frac{i \tan z}{y} \mathrm{Y} 1, \text { and so }
\]
\[
\frac{y}{\tan z} \mathrm{Y} i . \text { From } \S 29, \tan \mathrm{z}=1 / 2\left(\mathrm{Y}-\mathrm{Y}^{-1}\right)
\]
therefore \(\frac{2 y}{\mathrm{Y}^{-\mathrm{Y}} \mathrm{Y}} i\),
or (§ 24).
\[
\frac{2 y \cdot \mathrm{I}^{\mathrm{Y}}}{\frac{2 \mathrm{y}}{\mathrm{I}^{\mathrm{I}}}-1} \mathrm{Y} i .
\]

But we know the limit of this expression (where \(y \mathrm{Y} 0\)) is.
\[
\frac{i}{\text { nat. } \log \mathrm{I}} \quad \text { Therefore }
\]
\[
\begin{gathered}
\frac{i}{\text { nat. } \log \mathrm{I}}=i, \text { and } \\
\mathrm{I}=e=2.7182818 \ldots,
\end{gathered}
\]
which noted quantity shines forth here also.
If obviously henceforth \(i\) denote that sect of which the \(\mathrm{I}=e\), we shall have
\[
r=i \tan z .
\]

But \((\S 21) \odot y=2 \pi r\); therefore
\[
\begin{aligned}
\odot y=2 \pi i \tan z=\pi i\left(\mathrm{Y}-\mathrm{Y}^{-1}\right) & =\pi i\binom{\stackrel{\mathrm{y}}{\mathrm{i}}}{e^{\mathrm{y}}-e^{-\mathrm{i}}} \\
& =\frac{\pi y}{\text { nat. } \log \mathrm{Y}}\left(\mathrm{Y}-\mathrm{Y}^{-1}\right)(\text { by } \S 24) .
\end{aligned}
\]
§ 31. For the trigonometric solution of all right-angled rectilineal triangles (whence the resolution of all triangles is easy, in S , three equations suffice : indeed (\(a, b\) denoting the sides, \(c\) the hypothenuse, and \(\alpha, \beta\) the angles opposite the sides) an equation expressing the relation

1st, between \(a, c, \alpha\);
2d, between \(a, \alpha, \beta\);

3d, between \(a, b, c\);
of course from these equations emerge three others by elimination.
From §§ 25 and 30
\[
1: \sin \mathrm{a}=\left(\mathrm{C}-\mathrm{C}^{\prime}\right):(\mathrm{A}-\mathrm{A}-1)=\left(e^{\frac{\mathrm{e}}{\mathrm{i}}}-e^{\frac{-\mathrm{e}}{\mathrm{i}}}\right):\left(e^{\frac{\mathrm{a}}{\mathrm{i}}}-e^{\frac{-\mathrm{a}}{\mathrm{i}}}\right)
\]
(equation for \(c, a\) and \(\alpha\)).
II. From \(\S 27\) follows (if \(\beta \mathrm{M} \| \gamma \mathrm{N}\))
\(\cos \alpha: \sin \beta=1: \sin u\), but from § 29
\[
1: \sin u=1 / 2\left(\mathrm{~A}+\mathrm{A}^{-1}\right)
\]
therefore \(\cos \alpha: \sin \beta=1 / 2\left(\mathrm{~A}+\mathrm{A}^{-1}\right)=1 / 2\left(e^{\frac{\mathrm{a}}{\mathrm{i}}}+e^{-\frac{\overline{\mathrm{a}}}{\mathrm{i}}}\right)\)
(equation for \(\alpha, \beta\) and \(a\)).
III. If \(\alpha \alpha^{\prime} \perp \beta \alpha \gamma\), and \(\beta \beta^{\prime}\) and \(\gamma \gamma^{\prime} \| \alpha \alpha^{\prime}\left(\S 27\right.\)), and i \(\beta^{\prime} \alpha^{\prime} \gamma^{\prime} \perp \alpha \alpha^{\prime}\); manifestly (as in § 27),
\[
\begin{gathered}
\frac{\beta \beta^{\prime}}{\gamma \gamma^{\prime}}=\frac{1}{\sin u}=1 / 2\left(\mathrm{~A}+\mathrm{A}^{-1}\right) ; \\
\frac{\gamma \gamma^{\prime}}{\alpha \alpha^{\prime}}=1 / 2\left(\mathrm{~B}+\mathrm{B}^{-1}\right) ; \\
\text { and } \frac{\beta \beta^{\prime}}{\alpha \alpha^{\prime}}=1 / 2\left(\mathrm{C}+\mathrm{C}^{-1}\right) ; \text { consequently } \\
1 / 2\left(\mathrm{C}+\mathrm{C}^{-1}\right)=1 / 2\left(\mathrm{~A}+\mathrm{A}^{-1}\right) \cdot 1 / 2\left(\mathrm{~B}+\mathrm{B}^{-1}\right), \text { or } \\
\left(e^{\frac{\mathrm{c}}{\mathrm{i}}}+e^{\frac{-\mathrm{c}}{\mathrm{i}}}\right)=1 / 2\left(e^{\frac{\mathrm{a}}{\mathrm{i}}}+e^{\frac{-\mathrm{a}}{\mathrm{i}}}\right) \cdot\left(e^{\frac{\mathrm{b}}{\mathrm{i}}}+e^{\frac{-\mathrm{b}}{\mathrm{i}}}\right)
\end{gathered}
\]
(equation for \(a, b\) and \(c\)).
If \(\gamma \alpha \delta=\) rt. \(\angle\), and \(\beta \delta \perp \alpha \delta ;\)
\(\odot c: \odot a=1: \sin \alpha\), and
\(\odot c: \odot(d=\beta \delta)=1: \cos \alpha\),
and so (denoting by \(\odot x^{2}\), for any \(x\), the product \(\odot x \cdot \odot x\)) manifestly
\[
\odot a^{2}+\odot d^{2}-\odot c^{2}
\]

But (by § 27 and II)
\[
\begin{aligned}
& \odot d=\odot b \cdot 1 / 2\left(\mathrm{~A}+\mathrm{A}^{-1}\right) \text {, consequently } \\
&\left(e^{\frac{\mathrm{c}}{\mathrm{i}}}+e^{\frac{-\mathrm{c}}{\mathrm{i}}}\right)^{2}=1 / 4\left(e^{\frac{\mathrm{a}}{\mathrm{i}}}+e^{\frac{-\mathrm{a}}{\mathrm{i}}}\right)^{2} \cdot\left(e^{\frac{\mathrm{b}}{\mathrm{i}}}+e^{\frac{-\mathrm{b}}{\overline{\mathrm{i}}}}\right)^{2}+\left(e^{\frac{\mathrm{a}}{\mathrm{i}}}+e^{\frac{-\mathrm{a}}{\mathrm{i}}}\right)^{2}
\end{aligned}
\]
another equation for \(a, b\) and \(c\) (the second
member of which may be easily reduced to a form symmetric or invariable).
Finally, from
\[
\frac{\cos \alpha}{\sin \beta}=1 / 2\left(\mathrm{~A}+\mathrm{A}^{-1}\right) \text {, and } \frac{\cos \beta}{\sin \alpha}=1 / 2\left(\mathrm{~B}+\mathrm{B}^{-1}\right), \text { we get }
\]
(by III)
\[
\cot \alpha \cot \beta=1 / 2\left(e^{\frac{\mathrm{c}}{\mathrm{i}}}+e^{\frac{-\mathrm{c}}{\mathrm{i}}}\right)
\]
(equation for \(\alpha, \beta\), and \(c\).)
\(\S\) 32. It still remains to show briefly the mode of resolving problems in S , which being accomplished (through the more obvious examples), finally will be candidly said what this theory shows.
I. Take AB a line in a plane, and \(y=f(x)\) its equation in rectangular coordinates, call \(d z\) any increment of \(z\), and respectively \(d x, d y, d u\) the increments of \(x\), of \(y\), and of the area \(u\),
 corresponding to this \(d z\); take BH 8 CF , and express (from \(\S 31\)) \(\frac{\mathrm{BH}}{d x}\) by means of \(y\), and seek the limit of \(\frac{d y}{d x}\) when \(d x\) tends towards the limit zero (which is understood where a limit of this sort is sought) : then will become known also the limit of \(\frac{d y}{\mathrm{BH}}\) and so \(\tan \mathrm{HBG}\); and
FIG. 24.
(since HBC manifestly is neither \(>\) nor \(<\), and so \(=\mathrm{rt} \angle\).), the tangent at B of BG will be determined by \(y\).
II. It can be demonstrated
\[
\frac{d z^{2}}{d y^{2}+\overline{\mathrm{BH}}^{2}} \mathrm{Y} 1
\]

Hence is found the limit of \(\frac{d z}{d x}\) and thence, by integration, \(z\) (expressed in terms of \(x\).)
And of any line given in the concrete, the equation in \(S\) can be found; e. g., of L. For if ray AM be the axis of L; then any ray CB from ray AM cuts L [since (by § 19) any straight from A except the straight AM will cut L]; but (if BN is axis)
\[
\mathrm{X}=1: \sin \mathrm{CBN}(\S 28),
\]
and \(Y=\operatorname{cotan} 1 / 2 \mathrm{CBN}(\S 29)\), whence
\[
\mathrm{Y}=\mathrm{X}+\sqrt{\mathrm{X}^{2}-1}
\]
\[
\text { or } e^{\frac{y}{i}}=e^{\frac{x}{i}}+\sqrt{\frac{2 x}{e^{i}}-1}
\]
the equation sought.
Hence we get
\[
\frac{d y}{d y} \mathrm{Y} \mathrm{X}\left(\mathrm{X}^{2}-1\right)^{\frac{-1}{2}}
\]
and \(\frac{\mathrm{BH}}{d x} \mathrm{Y} 1: \sin \mathrm{CBN}=\mathrm{X}\); and so
\[
\frac{d y}{\mathrm{BH}} \mathrm{Y}\left(\mathrm{X}^{2}-1\right)^{\frac{1}{2}}
\]
\[
\begin{aligned}
& 1+\frac{d y^{2}}{\mathrm{BH}^{2}} \mathrm{Y} \mathrm{X} \\
& \left.\frac{d z^{2}}{\mathrm{BH}^{2}} \mathrm{Y}^{2}-1\right)^{-1}, \\
& \text { and } \frac{d z}{\mathrm{BH}} \mathrm{Y} \mathrm{X}\left(\mathrm{X}^{2}-1\right)^{-1}, \\
& \frac{d z}{\frac{1}{2}} \text { and } \\
& \left.\frac{d x}{d x} \mathrm{YX}^{2}\left(\mathrm{X}^{2}-1\right)^{-\frac{1}{2}}, \text { whence, by integration, we get (as in } \S 30\right) \\
& \\
& \quad i\left(\mathrm{X}^{2}-1\right)^{\frac{1}{2}}=i \cot \mathrm{CBN} .
\end{aligned}
\]
III. Manfestly
\[
\frac{d u}{d x} \mathrm{Y} \frac{\text { HFCBH }}{d x}
\]
which (unless given in \(y\)) now first is to be expressed in terms of \(y\); whence we get \(u\) by integrating.

If \(\mathrm{AB}=p, \mathrm{AC}=q, \mathrm{CD}=r\), and \(\mathrm{CABDC}=\mathrm{s}\); we might show (as in II) that
\(\frac{d s}{d q} \mathrm{Y} r\), which \(=-1 / 2 p\left(e^{\frac{q}{i}}-e^{\frac{-\mathrm{q}}{\mathrm{i}}}\right)\), and, integrating, \(s=1 / 2 p i\left(e^{\frac{q}{i}}-e^{\frac{-\mathrm{q}}{\mathrm{i}}}\right)\).
This can also be deduced apart from integration.
For example, the equation of the circle (from § 31, III), of the straight (from § 31, II), of a conic (by what precedes), being expressed, the
areas bounded by these lines could also be expressed.
We know, that a surface \(t, 8\) to a plane figure \(p\) (at the distance \(q\)), is to \(p\) in the ratio of the second powers of homologous lines, or as
\[
1 / 4\left(e^{\frac{q}{i}}-e^{\frac{-q}{i}}\right)^{2}: 1 .
\]

It is easy to see, moreover, that the calculation of volume, treated in the same manner, requires two integrations (since the differential itself here is determined only by integration); and before all must be investigated the volume contained between \(p\) and \(t\), and the aggregate of all the straights \(\perp p\) and joining the boundaries of \(p\) and \(t\).

We find for the volume of this solid (whether by integration or without it)
\[
1 / 8 p i\left(e^{\frac{2 \mathrm{q}}{\mathrm{i}}}-e^{\frac{-2 \mathrm{q}}{\mathrm{i}}}\right)+1 / 2 p q
\]

The surfaces of bodies may also be determined in S , as well as the curvatures, the involutes, and evolutes of any lines, etc.

As to curvature; this in S either is the curvature of L , or is determined either by the radius of a circle, or by the distance to a straight from the curve 8 to this straight; since from what precedes, it may easily be shown, that in a plane there are no uniform lines other than L-lines, circles and curves 8 to a straight.
IV. For the circle (as in III) \(\frac{d \text { area } \square x}{d x} \mathrm{Y} \odot x\), whence (by § 29), integrating, area \(\odot x=\pi i^{2}\left(e^{\frac{x}{i}}-2+e^{\frac{-x}{i}}\right)\).

V . For the area \(\mathrm{CABDC}=u\) (inclosed by an L form line \(\mathrm{AB}=r\), the 8 to this, \(\mathrm{CD}=y\), and the sects \(\mathrm{AC}=\mathrm{BD}=x) \frac{d u}{d x} \mathrm{Y} y ;\) and \((\S 24) \mathrm{y}=r e^{\frac{-\mathrm{x}}{\mathrm{i}}}\), and so (integrating)

Fig. 28.
\[
u=r i\left(1-e^{\frac{\mathrm{x}}{\mathrm{i}}}\right) .
\]

If \(x\) increases to infinity, then, in \(\mathrm{S}, e^{\frac{-\mathrm{X}}{\mathrm{i}}} \mathrm{Y} 0\), and so \(u \mathrm{Y}\) ri. By the size of MABN, in future this limit is understood.

In like manner is found, if \(p\) is a figure on F , the space included by \(p\) and the aggregate of axes drawn from the boundaries of \(p\) is equal to \(1 / 2 p i\).
VI. If the angle at the center of a segment \(z\) of a sphere is \(2 u\), and a great circle is \(p\), and \(x\) the \(\operatorname{arc}\) FC (of the angle \(u\)); (§25)
\[
1: \sin u=p: \odot \mathrm{BC}
\]

and hence \(\odot \mathrm{BC}=p \sin u\). Meanwhile \(x=\frac{p u}{2 \pi}\), and \(d x=\frac{p d u}{2 \pi}\).

Moreover, \(\frac{d z}{d x} \mathrm{Y} \odot \mathrm{BC}\), and hence
\[
\begin{gathered}
\frac{d z}{d u} \mathrm{Y} \frac{p^{2}}{2 \pi} \sin u, \text { whence (integrating) } \\
z=\frac{\text { ver } \sin u}{2 \pi} p^{2} .
\end{gathered}
\]

The F may be conceived on which \(P\) falls (passing through the middle \(F\) of the segment); through AF and AC the planes FEM , CEM are placed, perpendicular to F and cutting F along FEG and CE; and consider the L form CD (from \(\mathrm{C} \perp\) to FEG), and the L form CF ; (§ 20) \(\mathrm{CEF}=\) \(u\), and (§ 21)
\[
\frac{\mathrm{FD}}{p}=\frac{\operatorname{ver} \sin u}{2 \pi}, \text { and so } z-\mathrm{FD} \cdot p
\]

But (§ 21) \(p=\pi \cdot \mathrm{FGD}\); therefore
\(z=\pi \cdot \mathrm{FD} \cdot \mathrm{FDG}\). But (§21)
\(\mathrm{FD} \cdot \mathrm{FDG}=\mathrm{FC} \cdot \mathrm{FC}\); consequently
\(z=\pi \cdot \mathrm{FC} \cdot \mathrm{FC}=\) area \(\odot \mathrm{FC}\), in F.
Now let \(\mathrm{BJ}=\mathrm{CJ}=r\); (§30) \(2 r=i\left(\mathrm{Y}-\mathrm{Y}^{-1}\right)\), and so \((\S 21)\)
area \(\odot 2 r(\) in F\()=\pi i^{2}\left(\mathrm{Y}-\mathrm{Y}^{-1}\right)^{2}\).
Also (IV) area \(\odot 2 y=\pi i^{2}\left(\mathrm{Y}^{2}-2+\mathrm{Y}^{-2}\right)\); therefore, area \(\odot 2 r(\) in F\()=\) area \(\odot 2 y\), and so the surface \(z\) of a segment of a sphere is equal to the surface of the circle described with the chord FC as a radius.

Hence the whole surface of the sphere
\[
=\operatorname{area} \odot \mathrm{FG}=-\mathrm{FDG} \cdot p-\frac{p^{2}}{\pi},
\]
and the surfaces of spheres are to each other as the second powers of their great circles.
VII. In like manner, in S , the volume of the sphere of radius \(x\) is found
\[
=1 / 2 \pi i^{3}\left(\mathrm{X}^{2}-\mathrm{X}^{-2}\right)-2 \pi i^{2} x ;
\]
the surface generated by the revolution of the line CD about AB
\[
=1 / 2 \pi i p\left(\mathrm{Q}^{2}-\mathrm{Q}^{-2}\right),
\]
and the body described by CABDC
\[
=1 / 4 \pi i^{2} p\left(\mathrm{Q}^{2}-\mathrm{Q}^{-2}\right)^{2} .
\]

But in what manner all things treated from (IV) even to here, also may be reached apart from integration, for the sake of brevity is suppressed.

It can be demonstrated that the limit of every expression containing the letter \(i\) (and so resting upon the hypothesis that \(i\) is given), when increases to infinity, expresses the quantity simply for \(\Sigma\) (and so for the hypothesis of no \(i\)), if indeed the equations do not become identical.

But beware lest you understand to be supposed, that the system itself may be varied (for it is entirely determined in itself and by itself); but only the hypothesis, which may be

\section*{SCIENCE ABSOLUTE OF SPACE.}
done successively, as long as we are not conducted to an absurdity. Supposing therefore that, in such an expression, the letter \(i\), in case S is reality, designates that unique quantity whose \(\mathrm{I}=e\); but if \(\Sigma\) is actual, the said limit is supposed to be taken in place of the expression : manifestly all the expressions originating from the hypothesis of the reality of S (in this sense) will be true absolutely, although it be completely unknown whether or not \(\Sigma\) is reality.

So e. g. from the expression obtained in § 30 easily (and as well by aid of differentiation as apart from it) emerges the known value in \(\Sigma\),
\[
\odot x=2 \pi x
\]
from I (§ 31) suitably treated, follows
\[
1: \sin \alpha=c: a
\]
but from II
\[
\begin{gathered}
\frac{\cos \alpha}{\sin \beta}=1, \text { and so } \\
\alpha+\beta=\text { rt. } \angle ;
\end{gathered}
\]
the first equation in III becomes identical, and so is true in \(\Sigma\), although it there determines nothing; but from the second follows
\[
c^{2}=a^{2}+b^{2} .
\]

These are the known fundamental equations of plane trigonometry in \(\Sigma\).

Moreover, we find (from §32) in \(\Sigma\), the area and the volume in III each \(=p q\); from IV area \(\odot x=\)
\[
\pi x^{2}
\]
(from VII) the globe of radius \(x\)
\[
=\frac{4}{3} \pi x^{3}, \text { etc. }
\]

The theorems enunciated at the end of VI are manifestly true unconditionally.
\(\S 33\). It still remains to set forth (as promised in § 32) what this theory means.
I. Whether \(\Sigma\) or some one \(S\) is reality, remains undecided.
II. All things deduced from the hypothesis of the falsity of Axiom XI (always to be understood in the sense of § 32) are absolutely true, and so in this sense, depend upon no hypothesis.

There is therefore a plane trigonometry a priori, in which the system alone really remains unknown; and so where remain unknown solely the absolute magnitudes in the expressions, but where a single known case would manifestly fix the whole system. But spherical trigonometry is established absolutely in \(\S 26\).
(And we have, on F , a geometry wholly analogous to the plane geometry of \(\Sigma\).)
III. If it were agreed that \(\Sigma\) exists, nothing more would be unknown in this respect; but
if it were established that \(\Sigma\) does not exist, then (§31), (e. g.) from the sides \(x, y\), and the rectilineal angle they include being given in a special case, manifestly it would be impossible in itself and by itself to solve absolutely the triangle, that is, to determine a priori the other angles and the ratio of the third side to the two given; unless X , Y were determined, for which it would be necessary to have in concrete form a certain sect \(a\) whose A was known; and then \(i\) would be the natural unit for length (just as \(e\) is the base of natural logarithms).

If the existence of this \(i\) is determined, it will be evident how it could be constructed, at least very exactly, for practical use.
IV. In the sense explained (I and II), it is evident that all things in space can be solved by the modern analytic method (within just limits strongly to be praised).
V. Finally, to friendly readers will not be unacceptable; that for that case wherein not \(\Sigma\) but S is reality, a rectilineal figure is constructed equivalent to a circle.
\(\S 34\). Through D we may draw DM \| AN in the following manner. From D drop DB \(\perp\) AN; from any point \(A\) of the straight \(A B\) erect \(A C \perp A N\) (in DBA), and let fall \(D C \perp A C\). We
will have \((\S 27) \odot \mathrm{CD}: \odot \mathrm{AB}-1: \sin z\), provided that \(\mathrm{DM} \| \mathrm{BN}\). But \(\sin z\) is not \(>1\); and so AB is not \(>\mathrm{DC}\). Therefore a quadrant described from the center A in BAC , with a radius \(=\mathrm{DC}\), will have a point B or O in common with ray BD . In the first case, manifestly \(z=r t . \angle\); but in the second case (§ 25)
\[
(\odot \mathrm{AO}=\odot \mathrm{CD}): \odot \mathrm{AB}=1 \sin \mathrm{AOB}
\]
and so \(z=\mathrm{AOB}\).
If therefore we take \(z=\mathrm{AOB}\), then DM will be \(\| \mathrm{BN}\).
\(\S 35\). If S were reality; we may, as follows, draw a straight \(\perp\) to one arm of an acute angle, which is \| to the other.

Take \(\mathrm{AM} \perp \mathrm{BC}\), and suppose \(\mathrm{AB}=\mathrm{BC}\) so small (by § 19), that if we draw \(\mathrm{BN} \| \mathrm{AM}\) (§ 34), \(\mathrm{ABN}>\) the given angle.

Moreover draw CP || AM (§ 34); and take NBG and PCD each equal to the given angle; rays BG and CD will cut; for if ray BG (falling by construction within NBC) cuts ray CP in E; we shall have (since \(\mathrm{BN} \Pi \mathrm{CP}\)), \(\angle \mathrm{EBC}<\angle \mathrm{ECB}\), and so \(\mathrm{EC}<\mathrm{EB}\). Take \(\mathrm{EF}=\mathrm{EC}\), EFR

\section*{SCIENCE ABSOLUTE OF SPACE.}

\section*{39}
\(=E C D\), and FS || EP; then FS will fall within BFR. For since BN \| CP, and so BN \|EP, and BN || FS; we shall have (§ 14)
\[
\angle \mathrm{FBN}+\angle \mathrm{BFS}<(\text { st. } \angle=\mathrm{FBN}+\mathrm{BFR}) ;
\]
therefore, \(\mathrm{BFS}<\mathrm{BFR}\). Consequently, ray FR cuts ray EP, and so ray CD also cuts ray EG in some point D . Take now \(\mathrm{DG}=\mathrm{DC}\) and \(\mathrm{DGT}=\mathrm{DCP}=\mathrm{GBN}\); we shall have (since \(\mathrm{CD} \Pi \mathrm{GD}\)) BN П GT П CP. Let K (§ 19) be the point of the L-form line of BN falling in the ray BG, and \(K L\) the axis; we shall have \(\mathrm{BN} П \mathrm{KL}\), and so \(\mathrm{BKL}=\mathrm{BGT}=\mathrm{DCP}\); but also KL П CP : therefore manifestly K fall on G, and GT || BN. But if HO bisects \(\perp \mathrm{BG}\), we shall have constructed HO || BN.
§36. Having given the ray CP and the plane MAB , take \(\mathrm{CB} \perp\) the plane MAB , BN (in plane \(\mathrm{BCP}) \perp \mathrm{BC}\), and \(\mathrm{CQ} \| \mathrm{BN}(\S 34)\); the intersection of ray CP (if this ray falls within BCQ) with ray BN (in the plane CBN), and so with the plane MAB is found. And if we are given the two planes \(\mathrm{PCQ}, \mathrm{MAB}\), and we have \(\mathrm{CB} \perp\) to plane \(\mathrm{MAB}, \mathrm{CR} \perp\) plane PCQ ; and (in plane BCR) BN \(\perp \mathrm{BC}, \mathrm{CS} \perp \mathrm{CR}\), BN will fall in plane MAB , and CS in plane PCQ; and the
intersection of the straight BN with the straight CS (if there is one) having been found, the perpendicular drawn through this intersection, in PCQ, to the straight CS will manifestly be the intersection of plane MAB and plane PCQ.
\(\S 37\). On the straight \(A M \| B N\), is found such an \(A\), that \(A M\) П BN. If (by § 34) we construct outside of the plane NBM, GT \(\| \mathrm{BN}\), and make \(\mathrm{BG} \perp \mathrm{GT}, \mathrm{GC}=\mathrm{GB}\), and CP \(\|\) GT; and so place the hemi-plane TGD that it makes with hemi-plane TGB an angle equal to that which hemi-plane PCA makes with hemi-plane PCB; and is sought (by § 36) the intersection straight DQ of hemiplane TGD with hemi-plane NBD; and BA is made \(\perp\) DQ.

We shall have indeed, on account of the similitude of the triangles of \(L\) lines produced on the F of BN (§ 21), manifestly \(\mathrm{DB}=\mathrm{DA}\), and \(\mathrm{AM} П \mathrm{BN}\).

Hence easily appears (L-lines being given by their extremities alone) we may also find a fourth proportional, or a mean proportional, and execute in this way in F, apart from Axiom XI, all the geometric constructions made

\section*{SCIENCE ABSOLUTE OF SPACE.}
on the plane in \(\Sigma\). Thus e. g. a perigon can be geometrically divided into any special number of equal parts, if it is permitted to make this special partition in \(\Sigma\).
§ 38. If we construct (by § 37) for example, NBQ \(=1 / 3 \mathrm{rt} . \angle\), and make (by. § 35), in \(\mathrm{S}, \mathrm{AM} \perp\) ray BQ and \(\| \mathrm{BN}\), and determine (by §37) \(\mathrm{IM} \Pi \mathrm{BN}\); we shall have, if \(\mathrm{IA}=x,(\S 28), \mathrm{X}=1: \sin\) \(1 / 3 \mathrm{rt} . \angle=2\), and \(x\) will be constructed geometrically.

And NBQ may be so computed, that IA differs from \(i\) less than by anything given, which happens for \(\sin \mathrm{NBQ}=1 / e\).
\(\S\) 39. If (in a plane) PQ and ST are 8 to the straight MN (§27), and \(\mathrm{AB}, \mathrm{CD}\) are equal perpendiculars to MN ; manifestly \(\triangle \mathrm{DEC} \cong \triangle \mathrm{BEA}\); and so the angles (perhaps mixtilinear) ECP , EAT will fit, and EC \(=\mathrm{EA}\). If, moreover, \(\mathrm{CF}=\mathrm{AG}\), then \(\triangle \mathrm{ACF} \cong \triangle \mathrm{CAG}\), and each is half of the quadrilateral FAGC.

If FAGC, HAGK are two quadrilaterals of this sort on AG, between PQ and ST; their equivalence (as in Euclid) is evident, as also
the equivalence of the triangles AGC, AGH, standing on the same AG, and having their vertices on the line PQ. Moreover, \(\mathrm{ACF}=\mathrm{CAG}, \mathrm{GCQ}=\mathrm{CGA}\), and \(\mathrm{ACF}+\mathrm{ACG}+\mathrm{GCQ}=\mathrm{st} . \angle\) (§ 32); and so also \(\mathrm{CAG}+\mathrm{ACG}+\mathrm{CGA}=\mathrm{st} . \angle\); therefore, in any triangle ACG of this sort, the sum of the three angles \(=\mathrm{st} . \angle\). But whether the straight AG may have fallen upon AG (which 8 MN), or not; the equivalence of the rectilineal triangles AGC, AGH, as well of themselves, as of the sums of their angles, is evident.
\(\S 40\). Equivalent triangles \(\mathrm{ABC}, \mathrm{ABD}\), (henceforth rectilineal), having one side equal, have the sums of their angles equal. For let MN bisect AC and BC, and take (through C) PQ 8 MN ; the point D will fall on line PQ .

For, if ray BD cuts the straight MN in the point E , and so (§39) the line PQ at the distance EF \(=\mathrm{EB}\); we shall have \(\triangle \mathrm{ABC}=\triangle \mathrm{ABF}\), and so also \(\triangle \mathrm{ABD}=\triangle \mathrm{ABF}\), whence D falls at \(F\).

But if ray BD has not cut the straight MN , let C be the point, where the perpendicular bisecting the straight AB cuts the line PQ , and

\section*{SCIENCE ABSOLUTE OF SPACE.}

43
let GS \(=\mathrm{HT}\), so, that the line ST meets the ray BD prolonged in a certain K (which it is evident can be made in a way like as in § 4); moreover take SR = SA, RO 8 ST, and O the intersection of ray BK with RO ; then \(\triangle \mathrm{ABR}=\triangle \mathrm{ABO}\) (§39), and so \(\triangle \mathrm{ABC}>\triangle \mathrm{ABD}\) (contra hyp.).
\(\S 4\). Equivalent triangles \(A B C, D E F\) have the sums of their triangles equal.
For let MN bisect AC and BC , and PQ bisect DF and FE ; and take RS 8 MN , and TO 8 PQ ; the perpendicular AG to RS will equal the perpendicular DH to TO, or one for example DH will be the greater.

In each case, the \(\odot \mathrm{DF}\), from center A , has with line-ray GS some point K in common, and (§ 39) \(\Delta \mathrm{ABK}=\triangle \mathrm{ABC}=\triangle \mathrm{DEF}\). But the \(\triangle \mathrm{AKB}\) (by § 40) has the same angle-sum as \(\triangle \mathrm{DFE}\), and (by § 39) as \(\triangle \mathrm{ABC}\). Therefore also the triangles ABC, DEF have each the same angle-sum.

In \(S\) the inverse of this theorem is true.
For take ABC , DEF two triangles having equal angle-sums, and \(\triangle \mathrm{BAL}=\triangle \mathrm{DEF}\); these will have (by what precedes) equal angle-sums,

\section*{SCIENCE ABSOLUTE OF SPACE.}
and so also will \(\triangle \mathrm{ABC}\) and \(\triangle \mathrm{ABL}\), and hence manifestly
\[
\mathrm{BCL}+\mathrm{BLC}+\mathrm{CBL}=\text { st. } \angle .
\]

However (by § 31), the angle-sum of any triangle, in S , is \(<\) st. \(\angle\).
Therefore L falls on C .
\(\S 42\). Let \(u\) be the supplement of the angle-sum of the \(\triangle \mathrm{ABC}\), but \(v\) of \(\triangle \mathrm{DEF}\); then is \(\triangle \mathrm{ABC}\) : \(\triangle \mathrm{DEF}=u: v\). F For if \(p\) be the area of each of the triangles ACG, GCH, HCB, DFK, KFE; and \(\Delta \mathrm{ABC}=m \cdot p\), and \(\Delta \mathrm{DEF}=n \cdot p\); and \(s\) the angle-sum of any triangle equivalent to \(p\), manifestly
st. \(\angle-u=m \cdot s-(m-1)\) st. \(\angle=\) st. \(\angle-m\) (st. \(\angle-s)\); and \(u=m(\) st. \(\angle-s)\); and in like manner \(v=n(\) st. \(\angle-s)\).

Therefore \(\triangle \mathrm{ABC}: \triangle \mathrm{DEF}=m: n=u: v\). It is evidently also easily extended to the case of the incommensurability of the triangles \(\mathrm{ABC}, \mathrm{DEF}\).

In the same way is demonstrated that triangles on a sphere are as the excesses of the sums of their angles above a st. \(<\).

If two angles of the spherical \(\Delta\) are right, the third \(z\) will be the said excess. But
(a great circle being called \(p\)) this \(\Delta\) is manifestly
\[
=\frac{z}{2 \pi} \frac{p^{2}}{2 \pi}(\S 32, \mathrm{VI})
\]
consequently, any triangle of whose angles the excess is \(z\), is
\[
=\frac{z p^{2}}{4 \pi^{2}}
\]
\(\S 43\). Now, in \(S\), the area of a rectilineal \(\Delta\) is expressed by means of the sum of its angles.
If AB increases to infinity; \((\S 42) \Delta \mathrm{ABC}:(\mathrm{rt} . \angle-u-v)\) will be constant. But \(\Delta \mathrm{ABC} \mathrm{Y}\) \(\operatorname{BACN}(\S 32, \mathrm{~V})\), and rt. \(\angle-u-v \mathrm{Y} z(\S 1)\); and so \(\mathrm{BACN}: z=\Delta \mathrm{ABC}:(\mathrm{rt} . \angle-u-v)=\mathrm{BAC}^{\prime} \mathrm{N}^{\prime}\) \(: z^{\prime}\).

Moreover, manifestly (§ 30) \(\mathrm{BDCN}: \mathrm{BD}^{\prime} \mathrm{C}^{\prime} \mathrm{N}^{\prime}=r: r^{\prime} \tan z: \tan z^{\prime}\).
But for \(y^{\prime}\) Y 0, we have
\[
\frac{\mathrm{BD}^{\prime} \mathrm{C}^{\prime} \mathrm{N}^{\prime}}{\mathrm{BAC}^{\prime} \mathrm{N}^{\prime}} \doteq 1 \text { and also } \frac{\tan z^{\prime}}{z^{\prime}} \mathrm{Y} 1
\]
consequently,
\[
\mathrm{BDCN}: \mathrm{BACN}=\tan z: z
\]

But (§ 32)
\[
\mathrm{BDCN}=r \cdot i=i^{2} \tan z
\]
therefore,
\[
\mathrm{BACN}=z \cdot i^{2} .
\]

Designating henceforth, for brevity, any triangle the supplement of whose angle-sum is \(z\) by \(\Delta\), we will therefore have \(\Delta=z \cdot i^{2}\).

Hence it readily flows that, if OR \| AM and RO \|AB, the area comprehended between the straights OR, ST, BC (which is manifestly the absolute limit of the area of rectilineal triangles increasing without bound, or of \(\Delta\) for \(z \mathrm{Y}\) st. \(\angle\)), is \(=\pi i^{2}=\) area \(\odot i\), in F .

This limit being denoted by \(\square\), moreover (by § 30) \(\pi r^{2}=\tan ^{2} z \cdot \square=\) area \(\odot r\) in \(\mathrm{F}(\S 21)=\) area \(\odot s\) (by \(\S 32, \mathrm{VI})\) if the chord CD is called \(s\).

If now, bisecting at right angles the given radius \(s\) of the circle in a plane (or the L form radius of the circle in F), we construct (by § 34) DB \(\|\) Y CN; by dropping CA \(\perp \mathrm{DB}\), and erecting CM \(\perp\) CA, we shall get \(z\); whence (by \(\S 37\)), assuming at pleasure an L form radius for unity, \(\tan ^{2} z\) can be determined geometrically by means of two uniform lines of the same curvature (which, their extremities alone being given and their axes

\section*{SCIENCE ABSOLUTE OP SPACE.}
constructed, manifestly may be compared like straights, and in this respect considered equivalent to straights). Moreover, a quadrilateral, ex. gr. regular \(=\square\) is constructed as follows :

Take \(\mathrm{ABC}=\mathrm{rt} . \angle, \mathrm{BAC}=1 / 2 \mathrm{rt} . \angle, \mathrm{ACB}=1 / 4 \mathrm{rt} . \angle\), and \(\mathrm{BC}=x\).
By mere square roots, X (from § 31, II) can be expressed and (by 37) constructed; and having X (by \(\S 38\) or also \(\S \S 29\) and 35), \(x\) itself can be determined. And octuple \(\Delta \mathrm{ABC}\) is manifestly \(=\) \(\square\), and by this a plane circle of radius \(s\) is geometrically squared by means of a rectilinear figure and uniform lines of the same species (equivalent to straights as to comparison inter se); but an \(F\) form circle is planified in the same manner: and we have either the Axiom XI of Euclid true or the geometric quadrature of the circle, although thus far it has remained undecided, which of these two has place in reality.

Whenever \(\tan ^{2} z\) is either a whole number, or a rational fraction, whose denominator (reduced to the simplest form) is either a prime number of the form \(2^{\mathrm{m}}+1\) (of which is also \(2=2^{0}+1\)), or a product of however many prime numbers of this form, of which each (with the
exception of 2, which alone may occur any number of times) occurs only once as factor, we can, by the theory of polygons of the illustrious Gauss (remarkable invention of our, nay of every age) (and only for such values of \(z\)), construct a rectilineal figure \(=\tan ^{2} z \square=\) area \(\odot s\). For the division of \(\square\) (the theorem of \(\S 42\) extending easily to any polygons) manifestly requires the partition of a st. \(\angle\), which (as can be shown) can be achieved geometrically only under the said condition.

But in all such cases, what precedes conducts easily to the desired end. And any rectilineal figure can be converted geometrically into a regular polygon of \(n\) sides, if \(n\) falls under the Gaussian form. It remains, finally (that the thing may be completed in every respect), to demonstrate the impossibility (apart from any supposition), of deciding a priori, whether \(\Sigma\), or some S (and which one) exists. This, however, is reserved for a more suitable occasion.

\section*{APPENDIX I.}

\section*{REMARKS ON THE PRECEDING TREATISE, BY BOLYAI FARKAS.}
[From Vol. II of Tentamen, pp. 380 - 383.]
Finally it may be permitted to add something appertaining to the author of the Appendix in the first volume, who, however, may pardon me if something I have not touched with his acuteness.

The thing consists briefly in this : the formulas of spherical trigonometry (demonstrated in the said Appendix independently of Euclid's Axiom XI) coincide with the formulas of plane trigonometry, if (in a way provisionally speaking) the sides of a spherical triangle are accepted as reals, but of a rectilineal triangle as imaginaries; so that, as to trigonometric formulas, the plane may be considered as an imaginary sphere, if for real, that is accepted in which \(\sin \mathrm{rt}\). \(\angle=\) 1.

Doubtless, of the Euclidean axiom has been said in volume first enough and to spare : for
the case if it were not true, is demonstrated (Tom. I. App., p. 13), that there is given a certain \(i\), for which the I there mentioned is \(=\mathrm{e}\) (the base of natural logarithms), and for this case are established also (ibidem, p. 14) the formulas of plane trigonometry, and indeed so, that (by the side of p. 19, ibidem) the formulas are still valid for the case of the verity of the said axiom; indeed if the limits of the values are taken, supposing that \(i \mathrm{Y} \infty\); truly the Euclidean system is as if the limit of the anti-Euclidean (for \(i \mathrm{Y} \infty\)).

Assume for the case of \(i\) existing, the unit \(=i\), and extend the concepts sine and cosine also to imaginary arcs, so that, \(p\) designating an arc whether real or imaginary,
\[
\frac{e^{\mathrm{p} \sqrt{-1}}+e^{-\mathrm{p} \sqrt{-1}}}{2} \text { is called the cosine of } p \text {, and }
\]
\(\frac{e^{\mathrm{p} \sqrt{-1}}-e^{-\mathrm{p} \sqrt{-1}}}{2 \sqrt{-1}}\) is called the sine of \(p\) (as Tom. I., p. 177).
Hence for \(q\) real
\[
\begin{gathered}
\frac{e^{\mathrm{q}}-e^{-\mathrm{q}}}{2 \sqrt{-1}}=\frac{e^{-\mathrm{q} \sqrt{-1} \cdot \sqrt{-1}}-e^{\mathrm{q} \sqrt{-1} \cdot \sqrt{-1}}}{2 \sqrt{-1}}=\sin (-q \sqrt{-1}) \\
=-\sin (q \sqrt{-1})
\end{gathered}
\]

\section*{SCIENCE ABSOLUTE OF SPACE.}
\[
\begin{gathered}
\frac{e^{\mathrm{q}}+e^{-\mathrm{q}}}{2}=\frac{e^{-\mathrm{q} \sqrt{-1} \cdot \sqrt{-1}}+e^{\mathrm{q} \sqrt{-1} \cdot \sqrt{-1}}}{2}=\cos (-q \sqrt{-1}) \\
=\cos (q \sqrt{-1})
\end{gathered}
\]
if of course also in the imaginary circle, the sine of a negative arc is the same as the sine of a positive arc otherwise equal to the first, except that it is negative, and the cosine of a positive arc and of a negative (if otherwise they be equal) the same.

In the said Appendix, \(\S 25\), is demonstrated absolutely, that is, independently of the said axiom; that, in any rectilineal triangle the sines of the circles are as the circles of radii equal to the sides opposite.

Moreover is demonstrated for the case of \(i\) existing, that the circle of radius \(y\) is
\[
\begin{gathered}
=\pi i\left(e^{\frac{\mathrm{y}}{\mathrm{i}}}-e^{\frac{-\mathrm{y}}{\mathrm{i}}}\right) \text { which, for } i=1, \text { becomes } \\
\pi\left(e^{\mathrm{y}}-e^{-\mathrm{y}}\right) .
\end{gathered}
\]

Therefore (§ 31 ibidem), for a right-angled rectilineal triangle of which the sides are \(a\) and \(b\), the hypothenuse \(c\), and the angles opposite to the sides \(a, b, c\) are \(\alpha, \beta, \mathrm{rt} . \angle\), (for \(\mathrm{i}=1\)), in I ,
\[
1: \sin \alpha=\pi\left(e^{\mathrm{c}}-e^{-\mathrm{c}}\right): \pi\left(e^{\mathrm{a}}-e^{-\mathrm{a}}\right)
\]
and so
\[
1: \sin \alpha=\frac{e^{\mathrm{c}}-e^{-\mathrm{c}}}{2 \sqrt{-1}}: \frac{e^{\mathrm{a}}-e^{-\mathrm{a}}}{2 \sqrt{-1}}
\]

Whence
\[
1: \sin \alpha=-\sin (c \sqrt{-1}):-\sin (a \sqrt{-1})
\]

And hence
\[
1: \sin \alpha=\sin (c \sqrt{-1}): \sin (a \sqrt{-1})
\]

In II becomes
\[
\cos \alpha: \sin \beta=\cos (a \sqrt{-1}): 1
\]
in III becomes
\[
\cos (c \sqrt{-1})=\cos (a \sqrt{-1}) \cdot \cos (b \sqrt{-1}) .
\]

These, as all the formulas of plane trigonometry deducible from them, coincide completely with the formulas of spherical trigonometry; except that if, ex. gr., also the sides and the angles opposite them of a right-angled spherical triangle and the hypothenuse bear the same names, the sides of the rectilineal triangle are to be divided by \(\sqrt{-1}\) to obtain the formulas for the spherical triangle.

Obviously we get (clearly as Tom.,II., p. 252),
from I, \(\quad 1: \sin \alpha=\sin c: \sin a\);
from II, \(\quad 1: \cos a=\sin \beta: \cos \alpha\);
from III, \(\quad \cos c=\cos a \cos b\).
Though it be allowable to pass over other things; yet I have learned that the reader may be offended and impeded by the deduction omitted, (Tom. I., App., p. 19) [in § 32 at end] : it will not be irrelevant to show how, ex. gr., from
\[
e^{\frac{\mathrm{c}}{\mathrm{i}}}+e^{\frac{-\mathrm{c}}{\mathrm{i}}=\frac{1}{2}\left(e^{\frac{\mathrm{a}}{\mathrm{i}}}+e^{\frac{-a}{\mathrm{i}}}\right)\left(e^{\frac{\mathrm{b}}{\mathrm{i}}}+e^{\frac{-\mathrm{b}}{\mathrm{i}}}\right) .}
\]
follows
\[
c^{2}=a^{2}+b^{2}
\]
(the theorem of Pythagoras for the Euclidean system); probably thus also the author deduced it, and the others also follow in the same manner.

Obviously we have, the powers of e being expressed by series (like Tom. I., p. 168),
\[
\begin{gathered}
e^{\frac{k}{i}}=1+\frac{k}{i}+\frac{k^{2}}{2 i^{2}}+\frac{k^{3}}{2 \cdot 3 \cdot i^{3}}+\frac{k^{4}}{2 \cdot 3 \cdot 4 \cdot i^{4}} \ldots, \\
e^{\frac{-k}{i}}=1-\frac{k}{i}+\frac{k^{2}}{2 i^{2}}-\frac{k^{3}}{2 \cdot 3 \cdot i^{3}}+\frac{k^{4}}{2 \cdot 3 \cdot 4 \cdot i^{4}} \ldots, \text { and so } \\
e^{\frac{k}{i}+} e^{\frac{-k}{i}}=2+\frac{k^{2}}{i^{2}}+\frac{k^{4}}{3 \cdot 4 \cdot i^{4}}+\frac{k^{6}}{3 \cdot 4 \cdot 5 \cdot 6 \cdot i^{6}} \ldots, \\
=2+\begin{array}{c}
k^{2}+\sharp \\
i^{2}
\end{array},(\text { designating by }
\end{gathered}
\]
\(\frac{u}{i^{2}}\) the sum of all the terms after \(\frac{k^{2}}{i^{2}}\)); and we have \(u \mathrm{Y} 0\), while \(i \mathrm{Y} \infty\). For all the terms which follow \(\frac{k^{2}}{i^{2}}\), are divided by \(i^{2}\); the first term will be \(\frac{k^{4}}{3 \cdot 4 \cdot i^{4}}\); and any ratio \(<\frac{k^{2}}{i^{2}}\); and though the ratio everywhere should remain this, the sum would be (Tom. I., p. 131),
\[
\frac{k^{4}}{3 \cdot 4 \cdot i^{2}}:\left(1-\frac{k^{2}}{i^{2}}\right)=\frac{k^{4}}{3 \cdot 4 \cdot\left(i^{4}-k^{2}\right)}
\]
which manifestly Y 0 , while \(i \mathrm{Y} \infty\).

And from
\[
e^{\frac{\mathrm{c}}{\mathrm{i}}}+e^{\frac{-\mathrm{c}}{\mathrm{i}}=\frac{1}{2}}\left(e^{\frac{(\mathrm{a}+\mathrm{b})}{\mathrm{i}}+} e^{\frac{-(\mathrm{a}+\mathrm{b})}{\mathrm{i}}+}+e^{\frac{(\mathrm{a}-\mathrm{b})}{\mathrm{i}}+}+e^{\frac{-(\mathrm{a}-\mathrm{b})}{\mathrm{i}}}\right)
\]
follows (for \(w, v, \lambda\) taken like \(u\))
\[
2+\frac{e^{2}+w}{i^{2}}=\frac{1}{2}\left(2+\frac{(a+b)^{2}+v}{i^{2}}+2+\frac{(a+b)^{2}+\lambda}{i^{2}}\right)
\]

And hence
\[
c^{2}=\frac{a^{2}+2 a b+b^{2}+a^{2}-2 a b+b^{2}+v+\lambda-w}{2}
\]
which \(\mathrm{Y} a^{2}+b^{2}\).

\section*{APPENDIX II.}

\section*{SOME POINTS IN JOHN BOLYAI'S \\ COMPARED WITH LOBACHEVSKI, BY WOLFGANG BOLYAI. \\ [From Kurzer Grundriss, p. 82.]}

Lobachevski and the author of the Appendix each consider two points A, B, of the spherelimit, and the corresponding axes ray AM, ray BN (§ 23).

They demonstrate that, if \(\alpha, \beta, \gamma\) designate the arcs of the circle limit \(\mathrm{AB}, \mathrm{CD}, \mathrm{HL}\), separated by segments of the axis \(\mathrm{AC}=1, \mathrm{AH}=x\), we have
\[
\frac{\alpha}{\gamma}=\left(\frac{\alpha}{\beta}\right)^{x} .
\]

Lobachevski represents the value of \(\frac{\gamma}{\alpha}\) by \(e^{-x}, e\) having some value \(>1\), dependent on the unit for length that we have chosen, and able to be supposed equal to the Naperian base.

The author of the Appendix is led directly to introduce the base of natural logarithms.

If we put \(\frac{\alpha}{\beta}=\delta\), and \(\gamma, \gamma^{\prime}\) are arcs situated at the distances \(y, i\) from \(\alpha\), we shall have
\[
\frac{\alpha}{\gamma}=\delta^{\mathrm{y}}=\mathrm{Y}, \frac{\alpha}{\gamma^{\prime}}=\delta^{\mathrm{i}}=\mathrm{I}, \text { whence } \mathrm{Y}=\mathrm{I}_{\mathrm{i}}^{\mathrm{y}} .
\]

He demonstrates afterward (§ 29) that, if \(u\) is the angle which a straight makes with the perpendicular \(y\) to its parallel, we have
\[
\mathrm{Y}=\cot \frac{1}{2} u
\]

Therefore, if we put \(z=\frac{\pi}{2}-u\), we have
\[
\mathrm{Y}=\tan \left(z+\frac{1}{2} u\right)=\frac{\tan z+\tan -\frac{1}{2} u}{1-\tan z \tan \frac{1}{2} u}
\]
whence we get, having regard to the value of \(\tan \frac{1}{2}-u=\mathrm{Y}^{-1}\),
\[
\tan \mathrm{z}-\frac{1}{2}\left(\mathrm{Y}-\mathrm{Y}^{-1}\right)=\frac{1}{2}\left(\mathrm{I}_{\mathrm{i}}^{\mathrm{y}}-\mathrm{I}^{\frac{-\mathrm{y}}{\mathrm{i}}}\right)(\S 30) .
\]

If now \(y\) is the semi-chord of the arc of circle-limit \(2 r\), we prove (§30) that \(\frac{r}{\tan z}=\) constant.
Representing this constant by \(i\), and making \(y\) tend toward zero, we have
\[
\begin{gathered}
\frac{2 r}{2 y} \mathrm{Y} 1, \text { whence } \\
2 y \mathrm{Y} 2 i \tan z \mathrm{Y} i \frac{\mathrm{I}^{\frac{2 \mathrm{y}}{\mathrm{i}}}-1}{\mathrm{I}^{\frac{\mathrm{y}}{\mathrm{i}}}},
\end{gathered}
\]
or putting \(\frac{2 y}{i}=k, \mathrm{I}=e l\),
\[
k \mathrm{II}_{\mathrm{i}}^{\frac{\mathrm{y}}{\mathrm{i}}} \mathrm{Y} e^{\mathrm{kl}}-1 \mathrm{Y} k l(1+\lambda)
\]
\(\lambda\) being infinitesimal at the same time as \(k\). Therefore, for the limit, \(1=l\) and consequently \(\mathrm{I}=e\).
The circle traced on the sphere-limit with the arc \(r\) of the curve-limit for radius, has for length \(2 \pi r\). Therefore,
\[
\left(\odot y=2 \pi r=2 \pi i \tan z=\pi i\left(\mathrm{Y}-\mathrm{Y}^{-1}\right)\right.
\]

In the rectilineal \(\Delta\) where \(\alpha, \beta\) designate the angles opposite the sides \(a, b\), we have (§ 25)
\[
\begin{aligned}
\sin \alpha: \sin \beta & =\odot a: \odot b=\pi i\left(\mathrm{~A}-\mathrm{A}^{-1}\right): \pi i\left(\mathrm{~B}-\mathrm{B}^{-1}\right) \\
& =\sin (a \sqrt{-1}): \sin (b \sqrt{-1}) .
\end{aligned}
\]

Thus in plane trigonometry as in spherical trigonometry, the sines of the angles are to each other as the sines of the opposite sides, only that on the sphere the sides are reals, and in the plane we must consider them as imaginaries, just as if the plane were an imaginary sphere.

We may arrive at this proposition without a preceding determination of the value of I.
If we designate the constant \(\frac{r}{\tan z}\) by \(q\), we shall have, as before
\[
\odot y=\pi q\left(\mathrm{Y}-\mathrm{Y}^{-1}\right)
\]
whence we deduce the same proportion as above, taking for \(i\) the distance for which the ratio I is equal to \(e\).

If axiom XI is not true, there exists a determinate, which must be substituted in the formulas.
If, on the contrary, this axiom is true, we must make in the formulas \(i=\infty\). Because, in this case, the quantity \(\frac{\alpha}{\gamma}=\mathrm{Y}\) is always \(=1\), the sphere-limit being a plane, and the axes being parallel in Euclid's sense.

The exponent \(\frac{\mathrm{y}}{\mathrm{i}}\) must therefore be zero, and consequently \(i=\infty\).
It is easy to see that Bolyai's formulas of plane trigonometry are in accord with those of Lobachevski.

Take for example the formula of § 37,
\[
\tan \|(a)=\sin \mathrm{B} \tan \|(p),
\]
\(a\) being the hypothenuse of a right-angled triangle, \(p\) one side of the right angle, and B the angle opposite to this side.

Bolyai's formula of § 31, I, gives
\[
1: \sin \mathrm{B}=\left(\mathrm{A}-\mathrm{A}^{-1}\right):\left(\mathrm{P}-\mathrm{P}^{-1}\right)
\]

Now, putting for brevity, \(\frac{1}{2} \|(k)=k^{\prime}\), we have \(\tan 2 p^{\prime}: \tan 2 a^{\prime}=\left(\cot a^{\prime}-\tan a^{\prime}\right):\left(\cot p^{\prime}-\tan \right.\) \(\left.p^{\prime}\right)=\left(\mathrm{A}-\mathrm{A}^{-1}\right):\left(\mathrm{P}-\mathrm{P}^{-1}\right): \sin \mathrm{B}\).

\section*{APPENDIX III.}

\section*{LIGHT FROM NON-EUCLIDEAN SPACES ON THE \\ TEACHING OF ELEMENTARY GEOMETRY.}

\section*{BY G. B. HALSTED.}

As foreshadowed by Bolyai and Riemann, founded by Cayley, extended and interpreted for hyperbolic, parabolic, elliptic spaces by Klein, recast and applied to mechanics by Sir Robert Ball, projective metrics may be looked upon as characteristic of what is highest and most peculiarly modern in all the bewildering range of mathematical achievement. Mathematicians hold that number is wholly a creation of the human intellect, while on the contrary our space has an empirical element. Of possible geometries we can not say a priori which shall be that of our actual space, the space in which we move. Of course an advance so important, not only for mathematics but for philosophy, has had some metaphysical opponents, and as long ago as 1878 I mentioned in my Bibliography of Hyper-Space
and Non-Euclidean Geometry (American Journal of Mathematics, Vol. I, 1878, Vol. II, 1879) one of these, Schmitz-Dumont, as a sad paradoxer, and another, J. C. Becker, both of whom would ere this have shared the oblivion of still more antiquated fighters against the light, but that Dr. Schotten, praiseworthy for the very attempt at a comparative planimetry, happens to be himself a believer in the a priori founding of geometry, while his American reviewer, Mr. Ziwet, was then also an anti-non-Euclidean, though since converted.

He says, "we find that some of the best German text books do not try at all to define what is space, or what is a point, or even what is a straight line." Do any German geometries define space? I never remember to have met one that does.

In experience, what comes first is a bounded surface, with its boundaries, lines, and their boundaries, points. Are the points whose definitions are omitted anything different or better?

Dr. Schotten regards the two ideas "direction" and "distance" as intuitively given in the mind and as so simple as to not require definition.

When we read of two jockeys speeding
around a track in opposite directions, and also on page 87 of Richardson's Euclid, 1891, read, "The sides of the figure must be produced in the same direction of rotation; . . . going round the figure always in the same direction," we do not wonder that when Mr. Ziwet had written : "he therefore bases the definition of the straight line on these two ideas," he stops, modifies, and rubs that out as follows, "or rather recommends to elucidate the intuitive idea of the straight line possessed by any well-balanced mind by means of the still simpler ideas of direction" [in a circle] "and distance" [on a curve.

But when we come to geometry as a science, as foundation for work like that of Cayley and Ball, I think with Professor Chrystal : "It is essential to be careful with our definition of a straight line, for it will be found that virtually the properties of the straight line determine the nature of space.
"Our definition shall be that two points in general determine a straight line."
We presume that Mr. Ziwet glories in that unfortunate expression "a straight line is the shortest distance between two points," still occurring in Wentworth (New Plane Geometry, page 33), even after he has said, page 5 ,
"the length of the straight line is called the distance between two points." If the length of the one straight line between two points is the distance between those points, how can the straight line itself be the shortest distance? If there is only one distance, it is the longest as much as the shortest distance, and if it is the length of this shorto-longest distance which is the distance then it is not the straight line itself which is the longo-shortest distance. But Wentworth also says : "Of all lines joining two points the shortest is the straight line."

This general comparison involves the measurement of curves, which involves the theory of limits, to say nothing of ratio. The very ascription of length to a curve involves the idea of a limit. And then to introduce this general axiom, as does Wentworth, only to prove a very special case of itself, that two sides of a triangle are together greater than the third, is surely bad logic, bad pedagogy, bad mathematics.

This latter theorem, according to the first of Pascal's rules for demonstrations, should not be proved at all, since every dog knows it. But to this objection, as old as the sophists, Simson long ago answered for the science of
geometry, that the number of assumptions ought not to be increased without necessity; or as Dedekind has it : "Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt werden."

Professor W. B. Smith (Ph. D., Goettingen), has written : "Nothing could be more unfortunate than the attempt to lay the notion of Direction at the bottom of Geometry."

Was it not this notion which led so good a mathematician as John Casey to give as a demonstration of a triangle's angle-sum the procedure called " a practical demonstration" on page 87 of Richardson's Euclid, and there described as "laying a 'straight edge' along one of the sides of the figure, and then turning it round so as to coincide with each side in turn."

This assumes that a segment of a straight line, a sect, may be translated without rotation, which assumption readily comes to view when you try the procedure in two-dimensional spherics. Though this fallacy was exposed by so eminent a geometer as Olaus Henrici in so public a place as the pages of 'Nature,' yet it has just been solemnly reproduced by Professor G. C. Edwards, of the University of California, in his Elements of Geometry : MacMillan, 1895.

It is of the greatest importance for every teacher to know and connect the commonest forms of assumption equivalent to Euclid's Axiom XI. If in a plane two straight lines perpendicular to a third nowhere meet, are there others, not both perpendicular to any third, which nowhere meet? Euclid' s Axiom XI is the assumption No. Playfair's answers no more simply. But the very same answer is given by the common assumption of our geometries, usually unnoticed, that a circle may be passed through any three points not costraight.

This equivalence was pointed out by Bolyai Parkas, who looks upon this as the simplest form of the assumption. Other equivalents are, the existence of any finite triangle whose angle-sum is a straight angle; or the existence of a plane rectangle; or that, in triangles, the angle-sum is constant.

One of Legendre's forms was that through every point within an angle a straight line may be drawn which cuts both arms.

But Legendre never saw through this matter because he had hot, as we have, the eyes of Bolyai and Lobachevski to see with. The same lack of their eyes has caused the author of the charming book " Euclid and His Modern

Rivals," to give us one more equivalent form : " In any circle, the inscribed equilateral tetragon is greater than any one of the segments which lie outside it." (A New Theory of Parallels by C. L. Dodgson, 3d. Ed., 1890.)

Any attempt to define a straight line by means of "direction" is simply a case of "argumentum in circulo." In all such attempts the loose word "direction" is used in a sense which presupposes the straight line. The directions from a point in Euclidean space are only the \(\infty^{2}\) rays from that point.

Rays not costraight can be said to have the same direction only after a theory of parallels is presupposed, assumed.

Three of the exposures of Professor G. C. Edwards' fallacy are here reproduced. The first, already referred to, is from Nature, Vol. XXIX, p. 453, March 13, 1884.
"I select for discussion the 'quaternion proof" given by Sir William Hamilton. . . . Hamilton's proof consists in the following : "One side AB of the triangle ABC is turned about the point B till it lies in the continuation of BC ; next, the line BC is made to slide along BC till B comes to C , and is then turned about C till it comes to lie in the continuation of AC .
" It is now again made to slide along CA till the point B comes to A, and is turned about A till it lies in the line AB . Hence it follows, since rotation is independent of translation, that the line has performed a whole revolution, that is, it has been turned through four right angles. But it has also described in succession the three exterior angles of the triangle, hence these are together equal to four right angles, and from this follows at once that the interior angles are equal to two right angles.
"To show how erroneous this reasoning is-in spite of Sir William Hamilton and in spite of quaternions-I need only point out that it holds exactly in the same manner for a triangle on the surface of the sphere, from which it would follow that the sum of the angles in a spherical triangle equals two right angles, whilst this sum is known to be always greater than two right angles. The proof depends only on the fact, that any line can be made to coincide with any other line, that two lines do so coincide when they have two points in common, and further, that a line may be turned about any point in it without leaving the surface. But if instead of the plane we take a spherical surface, and instead of a line a great
circle on the sphere, all these conditions are again satisfied.
"The reasoning employed must therefore be fallacious, and the error lies in the words printed in italics; for these words contain an assumption which has not been proved.
"O. HENRICI."
Perronet Thompson, of Queen's College, Cambridge, in a book of which the third edition is dated 1830, says:
'Professor Playfair, in the Notes to his 'Elements of Geometry' [1813], has proposed another demonstration, founded on a remarkable non causa pro causa.
"It purports to collect the fact [Eu. I., 32, Cor., 2] that (on the sides being successively prolonged to the same hand) the exterior angles of a rectilinear triangle are together equal to four right angles, from the circumstance that a straight line carried round the perimeter of a triangle by being applied to all the sides in succession, is brought into its old situation again; the argument being, that because this line has made the sort of somerset it would do by being turned through four right angles about a fixed point, the exterior
angles of the triangle have necessarily been equal to four right angles.
"The answer to which is, that there is no connexion between the things at all, and that the result will just as much take place where the exterior angles are avowedly not equal to four right angles.
"Take, for example, the plane triangle formed by three small arcs of the same or equal circles, as in the margin; and it is manifest that an arc of this circle may be carried round precisely in the way described and return to its old situation, and yet there be no pretense for inferring that the exterior angles were equal to four right angles.
"And if it is urged that these are curved lines and the statement made was of straight; then the answer is by demanding to know, what property of straight lines has been laid down or established, which determines that what is not true in the case of other lines is
true in theirs. It has been shown that, as a general proposition, the connexion between a line returning to its place and the exterior angles having been equal to four right angles, is a non sequitur; that it is a thing that may be or may not be; that the notion that it returns to its place because the exterior angles have been equal to four right angles, is a mistake. From which it is a legitimate conclusion, that if it had pleased nature to make the exterior angles of a triangle greater or less than four right angles, this would not have created the smallest impediment to the line's returning to its old situation after being carried round the sides; and consequently the line's returning is no evidence of the angles not being greater or less than four right angles."

Charles L. Dodgson, of Christ Church, Oxford, in his "Curiosa Mathematica," Part I, pp. 70 71, 3d Ed., 1890, says:
"Yet another process has been invented-quite fascinating in its brevity and its elegancewhich, though involving the same fallacy as the Direction-Theory, proves Euc. I, 32, without even mentioning the dangerous word 'Direction.'
"We are told to take any triangle ABC ; to produce CA to D ; to make part of CD , viz., AD , revolve, about A , into the position ABE ; then to make part of this line, viz., BE , revolve, about B , into the position BCF; and lastly to make part of this line, viz., CF , revolve, about C , till it lies along CD, of which it originally formed a part. We are then assured that it must have revolved through four right angles : from which it easily follows that the interior angles of the triangle are together equal to two right angles.
"The disproof of this fallacy is almost as brief and elegant as the fallacy itself. We first quote the general principle that we can not reasonably be told to make a line fulfill two conditions, either of which is enough by itself to fix its position : e. g., given three points \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\), we can not reasonably be told to draw a line from \(X\) which shall pass through \(Y\) and \(Z\) : we can make it pass through Y , but it must then take its chance of passing through Z ; and vice versa.
"Now let us suppose that, while one part of

\section*{SCIENCE ABSOLUTE OF SPACE.}

AE, viz., BE, revolves into the position BF, another little bit of it, viz., AG, revolves, through an equal angle, into the position AH ; and that, while CF revolves into the position of lying along CD, AH revolves-and here comes the fallacy.
"You must not say 'revolves, through an equal angle, into the position of lying along AD,' for this would be to make AH fulfill two conditions at once.
"If you say that the one condition involves the other, you are virtually asserting that the lines CF , AH are equally inclined to CD-and this in consequence of AH having been so drawn that these same lines are equally inclined to AE .
"That is, you are asserting, 'A pair of lines which are equally inclined to a certain transversal, are so to any transversal.' [Deducible from Euc. I, 27, 28, 29.]"

Filename: \(\quad\) The Science of Absolute Space for DQ.doc
Directory: E:\Art of Prophecy 2019\30 The Delian Questl30 Current
Revision\To be or Not To bel2011\020511
Template:
\[
\mathrm{C}: \backslash \text { Users } \backslash \text { John } \backslash \text { AppData } \backslash \text { Roaming } \backslash \text { Microsoft } \backslash \text { Templates } \backslash \text { Normal.do }
\]
t
Title:
Subject:
Author: John Bolyai
Keywords:
Comments:
Creation Date: \(\quad\) 1/27/2020 1:01:00 PM
Change Number: 6
Last Saved On: \(\quad\) 1/27/2020 1:12:00 PM
Last Saved By: John
Total Editing Time: 10 Minutes
Last Printed On: \(\quad\) 1/27/2020 1:12:00 PM
As of Last Complete Printing
Number of Pages: 99
Number of Words: 20,428 (approx.)
Number of Characters: 83,348 (approx.)

I found this in Chapter 2 of THE PARABOLA, ELLIPSE, AND HYPERBOLA, TREATED GEOMETRICALLY. BY
ROBERT WILLIAM GRIFFIN, A.M., LL.D.,
Now a Lemma is a given, but why? Could the author not show the construction? I remembered the figure from Heath's translation of The Elements by Euclid, but alas, the construction was not there either. So, I did a work up of the figure.
\[
\text { CHAP. II. } \quad \text { The Ellipse. } 47
\]

Lemma.
If a right line \(A B\) be divided internally at \(O\) in any ratio, and externally at \(O^{\prime}\) in the same ratio, and a circle be described on \(O 0^{\prime}\) as diameter, the right lines joining any point \(P\) on this circle with the extremities of the line \(A B\) will have the same ratio.

Fig. 1.
Bisect \(O O^{\prime}\) in \(C\); join \(C P, P O\).
Then
\(A O^{\prime}: O^{\prime} B=A O: O B ;\)
\(\therefore A O^{\prime}+A O: A O^{\prime}-A O=O^{\prime} B+O B: O^{\prime} B-O B\);
\(\therefore 2 A C: 2 O C=2 O C: 2 B C\);
\(\therefore A C: C P=C P: C B\);
\(\therefore \triangle A C P\) is similar to \(\triangle P C B\);
(6 VI. Euclid.)
\(\therefore \angle C P B=\angle C A P\);
but \(\angle O P O=\angle C O P\)
(5 I. Euclid.)
\(=\angle O A P+\angle O P A\)
(32 I. Euclid.)
\(=\angle C P B+\angle O P A ;\)
\(\therefore \angle B P O=\angle O P A\);
\(\therefore A P: P B=A O: O B\).
(3 VI. Euclid.)

\section*{Pages from Heath's Translation of Euclid's Elements}
and also, as \(B D\) is to \(D C\), so is \(B A\) to \(A E\) : for \(A D\) has been drawn parallel to \(E C\), one of the sides of the triangle \(B C E\) :
therefore also, as \(B A\) is to \(A C\), so is \(B A\) to \(A E\). [v. in]
Therefore \(A C\) is equal to \(A E\),
so that the angle \(A E C\) is also equal to the angle \(A C E\). [r. 5] But the angle \(A E C\) is equal to the exterior angle \(B A D\), [1. 29]
and the angle \(A C E\) is equal to the alternate angle \(C A D ;[i d\).
therefore the angle \(B A D\) is also equal to the angle \(C A D\).
Therefore the angle \(B A C\) has been bisected by the straight line \(A D\).

Therefore etc.
Q. E. D.

The demonstration assumes that \(C E\) will meet \(B A\) produced in some point \(E\). This is proved in the same way as it is proved in vi. 4 that \(B A, E D\) will meet if produced. The angles \(A B D, B D A\) in the figure of vi. 3 are together less than two right angles, and the angle \(B D A\) is equal to the angle \(B C E\), since \(D A, C E\) are parallel. Therefore the angles \(A B C, B C E\) are together less than two right angles; and \(B A, C E\) must meet, by i. Post. 5 .

The corresponding proposition about the segments into which \(B C\) is divided externally by the bisector of the external angle at \(A\) when that bisector meets \(B C\) produced (i.e. when the sides \(A B, A C\) are not equal) is important. Simson gives it as a separate proposition, A, noting the fact that Pappus assumes the result without proof (Pappus, vil. p. 730, 24).

The best plan is however, as De Morgan says, to combine Props. 3 and A in one proposition, which may be enunciated thus: If an angle of a triangle be bisected internally or externally by a straight line which cuts the opposite side or the opposite side produced, the segments of that side will have the same ratio as the other sides of the triangle; and, if a side of a triangle be divided internally or externally so that its segments have the same ratio as the other sides of the triangle, the straight line drawn from the point of section to the angular point which is opposite to the first mentioned side will bisect the interior or exterior angle at that angular point.

Let \(A C\) be the smaller of the two sides \(A B, A C\), so that the bisector \(A D\) of the exterior angle at \(A\) may meet \(B C\) produced beyond \(C\). Draw \(C E\) through \(C\) parallel to \(D A\), meeting \(B A\) in \(E\).

Then, if \(F A C\) is the exterior angle bisecied by \(A D\) in the case of external bisection, and if a point \(F\) is taken on \(A B\) in the figure of vi. 3, the proof of
vi. 3 can be used almost word for word for the other case. We have only to speak of the angle " \(F A C\) " for the angle " \(B A C\)," and of the angle " \(F A D\) " for the angle " \(B A D\) " wherever they occur, to say "let \(B A\), or \(B A\) produced, meet \(C E\) in \(E\)," and to substitute " \(B A\) or \(B A\) produced" for " \(B A E\) " lower down.

If \(A D, A E\) be the internal and external bisectors of the angle \(A\) in a triangle of which the sides \(A B, A C\) are unequal, \(A C\) being the smaller, and if \(A D, A E\) meet \(B C\) and \(B C\) produced in \(D, E\) respectively,
the ratios of \(B D\) to \(D C\) and of \(B E\) to \(E C\) are alike equal to the ratio of \(B A\) to \(A C\).

Therefore \(\quad B E\) is to \(E C\) as \(B D\) to \(D C\),
that is, \(B E\) is to \(E C\) as the difference between \(B E\) and \(E D\) is to the difference between \(E D\) and \(E C\),
whence \(B E, E D, E C\) are in harmonic progression, or \(D E\) is a harmonic mean between \(B E\) and \(E C\), or again \(B, D, C, E\) is a harmonic range.

Since the angle \(D A C\) is half of the angle \(B A C\),
and the angle \(C A E\) half of the angle \(C A F\),
while the angles \(B A C, C A F\) are equal to two right angles,
the angle \(D A E\) is a right angle.
Hence the circle described on \(D E\) as diameter passes through \(A\).
Now, if the ratio of \(B A\) to \(A C\) is given, and if \(B C\) is given, the points \(D, E\) on \(B C\) and \(B C\) produced are given, and therefore so is the circle on \(D, E\) as diameter. Hence the locus of a point such that its distances from two given points are in a given ratio (not being a ratio of equality) is a circle.

This locus was discussed by Apollonius in his Plane Loci, Book II., as we know from Pappus (viI. p. 666), who says that the book contained the theorem that, if from two given points straight lines inflected to another point are in a given ratio, the point in which they meet will lie on either a straight line or a circumference of a circle. The straight line is of course the locus when the ratio is one of equality. The other case is quoted in the following form by Eutocius (Apollonius, ed. Heiberg, II. pp. 180-4).

Given two points in a plane and a proportion between unequal straight lines, it is possible to describe a circle in the plane so that the straight lines inflected from the given points to the circumference of the circle shall have a ratio the same as the given one.

Apollonius' construction, as given by Eutocius, is remarkable because he makes no use of either of the points \(D, E\). He finds \(O\), the centre of the required circle, and the length of its radius directly from the data \(B C\) and the given ratio which we will call \(h: k\). But the construction was not discovered by Apollonius ; it belongs to a much earlier date, since it appears in exactly
the same form in Aristotle, Meteorologica iII. 5, 376 a 3 sqq. The analysis leading up to the construction is, as usual, not given either by Aristotle or Eutocius. We are told to take three straight lines \(x, C O\) (a length measured along \(B C\) produced beyond \(C\), where \(B, C\) are the points at which the greater and smaller of the inflected lines respectively terminate), and \(r\), such that, if \(h: k\) be the given ratio and \(h>k\),
\[
\begin{align*}
& k: h=h: k+x \text {, } \tag{a}\\
& x: B C=k: C O=h: r . \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(\beta)
\end{align*}
\]

This determines the position of \(O\), and the length of \(r\), the radius of the required circle. The circle is then drawn, any point \(P\) is taken on it and joined to \(B, C\) respectively, and it is proved that
\[
P B: P C=h: k
\]

We may conjecture that the analysis proceeded somewhat as follows.
It would be seen that \(B, C\) are "conjugate points" with reference to the circle on \(D E\) as diameter. (Cf. Apollonius, Conics, 1. 36, where it is proved, in terms, for a circle as well as for an ellipse and a hyperbola, that, if the polar of \(B\) meets the diameter \(D E\) in \(C\), then \(E C: C D=E B: B D\).)

If \(O\) be the middle point of \(D E\), and therefore the centre of the circle, \(D, E\) may be eliminated, as in the Conics, 1.37 , thus.

Since \(\quad E C: C D=E B: B D\),
it follows that \(E C+C D: E C \sim C D=E B+B D: E B \sim B D\),
or \(2 O D: 2 O C=2 O B: 2 O D\),
that is, \(\quad B O . O C=O D^{2}=r^{2}\), say.
If therefore \(P\) be any point on the circle with centre \(O\) and radius \(r\),
\[
B O: O P=O P: O C
\]
so that \(B O P, P O C\) are similar triangles.
In addition, \(h: k=B D: D C=B E: E C\)
\[
=B D+B E: D E=B O: r
\]

Hence we require that
\[
B U: r=r: O C=B P: P C=h: k
\]
\(\qquad\)
Therefore, alternately,
\[
k: C O=h: r
\]
which is the second relation in \((\beta)\) above.
Now assume a length \(x\) such that each of the last ratios is equal to \(x: B C\), as in \((\beta)\).

Then
Therefore and, alternately,
\(x: B C=k: C O=h: r\).
\(x+k: B O=h: r\), \(x+k: h=B O: r\) \(=h: k\), from (\(\delta\)) above;
and this is the relation (\(a\)) which remained to be found.
Apollonius' proof of the construction is given by Eutocius, who begins by saying that it is manifest that \(r\) is a mean proportional between \(B O\) and \(O C\). This is seen as follows.

From \((\beta)\) we derive
\[
\begin{aligned}
x: B C=k: C O & =h: r=(k+x): B O, \\
B O: r & =(k+x): h \\
& =h: k, \text { by }(a), \\
& =r: C O, \text { by }(\beta), \\
r^{2} & =B O \cdot C O .
\end{aligned}
\]
whence

But the triangles \(B O P, P O C\) have the angle at \(O\) common, and, since \(B O: O P=O P: O C\), the triangles are similar and the angles \(O P C, O B P\) are equal.
[Up to this point Aristotle's proof is exactly the same ; from this point it diverges slightly.]

If now \(C L\) be drawn parallel to \(B P\) meeting \(O P\) in \(L\), the angles \(B P C\) \(L C P\) are equal also.

Therefore the triangles \(B P C, P C L\) are similar, and
\[
B P: P C=P C: C L
\]
whence \(\quad B P^{2}: P C^{2}=B P: C L\)
\[
=B O: C C \text {, by parallels, }
\]
\[
=B O^{2}: O P^{2}(\text { since } B O: O P=O P: O C)
\]

Therefore
\[
\begin{aligned}
B P: P C & =B O: O P \\
& =h: k(\text { for } O P=r) .
\end{aligned}
\]
[Aristotle infers this more directly from the similar triangles \(P O B, C O P\). Since these triangles are similar,
\[
\begin{aligned}
O P: C P & =O B: B P, \\
B P: P C & =B O: O P \\
& =h: k .]
\end{aligned}
\]
whence

Apollonius proves lastly, by reductio ad absurdum, that the last equation cannot be true with reference to any point \(P\) which is not on the circle so described.

\section*{Proposition 4.}

In equiangular triangles the sides about the equal angles are proportional, and those are corresponding sides which subtend the equal angles.

052211 Plate 1

Unit.
Given.
\(\mathbf{N}_{1}:=5 \quad\) AC \(:=\mathbf{N}_{1}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{C D}:=\mathbf{N}_{\mathbf{2}}\)

Given AC is not one half of AD, find AF, DF such that AC : CD : : AF : DF.

\section*{Descriptions.}

The author of The PAKABOLA, ELLIPSE, AND HYPEKBOLA by R. W. Griffin, gave this figure as a Lemma, and Book VI Prop. 6 of Euclid only has it in the notes, but no construction.

Basically it is how to construct a circle with a given ratio, which is why it is probably the first thing in Chapt. 2 of Griffin's work. So, I will first demonstrate how to construct the figure from the internal ratio of \(A C\) : \(C D\).

CK := CD
\(\mathbf{A K}:=\mathbf{A C}-\mathbf{C K} \quad \mathbf{A G}:=\sqrt{2 \cdot \mathbf{A C}^{2}}\)
\(\mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{A J}:=\frac{\mathbf{A G} \cdot \mathbf{A D}}{\mathbf{A K}}\)
\(\mathbf{A F}:=\frac{\mathbf{A C} \cdot \mathbf{A J}}{\mathbf{A G}} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D}\)
\(\mathbf{C F}:=\mathbf{A F}-\mathbf{A C}\)
Definitions.
\(A F-\left(N_{1} \cdot \frac{\mathbf{N}_{1}+\mathbf{N}_{2}}{\mathbf{N}_{1}-\mathbf{N}_{2}}\right)=0 \quad \frac{\mathbf{A C}}{\mathbf{C D}}-\frac{\mathbf{A F}}{\mathrm{DF}}=0\)

\(\mathbf{D F}-\left(\mathbf{N}_{\mathbf{1}} \cdot \frac{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}}-\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0}\)
\[
\left(\frac{\mathbf{N}_{1} \cdot \frac{\mathbf{N}_{1}+\mathbf{N}_{2}}{\mathbf{N}_{1}-\mathbf{N}_{2}}}{\mathbf{N}_{1} \cdot \frac{\mathbf{N}_{1}+\mathbf{N}_{2}}{\mathbf{N}_{1}-\mathbf{N}_{2}}-\mathbf{N}_{1}-\mathbf{N}_{2}}\right)-\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}=\mathbf{0}
\]

Next demonstrate that from the circumference of \(\mathbf{C M}\),
the proportion remains.
\(\mathrm{N}_{\mathbf{3}}:=\mathbf{1} \quad \mathrm{N}_{\mathbf{4}}:=\mathbf{4}\)
\(\mathbf{C L}:=\mathbf{C F} \cdot \frac{\mathbf{N}_{3}}{\mathbf{N}_{\mathbf{4}}} \quad\) FL \(:=\mathbf{C F}-\mathbf{C L}\)
\(\mathbf{A L}:=\mathbf{A C}+\mathbf{C L} \quad \mathbf{M L}:=\sqrt{\mathbf{C L} \cdot \mathbf{F L}}\)
\(\mathbf{A M}:=\sqrt{\mathbf{M L}^{2}+\mathbf{A L}^{\mathbf{2}}}\)
DL := CL \(-\mathbf{C D}\)
\(\mathbf{D M}:=\sqrt{\mathbf{M L}^{2}+\mathbf{D L}^{2}}\)
\(\frac{\mathbf{A C}}{\mathbf{C D}}-\frac{\mathbf{A M}}{\mathbf{D M}}=\mathbf{0}\)
\(D M-\left[\left(\frac{N_{2}}{\left(N_{1}-N_{2}\right)} \cdot\left(\frac{4 \cdot N_{3} \cdot N_{1} \cdot N_{2}+N_{4} \cdot N_{1}{ }^{2}-2 \cdot N_{2} \cdot N_{4} \cdot N_{1}+N_{2}{ }^{2} \cdot N_{4}}{N_{4}}\right)^{\frac{1}{2}}\right)^{2}\right]=0\)
\(A M-\left[\frac{N_{1}}{\left(N_{1}-N_{2}\right)} \cdot\left(\frac{4 \cdot N_{3} \cdot N_{1} \cdot N_{2}+N_{4} \cdot N_{1}{ }^{2}-2 \cdot N_{2} \cdot N_{4} \cdot N_{1}+N_{2}{ }^{2} \cdot N_{4}}{N_{4}}\right)^{\frac{1}{2}}\right]=0\)
\[
\left[\frac{\frac{N_{1}}{\left(N_{1}-N_{2}\right)} \cdot\left(\frac{4 \cdot N_{3} \cdot N_{1} \cdot N_{2}+N_{4} \cdot N_{1}{ }^{2}-2 \cdot N_{2} \cdot N_{4} \cdot N_{1}+N_{2}{ }^{2} \cdot \mathbf{N}_{4}}{N_{4}}\right)^{\frac{1}{2}}}{\frac{N_{2}}{\left(N_{1}-N_{2}\right)} \cdot\left(\frac{4 \cdot N_{3} \cdot N_{1} \cdot N_{2}+N_{4} \cdot N_{1}{ }^{2}-2 \cdot N_{2} \cdot N_{4} \cdot N_{1}+N_{2}{ }^{2} \cdot \mathbf{N}_{4}}{N_{4}}\right)^{\frac{1}{2}}}\right]-\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}=0
\]

Therefore the three ratios are equal. AC : CD :: AF : DF :: AM : DM, and one can construct a circle using a given ratio.

Unit.
Given.
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 2 2 7 9 2} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{1}}\) \(\mathbf{N}_{\mathbf{2}}:=\mathbf{8 . 6 5 1 8 7} \quad\) AF \(:=\mathbf{N}_{\mathbf{2}}\)
052211 Plate 2

\(\mathbf{C F}:=\mathbf{A F}-\mathbf{A C}\)
\(\mathbf{A G}:=\sqrt{\mathbf{A C} \cdot \mathbf{A F}} \quad \mathbf{O K}:=\frac{\mathbf{C F}}{2}\)
\(\mathbf{A O}:=\mathbf{A C}+\mathbf{O K}\)
\(\mathbf{G O}:=\mathbf{A O}-\mathbf{A G} \quad \mathbf{G K}:=\sqrt{\mathbf{O K}^{\mathbf{2}+\mathbf{G O}^{\mathbf{2}}}}\)
\(\mathbf{H K}:=\frac{\mathbf{O K} \cdot \mathbf{C F}}{\mathbf{G K}} \quad \mathbf{G H}:=\mathbf{H K}-\mathbf{G K} \quad \mathbf{D G}:=\frac{\mathbf{G O} \cdot \mathbf{G H}}{\mathbf{G K}}\)
\(\mathbf{A D}:=\mathbf{A G}-\mathbf{D G} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C}\)
Definitions.
\(\frac{A C}{C D}-\frac{A F}{D F}=0 \quad A D-\frac{2 \cdot N_{1} \cdot N_{2}}{N_{1}+N_{2}}=0\)
\(\mathbf{D F}-\frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}=\mathbf{0} \quad \mathrm{CD}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}=\mathbf{0}\)

For the given figure, find \(D\) if only \(A C\) and \(A F\) are given.

\(C_{0}^{\circ} \operatorname{cis}^{3}\)
\(\sim_{n}^{0}\)
052211
Descriptions.

\section*{Unit.}

Given.
\(\mathbf{N}_{\mathbf{1}}\) := \(\mathbf{3 . 8 6 2 9 2} \quad \mathrm{AB}:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{7 . 5 9 3 5 4} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}}\)
\(\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad\) BO \(:=\frac{\mathbf{B C}}{2} \quad\) MO := BO
\(\mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \quad \mathbf{A M}:=\sqrt{\mathbf{A O}^{\mathbf{2}}-\mathbf{M O}^{\mathbf{2}}}\)
\(\mathbf{D O}:=\frac{\mathbf{M O}^{\mathbf{2}}}{\mathbf{A O}} \mathbf{B D}:=\mathbf{B O}-\mathbf{D O}\)
\(\mathbf{C D}:=\mathbf{B C}-\mathbf{B D} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D}\)

\section*{Lemma Plate 3}

Simplify Plate 2.

Definitions.
\(\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}}-\mathbf{B D}=\mathbf{0} \quad \frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}}-\mathbf{C D}=\mathbf{0}\)
\(\frac{2 \cdot N_{1} \cdot N_{2}}{N_{1}+N_{2}}-\mathbf{A D}=0\)

08092015
Descriptions.
\(\mathbf{G A}:=\frac{\mathbf{A C}^{\mathbf{2}}}{\mathbf{A B}} \quad \mathbf{H B}:=\frac{\mathbf{B C}^{\mathbf{2}}}{\mathbf{A B}} \quad \mathbf{G H}:=\mathbf{A B}-(\mathbf{G A}+\mathbf{H B}) \quad \mathbf{J A}:=\mathbf{G A}+\frac{\mathbf{G H}}{\mathbf{2}}\)
\(J B:=H B+\frac{G H}{2} \quad C J:=\sqrt{A C^{2}-J A^{2}} \quad C D:=\sqrt{\left(\frac{A B}{2}-J A\right)^{2}+C J^{2}}\)

Definitions.

\(C D-\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{2}=0 \quad J A-\frac{A B^{2}+A C^{2}-B C^{2}}{2 \cdot A B}=0\)
\(J B-\frac{A B^{2}-A C^{2}+B C^{2}}{2 \cdot A B}=0\)

One of the items often missed, as I aptly demonstrated, is thinking a process through. In order to insure the process is complete, use a Law as a standard to complete the equation. In this case, the Pythagorean Theorem.

Pythagoras Revisited Again!

Now the above is just what I got with Pythagoras revisited, however, it does not yet comply with the naming convention. There is no such thing as a negative name.
\[
\begin{aligned}
& A J:=\sqrt{A C^{2}-C^{2}} \quad A J-\frac{\sqrt{\left(A B^{2}+A C^{2}-B C^{2}\right)^{2}}}{2 \cdot A B}=0 \\
& B J:=\sqrt{B C^{2}-C^{2}} \quad \text { BJ }-\frac{\sqrt{\left(A B^{2}-A C^{2}+B C^{2}\right)^{2}}}{2 \cdot A B}=0
\end{aligned}
\]

```
m\angleABC =2.81250
\frac{360}{m}\\textrm{ABC}}=128.00000\textrm{deg
```


```
NO=1.34733 cm}-\mp@subsup{\textrm{MN}}{}{2}=1.90690\mp@subsup{\textrm{cm}}{}{2
OP =1.30078 cm - NO2 =1.81531 cm
OM
M,
```

```
ST=0.9955 cm - RS' = 1.18454-\mp@subsup{\textrm{m}}{}{2}
Na,
*)
VW=0.66371 cm TV =0.79781 cm
NW=0.53880 cm- UV = =0.61187 cm
```

```
MZ =0.27468 cm- - WX 
    LM\mp@subsup{}{}{2}+\mp@subsup{\textrm{ZA}}{1}{2}=1.98235 \mp@subsup{\textrm{cm}}{}{2}
    M\mp@subsup{N}{}{2}+Z\mp@subsup{\textrm{ZA}}{1}{2}=1.92595\mp@subsup{\textrm{cm}}{}{2}
    O2+\mp@subsup{XY}{}{2}=1.98235\mp@subsup{\textrm{cm}}{}{2}\quad}\quad\textrm{YZ}=0.27468\textrm{cm
```
\(\mathrm{OP}^{8}+\mathrm{WX}^{2}=1.98235 \mathrm{~cm}^{2} 10\)
\(-\mathrm{PQ}^{2} \mathrm{VVW}^{2}=1.98235 \mathrm{~cm}^{2}\)

\(\mathrm{RS}^{2}+\mathrm{TV}^{2}=1.98235 \mathrm{~cm}^{2}\)
2. \(\mathrm{ST}^{2}=1.98235 \mathrm{~cm}^{2}\)

Area \(\triangle\) BIC \(=10.94690 \mathrm{~cm}^{2}\) Area \(\triangle C J D=8.79964 \mathrm{~cm}^{2}\) Area \(\triangle\) DKE \(=5.86643 \mathrm{~cm}^{2}\) Area \(\triangle E L F=2.93321 \mathrm{~cm}^{2}\) Area \(\triangle\) FMG \(=0.78595 \mathrm{~cm}^{2}\) Area \(\triangle \mathrm{AHB}=11.73286 \mathbf{~ c m}^{2}\)
\((\) Area \(\triangle\) BIC \()+(\) Area \(\triangle\) FMG \()=11.73286 \mathrm{~cm}^{2}\) (Area \(\triangle\) CJD) + (Area \(\triangle E L F)=11.73286 \mathrm{~cm}^{2}\) \(2 \cdot(\) Area \(\triangle \mathrm{DKE})=11.73286 \mathrm{~cm}^{2}\)
\(\mathrm{AN}=7.91817 \mathbf{c m}\)
GN \(=2.76501 \mathrm{~cm}\)
GO \(=9.44033 \mathrm{~cm}\)
\(\frac{\text { GO }}{\text { GN }}=3.41421\)
\(\sqrt{2}=1.41421\)
 \(\underline{\mathrm{AB}^{2}}\)
\(\mathrm{AB}=2.48569 \mathrm{~cm}\) \(\mathrm{BC}=2.40099 \mathrm{~cm}\) \(\mathrm{CD}=2.15267 \mathrm{~cm}\) \(D E=1.75765 \mathrm{~cm}\) \(E F=1.24284 \mathrm{~cm}\) FG \(=0.64334 \mathrm{~cm}\)
\(\mathrm{AB}^{2}=6.17864 \mathrm{~cm}^{2}\) \(\mathrm{BC}^{2}=5.76475 \mathrm{~cm}^{2}\) \(C D^{2}=4.63398 \mathrm{~cm}^{2}\) \(\mathrm{DE}^{2}=3.08932 \mathrm{~cm}^{2}\) \(E F^{2}=1.54466 \mathrm{~cm}^{2}\) \(\mathbf{F G}^{\mathbf{2}}=\mathbf{0 . 4 1 3 8 9 \mathrm { cm } ^ { 2 }}\)
\(\mathrm{AB}^{2} \cdot \mathrm{FG}^{\mathbf{2}}=\mathbf{2 . 5 5 7 2 8} \mathbf{c m}^{4}\)
\(\frac{\mathbf{A B}^{2}}{\mathbf{F G}^{2}}-\frac{\mathbf{B C}^{2}}{\mathbf{F G}^{2}}=1.00000 \quad \frac{\mathbf{A B}^{2}}{\mathbf{F G}^{2}}=14.92820\)
\(\mathrm{BC}^{2}+\mathrm{FG}^{2}=6.17864 \mathrm{~cm}^{2}\) \(\mathrm{CD}^{2}+\mathrm{EF}^{2}=6.17864 \mathrm{~cm}^{2}\)
\(\overline{\mathrm{DE}^{2}}=2.00000\) \(\frac{\mathrm{AB}^{2}}{\mathrm{FG}^{2}} \frac{\mathrm{BC}^{2}}{\mathrm{FG}^{2}}=1.00000 \quad \frac{\mathrm{AB}^{2}}{\mathrm{FG}^{2}}=14.92820\) \(\frac{\mathrm{BC}^{2}}{\mathrm{FG}^{2}}=13.92820\) \(\frac{C D^{2}}{F G^{2}}=11.19615\) DE2 \(\frac{\mathrm{DE}^{2}}{\mathbf{F G}^{2}}=\mathbf{7 . 4 6 4 1 0}\) \(\frac{\mathrm{EF}^{2}}{\mathrm{FG}^{2}}=3.73205\)

I.e., so called angular division is also a fractional series. One can call fractional series elliptical functions.

\[
\begin{array}{r}
\left(\frac{C A}{2}+\frac{C B}{2}\right)^{2}=48.49497 \mathrm{~cm}^{2} \quad D^{2}=48.49497 \mathrm{~cm}^{2} \\
C A=6.92711 \mathrm{~cm}
\end{array}
\]
\[
\mathrm{ED}=1.63379 \mathrm{~cm}
\]
\[
2 \cdot \mathrm{ED}^{2}=5.33855 \mathrm{~cm}^{2}
\]

\section*{\(C B=7.00056 \mathrm{~cm}\)} \(\mathrm{CB}=7.00056 \mathrm{~cm}\)
\(\mathrm{AC}=6.92711 \mathrm{~cm}\) \(C B=7.00056 \mathrm{~cm}\) \(\frac{\mathrm{AC}}{\mathrm{CB}}=0.98951\)
\(K J=13.92767 \mathbf{c m}\)

DF \(=6.96383 \mathrm{~cm}\)
\(\mathrm{CA}^{2}=47.98479 \mathrm{~cm}^{2}\)
\(\mathrm{CB}^{2}=49.00786 \mathrm{~cm}^{2}\)
\(\mathrm{AC}=6.92711 \mathrm{~cm}\)
\(C B=7.00056 \mathrm{~cm}\)
\(\frac{\mathrm{AC}+\mathrm{CB}}{2}=6.96383 \mathrm{~cm}\)
\(\frac{\mathrm{AB}}{2}=6.76947 \mathrm{~cm}\)
\(\sqrt{\frac{\mathrm{AC}^{2} \mathrm{CB}^{2}}{2}-{\frac{\mathrm{AB}^{2}}{2}}^{2}}=1.63379 \mathrm{~cm}\)
\(\mathrm{DE}=1.63379 \mathrm{~cm}\)
\(\xrightarrow{A C+C B^{2} A B^{2}}\)
\(\sqrt{\frac{A C^{2}+\mathrm{CB}^{2}}{2}-{\frac{\mathrm{AB}^{2}}{2}}^{2}}-\mathrm{DE}=0.00000 \mathrm{~cm}\)
\(\sqrt{\left(\frac{C A}{2}+\frac{C B}{2}\right)^{2}}=6.96383 \mathrm{~cm}\)
EB \(=6.96383 \mathrm{~cm}\) DJ \(=6.96383 \mathrm{~cm}\)

DJ \(=6.96383 \mathrm{~cm}\)
\(\mathrm{AC}=6.92711 \mathrm{~cm}\)
\(\mathrm{BC}=7.00056 \mathrm{~cm}\)
\(\mathrm{AC}+\mathrm{BC}=13.92767 \mathrm{~cm}\)
\((\mathrm{AC}+\mathrm{BC})\)
\(\mathrm{DJ}^{2}=48.49497 \mathrm{~cm}^{2}\)
\[
{\frac{A C+C B}{}{ }^{2}}_{2}^{2}=48.49497 \mathrm{~cm}^{2}
\]

\section*{Index is Base 0}

Indexs: \(\quad \mathrm{I}_{\mathrm{ndx}}=1 \quad \mathrm{C}_{\text {indx }}=13.00000\)
Number of div. by difference at an index.
\(\frac{\left(\mathrm{I}_{\mathrm{ndx}} \cdot \mathrm{N}_{2} \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{3}\right) \cdot\left(\left(\mathrm{I}_{\mathrm{ndx}} \cdot \mathrm{N}_{2}+\mathrm{N}_{2}\right) \cdot \mathrm{N}_{1} \cdot \mathrm{~N}_{3}\right)}{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}=\mathbf{1 0 5 . 0 0 0 0 0}\)

Total number of fractions.

Fraction at Index:
Num: \(\quad \mathbf{N}_{1} \cdot \mathrm{~N}_{3} \cdot \mathrm{I}_{\text {ndx }} \cdot \mathrm{N}_{2}=\mathbf{3 0 . 0 0 0 0 0}\)
Den: \(\quad N_{1}=4.00000\)
\[
\frac{\left(N_{1} \cdot N_{3}-I_{n d x} \cdot N_{2}\right)}{N_{1}}=\mathbf{7 . 5 0 0 0 0}
\]

Fraction at Compliment:
\[
\frac{\mathrm{N}_{1}+\mathrm{N}_{2} \cdot \mathrm{I}_{\mathrm{ndx}}}{\mathrm{~N}_{1}}=1.50000
\]
\(\frac{\left(N_{1} \cdot N_{3}-I_{n d x} \cdot N_{2}\right)}{N_{1}}+\frac{N_{1}+N_{2} \cdot I_{\text {ndx }}}{N_{1}}=\mathbf{9 . 0 0 0 0 0}\)
\begin{tabular}{|c|c|c|c|}
\hline [\(\mathrm{N}[1]\)-> 0 & [\(\mathrm{N}[2]\)-> 0 & & [\(\mathrm{N}[2]\)-> 0 \\
\hline |N[1] -> 1 & | \(\mathrm{N}[2]\)-> 1 & & | N [2] -> 1 \\
\hline | \(\mathrm{N}[1]\)-> 2 & | \(\mathrm{N}[2]\)-> 2 & \(\mathrm{N}_{2}=2.0000\) & [\(\mathrm{N}[2]\)-> 2 \\
\hline |N[1] -> 3 & [\(\mathrm{N}[2]\)-> 3 & \(\mathrm{N}_{3}\) & [\(\mathrm{N}[2]-3\) \\
\hline | \(\mathrm{N}[1]\)-> 4 & [\(\mathrm{N}[2]\)-> 4 & Present 2 Actions & [\(\mathrm{N}[2]\)-> 4 \\
\hline [\(\mathrm{N}[1]\)-> 5 & | \(\mathrm{N}[2]\)-> 5 & & [\(\mathrm{N}[2]\)-> 5 \\
\hline | \(\mathrm{N}[1]\)->6 & | \(\mathrm{N}[2]->6\) & \(\mathrm{N}_{3}\) & [\(\mathrm{N}[2]\)-> 6 \\
\hline | \(\mathrm{N}[1]\)-> 7 & [\(\mathrm{N}[2]\)-> 7 & \(\frac{N_{3}+1}{}=0.8888\) & [\(\mathrm{N}[2]\)-> 7 \\
\hline [N[1]-> 8 & [\(\mathrm{N}[2]->8\) & & [\(\mathrm{N}[2]\)->8 \\
\hline [\(\mathrm{N}[1]->9\) & [\(\mathrm{N}[2]\)-> 9 & & [\(\mathrm{N}[2]\)-> 9 \\
\hline |N[1] -> 10 & | \(\mathrm{N}[2]\)-> 10 & & [\(\mathrm{N}[2]\)-> 10 \\
\hline |N[1] -> 11 & [\(\mathrm{N}[2]\)-> 11 & & [\(\mathrm{N}[2]\)-> 11 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\frac{N_{1} \cdot N_{3}-N_{1}-I_{n d x} \cdot N_{2}}{N_{2}}=13.00000\) \\
\(\frac{N_{3}}{1}=8.00000\) & \(\frac{N_{3}}{H}=4.00000\) \\
\(\frac{N_{3}}{A}=7.50000\) & \(\frac{N_{3}}{I}=\mathbf{3 . 5 0 0 0 0}\) \\
\(\frac{N_{3}}{B}=7.00000\) & \(\frac{N_{3}}{J}=\mathbf{3 . 0 0 0 0 0}\) \\
\(\frac{N_{3}}{C}=6.50000\) & \(\frac{N_{3}}{\mathrm{~K}}=2.50000\) \\
\(\frac{N_{3}}{D}=6.00000\) & \(\frac{N_{3}}{L}=\mathbf{2 . 0 0 0 0 0}\) \\
\(\frac{N_{3}}{E}=5.50000\) & \(\frac{N_{3}}{M}=1.50000\) \\
\(\frac{N_{3}}{F}=5.00000\) & \(\frac{N_{3}}{\mathrm{~N}}=\mathbf{1 . 0 0 0 0 0}\) \\
\(\frac{N_{3}}{G}=4.50000\) &
\end{tabular}
\(\underset{\rightarrow}{\text { ABCDE F G H I } \quad \mathbf{J} \quad \mathbf{K}}\)
\(A=1.06667-L=4.00000\)
\(B=114286\)
\(\mathrm{C}=1.23077 \quad \mathrm{~N}=8.00000\)
D \(=1.33333\)
\(\mathrm{E}=1.45455\)
\(F=1.60000\)
G \(=1.77778\)
\(\mathrm{H}=2.00000\)
\(\mathrm{I}=2.28571\)
\(\mathrm{J}=2.66667\)
\(\mathbf{K}=\mathbf{3 . 2 0 0 0 0}\)

Indexs: \(\quad\) Index \(=0 \quad C_{\text {indx }}=8.00\)
Number of div. by difference at an index.
(Index \(\left.\cdot\left(1-N_{3}\right)+N_{1} \cdot N_{2} \cdot N_{3}\right) \cdot\left(\left(\mathbf{N}_{3}+\right.\right.\) Index \(\left.\left.\cdot\left(1-N_{3}\right)+N_{1} \cdot N_{2} \cdot N_{3}\right)-1\right)\left(N_{1} \cdot N_{2} \cdot\left(N_{3}-1\right)=81.14286\right.\)
\(\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\mathrm{~N}_{3}-1\right)\)
len of frac. \(\frac{N_{1} \cdot N_{2} \cdot N_{3}}{N_{1} \cdot N_{2} \cdot N_{3}-\operatorname{Index} \cdot\left(N_{3}-1\right)}=1.00000\)
Total number of fractions.
\(\mathrm{N}_{1} \cdot \mathrm{~N}_{\mathbf{2}}=\mathbf{8 . 0 0 0 0 0}\)
Fraction at Index:
Num: \(\quad \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \mathbf{N}_{\mathbf{3}}\)-Index \(\cdot\left(\mathbf{N}_{\mathbf{3}}-\mathbf{1}\right)=\mathbf{6 4 . 0 0 0 0 0}\)

\section*{Den: \(\quad N_{1} \cdot \mathbf{N}_{\mathbf{2}}=\mathbf{8 . 0 0 0 0 0}\)}
\(\frac{\left(\mathbf{N}_{1} \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{3}-\text { Index } \cdot\left(\mathrm{N}_{3}-1\right)\right)}{\left(\mathbf{N}_{1} \cdot \mathrm{~N}_{2}\right)}=\mathbf{8 . 0 0 0 0 0}\)
Fraction at Compliment:
\(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{3}-\mathrm{C}_{\text {indx }} \cdot\left(\mathrm{N}_{3}-1\right)}{\mathrm{N}_{1} \mathrm{~N}_{2}}=\mathbf{1 . 0 0 0 0 0}\)
\(\left(\mathrm{N}_{3}-\mathrm{C}_{\text {indx }} \cdot \mathrm{N}_{3}-\right.\) Index \(\left.\left.\cdot \mathrm{N}_{3}\right)+2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{\mathbf{3}}\right)=\mathbf{9 . 0 0 0 0 0}\)

\begin{tabular}{ll}
\(\frac{N_{3}}{1}=8.00000\) & \(\frac{N_{3}}{E}=3.62500\) \\
\(\frac{N_{3}}{A}=7.12500\) & \(\frac{N_{3}}{\mathrm{~F}}=2.75000\) \\
\(\frac{N_{3}}{B}=6.25000\) & \(\frac{N_{3}}{G}=1.87500\) \\
\(\frac{N_{3}}{C}=5.37500\) & \(\frac{N_{3}}{H}=1.00000\) \\
\(\frac{N_{3}}{D}=4.50000\) &
\end{tabular}
\(1 A B C D \quad N_{2} E\)

\(\mathrm{i}_{\mathrm{dx}}=1\)
\(\frac{\left(i_{d x} \cdot\left(N_{2}-N_{0} \cdot N_{2}\right)+N_{0} \cdot N_{1} \cdot N_{3}\right) \cdot\left(\left(\left(N_{2}-i_{d x} \cdot N_{2} \cdot N_{0} \cdot N_{2}\right)+i_{d x} \cdot N_{0} \cdot N_{2}\right) \cdot N_{0} \cdot N_{1} \cdot N_{3}\right)}{N_{1} \cdot N_{3} \cdot\left(\left(\left(N_{2}+i_{d x} \cdot\left(N_{2}-N_{0} \cdot N_{2}\right)\right)-i_{d x} \cdot N_{2}-N_{0} \cdot N_{2}\right)+i_{d x} \cdot N_{0} \cdot N_{2}\right)}=\mathbf{6 0 . 0 0 0 0 0}\)
\(\frac{\left(i_{d x} \cdot\left(N_{2}-N_{0} \cdot N_{2}\right)+N_{0} \cdot N_{1} \cdot N_{3}\right)}{\left(N_{1} \cdot N_{3}\right)}+\frac{N_{1} \cdot N_{3} \cdot i_{d x} \cdot N_{2} \cdot\left(1-N_{0}\right)}{N_{1} \cdot N_{3}}=\mathbf{5 . 0 0 0 0 0}\)
\[
\begin{aligned}
& \frac{N_{0} \cdot N_{1} \cdot N_{3}}{i_{d x} \cdot\left(N_{2}-N_{2} \cdot N_{0}\right)+N_{0} \cdot N_{1} \cdot N_{3}}=1.06667 \\
& \frac{N_{1} \cdot N_{3}-i_{d x} \cdot N_{2} \cdot\left(1-N_{0}\right)}{N_{1} \cdot N_{3}}=1.25000
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline \(\left(\mathrm{i}_{\text {dx }} \cdot\left(\mathrm{N}_{2}-\mathrm{N}_{0} \cdot \mathrm{~N}_{2}\right)+\mathrm{N}_{0} \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{3}\right)\) & \(\mathrm{N}_{1} \cdot \mathrm{~N}_{3}-\mathrm{i}_{\mathrm{dx}} \cdot \mathrm{N}_{2} \cdot\left(\mathbf{1}-\mathrm{N}_{0}\right)\) \\
\hline (\(\mathrm{N}_{1} \cdot \mathrm{~N}_{3}\)) & \(\mathrm{N}_{1} \cdot \mathrm{~N}_{3}\) \\
\hline
\end{tabular}

Total number of fractions.
\[
\frac{N_{1} \cdot N_{3}}{N_{2}}=12.00000
\]

Fraction at Index:
Num: \(\mathbf{i}_{\mathrm{dx} \times} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{0} \cdot \mathbf{N}_{\mathbf{2}}\right)+\mathbf{N}_{\mathbf{0}} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{3}}=\mathbf{9 0 . 0 0 0 0 0}\)
Den: \(N_{1} \cdot N_{3}=24.00000\)
\[
\frac{\left(\mathrm{i}_{\mathrm{dx}} \cdot\left(\mathrm{~N}_{2}-\mathrm{N}_{0} \cdot \mathrm{~N}_{2}\right)+\mathrm{N}_{0} \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{3}\right)}{\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{3}\right)}=\mathbf{3 . 7 5 0 0 0}
\]
\begin{tabular}{lll}
\(N_{0}=4.00000\) & \(N_{2}=2.00000\) \\
\(N_{1}=4.00000\) & \(N_{3}=6.00000\) & \(N_{1} \cdot N_{3}=24.00000\)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{N}[1]\) > 0 & | \(\mathrm{N}[2]\)-> 0 & [\(\mathrm{N}[3]\)-> 0 & \(\underline{N}[0]\) > 0 & \(\mathrm{A}=1.06667\) & K = 3.20000 \\
\hline N[1] \(>1\) & [\(\mathrm{N}[2]->1\) & [\(\mathrm{N}[3]\)-> 1 & N \([0]\) - 1 & A \(=1.06667\) & \\
\hline N[1] -> 2 & [\(\mathrm{N}[2]->2\) & N[3]->2 & \(\mathrm{N}[0]->2\) & 1.142 & \(\mathrm{L}=4.00000\) \\
\hline N[1] -> 3 & [\(\mathrm{N}[2]->3\) & [\(\mathrm{N}[3]\)-> 3 & | N [0] -> 3 & C = 1.23077 & \\
\hline [\(\mathrm{N}[1]\)-> 4 & [\(\mathrm{N}[2]->4\) & [\(\mathrm{N}[3]\)-> 4 & | \(\mathrm{N}[0]\)-> 4 & D \(=1.33333\) & \\
\hline N[1] -> 5 & [\(\mathrm{N}[2]->5\) & [\(\mathrm{N}[3]\)-> 5 & N \([0]\)->5 & \(\mathrm{E}=1.45455\) & \\
\hline N[1] ->6 & | \(\mathrm{N}[2]->6\) & [\(\mathrm{N}[3]\)-> 6 & |N [0] -> 6 & \(\mathrm{F}=1.60000\) & \\
\hline | \(\mathrm{N}[1]\)-> 7 & [\(\mathrm{N}[2]->7\) & [\(\mathrm{N}[3]->7\) & | \(\mathrm{N}[0]\)-> 7 & \(\mathrm{G}=1.77778\) & \\
\hline N[1] \(>8\) & [\(\mathrm{N}[2]->8\) & [\(\mathrm{N}[3]\)-> 8 & | \(\mathrm{N}[0]\)->8 & \(\mathrm{H}=2.00000\) & \\
\hline N[1] \(>9\) & [\(\mathrm{N}[2]->9\) & | \(\mathrm{N}[3]->9\) | & \(\mathrm{N}[0]->9\) & \(\mathrm{I}=2.28571\) & \\
\hline N[1] -> 10 & | \(\mathrm{N}[2]\)-> 10 & [\(\mathrm{N}[3]\)-> 10 & |N [0]-> 10 & \(\mathrm{J}=2.66667\) & \\
\hline | \(\mathrm{N}[1]\)-> 11 & | \(\mathrm{N}[2]\)-> 11 & | \(\mathrm{N}[3]\)-> 11 & |N [0] -> 11 & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\frac{N_{0}}{A}=3.75000\) & \(\frac{N_{0}}{G}=2.25000\) \\
\(\frac{N_{0}}{B}=3.50000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{H}}=2.00000\) \\
\(\frac{\mathrm{~N}_{0}}{\mathrm{C}}=3.25000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{I}}=1.75000\) \\
\(\frac{\mathrm{~N}_{0}}{\mathrm{D}}=3.00000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{~J}}=1.50000\) \\
\(\frac{\mathrm{~N}_{0}}{\mathrm{E}}=2.75000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{~K}}=1.25000\) \\
\(\frac{\mathrm{~N}_{0}}{\mathrm{~F}}=2.50000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{~L}}=1.00000\)
\end{tabular}

\(\mathrm{x}_{\mathrm{A}}=1.14286\)
\(\mathrm{x}_{\mathrm{B}}=1.33333\)
\(\mathrm{x}_{\mathrm{C}}=1.60000\)
\(x_{D}=2.00000\)
\(\mathrm{X}_{\mathrm{E}}=2.66667\)
\(\frac{\mathrm{N}^{3}}{\mathrm{~N}^{3}-\mathrm{In}_{\mathrm{dx}} \cdot(\mathrm{N}-1)}=1.14286\)
\(\mathbf{N}^{3}=8.00000\)
\(\mathbf{N}^{3}-\mathrm{In}_{\mathrm{d}} \cdot(\mathbf{N}-1)=7.00000\)
\(\mathrm{N}^{2}=4.00000\)

\section*{Index is Base 0}

Indexs: \(\quad \mathrm{I}_{\mathrm{ndx}}=1 \quad \mathrm{C}_{\text {indx }}=13.00000\)
Number of div. by difference at an index.
\(\frac{\left(\mathrm{I}_{\mathrm{ndx}} \cdot \mathrm{N}_{2} \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{3}\right) \cdot\left(\left(\mathrm{I}_{\mathrm{ndx}} \cdot \mathrm{N}_{2}+\mathrm{N}_{2}\right) \cdot \mathrm{N}_{1} \cdot \mathrm{~N}_{3}\right)}{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}=\mathbf{1 0 5 . 0 0 0 0 0}\)

Total number of fractions.

Fraction at Index:
Num: \(\quad \mathbf{N}_{1} \cdot \mathrm{~N}_{3} \cdot \mathrm{I}_{\text {ndx }} \cdot \mathrm{N}_{2}=\mathbf{3 0 . 0 0 0 0 0}\)
Den: \(\quad N_{1}=4.00000\)
\[
\frac{\left(N_{1} \cdot N_{3}-I_{n d x} \cdot N_{2}\right)}{N_{1}}=\mathbf{7 . 5 0 0 0 0}
\]

Fraction at Compliment:
\[
\frac{\mathrm{N}_{1}+\mathrm{N}_{2} \cdot \mathrm{I}_{\mathrm{ndx}}}{\mathrm{~N}_{1}}=1.50000
\]
\(\frac{\left(N_{1} \cdot N_{3}-I_{n d x} \cdot N_{2}\right)}{N_{1}}+\frac{N_{1}+N_{2} \cdot I_{\text {ndx }}}{N_{1}}=\mathbf{9 . 0 0 0 0 0}\)
\begin{tabular}{|c|c|c|c|}
\hline [N [1] \(>0\) & [\(\mathrm{N}[2]\)-> 0 & & [\(\mathrm{N}[2]\)-> 0 \\
\hline [\(\mathrm{N}[1]\)-> 1 & [\(\mathrm{N}[2]\)-> 1 & & | \(\mathrm{N}[2]\)-> 1 \\
\hline [\(\mathrm{N}[1]\)-> 2 & [N [2] -> 2 & & | \(\mathrm{N}[2]\)->2 \\
\hline | \(\mathrm{N}[1]\)-> 3 & | \(\mathrm{N}[2]\)-> 3 & \(\mathrm{N}_{3}=8.0000\) & [2] -> 3 \\
\hline [\(\mathrm{N}[1]\)-> 4 & | \(\mathrm{N}[2]\)-> 4 & Pre & [N[2] -> 4 \\
\hline [\(\mathrm{N}[1]\)-> 5 & [\(\mathrm{N}[2]\)-> 5 & & | \(\mathrm{N}[2]\)-> 5 \\
\hline [\(\mathrm{N}[1]\)-> 6 & | \(\mathrm{N}[2]\)-> 6 & \(\mathrm{N}_{3}\) & | \(\mathrm{N}[2]\)->6 \\
\hline | \(\mathrm{N}[1]\)-> 7 & | \(\mathrm{N}[2]\)-> 7 & \(\frac{N_{3}+1}{}=0.88889\) & [\(\mathrm{N}[2]->7\) \\
\hline [\(\mathrm{N}[1]\)-> 8 & [\(\mathrm{N}[2]\)-> 8 & & [\(\mathrm{N}[2]\)->8 \\
\hline [\(\mathrm{N}[1]\)-> 9 & [N [2] -> 9 & & [\(\mathrm{N}[2]\)->9 \\
\hline [\(\mathrm{N}[1]\)-> 10 & [N [2] -> 10 & & [N[2] -> 10 \\
\hline N[1] -> 11 & | \(\mathrm{N}[2]\)-> 11 & & [\(\mathrm{N}[2]\)-> 11 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\frac{N_{1} \cdot N_{3}-N_{1}-I_{n d x} \cdot N_{2}}{N_{2}}=13.00000\) \\
\(\frac{N_{3}}{1}=8.00000\) & \(\frac{N_{3}}{H}=4.00000\) \\
\(\frac{N_{3}}{A}=7.50000\) & \(\frac{N_{3}}{I}=\mathbf{3 . 5 0 0 0 0}\) \\
\(\frac{N_{3}}{B}=7.00000\) & \(\frac{N_{3}}{J}=\mathbf{3 . 0 0 0 0 0}\) \\
\(\frac{N_{3}}{C}=6.50000\) & \(\frac{N_{3}}{\mathrm{~K}}=2.50000\) \\
\(\frac{N_{3}}{D}=6.00000\) & \(\frac{N_{3}}{L}=\mathbf{2 . 0 0 0 0 0}\) \\
\(\frac{N_{3}}{E}=5.50000\) & \(\frac{N_{3}}{M}=1.50000\) \\
\(\frac{N_{3}}{F}=5.00000\) & \(\frac{N_{3}}{\mathrm{~N}}=\mathbf{1 . 0 0 0 0 0}\) \\
\(\frac{N_{3}}{G}=4.50000\) &
\end{tabular}
\(\underset{\rightarrow}{\text { ABCDE F G H I } \quad \mathbf{J} \quad \mathbf{K}}\)
\(A=1.06667-L=4.00000\)
B=1.14286
\(\mathrm{C}=1.23077 \quad \mathrm{~N}=8.00000\)
D \(=1.33333\)
\(\mathrm{E}=1.45455\)
\(F=1.60000\)
\(\mathrm{G}=1.77778\)
\(\mathrm{H}=2.00000\)
\(\mathrm{I}=2.28571\)
\(\mathrm{J}=2.66667\)
\(\mathbf{K}=\mathbf{3 . 2 0 0 0 0}\)

Indexs: \(\quad\) Index \(=0 \quad C_{\text {indx }}=8.00\)
Number of div. by difference at an index.
(Index \(\left.\cdot\left(1-N_{3}\right)+N_{1} \cdot N_{2} \cdot N_{3}\right) \cdot\left(\left(N_{3}+\right.\right.\) Index \(\left.\left.\cdot\left(1-N_{3}\right)+N_{1} \cdot N_{2} \cdot N_{3}\right)-1\right)=81.14286\)
\(\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\mathrm{~N}_{3}-1\right)\)
len of frac. \(\frac{N_{1} \cdot N_{2} \cdot N_{3}}{N_{1} \cdot N_{2} \cdot N_{3}-\operatorname{Index} \cdot\left(N_{3}-1\right)}=1.00000\)
Total number of fractions.
\(\mathrm{N}_{1} \cdot \mathrm{~N}_{\mathbf{2}}=\mathbf{8 . 0 0 0 0 0}\)
Fraction at Index:
Num: \(\quad \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \mathbf{N}_{\mathbf{3}}\)-Index \(\cdot\left(\mathbf{N}_{\mathbf{3}}-\mathbf{1}\right)=\mathbf{6 4 . 0 0 0 0 0}\)

\section*{Den: \(\quad N_{1} \cdot \mathbf{N}_{\mathbf{2}}=\mathbf{8 . 0 0 0 0 0}\)}
\(\frac{\left(\mathbf{N}_{1} \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{3}-\text { Index } \cdot\left(\mathrm{N}_{3}-1\right)\right)}{\left(\mathbf{N}_{1} \cdot \mathrm{~N}_{2}\right)}=\mathbf{8 . 0 0 0 0 0}\)
Fraction at Compliment:
\(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{3} \cdot \mathrm{C}_{\text {indx }} \cdot\left(\mathrm{N}_{3}-1\right)}{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}=\mathbf{1 . 0 0 0 0 0}\)
\(\frac{\left(\mathrm{N}_{3}-\mathrm{C}_{\text {indx }} \cdot \mathrm{N}_{3}-\text { Index } \cdot \mathrm{N}_{3}\right)+2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2} \cdot \mathrm{~N}_{\mathbf{3}}}{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}=\mathbf{9 . 0 0 0 0 0}\)
\begin{tabular}{|c|c|c|c|}
\hline N[1] \(>\) O 0 & | \(\mathrm{N}[2]\)-> 0 & & [\(\mathrm{N}[3]\)-> 0 \\
\hline [\(\mathrm{N}[1]\)-> 1 & [\(\mathrm{N}[2]\)-> 1 & & | \(\mathrm{N}[3]\)-> 1 \\
\hline | \(\mathrm{N}[1]\)->2 & [N [2] -> 2 & \(\mathrm{N}_{1}=4.00000\) & | \(\mathrm{N}[3]\)-> 2 \\
\hline [\(\mathrm{N}[1]\)-> 3 & [\(\mathrm{N}[2]\)-> 3 & \(\mathrm{N}_{2}=2.00000\) & 3 \\
\hline | \(\mathrm{N}[1]\)-> 4 & [\(\mathrm{N}[2]\)-> 4 & \(\mathrm{N}_{3}=8.00000\) & [\(\mathrm{N}[3]\)-> 4 \\
\hline [\(\mathrm{N}[1]\)-> 5 & [\(\mathrm{N}[2]\)-> 5 & & [\(\mathrm{N}[3]->5\) \\
\hline | \(\mathrm{N}[1]\)-> 6 & [N [2] ->6 & & [\(\mathrm{N}[3]->6\) \\
\hline [\(\mathrm{N}[1]\)-> 7 & [\(\mathrm{N}[2]->7\) & & [\(\mathrm{N}[3]->7\) \\
\hline | \(\mathrm{N}[1]\)-> 8 & [\(\mathrm{N}[2]->8\) | & & [\(\mathrm{N}[3]\)->8 \\
\hline | \(\mathrm{N}[1]\)-> 9 & [\(\mathrm{N}[2]->9\) & & [\(\mathrm{N}[3]->9\) \\
\hline [\(\mathrm{N}[1]->10\) & N[2] -> 10 & & [\(\mathrm{N}[3]->10\) \\
\hline | \(\mathrm{N}[1]\)-> 11 & | \(\mathrm{N}[2]\)-> 11 & & [\(\mathrm{N}[3]\)-> 11 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\frac{N_{3}}{1}=8.00000\) & \(\frac{N_{3}}{E}=3.62500\) \\
\(\frac{N_{3}}{A}=7.12500\) & \(\frac{N_{3}}{\mathrm{~F}}=2.75000\) \\
\(\frac{N_{3}}{B}=6.25000\) & \(\frac{N_{3}}{G}=1.87500\) \\
\(\frac{N_{3}}{C}=5.37500\) & \(\frac{N_{3}}{H}=1.00000\) \\
\(\frac{N_{3}}{D}=4.50000\) &
\end{tabular}
\(1 A B C D \quad N_{2} E\) F \(\mathrm{N}_{1} \quad \mathrm{G}\) \(\mathrm{N}_{3} \mathrm{H}\)

\(\mathrm{i}_{\mathrm{dx}}=1\)
\(\frac{\left(i_{d x} \cdot\left(N_{2}-N_{0} \cdot N_{2}\right)+N_{0} \cdot N_{1} \cdot N_{3}\right) \cdot\left(\left(\left(N_{2}-i_{d x} \cdot N_{2} \cdot N_{0} \cdot N_{2}\right)+i_{d x} \cdot N_{0} \cdot N_{2}\right) \cdot N_{0} \cdot N_{1} \cdot N_{3}\right)}{N_{1} \cdot N_{3} \cdot\left(\left(\left(N_{2}+i_{d x} \cdot\left(N_{2}-N_{0} \cdot N_{2}\right)\right)-i_{d x} \cdot N_{2}-N_{0} \cdot N_{2}\right)+i_{d x} \cdot N_{0} \cdot N_{2}\right)}=\mathbf{6 0 . 0 0 0 0 0}\)
\(\frac{\left(i_{d x} \cdot\left(N_{2}-N_{0} \cdot N_{2}\right)+N_{0} \cdot N_{1} \cdot N_{3}\right)}{\left(N_{1} \cdot N_{3}\right)}+\frac{N_{1} \cdot N_{3} \cdot i_{d x} \cdot N_{2} \cdot\left(1-N_{0}\right)}{N_{1} \cdot N_{3}}=\mathbf{5 . 0 0 0 0 0}\)
\[
\begin{aligned}
& \frac{N_{0} \cdot N_{1} \cdot N_{3}}{i_{d x} \cdot\left(N_{2}-N_{2} \cdot N_{0}\right)+N_{0} \cdot N_{1} \cdot N_{3}}=1.06667 \\
& \frac{N_{1} \cdot N_{3}-i_{d x} \cdot N_{2} \cdot\left(1-N_{0}\right)}{N_{1} \cdot N_{3}}=1.25000
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline \(\left(\mathrm{i}_{\text {dx }} \cdot\left(\mathrm{N}_{2}-\mathrm{N}_{0} \cdot \mathrm{~N}_{2}\right)+\mathrm{N}_{0} \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{3}\right)\) & \(\mathrm{N}_{1} \cdot \mathrm{~N}_{3}-\mathrm{i}_{\mathrm{dx}} \cdot \mathrm{N}_{2} \cdot\left(\mathbf{1}-\mathrm{N}_{0}\right)\) \\
\hline (\(\mathrm{N}_{1} \cdot \mathrm{~N}_{3}\)) & \(\mathrm{N}_{1} \cdot \mathrm{~N}_{3}\) \\
\hline
\end{tabular}

Total number of fractions.
\[
\frac{N_{1} \cdot N_{3}}{N_{2}}=12.00000
\]

Fraction at Index:
Num: \(\mathbf{i}_{\mathrm{dx} \times} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{0} \cdot \mathbf{N}_{\mathbf{2}}\right)+\mathbf{N}_{\mathbf{0}} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{3}}=\mathbf{9 0 . 0 0 0 0 0}\)
Den: \(N_{1} \cdot N_{3}=24.00000\)
\[
\frac{\left(\mathrm{i}_{\mathrm{dx}} \cdot\left(\mathrm{~N}_{2}-\mathrm{N}_{0} \cdot \mathrm{~N}_{2}\right)+\mathrm{N}_{0} \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{3}\right)}{\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{3}\right)}=\mathbf{3 . 7 5 0 0 0}
\]
\begin{tabular}{lll}
\(N_{0}=4.00000\) & \(N_{2}=2.00000\) \\
\(N_{1}=4.00000\) & \(N_{3}=6.00000\) & \(N_{1} \cdot N_{3}=24.00000\)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{N}[1]\) > 0 & | \(\mathrm{N}[2]\)-> 0 & [\(\mathrm{N}[3]\)-> 0 & \(\underline{N}[0]\) > 0 & \(\mathrm{A}=1.06667\) & K = 3.20000 \\
\hline N[1] \(>1\) & [\(\mathrm{N}[2]->1\) & [\(\mathrm{N}[3]\)-> 1 & N \([0]\) - 1 & A \(=1.06667\) & \\
\hline N[1] -> 2 & [\(\mathrm{N}[2]->2\) & N[3]->2 & \(\cdots \mathrm{N}[0]->2\) & 1.142 & \(\mathrm{L}=4.00000\) \\
\hline N[1] -> 3 & [\(\mathrm{N}[2]->3\) & [\(\mathrm{N}[3]\)-> 3 & | N [0] -> 3 & C = 1.23077 & \\
\hline [\(\mathrm{N}[1]\)-> 4 & [\(\mathrm{N}[2]->4\) & [\(\mathrm{N}[3]\)-> 4 & | \(\mathrm{N}[0]\)-> 4 & D \(=1.33333\) & \\
\hline N[1] -> 5 & [\(\mathrm{N}[2]->5\) & [\(\mathrm{N}[3]\)-> 5 & N \([0]\)->5 & \(\mathrm{E}=1.45455\) & \\
\hline N[1] ->6 & | \(\mathrm{N}[2]->6\) & [\(\mathrm{N}[3]\)-> 6 & |N [0] -> 6 & \(\mathrm{F}=1.60000\) & \\
\hline | \(\mathrm{N}[1]\)-> 7 & [\(\mathrm{N}[2]->7\) & [\(\mathrm{N}[3]->7\) & | \(\mathrm{N}[0]\)-> 7 & \(\mathrm{G}=1.77778\) & \\
\hline N[1] \(>8\) & [\(\mathrm{N}[2]->8\) & [\(\mathrm{N}[3]\)-> 8 & | \(\mathrm{N}[0]\)->8 & \(\mathrm{H}=2.00000\) & \\
\hline N[1] \(>9\) & [\(\mathrm{N} 2 \mathrm{]}\)-> 9 & | \(\mathrm{N}[3]->9\) | & \(\mathrm{N}[0]>9\) & \(\mathrm{I}=2.28571\) & \\
\hline N[1] -> 10 & | \(\mathrm{N}[2]\)-> 10 & [\(\mathrm{N}[3]\)-> 10 & |N [0]-> 10 & \(\mathrm{J}=2.66667\) & \\
\hline | \(\mathrm{N}[1]\)-> 11 & | \(\mathrm{N}[2]\)-> 11 & | \(\mathrm{N}[3]\)-> 11 & |N [0] -> 11 & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\frac{N_{0}}{A}=3.75000\) & \(\frac{N_{0}}{G}=2.25000\) \\
\(\frac{N_{0}}{B}=3.50000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{H}}=2.00000\) \\
\(\frac{\mathrm{~N}_{0}}{\mathrm{C}}=3.25000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{I}}=1.75000\) \\
\(\frac{\mathrm{~N}_{0}}{\mathrm{D}}=3.00000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{~J}}=1.50000\) \\
\(\frac{\mathrm{~N}_{0}}{\mathrm{E}}=2.75000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{~K}}=1.25000\) \\
\(\frac{\mathrm{~N}_{0}}{\mathrm{~F}}=2.50000\) & \(\frac{\mathrm{~N}_{0}}{\mathrm{~L}}=1.00000\)
\end{tabular}

\(\mathrm{x}_{\mathrm{A}}=1.14286\)
\(\mathrm{x}_{\mathrm{B}}=1.33333\)
\(\mathrm{x}_{\mathrm{C}}=1.60000\)
\(x_{D}=2.00000\)
\(\mathrm{X}_{\mathrm{E}}=2.66667\)
\(\frac{\mathrm{N}^{3}}{\mathrm{~N}^{3}-\mathrm{In}_{\mathrm{dx}} \cdot(\mathrm{N}-1)}=1.14286\)
\(\mathbf{N}^{3}=8.00000\)
\(\mathbf{N}^{3}-\mathrm{In}_{\mathrm{d} \cdot} \cdot(\mathrm{N}-1)=7.00000\)
\(\mathrm{N}^{2}=4.00000\)

\begin{tabular}{|c|c|c|}
\hline 0000 & & \(\mathrm{x}_{\mathrm{I}}=1.10526\) \\
\hline & & \(\mathrm{x}_{\mathrm{J}}=1.23529\) \\
\hline & & \(\mathrm{x}_{\mathrm{K}}=1.40000\) \\
\hline 7.00000 & & \(\mathrm{x}_{\mathrm{L}}=1.61538\) \\
\hline & & \(\mathrm{x}_{\mathrm{M}}=1.90909\) \\
\hline & & \(\mathrm{x}_{\mathrm{N}}=2.33333\) \\
\hline & & \(\mathrm{x}_{\mathrm{O}}=3.00000\) \\
\hline & \(\mathrm{N}_{1}{ }^{\mathbf{3}}\) - \(\left(\mathrm{N}_{1}-1\right) \cdot\left(\mathrm{N}_{1}+\mathrm{t}_{2}\right)=19.00000\) & \(\mathrm{x}_{\mathrm{P}}=4.20000\) \\
\hline
\end{tabular}

\[
\frac{\left(N_{1}{ }^{3}-N_{1} \cdot\left(N_{1}-1\right)\right)}{\left(N_{1}{ }^{3}-\left(N_{1}-1\right) \cdot\left(N_{1}+t_{2}\right)\right)}=1.10526
\]

Move Point
\begin{tabular}{|l|}
\hline Move Point \\
\hline Move Point \\
\hline
\end{tabular} \begin{tabular}{|l|l|}
\hline Move Point \\
\hline Move Point \\
\hline
\end{tabular}

Move Point
Move Point
Move Point
Move Point

\({ }^{10}\)
\({ }^{11}\)

\(\mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{2}} \cdot \mathbf{C G} \quad \mathbf{R}_{\mathbf{5}}:=\frac{\mathbf{R}_{\mathbf{4}}}{\mathbf{C G}} \quad \mathbf{R}_{\mathbf{6}}:=\frac{\mathbf{R}_{\mathbf{5}}}{\mathbf{C G}} \quad \mathbf{R}_{\mathbf{7}}:=\frac{\mathbf{R}_{\mathbf{6}}}{\mathbf{C G}}\)
\(\mathbf{R}_{1}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}-1}}\right)^{-3}=0 \quad \mathbf{R}_{2}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}-1}}\right)^{-2}=0 \quad \mathbf{R}_{3}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}-1}}\right)^{-1}=0 \quad 1-\left(\frac{1}{\sqrt{\mathbf{N}_{1}-1}}\right)^{0}=0\)
\(\mathbf{R}_{\mathbf{4}}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}-1}}\right)^{1}=0 \quad \mathbf{R}_{5}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}-1}}\right)^{\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{6}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}-1}}\right)^{3}=0 \quad \mathbf{R}_{7}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}-1}}\right)^{4}=0\)
\(\mathrm{R}_{\mathbf{1}}=0.475336\)
\(R_{2}=0.60907\)
\(\mathrm{R}_{3}=0.780429\)
\(\mathrm{R}_{4}=1.281346\)
\(R_{5}=1.641847\)
\(\mathrm{R}_{6}=2.103775\)
\(\mathbf{R}_{\mathbf{7}}=\mathbf{2 . 6 9 5 6 6 3}\)
\(\mathrm{R}_{1}-\frac{1}{\sqrt{\mathrm{~N}_{1}-1}}{ }^{-3}=0.00000\)
\(\mathbf{R}_{2}-\frac{1}{{\sqrt{\mathbf{N}_{1}-1}}^{-2}=0.00000}\)
\(\mathbf{R}_{3}-\frac{1}{\sqrt{\mathbf{N}_{1}-1}}=\mathbf{0 . 0 0 0 0 0}\)
\(R_{4}-\frac{1}{\sqrt{\mathrm{~N}_{1}-1}}=0.00000\)
\(\mathrm{R}_{5}{\frac{1}{\sqrt{\mathrm{~N}_{1}-1}}}^{2}=0.00000\)
\(\mathbf{R}_{6}-\frac{1}{{\sqrt{\mathbf{N}_{1}-1}}^{3}=0.00000}\)
\(\mathbf{R}_{7}-\frac{1}{\sqrt{\mathbf{N}_{1}-1}}{ }^{4}=0.00000\)

AB \(:=1\)
\(\mathbf{R F}:=\frac{\mathbf{N}_{\mathbf{1}}-\mathbf{1}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{R}_{\mathbf{3}}:=\sqrt{\mathbf{R F} \cdot(\mathbf{1}-\mathbf{R F})}\)
\(N_{1}=1.48165\) \(\mathrm{R}_{1}=0.10277\) \(R_{2}=0.21940\) \(R_{3}=0.46840\) \(R_{4}=2.13491\) \(\mathbf{R}_{5}=4.55784\) \(\mathbf{R}_{6}=9.73059\)

\(\mathbf{R}_{\mathbf{3}}-\frac{\sqrt{\mathbf{N}_{\mathbf{1}}-\mathbf{1}}}{\mathbf{N}_{\mathbf{1}}}=\mathbf{0}\)
\(\mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{3}} \quad \mathbf{R}_{\mathbf{4}}:=\mathbf{R}_{\mathbf{3}}{ }^{-\mathbf{1}} \quad \mathbf{R}_{\mathbf{5}}:=\mathbf{R}_{\mathbf{3}}{ }^{-\mathbf{2}} \quad \mathbf{R}_{\mathbf{6}}:=\mathbf{R}_{\mathbf{3}}{ }^{-\mathbf{3}}\)
\(\mathbf{R}_{1}-\left(\frac{\mathbf{N}_{1}}{\sqrt{\mathbf{N}_{1}-1}}\right)^{-\mathbf{3}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{2}}-\left(\frac{\mathbf{N}_{1}}{\sqrt{\mathbf{N}_{1}-1}}\right)^{-\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{3}-\left(\frac{\mathbf{N}_{\mathbf{1}}}{\sqrt{\mathbf{N}_{1}-\mathbf{1}}}\right)^{-\mathbf{1}}=\mathbf{0}\)
\(\mathbf{A B}-\left(\frac{\mathbf{N}_{1}}{\sqrt{\mathbf{N}_{1}-1}}\right)^{\mathbf{0}}=\mathbf{0} \quad \mathbf{R}_{4}-\left(\frac{\mathbf{N}_{1}}{\sqrt{\mathbf{N}_{1}-1}}\right)^{\mathbf{1}}=0 \quad \mathbf{R}_{\mathbf{5}}-\left(\frac{\mathbf{N}_{1}}{\sqrt{\mathbf{N}_{1}-1}}\right)^{\mathbf{2}}=0 \quad \mathbf{R}_{6}-\left(\frac{\mathbf{N}_{1}}{\sqrt{\mathbf{N}_{1}-1}}\right)^{\mathbf{3}}=\mathbf{0}\)
\(\mathrm{R}_{1}=0.102769\)
\(\mathrm{R}_{\mathbf{2}}=0.219402\)
\(R_{3}=0.468404\)
\(\mathrm{R}_{4}=2.134911\)
\(R_{5}=4.557846\)
\(\mathrm{R}_{6}=\mathbf{9 . 7 3 0 5 9 8}\)

AB:=1
EF \(:=\frac{1}{\mathbf{N}_{1}+1} \quad \mathbf{B F}:=\sqrt{\text { EF } \cdot(1-\mathbf{E F})}\)
\(\mathbf{D G}:=\frac{\mathbf{E F}}{\mathbf{B F}} \quad \mathbf{R}_{\mathbf{4}}:=\frac{\mathbf{1}}{\mathbf{D G}} \quad \mathbf{R}_{\mathbf{4}}-\frac{\sqrt{\mathbf{N}_{\mathbf{1}}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}{\sqrt{\left(\mathbf{N}_{1}+\mathbf{1}\right)^{2}}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{4}}-\sqrt{\mathbf{N}_{\mathbf{1}}}=\mathbf{0}\)
\(\mathbf{R}_{\mathbf{3}}:=\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{4}}} \quad \mathbf{R}_{\mathbf{2}}:=\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{2}}} \quad \mathbf{R}_{\mathbf{1}}:=\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{3}}} \quad \mathbf{N}_{\mathbf{1}}-\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{5}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{3}} \quad \mathbf{R}_{\mathbf{6}}:=\mathbf{R}_{\mathbf{4}}^{\mathbf{4}} \quad \mathbf{R}_{\mathbf{7}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{5}}\)
\(\mathbf{R}_{1}-\left(\sqrt{\mathbf{N}_{1}}\right)^{-\mathbf{3}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{2}}-\left(\sqrt{\mathbf{N}_{\mathbf{1}}}\right)^{-\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{3}}-\left(\sqrt{\mathbf{N}_{1}}\right)^{-\mathbf{1}}=\mathbf{0} \quad \mathbf{A B}-\left(\sqrt{\mathbf{N}_{1}}\right)^{\mathbf{0}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{4}}-\left(\sqrt{\mathbf{N}_{1}}\right)^{\mathbf{1}}=\mathbf{0}\)
\(\mathbf{N}_{1}-\left(\sqrt{\mathbf{N}_{1}}\right)^{\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{5}}-\left(\sqrt{\mathbf{N}_{1}}\right)^{\mathbf{3}}=0 \quad \mathbf{R}_{6}-\left(\sqrt{\mathbf{N}_{1}}\right)^{\mathbf{4}}=\mathbf{0} \quad \mathbf{R}_{7}-\left(\sqrt{\mathbf{N}_{1}}\right)^{\mathbf{5}}=\mathbf{0}\)
\(\mathbf{R}_{1}=0.450405\)
\(\mathbf{R}_{\mathbf{2}}=0.587582\)
\(\mathbf{R}_{\mathbf{3}}=0.766539\)
\(\mathbf{R}_{\mathbf{4}}=1.304565\)
\(\mathbf{R}_{5}=2.220226\)
\(\mathbf{R}_{6}=2.89643\)
\(\mathbf{R}_{\mathbf{7}}=\mathbf{3 . 7 7 8 5 8 1}\)
\(\mathrm{N}_{1}=1.70189\) \(R_{1}=0.45041\) \(R_{2}=0.58758\) \(\mathrm{R}_{3}=0.76654\) \(R_{4}=1.30456\) \(R_{5}=2.22022\) \(\mathrm{R}_{6}=2.89641\) \(\mathrm{R}_{7}=3.77855\)

\(\mathbf{R}_{\mathbf{1}}-\sqrt{\mathbf{N}_{1}-3}=\mathbf{0 . 0 0 0 0 0}\) \(\mathbf{R}_{2}-\sqrt{\mathbf{N}_{1}}{ }^{-2}=0.00000\) \(\mathbf{R}_{3}-\sqrt{\mathbf{N}_{1}}-1=0.00000\) \(\mathbf{R}_{4}-\sqrt{\mathbf{N}_{1}}=\mathbf{0 . 0 0 0 0 0}\) \(\mathbf{R}_{5}-\sqrt{\mathbf{N}_{1}}{ }^{3}=0.00000\) \(\mathbf{R}_{\mathbf{6}}-\sqrt{\mathbf{N}_{1}}{ }^{4}=0.00000\) \(\mathbf{R}_{7}-\sqrt{\mathbf{N}_{\mathbf{1}}}{ }^{5}=\mathbf{0 . 0 0 0 0 0}\)

\(\mathbf{R}_{\mathbf{4}}:=\frac{\mathbf{A E}}{\mathbf{E F}} \quad \mathbf{C G}:=\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{4}}} \quad \mathbf{R}_{\mathbf{3}}:=\mathbf{C G}\)
\(\mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{3}} \cdot \mathbf{C G} \quad \mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{2}} \cdot \mathbf{C G} \quad \mathbf{R}_{\mathbf{5}}:=\frac{\mathbf{R}_{\mathbf{4}}}{\mathbf{C G}} \quad \mathbf{R}_{\mathbf{6}}:=\frac{\mathbf{R}_{\mathbf{5}}}{\mathbf{C G}} \quad \mathbf{R}_{\mathbf{7}}:=\frac{\mathbf{R}_{\mathbf{6}}}{\mathbf{C G}}\)
\(\mathbf{R}_{4}-\frac{\mathbf{N}_{1}+\mathbf{1}}{\sqrt{\mathbf{N}_{1}} \cdot \sqrt{\left(\mathbf{N}_{1}+\mathbf{1}\right)^{2}}}=0 \quad \mathbf{R}_{4}-\frac{1}{\sqrt{\mathbf{N}_{1}}}=0\)
\(\mathbf{R}_{1}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}}}\right)^{-\mathbf{3}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{2}}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}}}\right)^{-\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{3}}-\left(\frac{\mathbf{1}}{\sqrt{\mathbf{N}_{1}}}\right)^{-\mathbf{1}}=\mathbf{0} \quad \mathbf{A B}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}}}\right)^{\mathbf{0}}=\mathbf{0}\)
\(\mathbf{R}_{\mathbf{4}}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}}}\right)^{\mathbf{1}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{5}}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}}}\right)^{\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{6}}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}}}\right)^{\mathbf{3}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{7}}-\left(\frac{1}{\sqrt{\mathbf{N}_{1}}}\right)^{4}=\mathbf{0}\)
\(\mathbf{R}_{\mathbf{1}}=0.479064\)
\(\mathbf{R}_{\mathbf{2}}=0.61225\)
\(\mathbf{R}_{\mathbf{3}}=0.782464\)
\(\mathbf{R}_{4}=1.278014\)
\(\mathrm{R}_{5}=1.63332\)
\(\mathbf{R}_{6}=2.087405\)
\(\mathbf{R}_{\mathbf{7}}=\mathbf{2 . 6 6 7 7 3 3}\)

\(\mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{3}} \quad \mathbf{A B}-\frac{\mathbf{R}_{\mathbf{3}}}{\mathbf{R}_{\mathbf{3}}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{4}}:=\frac{\mathbf{R}_{\mathbf{3}}}{\mathbf{R}_{\mathbf{3}}{ }^{2}} \quad \mathbf{R}_{\mathbf{5}}:=\frac{\mathbf{R}_{\mathbf{3}}}{\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{3}}} \quad \mathbf{R}_{\mathbf{6}}:=\frac{\mathbf{R}_{\mathbf{3}}}{\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{4}}}\)
\(\mathbf{R}_{\mathbf{3}}-\sqrt{\frac{\mathbf{N}_{1}}{\left(\mathbf{N}_{1}+1\right)^{2}}}=\mathbf{0}\)
\(\mathbf{R}_{1}-\left(\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}{\sqrt{\mathbf{N}_{1}}}\right)^{-\mathbf{3}}=\mathbf{0} \quad \mathbf{R}_{2}-\left(\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}{\sqrt{\mathbf{N}_{1}}}\right)^{-\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{3}}-\left(\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}{\sqrt{\mathbf{N}_{1}}}\right)^{-\mathbf{1}}=\mathbf{0}\)
\(\mathbf{R}_{\mathbf{4}}-\left(\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}{\sqrt{\mathbf{N}_{\mathbf{1}}}}\right)=\mathbf{0} \quad \mathbf{R}_{\mathbf{5}}-\left(\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}{\sqrt{\mathbf{N}_{\mathbf{1}}}}\right)^{\mathbf{2}}=\mathbf{0} \quad \mathbf{R}_{\mathbf{6}}-\left(\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}{\sqrt{\mathbf{N}_{\mathbf{1}}}}\right)^{\mathbf{3}}=\mathbf{0}\)

\[
\begin{aligned}
& \text { (~N: } \begin{array}{l}
A B:=1 \\
N_{1}:=.78798
\end{array} \\
& \mathbf{R}_{\mathbf{4}}:=\frac{\mathbf{1}}{\mathbf{N}_{\mathbf{1}}} \\
& \mathrm{BN}_{1}:=\sqrt{\mathbf{1}^{2}+\mathrm{N}_{1}{ }^{2}} \quad \mathrm{EN}_{1}:=\frac{\mathrm{N}_{1}{ }^{2}}{\mathrm{BN}_{1}} \quad \mathrm{BE}:=\mathrm{BN}_{1}-\mathbf{E N}_{1} \\
& \mathrm{~N}_{1}=0.78798 \\
& \mathrm{R}_{1}=0.48926 \\
& \begin{array}{l}
\mathbf{R}_{1}=0.48926 \\
\mathbf{R}_{2}=0.62091
\end{array} \\
& \begin{array}{l}
R_{3}=0.78798 \\
R_{4}=1.26907
\end{array} \\
& R_{4}=1.26907 \\
& R_{5}=1.61054 \\
& \begin{array}{l}
R_{6}=2.04389 \\
R_{7}=2.59384
\end{array} \\
& \mathrm{R}_{7}=2.59384 \\
& \mathbf{R}_{4}:=\frac{\mathbf{B N}_{\mathbf{1}} \cdot \mathbf{B E}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{R}_{\mathbf{4}}-\frac{\mathbf{1}}{\mathbf{N}_{\mathbf{1}}}=\mathbf{0} \\
& \mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{3}} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{2}} \quad \mathbf{R}_{\mathbf{3}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{1}} \quad \mathbf{R}_{\mathbf{5}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{6}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{3}} \quad \mathbf{R}_{\mathbf{7}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{4}} \\
& \mathbf{R}_{1}-\left(\frac{1}{\mathbf{N}_{1}}\right)^{-3}=0 \quad \mathbf{R}_{2}-\left(\frac{1}{\mathbf{N}_{1}}\right)^{-2}=0 \quad \mathbf{R}_{3}-\left(\frac{1}{\mathbf{N}_{1}}\right)^{-1}=0 \quad A B-\left(\frac{1}{\mathbf{N}_{1}}\right)^{0}=0 \\
& \mathbf{R}_{4}-\left(\frac{1}{\mathbf{N}_{1}}\right)^{1}=0 \\
& \mathbf{R}_{5}-\left(\frac{1}{\mathbf{N}_{1}}\right)^{2}=0 \\
& \mathbf{R}_{6}-\left(\frac{1}{\mathbf{N}_{1}}\right)^{\mathbf{3}}=\mathbf{0} \\
& \mathbf{R}_{7}-\left(\frac{\mathbf{1}}{\mathbf{N}_{1}}\right)^{\mathbf{4}}=\mathbf{0}
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{R}_{\mathbf{4}}:=\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{5}}} \quad \mathbf{R}_{\mathbf{3}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{3}} \quad \mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{4}} \\
& \mathbf{R}_{\mathbf{6}}:=\mathbf{R}_{\mathbf{5}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{7}}:=\mathbf{R}_{\mathbf{5}}{ }^{\mathbf{3}} \quad \mathbf{R}_{\mathbf{8}}:=\mathbf{R}_{\mathbf{5}}{ }^{\mathbf{4}} \\
& \mathbf{R}_{1}-\mathbf{N}_{1}^{-8}=0 \quad \mathbf{R}_{2}-\mathbf{N}_{1}^{-6}=0 \quad \mathbf{R}_{\mathbf{3}}-\mathbf{N}_{1}^{-4}=0 \quad \mathbf{R}_{4}-\mathbf{N}_{1}{ }^{-2}=0 \\
& \mathbf{R}_{5}-\mathbf{N}_{\mathbf{1}}{ }^{\mathbf{2}}=0 \quad \mathbf{R}_{\mathbf{6}}-\mathrm{N}_{\mathbf{1}}{ }^{\mathbf{4}}=0 \quad \mathbf{R}_{\mathbf{7}}-\mathrm{N}_{\mathbf{1}}{ }^{\mathbf{6}}=0 \quad \mathbf{R}_{\mathbf{8}}-\mathrm{N}_{\mathbf{1}}{ }^{\mathbf{8}}=\mathbf{0}
\end{aligned}
\]

\section*{AB:=1}
\(\mathrm{CE}:=\frac{1}{{N_{1}}^{2}+1} \quad \mathbf{R}_{4}:=1-C E \quad \mathbf{R}_{4}-\frac{\mathbf{N}_{1}{ }^{2}}{{N_{1}}^{2}{ }^{2}+1}=0\)
\(\mathbf{R}_{\mathbf{3}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{3}} \quad \mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{4}} \quad \mathbf{R}_{\mathbf{5}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{1}}\)
\(\mathbf{R}_{\mathbf{6}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{2}} \quad \mathbf{R}_{\mathbf{7}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{3}} \quad \mathbf{R}_{\mathbf{8}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{4}}\)
\(\mathbf{R}_{1}-\left[\frac{\left(\mathbf{N}_{1}^{2}+1\right)}{N_{1}^{2}}\right]^{-4}=0 \quad \mathbf{R}_{2}-\left[\frac{\left({N_{1}}^{2}+1\right)}{N_{1}^{2}}\right]^{-3}=0 \quad \mathbf{R}_{3}-\left[\frac{\left({N_{1}}^{2}+1\right)}{N_{1}^{2}}\right]^{-2}=0 \quad R_{4}-\left[\frac{\left(N_{1}^{2}+1\right)}{N_{1}^{2}}\right]^{-1}=0\)
\(\mathbf{R}_{5}-\left[\frac{\left({N_{1}}^{2}+1\right)}{{N_{1}}^{2}}\right]=0 \quad \mathbf{R}_{6}-\left[\frac{\left({N_{1}}^{2}+1\right)}{N_{1}{ }^{2}}\right]^{2}=0 \quad R_{7}-\left[\frac{\left(N_{1}^{2}+1\right)}{N_{1}^{2}}\right]^{3}=0 \quad R_{8}-\left[\frac{\left(N_{1}^{2}+1\right)}{N_{1}^{2}}\right]^{4}=0\)
\begin{tabular}{lll}
\\
\hline
\end{tabular}

AB := \(\mathbf{1}\)
\(\mathrm{N}_{1}:=. .60053\)
\(\mathrm{DE}:=\frac{\mathbf{1}}{\mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{1}} \quad \mathbf{R}_{\mathbf{4}}:=\mathbf{D E} \quad \mathbf{R}_{\mathbf{3}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{3}}\)
\(\mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{4}} \quad \mathbf{R}_{\mathbf{5}}:=\mathbf{R}_{\mathbf{4}}{ }^{-1} \quad \mathbf{R}_{\mathbf{6}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{2}} \quad \mathbf{R}_{\mathbf{7}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{3}}\)
\(\mathbf{R}_{1}-\left(\mathbf{N}_{1}{ }^{2}+\mathbf{1}\right)^{-4}=0 \quad \mathbf{R}_{2}-\left(\mathbf{N}_{1}{ }^{2}+1\right)^{-3}=0 \quad \mathbf{R}_{3}-\left(\mathbf{N}_{1}{ }^{2}+\mathbf{1}\right)^{-2}=0 \quad \mathbf{R}_{4}-\left(\mathbf{N}_{1}{ }^{2}+\mathbf{1}\right)^{-1}=0\)
\(\mathbf{R}_{5}-\left(\mathbf{N}_{1}{ }^{2}+1\right)=0 \quad \mathbf{R}_{6}-\left(\mathbf{N}_{1}{ }^{2}+1\right)^{2}=0 \quad \mathbf{R}_{7}-\left(\mathbf{N}_{1}{ }^{2}+1\right)^{3}=0\)
\(R_{1}=0.291764\)
\(\mathbf{R}_{2}=0.396985\)
\(\mathbf{R}_{\mathbf{3}}=0.540152\)
\(\mathbf{R}_{\mathbf{4}}=0.73495\)
\(R_{5}=1.360636\)
\(R_{6}=1.851331\)
\(\mathbf{R}_{\mathbf{7}}=\mathbf{2 . 5 1 8 9 8 8}\)

\(\mathrm{EF}:=\frac{1}{\mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{1}} \quad \mathbf{R}_{4}:=\frac{\mathrm{EF}}{1-\mathbf{E F}} \quad \mathbf{C G}:=\frac{1}{\mathbf{R}_{\mathbf{4}}}\)
\(\mathbf{R}_{\mathbf{3}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{1}} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{2}} \quad \mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{4}}{ }^{-\mathbf{3}} \quad \mathbf{R}_{\mathbf{5}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{6}}:=\mathbf{R}_{\mathbf{4}}{ }^{\mathbf{3}}\)
\(\mathbf{R}_{1}-\left(\frac{1}{\mathbf{N}_{1}^{2}}\right)^{-3}=0 \quad \mathbf{R}_{2}-\left(\frac{1}{\mathbf{N}_{1}^{2}}\right)^{-2}=0 \quad \mathbf{R}_{3}-\left(\frac{1}{\mathbf{N}_{1}^{2}}\right)^{-1}=0\)
\(\mathbf{R}_{4}-\left(\frac{1}{\mathbf{N}_{1}{ }^{2}}\right)=0 \quad \mathbf{R}_{5}-\left(\frac{1}{\mathbf{N}_{1}{ }^{2}}\right)^{2}=0 \quad \mathbf{R}_{6}-\left(\frac{1}{\mathbf{N}_{1}{ }^{2}}\right)^{3}=0\)
\(\mathbf{R}_{1}=0.267597\)
\(\mathbf{R}_{\mathbf{2}}=0.415261\)
\(\mathbf{R}_{3}=0.644408\)
\(\mathbf{R}_{4}=1.551813\)
\(R_{5}=2.408123\)
\(\mathbf{R}_{\mathbf{6}}=\mathbf{3 . 7 3 6 9 5 7}\)

\(\mathbf{R}_{\mathbf{3}}:=\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{1}}{ }^{\mathbf{2}}+\mathbf{1}} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{2}} \quad \mathbf{R}_{\mathbf{1}}:=\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{3}}\)
\(\mathbf{R}_{\mathbf{4}}:=\mathbf{R}_{\mathbf{3}}{ }^{-\mathbf{1}} \quad \mathbf{R}_{\mathbf{5}}:=\mathbf{R}_{\mathbf{3}}{ }^{-\mathbf{2}}\)
\(\mathbf{R}_{1}-\left[\frac{\left(\mathbf{N}_{1}{ }^{2}+1\right)}{\mathbf{N}_{1}}\right]^{-3}=0 \quad \mathbf{R}_{2}-\left[\frac{\left(\mathbf{N}_{1}{ }^{2}+1\right)}{\mathbf{N}_{1}}\right]^{-2}=0 \quad \mathbf{R}_{3}-\left[\frac{\left(\mathbf{N}_{1}{ }^{2}+\mathbf{1}\right)}{\mathbf{N}_{1}}\right]^{-1}=0\)
\(\mathbf{R}_{4}-\left[\frac{\left(\mathbf{N}_{1}{ }^{2}+1\right)}{\mathbf{N}_{1}}\right]=0 \quad \mathbf{R}_{5}-\left[\frac{\left(\mathbf{N}_{1}{ }^{2}+1\right)}{\mathbf{N}_{1}}\right]^{2}=0\)

\section*{Two Triangles}

Saturday, April 6, 2019
Just the first book or two of Euclid's Elements should give one enough information to discover Basic Analog Mathematics. However, it apparently did not happen. The reason being is that it is a whole lot easier to repeat and memorize perceptible information than to see the intelligible being expressed.
In this little essay, I am not going to say much, I am just going to present a little figure which I call Two Triangles. Just imagine what you can do with two right angles on the same base. I can call one ACB and the other ADB. I will simply present a series of plates which only differ in so far as a point go.

Let us call AB the standard unit by which C and D and their produce E is named. We simply have a right triangle to perform our operation. Call it \(A B\). The intersection of the two triangles perpendicular to the base \(A B\) fall on what we can call the segment known to be the square root of 2 . We are not, however, interested where it intersects the segment, but only that it intersects the line which contains the segment. We are interested in it only insofar as it expresses and projects a ratio.
Now, we can give C and D any values we like. We can imagine them as triangles ACB and ADB, however, we have no wish to think or speak in terms of the mystical angle. We adhere to the notion that a twodimensional plane is expressible as a ratio between two units.

One of the things which BAM helps one with, or one of the things Geometry helps one with, is not to set the standard of understanding a figure based on the perceptible, which can be very confusing, but on the intelligible content established by standards. The standard references what is intersected while the mind is looking at where.

One may notice, even in the Elements as we have them today, propositions written up by a weaker mind writes up the same proposition in terms of cases based on perceptible location. One can see here, if they were done correctly, the equation never changes. Notice also that any and every other type of triangle can be found using in the figure. I am not interested in obtuse, acute, or any other name one can give to any other expression of a triangle. I am only interested in the fact that a twodimensional matrix can produce results using an unit whatsoever when compared to another and I do not need Cartesian Geometry, Trigonometry, or Calculus to do it.
The ability to equate an analog to its logical name is not, in any wise apparent to the eye. One has to find and use standards to express it, and comprehend it in the mind. You can call an analog an isosceles right triangle in gray, or a method of dividing two given things of the same relative difference in accordance with a standard unit. All of the other so called triangles are simply parts of a much bigger and better ordered universe.
Let us take our little figure, Lay it on its side and imagine that C and D are on two parallels and AB is just a unit.

CN
Descriptions.
Basic Givens for a right triangle. Although it is common to recite only one of these results, errantly called the Pythagorean Theorem, it helps to at least suspect the entire set attempting to write up a figure. One should consider a right triangle to consit of six distinct segments.

And if one muse somewhat further, one can claim that it is a fractile, which simply means the recurson of a unit behavior on a figure which produces proportional results.

Right Triangle Basic Math

\(\frac{C D^{2}}{\mathrm{AD}}-\mathrm{BD}=0.00000\)
\(\frac{\mathrm{CD}^{2}}{\mathrm{BD}}-\mathrm{AD}=0.00000\)
\(\frac{\mathrm{AC}^{2}}{\mathrm{AB}}-\mathrm{AD}=0.00000\)
\(\frac{\mathrm{AC}^{2}}{\mathrm{AD}}-\mathrm{AB}=0.00000\)
\(\frac{\mathrm{BC}^{2}}{\mathrm{AB}}-\mathrm{BD}=0.00000\)
\(\frac{\mathrm{BC}^{2}}{\mathrm{BD}^{2}}-\mathrm{AB}=0.00000\)
\(\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)-\mathrm{AB}^{2}=0.00000\) \(\left(\mathrm{AD}^{2}+\mathrm{CD}^{2}\right) \cdot \mathrm{AC}^{2}=0.00000\) \(\left(\mathrm{CD}^{2}+\mathrm{BD}^{2}\right)-\mathrm{BC}^{2}=0.00000\)
\begin{tabular}{|l|}
\hline Hide Point A \\
\hline Hide Point B \\
\hline
\end{tabular}
Show Base Line Points (20)
\(\mathrm{A}=0.00000\)
\(\mathrm{N}_{1}=2.00000\)
\(\mathrm{N}_{\mathbf{2}}=3.00000\)
\(\mathrm{R}_{1}=5.00000\)
\(R_{2}=0.66667\)
\(\mathrm{R}_{3}=6.00000\)
\(R_{4}=1.41421\)
\(\mathrm{R}_{5}=1.73205\)
\(\mathrm{N}_{1}+\mathrm{N}_{\mathbf{2}}=5.00000\) \(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\mathbf{0 . 6 6 6 6 7}\)
\(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}=6.00000\)
\[
\sqrt{\mathbf{N}_{1}}=1.41421
\]
\[
\sqrt{\mathbf{N}_{2}}=1.73205
\]
\[
\begin{aligned}
& A=0.00000 \\
& B=0.00000
\end{aligned}
\]

Simple Spirals

CN

\section*{120119A Spiral}

Unit.
AB := 1
X := 12
\(\mathbf{Y}:=20\)
Descriptions.
\(\mathrm{AC}:=\frac{\mathbf{A B}}{2} \quad \mathbf{C E}:=\mathbf{A C} \quad \mathbf{A D}:=\frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A E}:=\mathrm{AD} \quad \mathbf{A H}:=\frac{\mathbf{A E}^{2}}{\mathbf{A B}}\)
\(\mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{B H}:=\mathbf{A B}-\mathbf{A H} \quad \mathbf{E H}:=\sqrt{(\mathbf{A H} \cdot \mathbf{B H})}\)
\(\mathbf{C H}:=\sqrt{\mathbf{A C}^{2}-\mathbf{E H}}{ }^{2} \quad \mathbf{E K}:=\frac{\mathbf{A E}}{2} \quad\) EJ \(:=\frac{\mathbf{E K} \cdot \mathbf{A D}}{\mathbf{A C}}\)
\(\mathbf{E F}:=2 \cdot \mathbf{E J} \quad \mathbf{C F}:=|\mathbf{E F}-\mathbf{C E}| \quad \mathbf{C G}:=\frac{\mathbf{C H} \cdot \mathbf{C F}}{\mathbf{C E}}\)
\(\mathbf{F G}:=\frac{\mathbf{E H} \cdot \mathbf{C F}}{\mathbf{C E}} \cdot \frac{|\mathbf{A C}-\mathbf{A D}|}{\mathbf{A C}-\mathbf{A D}}\)

Definitions.
\(A C-\frac{1}{2}=0 \quad C E-\frac{1}{2}=0 \quad A D-\frac{X}{Y}=0 \quad A E-\frac{X}{Y}=0 \quad A H-\left(\frac{X}{Y}\right)^{2}=0\)
\(\mathbf{B D}-\frac{\mathbf{Y}-\mathbf{X}}{\mathbf{Y}}=\mathbf{0} \quad \mathbf{B H}-\frac{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}{\mathbf{Y}^{2}}=\mathbf{0} \quad \mathbf{E H}-\frac{\mathbf{X} \cdot \sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{\mathbf{Y}^{2}}=\mathbf{0}\)
\(\mathbf{C H}-\frac{\left|2 \cdot \mathbf{X}^{2}-Y^{2}\right|}{2 \cdot Y^{2}}=0 \quad E K-\frac{X}{2 \cdot Y}=0 \quad E J-\frac{X^{2}}{Y^{2}}=0 \quad E F-\frac{2 \cdot X^{2}}{Y^{2}}=0\)
\(\mathbf{C F}-\frac{|(\mathbf{2} \cdot \mathbf{X}-\mathbf{Y}) \cdot(\mathbf{2} \cdot \mathbf{X}+\mathbf{Y})|}{2 \cdot \mathbf{Y}^{2}}=\mathbf{0} \quad \mathbf{C G}-\frac{|(\mathbf{Y}-2 \cdot \mathbf{X}) \cdot(\mathbf{2} \cdot \mathbf{X}+\mathbf{Y})| \cdot\left|\mathbf{2} \cdot \mathbf{X}^{\mathbf{2}}-\mathbf{Y}^{\mathbf{2}}\right|}{2 \cdot \mathbf{Y}^{\mathbf{4}}}=\mathbf{0}\)
\(\mathbf{F G}-\frac{\mathbf{X} \cdot|(\mathbf{Y}-\mathbf{2} \cdot \mathbf{X}) \cdot(\mathbf{2} \cdot \mathbf{X}+\mathbf{Y})| \cdot|\mathbf{Y}-\mathbf{2} \cdot \mathbf{X}| \cdot \sqrt{(\mathbf{Y}-\mathbf{X}) \cdot(\mathbf{X}+\mathbf{Y})}}{\mathbf{Y}^{\mathbf{4}} \cdot(\mathbf{Y}-\mathbf{2} \cdot \mathbf{X})}=\mathbf{0}\)

\section*{Spiral A}

 the difference between the perceptible and the intelleligible.
~~~~
012220
Descriptions.
\(\mathbf{A O}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A D}:=\mathbf{A O}+\mathbf{A O} \cdot \frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{A R}:=\frac{\mathbf{A O}}{2} \quad \mathbf{R J}:=\sqrt{\mathbf{A R} \cdot(\mathbf{A B}-\mathbf{A R})}\)
KO := \(\mathbf{2} \cdot \mathbf{R J} \quad\) DO \(:=\mathbf{A D}-\mathbf{A O} \quad\) AJ \(:=\mathbf{A O} \quad\) AK \(:=2 \cdot \mathbf{A J} \quad\) EO \(:=\) AO
\(\mathbf{K S}:=\mathbf{A K} \quad\) GK \(:=\mathbf{A K} \quad\) KT \(:=\sqrt{\mathbf{G K}^{2}-\mathbf{D O}^{\mathbf{2}}} \quad\) TO \(:=\mathbf{K T}-\mathbf{K O}\)
\(\mathbf{D G}:=\mathbf{T O} \quad \mathbf{M N}:=\mathbf{A B} \quad\) MO \(:=\mathbf{A O} \quad \mathbf{D M}:=\sqrt{\mathbf{M O}^{2}+\mathbf{D O}^{2}}\)
LN \(:=\frac{\text { DO } \cdot \mathrm{MN}}{\text { DM }} \quad \mathrm{CO}:=\frac{\text { MO }^{2}}{\text { DO }} \quad \mathrm{CD}:=\mathrm{CO}-\mathrm{DO} \quad \mathrm{CE}:=\mathrm{CD}\)
\(\mathrm{OV}:=\frac{\mathrm{CO}^{2}+\mathrm{EO}^{2}-\mathrm{CE}^{2}}{2 \cdot \mathrm{CO}} \quad \frac{\mathrm{OV}}{\mathrm{DO}}=1.375 \quad \frac{\mathrm{DO}}{\mathrm{OV}}=0.727273\)

Definitions.
\(\mathbf{A O}-\frac{1}{2}=0 \quad \mathbf{A D}-\frac{X+Y}{2 \cdot Y}=0 \quad A R-\frac{1}{4}=0 \quad \mathbf{R J}-\frac{\sqrt{3}}{4}=0\)
\(K O-\frac{\sqrt{3}}{2}=0 \quad\) DO \(-\frac{X}{2 \cdot Y}=0 \quad A J-\frac{1}{2}=0 \quad A K-1=0\)
\(\mathbf{E O}-\frac{1}{2}=0 \quad K S-1=0 \quad G K-1=0 \quad K T-\frac{\sqrt{(2 \cdot Y-X) \cdot(X+2 \cdot Y)}}{2 \cdot Y}=0 \quad\) TO \(-\frac{\sqrt{4 \cdot Y^{2}-X^{2}}-\sqrt{3} \cdot \mathbf{Y}}{2 \cdot \mathbf{Y}}=0\)
\(D G-\frac{\sqrt{4 \cdot Y^{2}-X^{2}}-\sqrt{3} \cdot Y}{2 \cdot Y}=0 \quad M N-1=0 \quad M O-\frac{1}{2}=0 \quad D M-\frac{\sqrt{X^{2}+Y^{2}}}{2 \cdot Y}=0 \quad L N-\frac{X}{\sqrt{X^{2}+Y^{2}}}=0\)
\(C O-\frac{Y}{2 \cdot X}=0 \quad C D-\frac{(Y-X) \cdot(X+Y)}{2 \cdot X \cdot Y}=0 \quad C E-\frac{(Y-X) \cdot(X+Y)}{2 \cdot X \cdot Y}=0 \quad O V-\frac{X \cdot\left(3 \cdot Y^{2}-X^{2}\right)}{4 \cdot Y^{3}}=0 \quad \frac{O V}{D O}-\frac{\left(3 \cdot Y^{2}-X^{2}\right)}{2 \cdot Y^{2}}=0 \quad \frac{D O}{O V}-\frac{2 \cdot Y^{2}}{\left(3 \cdot Y^{2}-X^{2}\right)}=0\)
One can say now that the length of the sides of an equalatera
triangle in a right triangle used in trisection is \(\frac{\sqrt{4 \cdot Y^{2}-X^{2}}-\sqrt{3} \cdot \mathbf{Y}}{Y}\)




Descriptions.
020320 Easy Cube
Often, one would like to create an easy plate for cube roots, instead of doing the whole figure. Here is the simplest and most accurate way to achive it.

Draw \(X\) to \(A\) anywhere and then construct 0 parallel to AF. Have your macro make \(X\) seek 0.
You might believe that simple geometry can out Calculus Calculus, maybe in these plates you will change your mind. Calculus is a work frought with grammatical contradictions, Cartesian Geometry, Calculus, Trigonometry are not even grammatically correct. They are not derived from a correct concept of grammar as any possible grammar is afforded by complete induction and deduction of a simple binary unit.
\begin{tabular}{lll} 
Unit \(=1.00000\) & \(F=3.66072\) & \(F^{\frac{1}{2}}-D=0.00000\) \\
\(X Y=3.66072\) & \(E=2.46101\) & \(F^{\frac{1}{3}}-C=-0.06619\) \\
\(X=18.10729\) & \(C=1.60738\) & \(F^{\frac{2}{3}}-E=-0.08575\)
\end{tabular}

Unit \(=1.00000\)
\(\mathrm{XY}=3.66072\)
\(\mathrm{X}=18.10729\) \(X=18.10729\)
\(Y=4.94638\) \(C=1.54119\) \(D=1.91330\)
\[
\begin{aligned}
& F^{\frac{1}{2}}-D=0.00000 \\
& F^{\frac{1}{3}}-C=0.00000 \\
& F^{\frac{2}{3}}-E=0.00000
\end{aligned}
\]
.
\(\sim_{n=2}^{0}\)

\section*{Descriptions.}

Sometimes one is want to trisect some particular angle the easy way. Here it is. Draw it up with \(X\) anywhere and projec 0 . Have your macro make \(X\) seek 0 . It is a whole lot neater than sliding a piece of paper.

By knowing the geometric end results, one can write
algorithms which are a whole lot more accurate and efficient than by just using the traditional methods.
nit \(=1.00000\)
\(\mathrm{m} \angle \mathrm{CDE}=75.16146\)
\(\frac{\mathrm{m} \angle \mathrm{A} 1 \mathrm{H}}{\mathrm{m} \angle \mathrm{D} 1 \mathrm{H}}=3.08512\)
\(\frac{\mathrm{m} \angle \mathrm{AIH}}{\mathrm{m} \angle \mathrm{DH}}=2.69934\)

0
x


Unit \(=1.00000\) \(\mathrm{m} \angle \mathrm{CDE}=60.00000^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{A} 1 \mathrm{H}}{\mathrm{m} \angle \mathrm{D} 1 \mathrm{H}}=3.00000\)
\(\mathrm{~m} \angle \mathrm{AIH}\)
\(\mathrm{m} \angle \mathrm{A} 1 \mathrm{H}=\mathbf{7 2 . 1 3 2 5 7 ^ { \circ }}\) \(\mathrm{m} \angle \mathrm{D} 1 \mathrm{H}=24.04419^{\circ}\) m \(\angle\) AIH \(=17.86743^{\circ}\) \(\mathrm{m} \angle \mathrm{DIH}=5.95581\)
\(\sim_{n=2}^{0}\)

\section*{Descriptions.}

This is just another way to study rectangles, complements and square roots.

\section*{020320 Squaring a Rectangle}


\section*{The Holy Grail}

Sunday, February 23, 2020
- noun
(the Grail or the Holy Grail) (in medieval legend) the cup or platter used by Christ at the Last Supper, and in which Joseph of Arimathea received Christ's blood at the Cross. Quests for it undertaken by medieval knights are described in versions of the Arthurian legends written from the early 13th century onward.
A thing which is eagerly pursued or sought after: the enterprise society where profit at any cost has become the holy grail.
- origin from Old French graal, from medieval Latin gradalis 'dish'.

Most people, around the world believe that the Holy Grail, if they believe in the Grail, has been lost to history, but this is decidedly not true:-


There it is, it has also been called the Bowl of Siddhartha and even the Philosopher's Stone. It is certainly not lost; it is mankind that is lost. Here is the mystery people do not comprehend; perhaps no one has explained it to them. Before I get into that, I need to dispel other myths men tell each other, especially about the Bible and the science of their own evolution.

Did you know that it is written, in several places of the Bible, that man cannot even read that Book until after a certain time in history? That man is still being made and until he reaches a certain point in his making, he will only dream that he is a man, that he has understanding. It is also written that man will be in this condition until a pure language is introduced to him. Today, even scholars still do not know the relationship between Language and Grammar. I can put that relationship into grammar, but your ability to comprehend what I say is determined by how much of a man you are, how much of you is complete, as a man.

A man is measured by his distinction from other forms of life on this planet. That distinction resides in his ability to clearly see Language, which nothing in all of creation can speak. It is an intelligible. Language is a biological inheritance. Every form of life is made from it, and every form of life expresses its comprehension of it, from the most primitive forms of life to the most complex. Language is Universal and Intelligible. Grammar, which is a physical recursion of language, is Particular and Perceptible. A species can only formulate their systems of grammar to the degree that they comprehend language. As scholars, even the current scholars, have and are still, expounding their confusion and lack of comprehension in each of these, all I can do is explain it to you, your own state of creation determines your ability to comprehend what I say. Suffice it to say, both science and religion today are still lost as to what man is, why he is, and what his purpose is in this life, even though everything was long ago put into simple words, words which are decidedly very provable.
Every life support system of a living organism is designed for the salvation of the life of that organism; every one of them. However, that salvation is particular to that part of the environment that life support system can process. Each of them is particular, and thus, do not have the ability to process time, itself. The mind is one such life support
system, and it is the most powerful life support system possible. It is the most powerful possible, because it is designed to process the intelligible which is over every possible relative difference, even time, itself. When functional, man will even conquer death. A mind is a symbolic information processor constructed to predict the results of every action, every relative difference, and every thing. It achieves this from the Universal of Language, also called the Word of God, which simple minds believe is just some book, but it is factually the Word of Creation itself. Since nothing but God can speak in language, man has to speak in grammar systems which are in the image of that language. Language is, in a metaphor, such as Adam and Eve, A Conjugate Binary Pair which affords even reality itself, complete induction and deduction of every thing.
Today, all one has to do is meditate on their computer to realize that all of information is processed using binary; however, it takes any species a long time to evolve to the stage where it can comprehend this fact with a mind.
One is also, in metaphor, informed that there are exactly four systems of grammar derived from binary, arrived at by simple binary recursion. They are also informed in metaphor not only the fact that every possible grammar is metaphorical, able to use the binary unit for complete induction and deduction with that grammar, but also that of the four grammars three are logical, and the last is analogical, this last grammar can be used to metaphorically to illustrate every possible line of reasoning in every possible grammar, it is called Geometry. The first three grammars are all logical, Common Grammar, Arithmetic, and Algebra.
So, in this little section of my work, I will show you how to understand the philosophers stone, the cup of Siddhartha, the Holy Grail, of the life of mind and body. You use an image of the Cup, like this:-


You turn your world upside down, turn from illiteracy to literacy. Literacy gives a species the ability to turn the past into a future and to bring that future to pass, which, deliberately, is the solution to the name of the Beast, 666. It is a puzzle that those with eyes can easily solve.

\section*{List of Plates to use for the story.}

The plates used in the outline.

\section*{Homind's Quest for The Holy Grail}

Story project: this is simply an outline of that story. How pedantic can one be and still hold the storyline?
The whole idea is an ordered progression, unlike our real thrashing aboout. This ordering, howevever, is to be implied in the story, and never mentioned. It is to follow step by step the available moves with straightedge and compass with what the figure offers. One can even turn Hominid into several characters over several generations. This project should be done.
Descriptions.
 that stick in memory. He learnt how to draw in the ground with his stick and to follow those drawings in memory.

He found, that in order to ponder this stick, that it might be advantageous to name it, and so he did. He named when it came, A, and when it left, B.

One day, Hominid decided to do for the stick as he had done for himself, build it a shelter.

This shelter reminded him of his own home and on another day, while meditating on his stick, in its home, it seemed that this stick and home might feel better if it had at least one occupant. And so Hominid placed in his home an occupant like himself.


In order to meditate on his little home, with its littlel man, Hominid decided that it might be advantageous to increase his understanding of names. Eventually, Hominid learnt meditation about \(C\) and where he was at through a process he called arithmetic. Suddenly, Homid realize that this gave him a lot to think about.
Given.
AB := 20
AC := 8
\(\mathbf{B C}:=\mathbf{A B}-\mathbf{A C} \quad \mathbf{B C}=\mathbf{1 2}\)


C \(=8.00000\)
\(B=\mathbf{2 0 . 0 0 0 0 0}\)
\(\frac{A B}{A C}=2.5 \quad \frac{A B}{B C}=1.666667 \quad \frac{A C}{A B}=0.4 \quad \frac{A C}{A B}=0.4 \quad \frac{A C}{B C}=0.666667 \quad \frac{B C}{A C}=1.5 \quad A C \cdot B C=96\)

All of the places, his arithmetic told him, were in the home of \(C\), except one. This last result troubled Hominid. 96 could not possibly be in the home of \(C\). What is the meaning of this? He began to wonder about the future home of \(C\) and about things \(C\) could never see.

One day, Hominid wanted \(C\) to be more like him, and ponder the sky dome and so, he noted it as the following.

Then Hominid began to wonder, again, what would there be to ponder in CD, in itself, by itself? How would one clime up to heaven, to \(D\) to learn?


\footnotetext{
\(\mathrm{C}=6.00000\)
B \(=\mathbf{2 0 . 0 0 0 0 0}\)
}


Hominid built \(C\) ladders up into heaven to \(\mathbf{D}\) and over time, he learnt from his arithmetic and his stick, his shelter, its occupant.
\(\mathbf{C D}:=\sqrt{\mathbf{A C} \cdot \mathbf{B C}}\)
\(\mathrm{AD}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CD}^{2}} \quad \mathrm{BD}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CD}^{2}}\)

\(\mathrm{B}=3.00000\)
C \(=\mathbf{2 0 . 0 0 0 0 0}\)
\(\frac{C D^{2}}{A C}-B C=0 \quad \frac{C D^{2}}{B C}-A C=0\)
\(\frac{A D^{2}}{A C}-A B=0 \quad \frac{B D^{2}}{B C}-A B=0\)
And so on. As the number of things which Homid learnt grew, Homid thought that it was time that \(C\) had a basement to put all of his stuff in, the home was getting crowded, which to him was an odd thing to think, as crowd simply means to group into one with the added connotation, a bit much for one place. But, he built his basement anyway.
For a long time Homid and his little man played with all the toys they had found together in the room in his mind using a simple stick

\(\sim_{n}^{0}\) Nh?
In our little story, Hominid start
pondering this issue, which will
eventually lead to the following.



First and second basement archives. Here, \(X\) is fixed midpoint. The finishing touch, is in the next plate, to move it and learn the final ratio's.



Final basement archive.
In the above, the aviary, exponential manipuloation and how to locate any bird in the sky has to be incorporated. This story might take some time.

One has to add in induction and deduction, in Hominid's home and how he goes beyond it.

This last plate demonstrates the whole of matematics in a single unit. All the simple relationships formed by it. It all resolves down to simple arithmetic.

Induction and deduction in every grammar system does not change the fact that recursion can never change simple arithmetic or binary progression. The Holy Grail has always been the image of 1 .

Nothing like a single equation for the whole of grammar.
\(\mathrm{xy}=0.10504\)
\(\mathrm{w}=2.10088\)
\(\mathrm{x}=20.00000\)
Unit \(=1.00000\)
\(\mathrm{XY}=0.83333\)
\(\mathrm{Y}=5.00000\)
\(\mathrm{Y}=6.000000\)
\(\mathrm{Z}=6.00000\)
\(\mathbf{z}=6.0000\)
\(\mathrm{XY}=0.85885\) \(\mathrm{w}=17.17695\) \(\mathrm{X}=20.00000\)
Unit \(=1.00000\)
XY \(=0.83333\)
\(\mathrm{Y}=5.00000\)
\(z=6.00000\)

\[
\frac{\sqrt{w}}{\sqrt{\mathrm{X}-\mathrm{w}}} \cdot \frac{\mathrm{z}}{\mathrm{Y}}-\mathrm{b}=0.00000
\]




Given.
\(\mathrm{N}_{\mathbf{1}}\) := 4.55192 \(\mathbf{N}_{\mathbf{2}}\) := \(\mathbf{2 . 6 3 1 8 7}\)
110194C
Descriptions.

Maybe I am remembering badly, but there was something about trying to find a way to construct duplicate ratios? How hard can it be? one can find duplicate ratios on any segment given any point, two of them in fact.

I do not think I need to keep writing the figure up, but maybe later.

\section*{Duplicate Ratios}

\section*{Procrastinated write-up?}
\(\mathrm{A}=0.00000\) \(A B=0.20070\) \(A C=0.51326\) \(A D=0.81848\) \(\mathrm{AE}=1.00000\) BC \(=0.31255\) CE = 0.48674 CD \(=0.30523\) \(\mathrm{DE}=0.18152\)
\(\sqrt{\text { AB.CE }}-\mathrm{BC}=0.00000\) \(\sqrt{\text { AC.DE-CD }}=0.00000\)



042296B

Unit. Given

\section*{Definitions.}

\section*{Place EF and GH and find JK}

I do not think I have drawn this figure correctly since the first time \(I\) drew it. Every write up of it after the drawing has been in error. I may get around to writing it up now that I disected and redrew it correctly.

H


Imagine a cylinder about the axis CF. The area of the circular ribbon GI is always equal to the area of the circle HL cut by the cone CDF. Galileo uses this to "prove" that a point is equal to a circle He will first states that the volume of the cone, CDE is equal to volume of the bowl ADF. Because they both degenerate, one to a point, \(C\), the other to a circle with radius \(A C\), the point must be equa to the circle. He further states, since this is the case, all circles are equal to each other.
"Now, since as these solids diminish equality is maintained between them up to the very last we are justified in saying that, at the extreme and final end of this diminution, they are still equal and that one is not infinitely greater than the other. It appears therefore that we may equate the circumference of a large circle to a single point. And this which is true of the solids is true also of the surfaces"

Galileo took this example from "twelfth proposition of the second book of De centro gravitatis solidorem by the Archimedes of our age, Luca Valerio."


I will completely agree with his analysis, providing that he does not change the subject. They are both still equal in volume, in his original statement, or area in his proof, which is 0 . He does not see what he has done, he has in fact exonerated Euclid. The boundary is not part of the figure. By the ooks of the text, Galileo was completely awestruck by this simple little miracle. Galileo was not the first to change coordinate systems of reference to make it appear that he won a bad argument. Plato used it to stun many audiences in his dialogues. Einstein used it to bend space. Galileo still had a "ball bearing" metaphor for geometry.

\section*{+ \$ \# The Non-Euclidean Critique}
1. I have often observed the wonder that the sum of angles in a triangle is equal to \(180^{\circ}\) as if it were some big mystery. Have they not read Euclid? Do they not understand? Perhaps if we restate the observation as "The sum of angles in a triangle is equal to one half the angle of a circle, what would be said? Whatever is done to the triangle, must now be done to the circle!
2. Since the three terms of every triangle lie on the circumference of a circle, the angles all cut off a portion of that circumference. When one thinks of a triangle, they should automatically call to mind the circle.
3.


Since the angle at the circumference of a circle is one half the angle described from the center of the circle then the total angularity of the triangle is one half that of the circle. It does not matter what it is measured by. Where is the mystery in simply dividing a thing in half? In other words, if one look at a circle as angle, then one must see the triangle as half a circle.
4. Now let someone claim that they have a triangle with a different sum of angles, and I now ask, show me its double. Some quick minded individuals would soon realize that the claimed geometry is now also bereft of a circle. And if the simple arc is missing, so too must any claim of the more complex. As " 4 " does not precede " 2, " a complex arc does not precede the circle. The relationship is symmetrical, show me the symmetry in any other claim.
5. And as far as parallel lines, that is incredibly simple. A plane is a two relation. Being a two relation, concepts must be predicated deductively from a binary set (study Aristotle.) If I deny one relation as a premise, no grammatical manipulation can possible reinstate it. In other words, given two one-relation propositions in a two-relation, one can predicate between these one-relation propositions the second relation or not (there ain't no middle!) If I predicate the second relation, the predicate is called "angle," if I do not, "not-angle," I have predicated the first or parallel. If I premise the

\footnotetext{
+ A:009
\$ NONEUCLID
\# NONEUCLID
}
second, the binary set still has the first to be predicated, and vice versâ. Boole did not invent binary logic.

Given a straight line divided into unequal parts which bear to each other any ratio whatever, to describe a circle such that two straight lines drawn from the ends of the given line to any point on the circumference will bear to each other the same ratio as the two parts of the given line, thus making those lines which are drawn
from the same terminal points homologous.

\[
\begin{aligned}
& \mathrm{AB}:=100 \quad \mathrm{CB}:=\frac{\mathrm{AB}}{2 \cdot 2} \quad \mathrm{CB}<\frac{\mathrm{AB}}{2}=1 \\
& \mathrm{AC}:=\mathrm{AB}-\mathrm{CB} \quad \mathrm{CD}:=\mathrm{CB} \\
& \mathrm{AD}:=\sqrt{\mathrm{AC}^{2}-\mathrm{CD}^{2}} \\
& \mathrm{BE}:=\frac{\mathrm{CD} \cdot \mathrm{AB}}{\mathrm{AD}} \quad \mathrm{AE}:=\frac{\mathrm{AC} \cdot \mathrm{AB}}{\mathrm{AD}} \\
& \mathrm{AF}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AD}} \quad \mathrm{FE}:=\frac{\mathrm{CD} \cdot \mathrm{AF}}{\mathrm{AC}}
\end{aligned}
\]
\(\mathrm{FC}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{FE}=\mathrm{FC}=0\)
\(\mathrm{FE}=\mathrm{FC}=0 \quad \mathrm{FE}=\mathrm{AF}-\mathrm{AC}=0 \quad \mathrm{FE}=\mathrm{AC} \cdot \frac{\mathrm{AE}}{\mathrm{AD}}-\mathrm{AC}=\left(\mathrm{FE}=\mathrm{AC}^{2} \cdot \frac{\mathrm{AB}}{\mathrm{AD}^{2}}-\mathrm{AC}=0\right.\)
\(\mathrm{FE}=-\mathrm{AC} \cdot \frac{\left(\mathrm{AC} \cdot \mathrm{AB}-\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)}{\left(-\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)}=\mathrm{FE}=-\mathrm{AC} \cdot \frac{\left(\mathrm{AC} \cdot \mathrm{AB}-\mathrm{AC}^{2}+\mathrm{CB}^{2}\right)}{\left(-\mathrm{AC}^{2}+\mathrm{CB}^{2}\right)}=\mathrm{FE}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=0\)
\(\mathrm{CD} \cdot \frac{\mathrm{AF}}{\mathrm{AC}}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=0 \mathrm{CD} \cdot \frac{\mathrm{AE}}{\mathrm{AD}}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=0 \mathrm{CD} \cdot \mathrm{AC} \cdot \frac{\mathrm{AB}}{\mathrm{AD}^{2}}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1\)
\(\mathrm{CD} \cdot \mathrm{AC} \cdot \frac{\mathrm{AB}}{\left(\mathrm{AC}^{2}-\mathrm{CD}^{2}\right)}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1 \quad \mathrm{CB} \cdot \mathrm{AC} \cdot \frac{\mathrm{AB}}{\left(\mathrm{AC}^{2}-\mathrm{CB}^{2}\right)}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1\)
\(\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1\)

\[
\begin{aligned}
& \frac{\mathrm{AC}}{\mathrm{CB}}=\frac{\mathrm{AE}}{\mathrm{BE}}=0 \frac{\mathrm{AE}}{\mathrm{BE}}=\mathrm{AC} \cdot \frac{\mathrm{AB}}{(\mathrm{AD} \cdot \mathrm{BE})}=0 \\
& \mathrm{AC} \cdot \frac{\mathrm{AB}}{(\mathrm{AD} \cdot \mathrm{BE})}=\frac{\mathrm{AC}}{\mathrm{CD}}=1 \frac{\mathrm{AC}}{\mathrm{CD}}=\frac{\mathrm{AC}}{\mathrm{CB}}=1
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{CG}:=2 \cdot \mathrm{FC} \quad \mathrm{CX}:=\frac{\mathrm{CG}}{.3} \mathrm{GX}:=\mathrm{CG}-\mathrm{CX} \\
& \mathrm{XY}:=\sqrt{\mathrm{GX} \cdot \mathrm{CX}} \quad \mathrm{AX}:=\mathrm{AC}+\mathrm{CX} \\
& \mathrm{BX}:=\mathrm{CX}-\mathrm{CB} \quad \mathrm{AY}:=\sqrt{\mathrm{AX}^{2}+\mathrm{XY}^{2}} \\
& \mathrm{BY}:=\sqrt{\mathrm{BX}+\mathrm{XY}^{2}} \\
& \frac{\mathrm{AC}}{\mathrm{CB}}=\frac{\mathrm{AY}}{\mathrm{BY}}=0
\end{aligned}
\]


082197
In my files \(I\) have the following plate, from what book I do not recall, however, the figure as it was written up there was listed as a "special case," of what I do not recall either. But I want to write it up because it is not a special case of anything, it is actually a plate showing that one can treat every triangle as an eight circle problem, simply add the remaining two sides by recursion of the first. I suspect now that if someone thought this was a special case of something, then they did not comprehend the actual relationships, they are easily found by compass.
The project would start with the equations from 062793 and 040694 . So, this is a project \(I\) am interested in doing and have been for a long time. I might even find the book it came from. Might be interesting to find the equations for all eight circles. Maybe some day.


\section*{Eight Circles and a Forgotten Book.}

The book is Computing in Euclidean Geometry Du and Hwang.
Steiner Point

\section*{082297}

\section*{Descriptions.}

Definitions.


Steiner point solution (a) page 361 Computing in Euclidean Geometry Du and Hwang 1985
D.

\({ }^{\text {E }}\)


F


100299

Enough here to keep one busy for a while.
The Circle and Segment, which if one can see it is fundamental to Jacob's Ladder which I use for BAM and BAG. They represent induction and deduction, arithmetic and geometric processing. This is why so many of my plates use it.

Again we see that trisection is directly related to square roots. However, there is just a lot of beauty seeing all of the interactions in the figure.
\(A B=5.42961 \mathrm{~cm}\) \(A C=9.87931 \mathrm{~cm}\) \(A D=17.97565 \mathrm{~cm}\) \(\sqrt{\mathrm{AB} \cdot \mathrm{AD}}-\mathrm{AC}=0.00000 \mathrm{~cm}\) \(\mathrm{m} \angle \mathrm{DJB}=90.00000^{\circ}\) \(\mathbf{m} \angle \mathrm{KJL}=30.00000^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{DJB}}{\mathrm{m} \angle \mathrm{KJL}}=\mathbf{3 . 0 0 0 0 0}\) \(\overline{\mathrm{m} \angle \mathrm{KJL}}=3.00000\) \(\mathrm{m} \angle \mathrm{JBH}=68.31951^{\circ}\) \(\mathrm{m} \angle \mathrm{JBE}=22.77317^{\circ}\) \(\mathrm{m} \angle \mathrm{EBG}=22.77317^{\circ}\) \(\mathrm{m} \angle \mathrm{GBH}=22.77317^{\circ}\) m \(\angle \mathrm{JBH}\) \(\overline{\mathrm{m} \angle \mathrm{JBE}}=3.00000\) \(\mathrm{m} \angle \mathrm{JDH}=21.68049^{\circ}\) \(\mathrm{m} \angle \mathrm{JDF}=7.22683^{\circ}\) m \(\angle\) FDG \(=7.22683^{\circ}\) m \(\angle\) GDH \(=7.22683^{\circ}\) m \(\angle\) JDH \(\overline{\mathrm{m} \angle \mathrm{JDF}}=3.00000\) Animate Point

\(C^{\circ} \mathrm{M} \times \mathrm{S}_{3}\)
100499 \(\mathrm{m} \angle \mathrm{KGI}=22.13966^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{KGB}}{\mathrm{m} \angle \mathrm{KGI}}=\mathbf{3 . 0 0 0 0 0}\) \(\mathrm{m} \angle \mathrm{KGI}\) \(\mathrm{m} \angle \mathrm{LMN}=60.00000^{\circ}\)
\(\mathrm{m} \angle \mathrm{MNL}=60.00000^{\circ}\) \(\mathrm{m} \angle \mathrm{NLM}=60.00000^{\circ}\) \(\mathrm{m} \angle \mathrm{PC} 1=66.41899^{\circ}\) \(\mathrm{m} \angle \mathrm{PCQ}=22.13966^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{PC} 1}{\mathrm{~m} \angle \mathrm{PCQ}}=\mathbf{3 . 0 0 0 0 0}\)
\(\mathrm{m} \angle \mathrm{PH} 1=23.58101^{\circ}\) \(\mathrm{m} \angle \mathrm{PHL}=7.86034^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{PH} 1}{\mathrm{~m} \angle \mathrm{PHL}}=3.00000\)

Area \(\odot\) CF \(=50.70109 \mathbf{c m}^{2}\) Area \(\odot \mathbf{G B}=\mathbf{5 0 . 7 0 1 0 9} \mathrm{cm}^{2}\) \(\mathbf{m} \angle \mathbf{R S T}=\mathbf{5 7 . 1 1 7 3 2}{ }^{\circ}\)

Parcing project

\(100799\)




Descriptions.

\section*{Definitions.}

\[
\begin{array}{cl}
\mathrm{m} \angle \mathrm{FAC}=45.429^{\circ} & \mathrm{m} \angle \mathrm{OIP}=45.429^{\circ} \\
\mathrm{m} \angle \mathrm{FAJ}=29.489^{\circ} & \mathrm{m} \angle \mathrm{OIQ}=14.744^{\circ} \\
\frac{\mathrm{m} \angle \mathrm{FAC}}{\mathrm{~m} \angle \mathrm{FAJ}}=1.541 & \frac{\mathrm{~m} \angle \mathrm{OIP}}{\mathrm{~m} \angle \mathrm{OIQ}}=3.081 \\
\frac{\mathrm{~m} \angle \mathrm{FAJ}}{\mathrm{~m} \angle \mathrm{OIQ}}=2.000
\end{array}
\]



\section*{Trisection by Pole}

Descriptions.
Definitions.




\section*{Parcing project 100402}

\section*{Unit.} Given.

Descriptions.
Definitions.



\section*{Adding 042398}


Plate C

Unit \(=1.00000\) \(\mathrm{XY}=0.55000\) \(\mathrm{X}=11.00000\) \(\mathrm{Y}=\mathbf{2 0 . 0 0 0 0 0}\)
\(\mathrm{m} \angle \mathrm{NFQ}=47.88604^{\circ}\) \(\mathrm{m} \angle \mathrm{NFO}=15.96201^{\circ}\) \(\mathrm{m} \angle \mathrm{OFP}=15.96201^{\circ}\) \(\mathrm{m} \angle \mathrm{OFP}=15.96201^{\circ}\)
\(\mathrm{m} \angle \mathrm{PFQ}=15.96201^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{NFQ}}{\mathrm{m} \angle \mathrm{NFO}}=3.00000\)
\(\mathrm{m} \angle \mathrm{HRJ}=143.65813^{\circ}\) \(\mathrm{m} \angle \mathrm{HRS}=47.88604^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{HRJ}}{\mathrm{m} \angle \mathrm{HRS}}=3.00000\) \(\mathrm{m} \angle \mathrm{HRJ}\) \(\frac{\mathrm{m} \angle \mathrm{HRJ}}{\mathrm{m} \angle \mathrm{NFO}}=\mathbf{9 . 0 0 0 0 0}\)
\(\overbrace{n}^{\infty}\)
Unit. Given.

Descriptions.
Definitions.

\section*{Parcing project 101402}

Square, rectangle and complements.


\(B K F=0.590\) in.
\(B N B L=0.590 \mathrm{in}\).
c
S
\(\mathrm{m} \angle \mathrm{FGH}=40.950^{\circ}\)
\(\mathrm{m} \angle \mathrm{NLR}=13.650^{\circ}\) \(\frac{\mathrm{m} \angle \mathrm{FGH}}{\mathrm{m} \angle \mathrm{NLR}}=3.000\) K
\(\mathrm{m} \angle \mathrm{AELR}=81.900^{\circ}\)
\(\mathrm{m} \angle \mathrm{FGH}=40.950^{\circ}\)
\(\frac{\mathrm{m} \angle \mathrm{AELR}}{\mathrm{m} \angle \mathrm{FGH}}=\mathbf{2 . 0 0 0}\)
\(\mathrm{m} \angle \mathrm{ELF}=40.950^{\circ}\)

\section*{Parcing project for 111402}

Descriptions.
Definitions.
\(\mathrm{AB}=2.50850 \mathrm{~cm}\)
\(\mathrm{AC}=10.90083 \mathrm{~cm}\)
\(\mathrm{AD}=5.22922 \mathrm{~cm}\)
\(\sqrt{\mathrm{AB} \cdot \mathrm{AC}}-\mathrm{AD}=0.00000 \mathrm{~cm}\)
B

Plate 1

\section*{Parcing project for 111402}

Descriptions.
Definitions.
\(\mathrm{AB}=2.50850 \mathrm{~cm}\)
\(\mathrm{AC}=10.90083 \mathrm{~cm}\)
\(\mathrm{AD}=5.22922 \mathrm{~cm}\)
\(\sqrt{\mathrm{AB} \cdot \mathrm{AC}}-\mathrm{AD}=0.00000 \mathrm{~cm}\)
B

Plate 1


Unit. \(A B:=1\)

\section*{Four Siblings Plate D}

Given.
\(\mathrm{X}:=11\)
\(\mathbf{Y}:=17\)

\section*{Not done, in process}

Error in figure, not correct \(E\) and \(F\) do not terminate at \(D\).

\section*{Descriptions.}
\(\mathbf{A C}:=\mathbf{2} \cdot \mathbf{A B} \quad \mathbf{A X}:=\mathbf{A C} \cdot \frac{\mathbf{X}}{\mathbf{Y}} \quad \mathbf{B X}:=\mathbf{A X}-\mathbf{A B} \quad \mathbf{E X}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B X}^{2}}\)
\(\mathbf{G X}:=\frac{\mathbf{B X}^{2}}{\mathbf{E X}} \quad \mathbf{E G}:=\mathbf{E X}-\mathbf{G X} \quad \mathbf{D E}:=2 \cdot \mathbf{E G} \quad \mathbf{B F}:=\sqrt{\mathbf{3}}\)
\(\mathbf{E F}:=\mathbf{B F}-\mathbf{A B} \quad \mathbf{D X}:=\mathbf{D E}-\mathbf{E X} \quad \mathbf{E N}:=\mathbf{E X} \cdot \frac{\mathbf{E F}}{\mathbf{A B}} \quad \mathbf{D R}:=\mathbf{A B} \cdot \frac{\mathbf{D X}}{\mathbf{E X}}\)
\(\mathbf{B R}:=\sqrt{\mathbf{A B}^{2}-\mathbf{D R}^{2}} \quad \mathbf{B H}:=\mathbf{B R} \cdot \frac{\mathbf{B F}}{\mathbf{B F}+\mathbf{D R}} \quad \mathbf{H X}:=\mathbf{B H}-\mathbf{B X}\)
\(\mathbf{R X}:=\mathbf{B R}-\mathbf{B X} \quad \mathbf{H R}:=\mathbf{B R}-\mathbf{B H} \quad \mathbf{J H}:=\mathbf{D R} \cdot \frac{\mathbf{H X}}{\mathbf{R X}} \quad \mathbf{J H}=\mathbf{0 . 2 3 9 2 2 5}\)


\section*{Definitions.}
\(\cos ^{\circ} \mathrm{Mas}=\)
Descriptions.
Definitions.

\title{
Parcing project for 031605
}


N N-N

\section*{Parcing project for \(\mathbf{0 3 1 7 0 5}\)}

Descriptions
Definitions.


Descriptions.
Definitions.

\section*{Parcing project for 032405}

032405a.gsp

~~NOM,
Descriptions.
Definitions.

\section*{Procrastinated Writeup for 110705}

And by looking at it, maybe another twenty years it get done.


110706 Sketchbook D
Descriptions.
Definitions.


CNOC
110706 Sketchbook B

\section*{Descriptions.}

Definitions.

From any point B construct a tangent to any ellipse (red).


Coser 110706 Sketchbook C

\section*{Descriptions.}

Definitions.


CNOC
110706 Sketchbook E
Descriptions.
Definitions.

\(\sim_{n=2}^{0}\)
Descriptions. Definitions.

Unit.
Given.

\section*{Parcing project for 062507}

This is the second plate on the web I found for tangents, and it is quite good.


I did find a cleaner plate for 10706 here
I call it the inverse ellipse method. I should at least example the stps in construction.



Descriptions.
Definitions.

Unit. Given.

\section*{Parcing project for 072707}
rea \(\triangle \mathrm{ABC}=6.89734 \mathrm{~cm}^{2}\) Area \(\triangle D E F=9.76888 \mathrm{~cm}^{2}\) \(\frac{(\text { Area } \triangle \mathrm{DEF})}{(\text { Area } \triangle \mathrm{ABC})}=1.41633\) \(\frac{\mathrm{AB}}{\mathrm{BG}}=2.41633\)


A series of plates exploring the relationship between an angle common to two figures which maintain a constant ratio in area.



\section*{The Attic Files}

My Logo is called John 312, which is a line count for each figure, it is also a reference in
 the Book. This might seem arrogant, however, I am alive today because of what some may call a miracle: I view this miracle as other worldly intervention. During my life time something has had an interest in me, which appears to have disappeared a long time ago when I finally understood why. Once I was on track, I have been apparently left to my own devices. I was asked to express the evolution of the mind of man, an evolution which is based on a Universal called Language, which cannot be seen or taught, it is an intelligible. Language is Universal and Intelligible. Intelligence along uses the paradigm of Language to construct Grammar. As Language is the Universal Intelligible of a Binary, which is the definition of any and every thing, it produces exactly four categories of Grammar. Currently the human race is illiterate, and tosses words around without any knowledge of order or their foundation. Mankind, like every madman, is elevated in its own eyes, when in fact, we are still fools. It is the manipulation of memory which helps bring us back to reality, not the burning fires of hallucinating dribble with pasted together words. This is why I have my own intelligible attic. Perception determines conception, conception determines will. We learn from reality to make real things. A sane person does not go about dribbling words like theory of this or that. As Plato said, we can only name the parts of things which means there is not one damned theoretical part of that at all. We can either effect and learn binary recursion, or we can spout gibberish calling it science with all of its hilariously ridiculous jargon and factual gibberish.

The attic is where old and sometimes young people put things in storage. This is a collection of such things, the evolution of the Delian Quest and the foundation of my other works in geometry such as Basic Analog Mathematics and the BAM Sample Dictionary. There are things I may want to take out of this storage and rework for the Delian Quest, and I may want to meditate on figures here and see things I should write-up. I may seem to be slow with this work, however, it is by far not the only work I do as a search for me under johnclark8659 or Phil8659 on the Internet Archive will show.

As far as my logo goes, a truck driver once called it the Happy Campers, John, the fire and a mythical Lady of the Lotus. I have always imagined that this mystical LOL would be the love of my life. I never met her, which means that I am not, at least yet, a happy camper.

Part of this work has been previously published in some shareware circles using, Replica and then Envoy. Neither kept pace with me. I was hoping that someone would give me some feedback, perhaps a figure or two to help educate me. In the years it has been out there, not so much as a peep. It was labeled "Meditations," but it is actually an illustrated work of fiction. The main characters are One Circle, One Square, and One Line. The consultant to the trio is a psychologist called E. Algebra. From time to time the trio would collar me and inform me of their progress, what I remember I have recorded. I enjoyed the stories of this trio, mainly because I had never heard them before.

\section*{Contents}

1989 The Delian Solution: Sometime before this I had made my mind up that I needed another long term goal. Finding the solution to the Delian problem seem to fill the bill, how much longer can one get than the impossible? Not only is the problem considered impossible, but I know spit about Geometry. But here I was a little arrogant, as I had solved a couple of problems before considered impossible. I have learned though that it is sometimes not the answer that is impossible, but that the ears to hear the answer are plugged. This plug is often a guardian, an astute guardian wary of who passes by and stopping any alleged intruder.

I wrote this green little paper when I found something I had not seen before, which is not saying much. It was originally hand typed, hand drawn, copied and sent out and it returned again to me. My next phase was "big" drawings which, considering mercy, I present none.

06_20_92 A Triplicate Ratio: It was some time before I acquired a computer system to write in. And some time before I acquired a good drawing program. And some time before I was offered Mathcad to explore figures with. This paper was written up in Word for Windows.

08_12_92 Cubing a Sphere, a Rusty Construction: I had originally done this prior to the 1989 paper and worked it with a hand calculator.

01_08_93 Pythagoras Revisited: I have not yet acquired my math program, but I did write a macro for Word that sent parameters to QBasic and QBasic passed answers back to Word.

I would have thought that by now, the Pythagorean Theorem would have been stated in it's generalization for all triangles. I have never seen it's generalization, so I wrote one.

04_19_93 Not knowing how to solve the figure, or of all the richness that the figure contained, time and time again I will attempt Euclidean calculus.

05_21_93
Personal insights on the need to understand thinking in general.

06_03_93 Exploring the properties of the curve CJ: I had gone through several figures to estimate the solution, many of them did not include graphics. I had a time with graphics. Some methods were completely unacceptable. I finally settled on a little translator for Word to get them into Mathcad while I drew them in Tommy, which I still do. It is still the best way. I had tried to generalize this figure, but I did not know just what I was looking for and at this time abandoned it's generalization.

06_07_93 For All Triangles Find DC:
06_09_93 Actually I wrote this file just to test out if I could write an acceptable Euclidean logical filter. I had no idea that Descartes presented the same idea in the most obscure way that he could.

06_21_93 A Pyramid of Ratios. I started this series because once looking at the figure, I could see the pattern of ratios. In most of this series I did not use the symbolic processor to find the equation, as it seemed fairly outright. Once I started using it, though, I was hooked.

06_23_93 I am just exploring the figure.
06_27_C3 Inscribe a Circle about a Triangle. I wanted to find the formula for the fun of it.

07_01_93 Just exploring.
07_10_93 From Maxima andMinima: Just anotherguesstimate.
07_15_93 Another Pyramid of Ratios:
07_17_93 Pyramid of Ratios III:

07_18_E3 The Pythagorean Completion: This is actually a remake of Pythagoras Revisited. I have nothing against Heron's formula for finding the area of a triangle given just the length of the three sides, except I have never seen it solely in terms of the givens. I just cannot understand that formula. If a thing is solved, the solution is presented only in the terms of the givens.

07_25_93 Pyramid of Ratio Series IV Working the Curve: These series come out so simple and nice. If they were complicated I could not do them.

11_06_93 Gruntwork I on the Delian Solution: From time to time, I will log constants of the figure. Somewhere along the line, I will stop using the title Gruntwork.

11_09_93 Solve for Cube Placement: I have never seen any exponential problems in Euclidean geometry but I have not seen much Euclidean Geometry. The books I buy hoping to find something are very naïve. I will write a few problems on exponentiation and present the solutions.

11_10_E3 Gruntwork II on the Delian Solution.
11_11_B3 The Archamedian Paper Trisector: I have seen a simple proof of the figure using trigonometry, but I hate trig. I will use trig about one time in the future to set sample points. If I get the ambition I will rewrite it out of that paper.

11_12_93 To Square A Circle: Sometime in 1992, I remembered reading that some guy spent some time in prison and learned the process for squaring a circle off the base of a right triangle but then history lost it again, so I set out to find it and did. Finding it would bring back some productivity to a prison term. It is so simple, I am amazed that it was never rediscovered.

11_18_93 One of the methods for projecting to the similarity point for a cube relationship with a given.

11_22_93 Using iteration to perform cube root abstraction. Not as good as 96 process.
11_24_93 POR Series IV Figure: Generalization of the Series IV figure.
11_25_93 Using iteration to trisect any given angle.
11_29_93 Exploring.
11_29_A3 Ditto.
12_02_93 POR Roots and Powers.
12_04_B3 Two Prime Exponential Series.
12_06_93 Alternate methods; Square Root. Actually I write up several ways to do a square root.

12_07_93 This was also in the 89 document.
12_07_B3 Exploring the ratio of squares.
12_11_93 Logging some constants.
12_12_93 The Square Root
12_12_B3 The Square Root figure generalized.
12_16_93 Euclidean Exponential Series. After 48 pages of sieve work I figure out the exponential series. Of course it was embarrassing to look at.

04_06_B4 Inscribing a Circle in a given Triangle: I thought that since I did one on the outside, I may as well do one on the inside.

04_21_B4 The Cradle: Exploring a similarity point.
04_26_94 Tangents and Similarity Points: I just like figuring them out.
04_27_94 The Chordal or Power Line of two Circles: I got the idea from a book.
04_28_B4 Power Point: Another idea from a book.
04_30_94 Division, A \({ }^{2}\) :
05_01_94 Two Circles and a Parallel: My answer to "Two Men and a Baby."
05_04_94 Two Circles, given a tangent on one.
05_06_F4 Research on trisection.

05_07_94 Research on trisection.
05_16_94 Just some circles:

05_23_94 Looking at a graph. There are some who think that if an answer is given in an arithmetic range that it is not good, however since arithmetic is a logical system naming the same thing the Algebra and Geometry does it often indicates that one can reduce the process to a very nice Algebraic formula.

07_26_94 A fair pencil construction.

07_27_B4 Ditto:

07_30_94 Just another fair Pencil Construction for Cube.

10_27_94 Trivial method for doing Square Roots.
10_28_94 Ditto

10_31_94 Given AB \& BE, divide BE such that. .

11_01_94 Cube problem and solution.
11_04_94 Ditto.

11_17_94 Looking at a relationship.

12_24_94 Power Line At square Root.

12_25_94 Two prime exponential series developed through power line progression.

12_26_94 Logging a constant.

01_06_95 Alternate method for Quad Roots:

01_12_95 Archamedian Trisection Revisited: This is still in work, but it looks promising.
03_28_95 Exploring the cube: I should call this the gas gauge.
04_01_95 Exponential Progressions. One can take any ratio and raise it to any whole power. An arithmetician would say "number" to any whole power.

04_12_95 English. I finally put this file in it's own directory. It had been kicked around a lot. It has seen some versions of Word. Basically it's an explanation of why I have never passed an English class. One would assume that since all of our languages are logic systems, English grammar would have come out of the closet.

04_22_95 About the Laws of Exponents and Ratios:
04_24_95 Unit and Universe, induction and deduction.
09_13_95 A Study in Placement. One of my fellow workers had a problem his daughter brought home from a trig class, about the height of a ball on some contraption. Asked me if I could solve it. I hate trig, I gave him the solution using Euclidean Geometry. He assured me my answer was wrong, until his daughter corrected him. Perhaps this figure is a hangover from that?

10_14_95 Trivial Method: Square Root:
10_20_95 Given AB and BD divide BD such that...
11_01_95 A Modification of a Square Root Figure, Gemini Roots: Well I do not know what else to call them, after all I don't know spit about plane geometry.

11_05_95 Short Method Gemini Roots.
12_01_95 Method for Equals. Just some circles.
12_07_95 Euler's Line: Scholia. If we tag someone's name onto every little thing done, why we would be walking phone books. I'm still trying to find the biography on the guy called Irrational.

12_16_95 Descartes gave a fragment of a figure, I thought I would develop it. When viewing one of his works, I get the impression that he was mechanically inclined.

12_18_95 Another piece of scholia on Descartes. I don't have much in the way of geometry books to learn from. This one soon leaves me in the dust with conic sections. I keep hoping to find some books on construction.

12_20_95 Just for fun.
12_21_95 Pascal's triangle with exponential division.

12_21_B5 Dividing an exponentiated integer by an exponentiated integer of the same power. (And some other goodies.)

12_29_95 Given AC and CD find BC when \(\mathrm{BC}=.\). .

01_04_96 The Archamedian Paper Trisector Without the Numbers. This paper is a clue to logical processes that far transcend any ability to proof them with arithmetic. They rely solely upon some notions of set theory.

01_07_96 A rusty Compass construction for the duplication of the cube.
01_08_96 Alternate Method, Power Line.
01_08_B6 Looking at some ratios.
01_09_96 The Algebraist. A Word essay.
01_10_96 To Prove and not to Proof? A Word essay.
01_11_96 On Logic Systems: I thought that this year I would attempt some essays before I forget all that I am thinking.

01_11_M6 Just exploring.
01_13_96 Pyramid of Rations, Moving the Point: Thought I was done with these? I do one when I get too bored with myself.

01_14_96 Looking at the equation. Some algebraist forget themselves and believe that they are arithmeticians. I suppose if cars could think some Cads would think they are roller blades.

01_15_96 Just exploring.
01_16_96 Looking at some more ratios.
01_17_96 A right angle duplication of a linear ratio.
01_17_B6 Dividing a right triangle in a given linear ratio to a similarity point.
01_18_96 I'm getting around to trying to generalize the curve CJ.

01_21_96 Just exploring.
01_22_96 Trivial Method: Square Root.
01_25_A6 Projecting to the point of cube root similarity.
01_29_96 Linear division...
01_31_96 Hitting JG from anyBN.
02_02_96 Given BF and BC such that...
02_04_96 Psychology: A personal hypothesis. There are so many so called head workers that are not satisfied unless they can type you from a book. The "you too!" syndrome.

02_11_96 The Trinity: a brief manifesto: I always did like that word, but could not find one for me, so I wrote one.

02_14_96 Use iteration to find any Gemini roots. Since the Delian Problem was stated in the material, I find this figure acceptable.

02_24_96 Making the Point: Word essay.
03_01_96 Does every \(\mathrm{n}^{\text {th }}\) root series have at least one square root pair? I don't know if there is a point to being so obvious, but it works some times. Ask a college freshman if they can multiply a cup by a cup watch the general confusion.

04_14_96 Method for Unequals: I had this sketched out in 95, but if I put it back there, I would have a bunch of links to redo in this document.

\section*{04_15_96 On Gemini Roots:}

04_16_96 Given three radii, AO > BG + EH, place them such that two by two they are tangent and find the fourth, AX, such that AX is tangented and AO.

04_17_96 Given a point of tangency, draw a circle in a crescent tangent to the other side.
04_22_96 PlaceEF andGH and findJK.
04_23_96 Does CF always equal EP?
One Line
And the Delian Quest


1989
1989

This was originally type written and hand drawn figures. I ran copies off to send out into a non receptive world. I did not blush at my own ignorance.

\section*{\(\square\) THE DELIAN SOLUTION}

I do not view the Delian Problem in the traditional sense, that is as the problem of duplicating a cube. I view the problem of duplication as only one application for a Geometric process of general cube root abstraction. Truisms and processes are there to be discovered, if they are at all possible, it is possible to discover them. The Delian Problem is, for the correct Geometric figure, just one application of that figure. But then I am not a Geometer. In fact I dropped out of College to work on some items that I think are of particular importance, and tracing down the solution of the Delian Problem was just an example of some of the researches for that work. I have not even studied much of applied Geometry, I have been working on the theoretical aspects of it. Therefor this is an amateurs presentation and is not anything resembling a "finished" demonstration. The preceding figures are, however, technically correct abstractions.

While doing my first once over of the Elements, I found the propositions in Book 2 relating to the equality of complements. It occurred to me that since this was the correct method in which to manipulate area, an extension of it could be used to manipulate volume. This proved, after much searching, to be true. An extension of the figure can be used to abstract cube roots as well.

To cube a three dimensional rectilineal figure one has to start with the concepts of area manipulation on the two dimensional level. Starting with the rectangle in plate 1, one can see step by step, through plate 4, how to manipulate the figure while retaining the same area. If you study the Elements you will find a more complete set of abstracts to learn from. The method of squaring two sides is an abstract from this method.


Plate 1

Plate 3



Plate 2


Plate 4

The question becomes- "Can the figure be extended to work with three sides and retain the same volume?"

I will take a short side trip. Turn to plate 5 . Given a square and any point on the diagonal ray off the square, that is, extended outside of that square, divide two sides of that square into identical ratios with a ray from the chosen point. Plate 5 demonstrates the solution. If you play with the figure long enough you will find that it is a direct abstract from the figure that yields square roots. Length \(A B=C D, B C=D E\). This is not a trivial matter, for to perform cubic reductions we will have to find a method to divide this square into three such segments that have a special relationship.


Plate 5
\(A B=C D \cdot B C=D E\)

Let us take a "bar" as in P. 6 and put two of its sides back to back as in P.7. Also lay out a 45 degree angle, as that is what our cube will have to end with. In P. 8 we lay out where the cube is suppose to take place and we place in the two rays that will make the respective area manipulations. After several of these figures we will note that the two angles are indeed related because it always takes exactly two divisions to cube the figure, however, in this configuration I cannot gather any hint of another relationship between these two rays, or their angles.

P. 7

\section*{P. 6}

P. 8

P. 9

If I place both rays on the same side of the figure, I not only save paper, I also see a relationship, \(A=D, B=E, C=F\), and by working with these segments find that the square root of \(A C=B\).

P. \(10 A=D, B=E, C=F\)

P. 11

With a little more playing around, I note also that I can put a "hat" on the figure and that rays from the corners of the square under that figure will always converge on that semicircle. The immediate implication is that, not only is the square root related to the right angle, but the cube root as well.


Let us work with the square in a right angle for a moment. In P. 12 we find the answer to the question"How do I find the square in a right triangle?"


Plate 13


Plate 14


Plate 15

In Plates 13 through 16, we find the answer to the question-"Given a length of line, and another that must be one third or less of the first, what is the right angle which contains this segment as one side of a square?" The questions could be stated more technically than this, but-.

Plate 16



In P. 17 We see that "The square in a right triangle is equal to the square of the remaining two segments, and in a duplicate ratio and"

P. 18 "The three triangles on the sides of that square are in a triplicate ratio to those sides of that square."

P. 19 Shows another square that can be formed using the same segments as the square in a right triangle. This square will be used in demonstrating another triplicate ratio, and that is the Pythagorean principle for cube roots.


Plate 20 Demonstrates the triple implication of the Pythagorean theorem in the cubic expression. It will also do well to note that the three squares in continued proportion on the diagonal of the square under the right angle major have the same relationship as the segments on the hypotenuse of that given right angle.

There is one more triple proportion to look at. Plate 21.


All three semicircles intersect the semicircle which we draw our right angle in at the same point (A). From the center of the square under our eventual right angle (E) until they all intersect on that semicircle (A) they will produce a 90 degree angle divided into a 45 in the semicircle that is used for the square root application. I will leave it to the inquisitive reader to find the proper method of using this information to find a the method to find the intersect of the two rays under this figure. One will note that I have written in the progression along the bottom of the plate of the lengths involved.

Let us turn now to a simple but very productive diagram, Plate 22.


How close is the segment \(A B\) to the cube root of the circle given as a sphere? Is it well within pencil tolerances?

What approximate cube root figure is the segment CB a part of? (for abstract see Plate 12.)


Plate 23

On Plate 24 the radius for the circle OP is given by MN.


One of the items that one will find in working with the figure is that it is infinitely recursive, by adding a couple of lines in the right place, one has another cubic relationship.

How do we test for accuracy of our cubic results? It will be noted that on the line that is the cube root of \(B^{2} A\) (if you have missed it, the figure gives both roots, \(A^{2} B\) and \(B^{2} A\) ) there is a series of intersects, (three of them). When these intersects form a line
parallel to the base of the figure then the result is accurate, this should have been abstracted, and used for proof, during one's play with P. 7 and P.8.

A great number of propositions relating to the figure can be generated, of which I shall not here produce any. Doubling of the cube came very early in my search, the difficult part was in learning how to abstract any root. Now I have much work to do, and much learning to do to complete that work and I hope you have fun with the figure.J.C.

I was so happy with myself that I found all this out on my own that I sent it out to see if anyone would publish it. The returns indicate that it was stillborn, however I continue my explorations. Good books on Geometrical constructions are not readily available and I am quite ignorant of what has been done in the way of plane Geometry. I strike out more or less on my own on the Delian Quest. I take only One Cirlce, One Square, and One Line as my travel companions, not to mention Elementary Algebra as a consultant.

\section*{GEOMETRIAE DEDICATA}

ManagingEditors:
K. STRAMBACH

MathematischesInstitut
Bismarckstr. 1 1/2
D-8520 Eriangen
ER. Germany
Telephone: (0)9131-8525(X)
or 852502
F. D. VELDKANW

NblemakchMm4uw
Postbus 80.010
3508 TA Utrecht
The Netherlands
Telephone: (0)30-531519
Utrecht, 15 December 1989

\section*{Dear Mr. Clark,}

From Kluwer academic publishers I received your manuscript The Delian Solution which they presumed you wanted to submit
for Geometriae Dedicata. It is not clear to me what these considerations on elementary Euclidean geometry are aiming at.
Geometriae Dedicata is a journal for research in modern geometry and related fields. I think it is not the place to publish your manuscript, which we cannot accept therefore. I return the three copies under separated cover.

Sincerely,
F.D. Veldkamp

American Mathematical Society
PO. Box 6248, Providence, Rhode Island 02940 USA Telephone (401) 272-9500
Telex 797192, FAX 401-331-3842
Location:
201 Charles Street
Providence, RI
02904
December 8, 1989
Professor Professor John J. Clark
Dear Professor Clark,
I recently received your manuscript entitled "The Delian solution" for consideration in BULLETIN (NEW SERIES) OF THE AMERICAN MATHEMATICAL SOCIETY. Please note that I am forwarding your paper to Professor Roger E. Howe (Department of Mathematics, Yale University, New Haven. CT 06520) and that you should address all your inquiries to the editor.

Sincerely yours,
Christine Vendettuoli
Publications Department

Serving the mathematical community for over 100 years

\section*{American Mathematical Society}

Mathematics

\section*{Roger E.Howe}

Bulletin
Editorial Committee

Department of
Yale University
Box 2155, Yale Station
New Haven, CT 06520

December 14, 1989
Dear Professor Clark:
I regret to inform you that we are unable to accept your paper, "The Delian solution" for publication in the Bulletin. Our reviewers felt that the results are not of sufficient general interest or significance to warrant publication in the Bulletin.

Yours truly, Roger E. Howe Editor
Research Bulletin
REH/med

\section*{JOURNAL OF GEOMETRY}

\author{
Editor's Office
}

Prof. Dr. H.-J. Kroll
Mathematisches Institut
Technische Universitiit Munchen
Arcisstr. 21
D-8000 Munchen 2
January 17, 1990

\section*{Dear Professor Clark,}

Thank you very much for your manuscript on "THE DELIAN SOLUTION".
Date of receipt is January 12, 1990. As soon as we have the referee's report at hand, you will receive further information.

Yours sincerely, H. -J. Kroll

Expert opinion on the article "The Delian Solution" of John J. Clark: You can find some interesting statements in the submitted version of this article but exact constructions are missing. Mostly it's not clear where some points or lines come from. Therefore the proofs also cannot be examined very good. And for the more complicated constructions it's very difficult to follow the ideas of the author. Moreover the relation between the single statements and the opening problem doesn't come out very good.
All together the article in the given version is not understandable.

\section*{JOURNAL OF GEOMETRY \\ Editor's Office}

München, 1 June 1990
Dear Professor Clark, Your paper "The Delian Solution" submitted to the Journal of Geometry is hereby regrettably returned by the decision of the reviewers.
We are very sorry that we could not be of any help to you.
Sincerely yours,

\author{
H. -J. Kroll
}
(This one is a form letter.)

\section*{société mathématique defrance}
paris, le
BULLETIN
n. réf.
a l'attention de
v. réf.

Cher(e) collègue,
Le Comité de Rédacton du Bulletin de la Société Mathématique de France n'a pas pu accepter votre article intitulé


Malgré l'intérêt de votre travail, celui-ci ne correspond pas à l'esprit de notre Revue destinée à un large public de mathématiciens et non à des lecteurs trop spécialisés.

Nous vous prions d'agréer, cher(e) collégue, l'expression de nos sentiments les meilleurs.
P. SCHAPIRA

Directeur de la Publication
P.J. : Manuscrit
And the Delian Quest
One Square

By John Clark


\section*{A Triplicate Ratio}

Given any point on the diagonal external to a square and any length of line less than the side of the square, extend from that point two rays such that it cuts two sides of that square into triplicate ratio's, one of which is the length of the given line.

figure 1
Let AB be the given square, CD the given line and O the given point on the external diagonal.


0
figure 2
Divide CD.

figure 3
Copy \(\frac{1}{2}\) CD to and asEF.

figure 4
\(S\) is the square root ofFA \(\cdot \mathrm{FB}\)

figure 5

This maneuver may look easy, but it gave my poor ignorant head a workout.

figure 6
We can now place in our two rays from O and proceed to clean up the drawing.

\(\mathrm{BG}=\mathrm{AI}, \mathrm{GH}=\mathrm{IJ}, \mathrm{HA}=\mathrm{JK}\), and both GH and \(\mathrm{IJ}=\mathrm{CD}\), which is what I had set out to do.

\(\mathrm{DO}=16.135\)
CUBE_ROOT = 16.12
\(\mathrm{PI}:=\frac{\mathrm{DO}^{3}}{\frac{4}{3} \cdot \mathrm{R}^{3}} \quad \begin{array}{ll}\mathrm{PI}=3.15049 \\ \pi=3.14159\end{array}\)

\section*{Cubing a Sphere, a Rusty Construction.}

Cubing a sphere off the base of a right triangle. I later found out that someone had squared a circle off the base of a right triangle but the figure was lost. This figure is in the 1989 Document on the Delian Solution.
\[
\begin{aligned}
& \mathrm{R}:=10 \\
& \mathrm{AO}:=\mathrm{R} \mathrm{CO}:=\mathrm{R} \quad \mathrm{DF}:=\mathrm{R} \quad \mathrm{CE}:=\sqrt{\frac{\mathrm{CO}^{2}}{2}} \\
& \mathrm{AE}:=\mathrm{R}+\mathrm{CE} \quad \mathrm{AC}:=\sqrt{\mathrm{CE}^{2}+\mathrm{AE}^{2}} \quad \mathrm{AF}:=2 \cdot \mathrm{R} \\
& \mathrm{CF}:=\sqrt{\mathrm{AF}^{2}-\mathrm{AC}^{2} \mathrm{CD}}:=\sqrt{\mathrm{DF}^{2}-\mathrm{CF}^{2}} \mathrm{AD}:=\mathrm{AC}+\mathrm{CD} \\
& \mathrm{DG}:=\frac{\mathrm{CE} \cdot \mathrm{AD}}{\mathrm{AC}} \mathrm{AG}:=\frac{\mathrm{AE} \cdot \mathrm{AD}}{\mathrm{AC}} \mathrm{GO}:=\mathrm{AG}-\mathrm{R} \\
& \mathrm{DO}:=\sqrt{\mathrm{DG}^{2}+\mathrm{GO}^{2}}
\end{aligned}
\]

CUBE_ROOT \(:=\left(\frac{4}{3} \cdot \pi \cdot \text { R }^{3}\right)^{\frac{1}{3}}\)
TOLERANCE \(:=\frac{\text { DO }}{\text { CUBE_ROOT }}\)
TOLERANCE - \(1=0.0009429\)
One Line
And the Delian Quest

1993

\section*{Pythagoras Revisited}

I had set aside a Euclidean figure that abstracts any cube root that I had developed to work on a full expression of the Archimedean paper angle trisector. While triangulating the tolerability of a particular compass move, I ran across the following problem, and solution:

The Pythagorean Theorem is itself a special case statement regarding the area of the squares on the sides of a triangle as compared to the area of the square on the base of the triangle. The special case, is of course, the right triangle. Primarily what will be done here is threefold, 1) demonstrate, in a completely Euclidean construction, how to find the area of any triangle given only the length of the three sides; 2) Present a data sheet regarding the relationship between the squares on a triangle; 3) Note that the process perhaps extends trigonometric analysis to all triangles. In order to establish some order to the way in which we view the common triangle, I refer to the base always as the side with the longest segment.

I became interested in the problem when I needed to find the perpendicular bisector formed by the intersection of two circles.


In this situation we are given both radii and the difference between them. Literally we are given only the lengths of the common triangle.


In order to solve the problem, we go back to basics. Given a right triangle how do we find the perpendicular bisector?


The ratio of the square under a right triangle to the squares on its sides is quite direct. When one views a right triangle they should immediately see three square roots. \(\sqrt{(\mathrm{AB})(\mathrm{BC})}=\mathrm{BE}, \frac{\mathrm{AE}^{2}}{\mathrm{AC}}=\mathrm{AB}, \frac{\mathrm{CE}^{2}}{\mathrm{AC}}=\mathrm{BC}\). Thus, for a right triangle the perpendicular bisector is quite well known and its area is easy to find from just its three segments. If one will recall the area of a triangle i \(\frac{1}{2}\) bh, and \(h\) is the perpendicular.

The process for a common triangle is a tad bit more involved. What is done for common triangles is quite simple, one simply completes simultaneous right triangles (like completing squares).


After finding the perpendicular bisectors for the completed triangles it will be found that the perpendicular bisector that one seeks is exactly \(\frac{1}{2}\) the difference between the previous two. This result is quite enticing to me, it seems to indicate that a ratio process for angles may be achievable based on the relation of the lengths of the sides alone. The perpendicular bisector now being known as a numerical function of the lengths of the sides, the computation of the area of the triangle follows. The only other method for finding the area of a common triangle based solely on the lengths of its sides is of course Heron's which resulted in a non-Euclidean formula. The following process can be used on the following figure.


A CBDE F
G

Given
\[
\mathrm{AF}=\mathrm{a}, \mathrm{CG}=\mathrm{b}, \mathrm{CF}=\mathrm{c} \quad \mathrm{CF} \leq|\mathrm{CG}-\mathrm{AF}|
\]

Then
\[
\begin{aligned}
& \mathrm{AG}=\mathrm{AF}+\mathrm{CG}-\mathrm{CF}, \mathrm{AB}=\frac{\mathrm{AF}^{2}}{\mathrm{AG}}, \mathrm{EG}=\frac{\mathrm{CG}^{2}}{\mathrm{AG}}, \mathrm{BE}=\mathrm{AG}-\mathrm{AB}-\mathrm{EG} \\
& \mathrm{DE}=\frac{\mathrm{BE}}{2}, \mathrm{BD}=\mathrm{DE}, \mathrm{AD}=\mathrm{AB}+\mathrm{BD}, \mathrm{DG}=\mathrm{AG}-\mathrm{AD} \\
& \mathrm{DY}=\sqrt{\mathrm{CG}^{2}-\mathrm{DG}^{2}}, \mathrm{DX}=\sqrt{\mathrm{AF}^{2}-\mathrm{AD}^{2}}
\end{aligned}
\]

Therefore
\[
\text { DY - DX = } 0
\]

There are some who will not appreciate this particular form, but when using computation, it states the conclusion.
Table of values for the above expressions,
\[
a=20, b=30
\]
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{\(\mathrm{c}=\)} & \multicolumn{1}{|c|}{\(\mathrm{DY}=\)} & \multicolumn{1}{|c|}{\(\mathrm{DX}=\)} \\
\hline 20 & 18.856 & 18.856 \\
\hline 19 & 18.566 & 18.566 \\
\hline 18 & 18.247 & 18.247 \\
\hline 17 & 17.899 & 17.899 \\
\hline 16 & 17.52 & 17.52 \\
\hline 15 & 17.109 & 17.109 \\
\hline 14 & 16.667 & 16.667 \\
\hline 13 & 16.189 & 16.189 \\
\hline 12 & 15.675 & 15.675 \\
\hline 11 & 15.121 & 15.121 \\
\hline 10 & 14.524 & 14.524 \\
\hline 9 & 13.877 & 13.877 \\
\hline 8 & 13.175 & 13.175 \\
\hline 7 & 12.408 & 12.408 \\
\hline 6 & 11.564 & 11.564 \\
\hline 5 & 10.625 & 10.625 \\
\hline 4 & 9.564 & 9.564 \\
\hline 3 & 8.334 & 8.334 \\
\hline 2 & 6.846 & 6.846 \\
\hline 1 & 4.87 & 4.87 \\
\hline 0 & 0 & 0 \\
\hline
\end{tabular}

The table relates to Book One of Euclidhe endpoints of two segments of a triangle cannot meet in two different places
In order to start investigating the relationship of the squares on the sides of the triangle to the base, one would start with isosceles triangles with a standard base.


Ang1 \(=\mathrm{adeg}, \operatorname{Ang} 2=90 \mathrm{deg}-\operatorname{Ang} 1, \mathrm{Ab}=3, \mathrm{BC}=\mathrm{AB}, \mathrm{F}=\tan (\mathrm{Ang} 2)\)
\(\mathrm{BD}=(\mathrm{BC}) \mathrm{F}, \mathrm{CD}=\sqrt{\mathrm{BC}^{2}+\mathrm{BD}^{2}}, \mathrm{AC}=2 \mathrm{AB}, \mathrm{CF}=\mathrm{CD}, \mathrm{AF}=\sqrt{\mathrm{AC}^{2}-\mathrm{CF}^{2}}\)
\(\mathrm{CH}=\frac{\mathrm{CD}^{2}}{\mathrm{AC}}, \mathrm{BH}=\mathrm{BC}-\mathrm{CH}, \mathrm{GH}=2 \mathrm{BH}\)
SOSOS = 2CD2 Sum Of Squares On Sides
\(\mathrm{AOCR}=(\mathrm{GH})(\mathrm{AC}) \quad\) Area Of Center Rectangle
AOER \(=2(\mathrm{CH})(\mathrm{AC}) \quad\) Area of Extreme Rectangles
Ratio1 \(=\frac{\text { AOER }}{\text { AOCR }}\)
Ratio \(2=\frac{\text { AOCR }}{\text { AOER }}\)
Table of Ratios in One Degree Increments for a base of 36
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Ang1 \\
(Total \\
ang. \\
2Ang1)
\end{tabular} & Ang2 & \begin{tabular}{l} 
Sum \\
SOSOS
\end{tabular} & \begin{tabular}{l} 
Cent \\
AOCR
\end{tabular} & \begin{tabular}{l} 
Extrm \\
AOER
\end{tabular} & \begin{tabular}{l} 
Ratio1 \\
AOER \\
AOCR
\end{tabular} & \begin{tabular}{l} 
Ratio2 \\
AOCR \\
AOER
\end{tabular} & \begin{tabular}{l} 
Ratio3 \\
AC \(^{2}\)
\end{tabular} & \begin{tabular}{l} 
Ratio4 \\
AC \(^{2}\)
\end{tabular} \\
\hline 90 & 0 & 18 & 18 & 18 & 1 & 1 & 2 & 2 \\
\hline 89 & 1 & 18.005 & 17.995 & 18.005 & 1.001 & 0.999 & 1.999 & 2.001 \\
\hline 88 & 2 & 18.022 & 17.978 & 18.022 & 1.002 & 0.998 & 1.998 & 2,002 \\
\hline 87 & 3 & 18.049 & 17.951 & 18.049 & 1.006 & 0.995 & 1.995 & 2.006 \\
\hline 86 & 4 & 18.088 & 17.912 & 18.088 & 1.01 & 0.99 & 1.99 & 2.01 \\
\hline 85 & 5 & 18.138 & 17.862 & 18.138 & 1.015 & 0.985 & 1.985 & 2.015 \\
\hline 84 & 6 & 18.199 & 17.801 & 18.199 & 1.022 & 0.978 & 1.978 & 2.022 \\
\hline 83 & 7 & 18.271 & 17.729 & 18.271 & 1.031 & 0.97 & 1.97 & 2.031 \\
\hline 82 & 8 & 18.356 & 17.644 & 18.356 & 1.04 & 0.961 & 1.961 & 2.04 \\
\hline 81 & 9 & 18.452 & 17.548 & 18.452 & 1.051 & 0.951 & 1.951 & 2.051 \\
\hline 80 & 10 & 18.56 & 17.44 & 18.56 & 1.064 & 0.94 & 1.94 & 2.064 \\
\hline 79 & 11 & 18.68 & 17.32 & 18.68 & 1.079 & 0.927 & 1.927 & 2.079 \\
\hline 78 & 12 & 18.813 & 17.187 & 18.813 & 1.095 & 0.914 & 1.914 & 2.095 \\
\hline 77 & 13 & 18.959 & 17.041 & 18.059 & 1.113 & 0.899 & 1.899 & 2.113 \\
\hline 76 & 14 & 19.119 & 16.881 & 19.119 & 1.133 & 0.883 & 1.883 & 2.133 \\
\hline 75 & 15 & 19.292 & 16.708 & 19.292 & 1.155 & 0.866 & 1.866 & 2.155 \\
\hline 74 & 16 & 19.48 & 16.52 & 19.48 & 1.179 & 0.848 & 1.848 & 2.179 \\
\hline 73 & 17 & 19.682 & 16.318 & 19.682 & 1.206 & 0.829 & 1.829 & 2.206 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 72 & 18 & 19.9 & 16.1 & 19.9 & 1.236 & 0.809 & 1.809 & 2.236 \\
\hline 71 & 19 & 20.134 & 15.866 & 20.134 & 1.269 & 0.788 & 1.788 & 2.269 \\
\hline 70 & 20 & 20.385 & 15.615 & 20.385 & 1.305 & 0.766 & 1.766 & 2.305 \\
\hline 69 & 21 & 20.652 & 15.348 & 20.652 & 1.346 & 0.743 & 1.743 & 2.346 \\
\hline 68 & 22 & 20.938 & 15.062 & 20.938 & 1.39 & 0.719 & 1.719 & 2.39 \\
\hline 67 & 23 & 21.243 & 14.757 & 21.243 & 1.44 & 0.695 & 1.695 & 2.44 \\
\hline 66 & 24 & 21.568 & 14.432 & 21.568 & 1.494 & 0.669 & 1.669 & 2.494 \\
\hline 65 & 25 & 21.914 & 14.086 & 21.914 & 1.556 & 0.643 & 1.643 & 2.556 \\
\hline 64 & 26 & 22.282 & 13.718 & 22.282 & 1.624 & 0.616 & 1.616 & 2.624 \\
\hline 63 & 27 & 22.673 & 13.327 & 22.673 & 1.701 & 0.588 & 1.588 & 2.701 \\
\hline 62 & 28 & 23.089 & 12.911 & 23.089 & 1.788 & 0.559 & 1.559 & 2.788 \\
\hline 61 & 29 & 23.531 & 12.469 & 23.531 & 1.887 & 0.53 & 1.53 & 2.887 \\
\hline 60 & 30 & 24 & 12 & 24 & 2 & 0.5 & 1.5 & 3 \\
\hline 59 & 31 & 24.499 & 11.501 & 24.499 & 2.13 & 0.469 & 1.469 & 3.13 \\
\hline 58 & 32 & 25.028 & 10.972 & 25.028 & 2.281 & 0.438 & 1.438 & 3.281 \\
\hline 57 & 33 & 25.591 & 10.409 & 25.591 & 2.459 & 0.407 & 1.407 & 3.459 \\
\hline 56 & 34 & 26.189 & 9.811 & 26.189 & 2.669 & 0.375 & 1.375 & 3.669 \\
\hline 55 & 35 & 26.825 & 9.175 & 26.825 & 2.924 & 0.342 & 1.342 & 3.924 \\
\hline 54 & 36 & 27.502 & 8.498 & 27.502 & 3.236 & 0.309 & 1.309 & 4.236 \\
\hline 53 & 37 & 28.221 & 7.779 & 28.221 & 3.628 & 0.276 & 1.276 & 4.628 \\
\hline 52 & 38 & 28.987 & 7.013 & 28.987 & 4.134 & 0.242 & 1.242 & 5.134 \\
\hline 51 & 39 & 29.804 & 6.196 & 28.804 & 4.81 & 0.208 & 1.208 & 5.81 \\
\hline 50 & 40 & 30.674 & 5.326 & 30.674 & 5.759 & 0.174 & 1.174 & 6.759 \\
\hline 49 & 41 & 31.602 & 4.398 & 31.602 & 7.185 & 0.139 & 1.139 & 8.185 \\
\hline 48 & 42 & 32.593 & 3.407 & 32.597 & 9.567 & 0.105 & 1.105 & 10.567 \\
\hline 47 & 43 & 33.653 & 2.347 & 33.653 & 14.336 & 0.07 & 1.07 & 15.336 \\
\hline 46 & 44 & 34.786 & 1.214 & 34.786 & 28.654 & 0.035 & 1.035 & 29.654 \\
\hline 45 & 45 & 36 & 0 & 36 & 0 & 0 & 1 & 0 \\
\hline 44 & 46 & 37.302 & -1.302 & 37.302 & -28.654 & -0.035 & 0.965 & -27.654 \\
\hline 43 & 47 & 38.7 & -2.7 & 38.7 & - 14,336 & -0.07 & 0.93 & -13.336 \\
\hline 42 & 48 & 40.202 & -4.202 & 40.202 & - 9.567 & -0.105 & 0.895 & - 8.567 \\
\hline 41 & 49 & 41.82 & - 5.82 & 41.82 & - 7.185 & -0.139 & 0.861 & - 6.185 \\
\hline 40 & 50 & 43.565 & - 7.565 & 43.565 & - 5.759 & - 0.174 & 0.826 & -4.759 \\
\hline 39 & 51 & 45.449 & - 9.449 & 45.449 & - 4.81 & -0.208 & 0.792 & - 3.81 \\
\hline 38 & 52 & 47.489 & -11.489 & 47.489 & -4.134 & -0.242 & 0.758 & - 3.134 \\
\hline 37 & 53 & 49.699 & -13.699 & 49.699 & - 3.628 & -0.276 & 0.724 & -2.628 \\
\hline 36 & 54 & 52.1 & - 16.1 & 52.1 & - 3.236 & -0.309 & 0.691 & -2.236 \\
\hline 35 & 55 & 54.713 & -18.713 & 54.713 & - 2.924 & -0.342 & 0.658 & -1.924 \\
\hline 34 & 56 & 57.564 & -21.564 & 57.564 & - 2.669 & -0.375 & 0.625 & - 1.669 \\
\hline 33 & 57 & 60.681 & - 24.681 & 60.681 & - 2.459 & -0.407 & 0.593 & - 1.459 \\
\hline 32 & 58 & 64.099 & - 28.099 & 64.099 & - 2.281 & -0.438 & 0.562 & -1.281 \\
\hline 31 & 59 & 67.858 & - 31.857 & 67.857 & -2.13 & -0.469 & 0.531 & -1.13 \\
\hline 30 & 60 & 72 & -36 & 72 & -2 & -0.5 & 0.5 & -1 \\
\hline
\end{tabular}

As the table demonstrates, before one reaches an apex angle of \(90^{\circ}\), the difference between the completed perpendiculars is subtracted from the base, after one reaches \(90^{\circ}\) the difference is added to the base.


There are, of course, more tables to do in order to study the figure.


\section*{Exploring the properties of the curve CJ.}

Choosing any arbitrary point on CJ does the projection DE equal the square root of CD \(\cdot\) EG? This possibility was suggested by my work on finding the geometrical solution to the problem : Given only the lengths of the three sides of any triangle, find its area. That work suggests that DE will remain constant over a range if CJ had the same center as circle CLG. An essential portion of that solution will be used in this work for finding the difference and position of DE.
\(\mathrm{CG}:=10 \mathrm{FG}:=\frac{\mathrm{CG}}{3} \mathrm{FO}:=\frac{\mathrm{CG}}{6}\) LO \(:=\frac{\mathrm{CG}}{2}\)
\(\mathrm{FL}:=\sqrt{\mathrm{LO}^{2}-\mathrm{FO}^{2}} \mathrm{GL}:=\sqrt{\mathrm{FG}^{2}+\mathrm{FL}^{2}}\)
GO \(:=\frac{\mathrm{CG}}{2}\) GJ \(:=\mathrm{GL} \mathrm{JO}:=\sqrt{\mathrm{GJ}^{2}-\mathrm{GO}^{2}}\)
\[
\mathrm{JM}:=\mathrm{JO} \cdot 2 \quad \mathrm{CO}:=\mathrm{GO} \quad \mathrm{MN}:=\mathrm{CO}
\]
\[
\delta:=1 . .100 \mathrm{MP}_{\delta}:=\frac{\delta}{100} \cdot \mathrm{MN} \quad \mathrm{HM}:=\mathrm{JM}
\]
\[
\mathrm{HP}_{\delta}:=\sqrt{\mathrm{HM}^{2}-\left(\mathrm{MP}_{\delta}\right)^{2}} \mathrm{MO}:=\mathrm{JO} \mathrm{PQ}:=\mathrm{MO}
\]
\[
\mathrm{HQ}_{\delta}:=\mathrm{HP}_{\delta}-\mathrm{PQ} \quad \mathrm{QO}_{\delta}:=\mathrm{MP}_{\delta}
\]

\[
\begin{aligned}
& \mathrm{GQ}_{\delta}:=\mathrm{GO}+\mathrm{QO}_{\delta} \mathrm{GH}_{\delta}:=\sqrt{\left(\mathrm{GQ}_{\delta}\right)^{2}+\left(\mathrm{HQ}_{\delta}\right)^{2}} \\
& \mathrm{GK}_{\delta}:=\mathrm{GH}_{\delta} \quad \mathrm{EG}_{\delta}:=\frac{\left(\mathrm{GK}_{\delta}\right)^{2}}{\mathrm{CG}} \mathrm{CQ}_{\delta}:=\mathrm{CO}-\mathrm{QO}_{\delta} \\
& \mathrm{CH}_{\delta}:=\sqrt{\left(\mathrm{CQ}_{\delta}\right)^{2}+\left(\mathrm{HQ}_{\delta}\right)^{2}} \quad \mathrm{CI}_{\delta}:=\mathrm{CH}_{\delta} \\
& \mathrm{CD}_{\delta}:=\frac{\left(\mathrm{CI}_{\delta}\right)^{2}}{\mathrm{CG}} \quad \mathrm{DE}_{\delta}:=\mathrm{CG}-\mathrm{EG}_{\delta}-\mathrm{CD}_{\delta} \\
& \mathrm{ERR}_{\delta}:=\sqrt{\mathrm{EG}_{\delta} \cdot \mathrm{CD}_{\delta}}-\mathrm{DE}_{\delta}
\end{aligned}
\]

As can be seen by the graph, the only error is the limits contained in the program itself! So CJ is part of our cube root figure, as the square in a right triangle is equal to the square of the remaining two segments, and all three squares taken to the reduced ratio functions in a cube root relationship.

\title{
For All Triangles Find DC \\ 06_07_C3.MCD
}


The first of these series ran the process through for equalaterals. I expanded in this mod for all triangles, I will use the process later to find the Euler line, given only the length of three sides of a triangle.

Given: AB, AC, AD, BC, BD
Find: DC

\section*{Process Summary}

> Construct: De
> Construct: Cf
> ef \(=\mathrm{Be}-\mathrm{Bf}\)
> \(\mathrm{Dg}=\mathrm{ef}\)
> \(\mathrm{CD}=\sqrt{\mathrm{Cg}^{2}+\mathrm{Dg}^{2}}\)

Given:

\[
\begin{array}{lll}
\mathrm{AB}:=7.18 & \mathrm{AC}:=9.02 & \mathrm{AD}:=8.09 \\
\mathrm{BD}:=7.28 & \mathrm{BC}:=3.85 &
\end{array}
\]

Find CD.

Find: Be
\(\mathrm{Be}:=\frac{1}{2} \cdot \frac{\mathrm{BD}^{2}}{\mathrm{AB}}+\frac{1}{2} \cdot \mathrm{AB}-\frac{1}{2} \cdot \frac{\mathrm{AD}^{2}}{\mathrm{AB}}\)
\(\mathrm{Be}=2.723\)

\[
\mathrm{Bf}:=\frac{1}{2} \cdot \frac{\mathrm{BC}^{2}}{\mathrm{AB}}+\frac{1}{2} \cdot \mathrm{AB}-\frac{1}{2} \cdot \frac{\mathrm{AC}^{2}}{\mathrm{AB}}
\]


Due to the inability to format the equation I had to make some substitutes.
\(\mathrm{A}:=\mathrm{AB} \quad \mathrm{B}:=\mathrm{BC} \quad \mathrm{C}:=\mathrm{AC}\)
\(\mathrm{D}:=\mathrm{B}\)
D \(\mathrm{E}:=\mathrm{AD}\)

\(F:=\sqrt{2 \cdot \frac{\sqrt{B^{2} \cdot A^{2} \ldots}}{+\sqrt{C+A-B} \cdot \sqrt{C-A+B} \cdot \sqrt{C+A+B} \cdot \sqrt{C-A-B} \cdot \sqrt{D+E-A} \cdot D^{2} \cdot \sqrt{D-E-A} \cdot D^{2} \cdot C^{2}-A^{4}+A^{2} \cdot C^{2}+E^{2} \cdot B^{2}+E^{2} \cdot A^{2}-E^{2} \cdot C^{2}}} \frac{2 \cdot A}{}\)
\[
F=4.844
\]

Given length \(A B\) and length \(C B\) which is \(1 / 2\) of \(A B\) or less, place \(C B\) such that it is the square root of the two constructed segments. The second line in the equations will not permit BC to exceed Euclidean specifications.
\[
\begin{aligned}
& \mathrm{AB}:=100 \mathrm{BC}:=43 \\
& \mathrm{BC}:=\operatorname{if}\left(\mathrm{BC} \geq 0, \text { if }\left(\mathrm{BC} \leq \frac{\mathrm{AB}}{2}, \mathrm{BC}, 0\right), 0\right) 0 \\
& \mathrm{AD}:=\frac{\mathrm{AB}}{2} \quad \mathrm{DE}:=\mathrm{AD}
\end{aligned}
\]
\(\mathrm{FE}:=\mathrm{BC}\) DB \(:=\mathrm{AD} \mathrm{DF}:=\sqrt{\mathrm{DE}^{2}-\mathrm{FE}^{2}} \quad \mathrm{AF}:=\mathrm{AD}+\mathrm{DF} \quad \mathrm{BF}:=\mathrm{DB}-\mathrm{DF}\)
\[
\mathrm{AF}=75.515 \quad \mathrm{BF}=24.485 \quad \mathrm{AF}+\mathrm{BF}=100 \quad \sqrt{\mathrm{BF} \cdot \mathrm{AF}}-\mathrm{BC}=0
\]
\[
\mathrm{AF}:=\frac{1}{2} \cdot \mathrm{AB}+\frac{1}{2} \cdot \sqrt{\mathrm{AB}^{2}-4 \cdot \mathrm{BC}^{2}} \quad \mathrm{BF}:=\frac{1}{2} \cdot \mathrm{AB}-\frac{1}{2} \cdot \sqrt{\mathrm{AB}^{2}-4 \cdot \mathrm{BC}^{2}}
\]
\[
\mathrm{AF}=75.515 \quad \mathrm{BF}=24.485
\]


A
D
F B

Now if we eliminate the Euclidean qualification we bring the figure up to the 2 (th century with imaginary numbers.
\[
\mathrm{AB}:=100 \mathrm{BC}:=60
\]
\[
\mathrm{AD}:=\frac{\mathrm{AB}}{2} \quad \mathrm{DE}:=\mathrm{AD}
\]
\(\mathrm{FE}:=\mathrm{BC} \quad \mathrm{DB}:=\mathrm{AD} \quad \mathrm{DF}:=\sqrt{\mathrm{DE}^{2}-\mathrm{FE}^{2}} \quad \mathrm{AF}:=\mathrm{AD}+\mathrm{DF} \quad \mathrm{BF}:=\mathrm{DB}-\mathrm{DF}\)
\[
\mathrm{AF}=50+33.166 \mathrm{i} \quad \mathrm{BF}=50-33.166 \mathrm{i} \quad \mathrm{AF}+\mathrm{BF}=100 \quad \sqrt{\mathrm{BF}} \cdot \mathrm{AF}-\mathrm{BC}=0
\]
\[
\mathrm{AF}:=\frac{1}{2} \cdot \mathrm{AB}+\frac{1}{2} \cdot \sqrt{\mathrm{AB}^{2}-4 \cdot \mathrm{BC}^{2}} \quad \mathrm{BF}:=\frac{1}{2} \cdot \mathrm{AB}-\frac{1}{2} \cdot \sqrt{\mathrm{AB}^{2}-4 \cdot \mathrm{BC}^{2}}
\]
\[
\mathrm{AF}=50+33.166 \mathrm{i} \quad \mathrm{BF}=50-33.166 \mathrm{i}
\]

\section*{A Pyramid of Ratios}

The typical teaching concerning the division of a line in Euclidean geometry is quite straight forward, this work is an extension of the application.


A pyramid of ratios is the expression of the relationships between the base of the right triangle and some bisectors. There is more than one model.

How does this one work? I wish to know the ratio between EF:BF. As you can see the base of the triangle has been divided into two equal parts, and so has the bisector. \(\mathrm{AB}=2\) and \(\mathrm{CD}=2.2 \times 2\) \(=4\), therefore segment EF will be \(1 / 4\) of segment BF. Now let us turn to a more developed expression of the figure.

The base can also be divided into any ratio, it can even be part of a larger figure. One must keep in mind the distinction between numerical measure, which will be used to compute lengths, and the concept of ratio.

The ratio here is 2 to 7 , so that we are working with the number 14. In descending order, \(1 / 14,2 / 14,3 / 14,4 / 14\), \(5 / 14,6 / 14\) and \(7 / 14\).

In this work I will be exploring the figure to see what else it will yield. With Mathcad we shall be able to explore drawings that would be too tedious to draw and actually be quite an engineering feat if one could.

One can plug in numbers for the first three variables at the end of the document.
AB := BASE_LENGTH
BR \(:=\) BASE_RATIO
BS := BISEC_SEG
\(\mathrm{Cg}:=\frac{\mathrm{AB}}{2} \mathrm{Ag}:=\mathrm{Cg} \operatorname{Bg}:=\mathrm{Cg}\)
Number that has been defined equals BS \(\times\) BR.
\[
\mathrm{BS} \cdot \mathrm{BR}=0.45 \quad \mathrm{AD}:=\frac{\mathrm{AB}}{\mathrm{BR}}
\]
\[
\delta:=0 \ldots \mathrm{BS} \quad \mathrm{Dg}:=\mathrm{Ag}-\mathrm{AD} \mathrm{CD}:=\sqrt{\mathrm{Dg}^{2}+\mathrm{Cg}^{2} \mathrm{DE}_{\delta}}:=\frac{\mathrm{CD}}{\mathrm{BS}} \cdot \delta \quad \mathrm{Dh}_{\delta}:=\frac{\mathrm{Dg} \cdot \mathrm{DE}_{\delta}}{\mathrm{CD}}
\]
\[
\mathrm{Eh}_{\delta}:=\sqrt{\left(\mathrm{DE}_{\delta}\right)^{2}-\left(\mathrm{Dh}_{\delta}\right)^{2}} \mathrm{gh}_{\delta}:=\mathrm{Dg}-\mathrm{Dh}_{\delta} \mathrm{Bh}_{\delta}:=\mathrm{Bg}+\mathrm{gh}_{\delta} \mathrm{BE}_{\delta}:=\sqrt{\left(\mathrm{Bh}_{\delta}\right)^{2}+\left(\mathrm{Eh}_{\delta}\right)^{2}}
\]
\[
\mathrm{CE}_{\delta}:=\mathrm{CD}-\mathrm{DE}_{\delta}
\]

\(\mathrm{BC}:=\sqrt{2 \cdot \mathrm{Bg}^{2}} \quad \mathrm{Bi}_{\delta}:=\frac{\left(\mathrm{BE}_{\delta}\right)^{2}}{\mathrm{BC}} \quad \mathrm{Ck}_{\delta}:=\frac{\left(\mathrm{CE}_{\delta}\right)^{2}}{\mathrm{BC}}\)
\(\mathrm{ik}_{\delta}:=\mathrm{BC}-\mathrm{Bi}_{\delta}-\mathrm{Ck}_{\delta} \quad \mathrm{ij}_{\delta}:=\frac{\mathrm{ik}_{\delta}}{2}\)
\(B j_{\delta}:=B i_{\delta}+\mathrm{ij}_{\delta} \mathrm{Cj}_{\delta}:=\mathrm{BC}-\mathrm{Bj} \mathrm{j}_{\delta}\)
The algorithm, completely Euclidean, can be used to find the area of any triangle knowing just the length of the three sides. Here it is used, even when the sides exceed the base in length.
\[
\begin{aligned}
& \mathrm{Em}_{\delta}:=\mathrm{Cj}_{\delta} \\
& \mathrm{EF}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{Em}_{\delta}}{\mathrm{Bj}_{\delta}} \quad \mathrm{BF}_{\delta}:=\mathrm{BE}_{\delta}+\mathrm{EF}_{\delta}
\end{aligned}
\]
\(\operatorname{if}\left(\mathrm{EF}_{\delta}, \frac{\mathrm{BF}_{\delta}}{\mathrm{EF}_{\delta}}, 0\right) \quad\) if \(\left(\mathrm{BS}-\delta, \frac{\mathrm{BR} \cdot \mathrm{BS}}{\mathrm{BS}-\delta}, 0\right)\)
\begin{tabular}{|c|}
\hline 0.05 \\
\hline 0.056 \\
\hline 0.064 \\
\hline 0.075 \\
\hline 0.09 \\
\hline 0.112 \\
\hline 0.15 \\
\hline 0.225 \\
\hline 0.45 \\
\hline 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 0.05 \\
\hline 0.056 \\
\hline 0.064 \\
\hline 0.075 \\
\hline 0.09 \\
\hline 0.113 \\
\hline 0.15 \\
\hline 0.225 \\
\hline 0.45 \\
\hline 0 \\
\hline
\end{tabular}


\section*{Plug in values here!}

BASE_LENGTH \(\equiv 21\)
\((B S)=\) BISEC_SEG \(\equiv 9\)
\((\mathrm{BR})=\) BASE_RATIO \(\equiv .05\)

A basic Euclidean divisional / multiplicative series.

Try the values of 5 for the vertical number of divisions and \(.5(1 / 2)\) for the base divisions

One can use the numbers generated by the program to discover what a particular set of ratios would draw out to be.

A fractional number for the base means that the entire base is the fractional part of a larger base.

The algorithm places the remainder at the top for fractional divisions.


Given the difference between three non-collinear points, find the radius

\section*{Inscribe a Circle about a Triangle} of the circle that circumscribes them.
\(\Delta:=(\mathrm{AB}+\mathrm{AC}>\mathrm{BC}) \cdot(\mathrm{AB}+\mathrm{BC}>\mathrm{A}\)
\(A C) \cdot(B C+A C>A B)\)
\(\operatorname{NOT}(X):=X=0\) \(\mathrm{Ae}:=\frac{\mathrm{AB}}{2} \quad \mathrm{Ak}:=\mathrm{AC} \quad \mathrm{Bl}:=\mathrm{BC} \quad \delta:=0 . .2\)

\(\mathrm{Ai}:=\frac{\mathrm{Ak}^{2}}{\mathrm{AB}} \mathrm{Bh}:=\frac{\mathrm{Bl}^{2}}{\mathrm{AB}} \quad \mathrm{Ah}:=\mathrm{AB}-\mathrm{Bh}\)
\(h i:=A h-A i \quad A j:=A i+\frac{h i}{2} C j:=\sqrt{A C^{2}-A j^{2}}\)
\(\mathrm{Be}:=\mathrm{Ae} \quad \mathrm{Bj}:=\mathrm{AB}-\mathrm{Aj} \quad \mathrm{Bg}:=\frac{\mathrm{BC}}{2}\)
\(\mathrm{Bf}:=\frac{\mathrm{BC} \cdot \mathrm{Be}}{\mathrm{Bj}} \mathrm{fg}:=\mathrm{Bf}-\mathrm{Bg} \operatorname{Dg}:=\mathrm{if}\left(\mathrm{Cj}, \frac{\mathrm{Bj} \cdot \mathrm{fg}}{\mathrm{Cj}}, 0\right)\)
\(\mathrm{BD}:=\mathrm{if}\left(\mathrm{Dg}, \sqrt{\mathrm{Dg}^{2}+\mathrm{Bg}^{2}}, \infty\right)\)
radius \(:=\mathrm{if}(\Delta, \mathrm{BD}, 0) \quad\) imaginary_radius \(:=\operatorname{if}(\operatorname{NOT}(\Delta), \mathrm{BD}, 0)\)
\begin{tabular}{l} 
radius \(=3.007\) \\
imaginary_radius \(=0\) \\
\(\Delta=1\)
\end{tabular}\(\quad \mathrm{~S}_{1}:=\left(\begin{array}{l}\mathrm{AB} \\
\mathrm{AC} \\
\mathrm{BC}\end{array}\right) \quad \mathrm{S}_{2}:=\left(\begin{array}{l}\mathrm{AC} \\
\mathrm{BC} \\
\mathrm{AB}\end{array}\right) \mathrm{S}_{3}:=\left(\begin{array}{l}\mathrm{BC} \\
\mathrm{AB} \\
\mathrm{AC}\end{array}\right)\)
\(\Delta=1\)
Reducing to one equation, \(\mathrm{AB} \equiv 3 \quad \mathrm{AC} \equiv 5 \quad \mathrm{BC} \equiv 6\)
\(\mathrm{R}_{\delta}:=\frac{\mathrm{S}_{1_{\delta}} \cdot \mathrm{S}_{2_{\delta}} \cdot \mathrm{S}_{3_{\delta}}}{\sqrt{\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{-\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}-\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}-\mathrm{S}_{3_{\delta}}}}}\)
\(\mathrm{R}^{\mathrm{T}=\left(\begin{array}{lll}3.007 & 3.007 & 3.007\end{array}\right)}\)


Although this is a simpler figure to proof, the ratios involved are quite interesting. The base is divided by the perpendicular bisector into a ratio. The remainder of the base, and the opposite side are then divided into equal ratios. The resultant progressions are very nice.

The two ratios to find are KL:IK and FL:FO.

\[
\mathrm{AJ}:=55 \mathrm{AH}:=\frac{\mathrm{AJ}}{2} \quad \mathrm{HJ}:=\mathrm{AH}
\]

BR := BASE_RATIO
BS := BISEC_SEG
\(\mathrm{AF}:=\frac{\mathrm{AJ}}{\mathrm{BR}} \mathrm{FJ}:=\mathrm{AJ}-\mathrm{AF} \delta:=0 . . \mathrm{BS}\)
\(\mathrm{FI}_{\delta}:=\frac{\mathrm{FJ}}{\mathrm{BS}} \cdot \delta \mathrm{AI}_{\delta}:=\mathrm{AF}+\mathrm{FI}_{\delta}\)
\(\mathrm{AD}_{\delta}:=\frac{\mathrm{AI}_{\delta}}{2} \mathrm{AO}:=\sqrt{\frac{\mathrm{AJ}^{2}}{2}} \quad \mathrm{AK}_{\delta}:=\frac{\mathrm{AO}}{\mathrm{BS}} \cdot \delta \quad \mathrm{FH}:=\mathrm{AH}-\mathrm{AF} \quad \mathrm{HO}:=\mathrm{AH}\)
\(\mathrm{FO}:=\sqrt{\mathrm{HO}^{2}+\mathrm{FH}^{2}} \mathrm{CK}_{\delta}:=\sqrt{\frac{\left(\mathrm{AK}_{\delta}\right)^{2}}{2}} \mathrm{AC}_{\delta}:=\mathrm{CK}_{\delta} \quad \mathrm{CI}_{\delta}:=\mathrm{AI}_{\delta}-\mathrm{AC}_{\delta}\)
\[
\begin{aligned}
& \mathrm{IK}_{\delta}:=\sqrt{\left(\mathrm{CK}_{\delta}\right)^{2}+\left(\mathrm{CI}_{\delta}\right)^{2}} \\
& \mathrm{BC}_{\delta}:=\frac{\mathrm{FH} \cdot \mathrm{CK}_{\delta}}{\mathrm{HO}} \mathrm{BI}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CI}_{\delta} \\
& \mathrm{BK}_{\delta}:=\sqrt{\left(\mathrm{CK}_{\delta}\right)^{2}+\left(\mathrm{BC}_{\delta}\right)^{2}} \\
& \mathrm{FL}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{FI}_{\delta}}{\mathrm{BI}_{\delta}}
\end{aligned}
\]

\(\mathrm{IL}_{\delta}:=\frac{\mathrm{IK}_{\delta} \cdot \mathrm{FL}_{\delta}}{\mathrm{BK}_{\delta}} \quad \mathrm{KL}_{\delta}:=\mathrm{IK}_{\delta}-\mathrm{IL}_{\delta}\)
\[
\begin{array}{ll}
(\mathrm{BR}) & =\text { BASE_RATIO } \equiv 3 \\
(\mathrm{BS}) & =\text { BISEC_SEG } \equiv 5
\end{array} \quad \leftarrow \text { Insert Values Here } .
\]





\section*{Pyramid of Ratios III}

Another set of ratios to explore is AC/AF Again one can plug in numbers for the first three variables at the end of the document. In most of these early works, I did not use the symbolic processor to find the formula as they seeem rather obvious. I do not think it could have gotten by my switch for AF anyway.

\(\mathrm{Dg}:=\mathrm{Ag}-\mathrm{AD} \quad \mathrm{CD}:=\sqrt{\mathrm{Dg}^{2}+\mathrm{Cg}^{2}} \quad \mathrm{DE}_{\delta}:=\frac{\mathrm{CD}}{\mathrm{BS}} \cdot \delta\)
\(\mathrm{Dh}_{\delta}:=\frac{\mathrm{Dg} \cdot \mathrm{DE}_{\delta}}{\mathrm{CD}} \quad \mathrm{Eh}_{\delta}:=\sqrt{\left(\mathrm{DE}_{\delta}\right)^{2}-\left(\mathrm{Dh}_{\delta}\right)^{2}} \mathrm{gh}_{\delta}:=\mathrm{Dg}-\mathrm{Dh}_{\delta} \mathrm{Bh}_{\delta}:=\mathrm{Bg}+\mathrm{gh}_{\delta}\)

\[
\begin{aligned}
& \mathrm{BE}_{\delta}:=\sqrt{\left(\mathrm{Bh}_{\delta}\right)^{2}+\left(\mathrm{Eh}_{\delta}\right)^{2}} \mathrm{CE}_{\delta}:=\mathrm{CD}-\mathrm{DE}_{\delta} \\
& \mathrm{BC}:=\sqrt{\left.2 \cdot \mathrm{Bg}^{2} \mathrm{Bi}_{\delta}:=\frac{\left(\mathrm{BE}_{\delta}\right)^{2}}{\mathrm{BC}} \mathrm{Ck}_{\delta}:=\frac{(\mathrm{CE}}{\delta}\right)^{2}} \mathrm{BC} \\
& \mathrm{ik}_{\delta}:=\mathrm{BC}-\mathrm{Bi}_{\delta}-\mathrm{Ck}_{\delta} \quad \mathrm{ij}_{\delta}:=\frac{\mathrm{ik}_{\delta}}{2} \\
& \mathrm{Bj}_{\delta}:=\mathrm{Bi}_{\delta}+\mathrm{ij}_{\delta} \quad \mathrm{Cj}_{\delta}:=\mathrm{BC}-\mathrm{Bj}_{\delta} \quad \mathrm{AC}:=\mathrm{BC}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{Em}_{\delta}:=\mathrm{Cj}_{\delta} \quad \mathrm{EF}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{Em}_{\delta}}{\mathrm{Bj}_{\delta}} \\
& \mathrm{BF}_{\delta}:=\mathrm{BE}_{\delta}+\mathrm{EF}_{\delta} \quad \mathrm{CF}_{\delta}:=\sqrt{\left(\mathrm{BF}_{\delta}\right)^{2}-\mathrm{BC}^{2}}
\end{aligned}
\]
\[
\mathrm{AF}_{\delta}:=\mathrm{if}\left(\mathrm{BR}>1, \mathrm{AC}-\mathrm{CF}, \mathrm{if}\left(\mathrm{BF}_{\delta}<0, \mathrm{AC}-\mathrm{CF}, \mathrm{AC}+\mathrm{CF}\right)\right)_{\delta}
\]

Plug in values here!
(AB) BASE_LENGTH \(\equiv 22\)
(BS) BISEC_SEG \(\equiv 5\)
(BR) BASE_RATIO \(\equiv 3\)


\section*{The Pythagorean Completion.}


\section*{A triangle theorem.}

\section*{07_18_E3.MCD}

Given the distance between non-equal intersecting circles and their radii, find the height and placement of the perpendicular bisector that they form.

This problem can be restated as, given a triangle knowing only the length of the three sides, find its area.

When one looks at a right triangle, one should see a square root and two square derivatives. The root, BD , is the root of \(\mathrm{AB} \times \mathrm{BC}\).
The two square derivatives are \(\mathrm{AB}=\mathrm{A} \mathrm{L}^{2} / \mathrm{AC}\) and of course \(\mathrm{BC}=\mathrm{CD}^{2} / \mathrm{AC}\). The square derivatives allow one to find the perpendicular bisector of the right triangle. These last two can be found with plain division instead of a root function. Since the area of a triangle is \(1 / 2 b h\), finding the area of a right triangle is easy knowing just the length of two sides.

The process for finding the perpendicular for any other triangle is by completing simultaneous right triangles. The two bisectors created by these triangles will place the bisector of our starting triangle exactly in the center of them. I will use the following algorithm extensively when working in Euclidean geometry.
al \(\lg 0 \cdot r\) ithm \(n\).
1. Math. a) any systematic method of solving a certain kind of problem. Ref. Lib.


In this version, AC has been "formulated" into the lowest terms. I have nothing against Heron's formula, but a correct reduction has only the input constants showing.
\(\mathrm{AE}:=6 \quad \mathrm{AF}:=5 \quad \mathrm{EF}:=4 \quad \leftarrow\) Plug your values in here .
The sum of any two sides of a triangle is greater than the third. Euclid.

Is_This_a_Triangle \(:=\frac{1}{(\mathrm{AE}+\mathrm{AF} \geq \mathrm{EF}) \cdot(\mathrm{AE}+\mathrm{EF} \geq \mathrm{AF}) \cdot(\mathrm{AF}+\mathrm{EF} \geq \mathrm{AE})} \mathrm{AG}:=\mathrm{AF} \mathrm{EH}:=\mathrm{EF}\)
\[
\mathrm{AB}:=\frac{\mathrm{AG}^{2}}{\mathrm{AE}} \mathrm{DE}:=\frac{\mathrm{EH}^{2}}{\mathrm{AE}} \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{AC}:=\frac{1}{2} \cdot \frac{\mathrm{AF}^{2}}{\mathrm{AE}}+\frac{1}{2} \cdot \mathrm{AE}-\frac{1}{2} \cdot \frac{\mathrm{EF}^{2}}{\mathrm{AE}}
\]

The perpendicular bisector from AC is given as
\[
\mathrm{AC}=3.75
\]
\(\mathrm{CE}:=\mathrm{AE}-\mathrm{ACCF} \mathrm{Cl}_{1}:=\sqrt{\mathrm{EF}^{2}-\mathrm{CE}^{2}} \mathrm{CF}_{2}:=\sqrt{\mathrm{AF}^{2}-\mathrm{AC}^{2}} \mathrm{CF}_{1}=3.307\)
The endpoints of two sides of a triangle cannot meet in two different places. Euclid.
\[
\mathrm{CF}_{1}-\mathrm{CF}_{2}=0
\]

Area \(:=\frac{\mathrm{AE}}{2} \cdot \mathrm{CF}_{1} \quad\) Area \(=9.922 \quad \mathrm{~S}_{1}:=\mathrm{AE} \quad \mathrm{S}_{2}:=\mathrm{AF} \quad \mathrm{S}_{3}:=\mathrm{EF}\)
\[
\frac{\sqrt{S_{1}+S_{2}+S_{3}} \cdot \sqrt{-S_{1}+S_{2}+S_{3}} \cdot \sqrt{S_{1}-S_{2}+S_{3}} \cdot \sqrt{S_{1}+S_{2}-S_{3}}}{4}=9.922
\]

The following result could lead to a more general rule regarding the squares on two sides of any triangle as related to the third side.
\[
\left(\mathrm{AE}^{2}-(\mathrm{BD} \cdot \mathrm{AE})\right)-\left(\mathrm{AF}^{2}+\mathrm{EF}^{2}\right)=0
\]
\[
\mathrm{AE}^{2}-(\mathrm{BD} \cdot \mathrm{AE})=41 \quad \mathrm{EF}^{2}+\mathrm{AF}^{2}=41
\]

If we agree to call BD the right angle defect, thenthe squares on two sides of a triangle are equal to the remaining side squared minus its right angle defect multiplied by that side. Or if one wants to be less obtuse,

\[
\begin{array}{ll}
\mathrm{Ax}:=\frac{\mathrm{AE}}{2} \mathrm{Cx}:=\mathrm{Ax}-\mathrm{AC} & \mathrm{Fx}:=\sqrt{\left(\mathrm{CF}_{1}\right)^{2}+\mathrm{Cx}^{2}} \\
\frac{\mathrm{AE}^{2}}{2}+2 \cdot \mathrm{Fx}^{2}=41 & \mathrm{AF}^{2}+\mathrm{EF}^{2}=41
\end{array}
\]

Calling Fx the radial to the bisector,The squares on any two sides of a triangle are equal to half of the square on the remaining side added to twice the square of its. radial bisector.
\[
\begin{aligned}
& \left(A F^{2}+E F^{2}\right)-\left(\frac{A E^{2}}{2}+2 \cdot \mathrm{Fx}^{2}\right)=0 \\
& F x-\sqrt{\frac{\left(A F^{2}+E F^{2}\right)-\frac{A E^{2}}{2}}{2}}=0
\end{aligned} \quad \mathrm{Fx}-\frac{1}{2} \cdot \sqrt{2 \cdot A F^{2}+2 \cdot \mathrm{EF}^{2}-\mathrm{AE}^{2}}=0 .
\]

It is shown that there are at least two formulas which relate the squares of any two sides of a triangle to the third, this makes the Pythagorean theorem a statement of a single case. This single case is, however, a fundamental geometrical tool.
\(\frac{\mathrm{DE}_{\delta}}{\mathrm{DG}^{\delta}}\)
07_25_93.MCD

\section*{Pyramid Of Ratio Series IV Working the Curve}

This the ratios will be working against a curve, instead of a straight line intercept. The ratios found are DE:DG and AG:GC. This series is not yet completed, as the ratio AB : AD remains fixed.
At the end of this paper, \(\pi\) will be calculated to any number of given segments by summing all the segments AG.

\[
\mathrm{AD}:=1 \quad \delta:=0 . . \mathrm{BS} \mathrm{AB}:=\frac{\mathrm{AD}}{2}
\]

The following will keep the tables from getting out of hand.
\[
\begin{aligned}
& \mathrm{BC}:=\mathrm{AB} \mathrm{BD}:=\mathrm{AB} \mathrm{BE}_{\delta}:=\frac{\mathrm{BC}}{\mathrm{BS}} \cdot \delta \\
& \mathrm{DE}_{\delta}:=\sqrt{\mathrm{BD}^{2}+\left(\mathrm{BE}_{\delta}\right)^{2}} \mathrm{DF}_{\delta}:=\frac{\mathrm{BD}^{2}}{\mathrm{DE}_{\delta}} \\
& \mathrm{DG}_{\delta}:=2 \cdot \mathrm{DF}_{\delta}
\end{aligned}
\]
\begin{tabular}{l|}
\(\frac{\mathrm{DE}_{\delta}}{\mathrm{DG}_{\delta}}\) \\
\hline 0.5 \\
\hline 0.514 \\
\hline 0.556 \\
\hline 0.625 \\
\hline 0.722 \\
\hline 0.847 \\
\hline 1 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|}
\hline \(\left.0 . \frac{\delta}{\mathrm{BS}}\right)^{2}+1\) \\
\hline 0.514 \\
\hline 0.625 \\
\hline 0.722 \\
\hline 0.847 \\
\hline 1 \\
\hline
\end{tabular}


The series formed in these papers are somewhat attractive for their simplicity.
\(\mathrm{DH}_{\delta}:=\frac{\left(\mathrm{DG}_{\delta}\right)^{2}}{\mathrm{AD}} \mathrm{BH}_{\delta}:=\mathrm{DH}_{\delta}-\mathrm{BD} \quad \mathrm{GH}_{\delta}:=\sqrt{\left(\mathrm{DG}_{\delta}\right)^{2}-\left(\mathrm{DH}_{\delta}\right)^{2}} \mathrm{BI}_{\delta}:=\mathrm{GH}_{\delta} \quad \mathrm{CI}_{\delta}:=\mathrm{BC}-\mathrm{BI}_{\delta}\)
\[
\mathrm{GI}_{\delta}:=\mathrm{BH}_{\delta} \mathrm{AH}_{\delta}:=\mathrm{AB}-\mathrm{BH}_{\delta}
\]
\[
\mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{GI}_{\delta}\right)^{2}+\left(\mathrm{CI}_{\delta}\right)^{2}}
\]
\[
\mathrm{AG}_{\delta}:=\sqrt{\left(\mathrm{AH}_{\delta}\right)^{2}+\left(\mathrm{GH}_{\delta}\right)^{2}}
\]

\(\operatorname{if}\left(\mathrm{BS}-\delta, \frac{\mathrm{AG}_{\delta}}{\mathrm{CG}_{\delta}}, 0\right)\) if \(\left(\mathrm{BS}-\delta, \frac{\delta \cdot \sqrt{2}}{\mathrm{BS}-\delta}, 0\right)\)
\begin{tabular}{|c|}
\hline 0 \\
\hline 0.283 \\
\hline 0.707 \\
\hline 1.414 \\
\hline 2.828 \\
\hline 7.071 \\
\hline 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 0 \\
\hline 0.283 \\
\hline 0.707 \\
\hline 1.414 \\
\hline 2.828 \\
\hline 7.071 \\
\hline 0 \\
\hline
\end{tabular}



Finding the value of PI to any given number of unequal segments.
\[
\begin{aligned}
& \chi:=1 . . \mathrm{BS} \\
& \mathrm{JK}_{\chi}:=\mathrm{GI}_{\chi} \mathrm{GM}_{\chi}:=\mathrm{GI}_{\chi-1}-\mathrm{JK}_{\chi} \\
& \mathrm{CK}_{\chi}:=\mathrm{CI}_{\chi} \quad \mathrm{IK}_{\chi}:=\mathrm{CI}_{\chi-1}-\mathrm{CK}_{\chi} \\
& \mathrm{GJ}_{\delta}:=\sqrt{\left(\mathrm{GM}_{\delta}\right)^{2}+\left(\mathrm{IK}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{BS} \equiv 6 \quad \sum_{\delta} \mathrm{GJ}_{\delta} \cdot 4=3.13154608512668\)
\[
\begin{gathered}
\text { Computed for } 5000 \text { segments } \mathrm{BS} \equiv 5000 \sum_{\delta} \mathrm{GJ}_{\delta} \cdot 4=3.141592639069159 \\
\pi=3.141592653589793
\end{gathered}
\]

\section*{Gruntwork I on the Delian Solution}


11_06_93.mcd

According to number theory, it is not possible to develop a cube root relationship using only linear and square root operations. Watch.

Given any circle ABE and any point, D, between AE.


Describe \(\mathrm{AK}, \mathrm{JK}, \mathrm{FJ}\) such that \(\mathrm{AK}=\mathrm{BC}\), \(\mathrm{JK}=\mathrm{HI}, \mathrm{FJ}=\mathrm{AH}\).

Do IJ and HK and CF meet at one and only one point L ?

\[
\begin{aligned}
& \mathrm{AC}:=10 \mathrm{AB}:=\frac{\mathrm{AC}}{2} \mathrm{BC}:=\mathrm{AB} \text { INC }:=500 \\
& \mathrm{MN}:=\mathrm{AC} \mathrm{BD}:=\mathrm{AB} \delta:=0 . . \mathrm{INC}-1
\end{aligned}
\]
\[
\mathrm{AM}_{\delta}:=\frac{\mathrm{AB}}{\mathrm{INC}} \cdot \delta \mathrm{BM}_{\delta}:=\mathrm{AB}-\mathrm{AM}_{\delta} \mathrm{FN}_{\delta}:=\mathrm{AM}_{\delta}
\]
\[
\mathrm{DM}_{\delta}:=\sqrt{\mathrm{BD}^{2}-\left(\mathrm{BM}_{\delta}\right)^{2}} \mathrm{DN}_{\delta}:=\mathrm{MN}+\mathrm{DM}_{\delta}
\]
\[
\mathrm{GN}_{\delta}:=\mathrm{BC}+\mathrm{BM}_{\delta} \quad \mathrm{DG}_{\delta}:=\sqrt{\left(\mathrm{GN}_{\delta}\right)^{2}+\left(\mathrm{DN}_{\delta}\right)^{2}}
\]
\[
\mathrm{IM}_{\delta}:=\frac{\mathrm{GN}_{\delta} \cdot \mathrm{DM}_{\delta}}{\mathrm{DN}_{\delta}} \mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{FN}_{\delta}\right)^{2}+\left(\mathrm{DN}_{\delta}\right)^{2}}
\]
\[
\mathrm{HM}_{\delta}:=\frac{\mathrm{FN}_{\delta} \cdot \mathrm{DM}_{\delta}}{\mathrm{DN}_{\delta}} \quad \mathrm{AH}_{\delta}:=\mathrm{AM}_{\delta}-\mathrm{HM}_{\delta}
\]

Construct BQ and HP parallel with AO.
KT and JU parallel with CF.
RT and SU parallel with AF.
\(\mathrm{AI}_{\delta}:=\mathrm{AM}_{\delta}+\mathrm{IM}_{\delta} \mathrm{CI}_{\delta}:=\mathrm{AC}-\mathrm{AI}_{\delta} \mathrm{CQ}_{\delta}:=\sqrt{\frac{\left(\mathrm{CI}_{\delta}\right)^{2}}{2}}\)
\(\mathrm{CH}_{\delta}:=\mathrm{AC}-\mathrm{AH}_{\delta} \mathrm{CP}_{\delta}:=\sqrt{\frac{\left(\mathrm{CH}_{\delta}\right)^{2}}{2}} \mathrm{CO}:=\sqrt{\frac{\mathrm{AC}^{2}}{2}}\)
\(\mathrm{AK}_{\delta}:=\mathrm{CI}_{\delta} \mathrm{AJ}_{\delta}:=\mathrm{CH}_{\delta} \mathrm{FJ}_{\delta}:=\mathrm{AH}_{\delta} \mathrm{US}_{\delta}:=\mathrm{FJ}_{\delta}\)
\(\mathrm{FK}_{\delta}:=\mathrm{AI}_{\delta} \mathrm{RT}_{\delta}:=\mathrm{FK}_{\delta} \mathrm{IJ}_{\delta}:=\sqrt{\left(\mathrm{AI}_{\delta}\right)^{2}+\left(\mathrm{AJ}_{\delta}\right)^{2}}\)
\(\mathrm{HK}_{\delta}:=\sqrt{\left(\mathrm{AH}_{\delta}\right)^{2}+\left(\mathrm{AK}_{\delta}\right)^{2} \mathrm{QU}_{\delta}:=\sqrt{\frac{\left(\mathrm{US}_{\delta}\right)^{2}}{2}}}\)
\(\mathrm{PT}_{\delta}:=\sqrt{\frac{\left(\mathrm{RT}_{\delta}\right)^{2}}{2}} \mathrm{IQ}_{\delta}:=\mathrm{CQ}_{\delta} \mathrm{HP}_{\delta}:=\mathrm{CP}_{\delta}\)

\[
\begin{aligned}
& \mathrm{IU}_{\delta}:=\mathrm{IQ}_{\delta}-\mathrm{QU}_{\delta} \mathrm{HT}_{\delta}:=\mathrm{HP}_{\delta}-\mathrm{PT}_{\delta} \\
& \mathrm{KT}_{\delta}:=\sqrt{\left(\mathrm{HK}_{\delta}\right)^{2}-\left(\mathrm{HT}_{\delta}\right)^{2}} \mathrm{JU}_{\delta}:=\sqrt{\left(\mathrm{IJ}_{\delta}\right)^{2}-\left(\mathrm{IU}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\mathrm{LQ}_{\delta}:=\frac{\mathrm{JU}_{\delta} \cdot \mathrm{IQ}_{\delta}}{\mathrm{IU}_{\delta}} \mathrm{P}_{\delta}:=\frac{\mathrm{KT}_{\delta} \cdot \mathrm{HP}_{\delta}}{\mathrm{HT}_{\delta}} \mathrm{OQ}_{\delta}:=\mathrm{CO}-\mathrm{CQ}_{\delta}
\]
\[
\mathrm{OP}_{\delta}:=\mathrm{CO}-\mathrm{CP}_{\delta} \mathrm{LO}_{\delta}:=\mathrm{LQ}_{\delta}-\mathrm{OQ}_{\delta}
\]
\[
\mathrm{LO}_{\delta}:=\mathrm{LP}_{\delta}-\mathrm{OP}_{\delta}
\]

DIFF_A \({ }_{\delta}:=\mathrm{LO} 1_{\delta}-\mathrm{LO} 2_{\delta}\)


IJ, HK, and CF meet in one point L
\[
\mathrm{HI}_{\delta}:=\mathrm{HM}_{\delta}+\mathrm{IM}_{\delta} \text { DIFF_B } \delta:=\mathrm{HI}_{\delta}-\sqrt{\mathrm{AH}_{\delta} \cdot \mathrm{CI}_{\delta}}
\]


The segment HI is the square root of the remaining segments \(\mathrm{AH}, \mathrm{CI}\).

\(\mathrm{FO}:=\mathrm{CO} \mathrm{FL} \delta_{\delta}:=\mathrm{LO}_{\delta}-\mathrm{FO}\)
\(\mathrm{FV}_{\delta}:=\sqrt{\frac{\left(\mathrm{FL}_{\delta}\right)^{2}}{2}} \mathrm{AM}_{\delta}:=\mathrm{FV}_{\delta}\)
\(\vee \mathrm{HM}_{\delta}:=\mathrm{AM}_{\delta}+\mathrm{AH}_{\delta} \mathrm{IM}_{\delta}:=\mathrm{HM}_{\delta}+\mathrm{HI}_{\delta}\)
\(\mathrm{CM}_{\delta}:=\mathrm{AM}_{\delta}+\mathrm{AC}\)

DIFF_C \(_{\delta}:=\left[\left(\mathrm{AM}_{\delta}\right)^{2} \cdot \mathrm{CM}_{\delta}\right]^{\frac{1}{3}}-\mathrm{HM}_{\delta}\)


HM is the cube root of \(\left(\mathrm{AM}_{\delta}\right)^{2} \cdot \mathrm{CM}_{\delta}\)
\(\mathrm{DIFF}_{-} \mathrm{D}_{\delta}:=\left[\mathrm{AM}_{\boldsymbol{\delta}} \cdot\left(\mathrm{CM}_{\delta}\right)^{2}\right]^{\frac{1}{3}}-\mathrm{IM}_{\delta}\)


IM is the cube root of \(\mathrm{AM}_{\delta} \cdot\left(\mathrm{CM}_{\delta}\right)^{2}\)

\section*{Solve for Cube Placement}

\section*{E \\ B}

D C
\[
\begin{aligned}
& \mathrm{CD}=\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}-\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}} \\
& \mathrm{AB}=?
\end{aligned}
\]

\section*{Process Summary}


\(\Delta:=500 \quad \delta:=1 . . \Delta \quad B E:=100\)
\[
\mathrm{CD}_{\delta}:=\frac{\mathrm{BE}}{3 \cdot \Delta} \cdot \delta \quad \mathrm{CF}_{\delta}:=\frac{\mathrm{CD}_{\delta}}{2} \quad \mathrm{BG}_{\delta}:=\mathrm{CF}_{\delta}
\]
\[
\mathrm{BH}:=\frac{\mathrm{BE}}{2} \quad \mathrm{EH}:=\mathrm{BH} \quad \mathrm{GH}_{\delta}:=\mathrm{BH}-\mathrm{BG}_{\delta}
\]

\[
\begin{aligned}
& \mathrm{HI}_{\delta}:=\mathrm{GH}_{\delta} \quad \mathrm{IL}_{\delta}:=\mathrm{CD}_{\delta} \quad \mathrm{HJ}:=\mathrm{BH} \\
& \mathrm{HL}_{\delta}:=\sqrt{\left(\mathrm{HI}_{\delta}\right)^{2}-\left(\mathrm{IL}_{\delta}\right)^{2}} \quad \mathrm{HK}_{\delta}:=\frac{\mathrm{HL}_{\delta} \cdot \mathrm{HJ}}{\mathrm{HI}_{\delta}}
\end{aligned}
\]
\[
\mathrm{JK}_{\delta}:=\sqrt{\mathrm{HJ}^{2}-\left(\mathrm{HK}_{\delta}\right)^{2}} \mathrm{BK}_{\delta}:=\mathrm{BH}-\mathrm{HK}_{\delta}
\]
\[
\mathrm{EK}_{\delta}:=\mathrm{EH}+\mathrm{HK}_{\delta}
\]
\[
\mathrm{CJ}_{\delta}:=\sqrt{\left(\mathrm{JK}_{\delta}\right)^{2}+\left(\mathrm{BK}_{\delta}\right)^{2}} \quad \mathrm{MO}_{\delta}:=\mathrm{CD}_{\delta}
\]
\[
\mathrm{EJ}_{\delta}:=\sqrt{\left(\mathrm{EK}_{\delta}\right)^{2}+\left(\mathrm{JK}_{\delta}\right)^{2}} \quad \mathrm{NP}_{\delta}:=\mathrm{CD}_{\delta}
\]
\[
\mathrm{EN}_{\delta}:=\frac{\mathrm{EK}_{\delta} \cdot \mathrm{NP}_{\delta}}{\mathrm{JK}_{\delta}} \quad \mathrm{BN}_{\delta}:=\mathrm{BE}-\mathrm{EN}_{\delta}
\]
\[
\mathrm{BM}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{MO}_{\delta}}{\mathrm{JK}_{\delta}} \mathrm{MN}_{\delta}:=\mathrm{BN}_{\delta}-\mathrm{BM}_{\delta}
\]
\[
\mathrm{OP}_{\delta}:=\mathrm{MN}_{\delta}
\]

It appears that \(\mathrm{MN}=\mathrm{CD}\).


\[
\begin{aligned}
& \mathrm{NQ}_{\delta}:=\mathrm{EN}_{\delta} \quad \mathrm{PQ}_{\delta}:=\mathrm{NQ}_{\delta}-\mathrm{NP}_{\delta} \\
& \mathrm{AN}_{\delta}:=\frac{\mathrm{OP}_{\delta} \cdot \mathrm{NQ}_{\delta}}{\mathrm{PQ}_{\delta}} \quad \mathrm{AB}_{\delta}:=\mathrm{AN}_{\delta}-\mathrm{BN}_{\delta}
\end{aligned}
\]
\[
\mathrm{AM}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BM}_{\delta} \quad \mathrm{AN}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BN}_{\delta}
\]
\[
\mathrm{AE}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BE}
\]
\[
\operatorname{ROOT}_{\delta}:=\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AE}_{\delta}\right]^{\frac{1}{3}}
\]
\[
\mathrm{ROOT}_{\delta}:=\left[\mathrm{AB}_{\delta} \cdot\left(\mathrm{AE}_{\delta}\right)^{2}\right]^{\frac{1}{3}}
\]


We seem to have a cube root relationship



Sample Points along the arc.

Last ratio. \(\frac{\mathrm{BE}}{\mathrm{CD}_{\Delta}}=3\)
\(\mathrm{D}_{-} \mathrm{S}_{\delta}:=\sqrt{\mathrm{EN}_{\delta} \cdot \mathrm{BM}_{\delta}}-\mathrm{MN}_{\delta}\)


The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship. Later we will come to realize that a perpendicular to the rectangle in a right triangle on the hypotenuse is equal to the square root of the two external segments of the rectangle. These two will be called Gemini roots as I do not know the proper term.


\section*{Gruntwork II on the} Delian Solution

Given any acute angle in the isosceles, divide the base leg as shown. Do the resultant segments show any particular relationship to one another?

Process Summary


The figure indicates a possible cubic relationship. This is what will be tested along with some of the constants involved.
\(\mathrm{D}:=10 \Delta:=90 \quad \delta:=1 . . \Delta \cdot \mathrm{D}\)
\(\Delta\) will give the the range as 90 degrees. D will further divide each degree into smaller segments.

AE \(:=100\)
\(\mathrm{AF}:=\mathrm{AE} \quad \angle \mathrm{A}_{\boldsymbol{\delta}}:=\frac{\delta \cdot \mathrm{deg}}{\mathrm{D}}\)
\(\mathrm{DF}_{\boldsymbol{\delta}}:=\mathrm{AF} \cdot\left(\sin \left(\angle \mathrm{A}_{\boldsymbol{\delta}}\right)\right)\)
\(\mathrm{AD}_{\delta}:=\sqrt{\mathrm{AF}^{2}-\left(\mathrm{DF}_{\delta}\right)^{2}}\)


The simple figure yields a cube root relationship.


Sample points taken along DE.
There are \(\mathrm{D} \cdot \Delta=900\) figures represented.


E E D C I B


I would interpret this to mean yes.

Is then, CD the square root of BC and DE ?


I would interpret this to mean yes also.


E D K C I B

Is AK the square root of AB AE ?
\[
\begin{aligned}
& \mathrm{BE}_{\delta}:=\mathrm{AE}-\mathrm{AB}_{\delta} \mathrm{BJ}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{BE}_{\delta}} \\
& \mathrm{AJ}_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}+\left(\mathrm{BJ}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{A} \quad \mathrm{AK}_{\delta}:=\mathrm{AJ}_{\delta}\)

Apparently so.



E D K C I B

Do N, O, and P lie on the same arc?
\[
\begin{aligned}
& \mathrm{DN}_{\delta}:=\sqrt{\mathrm{AD}_{\delta} \cdot \mathrm{DE}_{\delta}} \\
& \mathrm{AN}_{\delta}:=\sqrt{\left(\mathrm{AD}_{\delta}\right)^{2}+\left(\mathrm{DN}_{\delta}\right)^{2}} \\
& \mathrm{AO}_{\delta}:=\frac{\mathrm{AG}_{\delta} \cdot \mathrm{AK}_{\delta}}{\mathrm{AC}_{\delta}} \\
& \mathrm{AP}_{\delta}:=\frac{\mathrm{AJ}_{\delta} \cdot \mathrm{AC}_{\delta}}{\mathrm{AB}_{\delta}}
\end{aligned}
\]

Another affirmative.


\title{
The Archamedian Paper Trisector:
}
```
11_11_B3.MCD
```


I have never seen the developed figure from which the Archamedian Pager Trisector derives. \(\mathrm{DE}=\mathrm{AC}\), and by using a piece of marked paper, CDE can be somewhat aligned producing the trisection \(\mathrm{CEB}=1 / 3 \mathrm{CAB}\).


In both cases CDB is \(1 / 3\) of CAB . It appears that trisection might occur for the entire circle.
\[
E \quad D \quad b \quad a \quad C \quad B \quad A
\]
\[
A b_{\delta}:=\text { if }\left[\text { View }, \frac{\mathrm{AE}}{\mathrm{View}}-\left(\frac{\frac{\mathrm{AE}}{\mathrm{View}}}{\Delta} \cdot \boldsymbol{\delta}\right), \mathrm{AE}-\left(\frac{\mathrm{AE}}{\Delta} \cdot \boldsymbol{\delta}\right)\right]
\]
\[
\mathrm{Eb}_{\delta}:=\mathrm{AE}-\mathrm{Ab}_{\delta}
\]
\[
\mathrm{Hb}_{\delta}:=\sqrt{\mathrm{Ab}_{\delta} \cdot \mathrm{Eb}_{\delta}} \mathrm{EH}_{\delta}:=\sqrt{\left(\mathrm{Hb}_{\delta}\right)^{2}+\left(\mathrm{Eb}_{\delta}\right)^{2}}
\]
\[
\mathrm{AC}:=\frac{\mathrm{AE}}{2} \mathrm{CE}:=\mathrm{AC} \quad \mathrm{Ee}_{\delta}:=\frac{\mathrm{EH}_{\delta}}{2}
\]
\[
\mathrm{Ce}_{\delta}:=\sqrt{\mathrm{CE}^{2}-\left(\mathrm{Ee}_{\delta}\right)^{2}} \mathrm{Cd}_{\delta}:=\frac{\left(\mathrm{Ce}_{\delta}\right)^{2}}{\mathrm{CE}} \mathrm{CG}:=\mathrm{AC} \mathrm{Cf}_{\delta}:=\frac{\mathrm{Cd}_{\delta} \cdot \mathrm{CG}}{\mathrm{Ce}_{\delta}}
\]
\[
\mathrm{de}_{\delta}:=\sqrt{\left(\mathrm{Ce}_{\delta}\right)^{2}-\left(\mathrm{Cd}_{\delta}\right)^{2}} \mathrm{Gf}_{\delta}:=\frac{\mathrm{de}_{\delta} \cdot \mathrm{Cf}_{\delta}}{\mathrm{Cd}_{\delta}} \quad \mathrm{Af}_{\delta}:=\mathrm{AC}+\mathrm{Cf}_{\delta} \quad \mathrm{AG}_{\delta}:=\sqrt{\left(\mathrm{Af}_{\delta}\right)^{2}+\left(\mathrm{Gf}_{\delta}\right)^{2}}
\]

\(\mathrm{FH}_{\delta}:=\mathrm{CH}-\mathrm{CF}_{\delta} \quad \mathrm{Ca}_{\delta}:=\frac{\mathrm{Cb}_{\delta} \cdot \mathrm{CF}_{\delta}}{\mathrm{CH}} \mathrm{Fa}_{\delta}:=\sqrt{\left(\mathrm{CF}_{\delta}\right)^{2}-\left(\mathrm{Ca}_{\delta}\right)^{2}} \quad \mathrm{DF}_{\delta}:=\mathrm{FH}_{\delta}\)
\(\mathrm{Da}_{\delta}:=\sqrt{\left(\mathrm{DF}_{\delta}\right)^{2}-\left(\mathrm{Fa}_{\delta}\right)^{2}} \quad \mathrm{Aa}_{\delta}:=\mathrm{AC}+\mathrm{Ca}_{\delta} \quad \mathrm{Ba}_{\delta}:=\mathrm{Da}_{\delta} \quad \mathrm{AB}_{\delta}:=\mathrm{Aa}_{\delta}-\mathrm{Ba}_{\delta}\)
By what is known about trisection, AB must equal FH .


\[
\begin{aligned}
& \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\left(2 \cdot \mathrm{Da}_{\delta}\right) \quad \mathrm{Db}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{Ab}_{\delta} \\
& \mathrm{DH}_{\delta}:=\sqrt{\left(\mathrm{Hb}_{\delta}\right)^{2}+\left(\mathrm{Db}_{\delta}\right)^{2}} \mathrm{Bj}_{\delta}:=\frac{\mathrm{DH}_{\delta} \cdot \mathrm{AB}_{\delta}}{\mathrm{AD}_{\delta}}
\end{aligned}
\]
\[
\mathrm{Bh}_{\delta}:=\frac{\mathrm{Bj}_{\delta}}{2} \quad \mathrm{Ah}_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}-\left(\mathrm{Bh}_{\delta}\right)^{2}}
\]
\(\mathrm{Fr}_{\delta}:=\mathrm{Ah}_{\delta} \quad \mathrm{Hn}_{\delta}:=\frac{\mathrm{DH}_{\delta}}{2} \quad \mathrm{pq}_{\delta}:=\mathrm{Bj}_{\delta} \quad \mathrm{mk}_{\delta}:=\mathrm{Bj}_{\delta}\)
\(\mathrm{Fn}_{\delta}:=\mathrm{if}\left[\mathrm{AD}_{\delta}>\mathrm{AC}, \sqrt{\left(\mathrm{FH}_{\delta}\right)^{2}-\left(\mathrm{Hn}_{\delta}\right)^{2}},-\sqrt{\left(\mathrm{FH}_{\delta}\right)^{2}-\left(\mathrm{Hn}_{\delta}\right)^{2}}\right] \quad \mathrm{nr}_{\delta}:=\mathrm{Fr}_{\delta}-\mathrm{Fn}_{\delta}\)
\[
\mathrm{Hm}_{\delta}:=\frac{\mathrm{DH}_{\delta}-\mathrm{mk}_{\delta}}{2} \mathrm{mp}_{\delta}:=\mathrm{nr}_{\delta} \quad \mathrm{Hp} p_{\delta}:=\sqrt{\left(\mathrm{mp}_{\delta}\right)^{2}+\left(\mathrm{Hm}_{\delta}\right)^{2}} \mathrm{HE}_{\delta}:=\sqrt{\left(\mathrm{Hb}_{\delta}\right)^{2}+\left(\mathrm{Eb}_{\delta}\right)^{2}}
\]

\(\angle \mathrm{A}_{\boldsymbol{\delta}}:=\operatorname{asin}\left(\frac{\mathrm{Bh}_{\boldsymbol{\delta}}}{\mathrm{AB}_{\boldsymbol{\delta}}} \cdot \frac{2}{\operatorname{deg}}\right.\)
Plug resolution in here \(\Delta \equiv 1000 \quad \angle \mathrm{~A}_{\Delta-1} \cdot 3=264.5635 \quad\) View \(\equiv|0|\)


One can safely say that the limit of the Archamedian paper trisector is 270 degrees.


\section*{To Square A Circle \\ 11_12_93.MCD}

Sometime in 1992, I remembered reading that some guy spent some time in prison and learned the process for squaring a circle off the base of a right triangle but then history lost it again, so I set out to find it and did. It took a couple hours so I wonder what he did with the rest of his time?

Using the approximation, \(\pi=22 / 7\), square the circle off the base of a right triangle.

\section*{Process Summary}

The most primitive formula for Area is \(\mathrm{A}=1 / 2 \mathrm{bh}\). We will not use its transformation to \(\pi \mathrm{r}^{2}\).

Special Value for BE, try 4, then look at the corresponding value for EJ.

\(\mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}} \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CG}^{2}} \pi \_\mathrm{A}:=\frac{\mathrm{EG}^{2}}{\mathrm{BD}^{2}}\)
\[
\begin{aligned}
\pi_{-} \mathrm{A} & =3.14285714 \\
\frac{22}{7} & =3.14285714
\end{aligned}
\]
\(\mathrm{BE}:=4 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{DE}:=\mathrm{BD}\)
DI \(:=\mathrm{BD} \quad \mathrm{DH}:=\frac{3}{4} \cdot \mathrm{DI}\)
\(\mathrm{AB}:=\mathrm{DH} \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{EJ}:=\frac{\mathrm{DI} \cdot \mathrm{AE}}{\mathrm{AD}}\)
\(\mathrm{CE}:=\mathrm{EJ} \quad \mathrm{BC}:=\mathrm{BE}-\mathrm{CE}\)

Basically we have taken one half of the circle for \(1 / 2 \mathrm{~b}\) and crudely projected the arc EI for the height.


For any point K, construct GL parallel to HM. LK then projects to the point from which the figure forms the cubic.
\[
\begin{aligned}
& \mathrm{EJ}:=100 \Delta:=1000 \quad \delta:=0 . \Delta-1 \\
& \mathrm{EH}:=\frac{\mathrm{EJ}_{2}}{\mathrm{EF}_{\delta}:=\frac{\mathrm{EH}}{\Delta} \cdot \delta \quad \mathrm{FJ}_{\delta}:=\mathrm{EJ}-\mathrm{EF}_{\delta} \quad \mathrm{BH}:=\mathrm{EJ}}
\end{aligned}
\]
\[
\mathrm{FK}_{\delta}:=\sqrt{\mathrm{EF}_{\delta} \cdot \mathrm{FJ}_{\delta} \mathrm{FH}_{\delta}:=\mathrm{EH}-\mathrm{EF}_{\delta} \mathrm{Ka}_{\delta}:=\mathrm{FH}_{\delta} \quad \mathrm{Ha}_{\delta}:=\mathrm{FK}_{\delta}}
\]
\[
\mathrm{Ba}_{\delta}:=\mathrm{BH}+\mathrm{Ha}_{\delta} \quad \mathrm{GH}_{\delta}:=\frac{\mathrm{Ka}_{\delta} \cdot \mathrm{BH}}{\mathrm{Ba}_{\delta}} \mathrm{FG}_{\delta}:=\mathrm{FH}_{\delta}-\mathrm{GH}_{\delta}
\]
\[
\mathrm{Kb}_{\delta}:=\mathrm{FG}_{\delta} \quad \mathrm{GL}:=\mathrm{EH} \mathrm{~Gb}_{\delta}:=\mathrm{FK}_{\delta}
\]
\[
\mathrm{Lb}_{\delta}:=\mathrm{GL}-\mathrm{Gb}_{\delta} \mathrm{DG}_{\delta}:=\mathrm{if}\left(\mathrm{GH}_{\delta}, \frac{\mathrm{Kb}_{\delta} \cdot \mathrm{GL}}{\mathrm{Lb}_{\delta}}, 0\right) \mathrm{DF}_{\delta}:=\mathrm{DG}_{\delta}-\mathrm{FG}_{\delta} \mathrm{DE}_{\delta}:=\mathrm{DG}_{\delta}-\left(\mathrm{FG}_{\delta}+\mathrm{EF}_{\delta}\right)
\]
\[
\mathrm{DJ}_{\delta}:=\mathrm{EJ}+\mathrm{DE}_{\delta} \mathrm{EG}_{\delta}:=\mathrm{EF}_{\delta}+\mathrm{FG}_{\delta}
\]
\[
\mathrm{Dc}_{\delta}:=\mathrm{if}\left[\mathrm{GH}_{\delta},\left[\left(\mathrm{DE}_{\delta}\right)^{2} \cdot \mathrm{DJ}_{\delta}\right]^{\frac{1}{3}}, 0\right]
\]
\[
\mathrm{Dd}_{\delta}:=\mathrm{if}\left[\mathrm{GH}_{\delta},\left[\mathrm{DE}_{\delta} \cdot\left(\mathrm{DJ}_{\delta}\right)^{2}\right]^{\frac{1}{3}}, 0\right]
\]
\[
\mathrm{cd}_{\delta}:=\mathrm{Dd}_{\delta}-\mathrm{Dc}_{\delta} \quad \mathrm{G} 2 \mathrm{c}_{\delta}:=\frac{\mathrm{cd}_{\delta}}{2}
\]
\[
\mathrm{Ec}_{\delta}:=\mathrm{Dc}_{\delta}-\mathrm{DE}_{\delta} \quad \mathrm{EG} 2_{\delta}:=\mathrm{Ec}_{\delta}+\mathrm{G} 2 \mathrm{c}_{\delta}
\]



I should say that fg is equal to DG .
\[
\begin{aligned}
& \mathrm{Gc}_{\delta}:={\mathrm{G} 2 \mathrm{c}_{\delta}}^{\mathrm{Df}_{\delta}:=\mathrm{Gc}_{\delta} \mathrm{De}_{\delta}:=\sqrt{\mathrm{DE}_{\delta} \cdot \mathrm{DJ}_{\delta}}} \\
& \mathrm{ef}_{\delta}:=\sqrt{\left(\mathrm{Df}_{\delta}\right)^{2}+\left(\mathrm{De}_{\delta}\right)^{2}} \quad \mathrm{fg}_{\delta}:=\mathrm{ef}_{\delta}
\end{aligned}
\]


I should say that Dh is equal to Dc and that Dk is



I should say that the circle pDH passes through the point g .
\(\mathrm{DH}_{\delta}:=\mathrm{DE}_{\delta}+\mathrm{EH} \mathrm{Hm}_{\delta}:=\frac{\mathrm{DH}_{\delta}}{2} \quad \mathrm{HO}:=\mathrm{EH}\)
\(\mathrm{Hq}:=\frac{\mathrm{HO}}{2} \quad \mathrm{Hp}_{\delta}:=\sqrt{\mathrm{Hq}^{2}+\left(\mathrm{Hm}_{\delta}\right)^{2}}\)
\(\mathrm{Gg}_{\delta}:=\mathrm{Df}_{\delta} \quad \mathrm{mp}:=\mathrm{Hq} \quad \mathrm{Gm}_{\delta}:=\mathrm{Hm}_{\delta}-\mathrm{GH}_{\delta}\)
\(\mathrm{pg}_{\delta}:=\sqrt{\left(\mathrm{Gg}_{\delta}+\mathrm{mp}\right)^{2}+\left(\mathrm{Gm}_{\delta}\right)^{2}}\)

\(\mathrm{HJ}:=\mathrm{EH} \quad \mathrm{HP}:=\frac{\mathrm{HJ}}{3}\)
\(\mathrm{JP}:=\frac{2 \cdot \mathrm{HJ}}{3} \mathrm{EP}:=\mathrm{EH}+\mathrm{HP} \mathrm{PQ}:=\sqrt{\mathrm{EP} \cdot \mathrm{JP}}\)
\(\mathrm{JQ}:=\sqrt{\mathrm{PQ}^{2}+\mathrm{JP}^{2}} \mathrm{JR}:=\mathrm{JQ} \quad \mathrm{HR}:=\sqrt{\mathrm{JR}^{2}-\mathrm{HJ}^{2}}\)
\(\mathrm{RS}:=\mathrm{JQ} \quad \mathrm{GS}_{\delta}:=\sqrt{\mathrm{RS}^{2}-\left(\mathrm{GH}_{\delta}\right)^{2}}-\mathrm{HR}\)
\(\mathrm{ES}_{\delta}:=\sqrt{\left(\mathrm{EG}_{\delta}\right)^{2}+\left(\mathrm{GS}_{\delta}\right)^{2} \quad \mathrm{GJ}_{\delta}:=\mathrm{HJ}+\mathrm{GH}_{\delta}}\)
\(\mathrm{JS}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{GJ}_{\delta}\right)^{2}+\left(\mathrm{GS}_{\boldsymbol{\delta}}\right)^{2}} \mathrm{ET}_{\boldsymbol{\delta}}:=\mathrm{ES}_{\boldsymbol{\delta}} \quad \mathrm{JU}_{\boldsymbol{\delta}}:=\mathrm{JS}_{\boldsymbol{\delta}}\)
\(\mathrm{Ed} 2_{\delta}:=\mathrm{EJ}-\frac{\left(\mathrm{JU}_{\delta}\right)^{2}}{\mathrm{EJ}} \mathrm{Ec} 2_{\delta}:=\frac{\left(\mathrm{ET}_{\delta}\right)^{2}}{\mathrm{EJ}}\)
\(\mathrm{Ec}_{\delta}:=\mathrm{Dc}_{\delta}-\mathrm{DE}_{\delta} \mathrm{Ed}_{\delta}:=\mathrm{Dd}_{\delta}-\mathrm{DE}_{\delta}\)
\(\mathrm{Ed}_{\Delta-1}=66.633327772\)
\(E d 2_{\Delta-1}=66.633327772\)




OK passes through g.
\[
\begin{aligned}
& \mathrm{Oa}_{\delta}:=\mathrm{HO}+\mathrm{Ha}_{\delta} \mathrm{Hr}_{\delta}:=\mathrm{Gg}_{\delta} \quad \mathrm{Or}_{\delta}:=\mathrm{HO}+\mathrm{Hr}_{\delta} \\
& \mathrm{gr}_{\delta}:=\frac{\mathrm{Ka}_{\delta} \cdot \mathrm{Or}_{\delta}}{\mathrm{Oa}_{\delta}}
\end{aligned}
\]

Using iteration to perform a geometric convergent series for cube root abstraction.
\(A:=\operatorname{if}(X<Y, \operatorname{if}(X<Z, X, Z), \operatorname{if}(Y<Z, Y, Z))\)
\(B:=\operatorname{if}(X>Y, i f(X>Z, X, Z), i f(Y>Z, Y, Z))\)
\(\mathrm{W}:=\mathrm{X}+\mathrm{Y}+\mathrm{Z} \quad \mathrm{C}:=\mathrm{W}-(\mathrm{A}+\mathrm{B})\)
\(\mathrm{AB}:=\sqrt{\mathrm{A} \cdot \mathrm{C}} \mathrm{BE}:=\mathrm{B}-\mathrm{AB} \mathrm{AE}:=\mathrm{AB}+\mathrm{BE}\)
\(\boldsymbol{\delta}:=0 . . \Delta \quad \mathrm{AC}:=\sqrt{\mathrm{AE} \cdot \mathrm{AB}} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{CG}:=\sqrt{\mathrm{AC} \cdot \mathrm{CE}} \quad \mathrm{AG}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CG}^{2}}\)


\(\mathrm{AH}_{\Delta}:=\sqrt{\left(\mathrm{AD}_{\Delta}\right)^{2}+\left(\mathrm{DH}_{\Delta}\right)^{2}} \mathrm{AM}:=\mathrm{AC} \quad \mathrm{AK}:=\frac{\mathrm{AD}_{\Delta} \cdot \mathrm{AM}}{\mathrm{AH}_{\Delta}}\)
\(\mathrm{AK}=1.6986 \quad \mathrm{AK}^{3}=4.9008 \quad \mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}=4.9005\)
\[
\begin{aligned}
\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}} & =2.9142 \\
\mathrm{AD}_{\Delta} & =2.9143
\end{aligned}
\]


POR Series IV Figure
Generalize the work of 07_25_93 to include the variable base ratio. This particular modification of the file has seen the use of the symbolic processor to figure out the last ratio that I have been unable to putz. The two ratio's found are FJ/JK and AH/AJ. I put the first in the graphic at left, the other would not fit.
\[
\frac{\mathrm{FJ}_{\delta}}{\mathrm{JK}_{\delta}}=\frac{\sqrt{2} \cdot \mathrm{BR} \cdot \delta}{(\mathrm{BS}-\delta) \cdot(\mathrm{BR}-1) \cdot 2}
\]

AF \(:=1 \quad \mathrm{BR}:=\) BASE_RATIO
BS := BISECTOR_SEGMENTS
\(\mathrm{DF}:=\frac{\mathrm{AF}}{\mathrm{BR}} \quad \mathrm{AD}:=\mathrm{AF}-\mathrm{DF} \delta:=1 . . \mathrm{BS}\)
\(\mathrm{AB}:=\frac{\mathrm{AF}}{2} \quad \mathrm{BF}:=\mathrm{AB} \quad \mathrm{BD}:=\mathrm{BF}-\mathrm{DF}\)
\(\mathrm{BK}:=\mathrm{AB} \quad \mathrm{DK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BK}^{2}}\)
\(\mathrm{DH}_{\delta}:=\frac{\mathrm{DK}}{\mathrm{BS}} \cdot \delta \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{BD}}{\mathrm{BS}} \cdot \delta \quad \mathrm{CH}_{\delta}:=\sqrt{\left(\mathrm{DH}_{\delta}\right)^{2}-\left(\mathrm{CD}_{\delta}\right)^{2}} \quad \mathrm{BC}_{\delta}:=\mathrm{BD}-\mathrm{CD}_{\delta}\)
\(\mathrm{AC}_{\delta}:=\mathrm{AB}+\mathrm{BC}_{\delta} \quad \mathrm{AH}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}+\left(\mathrm{CH}_{\delta}\right)^{2}} \quad \mathrm{AG}_{\delta}:=\frac{\mathrm{AC}_{\delta} \cdot \mathrm{AB}}{\mathrm{AH}_{\delta}} \quad \mathrm{AJ}_{\delta}:=\mathrm{AG}_{\delta} \cdot 2\)
\(\mathrm{AE}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AF}} \quad \mathrm{EF}_{\delta}:=\mathrm{AF}-\mathrm{AE}_{\delta} \quad \mathrm{EJ}_{\delta}:=\sqrt{\mathrm{EF}_{\delta} \cdot \mathrm{AE}_{\delta}} \quad \mathrm{FJ}_{\delta}:=\sqrt{\left(\mathrm{EF}_{\delta}\right)^{2}+\left(\mathrm{EJ}_{\delta}\right)^{2}}\)
\(\mathrm{Bm}_{\delta}:=\mathrm{EJ}_{\delta} \quad \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AB}\)
\(\mathrm{Jm}_{\delta}:=\mathrm{BE}_{\delta}\)
\(K m_{\delta}:=\mathrm{BK}-\mathrm{Bm}_{\delta}\)
\(\mathrm{JK}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{Jm}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{Km}_{\boldsymbol{\delta}}\right)^{2}}\)


\begin{tabular}{l} 
if \(\left(\mathrm{JK}_{\delta}, \frac{\mathrm{FJ}_{\delta}}{\mathrm{JK}_{\delta}}, 0\right.\) \\
\hline 0.265 \\
\hline 0.707 \\
\hline 1.591 \\
\hline 4.243 \\
\hline \(6.369 \cdot 10^{15}\) \\
\hline
\end{tabular}


I broke down and used the symbolic processor.
Two versions of the formula are given. It is apparent why I could not get this one myself, I'd never 'ave thunk it. From this point on I will use the symbolic processor to find formula's more often.
\[
\left(1-\frac{1}{\mathrm{BR}}-\frac{\frac{1}{2}-\frac{1}{\mathrm{BR}}}{\mathrm{BS}} \cdot \delta\right)^{2}+\frac{\left(\frac{1}{2}-\frac{1}{\mathrm{BR}}\right)^{2}+\frac{1}{4}}{\mathrm{BS}^{2}} \cdot \delta^{2}-\frac{\left(\frac{1}{2}-\frac{1}{\mathrm{BR}}\right)^{2}}{\mathrm{BS}^{2}} \cdot \delta^{2}
\]
\(\frac{\mathrm{AH}_{\delta}}{\mathrm{AJ}_{\delta}}\)
\begin{tabular}{|c|}
\hline 0.649 \\
\hline 0.667 \\
\hline 0.725 \\
\hline 0.833 \\
\hline 1 \\
\hline
\end{tabular}
\[
1-\frac{1}{\mathrm{BR}}-\frac{\frac{1}{2}-\frac{1}{\mathrm{BR}}}{\mathrm{BS}} \cdot \delta
\]
\begin{tabular}{|c|}
\hline 0.649 \\
\hline 0.667 \\
\hline 0.725 \\
\hline 0.833 \\
\hline 1 \\
\hline
\end{tabular}
\(-2 \cdot \mathrm{BR}^{2} \cdot \mathrm{BS}^{2}+4 \cdot \mathrm{BR} \cdot \mathrm{BS}^{2}+2 \cdot \mathrm{BR}^{2} \cdot \mathrm{BS} \cdot \delta \ldots \quad\) BASE_RATIO \(\equiv 3\)
\(+-6 \cdot \mathrm{BR} \cdot \mathrm{BS} \cdot \delta-2 \cdot \mathrm{BS}^{2}+4 \cdot \mathrm{BS} \cdot \delta-\delta^{2} \cdot \mathrm{BR}^{2}+2 \cdot \delta^{2} \cdot \mathrm{BR}-2 \cdot \delta^{2}\) BISECTOR_SEGMENTS \(\equiv 5\) \(\mathrm{BR} \cdot(\mathrm{BS} \cdot(-2 \cdot \mathrm{BR} \cdot \mathrm{BS}+2 \cdot \mathrm{BS}+\delta \cdot \mathrm{BR}-2 \cdot \delta))\)
\begin{tabular}{|c|}
\hline 0.649 \\
\hline 0.667 \\
\hline 0.725 \\
\hline 0.833 \\
\hline 1 \\
\hline
\end{tabular}

\(\left[\begin{array}{c}\mathrm{Ac}_{0} \\ \mathrm{CH}_{0} \\ \mathrm{FH}_{0} \\ \mathrm{AC}_{0} \\ \mathrm{bc}_{0} \\ \mathrm{Hb}_{0}\end{array}\right]:=\left[\begin{array}{c}\mathrm{BE}+\mathrm{Dc}+\mathrm{CD} \\ \frac{\mathrm{Gc} \cdot \mathrm{BE}}{\mathrm{BE}+\mathrm{Dc}} \\ \mathrm{CF}+\frac{\mathrm{Gc} \cdot \mathrm{BE}}{\mathrm{BE}+\mathrm{Dc}} \\ \mathrm{BE} \\ \sqrt{\left(\frac{\mathrm{Gc} \cdot \mathrm{BE}}{\mathrm{BE}+\mathrm{BE}}\right)^{2}-\left(\frac{\mathrm{Dc} \cdot \mathrm{BE}}{\mathrm{BE}+\mathrm{Dc}}\right)^{2}}\end{array}\right]\)
\(\left[\begin{array}{c}\mathrm{AC}_{\delta+1} \\ \mathrm{Ac}_{\delta+1} \\ \mathrm{CH}_{\delta+1} \\ \mathrm{FH}_{\delta+1} \\ \mathrm{bc}_{\delta+1} \\ \mathrm{Hb}_{\delta+1}\end{array}\right]:=\left[\begin{array}{c}\sqrt{\left(\mathrm{FH}_{\delta}\right)^{2}-\left(\mathrm{Hb}_{\delta}\right)^{2}}+\mathrm{bc}_{\delta} \\ \mathrm{AC}_{\delta}+\mathrm{Dc}+\mathrm{CD} \\ \frac{\mathrm{CF} \cdot \mathrm{AC}_{\delta}}{\mathrm{Ac}_{\delta}} \\ \mathrm{CF}+\mathrm{CH}_{\delta} \\ \frac{\mathrm{Dc} \cdot \mathrm{AC}_{\delta}}{\mathrm{Ac}_{\delta}} \\ \sqrt{\left(\mathrm{CH}_{\delta}\right)^{2}-\left(\mathrm{bc}_{\delta}\right)^{2}}\end{array}\right]\)

\section*{11_25_93.MCD}

Use iteration to trisect any given angle.
\(\mathrm{BE}:=200 \mathrm{BC}:=\frac{\mathrm{BE}}{2} \quad \mathrm{CE}:=\mathrm{BC}\)
\(\mathrm{CD}:=\operatorname{if}(\mathrm{CDI}>0, \operatorname{if}(\mathrm{CDI}<\mathrm{BC}, \mathrm{CDI}, 100), 0)\)
\(\mathrm{CF}:=\mathrm{CE} \quad \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} D F:=\sqrt{ } \mathrm{CF}^{2}-\mathrm{CD}^{2}\)
DG \(:=\mathrm{DF} \quad \mathrm{Gc}:=\mathrm{CF}\) Dc \(:=\mathrm{CD} \quad \delta:=0 . . \Delta\)

\[
\frac{\angle \mathrm{KCD}}{\angle \mathrm{BAI}}=3
\]

Range: >0 and <100



12_02 93.MCD POR Roots and Powers (Pyramid of Ratio Series V)

Is the progression noticed in 11_29_93 a continuous phenomenon?
\[
\begin{aligned}
& \mathrm{AH}:=17 \quad \delta:=1 . . \mathrm{AH} \quad \mathrm{AP}_{\delta}:=\frac{\mathrm{AH}}{\delta} \\
& \mathrm{AG}_{\delta}:=\frac{\left(\mathrm{AP}_{\delta}\right)^{2}}{\mathrm{AH}} \quad \mathrm{AO}_{\delta}:=\mathrm{AG}_{\delta}
\end{aligned}
\]
\[
\begin{array}{ll}
\mathrm{AF}_{\delta}:=\frac{\left(\mathrm{AG}_{\delta}\right)^{2}}{\mathrm{AP}_{\delta}} \quad \mathrm{AE}_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{\mathrm{AO}_{\delta}} \quad \mathrm{AN}_{\delta}:=\mathrm{AF}_{\delta} \quad \mathrm{AD}_{\delta}:=\frac{\left(\mathrm{AE}_{\delta}\right)^{2}}{\mathrm{AN}_{\delta}} \quad \mathrm{AM}_{\delta}:=\mathrm{AE}_{\delta} \\
\mathrm{AC}_{\delta}:=\frac{\left(\mathrm{AD}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}} \quad \mathrm{AK}_{\delta}:=\mathrm{AD}_{\delta} \quad \mathrm{AB}_{\delta}:=\frac{\left(\mathrm{AC}_{\delta}\right)^{2}}{\mathrm{AK}_{\delta}} \quad \mathrm{A}:=1 \quad \Delta:=\mathrm{A} . .5
\end{array}
\]
\[
\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\left(\frac{\mathrm{AH}}{\mathrm{AG}_{\Delta}}\right)^{\frac{1}{2}}\left(\frac{\mathrm{AH}}{\mathrm{AF}_{\Delta}}\right)^{\frac{1}{3}}\left(\frac{\mathrm{AH}}{\mathrm{AE}_{\Delta}}\right)^{\frac{1}{4}}\left(\frac{\mathrm{AH}}{\mathrm{AD}_{\Delta}}\right)^{\frac{1}{5}}\left(\frac{\mathrm{AH}}{\mathrm{AC}_{\Delta}}\right)^{\frac{1}{6}}\left(\frac{\mathrm{AH}}{\mathrm{AB}_{\Delta}}\right)^{\frac{1}{7}}
\]
\[
\begin{array}{|r|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline
\end{array}
\]
\[
\begin{array}{|r|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline
\end{array}
\]
\begin{tabular}{|l|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline\(\frac{1}{2}\) \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\frac{\mathrm{AH}}{1}, \frac{\mathrm{AH}}{1^{2}}, \frac{\mathrm{AH}}{1^{3}}, \frac{\mathrm{AH}}{1^{4}}\), etc AH AH AH AH & \(\mathrm{AP}_{\Delta}\) & \(\mathrm{AG}_{\Delta}\) & \(\mathrm{AF}_{\Delta}\) & \(\mathrm{AE}_{\Delta}\) & \(\mathrm{AD}_{\Delta}\) & \(\mathrm{AC}_{\Delta}\) & \(\mathrm{AB}_{\Delta}\) & \\
\hline \(2{ }^{2}, \overline{2^{2}}, \overline{2^{3}}, \overline{2^{4}}\), etc & 17 & 17 & 17 & 17 & 17 & 17 & 17 & \\
\hline & 8.5 & 4.25 & 2.125 & 1.063 & 0.531 & 0.266 & 0.133 & \\
\hline AH \(, ~ \mathrm{AH}, \mathrm{AH}, \mathrm{AH}\) & 5.667 & 1.889 & 0.63 & 0.21 & 0.07 & 0.023 & 0.008 & \\
\hline \(3^{\prime} 3^{2}{ }^{\prime} 3^{3} 3^{4}\) & 4.25 & 1.063 & \begin{tabular}{|l|}
\hline 0.266 \\
\hline 0.6 \\
\hline
\end{tabular} & 0.066 & 0.017 & 0.004 & 0.001 & \\
\hline AH AH AH AH & 3.4 & 0.68 & 0.136 & 0.027 & 0.005 & 0.001 & \(2.176 \cdot 10^{-4}\) & H \\
\hline \[
\frac{1}{4}, \frac{1}{4^{2}}, \frac{x}{4^{3}}, \frac{x}{4^{4}}, \text { etc }
\] & & & & & & & & \(\frac{5^{7}}{}=2.176 \cdot 10\) \\
\hline AH AH AH AH & & & & & & & & \\
\hline \(\frac{5}{5}, \frac{5^{2}}{}, \frac{5^{3}}{5^{3}}, \frac{\text { ch }}{5^{4}}\), etc & & & & & & & & \\
\hline
\end{tabular}

\[
\mathrm{AG}_{\Delta} \cdot \frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}} \quad \mathrm{AF}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{2} \mathrm{AE}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{3}
\]
\begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular} \begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline 17 \\
\hline \hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular}
\(\mathrm{AD}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{4} \mathrm{AC}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{5} \mathrm{AB}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{6}\)
\begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular}

\(\frac{\mathrm{AH}^{2}}{\mathrm{AP}_{\Delta}}\left(\frac{\mathrm{AH}^{3}}{\mathrm{AG}_{\Delta}}\right)^{\frac{1}{2}}\left(\frac{\mathrm{AH}^{4}}{\mathrm{AF}_{\Delta}}\right)^{\frac{1}{3}}\left(\frac{\mathrm{AH}^{5}}{\mathrm{AE}_{\Delta}}\right)^{\frac{1}{4}}\left(\frac{\mathrm{AH}^{6}}{\mathrm{AD}_{\Delta}}\right)^{\frac{1}{5}}\left(\frac{\mathrm{AH}^{7}}{\mathrm{AC}_{\Delta}}\right)^{\frac{1}{6}} \quad\left(\frac{\mathrm{AH}^{8}}{\mathrm{AB}_{\Delta}}\right)^{\frac{1}{7}} \quad\left(\frac{\mathrm{AH}}{\mathrm{AB}}\right)_{\Delta}^{\frac{1}{7}} \cdot \mathrm{AH}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 \\
\hline 34 & 34 & 34 & 34 & 34 & 34 & 34 & 34 \\
\hline 51 & 51 & 51 & 51 & 51 & 51 & 51 & 51 \\
\hline 68 & 68 & 68 & 68 & 68 & 68 & 68 & 68 \\
\hline 85 & 85 & 85 & 85 & 85 & 85 & 85 & 85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \({ }^{3}\) & 3 & & 3 & & & \\
\hline \(\left(\frac{\mathrm{AH}}{\mathrm{AB}_{\Delta}}\right)^{7}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AC}_{\Delta}}\right)^{6}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AD}}\right)^{5}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AE}_{\Delta}}\right)^{4}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AF}_{\Delta}}\right)^{3}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AG}_{\Delta}}\right)^{\text {a }}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{\text {a }}\) \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
\hline 27 & 27 & 27 & 27 & 27 & 27 & 27 \\
\hline 64 & 64 & 64 & 64 & 64 & 64 & 64 \\
\hline 125 & 125 & 125 & 125 & 125 & 125 & 125 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\underline{7}\) & 7 & \(\frac{7}{7}\) & 7 & 7 & 7 & \(\underline{7}\) \\
\hline \((\mathrm{AH})^{7}\) & \((\mathrm{AH})^{6}\) & \((\mathrm{AH})^{5}\) & \((\mathrm{AH})^{4}\) & \((\mathrm{AH})^{3}\) & \((\mathrm{AH})^{2}\) & ( AH \\
\hline \(\left(\mathrm{AB}_{\Delta}\right)^{7}\) & \(\mathrm{AC}_{\Delta}\) & \(\left(\mathrm{AD}_{\Delta}\right.\) & \(\left(\mathrm{AE}_{\Delta}\right.\) & \(\left(\mathrm{AF}_{\Delta}{ }^{\text {/ }}\right.\) & \(\mathrm{AG}_{\Delta}\) & \(\left(\mathrm{AP}_{\Delta}\right.\) \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 128 & 128 & 128 & 128 & 128 & 128 & 128 \\
\hline \(2.187 \cdot 10^{3}\) & \(2.187 \cdot 10^{3}\) & \(2.187 \cdot 10^{3}\) & 2.187.10 \({ }^{3}\) & \(2.187 \cdot 10^{3}\) & \(2.187 \cdot 10^{3}\) & \(2.187 \cdot 10^{3}\) \\
\hline 1.638.10 \({ }^{4}\) & 1.638•104 & 1.638.104 & 1.638.104 & 1.638.104 & 1.638.104 & 1.638.104 \({ }^{4}\) \\
\hline \(7.813 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) & \(7.812 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{GP}_{\Delta}\) & \(\mathrm{FO}_{\Delta}\) & \(\mathrm{EN}_{\Delta}\) & \(\mathrm{DM}_{\Delta}\) & \(\mathrm{CK}_{\Delta}\) & \(\mathrm{BJ}_{\Delta}\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7.361 & 3.681 & 1.84 & 0.92 & 0.46 & 0.23 \\
\hline 5.343 & 1.781 & 0.594 & 0.198 & 0.066 & 0.022 \\
\hline 4.115 & 1.029 & 0.257 & 0.064 & 0.016 & 0.004 \\
\hline 3.331 & 0.666 & 0.133 & 0.027 & 0.005 & 0.001 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{GP}_{\Delta}\) & \(\mathrm{FO}_{\Delta}\) & \(\mathrm{EN}_{\Delta}\) & \(\mathrm{DM}_{\Delta}\) & \(\mathrm{CK}_{\Delta}\) & \\
\hline \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{5}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{4}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{3}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{2}\) & \(\frac{\frac{\mathrm{AH}}{}}{\mathrm{AP}_{\Delta}}\) & BJ \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0.23 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 \\
\hline 0.022 & 0.022 & 0.022 & 0.022 & 0.022 & 0.022 \\
\hline 0.004 & 0.004 & 0.004 & 0.004 & 0.004 & 0.004 \\
\hline 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{GP}_{\Delta}\) & \(\mathrm{FO}_{\Delta}\) & \(\mathrm{EN}_{\Delta}\) & \(\mathrm{DM}_{\Delta}\) & \(\mathrm{CK}_{\Delta}\) & \(\mathrm{BJ}_{\Delta}\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7.361 & 3.681 & 1.84 & 0.92 & 0.46 & 0.23 \\
\hline 5.343 & 1.781 & 0.594 & 0.198 & 0.066 & 0.022 \\
\hline 4.115 & 1.029 & 0.257 & 0.064 & 0.016 & 0.004 \\
\hline 3.331 & 0.666 & 0.133 & 0.027 & 0.005 & 0.001 \\
\hline
\end{tabular}

\(\frac{\sqrt{\mathrm{AG}_{2} \cdot \mathrm{GH}_{2}}}{2}=3.681 \quad \frac{\sqrt{\mathrm{AG}_{2} \cdot \mathrm{GH}_{2}}}{2^{2}}=1.84 \quad \frac{\sqrt{\mathrm{AG}_{2} \cdot \mathrm{GH}_{2}}}{2^{3}}=0.92\)
\(\frac{\sqrt{\mathrm{AG}_{3} \cdot \mathrm{GH}_{3}}}{3}=1.781 \quad \frac{\sqrt{\mathrm{AG}_{3} \cdot \mathrm{GH}_{3}}}{3^{2}}=0.594 \quad \frac{\sqrt{\mathrm{AG}_{3} \cdot \mathrm{GH}_{3}}}{3^{3}}=0.198\)


\section*{Two Prime Exponential Series}
\(\mathrm{AR}:=10 \quad \Delta:=5 \quad \delta:=2 . . \Delta+1 \mathrm{AB}_{\delta}:=\frac{\mathrm{AR}}{\delta}\)
\(A J_{\delta}:=\sqrt{A B_{\delta} \cdot A R} \quad J R_{\delta}:=A R-A J_{\delta}\)
\(J W_{\delta}:=\sqrt{A J_{\delta} \cdot \mathrm{JR}_{\delta}} \quad A W_{\delta}:=\sqrt{\left(A J_{\delta}\right)^{2}+\left(J W_{\delta}\right)^{2}}\)
\begin{tabular}{ll}
\multicolumn{1}{c}{\(\mathrm{AB}_{\delta}\)} & \(\mathrm{AJ}_{\delta}\) \\
\begin{tabular}{|c|}
\hline 5 \\
\hline 3.333 \\
\hline 2.5 \\
\hline 2 \\
\hline 1.667 \\
\hline
\end{tabular} & \begin{tabular}{|c}
\hline 7.071 \\
\hline 5.774 \\
\hline 5 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular}
\end{tabular}

I think that one is in the position that they are in when dividing an angle, twice never gets to thrice, at least that is what I decided some time ago. Let me double check anyway. An obvious pattern should emerge.

\[
\begin{aligned}
& \mathrm{AT}:=\mathrm{AR} \quad \mathrm{AN}_{\delta}:=A W_{\delta} \quad \mathrm{AF}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AW}_{\delta}} \\
& \mathrm{NR}_{\delta}:=\mathrm{AR}-\mathrm{AN}_{\delta} \quad \mathrm{NX} X_{\delta}:=\sqrt{\mathrm{AN}_{\delta} \cdot \mathrm{NR}_{\delta}} \\
& \mathrm{AX}_{\delta}:=\sqrt{\left(\mathrm{AN}_{\delta}\right)^{2}+\left(\mathrm{NX}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{AB}_{\delta}\)
\begin{tabular}{|c|}
\hline 5 \\
\hline 3.333 \\
\hline 2.5 \\
\hline 2 \\
\hline 1.667 \\
\hline
\end{tabular}
\(\mathrm{AF}_{\delta}\)
\begin{tabular}{|l|}
\hline 5.946 \\
\hline 4.387 \\
\hline 3.536 \\
\hline 2.991 \\
\hline 2.608 \\
\hline
\end{tabular}
\(\mathrm{AJ}_{\delta}\)
\begin{tabular}{|c|}
\hline 7.071 \\
\hline 5.774 \\
\hline 5 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\mathrm{AN}_{\delta}\) \\
\hline 8.409 \\
\hline 7.598 \\
\hline 7.071 \\
\hline 6.687 \\
\hline 6.389 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \mathrm{AU}:=\mathrm{AR} \quad \mathrm{AP}_{\delta}:=A X_{\delta} \quad \mathrm{AL}_{\delta}:=\frac{\left(\mathrm{AN}_{\delta}\right)^{2}}{\mathrm{AX}} \\
& \mathrm{AH}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AL}} \quad \mathrm{AD}_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{\mathrm{AH}}{ }_{\delta} \\
& \mathrm{PR}_{\delta}:=\mathrm{AR}-\mathrm{AP}_{\delta} \quad \mathrm{PY}_{\delta}:=\sqrt{\mathrm{AP}_{\delta} \cdot \mathrm{PR}_{\delta}} \\
& \mathrm{AY}_{\delta}:=\sqrt{\left(\mathrm{AP}_{\delta}\right)^{2}+\left(\mathrm{PY}_{\delta}\right)^{2}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & \(\mathrm{AD}_{\delta}\) & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AH}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AL}_{\delta}\) & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AP}_{\delta}\) \\
\hline 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.711 & 8.409 & 9.17 \\
\hline 3.333 & 3.824 & 4.387 & 5.033 & 5.774 & 6.623 & 7.598 & 8.717 \\
\hline 2.5 & 2.973 & 3.536 & 4.204 & 5 & 5.946 & 7.071 & 8.409 \\
\hline 2 & 2.446 & 2.991 & 3.657 & 4.472 & 5.469 & 6.687 & 8.178 \\
\hline 1.667 & 2.085 & 2.608 & 3.263 & 4.082 & 5.107 & 6.389 & 7.993 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \mathrm{AV}:=\mathrm{AR} \quad A Q_{\delta}:=A Y_{\delta} \quad A O_{\delta}:=\frac{\left(A P_{\delta}\right)^{2}}{A Y_{\delta}} \\
& A M_{\delta}:=\frac{\left(A N_{\delta}\right)^{2}}{A O_{\delta}} \quad A K_{\delta}:=\frac{\left(\mathrm{AL}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}} \\
& \mathrm{Al}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AK}_{\delta}} \quad \mathrm{AG}_{\delta}:=\frac{\left(\mathrm{AH}_{\delta}\right)^{2}}{\mathrm{Al}} \\
& A E_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{\mathrm{AG}_{\delta}} \quad \mathrm{AC} \mathrm{C}_{\delta}:=\frac{\left(\mathrm{AD}_{\delta}\right)^{2}}{\mathrm{AE}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AG}_{\delta}\) & \({ }^{\circ}\) & \({ }^{\circ}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AK}_{\delta}\) & \(\mathrm{AL}_{\delta}\) & & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AO}_{\delta}\) & \({ }^{\circ}\) & \(\mathrm{AQ}_{\delta}\) \\
\hline 6.209 & 6.484 & 6.771 & 7.071 & 7.384 & 7.711 & 8.052 & 8.409 & 8.781 & 9.17 & 9.576 \\
\hline 4.699 & 5.03 & 5.39 & 5.774 & 6. & 6.623 & 7.094 & 7.598 & 8.138 & 8.71 & 9.3 \\
\hline 3.856 & 4. & 4.585 & 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.71 & 8.409 & 9.17 \\
\hline 3.307 & 3.657 & 4. & 4.472 & 4.945 & 5.469 & 6.047 & 6.687 & 7.395 & 8.178 & 9.043 \\
\hline 2.918 & 3.26 & 3.65 & 4.08 & 4.56 & 5.10 & 5.713 & 6.38 & 7.14 & 7.9 & 8.9 \\
\hline
\end{tabular}
\(\left(\frac{\mathrm{AR}}{\mathrm{AK}}\right)^{\frac{16}{7}}\left(\frac{\mathrm{AR}}{\mathrm{AL}_{\delta}}\right)^{\frac{16}{6}}\left(\frac{\mathrm{AR}}{\mathrm{AM}_{\delta}}\right)^{\frac{16}{5}}\left(\frac{\mathrm{AR}}{\mathrm{AN}_{\delta}}\right)^{\frac{16}{4}}\left(\frac{\mathrm{AR}}{\mathrm{AO}_{\delta}}\right)^{\frac{16}{3}}\left(\frac{\mathrm{AR}}{\mathrm{AP}_{\delta}}\right)^{\frac{16}{2}}\left(\frac{\mathrm{AR}}{\mathrm{AQ}}\right)^{\frac{16}{1}}\)
\begin{tabular}{|c|c|}
\hline & 2 \\
\hline & 3 \\
\hline & 4 \\
\hline & 5 \\
\hline & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2 & 2 \\
\hline 3 & 3 \\
\hline 4 & \(\frac{4}{5}\) \\
\hline 6 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline 2 \\
\hline 3 \\
\hline\(\frac{4}{4}\) \\
\hline 5 \\
\hline 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 8 & & 8 & & 8 & 8 & \\
\hline \(\left(\frac{A R}{A Q_{\delta}}\right)^{8}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AP}_{\delta}}\right)^{\frac{8}{2}}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AO}_{\delta}}\right)^{3}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AN}}\right)^{4}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AM}_{\delta}}\right)^{5}\) & \(\left(\frac{A R}{A L_{\delta}}\right)^{\overline{6}}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AK}}\right)^{7}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AJ}_{\delta}}\right\rangle\) \\
\hline 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 \\
\hline 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 \\
\hline 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 8 & & & & & & & 8 \\
\hline \[
\left(\frac{\mathrm{AR}}{\mathrm{Al}}\right)^{\overline{9}}
\] & \(\left(\frac{\mathrm{AR}}{\mathrm{AH}_{\delta}}\right)^{\text {d }}\) & \(\left(\frac{A R}{A G_{\delta}}\right)^{1}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AF}_{\delta}}\right)^{\text {a }}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AE}}{ }_{\delta}\right)^{1 /}\) & \(\left(\frac{A R}{A D_{\delta}}\right)\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AC}_{\delta}}\right)^{\text {d }}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AB}_{\delta}}\right)\) \\
\hline 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 \\
\hline 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 \\
\hline 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 \\
\hline
\end{tabular}




\(\mathrm{AK}_{\delta}\)
\begin{tabular}{|l|}
\hline 7.384 \\
\hline 6.184 \\
\hline 5.453 \\
\hline 4.945 \\
\hline 4.566 \\
\hline
\end{tabular}
\(\mathrm{AJ}_{\delta}\)
\begin{tabular}{|c|}
\hline 7.071 \\
\hline 5.774 \\
\hline 5 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{Al}_{\delta}\) & \(\mathrm{AH}_{\delta}\) & \(\mathrm{AG}_{\delta}\) & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AE}_{\delta}\) & \(\mathrm{AD}_{\delta}\) & \(\mathrm{AC}_{\delta}\) & \(\mathrm{AB}_{\delta}\) \\
\hline 6.771 & 6.484 & 6.209 & 5.946 & 5.694 & 5.453 & 5.221 & 5 \\
\hline 5.39 & 5.033 & 4.699 & 4.387 & 4.096 & 3.824 & 3.57 & 3.333 \\
\hline 4.585 & 4.204 & 3.856 & 3.536 & 3.242 & 2.973 & 2.726 & 2.5 \\
\hline 4.044 & 3.657 & 3.307 & 2.991 & 2.704 & 2.446 & 2.212 & 2 \\
\hline 3.65 & 3.263 & 2.918 & 2.608 & 2.332 & 2.085 & 1.864 & 1.667 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 1 & \(\frac{1}{3}\) & 1 & 1 & 1 & 1 \\
\hline \(\left[\left(\mathrm{AB}_{\delta}\right)\right.\) & \multirow[t]{6}{*}{\(\left.\cdot A R^{2}\right]^{3}\)} & \(\left(A C_{\delta} \cdot A R^{2}\right)^{3}\) & \(\left(A D_{\delta} \cdot A R^{2}\right)^{3}\) & \(\left(A E_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(A F_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(A G_{\delta} \cdot A R^{2}\right)^{3}\) \\
\hline 7.937 & & 8.052 & 8.17 & 8.288 & 8.409 & 8.531 \\
\hline 6.934 & & 7.094 & 7.258 & 7.426 & 7.598 & 7.774 \\
\hline 6.3 & & 6.484 & 6.674 & 6.87 & 7.071 & 7.278 \\
\hline 5.848 & & 6.047 & 6.254 & 6.467 & 6.687 & 6.915 \\
\hline 5.503 & & 5.713 & 5.93 & 6.155 & 6.389 & 6.632 \\
\hline
\end{tabular}
\begin{tabular}{l} 
( \(\left.\mathrm{AH}_{\delta} \cdot \mathrm{AR}^{2}\right)^{\frac{1}{3}}\) \\
\begin{tabular}{|l|l|l|l|}
\hline 8.655 \\
\hline 7.954 \\
\hline 7.492 \\
\hline 7.151 \\
\hline 6.885 \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll|l|}
\hline\(\left(\mathrm{AN}_{\delta} \cdot \mathrm{AR}^{2}\right)^{\frac{1}{3}}\) & \(\left(\mathrm{AO}_{\delta} \cdot \mathrm{AR}^{2}\right)^{\frac{1}{3}}\) & \(\left(\mathrm{AP}_{\delta} \cdot \mathrm{AR}^{2}\right)^{\frac{1}{3}}\) \\
\hline 9.439 \\
\hline 9.125 \\
\hline 8.909 \\
\hline 8.745 \\
\hline 8.613 \\
\hline
\end{tabular}


\begin{tabular}{|l|l|}
\hline \(\mathrm{AH}_{\delta}\) & \(\mathrm{AM}_{\delta}\) \\
\hline 6.484 \\
\hline 5.033 \\
\hline 4.204 \\
\hline 3.657 \\
\hline 3.263 & \begin{tabular}{|l|}
\hline 8.052 \\
\hline
\end{tabular} \\
\hline & \begin{tabular}{l}
7.094 \\
\hline 6.484 \\
\hline 5.713 \\
\hline
\end{tabular}
\end{tabular}

\begin{tabular}{ll|}
\(\mathrm{AJ}_{\delta}\) & \(\mathrm{AN}_{\delta}\) \\
\hline 7.071 \\
\hline 5.774 \\
\hline 5 & \begin{tabular}{|l|}
\hline 8.409 \\
\hline 4.598 \\
\hline 4.082 \\
\hline
\end{tabular} \\
\hline 7.071 \\
\hline & \begin{tabular}{|l|}
\hline 6.687 \\
\hline 6.389 \\
\hline
\end{tabular}
\end{tabular}

There are five found cubics between the givens.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline \(\left[\left(\mathrm{Al}_{\delta}\right)^{2}\right.\) & \(\mathrm{Al}_{\delta} \cdot \mathrm{AR}^{2}\) & \(\left[\left(\mathrm{AL}_{\delta}\right)^{2}\right.\) & \(\mathrm{AL}_{\delta} \cdot \mathrm{A}\) & \(\left[\left(\mathrm{AO}_{\delta}\right)\right.\) & \(\mathrm{AO}_{8} \cdot \mathrm{~A}\) \\
\hline 7.711 & 8.781 & 8.409 & 9.17 & 9.17 & 9.576 \\
\hline 6.623 & 8.138 & 7.598 & 8.717 & 8.717 & 9.336 \\
\hline 5.946 & 7.711 & 7.071 & 8.409 & 8.409 & 9.17 \\
\hline 5.469 & 7.395 & 6.687 & 8.178 & 8.178 & 9.043 \\
\hline 5.107 & 7.147 & 6.389 & 7.993 & 7.993 & 8.941 \\
\hline \(\mathrm{AL}_{\delta}\) & \(\mathrm{AO}_{\delta}\) & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AP}_{\delta}\) & \(\mathrm{AP}_{\delta}\) & \(\mathrm{AQ}_{\delta}\) \\
\hline 7.711 & 8.781 & 8.409 & 9.17 & 9.17 & 9.576 \\
\hline 6.623 & 8.138 & 7.598 & 8.717 & 8.717 & 9.336 \\
\hline 5.946 & 7.711 & 7.071 & 8.409 & 8.409 & 9.17 \\
\hline 5.469 & 7.395 & 6.687 & 8.178 & 8.178 & 9.043 \\
\hline 5.107 & 7.147 & 6.389 & 7.993 & 7.993 & 8.941 \\
\hline
\end{tabular}


\[
\operatorname{Root}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AC}_{\delta}}
\]


120693

\section*{Alternate methods; Square Root}

Demonstrate that the square root of two segments can never be more than one half of the difference between them

Let \(A B\) and \(A C\) be the two segments and \(B C\) the difference between them.
\(B C:=10 \delta:=1 . .100 \quad B F:=\frac{B C}{2}\)
\(A B_{\delta}:=\delta A F_{\delta}:=A B_{\delta}+B F \quad F G:=B F\)
\(\mathrm{DF}_{\delta}:=\frac{\mathrm{FG}}{} \mathrm{AF}_{\delta} \quad \mathrm{FJ}:=\mathrm{BF} \quad \mathrm{AD} \mathrm{D}_{\delta}:=\mathrm{AF} \mathcal{S}_{\delta}-\mathrm{DF}_{\delta}\)
\(D G_{\delta}:=\sqrt{\mathrm{AD}_{\delta} \cdot \mathrm{DF}_{\delta}} \mathrm{EH}:=\mathrm{BF}\)
\(A E_{\delta}:=\frac{A D_{\delta} \cdot E H}{D G_{\delta}} A C_{\delta}:=A B_{\delta}+B C\)
\(\sum_{\delta}\left(\operatorname{Root}_{\delta}-\mathrm{AE}_{\delta}\right)=0\)
Since AG can never exceed AF, the result is obvious.

Loging the constant relationship K and \(\mathbf{J}\) on the cubic.

12_06_B3.MCD

\section*{Gruntwork 4 on the Delian Solution}

\(\mathrm{BH}:=10 \quad \delta:=1 . .1000 \mathrm{AB}_{\delta}:=\delta\)
\(\mathrm{AH}_{\delta}:=\mathrm{BH}+\mathrm{AB}_{\delta} \mathrm{AF}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AH}_{\delta}}\)
\(\mathrm{AG}_{\delta}:=\left[\left(\mathrm{AH}_{\delta}\right)^{2} \cdot \mathrm{AB}_{\delta}\right]^{\frac{1}{3}}\)
\(\mathrm{AD}_{\delta}:=\left[\mathrm{AH}_{\delta} \cdot\left(\mathrm{AB}_{\delta}\right)^{2}\right]^{\frac{1}{3}}\)
\(\mathrm{BG}_{\delta}:=\mathrm{AG}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{GH}_{\delta}:=\mathrm{BH}-\mathrm{BG}_{\delta} \quad \mathrm{GL}_{\delta}:=\sqrt{\mathrm{GH}_{\delta}} \cdot \mathrm{BG}_{\delta}\)

\[
\mathrm{Aa}_{\delta}:=\frac{\mathrm{AD}_{\delta}}{2} \quad \mathrm{Be}:=\frac{\mathrm{BH}}{2} \quad \mathrm{Ka}_{\delta}:=\mathrm{Aa}_{\delta}
\]
\(\mathrm{Ke}:=\mathrm{Be} \quad \mathrm{eg}:=\mathrm{Ke} \quad \mathrm{af}_{\delta}:=\mathrm{Ka}_{\delta}\)
\(\mathrm{ce}_{\delta}:=\frac{\mathrm{eg}^{2}}{\mathrm{ae}_{\delta}} \mathrm{ab}_{\delta}:=\frac{\left(\mathrm{af}_{\delta}\right)^{2}}{\mathrm{ae}_{\delta}} \quad \mathrm{ac}_{\delta}:=\mathrm{ae}_{\delta}-\mathrm{ce}_{\delta} \quad \mathrm{bc}_{\delta}:=\mathrm{ac}_{\delta}-\mathrm{ab}_{\delta} \quad \mathrm{Cb}_{\delta}:=\frac{\mathrm{bc}_{\delta}}{2}\)
\(\mathrm{Ca}_{\delta}:=\mathrm{ab}_{\boldsymbol{\delta}}+\mathrm{Cb}_{\boldsymbol{\delta}} \quad \mathrm{AC}_{\delta}:=\mathrm{Aa}_{\boldsymbol{\delta}}+\mathrm{Ca}_{\boldsymbol{\delta}} \quad \mathrm{Ce}_{\boldsymbol{\delta}}:=\mathrm{ae}_{\boldsymbol{\delta}}-\mathrm{Ca}_{\boldsymbol{\delta}} \quad \mathrm{CK}_{\boldsymbol{\delta}}:=\sqrt{\mathrm{Ke}^{2}-\left(\mathrm{Ce}_{\delta}\right)^{2}}\)

\(\mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta}\)
\(\mathrm{BJ}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{AB}_{\delta}} \quad \mathrm{GM}_{\delta}:=\sqrt{\mathrm{AG}_{\delta} \cdot \mathrm{GH}_{\delta}}\)

Is K on CK colinear with AL?
\(\sum_{\delta}\left(\frac{\mathrm{GL}_{\delta}}{\mathrm{AG}_{\delta}}-\frac{\mathrm{CK}_{\delta}}{\mathrm{AC}_{\delta}}\right)=2.35 \cdot 10^{-13}\)



\section*{12_11_93.MCD}

The structure in red appears to be a constant.
\[
\begin{aligned}
& \mathrm{BH}:=5000 \quad \delta:=\mathrm{S} . . \mathrm{F} \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \\
& \mathrm{BG}:=\frac{\mathrm{BH}}{2} \quad \mathrm{AH}_{\delta}:=\mathrm{BH}+\mathrm{AB}_{\delta}
\end{aligned}
\]
\[
\mathrm{AC}_{\delta}:=\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AH}_{\delta}\right]^{\frac{1}{3}}
\]
\[
\mathrm{AF}_{\delta}:=\left[\mathrm{AB}_{\delta} \cdot\left(\mathrm{AH}_{\delta}\right)^{2}\right]^{\frac{1}{3}}
\]
\[
\mathrm{AJ}_{\delta}:=\frac{\mathrm{AF}_{\delta}-\mathrm{AC}_{\delta}}{2} \mathrm{BC}_{\delta}:=\mathrm{AC}_{\delta}-\mathrm{AB}_{\delta}
\]
\[
\mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AH}_{\delta}} \mathrm{BF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AB}_{\delta}
\]

\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AC}_{\delta} \quad \mathrm{FH}_{\delta}:=\mathrm{AH}_{\delta}-\mathrm{AF}_{\delta} \\
& \mathrm{CO}_{\delta}:=\frac{\mathrm{BC}_{\delta} \cdot \mathrm{CF}_{\delta}}{\mathrm{FH}_{\delta}+\mathrm{BC}_{\delta}} \quad \mathrm{BO}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CO}_{\delta} \\
& \mathrm{GO}_{\delta}:=\mathrm{BG}-\mathrm{BO}_{\delta} \mathrm{GL}:=\mathrm{BG} \\
& \mathrm{LO}_{\delta}:=\sqrt{\mathrm{GL}^{2}-\left(\mathrm{GO}_{\delta}\right)^{2}} \\
& \mathrm{AO}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BO}_{\delta}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{JD}_{\delta}:=\sqrt{\left(\mathrm{AD}_{\delta}\right)^{2}+\left(\mathrm{AJ}_{\delta}\right)^{2}} \mathrm{JN}_{\delta}:=\mathrm{JD}_{\delta} \\
& \mathrm{NP}_{\delta}:=\mathrm{AJ}_{\delta} \quad \mathrm{AN}_{\delta}:=\sqrt{\left(\mathrm{AJ}_{\delta}\right)^{2}+\left(\mathrm{JN}_{\delta}\right)^{2}} \\
& \mathrm{AP}_{\delta}:=\mathrm{JN}_{\delta} \quad \mathrm{AE}_{\delta}:=\frac{\left(\mathrm{AN}_{\delta}\right)^{2}}{\mathrm{AP}_{\delta}}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AM}_{\delta}:=\frac{\mathrm{AE}_{\delta}}{2} \quad \mathrm{MK}_{\delta}:=\mathrm{AM}_{\delta} \quad \mathrm{GK}:=\mathrm{BG} \\
& \mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG} \\
& \mathrm{GM}_{\delta}:=\mathrm{AG}_{\delta}-\mathrm{AM}_{\delta} \quad \mathrm{Ma}_{\delta}:=\frac{\left(\mathrm{MK}_{\delta}\right)^{2}}{\mathrm{GM}_{\delta}} \\
& \mathrm{Gb}_{\delta}:=\frac{(\mathrm{GK})^{2}}{\mathrm{GM}_{\delta}} \quad \mathrm{Ga}_{\delta}:=\mathrm{GM}_{\delta}-\mathrm{Ma}_{\delta} \\
& \mathrm{ab}_{\delta}:=\mathrm{Gb}_{\delta}-\mathrm{Ga}_{\delta} \quad \mathrm{Qa}_{\delta}:=\frac{\mathrm{ab}_{\delta}}{2} \\
& \mathrm{GQ}_{\delta}:=\mathrm{Ga}_{\delta}+\mathrm{Qa}_{\delta} \quad \mathrm{AQ}_{\delta}:=\mathrm{AG}_{\delta}-\mathrm{GQ}_{\delta} \\
& \mathrm{KQ}_{\delta}:=\sqrt{\mathrm{GK}^{2}-\left(\mathrm{GQ}_{\delta}\right)^{2}}
\end{aligned}
\]

\[
\begin{array}{ll}
\left(\mathrm{AB}_{\mathrm{S}}\right)^{2} \cdot \mathrm{AH}_{\mathrm{S}}=4.886 \cdot 10^{4} & \mathrm{BO}_{\mathrm{S}}=36.27 \\
\mathrm{AB}_{\mathrm{S}} \cdot\left(\mathrm{AH}_{\mathrm{S}}\right)^{2}=7.822 \cdot 10^{7} & \mathrm{BO}_{\mathrm{F}}=109.49532 \\
\left(\mathrm{AB}_{\mathrm{F}}\right)^{2} \cdot \mathrm{AH}_{\mathrm{F}}=1.417 \cdot 10^{6} & \mathrm{AB}_{\mathrm{S}}=3.125 \\
\mathrm{AB}_{\mathrm{F}} \cdot\left(\mathrm{AH}_{\mathrm{F}}\right)^{2}=4.23 \cdot 10^{8} & \mathrm{AB}_{\mathrm{F}}=16.807 \\
\mathrm{LO}_{\mathrm{S}}=424.30457 & \mathrm{KQ}_{\mathrm{S}}=36.53305 \\
\mathrm{LO}_{\mathrm{F}}=731.77 & \mathrm{KQ}_{\mathrm{F}}=111.891
\end{array}
\]
\[
\begin{gathered}
\sum_{\delta}\left(\frac{\mathrm{LO}_{\delta}}{\mathrm{AO}_{\delta}}-\frac{\mathrm{KQ}_{\delta}}{\mathrm{AQ}_{\delta}}\right)=8.477 \cdot 10^{-12} \\
\mathrm{~S} \equiv 50 \quad \mathrm{~F} \equiv 70
\end{gathered}
\]



\section*{The Square Root}

It may be noticed that I use the adjacent figure in my work for doing square roots. I believe that it is the primary figure for doing square roots. Given segment AE and segment BD , segment FG is their square root. It has a major advantage of being able to square larger figures on paper, not to mention makes something of the development of exponential series.

\(\mathrm{AE}:=100 \quad \delta:=1 . . \mathrm{AE} \quad \mathrm{BD}_{\delta}:=\delta\)
\(\mathrm{AC}:=\frac{\mathrm{AE}}{2} \quad \mathrm{BC}_{\delta}:=\frac{\mathrm{BD}_{\delta}}{2} \quad \mathrm{AB}_{\delta}:=\mathrm{AC}-\mathrm{BC}_{\delta}\)
\(\mathrm{AD}_{\delta}:=\mathrm{AC}+\mathrm{BC}_{\delta} \mathrm{AH}_{\delta}:=\frac{\mathrm{AD}_{\delta}}{2}\)
\(\mathrm{GH}_{\delta}:=\mathrm{AH}_{\delta} \quad \mathrm{CH}_{\delta}:=\mathrm{AC}-\mathrm{AH}_{\delta}\)
\(\mathrm{FG}_{\delta}:=2 \cdot \sqrt{\left(\mathrm{GH}_{\delta}\right)^{2}-\left(\mathrm{CH}_{\delta}\right)^{2}}\)
\(\mathrm{ROOT}_{\delta}:=\sqrt{\left(\mathrm{BD}_{\boldsymbol{\delta}}\right) \cdot \mathrm{AE}}\)



12_12_B3.MCD
Completely generalize the square root figure.
\[
\mathrm{AF}:=7 \quad \mathrm{DF}:=\frac{\mathrm{AF}}{\mathrm{BR}} \mathrm{AD}:=\mathrm{AF}-\mathrm{DF}
\]
\[
\delta:=1 . . \mathrm{LBR} \mathrm{DE}_{\delta}:=\frac{\mathrm{DF}}{\mathrm{LBR}} \cdot \delta
\]
\[
\mathrm{CE}_{\delta}:=2 \cdot \mathrm{DE}_{\delta} \mathrm{AE}_{\delta}:=\mathrm{AD}+\mathrm{DE}_{\delta}
\]
\(\mathrm{AB}_{\delta}:=\frac{\mathrm{AE}_{\delta}}{2} \quad \mathrm{BD}_{\delta}:=\mathrm{AD}-\mathrm{AB}_{\delta}\)
\(\mathrm{BH}_{\delta}:=\mathrm{AB}_{\delta} \mathrm{GH}_{\delta}:=2 \cdot \sqrt{\left|\left(\mathrm{BH}_{\delta}\right)^{2}-\left(\mathrm{BD}_{\delta}\right)^{2}\right|}\)
Set AF to unity so that it may be eliminated. Setting BR to 2 will yeild the familiar square root. BR may even take fractional values.
Plug in values here. \(\quad\) BR=BASE RATIO,
\(\mathrm{BR} \equiv 3 \quad \mathrm{LBR} \equiv 5\) LBR=LITTLE BASE RATIO
\[
\left|\frac{(2 \cdot \mathrm{BR})-2}{\mathrm{BR}}\right|=1.333
\]

The equation below
simplifies to the next.

\(\mathrm{CE}_{\delta} \quad \frac{\mathrm{BR}-(\mathrm{BR}-2)}{\mathrm{BR} \cdot \mathrm{LBR}} \cdot \delta \cdot \mathrm{AF}\)
\begin{tabular}{|c|c|}
\hline 0.933 & 0.933 \\
\hline 1.867 & 1.867 \\
\hline 2.8 & 2.8 \\
\hline 3.733 & 2.733 \\
\hline 4.667 & 4.667 \\
\hline
\end{tabular}

\[
\mathrm{AR}:=10 \quad \Delta:=5 \quad \delta:=2 . . \Delta+1 \mathrm{AB}_{\delta}:=\frac{\mathrm{AR}}{\delta}
\]
\[
A J_{\delta}:=\sqrt{A B_{\delta} \cdot A R} \quad \mathrm{JR}_{\delta}:=A R-A J_{\delta}
\]
\[
\mathrm{JW}_{\delta}:=\sqrt{A J_{\delta} \cdot \mathrm{JR}_{\delta}} \quad A W_{\delta}:=\sqrt{\left(A J_{\delta}\right)^{2}+\left(\mathrm{JW}_{\delta}\right)^{2}}
\]
\begin{tabular}{|c|}
\(\mathrm{AB}_{\delta}\) \\
\begin{tabular}{|c|}
\hline 5 \\
\hline 3.333 \\
\hline 2.5 \\
\hline 2 \\
\hline 1.667 \\
\hline
\end{tabular} \\
\begin{tabular}{|c|}
\hline 1.071 \\
\hline 5.774 \\
\hline 5 \\
\hline 4.472 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

The figure presents me with a progression. What is it's formula? It turns out not only that I can do square roots, but any two-prime root. It took me 48 pages of sieve work to realize what I was looking at.

\section*{Euclidean Exponential Series}

\[
\begin{aligned}
& \mathrm{AT}:=\mathrm{AR} \quad \mathrm{AN}_{\delta}:=\mathrm{AW}_{\delta} \quad \mathrm{AF}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AW}_{\delta}} \\
& \mathrm{NR}_{\delta}:=\mathrm{AR}-\mathrm{AN}_{\delta} \quad \mathrm{NX} X_{\delta}:=\sqrt{\mathrm{AN}_{\delta} \cdot \mathrm{NR}_{\delta}} \\
& \left.\mathrm{AX}_{\delta}:=\sqrt{\left(\mathrm{AN}_{\delta}\right)^{2}+(\mathrm{NX}}{ }_{\delta}\right)^{2}
\end{aligned}
\]
\begin{tabular}{llll}
\multicolumn{1}{l}{\(\mathrm{AB}_{\delta}\)} & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AN}_{\delta}\) \\
\hline \begin{tabular}{|c|}
\hline 5 \\
\hline 3.333 \\
\hline 2.5 \\
\hline 2 \\
\hline 1.667 \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline 5.946 \\
\hline 4.387 \\
\hline 3.536 \\
\hline 2.991 \\
\hline 2.608 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
\hline 7.071 \\
\hline 5.774 \\
\hline 5 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
\hline 8.409 \\
\hline 7.598 \\
\hline 7.071 \\
\hline 6.687 \\
\hline 6.389 \\
\hline
\end{tabular}
\end{tabular}

What I find interesting, foremost, is the implication for number theory-- We learn exponential notation prior to any naturally occurring exponential examples- Here is one example. The figure removes the conception that exponentiation is purely a notational device and raises it's rank to that of a realistic abstraction.

\[
\begin{aligned}
& A U:=A R \quad A P_{\delta}:=A X_{\delta} \quad A L_{\delta}:=\frac{\left(A N_{\delta}\right)^{2}}{A X_{\delta}} \\
& A H_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{A L_{\delta}} \quad A D_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{A H_{\delta}} \\
& P R_{\delta}:=A R-A P_{\delta} \quad P Y_{\delta}:=\sqrt{A P_{\delta} \cdot P R_{\delta}} \\
& A Y_{\delta}:=\sqrt{\left(A P_{\delta}\right)^{2}+\left(P Y_{\delta}\right)^{2}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & \(\mathrm{AD}_{\delta}\) & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AH}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AL}_{\delta}\) & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AP}_{\delta}\) \\
\hline 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.711 & 8.409 & 9.17 \\
\hline 3.333 & 3.824 & 4.387 & 5.033 & 5.774 & 6.623 & 7.598 & 8.717 \\
\hline 2.5 & 2.973 & 3.536 & 4.204 & 5 & 5.946 & 7.071 & 8.409 \\
\hline 2 & 2.446 & 2.991 & 3.657 & 4.472 & 5.469 & 6.687 & 8.178 \\
\hline 1.667 & 2.085 & 2.608 & 3.263 & 4.082 & 5.107 & 6.389 & 7.993 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \mathrm{AV}:=\mathrm{AR} \quad A Q_{\delta}:=A Y_{\delta} \quad A O_{\delta}:=\frac{\left(A P_{\delta}\right)^{2}}{A Y_{\delta}} \\
& A M_{\delta}:=\frac{\left(A N_{\delta}\right)^{2}}{A O_{\delta}} \quad A K_{\delta}:=\frac{\left(A L_{\delta}\right)^{2}}{A M_{\delta}} \\
& \mathrm{Al}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AK}_{\delta}} \quad \mathrm{AG}_{\delta}:=\frac{\left.(\mathrm{AH})_{\delta}\right)^{2}}{\mathrm{Al}} \\
& A E_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{A G_{\delta}} \quad A C_{\delta}:=\frac{\left(\mathrm{AD}_{\delta}\right)^{2}}{\mathrm{AE}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AG}_{\delta}\) & \({ }^{\circ}\) & \({ }^{\circ}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AK}_{\delta}\) & \(\mathrm{AL}_{\delta}\) & & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AO}_{\delta}\) & \({ }^{\circ}\) & \(\mathrm{AQ}_{\delta}\) \\
\hline 6.209 & 6.484 & 6.771 & 7.071 & 7.384 & 7.711 & 8.052 & 8.409 & 8.781 & 9.17 & 9.576 \\
\hline 4.699 & 5.03 & 5.39 & 5.774 & 6. & 6.623 & 7.094 & 7.598 & 8.138 & 8.71 & 9.3 \\
\hline 3.856 & 4. & 4.585 & 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.71 & 8.409 & 9.17 \\
\hline 3.307 & 3.657 & 4. & 4.472 & 4.945 & 5.469 & 6.047 & 6.687 & 7.395 & 8.178 & 9.043 \\
\hline 2.918 & 3.26 & 3.65 & 4.08 & 4.56 & 5.10 & 5.713 & 6.38 & 7.14 & 7.9 & 8.9 \\
\hline
\end{tabular}





\begin{tabular}{l|l|l|l|} 
\\
\(\mathrm{AC}_{\delta}\) & {\(\left[\left(\mathrm{AB}_{\delta}\right)^{15} \cdot \mathrm{AR}\right]^{16}\)} & \(\mathrm{AB}_{\delta}\) & \(\left.\left(\mathrm{AB}_{\delta}\right)^{16} \cdot \mathrm{AR}^{0}\right]^{\frac{1}{16}}\) \\
\begin{tabular}{|c||c||c|}
\hline 5.221 & 5.221 \\
\hline 3.57 & 3.57 \\
\hline 2.726 & 2.726 \\
\hline 2.212 & 2.212 \\
\hline 1.864 & 1.864 \\
\hline
\end{tabular} & \begin{tabular}{|c|c|}
\hline 5 & 5 \\
\hline 3.333 & 3.333 \\
\hline 2.5 & 2.5 \\
\hline & \\
\hline & \\
\hline
\end{tabular} &
\end{tabular}
\(\left(A^{\delta} \cdot B^{\text {DIV }-\delta)^{\frac{1}{\text { DIV }}}}\right.\)
Or
\[
\left(A^{\text {DIV }-\delta} \cdot B^{\delta}\right)^{\frac{1}{\text { DIV }}}
\]

Resultant Equation
depending on direction of transcription.
And the Delian Quest
One Square

By John Clark


\section*{1 \\ 9 \\ }

\section*{Inscribing a Circle in a given Triangle.}

Place the length for the sides of the triangle at the end of the document.

\[
\begin{aligned}
& \text { AB }:=\left(\begin{array}{l}
\text { Side_1 } \\
\text { Side_2 } \\
\text { Side_3 }
\end{array}\right) \text { AC }:=\left(\begin{array}{l}
\text { Side_2 } \\
\text { Side_3 } \\
\text { Side_1 }
\end{array}\right) \\
& \text { BC }:=\left(\begin{array}{l}
\text { Side_3 } \\
\text { Side_1 } \\
\text { Side_2 }
\end{array}\right) \delta:=0 . .2
\end{aligned}
\]

Is_This_A_Triangle \(:=\left(\mathrm{AB}_{0}+\mathrm{AC}_{0} \geq \mathrm{BC}_{0}\right) \cdot\left(\mathrm{AB}_{0}+\mathrm{BC}_{0} \geq \mathrm{AC}_{0}\right) \cdot\left(\mathrm{AC}_{0}+\mathrm{BC}_{0} \geq \mathrm{AB}_{0}\right) \mathrm{AQ}_{\delta}:=\mathrm{AC}_{\delta}\)

\[
\begin{aligned}
& \mathrm{BR}_{\delta}:=\mathrm{BC}_{\delta} \mathrm{AN}_{\delta}:=\frac{\left(\mathrm{AQ}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \\
& \mathrm{BP}_{\delta}:=\frac{\left(\mathrm{BR}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \mathrm{AP}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{BP}_{\delta}
\end{aligned}
\]
\[
\mathrm{NP}_{\delta}:=\mathrm{AP}_{\delta}-\mathrm{AN}_{\delta} \quad \mathrm{NO}_{\delta}:=\frac{\mathrm{NP}_{\delta}}{2}
\]
\[
\mathrm{AO}:=\mathrm{AN}+\mathrm{NO} \mathrm{BO}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AO}_{\delta}
\]
\[
\mathrm{CO}_{\delta}:=\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}-\left(\mathrm{BO}_{\delta}\right)^{2}}
\]

\[
\mathrm{BS}_{\delta}:=\mathrm{BC}_{\delta} \quad \mathrm{SO}_{\delta}:=\mathrm{BS}_{\delta}-\mathrm{BO}_{\delta}
\]
\[
\mathrm{CS}_{\delta}:=\sqrt{\left(\mathrm{SO}_{\delta}\right)^{2}+\left(\mathrm{CO}_{\delta}\right)^{2}} \mathrm{SU}_{\delta}:=\frac{\mathrm{CS}_{\delta}}{2}
\]
\[
\mathrm{BU}_{\delta}:=\sqrt{\left(\mathrm{BS}_{\delta}\right)^{2}-\left(\mathrm{SU}_{\delta}\right)^{2}}
\]
\[
\mathrm{ST}_{\delta}:=\frac{\left(\mathrm{SU}_{\delta}\right)^{2}}{\mathrm{BS}_{\delta}} \mathrm{TU}_{\delta}:=\sqrt{\left(\mathrm{SU}_{\delta}\right)^{2}-\left(\mathrm{ST}_{\delta}\right)^{2}}
\]

\[
\mathrm{AW}_{\delta}:=\mathrm{AC}_{\delta} \mathrm{WO}_{\delta}:=\mathrm{AW}_{\delta}-\mathrm{AO}_{\delta}
\]
\[
\mathrm{CW}_{\delta}:=\sqrt{\left(\mathrm{WO}_{\delta}\right)^{2}+\left(\mathrm{CO}_{\delta}\right)^{2}}
\]
\[
\mathrm{WX}_{\delta}:=\frac{\mathrm{CW}_{\delta}}{2}
\]
\[
\mathrm{AX}_{\delta}:=\sqrt{\left(\mathrm{AW}_{\delta}\right)^{2}-\left(\mathrm{WX}_{\delta}\right)^{2}}
\]

\(\mathrm{WV}_{\delta}:=\frac{\left(\mathrm{WX}_{\delta}\right)^{2}}{\mathrm{AW}_{\delta}}\)
\[
\mathrm{VX}_{\delta}:=\sqrt{\left(\mathrm{WX}_{\delta}\right)^{2}-\left(\mathrm{WV}_{\delta}\right)^{2}}
\]
\[
\mathrm{WV}_{\delta}:=\sqrt{\left(\mathrm{WX}_{\delta}\right)^{2}-\left(\mathrm{VX}_{\delta}\right)^{2}}
\]
\[
\mathrm{AV}_{\delta}:=\mathrm{AW}_{\delta}-\mathrm{WV}_{\delta} \quad \mathrm{BV}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AV}_{\delta} \quad \mathrm{XY}_{\delta}:=\frac{\mathrm{BU}_{\delta} \cdot \mathrm{VX}_{\delta}}{\mathrm{TU}_{\delta}} \quad \mathrm{VY}_{\delta}:=\sqrt{\left(\mathrm{XY}_{\delta}\right)^{2}-\left(\mathrm{VX}_{\delta}\right)^{2}}
\]

\[
\begin{aligned}
& \mathrm{AY}_{\delta}:=\mathrm{AV}_{\delta}+\mathrm{VY}_{\delta} \\
& \mathrm{AD}_{\delta}:=\frac{\mathrm{AV}_{\delta} \cdot \mathrm{AB}_{\delta}}{\mathrm{AY}} \mathrm{AE}_{\delta}:=\frac{\mathrm{AX}_{\delta} \cdot \mathrm{AD}_{\delta}}{\mathrm{AV}_{\delta}} \\
& \mathrm{DE}_{\delta}:=\sqrt{\left(\mathrm{AE}_{\delta}\right)^{2}-\left(\mathrm{AD}_{\delta}\right)^{2}}
\end{aligned}
\]

Plug Side Values In Here \(\quad\) Side \(\_1 \equiv 20 \quad\) Side \(\_2=26 \quad\) Side_3 \(\equiv 21\)
\(A B^{T}=\left(\begin{array}{lll}20 & 26 & 21\end{array}\right) \quad\) Is_This_A_Triangle \(=1\)
Given 3 lengths, no matter what order they are entered, DE should remain a constant.

\[
\mathrm{S}_{1}:=\mathrm{AB} \quad \mathrm{~S}_{2}:=\mathrm{AC} \quad \mathrm{~S}_{3}:=\mathrm{BC}
\]

You will note that the formula derived from the process is more consistent with imaginaries.
\(\operatorname{Radius}_{\delta}:=\frac{\sqrt{-\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}-\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}-\mathrm{S}_{3_{\delta}}}}{2 \cdot \sqrt{\mathrm{~S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}}}\)
\[
\text { Radius }=\left(\begin{array}{l}
6.147 \\
6.147 \\
6.147
\end{array}\right) \quad \mathrm{DE}=\left(\begin{array}{l}
6.147 \\
6.147 \\
6.147
\end{array}\right)
\]


\section*{The Cradle}

Is EL and EK always collinear?
\(1:=100 \quad \delta:=1 . .1 \quad \mathrm{EF}_{\delta}:=\delta^{5} \cdot 10^{-8}\)
\(\mathrm{FJ}:=10 \quad \mathrm{EJ}_{\delta}:=\mathrm{FJ}+\mathrm{EF}_{\delta}\)
\(\mathrm{EH}_{\delta}:=\sqrt{\mathrm{EF}_{\delta} \cdot \mathrm{EJ}_{\delta}} \quad \mathrm{FH}_{\delta}:=\mathrm{EH}_{\delta}-\mathrm{EF}_{\delta}\)
\(\mathrm{EG}_{\delta}:=\left[\left(\mathrm{EF}_{\boldsymbol{\delta}}\right)^{2} \cdot \mathrm{EJ}_{\delta}\right]^{\frac{1}{3}} \quad \mathrm{FG}_{\delta}:=\mathrm{EG}_{\boldsymbol{\delta}}-\mathrm{EF}_{\delta}\)
\(\mathrm{EI}_{\delta}:=\left[\left(\mathrm{EJ}_{\delta}\right)^{2} \cdot \mathrm{EF}_{\delta}\right]^{\frac{1}{3}} \quad \mathrm{FI}_{\delta}:=\mathrm{EI}_{\delta}-\mathrm{EF}_{\delta}\)


Basically it is demonstrated that the two triangles EKM and ELN are proportional, which is sufficient.
\[
\mathrm{IJ}_{\delta}:=\mathrm{FJ}-\mathrm{FI}_{\delta}
\]
\(\mathrm{HJ}_{\delta}:=\mathrm{FJ}-\mathrm{FH}_{\delta}\)
\(\mathrm{FN}_{\delta}:=\frac{\mathrm{FH}_{\delta} \cdot \mathrm{FJ}}{\left(\mathrm{FH}_{\delta}+\mathrm{IJ}_{\delta}\right)} \mathrm{EN}_{\delta}:=\mathrm{FN}_{\delta}+\mathrm{EF}_{\delta}\)
\[
\mathrm{FM}_{\delta}:=\frac{\mathrm{FG}_{\delta} \cdot \mathrm{FJ}}{\left(\mathrm{FG}_{\delta}+\mathrm{HJ}_{\delta}\right)} \mathrm{EM}_{\delta}:=\mathrm{FM}_{\delta}+\mathrm{EF}_{\delta}
\]

\[
\begin{aligned}
& \mathrm{JN}_{\delta}:=\mathrm{FJ}-\mathrm{FN}_{\delta} \quad \mathrm{LP}_{\delta}:=\mathrm{JN}_{\delta} \\
& \mathrm{BJ}:=\mathrm{FJ} \quad \mathrm{BP}_{\delta}:=\frac{\mathrm{BJ} \cdot \mathrm{LP}_{\delta}}{\mathrm{IJ}_{\delta}} \\
& \mathrm{JP}_{\delta}:=\mathrm{BP}_{\delta}-\mathrm{BJ} \quad \mathrm{LN}_{\delta}:=\mathrm{JP}_{\delta} \\
& \mathrm{KO}_{\delta}:=\mathrm{FM}_{\delta} \quad \mathrm{AF}:=\mathrm{FJ} \\
& \mathrm{AO}_{\delta}:=\frac{\mathrm{AF}^{2} \mathrm{KO}_{\delta}}{\mathrm{FG}_{\delta}} \mathrm{FO}_{\delta}:=\mathrm{AO}_{\delta}-\mathrm{AF} \\
& \mathrm{KM}_{\delta}:=\mathrm{FO}_{\delta} \quad \sum_{\delta}\left(\frac{\mathrm{LN}_{\delta}}{\mathrm{EN}_{\delta}}-\frac{\mathrm{KM}_{\delta}}{\mathrm{EM}_{\delta}}\right)=1.015 \cdot 100^{-10}
\end{aligned}
\]

They are two lines with identical slopes, terminating at the same point.


\[
\begin{aligned}
& \mathrm{HR}_{\delta}:=\sqrt{\mathrm{FH}_{\delta} \cdot \mathrm{HJ}_{\delta}} \quad \mathrm{HS}_{\delta}:=\frac{\mathrm{LN}_{\delta} \cdot \mathrm{EH}_{\delta}}{\mathrm{EN}_{\delta}} \\
& \mathrm{RATIO}_{\delta}:=\frac{\mathrm{HR}_{\delta}}{\mathrm{HS}_{\delta}} \quad \mathrm{GI}_{\delta}:=\mathrm{EI}_{\delta}-\mathrm{EG}_{\delta}
\end{aligned}
\]
\[
\mathrm{RATIO}_{\delta}:=\frac{\mathrm{GI}_{\delta}}{\mathrm{HS}_{\delta}}
\]


\section*{Tangents and Similarity Points}


O and P are points of origin for the ratio of the two circles that can also have a tangent ray to both circles. Develop formulas that would locate the particular points given using just the radius of the two circles and the difference between them.

O and P are called the similarity points ( sp ) of the two circles. O is the external similarity point and P is the internal similarity point.

I will work with point O first.
Given \(\mathrm{R}_{\mathrm{L}}=\) large radius
\(\mathrm{R}_{\mathrm{S}}=\) small radius
\(\mathrm{D}=\) difference between origins.
\(\mathrm{R}_{\mathrm{L}}:=4 \quad \mathrm{R}_{\mathrm{S}}:=1 \quad \mathrm{D}:=8\)
\(\mathrm{AC}:=\mathrm{R}_{\mathrm{L}} \quad \mathrm{BD}:=\mathrm{R}_{\mathrm{S}} \quad \mathrm{AB}:=\mathrm{D}\)
If the difference between the circles is less than \(\mathrm{P}_{\mathrm{I}}-\mathrm{R}_{\mathrm{s}}\), than one of course has an imaginary situation for the external similarity point, \(R_{L}+R_{s}\) for the internal. At \(R_{L}-R_{S}\) the smaller is in the larger and they touch at one point, \(R_{L}+R_{S}\) they are external to one another and touching.

\(\mathrm{DE}:=\mathrm{AB} \quad \mathrm{AE}:=\mathrm{BD} \quad \mathrm{CE}:=\mathrm{AC}-\mathrm{AE}\)
\(\mathrm{AO}:=\frac{\mathrm{DE} \cdot \mathrm{AC}}{\mathrm{CE}} \quad \mathrm{AO}=10.667\)
\(\mathrm{EOR}_{\mathrm{L}}\) "External similarity point Origin to center of Radius Large"
EOR \(_{L}:=\operatorname{if}\left(\mathrm{R}_{\mathrm{L}} \neq \mathrm{R}_{\mathrm{S}}\right.\), if \(\left.\left(\mathrm{R}_{\mathrm{S}}>\mathrm{R}_{\mathrm{L}}, 0, \frac{\mathrm{D} \cdot \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\right), \infty\right)\)
EOR \(_{L}=10.667\)


What is the length of line (OG) tangent to both circles?
\(\mathrm{AG}:=\mathrm{AC} \quad \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}}\)
\(\mathrm{GO}=9.888\)

And what is the formula?
\(\mathrm{EOT}_{\mathrm{LR}}\) " External similarity point Origin to Tangent
(Large Radius)"
EOT \(_{\text {LR }}=\mathrm{R}_{\mathrm{L}} \cdot \frac{\sqrt{\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(-\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\)
EOT \(_{\text {LR }}=9.888\)

What is the length of the line tangent to the least circle (HO)?

\(\mathrm{BH}:=\mathrm{BD} \quad \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \quad \mathrm{BO}=2.667\)
\(\mathrm{HO}:=\sqrt{\mathrm{BO}^{2}}-\mathrm{BH}^{2}\)
\(\mathrm{HO}=2.472\)
And what is the formula?
\(\mathrm{EOT}_{\mathrm{SR}}\) " External similarity point Origin to Tangent (Small Radius)"

EOT \(_{\text {SR }}:=\mathrm{R}_{\mathrm{S}} \cdot \frac{\sqrt{-\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right)}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\)
\(\mathrm{EOT}_{\mathrm{SR}}=2.472\)


Lastly what is the length of line from tangent to tangent of these circles?

GH := EOT \(L R-\) EOT \(_{\text {SR }}\)
\(\mathrm{GH}=7.416\)

And what is the formula?
ETT "Tangent to Tangent"

ETT \(:=\sqrt{-\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right)}\)
\(\mathrm{ETT}=7.416\)


I will now turn my attention to the point P , the internal similarity point.
\(\mathrm{AP}:=\frac{\mathrm{AB} \cdot \mathrm{AC}}{\mathrm{AC}+\mathrm{BD}} \quad \mathrm{AP}=6.4\)

\(\mathrm{IOR}_{\mathrm{L}}\) "Internal similarity point to center of Radius Large"
\(\operatorname{IOR}_{\mathrm{L}}:=\mathrm{D} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}}\) IOR \(_{\mathrm{L}}=6.4\)
\(\mathrm{BP}:=\mathrm{AB}-\mathrm{AP} \quad \mathrm{BP}=1.6\)
\(\mathrm{IOR}_{\mathrm{s}}\) "Internal similarity point to center of Radius Small"
\(\operatorname{IOR}_{S}:=D \cdot \frac{R_{S}}{R_{L}+R_{S}} \quad \operatorname{IOR}_{S}=1.6\)

\(\mathrm{AJ}:=\mathrm{AC} \quad \mathrm{BK}:=\mathrm{BD} \quad \mathrm{JP}:=\sqrt{\mathrm{AP}^{2}-\mathrm{AJ}^{2}}\)
\(\mathrm{JP}=4.996\)
\(\mathrm{IOT}_{\mathrm{LR}}\) "Internal similarity point Origin to Tangent (Large Radius)"

\(\mathrm{IOT}_{\mathrm{LR}}=4.996\)
\(\mathrm{KP}:=\sqrt{\mathrm{BP}^{2}-\mathrm{BK}^{2}} \quad \mathrm{KP}=1.249\)

\(\mathrm{IOT}_{\mathrm{SR}}\) "Internal similarity point Origin to Tangent (Small Radius)"
IOT \(_{\mathrm{SR}}:=\mathrm{R}_{\mathrm{S}} \frac{\sqrt{\frac{-\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}{}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}}\)
\(\mathrm{IOT}_{\mathrm{SR}}=1.249\)
\(\mathrm{JK}:=\mathrm{JP}+\mathrm{KP} \quad \mathrm{JK}=6.245\)
ITT "Internal similarity point Tangent to Tangent"
ITT \(:=\sqrt{-\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}\)
ITT \(=6.245\)

\section*{The Chordal or Power Line of two Circles 04_27_94.MCD}


The solution for finding the chordal as outlined in 100 Great Problems of Elementary Mathematics Their History and Solution by Heinrich Dörrie did not lend itself to this kind of process, so I took a couple of minuets (Bach) and developed my own method.
The figure I work with is a transformation of the one on the left.

Given two circles find their chordal or power line given just their radius and difference between their centers, and reduce the tautological chains to formulas.
\[
\begin{aligned}
& \mathrm{R}_{1}:=3 \quad \mathrm{R}_{2}:=1 \quad \mathrm{D}:=1 \\
& \mathrm{AH}:=\mathrm{R}_{1} \quad \mathrm{GJ}:=\mathrm{R}_{2} \quad \mathrm{AG}:=\mathrm{D} \\
& \mathrm{AB}:=\frac{\mathrm{AH}^{2}}{\mathrm{AG}} \mathrm{FG}:=\frac{\mathrm{GJ}^{2}}{\mathrm{AG}} \\
& \mathrm{BF}:=\mathrm{AG}-\mathrm{AB}-\mathrm{FG} \quad \mathrm{BD}:=\frac{\mathrm{BF}}{2} \\
& \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \quad \mathrm{DF}:=\mathrm{BD} \\
& \mathrm{DG}:=\mathrm{DF}+\mathrm{FG}
\end{aligned}
\]
\[
\begin{array}{lll}
\mathrm{CR}_{1}:=\frac{1}{2} \cdot \frac{\left(\mathrm{R}_{1}^{2}-\mathrm{R}_{2}^{2}+\mathrm{D}^{2}\right)}{\mathrm{D}} & \mathrm{CR}_{1}=4.5 & \mathrm{AD}=4.5 \\
\mathrm{CR}_{2}:=\frac{1}{2} \cdot \frac{\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{1}^{2}+\mathrm{D}^{2}\right)}{\mathrm{D}} \mathrm{CR}_{2}=-3.5 & \mathrm{DG}=-3.5
\end{array}
\]


LT "Length of radial Tangent" LP is the variable chosen for circle center on the power line.
\(\mathrm{LT}:=\frac{1}{2} \cdot\left|\frac{\sqrt{4 \cdot \mathrm{LP}^{2} \cdot \mathrm{D}^{2}+\mathrm{R}_{1}{ }^{4}-2 \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}^{2}-2 \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{2}^{2}+\mathrm{D}^{4}-2 \cdot \mathrm{D}^{2} \cdot \mathrm{R}_{2}^{2}+\mathrm{R}_{2}^{4}}}{\mathrm{D}}\right|\)
\(\mathrm{LT}=6.021 \quad \mathrm{JK}=6.021\)
The process does not seem to recognize any special cases.


\section*{Power Point}

Given three circles find their power point and if it is at all possible, cut all three perpendicularly. Demonstrate the formula for the Power Point and the Length of the resultant Tangent.

The distance between each set of circles is given as \(\mathrm{D}_{1}, \mathrm{D}_{2}\), and \(\mathrm{D}_{3}\). Naturally they must form a triangle.
\(D_{1}:=4\)
\(\mathrm{D}_{2}:=5\)
\(D_{3}:=2\)
\(\Delta:=\left(\mathrm{D}_{1}+\mathrm{D}_{2} \geq \mathrm{D}_{3}\right) \cdot\left(\mathrm{D}_{2}+\mathrm{D}_{3} \geq \mathrm{D}_{1}\right) \cdot\left(\mathrm{D}_{1}+\mathrm{D}_{3} \geq \mathrm{D}_{2}\right)\)

\(\Delta=1 \quad \Delta\) "Is this a Triangle?
\(\mathrm{R}_{1}:=3 \quad \mathrm{R}_{2}:=2 \quad \mathrm{R}_{3}:=4\)
\[
\mathrm{AE}:=\mathrm{D}_{1} \quad \mathrm{AH}:=\mathrm{D}_{2} \quad \mathrm{EH}:=\mathrm{D}_{3}
\]
\(\mathrm{AF}:=\mathrm{R}_{1} \quad \mathrm{HK}:=\mathrm{R}_{2} \quad \mathrm{EG}:=\mathrm{R}_{3}\)
Af \(:=\mathrm{AF} \mathrm{Hk}:=\mathrm{HK}\) Eg \(:=\mathrm{EG}\)
\(\mathrm{AB}:=\frac{\mathrm{AF}^{2}}{\mathrm{AE}} \quad \mathrm{DE}:=\frac{\mathrm{EG}^{2}}{\mathrm{AE}}\)
\(\mathrm{Ab}:=\frac{\mathrm{Af}^{2}}{\mathrm{AH}} \mathrm{HJ}:=\frac{\mathrm{HK}^{2}}{\mathrm{AH}}\)
\(\mathrm{Hj}:=\frac{\mathrm{Hk}^{2}}{\mathrm{EH}} \quad \mathrm{Ed}:=\frac{\mathrm{Eg}^{2}}{\mathrm{EH}}\)

\(\mathrm{BD}:=\mathrm{AE}-\mathrm{AB}-\mathrm{DE} \quad \mathrm{BX}:=\frac{\mathrm{BD}}{2}\)
\(\mathrm{bJ}:=\mathrm{AH}-\mathrm{Ab}-\mathrm{HJ} \quad \mathrm{bY}:=\frac{\mathrm{bJ}}{2}\)
\(d j:=E H-E d-H j \quad d Z:=\frac{d j}{2}\)
\(\mathrm{AX}:=\mathrm{AB}+\mathrm{BX} \quad \mathrm{AX}=1.125\)
\(A Y:=A b+b Y\)
\(\mathrm{EZ}:=\mathrm{Ed}+\mathrm{dZ} \quad \mathrm{EZ}=4\)

\(\mathrm{Ah}:=\mathrm{AH} \quad \mathrm{Ei}:=\mathrm{EH}\)
\(\mathrm{Am}:=\frac{\mathrm{Ah}^{2}}{\mathrm{AE}}\) En \(:=\frac{\mathrm{Ei}^{2}}{\mathrm{AE}}\)
\(\mathrm{An}:=\mathrm{AE}-\mathrm{En} \mathrm{mn}:=\mathrm{Am}-\mathrm{An}\)
\(n \mathrm{x}:=\frac{\mathrm{mn}}{2} \quad \mathrm{Ax}:=\mathrm{An}+\mathrm{nx}\)
\(H x:=\sqrt{A H^{2}-A x^{2}}\)

\[
\mathrm{WX}:=\frac{\mathrm{Hx} \cdot \mathrm{AX}}{\mathrm{Ax}} \quad \mathrm{WX}=0.462
\]
\[
\mathrm{VY}:=\frac{\mathrm{Hx} \cdot \mathrm{AY}}{\mathrm{Ax}} \quad \mathrm{VY}=1.232
\]
\[
\mathrm{AV}:=\frac{\mathrm{AH} \cdot \mathrm{AY}}{\mathrm{Ax}} \mathrm{AV}=3.243
\]
\[
\mathrm{VX}:=\mathrm{AV}-\mathrm{AX}
\]
\[
\mathrm{OX}:=\frac{\mathrm{AY} \cdot \mathrm{VX}}{\mathrm{VY}} \mathrm{OX}=5.157
\]

PP "Power Point"
\(\mathrm{PP}:=\frac{1}{2} \cdot \frac{\binom{\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{D}_{1}{ }^{4}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{O}}{+\mathrm{R}_{1}{ }^{2}-\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}}}{\left(\mathrm{D}_{1} \cdot \sqrt{\left|-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{4}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{3}{ }^{4}-2 \cdot \mathrm{D}_{2}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{2}^{4}\right|}\right)}\)
\(\mathrm{PP}=5.157\)

\[
\mathrm{EX}:=\mathrm{AE}-\mathrm{AX}
\]
\[
\begin{array}{ll}
\mathrm{AO}:=\sqrt{\mathrm{AX}^{2}+\mathrm{OX}^{2}} & \mathrm{EO}:=\sqrt{\mathrm{EX}^{2}+\mathrm{OX}^{2}} \\
\mathrm{AP}:=\mathrm{AF} & \mathrm{EP}:=\mathrm{EG} \\
\mathrm{OP}_{\mathrm{A}}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AP}^{2}} & \mathrm{OP}_{\mathrm{E}}:=\sqrt{\mathrm{EO}^{2}-\mathrm{EP}^{2}} \\
\mathrm{OP}_{\mathrm{A}}=4.342 & \mathrm{OP}_{\mathrm{E}}=4.342
\end{array}
\]

\section*{LT "Length of Tangent"}
\[
\begin{aligned}
& -\mathrm{R}_{1}^{4} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{1}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{4}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}^{2} \ldots \\
& +\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{1}^{2} \cdot \mathrm{D}_{2}^{2}-\mathrm{R}_{2}^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{3}^{2} \cdot \mathrm{D}_{2}^{2} \ldots \\
& +\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{4}-\mathrm{R}_{3}{ }^{4} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2} \cdot \mathrm{R}_{2}^{2} \ldots \\
& +\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{4} \ldots \\
& +-\mathrm{D}_{1}{ }^{4} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2} \\
& \sqrt{-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{4}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{3}{ }^{4}-2 \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{2}^{4}}
\end{aligned}
\]
\(\mathrm{LT}=4.342\)


\section*{Division, \(\mathbf{A}^{2}\)}

One does not work with geometry often, so it may be that one does not keep basics in mind when trying to work a figure. This little paper is about a basic move. I bring this to light, as I have seen a ratio often given as division. In geometry, so far as I know, one cannot divide a line by a line, but can form a series of the nature \(A N: B N\) as a linear figure. Given A and B one can raise them to any whole power simultaneously with a couple of simple moves based on the figure immediately below. See work done in 1995.

Divide \(\mathrm{AC}^{2}\) by AB.
Process Summary
I have noticed that my solutions depend upon this basic move.


In some works I have represent it simply as the figure on the left. One may realize that in my Pythagorean Completion I used the circular form and it is often expressed as a pole and polar arrangement. A terminology that does not seem fit for the processes that they represent, physical and not mathematical.


The jargon is that B is called a Pole and D is on a polar, a segment of which is DE. But it can easily be seen that the figure is a transformation. It is another way of dividing \(A(2\) by \(A B\). The figure now raises a question for me. I had thought that I answered it previously, but I cannot find it in my files. Is BE always collinear with BG? This paper is helping me mediate on poles and polars, which names do not help me understand the true ratio involved.
Mathematicians seem to like a proliferation of names. And, god forbid, B and D are called conjugate in respect to each other. I have a hard enough time remembering my own name, that is why I keep my id. (in the Freudian sense) close at hand.
\[
\mathrm{AC}:=5 \quad \delta:=1 . .1000 \quad \mathrm{BC}_{\delta}:=\delta
\]
\[
\mathrm{CF}:=2 \cdot \mathrm{AC} \quad \mathrm{AG}:=\mathrm{AC} \mathrm{BF}_{\delta}:=\mathrm{CF}+\mathrm{BC}_{\delta}
\]
\[
\mathrm{BH}_{\delta}:=\sqrt{\mathrm{BF}_{\delta} \cdot \mathrm{BC}_{\delta}} \quad \mathrm{GH}:=\mathrm{AC}
\]
\[
\mathrm{BG}_{\delta}:=\sqrt{\left(\mathrm{BH}_{\delta}\right)^{2}+\mathrm{GH}^{2}} \mathrm{AE}:=\mathrm{AC}
\]
\[
\mathrm{AB}_{\delta}:=\mathrm{AC}+\mathrm{BC}_{\delta} \quad \mathrm{AD}_{\delta}:=\frac{\mathrm{AE}^{2}}{\mathrm{AB}_{\delta}}
\]
\[
\mathrm{BE}_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}-\mathrm{AE}^{2}} \mathrm{BD}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AD}_{\delta}
\]
\[
\mathrm{DE}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}-\left(\mathrm{BD}_{\delta}\right)^{2}}
\]


> 05_01_94.MCD

\section*{Two Circles and a Parallel}

What I would like to do is to is drop in a circle that is tangent to the given two circles that are already tangent and tangent to the line from the similarity point and also have this circle tangent to the parallel of the similarity line that lies tangent to the first circle. The formula derived for my process tells me that I will do it the hard way. It willpredict an easier method.


Process Summary

Given the radius of the two circles, what is the radius of the third? Attempt to develop a formula for the resultant radius. And also, of the power line between parallels, what is the ratio of \(\mathrm{AC}: \mathrm{BC}\) in terms of the given radius' ?


Find the Similarity Point.
\[
\begin{aligned}
& \mathrm{AB}:=\mathrm{R}_{1} \mathrm{CF}:=\mathrm{R}_{2} \mathrm{BC}:=\mathrm{CF} \\
& \mathrm{CB}:=\mathrm{CF} \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \\
& \mathrm{PQ}:=\mathrm{AC} \mathrm{AR}:=\mathrm{AB} \\
& \mathrm{CQ}:=\mathrm{CF} \mathrm{AP}:=\mathrm{CQ} \\
& \mathrm{PR}:=\mathrm{AR}-\mathrm{AP} \\
& \mathrm{AO}:=\frac{\mathrm{PQ} \cdot \mathrm{AR}}{\mathrm{PR}}
\end{aligned}
\]

Find the segment of the power line (HN) between parallels.
\[
\begin{aligned}
& \mathrm{AG}:=\mathrm{AB} \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}} \\
& \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \\
& \mathrm{BH}:=\frac{\mathrm{AG} \cdot \mathrm{BO}}{\mathrm{GO}} \mathrm{BN}:=\frac{\mathrm{BH} \cdot \mathrm{AB}}{\mathrm{BC}} \\
& \mathrm{HO}:=\frac{\mathrm{AO} \cdot \mathrm{BH}}{\mathrm{AG}} \mathrm{CO}:=\mathrm{BO}-\mathrm{BC} \\
& \mathrm{JO}:=\frac{\mathrm{GO} \cdot \mathrm{CO}}{\mathrm{AO}} \mathrm{HN}:=\mathrm{BH}+\mathrm{BN}
\end{aligned}
\]

Find JN
\(\mathrm{HJ}:=\mathrm{HO}-\mathrm{JO} \mathrm{KH}:=\frac{\mathrm{AG} \cdot \mathrm{HJ}}{\mathrm{AO}}\)
\(\mathrm{KN}:=\mathrm{HN}-\mathrm{KH}\)

\[
\begin{aligned}
& \mathrm{KJ}:=\sqrt{\mathrm{HJ}^{2}-\mathrm{KH}^{2}} \\
& \mathrm{JN}:=\sqrt{\mathrm{KN}^{2}+\text { Find }} \mathrm{MS} \\
& \mathrm{BD}:=\frac{\mathrm{KJ} \cdot \mathrm{BN}}{\mathrm{KN}} \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \\
& \mathrm{CE}:=\frac{\mathrm{KN} \cdot \mathrm{CD}}{\mathrm{JN}} \mathrm{CJ}:=\mathrm{BC} \\
& \mathrm{EJ}:=\sqrt{\mathrm{CJ}^{2}-\mathbb{C E}^{2}}=2 \cdot \mathrm{EJ} \\
& \mathrm{NS}:=\mathrm{JN}-\mathrm{JS} \quad \mathrm{CS}:=\mathrm{BC} \\
& \mathrm{MS}:=\frac{\mathrm{CS} \cdot \mathrm{NS}}{\mathrm{JS}}
\end{aligned}
\]

\section*{Plug Values in Here}
\[
\mathrm{R}_{1} \equiv 8 \quad \mathrm{R}_{2} \equiv 6
\]

There was too much work here for the symbolic processor to reduce all the equations to one, easily. It took me three days to nurse the processor through it, and this is a short work. The formula does not have the "sour" spot. (Place both \(R_{1}\) and \(R_{2}\) to the same value to see it.) When \(R_{2}\) is \(1 / 4\) of \(R_{1}\), there are six tangents.
\[
\mathrm{R}_{3}:=\frac{\mathrm{R}_{1}^{2}}{4 \cdot \mathrm{R}_{2}} \quad \mathrm{R}_{3}=2.667 \quad \mathrm{MS}=2.667
\]

The formula tells me at least two things, 1) There is a second method to solve the problem, 2) the process is a rather baroque method of dividing a square.
\[
\frac{\mathrm{HN}}{\mathrm{BN}}=1.75 \quad \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}}=1.75 \quad \frac{\mathrm{HN}}{\mathrm{BH}}=2.333 \quad \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}=2.333
\]

The results for the ratios of the power line segment are very nice also.

What is the construction suggested by the found formula of
\[
\frac{\mathrm{R}_{1}^{2}}{4 \cdot \mathrm{R}_{2}} ?
\]
\(\mathrm{AB}:=\mathrm{R}_{1} \quad \mathrm{BC}:=\mathrm{R}_{2}\)
\(\mathrm{AE}:=4 \cdot \mathrm{BC}\)
\(\mathrm{AD}:=\frac{\mathrm{AB}^{2}}{\mathrm{AE}}\)
\(\mathrm{AF}:=\mathrm{AB}+\mathrm{AD}\)
\(C G:=B C+A D\)
\(R_{3}=2.667 \quad \mathrm{AD}=2.667\)

For those who may become confused as to the dashed lines, the segment AD is added to the radius of the both circles their intersection is the center of the circle sought.

\section*{05_04_94.MCD}

\section*{Two Circles, given a tangent on one.}


Given two circles and a point that is on the circumference of one, find a circle tangent to the circle at that point and also tangent to the other circle. The convention for this point will be "from the power line".

Process Summary


Find the power line.

\(\mathrm{AB}:=\mathrm{R}_{1} \quad \mathrm{CD}:=\mathrm{R}_{2} \quad \mathrm{AD}:=\mathrm{D}\)
\(\mathrm{AG}:=\mathrm{AB} \quad \mathrm{DH}:=\mathrm{CD} \quad \mathrm{AE}:=\frac{\mathrm{AG}^{2}}{\mathrm{AD}}\)
\(\mathrm{DF}:=\frac{\mathrm{DH}^{2}}{\mathrm{AD}} \mathrm{EF}:=\mathrm{AD}-\mathrm{AE}-\mathrm{DF}\)
\(\mathrm{EP}:=\frac{\mathrm{EF}}{2} \quad \mathrm{AP}:=\mathrm{AE}+\mathrm{EP} \quad \mathrm{DP}:=\mathrm{DF}+\mathrm{EP}\)
\(\mathrm{BP}:=\mathrm{AP}-\mathrm{AB}\)

\[
\begin{aligned}
& \mathrm{Hj}:=\mathrm{AD} \quad \mathrm{Aj}:=\mathrm{DH} \\
& \mathrm{Gj}:=\mathrm{AG}-\mathrm{DH} \quad \mathrm{AJ}:=\frac{\mathrm{Hj} \cdot \mathrm{AG}}{\mathrm{Gj}}
\end{aligned}
\]
\[
\mathrm{DJ}:=\mathrm{AJ}-\mathrm{AD} \mathrm{HJ}:=\sqrt{\mathrm{DJ}^{2}-\mathrm{DH}^{2}}
\]

\[
\mathrm{GJ}:=\sqrt{\mathrm{AJ}^{2}-\mathrm{AG}^{2}} \mathrm{Aa}:=\frac{\mathrm{AG}^{2}}{\mathrm{AJ}}
\]
\[
\mathrm{Ga}:=\sqrt{\mathrm{AG}^{2}-\mathrm{Aa}^{2}} \mathrm{Db}:=\frac{\mathrm{DH}^{2}}{\mathrm{DJ}}
\]
\[
\mathrm{Hb}:=\sqrt{\mathrm{DH}^{2}-\mathrm{Db}^{2}}
\]
\[
\mathrm{Ba}:=\mathrm{AB}-\mathrm{Aa}
\]
\[
\mathrm{Pb}:=\mathrm{DP}+\mathrm{Db}
\]

\[
\begin{aligned}
& \mathrm{P}:=|\mathrm{if}(\mathrm{P} \leq 2 \cdot \mathrm{AB}, \mathrm{P}, 0)| \\
& \mathrm{Bd}:=\mathrm{P} \\
& \mathrm{AK}:=\mathrm{AB} \quad \mathrm{ad}:=\mathrm{Ba}-\mathrm{Bd} \\
& \mathrm{Ad}:=\mathrm{AB}-\mathrm{Bd} \quad \mathrm{Kd}:=\sqrt{\mathrm{AK}^{2}-\mathrm{Ad}^{2}} \\
& \mathrm{de}:=\frac{\mathrm{ad} \cdot \mathrm{Kd}}{\mathrm{Kd}+\mathrm{Ga}} \mathrm{Pe}:=\mathrm{BP}+\mathrm{Bd}+\mathrm{de} \\
& \mathrm{NP}:=\frac{\mathrm{Kd} \cdot \mathrm{Pe}}{\mathrm{de}} \quad \mathrm{HS}:=\mathrm{Pb} \quad \mathrm{PS}:=\mathrm{Hb}
\end{aligned}
\]
\[
\mathrm{NS}:=\mathrm{NP}+\mathrm{PS} \quad \mathrm{Pg}:=\frac{\mathrm{HS} \cdot \mathrm{NP}}{\mathrm{NS}}
\]
\[
\begin{aligned}
& \mathrm{Dg}:=\mathrm{DP}-\mathrm{Pg} \text { bg }:=\mathrm{Dg}+\mathrm{Db} \\
& \mathrm{Hg}:=\sqrt{\mathrm{bg}^{2}+\mathrm{Hb}^{2}}
\end{aligned}
\]

To save clutter, see 07_18_93.MCD Mod C.

\[
\begin{aligned}
& \mathrm{gk}:=\frac{1}{2} \cdot \frac{\mathrm{Dg}^{2}}{\mathrm{Hg}}+\frac{1}{2} \cdot \mathrm{Hg}-\frac{1}{2} \cdot \frac{\mathrm{DH}^{2}}{\mathrm{Hg}} \\
& \mathrm{Dk}:=\sqrt{\mathrm{Dg}^{2}-\mathrm{gk}^{2}} \mathrm{Hk}:=\sqrt{\mathrm{DH}^{2}-\mathrm{Dk}^{2}} \\
& \mathrm{Rg}:=\mathrm{Hk}-\mathrm{gk} \\
& \mathrm{Df}:=\frac{1}{2} \cdot \frac{\mathrm{CD}^{2}}{\mathrm{Dg}}+\frac{1}{2} \cdot \mathrm{Dg}-\frac{1}{2} \cdot \frac{\mathrm{Rg}^{2}}{\mathrm{Dg}} \\
& \mathrm{DR}:=\mathrm{CD} \quad \mathrm{Rf}:=\sqrt{\mathrm{DR}^{2}-\mathrm{Df}^{2}}
\end{aligned}
\]

\[
\mathrm{dm}:=\frac{\mathrm{Df} \cdot \mathrm{Kd}}{\mathrm{Rf}} \quad \mathrm{Am}:=\mathrm{Ad}+\mathrm{dm}
\]
\[
\mathrm{MT}:=\frac{\mathrm{Kd} \cdot \mathrm{AD}}{\mathrm{Am}} \quad \mathrm{AM}:=\frac{\mathrm{AK} \cdot \mathrm{MT}}{\mathrm{Kd}}
\]
\[
\mathrm{KM}:=\mathrm{AM}-\mathrm{AK}
\]
\[
\mathrm{R}_{3}:=|\mathrm{KM}| \quad \mathrm{P}=19
\]

Plug Values in Here. Results is in \(\mathrm{R}_{3}\).
\[
\mathrm{R}_{1} \equiv 10 \mathrm{R}_{2} \equiv 3 \quad \mathrm{D} \equiv 16 \quad \mathrm{P} \equiv 19 \quad \mathrm{R}_{3}=14.836
\]


Let us say that instead of choosing a point of tangency upon one of the circles, I wish to place a given circle tangent to both. Derive the name of the length of the power line indicated and find th points of tangency.

Work in progress.


Given that \(\mathrm{CP}=\mathrm{CO}\) what is the relationship between AE and CF?

In order to derive a resonable answer, I have constrained the figure to a maximum of \(180^{\circ}\). You will recall that the figure is capable of \(270^{\circ}\).
Cleseres)
\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\frac{\frac{1}{2} \cdot \sqrt{2} \cdot \mathrm{CP}}{\delta} \quad \mathrm{FP}_{\delta}:=\sqrt{\mathrm{CP}^{2}-\left(\mathrm{CF}_{\delta}\right)^{2}} \\
& \mathrm{CH}_{\delta}:=\frac{\left(\mathrm{CF}_{\delta}\right)^{2}}{\mathrm{CP}} \quad \mathrm{FH}_{\delta}:=\sqrt{\left(\mathrm{CF}_{\delta}\right)^{2}-\left(\mathrm{CH}_{\delta}\right)^{2}} \\
& \mathrm{OP}_{\delta}:=2 \cdot \mathrm{FP}_{\delta} \mathrm{GO}_{\delta}:=\frac{\mathrm{FH}_{\delta} \cdot \mathrm{OP}_{\delta}}{\mathrm{FP}_{\delta}} \mathrm{CO}:=\mathrm{CP} \\
& \mathrm{CG}_{\delta}:=\sqrt{\mathrm{CO}^{2}-\left(\mathrm{GO}_{\delta}\right)^{2}} \mathrm{AC}_{\delta}:=2 \cdot \mathrm{CG}_{\delta} \\
& \mathrm{AP}_{\delta}:=\mathrm{AC}_{\delta}+\mathrm{CP} \quad \mathrm{AE}_{\delta}:=\frac{\mathrm{CF}_{\delta} \cdot \mathrm{AP}_{\delta}}{\mathrm{CP}}
\end{aligned}
\]

CF is adjusted through D and cannot be less than 1 for the ratio to hold. This constrains the answer to between \(0^{\circ}\) and \(180^{\circ}\).

The resultant equation seems to support my earlier statement that the same tool used on the cube root figure could also be used on the trisector. To eliminate the radius, simply set it equal to 1 .
\[
\begin{aligned}
& \mathrm{CP} \equiv 10 \quad \delta \equiv 1 . .100 \quad 3 \cdot \mathrm{CF}-\frac{4}{\mathrm{CP}^{2}} \cdot \mathrm{CF}^{3}-\mathrm{AE}=0 \\
& \text { 3. } \mathrm{CF}_{\delta}-\frac{4}{\mathrm{CP}^{2}} \cdot\left(\mathrm{CF}_{\delta}\right)^{3}-\mathrm{AE}_{\delta}{ }_{0}
\end{aligned}
\]


What is the relationship of DE to BC ? \(\mathrm{D}:=4\)
\[
\begin{aligned}
& \mathrm{AB}:=99 \quad \mathrm{BC}:=\frac{\mathrm{AB}}{2} \cdot \mathrm{D} \quad \mathrm{BG}:=\mathrm{AB} \\
& \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{AF}:=\frac{\mathrm{BG} \cdot \mathrm{AC}}{\mathrm{BC}} \quad \mathrm{FJ}:=\mathrm{AB} \\
& \mathrm{AJ}:=\mathrm{AF}-\mathrm{FJ} \quad \mathrm{HJ}:=\frac{\mathrm{AJ}}{2} \mathrm{BJ}:=\mathrm{AB} \\
& \mathrm{BH}:=\sqrt{\mathrm{BJ}^{2}-\mathrm{HJ}^{2}} \mathrm{FH}:=\mathrm{HJ}+\mathrm{FJ} \\
& \mathrm{BF}:=\sqrt{\mathrm{BH}^{2}+\mathrm{FH}^{2}} \quad \mathrm{BD}:=\mathrm{AB} \quad \mathrm{DF}:=\mathrm{BF}+\mathrm{BD} \\
& \mathrm{EF}:=\frac{\mathrm{FH} \cdot \mathrm{AF}}{\mathrm{BF}} \quad \mathrm{DE}:=\mathrm{DF}-\mathrm{EF} \quad \mathrm{DE}=138.133
\end{aligned}
\]
\[
\sqrt{\mathrm{AB}^{2}+\mathrm{AB}^{2} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}}+\mathrm{AB}-\left[\frac{1}{2} \cdot \mathrm{AB} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}+\frac{1}{2} \cdot \mathrm{AB}\right] \cdot \mathrm{AB} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\left[\mathrm{BC} \cdot \sqrt{\left.\mathrm{AB}^{2}+\mathrm{AB}^{2} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}\right]}\right.}=138.133
\]
\[
\frac{-1}{2} \cdot \mathrm{AB} \cdot \frac{\left[-\sqrt{2 \cdot \mathrm{BC}+\mathrm{AB}} \cdot \mathrm{BC}-2 \cdot \mathrm{BC}^{\left(\frac{3}{2}\right)}+\mathrm{AB} \cdot \sqrt{2 \cdot \mathrm{BC}+\mathrm{AB}}\right]}{\mathrm{BC}^{\left(\frac{3}{2}\right)}}=138.133
\]


The smaller circle is tangent to the diameter of the larger and also tangent to circumference of the larger. Given the point of tangency on the diameter, what is the radius that will make it tangent to the circumference?

Given a point on the diameter, what is the radius of the inner tangent circle?
\(\mathrm{AB}:=100 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \quad \mathrm{CB}:=\mathrm{AC}\)
\(\Delta:=100 \quad \delta:=1 . . \Delta \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{CB}}{\Delta} \cdot \delta\)
\[
\mathrm{CH}:=\mathrm{AC} \mathrm{DH}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\mathrm{CH}^{2}}
\]
\(\mathrm{Ha}_{\delta}:=\frac{\mathrm{CH}^{2}}{\mathrm{DH}_{\delta}} \quad \mathrm{EH}_{\delta}:=2 \cdot \mathrm{Ha}_{\delta} \quad \mathrm{HJ}:=\mathrm{AC}\)
\(\mathrm{Eb}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{EH}_{\delta}}{\mathrm{DH}_{\delta}} \quad \mathrm{Hb}_{\delta}:=\sqrt{\left(\mathrm{EH}_{\delta}\right)^{2}-\left(\mathrm{Eb}_{\delta}\right)^{2}}\)
\[
\begin{aligned}
& \mathrm{Cb}_{\delta}:=\mathrm{Hb}_{\delta}-\mathrm{CH} \quad \mathrm{CJ}:=\mathrm{CH}+\mathrm{HJ} \\
& \mathrm{Jb}_{\delta}:=\mathrm{CJ}+\mathrm{Cb}_{\delta} \quad \mathrm{CF}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CJ}}{\mathrm{Jb}_{\delta}} \\
& \mathrm{DF}_{\delta}:=\mathrm{CF}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{DG}_{\delta}:=\frac{\mathrm{CJ} \cdot \mathrm{DF}_{\delta}}{\mathrm{CF}_{\delta}}
\end{aligned}
\]


Does CG \(+\mathrm{GK}=\mathrm{AC}\) ?
\[
\begin{aligned}
& \mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{DG}_{\delta}\right)^{2}} \mathrm{GK}_{\delta}:=\mathrm{DG}_{\delta} \\
& \mathrm{CK}_{\delta}:=\mathrm{CG}_{\delta}+\mathrm{GK}_{\delta} \sum_{\delta}\left(\mathrm{AC}-\mathrm{CK}_{\delta}\right)=3.908 \cdot 10^{-13}
\end{aligned}
\]



Does \(\mathrm{Cb}=\mathrm{KM}\) ?
\[
\mathrm{KM}_{\delta}:=\frac{\mathrm{DG}_{\delta} \cdot \mathrm{CK}_{\delta}}{\mathrm{CG}_{\delta}} \sum_{\delta}\left(\mathrm{KM}_{\delta}-\mathrm{Cb}_{\delta}\right)=-3.524 \cdot 10^{-13}
\]


What is the formula for DG when given CD?

\[
\begin{aligned}
& \sum_{\delta}\left[\frac{\mathrm{AB}^{2}-4 \cdot\left(\mathrm{CD}_{\delta}\right)^{2}}{4 \cdot \mathrm{AB}}-\mathrm{DG}_{\delta}\right]=2.072 \cdot 10^{-13}
\end{aligned}
\]


Given the point on the radius, find DG.
\(\mathrm{AB}:=4 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \quad \mathrm{CB}:=\mathrm{AC} \quad \mathrm{CM}_{\delta}:=\frac{\mathrm{CB}}{\Delta} \cdot \delta\)
\(\mathrm{AM}_{\delta}:=\mathrm{AC}+\mathrm{CM}_{\delta} \quad \mathrm{BM}_{\delta}:=\mathrm{CB}-\mathrm{CM}_{\delta}\)
\(\mathrm{KM}_{\delta}:=\sqrt{\mathrm{AM}_{\delta} \cdot \mathrm{BM}_{\delta}} \quad \mathrm{Cb}_{\delta}:=\mathrm{KM}_{\delta}\)
\(\mathrm{CH}:=\mathrm{AC} \mathrm{HJ}:=\mathrm{AC} \quad \mathrm{CJ}:=\mathrm{CH}+\mathrm{HJ}\)
\(\mathrm{Jb}_{\boldsymbol{\delta}}:=\mathrm{CJ}+\mathrm{Cb}_{\boldsymbol{\delta}} \quad \mathrm{Hb}_{\boldsymbol{\delta}}:=\mathrm{CH}+\mathrm{Cb}_{\delta}\)

\[
\begin{aligned}
& \mathrm{Eb}_{\delta}:=\mathrm{CM}_{\delta} \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CH}}{\mathrm{Hb}_{\delta}} \quad \mathrm{CF}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CJ}}{\mathrm{Jb}_{\delta}} \\
& \mathrm{DF}_{\delta}:=\mathrm{CF}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{DG}_{\delta}:=\frac{\mathrm{CJ} \cdot \mathrm{DF}_{\delta}}{\mathrm{CF}_{\delta}}
\end{aligned}
\]

Does CK \(=\mathrm{CB}\) ? Make sure there is no typo.
\[
\begin{aligned}
& \mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{DG}_{\delta}\right)^{2}} \quad \mathrm{GK}_{\delta}:=\mathrm{DG}_{\delta} \\
& \mathrm{CK}_{\delta}:=\mathrm{CG}_{\delta}+\mathrm{GK}_{\delta} \sum_{\delta}\left(\mathrm{CB}-\mathrm{CK}_{\delta}\right)=-3.331 \cdot 10^{-15}
\end{aligned}
\]

What is the formula for DG, given CM, the perpendicular to the point on the circumference?
\(\sum_{\delta}\left[\frac{\mathrm{AB} \cdot \sqrt{\mathrm{AB}+2 \cdot \mathrm{CM}_{\delta}} \cdot \sqrt{\mathrm{AB}-2 \cdot \mathrm{CM}_{\delta}}}{2 \cdot\left(\mathrm{AB}+\sqrt{\mathrm{AB}+2 \cdot \mathrm{CM}_{\delta}} \cdot \sqrt{\mathrm{AB}-2 \cdot \mathrm{CM}_{\delta}}\right)}-\mathrm{DG}_{\delta}\right]=-1.749 \cdot 10^{-15}\)



\section*{10_27_94.MCD}

Trivial method for doing Square Roots.

If I draw a circle BE , then a line \(\mathrm{AG}, \mathrm{BD}\) is the square root of \(\mathrm{BC} \times \mathrm{BF}\).
\[
\begin{aligned}
& \mathrm{CF}:=1000 \delta:=1 . .1000 \quad \mathrm{BC}_{\delta}:=\delta \\
& \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{BE}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CE} \\
& \mathrm{EG}:=\mathrm{CE} \quad \mathrm{BG}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}-\mathrm{EG}^{2}} \\
& \mathrm{EH}_{\delta}:=\frac{\mathrm{EG}^{2}}{\mathrm{BE}_{\delta}} \quad \mathrm{GH}_{\delta}:=\sqrt{\mathrm{EG}^{2}-\left(\mathrm{EH}_{\delta}\right)^{2}} \\
& \mathrm{GI}_{\delta}:=\mathrm{EH}_{\delta} \quad \mathrm{EI}_{\delta}:=\mathrm{GH}_{\delta} \mathrm{AE}:=\mathrm{CE} \\
& \mathrm{AI}_{\delta}:=\mathrm{AE}^{2}+\mathrm{EI}_{\delta} \quad \mathrm{DE}_{\delta}:=\frac{\mathrm{GI}_{\delta} \cdot \mathrm{AE}}{\mathrm{AI}_{\delta}} \\
& \mathrm{BD}_{\delta}:=\mathrm{BE}_{\delta}-\mathrm{DE}_{\delta} \quad \mathrm{BF}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CF}
\end{aligned}
\]




10_31_94.MCD
Given \(\mathrm{AB} \& \mathrm{BE}\), divide BE such that \(\mathrm{BD}+\) \(\mathrm{DE}=\mathrm{BE}\) and \(\mathrm{BD}=\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\)

The square in a right triangle on the hypotenuse is equal to the square of the remaining two segments (and all three squares taken to the point of similarity form a cubic relationship).
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{2}\)
\(\mathrm{AH}:=\mathrm{AE} \mathrm{EI}:=\mathrm{AE} \quad \mathrm{BH}:=\sqrt{\mathrm{AB}^{2}+\mathrm{AH}^{2}}\)
\(\mathrm{CG}:=\mathrm{AC} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BF}:=\frac{\mathrm{AB} \cdot \mathrm{BC}}{\mathrm{BH}}\)
\(\mathrm{CF}:=\frac{\mathrm{AH} \cdot \mathrm{BC}}{\mathrm{BH}} \quad \mathrm{FG}:=\sqrt{\mathrm{CG}^{2}-\mathrm{CF}^{2}}\)
\(B G:=\mathrm{BF}+\mathrm{FG} \quad \mathrm{BJ}:=\frac{\mathrm{AB} \cdot \mathrm{BG}}{\mathrm{BH}}\)
\(G J:=\frac{A H \cdot B J}{A B} \quad A J:=A B+B J\)
\(\mathrm{EJ}:=\mathrm{AE}-\mathrm{AJ} \quad \mathrm{GK}:=\mathrm{EJ} \quad \mathrm{EK}:=\mathrm{GJ}\)
\(\mathrm{IK}:=\mathrm{EI}+\mathrm{EK} \quad \mathrm{DE}:=\frac{\mathrm{GK} \cdot \mathrm{EI}}{\mathrm{IK}}\)
\(\mathrm{BD}:=\mathrm{BE}-\mathrm{DE}\)
\(\mathrm{BE}-(\mathrm{BD}+\mathrm{DE})=0 \quad \mathrm{BD}-\sqrt{\mathrm{AB} \cdot \mathrm{DE}}=0\)


Reducing the previous tautological chain to single equations for BD and DE .
\(\mathrm{AB} \equiv 20 \quad \mathrm{BE} \equiv 12\)
\(\left.\mathrm{BD}:=\frac{\sqrt{\mathrm{AB}} \cdot\left[\begin{array}{l}-\mathrm{AB} \\ +\mathrm{BE} \cdot \sqrt{\left(\frac{3}{2}\right)}+\mathrm{AB} \cdot \sqrt{\mathrm{AB}}+4 \cdot \mathrm{BE}\end{array} \mathrm{BE}+\sqrt{\mathrm{AB}} \cdot \mathrm{BE} \ldots\right.}{}\right]\)
\(B D=8.439\)
\(\mathrm{DE}:=\frac{\mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BE}-\mathrm{AB}}{} \mathrm{B}^{\left(\frac{3}{2}\right)} \cdot \sqrt{\mathrm{AB}+4 \cdot \mathrm{BE}}+2 \cdot \mathrm{BE}^{2}{ }_{3 \cdot \mathrm{AB}+2 \cdot \mathrm{BE}+\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+4 \cdot \mathrm{BE}}}\)
\(\mathrm{DE}=3.561\)
\(B E-(B D+D E)=0\)
\(\mathrm{BD}-\sqrt{\mathrm{AB} \cdot \mathrm{DE}}=0\)

Given \(\mathrm{AB} \& \mathrm{BE}, \mathrm{BE}\) has been divided such that \(\mathrm{BD}+\mathrm{DE}=\mathrm{BE}\) and \(\mathrm{BD}=\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\)


11_01_94.MCD

Given \(A G-A B=B G\) and \(\left(A B^{2} \cdot A G\right)^{1 / 3}-A B=B C\), find \(A B\), AG , and \(\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{1 / 3}\).
For obvious reasons, \(\mathrm{BG}>3 \mathrm{BC}\).
\(B G:=6 \quad \mathrm{BC}:=1.9 \quad \mathrm{BN}:=\mathrm{BG}\)
\(\mathrm{BF}:=\frac{\mathrm{BG}}{2}\) FL \(:=\mathrm{BF} \mathrm{CF}:=\mathrm{BF}-\mathrm{BC}\)
\(\mathrm{CN}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BN}^{2}} \mathrm{CH}:=\frac{\mathrm{BC} \cdot \mathrm{CF}}{\mathrm{CN}}\)
\(\mathrm{FH}:=\frac{\mathrm{BN} \cdot \mathrm{CF}}{\mathrm{CN}} \mathrm{HL}:=\sqrt{\mathrm{FL}^{2}-\mathrm{FH}^{2}}\)
\(\mathrm{CL}:=\mathrm{CH}+\mathrm{HL} \quad \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathrm{CL}}{\mathrm{CN}} \mathrm{DL}:=\frac{\mathrm{BN} \cdot \mathrm{CL}}{\mathrm{CN}}\)
\(\mathrm{GM}:=\mathrm{DL} \quad \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{DG}:=\mathrm{BG}-\mathrm{BD}\)

LM \(:=\) DG GO \(:=\) BG \(\mathrm{MO}:=\mathrm{GO}+\mathrm{GM}\)
\(\mathrm{EG}:=\frac{\mathrm{LM} \cdot \mathrm{GO}}{\mathrm{MO}} \mathrm{CG}:=\mathrm{BG}-\mathrm{BC}\)

CE \(:=\mathrm{CG}-\mathrm{EG} \quad \mathrm{CJ}:=\mathrm{BC} \quad \mathrm{CK}:=\mathrm{CE}\)
A \(\quad \mathrm{IJ}:=\mathrm{BC} \quad \mathrm{JK}:=\mathrm{CK}-\mathrm{CJ} \quad \mathrm{IK}:=\sqrt{\mathrm{IJ}^{2}+\mathrm{JK}^{2}}\)
\(\mathrm{BI}:=\mathrm{BC} \quad \mathrm{AB}:=\frac{\mathrm{IJ} \cdot \mathrm{BI}}{\mathrm{JK}} \quad \mathrm{AG}:=\mathrm{AB}+\mathrm{BG}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BC}+\mathrm{CE}\)
\(\mathrm{AB}=36.723 \quad \mathrm{AG}=42.723 \quad \mathrm{AE}=40.621\)
\(\left(A B \cdot A G^{2}\right)^{\frac{1}{3}}-A E=0\)
Given \(\mathrm{AG}-\mathrm{AB}=\mathrm{BG}\) and \(\left(\mathrm{AB}^{2} \cdot \mathrm{AG}\right)^{1 / 3}-\mathrm{AB}=\mathrm{BC}\), found was \(\mathrm{AB}, \mathrm{AG}\), and \(\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{1 / 3}\).


Given \(\mathrm{AE}-\mathrm{AB}=\mathrm{BE}\) and
\(\frac{\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}}{2}+\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}-A E=B C\),
find \(A B\).
\[
\begin{aligned}
& \mathrm{BE}:=70 \quad \mathrm{BC}:=34 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{BI}:=\mathrm{BE} \\
& \mathrm{DJ}:=\mathrm{BE} \quad \mathrm{EK}:=\mathrm{BE} \quad \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \\
& \mathrm{CJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{CD}^{2}} \mathrm{DF}:=\frac{\mathrm{DJ} \cdot \mathrm{CD}}{\mathrm{CJ}}
\end{aligned}
\]

DG \(:=\mathrm{BD} \quad \mathrm{FG}:=\sqrt{\mathrm{DG}^{2}-\mathrm{DF}^{2}} \mathrm{CF}:=\frac{\mathrm{CD} \cdot \mathrm{DF}}{\mathrm{DJ}}\)
\(\mathrm{CG}:=\mathrm{FG}-\mathrm{CF} \quad \mathrm{CO}:=\frac{\mathrm{CD} \cdot \mathrm{CG}}{\mathrm{CJ}}\)
\[
\mathrm{DO}:=\mathrm{CD}+\mathrm{CO}
\]
\[
\mathrm{BO}:=\mathrm{BD}-\mathrm{DO} \mathrm{GP}:=\mathrm{BO} \quad \mathrm{GO}:=\frac{\mathrm{DJ} \cdot \mathrm{CG}}{\mathrm{CJ}}
\]
\[
\text { BP }:=\text { GO IP }:=\mathrm{BI}+\mathrm{BP} \quad \mathrm{BL}:=\frac{\mathrm{GP} \cdot \mathrm{BI}}{\mathrm{IP}}
\]
\[
\mathrm{EH}:=\mathrm{GO} \quad \mathrm{HK}:=\mathrm{EK}+\mathrm{EH} \quad \mathrm{EO}:=\mathrm{BE}-\mathrm{BO}
\]
\[
\mathrm{GH}:=\mathrm{EO} \quad \mathrm{EM}:=\frac{\mathrm{GH} \cdot \mathrm{EK}}{\mathrm{HK}} \mathrm{BM}:=\mathrm{BE}-\mathrm{EM}
\]
\[
\mathrm{BQ}:=\mathrm{BL} \quad \mathrm{LR}:=\mathrm{BL} \quad \mathrm{QR}:=\mathrm{BL}
\]
\[
\mathrm{LM}:=\mathrm{BM}-\mathrm{BL}
\]
\[
\mathrm{LS}:=\mathrm{LM} \quad \mathrm{RS}:=\mathrm{LS}-\mathrm{LR} \quad \mathrm{AB}:=\frac{\mathrm{QR} \cdot \mathrm{BQ}}{\mathrm{RS}}
\]
\[
\mathrm{AE}:=\mathrm{AB}+\mathrm{BE}
\]

\[
\begin{aligned}
& \mathrm{AB}=510.028 \quad \mathrm{AE}=580.028 \quad \mathrm{BC}=34 \\
& \frac{\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}-\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}}{2}+\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AB}=34
\end{aligned}
\]

\section*{Power Line At Square Root.}
\(\delta:=1 . .100 \quad \mathrm{AB}_{\delta}:=\delta \quad \mathrm{BE}:=100 \quad \mathrm{AE}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BE}\)
\(\mathrm{AC}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AE}_{\delta}} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{DE}:=\mathrm{BD} \quad \mathrm{DJ}:=\mathrm{BD}\)
\(\mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BD} \quad \mathrm{DK}_{\delta}:=\frac{\mathrm{DJ}^{2}}{\mathrm{AD}_{\delta}} \quad \mathrm{AK}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{DK}_{\delta}\)
\(\mathrm{BC}_{\delta}:=\mathrm{AC}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{JK}_{\delta}:=\sqrt{\mathrm{AK}_{\delta} \cdot \mathrm{DK}_{\delta}} \quad \mathrm{CD}_{\delta}:=\mathrm{BD}-\mathrm{BC}_{\delta}\)
\(\mathrm{CF}_{\delta}:=\frac{\mathrm{JK}_{\delta} \cdot \mathrm{CD}_{\delta}}{\mathrm{DK}_{\delta}} \quad \mathrm{BK}_{\delta}:=\mathrm{AK}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{EK}_{\delta}:=\mathrm{BE}-\mathrm{BK}_{\delta}\)
\(\mathrm{CL}_{\delta}:=\frac{\mathrm{EK}_{\delta} \cdot \mathrm{CF}_{\delta}}{\mathrm{JK}_{\delta}} \mathrm{BL}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CL}_{\delta}\)
\(\mathrm{BF}_{\delta}:=\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{CF}_{\delta}\right)^{2}}\)

\(\mathrm{BI}_{\delta}:=\frac{\mathrm{BF}_{\delta} \cdot \mathrm{BE}}{\mathrm{BL}_{\delta}} \mathrm{FI}_{\delta}:=\mathrm{BI}_{\delta}-\mathrm{BF}_{\delta} \quad \mathrm{GI}_{\delta}:=\frac{\mathrm{BE} \cdot \mathrm{FI}_{\delta}}{\mathrm{BF}_{\delta}}\)
\(\mathrm{HJ}_{\delta}:=\frac{\mathrm{GI}_{\delta}}{2} \quad \mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{CF}_{\delta}\right)^{2}} \mathrm{FH}_{\delta}:=\frac{\mathrm{DF}_{\delta} \cdot \mathrm{GI}_{\delta}}{\mathrm{BE}}\)

- Is Tangent?

\[
\mathrm{DH}_{\delta}:=\mathrm{DF}_{\delta}+\mathrm{FH}_{\delta} \mathrm{DM}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{DF}_{\delta}} \quad \mathrm{CE}_{\delta}:=\mathrm{DE}+\mathrm{CD}_{\delta}
\]
\[
\mathrm{CM}_{\delta}:=\mathrm{DM}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{CN}_{\delta}:=\frac{\mathrm{CE}_{\delta}}{2} \quad \mathrm{MN}_{\delta}:=\mathrm{CN}_{\delta}+\mathrm{CM}_{\delta}
\]
\[
\mathrm{HM}_{\delta}:=\frac{\mathrm{CF}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{DF}_{\delta}} \quad \mathrm{HN}_{\delta}:=\sqrt{\left(\mathrm{MN}_{\delta}\right)^{2}+\left(\mathrm{HM}_{\delta}\right)^{2}}
\]
- Is Tangent?

\(\mathrm{CO}_{\delta}:=\frac{\mathrm{BC}_{\delta}}{2} \quad \mathrm{MO}_{\delta}:=\mathrm{CO}_{\delta}-\mathrm{CM}_{\delta}\)
\(\mathrm{HO}_{\delta}:=\sqrt{\left(\mathrm{HM}_{\delta}\right)^{2}+\left(\mathrm{MO}_{\delta}\right)^{2}}\)
- Is Tangent?


12_25_94.MCD

\section*{Two prime exponential series developed through power line progression.}

I will present a series of plates to explain the process. The process can be infinitly repeated, supposing you had the tools to do it with.


It is clear how OA uses the power line XY to provide a 2 prime exponential series.

Possible Problem: From a similarity point outside of a circle, place some 2 prine sequence of smaller circles on the larger circles diameter, all tangent in sequence.

\[
\mathrm{AB}:=1 \quad \mathrm{BF}:=5 \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF}
\]
\[
\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EO}:=\mathrm{BE}
\]
\[
\mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CF}:=\mathrm{BF}-\mathrm{BC}
\]
\[
\mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{EI}:=\mathrm{CH} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}
\]
\[
\mathrm{HI}:=\mathrm{CE} \quad \mathrm{IO}:=\mathrm{EO}+\mathrm{EI} \quad \mathrm{DE}:=\frac{\mathrm{HI} \cdot \mathrm{EO}}{\mathrm{IO}}
\]

See 12_26_94.MCD for next equation.
\(\mathrm{GK}:=\frac{\mathrm{BF} \cdot(\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BF}})}{(2 \cdot \mathrm{AB}+\mathrm{BF})}\)
\(\mathrm{EG}:=\mathrm{BE} \quad \mathrm{EK}:=\sqrt{\mathrm{EG}^{2}-\mathrm{GK}^{2}}\)
\(\mathrm{DL}:=\frac{\mathrm{GK} \cdot \mathrm{DE}}{\mathrm{EK}}\)
\[
\begin{aligned}
& \mathrm{KN}:=\mathrm{BE}-\mathrm{EK} \quad \mathrm{DM}:=\frac{\mathrm{KN} \cdot \mathrm{DE}}{\mathrm{EK}} \\
& \mathrm{EF}:=\mathrm{BE} \quad \mathrm{FM}:=\mathrm{EF}+\mathrm{DM}+\mathrm{DE} \\
& \mathrm{BN}:=\frac{\mathrm{DM} \cdot \mathrm{BF}}{\mathrm{FM}} \mathrm{NP}:=\frac{\mathrm{DL} \cdot \mathrm{BF}}{\mathrm{FM}}
\end{aligned}
\]

\(\mathrm{KF}:=\mathrm{EK}+\mathrm{EF} \quad \mathrm{DQ}:=\frac{\mathrm{KF} \cdot \mathrm{DL}}{\mathrm{GK}}\)
\(\mathrm{BD}:=\mathrm{BE}-\mathrm{DE} \quad \mathrm{BQ}:=\mathrm{BD}+\mathrm{DQ}\)
\(\mathrm{BR}:=\frac{\mathrm{BD} \cdot \mathrm{BF}}{\mathrm{BQ}} \mathrm{RS}:=\frac{\mathrm{DL} \cdot \mathrm{BR}}{\mathrm{BD}}\)

Are RS and NP equal?
\(R S-N P=0\)
\(\mathrm{TU}:=\mathrm{NP} \quad \mathrm{ET}:=\frac{\mathrm{EK} \cdot \mathrm{TU}}{\mathrm{GK}} \mathrm{NR}:=\mathrm{BR}-\mathrm{BN}\)
\(\mathrm{EN}:=\mathrm{BE}-\mathrm{BN}\) NT \(:=\mathrm{EN}-\mathrm{ET}\)
\(\mathrm{PS}:=\mathrm{NR} \quad \mathrm{PU}:=\mathrm{NT} \quad \mathrm{EU}:=\sqrt{\mathrm{ET}^{2}+\mathrm{TU}^{2}}\)
Is NT half of NR? \(\frac{\mathrm{NR}}{\mathrm{NT}}=2\)
Does GU \(=\mathrm{PU}\) ? GU \(:=\mathrm{EG}-\mathrm{EU}\)
\(\mathrm{GU}-\mathrm{PU}=0\)
\(\mathrm{BT}:=\mathrm{BN}+\mathrm{NT}\) FN \(:=\mathrm{BF}-\mathrm{BN}\) FP \(:=\sqrt{\mathrm{NP}^{2}+\mathrm{FN}^{2}}\) \(\mathrm{FV}:=\frac{\mathrm{FP}^{2}}{\mathrm{FN}} \mathrm{PX}:=\frac{\mathrm{FP} \cdot \mathrm{PS}}{\mathrm{FV}} \quad \mathrm{FX}:=\mathrm{FP}-\mathrm{PX}\)

FW \(:=\frac{\mathrm{FV} \cdot \mathrm{FX}}{\mathrm{FP}} \quad \mathrm{BW}:=\mathrm{BF}-\mathrm{FW}\) AW \(:=\mathrm{AB}+\mathrm{BW}\)
Is AW a quarter root of \(\mathrm{AB}, \mathrm{AF}\) ?
\(\left(A B \cdot A F^{3}\right)^{\frac{1}{4}}-A W=0\)

\(\mathrm{BS}:=\sqrt{\mathrm{BR}^{2}+\mathrm{RS}^{2}} \mathrm{SZ}:=\frac{\mathrm{BR} \cdot \mathrm{PS}}{\mathrm{BS}}\)
\(\mathrm{BZ}:=\mathrm{BS}-\mathrm{SZ} \mathrm{BY}:=\frac{\mathrm{PS} \cdot \mathrm{BZ}}{\mathrm{SZ}}\)
\(A Y:=A B+B Y\)
Is AY a quarter root of \(\mathrm{AB}, \mathrm{AF}\) ?
\(\left(A B^{3} \cdot A F\right)^{\frac{1}{4}}-A Y=0\)


Does H and G have a constant relationship?
\[
\begin{aligned}
& \delta:=1 . .1000 \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \\
& \mathrm{BF}:=6 \quad \mathrm{BD}:=\frac{\mathrm{BF}}{2} \quad \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF} \\
& \mathrm{AC}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AF}_{\delta}} \quad \mathrm{DJ}:=\mathrm{BD} \quad \mathrm{DF}:=\mathrm{BD} \\
& \mathrm{BC}_{\delta}:=\mathrm{AC}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CD}_{\delta}:=\mathrm{BD}-\mathrm{BC}_{\delta} \\
& \mathrm{CH}_{\delta}:=\frac{\mathrm{DJ} \cdot \mathrm{BC}_{\delta}}{\mathrm{BD}} \quad \mathrm{AG}_{\delta}:=\mathrm{AC}_{\delta} \\
& \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BD} \quad \mathrm{AK}_{\delta}:=\frac{\left(\mathrm{AG}_{\delta}\right)^{2}}{\mathrm{AD}_{\delta}} \\
& \mathrm{GK}_{\delta}:=\sqrt{\left(\mathrm{AG}_{\delta}\right)^{2}-\left(\mathrm{AK}_{\delta}\right)^{2}} \\
& \mathrm{BK}_{\delta}:=\mathrm{AK}_{\delta}-\mathrm{AB}_{\delta} \mathrm{CK}_{\delta}:=\mathrm{BC}_{\delta}-\mathrm{BK}_{\delta} \\
& \mathrm{KF}_{\delta}:=\mathrm{CK}_{\delta}+\mathrm{CD}_{\delta}+\mathrm{DF}
\end{aligned}
\]

Does FH and FG have identical slopes?
\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\mathrm{CD}_{\delta}+\mathrm{DF} \\
& \mathrm{GK}_{\delta}:=\frac{\mathrm{CH}_{\delta} \cdot \mathrm{KF}_{\delta}}{\mathrm{CF}_{\delta}}
\end{aligned}
\]

Therefore G and H are constantly co-linear.



Thus this file can be redone as: "Given \(\mathrm{BC}=\) \(\sqrt{\mathrm{AB}} \cdot \mathrm{AF}\) and BF , find \(\mathrm{AB} . "\)

The Formula for GK vs. GK2 demonstrates that the symbolic processor cannot always resolve to simplest form. GK2 is the processors final attempt. An attempt with Mathcad 6 gives the same result.
\[
\mathrm{A}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{B}:=\mathrm{BF}
\]
\(G K 2_{\delta}:=B \cdot \frac{\left[\left(A_{\delta}\right)^{\left(\frac{3}{2}\right)} \cdot \sqrt{A_{\delta}+B}-\left(A_{\delta}\right)^{2}+B \cdot \sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}-B \cdot A_{\delta}\right]}{\left[\left(2 \cdot A_{\delta}+B\right) \cdot\left(B-\sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}+A_{\delta}\right)\right]} \quad G K_{\delta}:=\frac{B \cdot\left(\sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}\right)}{\left(2 \cdot A_{\delta}+B\right)}\)



\section*{And the Delian Quest}


\(\delta:=1 . .100 \quad \mathrm{AB}_{\delta}:=\delta \quad \mathrm{BG}:=10 \quad \mathrm{AG}_{\boldsymbol{\delta}}:=\mathrm{AB}_{\boldsymbol{\delta}}+\mathrm{BG}\)
\(\mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AG}_{\delta}} \mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta}\)
\(\mathrm{DG}_{\delta}:=\mathrm{BG}-\mathrm{BD}_{\delta} \quad \mathrm{DI}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DG}_{\delta}}\)
\(\mathrm{HI}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{IJ}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{HJ}_{\delta}:=\mathrm{HI}_{\delta}+\mathrm{IJ}_{\delta}\)
\(\mathrm{DK}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{JK}_{\delta}:=\mathrm{DI}_{\delta} \mathrm{BK}_{\delta}:=\mathrm{BD}_{\delta}+\mathrm{DK}_{\delta}\)
\(\mathrm{BJ}_{\delta}:=\sqrt{\left(\mathrm{BK}_{\delta}\right)^{2}+\left(\mathrm{JK}_{\delta}\right)^{2}} \quad \mathrm{JL}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{HJ}_{\delta}}{\mathrm{BJ}_{\delta}}\)
\(\mathrm{BL}_{\delta}:=\mathrm{BJ}_{\delta}-\mathrm{JL}_{\delta} \mathrm{BC}_{\delta}:=\frac{\mathrm{HJ}_{\delta} \cdot \mathrm{BL}_{\delta}}{\mathrm{JL}_{\delta}}\)
\[
\begin{aligned}
& \mathrm{HM}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{DM}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{MG}_{\delta}:=\mathrm{DM}_{\delta}+\mathrm{DG}_{\delta} \\
& \mathrm{GH}_{\delta}:=\sqrt{\left(\mathrm{MG}_{\delta}\right)^{2}+\left(\mathrm{HM}_{\delta}\right)^{2}} \quad \mathrm{HN}_{\delta}:=\frac{\mathrm{MG}_{\delta} \cdot \mathrm{HJ}_{\delta}}{\mathrm{GH}_{\delta}} \\
& \mathrm{GN}_{\delta}:=\mathrm{GH}_{\delta}-\mathrm{HN}_{\delta} \quad \mathrm{FG}_{\delta}:=\frac{\mathrm{HJ}_{\delta} \cdot \mathrm{GN}_{\delta}}{\mathrm{HN}_{\delta}} \\
& \mathrm{BF}_{\delta}:=\mathrm{BG}-\mathrm{FG}_{\delta} \\
& \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}_{\delta} \\
& \mathrm{AC}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BC}_{\delta}
\end{aligned}
\]


The symbolic processor on my computer could not reduce the chain to the final equations.


Archamedian Trisection Revisited.

I am curious as to why the Archamedian trisection is still taught the way it was given so long ago and the idea from which it derives is not in any of my books.

I am going to use a circle to demonstrate some principles concerning angles. To help log the results in mathematical terms, I will divide the circle into quadrants and label them either plus or minus. The top is labeled one.

The circle is divided into \(1 / 8\) segments of 90 degrees for each quadrant. I start at the top. Since the angle at the perimeter is \(1 / 2\) of the angle at the center, when I start the figure I use twice the arc segment for the angle I am working with. I have marked some quadrants with plus and minus and have found that for the figure, I would say that I have \(1+1 / 8-1 / 8\). From this I have learned that my starting angle of the smaller circle will be 90 degrees.
\[
\begin{aligned}
& \frac{90}{8}=11.25 \\
& 90+\frac{90}{8}-\frac{90}{8}=90 \quad\left(1+\frac{1}{8}-\frac{1}{8}\right) \cdot 90=90
\end{aligned}
\]


\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1\)
\(\frac{\mathrm{~B} \cdot 4}{4} \cdot 90=90 \quad \frac{\mathrm{~B} \cdot 3}{4} \cdot 90=67.5\)
\(\frac{B \cdot 2}{4} \cdot 90=45 \quad \frac{B}{4} \cdot 90=22.5\)
\(8+1-1=8\)
\(8 \cdot 11.25=90\)
\(8+1-1-2=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1-2-2=4\)
\(4 \cdot 11.25=45\)
\(8+1-1-2-2-2=2\)
\(2 \cdot 11.25=22.5\)

I have added another plus to a quadrant at the bottom of the figure.
\(\mathrm{B}:=1+\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1.125 \quad \frac{9}{8}=1.125\)
\[
\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75
\]
\[
\frac{B \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{B \cdot 1.5}{4.5} \cdot 90=33.75
\]
\(\frac{B \cdot 5}{4.5} \cdot 90=11.25\)
\begin{tabular}{ll}
\(8+1+1-1=9\) & \(9 \cdot 11.25=101.25\) \\
\(8+1+1-1-2=7\) & \(7 \cdot 11.25=78.75\) \\
\(8+1+1-1-2-2=5\) & \(5 \cdot 11.25=56.25\) \\
\(8+1+1-1-2-2-2=3\) & \(3 \cdot 11.25=33.75\) \\
\(8+1+1-1-2-2-2-2=1\) & \(1 \cdot 11.25=11.25\)
\end{tabular}
\(\bmod (8+1+1-1,2)=1\)

\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8}+\frac{1}{8}\)
\(B=1.125 \quad \frac{9}{8}=1.125\)
\(\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75\)
\[
\frac{\mathrm{B} \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{\mathrm{~B} \cdot 1.5}{4.5} \cdot 90=33.75
\]
\(\frac{B \cdot .5}{4.5} \cdot 90=11.25\)
\(8+1=9\) \(9 \cdot 11.25=101.25\)
\(8+1-(1 \cdot 2)=7\)
\(7 \cdot 11.25=78.75\)
\(8+1-(2 \cdot 2)=5\)
\(5 \cdot 11.25=56.25\)
\(8+1-(3 \cdot 2)=3\)
\(3 \cdot 11.25=33.75\)
\(8+1-(4 \cdot 2)=1\)
\(1 \cdot 11.25=11.25\)
\(\bmod (8+1,2)=1\)

\(B:=1+\frac{3}{24}-\frac{8}{24} B=0.7917 \quad \frac{19}{24}=0.7917\)
\(\frac{B \cdot 3.1666}{3.1666} \cdot 90=71.25 \quad \frac{B \cdot 2.1666}{3.1666} \cdot 90=48.7495\)
\(\frac{B \cdot 1.16666}{3.16666} \cdot 90=26.2499 \frac{B \cdot .166666}{3.166666} \cdot 90=3.75\)
\begin{tabular}{ll}
\((24+3)-8=19\) & \(19 \cdot 3.75=71.25\) \\
\((24+3)-8-(1 \cdot 6)=13\) & \(13 \cdot 3.75=48.75\) \\
\((24+3)-8-(2 \cdot 6)=7\) & \(7 \cdot 3.75=26.25\) \\
\((24+3)-8-(3 \cdot 6)=1\) & \(1 \cdot 3.75=3.75\)
\end{tabular}
\(\bmod (24+3-8,2)=1\)
\(B:=1+\frac{1}{8}-\frac{1}{8}+\frac{10}{8} \quad B=2.25 \quad \frac{18}{8}=2.25\)
\(\frac{B \cdot 9}{9} \cdot 90=202.5 \quad \frac{B \cdot 8}{9} \cdot 90=180\)
\(\frac{\mathrm{B} \cdot 7}{9} \cdot 90=157.5 \quad \frac{\mathrm{~B} \cdot .6}{9} \cdot 90=13.5\)
\(8+1-1+10=18\)
\(18 \cdot 11.25=202.5\)
\(8+1-1+10-(2 \cdot 1)=16\)
\(16 \cdot 11.25=180\)
\(8+1-1+10-(2 \cdot 2)=14\)
\(14 \cdot 11.25=157.5\)
\(8+1-1+10-(2 \cdot 3)=12\)
\(12 \cdot 11.25=135\)
\(8+1-1+10-(2 \cdot 4)=10\)
\(10 \cdot 11.25=112.5\)
\(8+1-1+10-(2 \cdot 5)=8\)
\(8 \cdot 11.25=90\)
\(8+1-1+10-(2 \cdot 6)=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1+10-(2 \cdot 7)=4\)
\(4 \cdot 11.25=45\)
\(8+1-1+10-(2 \cdot 8)=2\)
\(2 \cdot 11.25=22.5\)
\(\bmod ((8+1-1)+10,2)=0\)
\(\mathrm{B}:=1+\frac{1}{7}-\frac{2}{7} \quad \mathrm{~B}=0.8571 \quad \frac{6}{7}=0.8571\)
\(\frac{B \cdot 6}{6} \cdot 90=77.1429 \quad \frac{B \cdot 4}{6} \cdot 90=51.4286\)
\(\frac{B \cdot 2}{6} \cdot 90=25.7143\)
c : \(=\frac{90}{7}\)
\(7+1-(1 \cdot 2)=6\)
\(6 \cdot \mathrm{c}=77.1429\)
\(7+1-(2 \cdot 2)=4\)
\(4 \cdot \mathrm{c}=51.4286\)
\(7+1-(3 \cdot 2)=2\)
\(2 \cdot \mathrm{c}=25.7143\)
B:=1+ \(\frac{1}{7}-\frac{1}{7}\)
B \(=1\)
\(\frac{7}{7}=1\)
\(\frac{B \cdot 7}{7} \cdot 90=90\)
\(\frac{B \cdot 5}{7} \cdot 90=64.2857\)
\[
\frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571
\]
\(7+1-1=7\)
\[
7 \cdot \mathrm{c}=90
\]
\(7+1-1-(1 \cdot 2)=5 \quad 5 \cdot \mathrm{c}=64.2857\)
\(7+1-1-(2 \cdot 2)=3 \quad 3 \cdot c=38.5714\)
\(7+1-1-(3 \cdot 2)=1 \quad 1 \cdot \mathrm{c}=12.8571\)
\(\bmod (7+1-1,2)=1\)
\(\mathrm{B}:=1+\frac{8}{56}-\frac{7}{56} \quad \mathrm{~B}=1.0179\)
\(\frac{\mathrm{~B} \cdot 57}{57} \cdot 90=91.6071 \quad \frac{\mathrm{~B} \cdot 41}{57} \cdot 90=65.8929\)
\[
\frac{\mathrm{B} \cdot 25}{57} \cdot 90=40.1786 \quad \mathrm{c}:=\frac{90}{56}
\]
\(56+8-7=57\)
\(57 \cdot \mathrm{c}=91.6071\)
\(56+8-7-(1 \cdot 16)=41\)
\(41 \cdot \mathrm{c}=65.8929\)
\(56+8-7-(2 \cdot 16)=25 \quad 25 \cdot \mathrm{c}=40.1786\)
\(56+8-7-(3 \cdot 16)=9 \quad 9 \cdot c=14.4643\)
\(\bmod (56+8-7,16)=9\)
\[
\begin{aligned}
& B:=1+\frac{1}{7}-\frac{1}{7} \quad B=1 \\
& \frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.2857 \\
& \frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571 \\
& 7+1-1=7 \\
& 7+1-1-(1 \cdot 2)=5 \\
& 7+1-1-(2 \cdot 2)=3 \\
& 7+1-1-2-2-2=1 \\
& \bmod (7+1-1,2)=1
\end{aligned}
\]

Work in progress.



If I want to multiply any number by any power, this is the a geometric process for doing so.

The given figure is drawn for the third power of 3 .
\[
\mathrm{AH}:=10 \quad \delta:=0 . .10 \quad \mathrm{BS}:=8
\]

The third division between A and F is very hard to see. BS = Base Segments


Making the number of divisions 3, provides 3 cube result. AB divides AF 27 times. Etc. It can be seen that using a normal straight edge and compass one needs a very large piece of paper to work this.

\begin{tabular}{l}
\(\mathrm{BS}^{\boldsymbol{\delta}}\) \\
\begin{tabular}{|l|}
\hline 1 \\
\hline 8 \\
\hline 64 \\
\hline 512 \\
\hline 4096 \\
\hline 32768 \\
\hline 262144 \\
\hline 2097152 \\
\hline 16777216 \\
\hline 134217728 \\
\hline \(1.07374182 \cdot 10^{9}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

You will notice that I took only one of the possible two divisions from which to project from. The other would be \(2 / 3\). At \(2 / 3\) my unit divisions would still be 27 , but now \(A B\) would take up 2 cube of them, or AB would be 8 units.

For an 8 cube series then, the value for AB would be 1 of 512,8 of 512,27 of 512,64 of 512,125 of 512,216 of 512,343 of 512



\section*{About The Laws of \\ Exponents and Ratios}
\(\Delta:=22 \quad \delta:=1 . . \Delta \quad \mathrm{AB}:=7\)

Base Segments \(=\) BS BS : \(=99\)
Base Index \(=\mathrm{BI} \quad\) BI \(:=13\)

Root Series \(=\mathrm{RS} \quad \mathrm{RS}_{\delta}:=\left[\left(\frac{\mathrm{BI}}{\mathrm{BS}} \cdot \mathrm{AB}\right)^{\Delta-\delta} \cdot \mathrm{AB}^{\delta}\right]^{\frac{1}{\Delta}}\)

Root Series By Ratio \(=\operatorname{RR\quad RR} \delta_{\delta}:\left(\frac{\mathrm{BI}}{\mathrm{BS}}\right)^{\frac{\Delta-\delta}{\Delta}} \cdot \mathrm{AB}\)

Root Series By Inverse Ratio \(=\) RI
\[
\mathrm{RI}_{\delta}:=\left(\frac{\mathrm{BS}}{\mathrm{BI}}\right)^{\frac{\delta}{\Delta}} \cdot\left(\frac{\mathrm{BI}}{\mathrm{BS}} \cdot \mathrm{AB}\right)
\]

\(\sum_{\delta}\left(\mathrm{RS}_{\delta}-\mathrm{RR}_{\delta}\right)=0\)

\[
\sum_{\delta}\left(\mathrm{RS}_{\delta}-\mathrm{RI}_{\delta}\right)=0
\]

On the concept of unit and universe of discourse:
Euclidean exponentiation provides a good example with which to demonstrate the distinction between the concepts of unit and the universe of discourse.

Taking 2 for theuniverse of discourse would be represented graphically as:


To represent \(2^{2}\) within this universe of discourse one would draw:


Our original 2 is divided into \(\mathrm{a}^{\text {th }} 4\) segment.
Now if 2 is taken as themit of discourse we may still represent it as;

however to represent 2 now would be drawn as


One will notice that in example 1, the unit changed while the universe remained, in example 2 the unit remained while the universe changed. One could call example 1 an example of deduction and example 2 an example of induction.


The resultant equation in terms of the givens is
\[
\mathrm{EF}:=\frac{\mathrm{AC} \cdot(\mathrm{AM}-\mathrm{AB})}{2 \cdot \mathrm{AC}-\mathrm{AM}} \quad \mathrm{EF}=3.80843
\]


\section*{Segment B.}

\section*{Given AC, AB, DN, find EF.}
\(\mathrm{AN}:=2 \cdot \mathrm{AC} \quad \mathrm{MN}:=\frac{\mathrm{DN}^{2}}{\mathrm{AN}} \quad \mathrm{CN}:=\mathrm{AC} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BN}:=\mathrm{CN}+\mathrm{BC}\)
\(\mathrm{EN}:=\frac{\mathrm{DN} \cdot \mathrm{BN}}{\mathrm{MN}} \quad \mathrm{ED}:=\mathrm{EN}-\mathrm{DN} \quad \mathrm{EF}:=\frac{\mathrm{AC} \cdot \mathrm{ED}}{\mathrm{DN}} \quad \mathrm{EF}=3.80844\)

The equation for this process is
\[
\mathrm{EF}:=\frac{\mathrm{AC} \cdot\left(4 \cdot \mathrm{AC}^{2}-2 \cdot \mathrm{AC} \cdot \mathrm{AB}-\mathrm{DN}^{2}\right)}{\mathrm{DN}^{2}} \quad \mathrm{EF}=3.80844
\]


Segment C.
Given \(\mathrm{AC}, \mathrm{AB}, \mathrm{BE}\), find EF .
\(\mathrm{AN}:=2 \cdot \mathrm{AC} \quad \mathrm{BN}:=\mathrm{AN}-\mathrm{AB} \quad \mathrm{EN}:=\sqrt{\mathrm{BE}^{2}+\mathrm{BN}^{2}} \quad \mathrm{ON}:=\frac{\mathrm{EN}^{2}}{\mathrm{BN}}\)
\(\mathrm{DN}:=\frac{\mathrm{EN} \cdot \mathrm{AN}}{\mathrm{ON}} \quad \mathrm{DE}:=\mathrm{EN}-\mathrm{DN} \quad \mathrm{EF}:=\frac{\mathrm{AC} \cdot \mathrm{DE}}{\mathrm{DN}} \quad \mathrm{EF}=3.80844\)

The equation for this process is \(\quad \mathrm{EF}:=\frac{\mathrm{BE}^{2}-2 \cdot \mathrm{AC} \cdot \mathrm{AB}+\mathrm{AB}^{2}}{2 \cdot(2 \cdot \mathrm{AC}-\mathrm{AB})} \quad \mathrm{EF}=3.80844\)
\[
10 \_14 \_5 \mathrm{C} . \mathrm{MCD}
\]

Trivial Method: Square Root
Generalize the figure of 10_14_95.MCD


Starting at any point G, between A and J, the square root of \(\mathrm{AB} \cdot \mathrm{AF}\) can always be projected to point C. Such a progression can be used on the cube root figure.
\(\delta:=1 . .1000 \mathrm{AB}:=10 \quad \mathrm{BF}:=10 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2}\)
\[
\begin{aligned}
& \mathrm{AE}:=\mathrm{BE}+\mathrm{AB} \quad \mathrm{AJ}:=\mathrm{BE} \quad \mathrm{AG}_{\delta}:=\frac{\mathrm{AJ}}{\delta} \\
& \mathrm{EI}_{\delta}:=\mathrm{AG}_{\delta} \mathrm{AI}_{\delta}:=\sqrt{(\mathrm{AE})^{2}+\left(\mathrm{EI}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{AK}_{\delta}:=\mathrm{AI}_{\delta} \mathrm{DK}:=\mathrm{AJ} \mathrm{AD}_{\delta}:=\sqrt{\left(\mathrm{AK}_{\delta}\right)^{2}-\mathrm{DK}^{2}} \mathrm{GH}_{\delta}:=\mathrm{AD}_{\delta} \quad \mathrm{CG}_{\delta}:=\mathrm{GH}_{\delta}\)
\[
\mathrm{AF}_{\delta}:=\mathrm{BF}+\mathrm{AB} \quad \mathrm{AC}_{\delta}:=\sqrt{\left(\mathrm{CG}_{\delta}\right)^{2}-\left(\mathrm{AG}_{\delta}\right)^{2}}
\]


\section*{10_20_95.MCD}

Given \(A B\) and \(B D\) divide \(B D\) such that \(A B \cdot C D=\) \(\frac{B C^{2}}{4}\). And what is the reltionship of \(A C\) to \(A B\) and BD? Now the date on this file is not exact as I sketched this out on a piece of paper and forgot to date it.

\[
\begin{aligned}
& \mathrm{AB}:=5 \quad \mathrm{BD}:=1 \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BD}} \quad \mathrm{AE}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BF}^{2}} \\
& \mathrm{DE}:=\mathrm{AD}-\mathrm{AE} \quad \mathrm{DG}:=\mathrm{DE} \quad \mathrm{CD}:=\frac{\mathrm{DG}^{2}}{\mathrm{AD}} \\
& \mathrm{CD}=0.046 \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{AB} \cdot \mathrm{CD}-\frac{\mathrm{BC}^{2}}{4}=0
\end{aligned}
\]
\(\mathrm{CE}:=\mathrm{DE}-\mathrm{CD} \quad \mathrm{CH}:=\mathrm{CE} \quad \mathrm{CJ}:=\frac{\mathrm{CH}^{2}}{\mathrm{CD}} \quad \mathrm{AB}-\mathrm{CJ}=0\)
\(\mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{AC}=5.954\)
\(A C-\left[2 \cdot \frac{\mathrm{AB}^{\left(\frac{3}{2}\right)}}{\sqrt{\mathrm{AB}+\mathrm{BD}}}+2 \cdot \frac{\sqrt{\mathrm{AB}}}{\sqrt{\mathrm{AB}+\mathrm{BD}}} \cdot \mathrm{BD}-\mathrm{AB}\right]=0\)

\section*{A Modification of a Square Root Figure. Gemini Roots}

One of the square root figures displays a one to one ratio between what could be called the vertical segment OP and the root of the two horizontal segments AP and BP. With a slight modification however, one can demonstrate a many to one relationship between three base segments.

GL has a ratio to the root of AL•BG.
Developing the arc AIC from it will give a means of keeping that ratio.
\(B S=\) Base Segments, set at end of doc.
\(\mathrm{AB}:=10 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \quad \mathrm{EG}:=\frac{\mathrm{AB}}{\mathrm{BS}}\)
\(\mathrm{BC}:=\mathrm{AC} \quad \mathrm{CD}:=\mathrm{AC} \quad \mathrm{CE}:=\frac{\mathrm{EG}}{2}\)
\(\mathrm{AE}:=\mathrm{AC}-\mathrm{CE} \quad \mathrm{BE}:=\mathrm{BC}+\mathrm{CE}\)
\(\mathrm{EF}:=\sqrt{\mathrm{AE} \cdot \mathrm{BE}} \quad \mathrm{AF}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EF}^{2}}\)
\(\mathrm{AI}:=\mathrm{AF} \quad \mathrm{AM}:=\frac{\mathrm{AI}}{2} \quad \mathrm{CI}:=\sqrt{\mathrm{AI}^{2}-\mathrm{AC}^{2}}\)
\(\mathrm{AL}:=\frac{\mathrm{AI} \cdot \mathrm{AM}}{\mathrm{AC}} \mathrm{CL}:=\mathrm{AC}-\mathrm{AL}\)
\(\mathrm{CK}:=\frac{\mathrm{AC} \cdot \mathrm{CE}}{\mathrm{CI}} \quad \mathrm{IK}:=\mathrm{CI}+\mathrm{CK}\)
\[
\begin{aligned}
& \begin{array}{l}
\delta:=1 . . \Delta \quad \mathrm{AN}_{\delta}:=\frac{\mathrm{AC}}{\Delta} \cdot \delta \\
\mathrm{CN}_{\delta}:=\mathrm{AC}-\mathrm{AN}_{\delta} \quad \mathrm{KO}:=\mathrm{IK} \\
\mathrm{KN}_{\delta}:=\sqrt{\mathrm{CK}^{2}+\left(\mathrm{CN}_{\delta}\right)^{2}} \quad \mathrm{NO}_{\delta}:=\mathrm{KO}-\mathrm{KN}_{\delta} \\
\mathrm{NP}_{\delta}:=\frac{\mathrm{CN}_{\delta} \cdot \mathrm{NO}_{\delta}}{\mathrm{KN}_{\delta}} \quad \mathrm{AP}_{\delta}:=\mathrm{AC}-\mathrm{CN}_{\delta}-\mathrm{NP}_{\delta}
\end{array} \\
& \mathrm{OP}_{\delta}:=\frac{\mathrm{CK} \cdot \mathrm{NO}_{\delta}}{\mathrm{KN}_{\delta}} \quad \mathrm{AO}_{\delta}:=\sqrt{\left(\mathrm{AP}_{\delta}\right)^{2}+\left(\mathrm{OP}_{\delta}\right)^{2}} \\
& \mathrm{AQ}_{\delta}:=\mathrm{AO}_{\delta} \quad \mathrm{AR}_{\delta}:=\frac{\left(\mathrm{AQ}_{\delta}\right)^{2}}{\mathrm{AB}} \\
& \mathrm{BP}_{\delta}:=\mathrm{BC}+\mathrm{CN}_{\delta}+\mathrm{NP}_{\delta} \\
& \mathrm{BO}_{\delta}:=\sqrt{\left(\mathrm{BP}_{\delta}\right)^{2}+\left(\mathrm{OP}_{\delta}\right)^{2}} \quad \mathrm{BS}_{\delta}:=\mathrm{BO}_{\delta} \quad \mathrm{BT}_{\delta}:=\frac{\left(\mathrm{BS}_{\delta}\right)^{2}}{\mathrm{AB}} \quad \mathrm{AT}_{\delta}:=\mathrm{AB}-\mathrm{BT}_{\delta} \quad \mathrm{RT}_{\delta}:=\mathrm{AT}_{\delta}-\mathrm{AR}_{\delta}
\end{aligned}
\]

Set the number of Base Segments here and see if a constant relationship is expressed in the graph.
\(B S \equiv 9\) \(\Delta \equiv 100\)



Given AG, CE, AH, place CE so that
CE:AH as CE:CI. Or more simply that CI
\(=\sqrt{\mathrm{AC}_{\delta} \cdot \mathrm{EG}_{\delta}}=\mathrm{AH}\).
\(\delta:=1 . .100\)
\(\Delta:=8\)
\(A G:=\Delta \cdot 2+1\)
\(\mathrm{CE}_{\delta}:=\frac{1}{\delta}\)
\(\mathrm{AH}_{\delta}:=\Delta \cdot \mathrm{CE}_{\delta}\)

With the values given is the constuction possible? (1 for yes and 0 for no.)

\(\mathrm{DJ}_{\delta}:=\mathrm{AH}_{\delta} \quad \mathrm{AB}_{\delta}:=\frac{\mathrm{CE}_{\delta}}{2} \quad \mathrm{AF}:=\frac{\mathrm{AG}}{2} \quad \mathrm{FG}:=\mathrm{AF} \quad \mathrm{BF}_{\delta}:=\mathrm{AF}-\mathrm{AB}_{\delta} \quad \mathrm{FJ}_{\delta}:=\mathrm{BF}_{\delta}\) \(\mathrm{FD}_{\delta}:=\sqrt{\left(\mathrm{FJ}_{\delta}\right)^{2}-\left(\mathrm{DJ}_{\delta}\right)^{2}} \quad \mathrm{DC}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{DE}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{AD}_{\delta}:=\mathrm{AF}-\mathrm{FD}_{\delta}\) \(\mathrm{AC}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{DC}_{\delta} \quad \mathrm{AE}_{\delta}:=\mathrm{AD}_{\delta}+\mathrm{DE}_{\delta} \quad \mathrm{EF}_{\delta}:=\mathrm{AF}-\mathrm{AE}_{\delta} \quad \mathrm{EG}_{\delta}:=\mathrm{EF}_{\delta}+\mathrm{FG}\)



\section*{12_01_95.MCD}

\section*{Method for Equals.}

At the inner extremities of a great circle I have two equal smaller ones. Find the circle tangent to all three

\[
\begin{aligned}
& \mathrm{AH}:=10 \quad \mathrm{AC}:=3 \quad \mathrm{AO}:=\frac{\mathrm{AH}}{2} \quad \mathrm{AB}:=\frac{\mathrm{AC}}{2} \\
& \mathrm{JO}:=\mathrm{AB} \quad \mathrm{OP}:=\mathrm{JO} \quad \mathrm{HO}:=\mathrm{AO} \\
& \mathrm{JP}:=\sqrt{\mathrm{JO}^{2}+\mathrm{OP}^{2}} \quad \mathrm{HP}:=\mathrm{HO}+\mathrm{OP}
\end{aligned}
\]
\[
\mathrm{AL}:=\frac{\mathrm{JP} \cdot \mathrm{AH}}{\mathrm{HP}} \mathrm{NO}:=\mathrm{AO} \quad \mathrm{AN}:=\sqrt{\mathrm{AO}^{2}+\mathrm{NO}^{2}}
\]
\[
\mathrm{LN}:=\mathrm{AN}-\mathrm{AL} \quad \mathrm{LQ}:=\frac{\mathrm{AO} \cdot \mathrm{LN}}{\mathrm{AN}} \quad \mathrm{LQ}=2.692
\]

Reducing \(L Q\) as an expression of the two givens, \(L_{F}:=\frac{A H \cdot(A H-A C)}{2 \cdot(A H+A C)} \quad L Q_{F}-L Q=0\)

Scholia: 100 Great Problems of Elementary Mathematics H. Dorrie Problem 27 Euler's Line
\[
\boldsymbol{\delta}:=0 . .2 \quad \text { AC }:=\left(\begin{array}{l}
\text { Side_1 } \\
\text { Side_2 } \\
\text { Side_3 }
\end{array}\right) \quad \mathrm{BC}:=\left(\begin{array}{l}
\text { Side_2 } \\
\text { Side_3 } \\
\text { Side_1 }
\end{array}\right) \quad \mathrm{AB}:=\left(\begin{array}{l}
\text { Side_3 } \\
\text { Side_1 } \\
\text { Side_2 }
\end{array}\right) \begin{aligned}
& \text { Given three sides of a triangle, } \\
& \text { determine the length of the Euler line. } \\
& \text { Work the drawing from each of the } \\
& \text { sides. }
\end{aligned}
\]

TRIANGLE \(:=(\) Side_1 + Side_2> Side_3 \() \cdot(\) Side_1 + Side_3 \(>\) Side_2 \() \cdot(\) Side_2 + Side_3 \(>\) Side_1 \()\)

\[
\begin{aligned}
& \mathrm{AE}_{\delta}:=\frac{\mathrm{AB}_{\delta}}{2} \mathrm{Ak}_{\delta}:=\mathrm{AC}_{\delta} \quad \mathrm{Bl}_{\delta}:=\mathrm{BC}_{\delta} \\
& \mathrm{Ai}_{\delta}:=\frac{\left(\mathrm{Ak}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \quad \mathrm{Bh}_{\delta}:=\frac{\left(\mathrm{Bl}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \mathrm{Ah}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Bh}_{\delta} \\
& \mathrm{hi}_{\delta}:=\mathrm{Ah}_{\delta}-\mathrm{Ai}_{\delta} \quad \mathrm{Aj}_{\delta}:=\mathrm{Ai}_{\delta}+\frac{\mathrm{hi}_{\delta}}{2} \\
& \mathrm{Cj}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}-\left(\mathrm{Aj}_{\delta}\right)^{2}} \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta} \\
& \mathrm{Bj}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Aj}_{\delta} \mathrm{Bg}_{\delta}:=\frac{\mathrm{BC}_{\delta}}{2} \quad \mathrm{Bf}_{\delta}:=\frac{\mathrm{BC}_{\delta} \cdot \mathrm{BE}_{\delta}}{\mathrm{Bj}_{\delta}} \\
& \mathrm{fg}_{\delta}:=\mathrm{Bf}_{\delta}-\mathrm{Bg}_{\delta} \quad \mathrm{Ug}_{\delta}:=\mathrm{if}\left(\mathrm{Cj}_{\delta}, \frac{\mathrm{Bj}_{\delta} \cdot \mathrm{fg}_{\delta}}{\mathrm{Cj}_{\delta}}, 0\right) \\
& \mathrm{BU}_{\delta}:=\mathrm{if}\left[\mathrm{Ug}_{\delta}, \sqrt{\left.\left(\mathrm{Ug}_{\delta}\right)^{2}+\left(\mathrm{Bg}_{\delta}\right)^{2}, \infty\right]}\right.
\end{aligned}
\]
\(\mathrm{AM}_{\delta}:=\frac{\mathrm{AC}_{\delta}}{2} \quad \mathrm{AGG}_{\delta}:=\frac{\mathrm{Aj}_{\delta} \cdot \mathrm{AM}_{\delta}}{\mathrm{AC}_{\delta}} \quad \mathrm{BGG}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AGG}_{\delta}\)
\(\mathrm{GGM}_{\delta}:=\sqrt{\left(\mathrm{AM}_{\delta}\right)^{2}-\left(\mathrm{AGG}_{\delta}\right)^{2}} \mathrm{BM}_{\delta}:=\sqrt{\left(\mathrm{GGM}_{\delta}\right)^{2}+\left(\mathrm{BGG}_{\delta}\right)^{2}}\)
\(\mathrm{BS}_{\delta}:=\frac{2 \cdot \mathrm{BM}_{\delta}}{3} \mathrm{BG}_{\delta}:=\frac{\mathrm{BGG}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}} \quad \mathrm{GS}_{\delta}:=\frac{\mathrm{GGM}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}}\)
\(A G_{\delta}:=A B_{\delta}-\mathrm{BG}_{\boldsymbol{\delta}} \mathrm{AS}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{AG}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{GS}_{\boldsymbol{\delta}}\right)^{2}}\)

\(\mathrm{MS}_{\delta}:=\mathrm{BM}_{\delta}-\mathrm{BS}_{\delta} \quad \mathrm{AU}_{\delta}:=\mathrm{BU}_{\delta} \quad \mathrm{MU}_{\delta}:=\sqrt{\left(\mathrm{AU}_{\delta}\right)^{2}-\left(\mathrm{AM}_{\delta}\right)^{2}} \quad \mathrm{Ae} \mathrm{C}_{\delta}:=\frac{1}{2} \cdot \frac{(\mathrm{AS})^{2}}{\mathrm{AM}}+\frac{1}{2} \cdot \mathrm{AM}_{\delta}-\frac{1}{2} \cdot \frac{\left(\mathrm{MS}_{\delta}\right)^{2}}{\mathrm{AM}}\)

The following sequence is from 06_07_93.MCD. In that paper I treated it as a problem between two triangles, which it is. One can restate it as finding the fourth side of a quadrilateral by pulling up a line.
\(\mathrm{eM}_{\delta}:=\mathrm{Ae}_{\delta}-\mathrm{AM}_{\delta} \mathrm{Sm}_{\delta}:=\mathrm{eM}_{\delta} \quad \mathrm{Se}_{\delta}:=\sqrt{\left(\mathrm{AS}_{\delta}\right)^{2}-\left(\mathrm{Ae}_{\delta}\right)^{2}} \quad \mathrm{Mm}_{\delta}:=\mathrm{Se}_{\delta}\)
\(\mathrm{Um}_{\delta}:=\operatorname{if}\left[\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}, \mathrm{MU}_{\delta}-\mathrm{Mm}_{\delta}, \mathrm{MU}_{\delta}+\mathrm{Mm}_{\delta}\right] \mathrm{SU}_{\delta}:=\sqrt{\left(\mathrm{Um}_{\delta}\right)^{2}+\left(\mathrm{Sm}_{\delta}\right)^{2}} \mathrm{UO}_{\delta}:=3 \cdot \mathrm{SU}_{\delta}\)
Due to the way in which certain lines lay, the above switch was needed.

Is this a TRIANGLE \(=1 \quad ? \quad\) Side_1 \(\equiv 21 \quad\) Side_2 \(\equiv 14.4 \quad\) Side_3 \(\equiv 7.75\)

\(\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}\)

\begin{tabular}{|c|c|c|}
\hline \(\mathrm{SU}_{\delta}\) & \(\mathrm{UO}_{\delta}\) & \(\mathrm{AU}_{\delta}\) \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline
\end{tabular}

Descartes gives a figure for solving \(\mathrm{z}^{2}=\mathrm{az}+\mathrm{b}^{2}\) which should have been stated as \(\mathrm{z}^{2}=2 \mathrm{az}\) \(+b^{2}\), generalize the figure. Descartes' figure was given only when \(n=2\). In this form, it is an equation of two givens and one unknown, generalized it as three givens and solves for three unknowns. Attempt to eliminate two of the unknowns as a function of the three givens.


Z
Z

Given \(\mathrm{a}, \mathrm{n}\) and b for the equation \(\mathrm{z}^{2}=\mathrm{naz}+\mathrm{b}^{2}+\) cd find \(\mathrm{z}, \mathrm{c}\), and d .
\(\mathrm{AD}:=\mathrm{n} \cdot \mathrm{a} \quad \mathrm{BE}:=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2} \quad \mathrm{BC}:=\frac{\mathrm{a}^{2}}{\mathrm{BE}}}\)
\(\mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}}\)
\(\mathrm{FG}:=\frac{\mathrm{AD}}{2} \quad \mathrm{CG}:=\sqrt{F G^{2}-\mathrm{CF}^{2}}\)
\(\mathrm{AG}:=\mathrm{FG} \quad \mathrm{AC}:=\mathrm{AG}+\mathrm{CG}\)
\(\mathrm{BG}:=\mathrm{CG}-\mathrm{BC} \quad \mathrm{DG}:=\mathrm{FG}\)
\(\mathrm{BD}:=\mathrm{DG}-\mathrm{BG} \quad \mathrm{AB}:=\mathrm{AG}+\mathrm{BG}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD}\)
\(\mathrm{DH}:=\frac{\mathrm{b}^{2}}{\mathrm{DE}} \quad \mathrm{DI}:=\mathrm{AE} \quad \mathrm{HI}:=\mathrm{DI}-\mathrm{DH}\)
\(z:=A E \quad z=12.622\)
\(c:=D E \quad c=0.622\)
\(d:=H I \quad d=6.186\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0\)
Place values here :
\[
n \equiv 3
\]
\[
a \equiv 4
\]
\[
b \equiv 2
\]

Expressing c and d in terms of the givens does not really look esthetically pleasing.
\[
\left.d=2 \cdot a \cdot \frac{b^{2}}{\sqrt{a^{2}+b^{2}}} \cdot \frac{\left(2 \cdot a-\sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right)}{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right.}\right)
\]
\[
c=\frac{-1}{2} \cdot \frac{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\sqrt{a^{2}+b^{2}}}
\]

The symbolic processor could not reduce cd directly so I had to do it in terms of the equation by resolving \(z\).
\(z=\frac{1}{2} \cdot \frac{\left(n \cdot a \cdot \sqrt{a^{2}+b^{2}}+a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}+2 \cdot b^{2}\right)}{\sqrt{a^{2}+b^{2}}}\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0 \quad p=-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\)
\((c \cdot d)-p=0\)
\(z^{2}-\left[n \cdot a \cdot z+b^{2}+\left[-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\right]\right]=0\)
Solve for z below.
\(\left[\begin{array}{l}\frac{1}{2} \cdot n \cdot a+\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}} \\ \frac{1}{2} \cdot n \cdot a-\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}}\end{array}\right]\)


C


Scholia: The Geometry of Rene Descartes with a facsimile of the first edition. Translated by D. Eugene and M. Latham
\(z^{2}:=a z-b^{2}\)
The problem is given for the solution of z when a and b are given. Working the problem backward, \(z^{2}+b^{2}:=a z\) ione can see constants in the figure for solving when only a and b are given.
\[
b:=2.12 \quad z:=1.41
\]

Finding \(a\) is just a matter of expressing \(b\) in terms of cz, and a becomes \(\mathrm{z}+\mathrm{c}\).
\[
c:=\frac{b^{2}}{z} \quad a:=z+c
\]

We find that this c has another relation to z , for it holds a proportion to it in the given equation.
\[
\begin{aligned}
& \left(c^{2}+b^{2}\right)-a \cdot c=0 \\
& \left(c^{2}+b^{2}\right)-((z+c) \cdot c)=0 \\
& \left(c^{2}+b^{2}\right)-(c \cdot z)-c^{2}=0 \\
& \left(z^{2}+b^{2}\right)-(z+c) \cdot z=0 \\
& \left(z^{2}+b^{2}\right)-(c \cdot z)-z^{2}=0
\end{aligned}
\]

Descartes and other mathematicians speak as if we have two different values for z , however, I see quite plainly that we have a z and a c that was found. The unique name of the symbols in context are thus preserved.

One can also see that working the figure in a straight forward manner, imaginary situations are not possible,

\(b^{2}\)




The primitive form of construction is very suggestive of Descartes process. If however we use Pythagorean division, the figure may not be so apparent. One should note that contrary to his statement on page 4 , one cannot divide a line by a line. In geometry one can divide a square by a line. This is the law of tautology, which holds for all mathematics. It will also be noted that Descartes claims to be working with a quadratic equation, and his solution is indeed for one, however he states it as a quadratic deficient by a rectangle, deficient in fact by az. The authors of the notes make the same mistake.

\section*{Just for fun.}


The ratio of BC to CE is common to another cube root expression, which?


\[
\begin{gathered}
\sqrt{A D}+\sqrt{A B} \\
(\sqrt{A D})^{2}+2 \cdot \sqrt{A B} \cdot \sqrt{A D}+(\sqrt{A B})^{2} \\
(\sqrt{A D})^{3}+3 \cdot A D \cdot \sqrt{A B}+3 \cdot \sqrt{A D} \cdot A B+(\sqrt{A B})^{3}
\end{gathered}
\]

Pascal's triangle with exponential division.
\[
A B:=3 \quad A D:=5
\]
\(B D:=A D-A B \quad A C:=\sqrt{A B \cdot A D}\)
\(C D:=A D-A C \quad B C:=B D-C D\)
\(C D:=B D-B C \quad C E:=\sqrt{B C \cdot C D}\)
\(B E:=\sqrt{B C^{2}+C E^{2}} \quad D E:=\sqrt{C D^{2}+C E^{2}}\)
\(B G:=\frac{\mathrm{BD} \cdot \mathrm{BE}}{\mathrm{DE}} \quad \mathrm{FG}:=\frac{\mathrm{BC} \cdot \mathrm{BG}}{\mathrm{BD}}\)
\(E G:=\frac{B E \cdot B G}{B D} \quad D G:=D E+E G\)
\(G H:=\frac{B C \cdot E G}{B D} \quad G J:=\frac{B C \cdot G H}{B D}\)
\(\frac{\mathrm{BD}}{\mathrm{BC}}=2.291 \quad \frac{\mathrm{DG}}{\mathrm{GH}}=5.249 \quad \frac{\mathrm{DG}}{\mathrm{GJ}}=12.025\)
\begin{tabular}{rl}
\(N:=1 . .3\) & \(\frac{(\sqrt{A D}+\sqrt{A B})^{N}}{\sqrt{A B^{N}}}\) \\
& \(\frac{2.291}{5.249}\) \\
\hline 12.025 \\
&
\end{tabular}
\[
\frac{A+B}{A}
\]
\[
\frac{A^{2}+2 A B+B^{2}}{A^{2}}
\]
\[
\frac{A^{3}+3 A^{2} \cdot B+3 A \cdot B^{2}+B^{3}}{A^{3}}
\]

Dividing an exponentiated integer by an exponentiated integer of the same power, straight edge and compass construction. Followed by who knows what!

\(C D:=1.5 \quad B C:=.75 \quad B D:=B C+C D\)
\(C E:=\sqrt{B C \cdot C D} \quad B E:=\sqrt{B C^{2}+C E^{2}}\)
\(E F:=B C \quad F G:=\frac{B C \cdot E F}{C E} \quad F G=0.53\)
\(D E:=\sqrt{C D^{2}+C E^{2}} \quad E G:=\frac{B D \cdot E F}{D E}\)
\[
\mathrm{GH}:=\frac{\mathrm{BC} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{DG}:=\mathrm{DE}+\mathrm{EG}
\]
\(J K:=\frac{F G \cdot G H}{E G} \quad G J:=\frac{B C \cdot G H}{B D} \quad F H:=\frac{C E \cdot E G}{B D} \quad \frac{B D}{B C}=3 \quad \frac{D G}{G H}=9 \quad \frac{D G}{G J}=27\)

\[
n:=1 . .3
\]
\begin{tabular}{ll}
\(\frac{a^{n}}{b^{n}}\) & \(\frac{B D^{n}}{B C^{n}}\) \\
& \(\frac{3}{9}\) \\
\hline 27 \\
\hline
\end{tabular}



\section*{12_29_95.MCD}

Given AC and CD find BC when it is equal to \(\frac{\mathrm{AC} \cdot \mathrm{CD}^{2}}{\mathrm{AC}^{2}+\mathrm{CD}^{2}}\).
\[
\begin{aligned}
& \mathrm{AC}:=15 \quad \mathrm{CD}:=5 \quad \mathrm{AO}:=\frac{\mathrm{AC}}{2} \\
& \mathrm{AD}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CD}^{2}} \\
& \mathrm{AG}:=\frac{\mathrm{AC} \cdot \mathrm{AO}}{\mathrm{AD}} \quad \mathrm{AE}:=2 \cdot \mathrm{AG} \\
& \mathrm{AB}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AD}} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BC}=1.5 \\
& \mathrm{BC}:=\frac{\mathrm{AC} \cdot \mathrm{CD}^{2}}{\left(\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)} \quad \mathrm{BC}=1.5
\end{aligned}
\]

A cube divided by the sum of two squares.

\section*{One Square}
One Line

And the Delian Quest

\title{
1996
}
01_04_96.MCD

The Euclidean proof of 11_11_93.MCD may be reminiscent of trimming hedges with a jack knife, but the method is for exercise of those methodical parts which comprise it. I can never get too much of those practices. There is however a golden approach to proofing the figure which has almost no regard for the practices of basic moves- a eunuch in regards to teaching, but whose simplicity implants the concepts of the figure with a clarity unrivaled by more energetic methods.

\section*{The Archamedian Paper Trisector- Without the Numbers.}

One of the distinctions that this and the paper of 11_11_93.MCD bring to the subject is that the construction of the figure is not assumed, but done.


Given any circle \(A B\)


Given any circle BC such that \(\mathrm{BC} \leq 2 \mathrm{AB}\).


Construct AE such that \(\mathrm{AE}=\mathrm{AC}\).

Since \(A C=A B+B C\) and \(A D=A B, D E=B C\).


Construct DH parallel to BD. Construct CE. Since \(\mathrm{AB}=\mathrm{AD}\) and \(\mathrm{AC}=\mathrm{AE}, \triangle \mathrm{ABD}\) is proportional to \(\Delta \mathrm{ACE}\), therefore CE is parallel to BD. From here one can take two paths.


Construct GJ parallel to EF. Now Since CE is parallel to \(\mathrm{DH}, \mathrm{DG}=\mathrm{CH}\). Since GJ is parallel to \(\mathrm{EF}, \mathrm{DG}=\mathrm{FJ}\). Since \(\angle \mathrm{HBJ}\) is opposite and equal to \(\angle \mathrm{GBD}, \mathrm{DG}=\mathrm{HJ}\), therefore DG is \(\frac{1}{3}\) CF.
Since CE is parallel to DH and EF is parallel to GJ, EGBD is equilateral.


By construction \(\mathrm{DK}=\mathrm{KM}\). Since DH is parallel to \(\mathrm{CE}, \mathrm{CH}=\mathrm{DG}\). Since DK is equal and opposite \(\mathrm{CH}, \mathrm{MK}+\mathrm{DK}+\mathrm{DG}\) is \(\frac{1}{3} \mathrm{DG}\).
But like I said at the start, there is no real work in this figure.

I have given two constructions for the figure, I cannot understand why sliding paper is still used to demonstrate it. The figure adds a few moves to Euclid's figure for demonstrating that the angle from the circumference is half the angle from the center of the circle.

01_07_96.MCD
A rusty Compass construction for the duplication of the cube.

\(\mathrm{AD}:=2 \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2} \quad \mathrm{AF}:=\sqrt{2 \cdot \mathrm{AB}^{2}} \quad \mathrm{AE}:=\frac{\mathrm{AF}}{9} \cdot 8\)
\(\mathrm{AC}:=\mathrm{AE} \quad \mathrm{AC}=1.257\)
\(\left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}=1.26 \quad \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}}{\mathrm{AC}}=1.002\)
I remember a rusty construction for squaring a circle off the base of a right triangle. Here is one more rust pile construction.


\section*{Alternate Method, Power Line.}

Given \(\mathrm{AB}, \mathrm{EF}, \mathrm{BF}\), find the power line intersection on BF. Looking back to 94 , it seems I never derived a formula for it either.
\[
\begin{aligned}
& \mathrm{AB}:=\mathrm{R}_{1} \quad \mathrm{BF}:=\mathrm{D} \quad \mathrm{EF}:=\mathrm{R}_{2} \\
& \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{FG}:=\mathrm{EF} \\
& \mathrm{EG}:=\mathrm{EF}+\mathrm{FG} \quad \mathrm{AG}:=\mathrm{AB}+\mathrm{BF}+\mathrm{FG} \mathrm{AH}:=\mathrm{AG} \\
& \mathrm{GJ}:=\mathrm{AG} \quad \mathrm{AP}:=\frac{\mathrm{AG}}{2} \mathrm{CE}:=\mathrm{BF}-(\mathrm{BC}+\mathrm{EF}) \\
& \mathrm{LR}:=\frac{\mathrm{AH} \cdot \mathrm{CE}}{\mathrm{AC}+\mathrm{EG}} \mathrm{PO}:=\mathrm{AP} \quad \mathrm{AK}:=\mathrm{LR} \\
& \mathrm{KL}:=\frac{\mathrm{AC} \cdot(\mathrm{AH}+\mathrm{AK})}{\mathrm{AH}} \mathrm{AR}:=\mathrm{KL} \\
& \mathrm{PR}:=\mathrm{AP}-\mathrm{AR} \quad \mathrm{OQ}:=\mathrm{PR} \quad \mathrm{QR}:=\mathrm{PO} \\
& \mathrm{LQ}:=\mathrm{QR}+\mathrm{LR} \quad \mathrm{DR}:=\frac{\mathrm{OQ} \cdot \mathrm{LR}}{\mathrm{LQ}} \mathrm{AD}:=\mathrm{AR}+\mathrm{DR}
\end{aligned}
\]
\[
\mathrm{AD}=25.333 \text { Plug values in below. }
\]
\[
\mathrm{R}_{1} \equiv 9 \quad \mathrm{R}_{2} \equiv 1 \quad \mathrm{D} \equiv 30
\]
\[
\frac{\left(\mathrm{R}_{1}+\mathrm{D}+\mathrm{R}_{2}\right) \cdot\left(\mathrm{D}-\mathrm{R}_{2}+\mathrm{R}_{1}\right)}{2 \cdot \mathrm{D}}=25.333
\]


The figure cuts the base line in quad roots. As such it would be another trivial method for doing quad roots, however I am interested in some of the ratio's of the figure instead.

\[
\begin{aligned}
& \mathrm{N}=5 \quad \mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{~N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \\
& \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AG}} \quad \mathrm{AC}:=\left(\mathrm{AB}^{3} \cdot \mathrm{AG}\right)^{\frac{1}{4}} \\
& \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{4}} \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \mathrm{GK}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DK}^{2}} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]

\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}}=2.415\)
\(\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=8.075\)

\[
\frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]

Plug in AG here. AB will become " 1 ".
\(\mathrm{N} \equiv 5\)
\(\frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}}{\mathrm{~N}^{\frac{3}{4}}}=2.415\)
\[
\frac{\mathrm{BK}}{\text { BJ }}=8.075 \quad \mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=8.075
\]
\[
\mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \mathrm{DF}:=\mathrm{AF}-\mathrm{AD} \quad \mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}}
\]
\[
\mathrm{CN}:=\frac{\mathrm{BD} \cdot \mathrm{CD}}{\mathrm{BG}} \mathrm{DP}:=\frac{\mathrm{BD} \cdot \mathrm{DF}}{\mathrm{BG}} \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{5}{4}}+\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=26.132 \quad \frac{\mathrm{BG}}{\mathrm{BM}}=26.132
\]
\[
\mathrm{N}^{\frac{5}{4}}+\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=26.132
\]
\[
\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}=17.475 \quad \frac{\mathrm{BG}}{\mathrm{CN}}=17.475
\]
\[
\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}=17.475
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}=11.686 \frac{\mathrm{BG}}{\mathrm{DP}}=11.686
\]
\[
\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}=11.686
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{3}{4}}=7.815 \quad \frac{\mathrm{BG}}{\mathrm{FQ}}=7.815
\]
\[
\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}+\frac{1}{\mathrm{~N}^{\frac{3}{4}}}=7.815
\]

\(\frac{\mathrm{AG}^{\frac{6}{4}}+\mathrm{AG}^{\frac{4}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{5}{4}}-\mathrm{AB}^{\frac{6}{4}}}=32.665\)
\(\frac{A G}{B M}=32.665 \quad \frac{\mathrm{~N}^{\frac{3}{2}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=32.665\)
\(\begin{array}{ll}\mathrm{AG}^{\frac{5}{4}}+\mathrm{AG}^{\frac{3}{4}} \cdot \mathrm{AB}^{\frac{2}{4}} \\ \mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{4}{4}}-\mathrm{AB}^{\frac{5}{4}} & =21.844 \\ \mathrm{CN} & =21.844 \\ \frac{\mathrm{~N}^{\frac{5}{4}}+\mathrm{N}^{\frac{3}{4}}}{\frac{1}{4}}=21.844 \\ \mathrm{~N}^{\frac{0}{4}}\end{array}\)
\(\frac{\mathrm{AG}^{\frac{4}{4}}+\mathrm{AG}^{\frac{2}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{3}{4}}-\mathrm{AB}^{\frac{4}{4}}}=14.608\)
\(\frac{A G}{D P}=14.608 \quad \frac{\mathrm{~N}+\mathrm{N}^{\frac{2}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=14.608\)
\(\frac{\mathrm{AG}^{\frac{3}{4}}+\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}-\mathrm{AB}^{\frac{3}{4}}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{1}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=9.769\)


If the figure was drawn differently, XC
would be \(\sqrt{\mathrm{XB}} \cdot \mathrm{XE}\), irregardless of how XB and XE were placed, however that would require part of the figure that is not given here.
\(A G:=N \quad A B:=\frac{A G}{N}\)
\(B G:=A G-A B B H:=\sqrt{A B \cdot B G}\)

\(\mathrm{AH}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BH}^{2}} \mathrm{AD}:=\mathrm{AH} \quad \mathrm{DG}:=\mathrm{AG}-\mathrm{AD}\) \(\mathrm{GK}:=\mathrm{DG}\) GE \(:=\frac{\mathrm{GK}^{2}}{\mathrm{AG}} \mathrm{AE}:=\mathrm{AG}-\mathrm{GE}\) \(\mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)
\(\mathrm{EG}:=\mathrm{AG}-\mathrm{AE} \mathrm{EK}:=\sqrt{\mathrm{AE} \cdot \mathrm{EG}} \mathrm{BL}:=\frac{\mathrm{BE} \cdot \mathrm{BH}}{\mathrm{EK}}\)
\(\mathrm{EL}:=\mathrm{BE}+\mathrm{BL} \mathrm{BC}:=\frac{\mathrm{BL} \cdot \mathrm{BE}}{\mathrm{EL}} \mathrm{AC}:=\mathrm{AB}+\mathrm{BC}\)
\[
\mathrm{N} \equiv 4
\]

Make N any number and watch the equations, then make it equal to 1 and see what happens. Now this is strange work, for the formula is an identity with AC, so what happens at 1? This is an example of Binary contradiction.
\(\mathrm{AC}=2\)
\[
\left[\begin{array}{l}
\mathrm{AB}^{\left(\frac{5}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}} \ldots} \\
\left.+-\mathrm{AB}{ }^{\left(\frac{7}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}}+2 \cdot \mathrm{AB} \cdot \sqrt{\mathrm{BG} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{2}\right)}} \ldots} \begin{array}{l}
+-\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \sqrt{\mathrm{BG}-\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \mathrm{BG}^{\left(\frac{3}{2}\right)}} \\
\mathrm{AB}^{\left(\frac{1}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}} \ldots} \\
+-\mathrm{AB}^{\left(\frac{3}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}}+\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \sqrt{\mathrm{BG}}+\sqrt{\mathrm{AB} \cdot \mathrm{BG}^{\left(\frac{3}{2}\right)}}}
\end{array}\right]
\end{array}\right]=2
\]


\section*{Pyramid of Ratios, Moving the Point}
\(B R=\) Base Ratio, \(B S=\) Bisector Segments, BI \(=\) Base Index.

\[
\begin{aligned}
& \mathrm{BR} \equiv 4 \quad \mathrm{BS} \equiv 5 \quad \mathrm{BI}:=2 \quad \mathrm{AC}:=\mathrm{BR} \quad \mathrm{AB}:=\frac{\mathrm{AC}}{\mathrm{BR}} \cdot \mathrm{BI} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BG}:=\sqrt{\mathrm{AB} \cdot \mathrm{BC}} \quad \delta:=1 . . \mathrm{BS}-1 \\
& \mathrm{BD}_{\delta}:=\frac{\mathrm{BG}}{\mathrm{BS}} \cdot \delta \quad \mathrm{BF}_{\delta}:=\frac{\mathrm{BC} \cdot \mathrm{BD}_{\delta}}{\mathrm{BG}} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}^{2}+\left(\mathrm{BD}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\mathrm{AE}_{\delta}:=\frac{\mathrm{AD}_{\delta} \cdot \mathrm{AC}^{\prime}}{\mathrm{AB}+\mathrm{BF}_{\delta}} \quad \mathrm{DE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AD}_{\delta}
\]


What is AD. What is BD to \(\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\) ?

\[
\mathrm{AE}:=5.5 \mathrm{AB}:=1.05 \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}
\]
\[
\mathrm{AC}:=\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}} \mathrm{CE}:=\mathrm{AE}-\mathrm{AC}
\]
\[
\mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BE}} \quad \mathrm{CO}:=\frac{\mathrm{BF} \cdot \mathrm{CE}}{\mathrm{BE}} \mathrm{AO}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CO}^{2}}
\]
\[
\mathrm{AP}:=\frac{1}{2} \cdot \frac{\mathrm{AO}^{2}}{\mathrm{AC}} \quad \mathrm{AK}:=2 \cdot \mathrm{AP} \quad \mathrm{AD}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AK}}
\]
\[
\mathrm{DE}:=\mathrm{AE}-\mathrm{AD} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB}
\]
\[
\mathrm{AD}=2.807
\]
\[
\frac{\mathrm{AE}^{\frac{3}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{2}{3}}+\mathrm{AE}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{3}{3}}}{2 \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{1}{3}}}=2.807
\]

\[
\frac{\mathrm{AB}^{\frac{1}{6}} \cdot \mathrm{AE}^{\frac{1}{6}} \cdot \sqrt{\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}-\mathrm{AE}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{2}{3}}-\mathrm{AB} \cdot \sqrt{2 \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{1}{3}}}}}{\mathrm{AE}+\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}-2 \cdot \mathrm{AB}}=0.957
\]
```
01_16_96
```

The figure cuts the base in Cube Roots and provides some interesting ratios.

\[
\mathrm{N}:=10
\]
\(\mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2}\)
\(A C:=\left(A B^{2} \cdot A G\right)^{\frac{1}{3}} B C:=A C-A B\)
\(\mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{3}} \mathrm{BF}:=\mathrm{AF}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{BG}-\mathrm{BF}\)
\(\mathrm{HJ}:=\frac{\mathrm{BC} \cdot \mathrm{BG}}{\mathrm{BC}+\mathrm{FG}} \quad \mathrm{BD}:=\mathrm{HJ} \quad \mathrm{DG}:=\mathrm{BG}-\mathrm{BD}\)
\(\mathrm{DJ}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \quad \mathrm{GJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{DG}^{2}} \quad \mathrm{BJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{BD}^{2}}\)
\(\mathrm{GN}:=\frac{\mathrm{GJ} \cdot \mathrm{FG}}{\mathrm{BG}} \quad \mathrm{BM}:=\frac{\mathrm{BJ} \cdot \mathrm{BC}}{\mathrm{BG}}\)
\(\frac{\mathrm{AG}}{\mathrm{AB}}=10 \quad \frac{\mathrm{GN}}{\mathrm{BM}}=10\)
\(\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}=1.68 \quad \frac{\mathrm{GJ}}{\mathrm{GN}}=1.68\)
\[
\frac{\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}}{\mathrm{~N}^{\frac{2}{3}}}=1.68
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=7.796 \quad \frac{\mathrm{BJ}}{\mathrm{BM}}=7.796 \quad \mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=7.796
\]

\[
\mathrm{CF}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{BP}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{CD}:=\frac{\mathrm{BD} \cdot \mathrm{CF}}{\mathrm{BG}}
\]
\(F R:=\frac{B D \cdot F G}{B G}\)
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{4}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=43.982 \quad \frac{\mathrm{BG}}{\mathrm{BP}}=43.982
\]
\[
\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=43.982
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}=20.415
\]
\[
\frac{\mathrm{BG}}{\mathrm{CD}}=20.415
\]
\[
\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}=20.415
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}=9.476
\]
\[
\frac{\mathrm{BG}}{\mathrm{FR}}=9.476
\]
\[
\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}+\frac{1}{\mathrm{~N}^{\frac{2}{3}}}=9.476
\]

\(\frac{\mathrm{AG}^{\frac{5}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}}{\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{4}{3}}-\mathrm{AB}^{\frac{5}{3}}}=48.869\)
\(\frac{\mathrm{AG}^{\frac{4}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}}{\frac{1}{4}}=22.683\) \(\frac{\mathrm{AG}}{\mathrm{CD}}=22.683 \quad \frac{\mathrm{~N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(A G^{3} \cdot A B-A B^{3}\)
\(\frac{A G+A B^{\frac{2}{3}} \cdot A G^{\frac{1}{3}}}{A G^{\frac{1}{3}} \cdot A B^{\frac{2}{3}}-A B}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{FR}}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{BP}}=48.869\)
\(\frac{\mathrm{N}^{\frac{5}{3}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=48.869\)
\(\frac{\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(\frac{\mathrm{N}+\mathrm{N}^{\frac{1}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=10.528\)


Given \(A D\) and \(A B\) on \(A D\), place a right triangle on BD as base such that the opposite sides are in the ratio of AB to AD .
\[
\begin{aligned}
& \mathrm{BD}:=8 \quad \mathrm{AB}:=2 \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{BC}:=\frac{\mathrm{BD}}{2} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CF}:=\mathrm{BC} \\
& \mathrm{CI}:=\mathrm{BC} \quad \mathrm{CH}:=\mathrm{BC} \quad \mathrm{AE}:=\mathrm{BC} \\
& \mathrm{CE}:=\sqrt{\mathrm{AC}^{2}+\mathrm{AE}^{2}} \quad \mathrm{CG}:=\frac{\mathrm{CH}^{2}}{\mathrm{CE}} \\
& \mathrm{GH}:=\sqrt{\mathrm{CH}^{2}-\mathrm{CG}^{2}} \mathrm{FH}:=2 \cdot \mathrm{GH} \quad \mathrm{FI}:=\mathrm{CF}+\mathrm{CI} \\
& \mathrm{HI}:=\sqrt{\mathrm{FI}^{2}-\mathrm{FH}^{2}} \mathrm{AI}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CI}} \\
& \mathrm{AH}:=\mathrm{AI}-\mathrm{HI} \quad \mathrm{AO}:=\frac{\mathrm{AC} \cdot \mathrm{AH}}{\mathrm{AI}} \mathrm{HO}:=\frac{\mathrm{CI} \cdot \mathrm{AO}}{\mathrm{AC}} \\
& \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \quad \mathrm{DO} \\
& \mathrm{AD} \\
& \mathrm{BD}-\mathrm{BO} \\
& \mathrm{DH}:=\sqrt{\mathrm{DO}^{2}+\mathrm{HO}^{2}} \mathrm{BH}:=\sqrt{\mathrm{BO}^{2}+\mathrm{HO}^{2}}
\end{aligned}
\]
\[
\frac{\mathrm{DH}}{\mathrm{BH}}=5 \quad \frac{\mathrm{AD}}{\mathrm{AB}}=5
\]

Given a straight edge and compass, AB and BD find the sum of six cubes divided by the sum of five squares.
\[
\frac{2 \cdot \mathrm{AB}^{3}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{BD}+\mathrm{AB} \cdot \mathrm{BD}^{2}}{2 \cdot \mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BD}+\mathrm{BD}^{2}}=2.308 \quad \mathrm{AO}=2.308
\]


Given AF and AB on AF and a right triangle on BF divide the sides of the triangle such that a section on one side is to the other as AB is to AF .

Now it can be realized that there are stipulations as to possible placements of the given triangle.
\[
\begin{aligned}
& \mathrm{AB}:=3 \quad \mathrm{BF}:=10 \quad \mathrm{BC}:=1 \\
& \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \\
& \text { DOABLE }:=\frac{2 \cdot \mathrm{AB}^{3}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{BF}+\mathrm{AB} \cdot \mathrm{BF}^{2}}{2 \cdot \mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BF}+\mathrm{BF}^{2}} \leq \mathrm{AC}<\mathrm{AE} \\
& \text { DOABLE }=1 \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \\
& \mathrm{CF}:=\mathrm{BF}-\mathrm{BC} \quad \mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{EJ}:=\mathrm{BE} \\
& \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \quad \mathrm{JH}:=\sqrt{\mathrm{CE}^{2}+(\mathrm{CH}+\mathrm{EJ})^{2}} \\
& \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{EJ}}{\mathrm{EJ}+\mathrm{CH}} \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \\
& \mathrm{JD}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EJ}^{2}} \quad \mathrm{DG}:=\frac{\mathrm{DE} \cdot \mathrm{AD}}{\mathrm{JD}} \\
& \mathrm{AG}:=\sqrt{\mathrm{AD}^{2}-\mathrm{DG}^{2}} \mathrm{GH}:=\mathrm{JH}-(\mathrm{JD}+\mathrm{DG}) \\
& \mathrm{HK}:=\sqrt{2 \cdot \mathrm{GH}^{2}} \quad \mathrm{BH}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CH}^{2}} \quad \mathrm{HL}:=\mathrm{HK} \\
& \mathrm{BK}:=\mathrm{BH}-\mathrm{HK} \mathrm{FH}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CH}^{2}} \\
& \text { FL := FH - HL }
\end{aligned}
\]

\(\left(\frac{\mathrm{AE}}{\mathrm{AB}}\right)^{\frac{1}{2}}=1.2649 \quad \frac{\mathrm{AE}}{\mathrm{AB}}=1.6\)

Projecting from KL or HJ is productive, can I find any other productive points?
\[
\begin{aligned}
& \mathrm{AB}:=5 \quad \mathrm{BE}:=3 \quad \mathrm{BK}:=\mathrm{BE} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \\
& \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}} \mathrm{HI}:=\mathrm{BD} \quad \mathrm{IJ}:=\mathrm{BD} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}
\end{aligned}
\]
\[
\Delta:=2 \quad \delta:=1 . . \Delta
\]
\[
\mathrm{BH}_{\delta}:=\frac{\mathrm{BK}}{\Delta} \cdot \delta \quad \mathrm{Ha}_{\delta}:=\frac{\mathrm{BH}_{\delta} \cdot \mathrm{HI}}{\mathrm{BC}} \quad \mathrm{EJ}_{\delta}:=\mathrm{BH}_{\delta}
\]
\[
\mathrm{Ba}_{\delta}:=\mathrm{Ha}_{\delta}+\mathrm{BD} \quad \mathrm{Bb}_{\delta}:=\frac{\left(\mathrm{BH}_{\delta}\right)^{2}}{\mathrm{Ba}_{\delta}} \quad \mathrm{Jc}_{\delta}:=\frac{\mathrm{EJ}_{\delta} \cdot \mathrm{IJ}}{\mathrm{CE}}
\]
\[
\mathrm{Ec}_{\delta}:=\mathrm{Jc}_{\delta}+\mathrm{BD} \quad \mathrm{Ed}_{\delta}:=\frac{\left(\mathrm{EJ}_{\delta}\right)^{2}}{\mathrm{Ec}_{\delta}} \quad \mathrm{Ef}_{\delta}:=\mathrm{Bb}_{\delta}
\]
\[
\mathrm{df}_{\delta}:=\mathrm{Ed}_{\delta}-\mathrm{Ef}_{\delta} \quad \mathrm{Ge}_{\delta}:=\mathrm{df}_{\delta} \quad \mathrm{Fb}_{\delta}:=\frac{\mathrm{HI} \cdot \mathrm{BH}_{\delta}}{\mathrm{Ba}_{\delta}}
\]
\[
\mathrm{Gd}_{\delta}:=\frac{\mathrm{IJ} \cdot \mathrm{EJ}_{\delta}}{\mathrm{Ec}_{\delta}} \quad \mathrm{ef}_{\delta}:=\mathrm{Gd}_{\delta} \quad \mathrm{Fe}_{\delta}:=\mathrm{BE}-\left(\mathrm{ef}_{\delta}+\mathrm{Fb}_{\delta}\right)
\]
\[
\mathrm{Gg}_{\delta}:=\mathrm{Ed}_{\delta} \quad \mathrm{Og}_{\delta}:=\frac{\mathrm{Fe}_{\delta} \cdot \mathrm{Gg}_{\delta}}{\mathrm{Ge}_{\delta}} \quad \mathrm{Eg}_{\delta}:=\mathrm{ef}_{\delta}
\]
\[
\mathrm{EO}_{\delta}:=\mathrm{Og}_{\delta}+\mathrm{Eg}_{\delta} \mathrm{BO}_{\delta}:=\mathrm{EO}_{\delta}-\mathrm{BE}
\]

I have not found any.


The power line for cube root abstraction is developed off from a simple curve.
\(\mathrm{AB}:=33 \quad \mathrm{BE}:=11 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE}\)
\(\mathrm{R}_{1}:=\frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AB}}{2} \mathrm{R}_{2}:=\frac{\mathrm{AE}-\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}}{2}\)
\(D:=\left[\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}\right]+R_{1}+R_{2}\)
\(\mathrm{BC}:=\frac{\left(\mathrm{R}_{1}+\mathrm{D}+\mathrm{R}_{2}\right) \cdot\left(\mathrm{D}-\mathrm{R}_{2}+\mathrm{R}_{1}\right)}{2 \cdot \mathrm{D}}\)
\(\mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{AC}:=\mathrm{BC}+\mathrm{AB} \quad \mathrm{DM}:=\mathrm{BD}\)
The formula for the power line ( BC ) was given in 01_08_96.MCD
\(\mathrm{DL}:=\mathrm{BD} \quad \mathrm{CM}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DM}^{2}} \quad \mathrm{ML}:=\mathrm{DM}+\mathrm{DL}\)
\(\mathrm{MK}:=\frac{\mathrm{DM} \cdot \mathrm{ML}}{\mathrm{CM}} \mathrm{CK}:=\mathrm{MK}-\mathrm{CM} \quad \mathrm{CJ}:=\frac{\mathrm{CK}}{2}\)

\(\mathrm{JG}:=\mathrm{CJ} \quad \mathrm{JM}:=\mathrm{CM}+\mathrm{CJ} \quad \mathrm{BM}:=\sqrt{2 \cdot \mathrm{BD}}\)
\(\mathrm{GM}:=\mathrm{BM} \quad \mathrm{FJ}:=\frac{\mathrm{JG}^{2}}{\mathrm{JM}} \quad \mathrm{FM}:=\mathrm{JM}-\mathrm{FJ}\)
\(\mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \quad \mathrm{HM}:=\frac{\mathrm{CM} \cdot \mathrm{FM}}{\mathrm{DM}}\)
\(\mathrm{DH}:=\mathrm{HM}-\mathrm{DM} \quad \mathrm{AH}:=\sqrt{\mathrm{DH}^{2}+\mathrm{AD}^{2}}\)
\(\mathrm{CF}:=\mathrm{FM}-\mathrm{CM} \quad \mathrm{FH}:=\frac{\mathrm{CD} \cdot \mathrm{HM}}{\mathrm{CM}}\)
\(\mathrm{AF}_{1}:=\mathrm{AH}-\mathrm{FH} \mathrm{AF}_{2}:=\sqrt{\mathrm{AC}^{2}-\mathrm{CF}^{2}}\)
\(\mathrm{AF}_{1}-\mathrm{AF}_{2}=0\)
01_22_96.MCD

Trivial Method; Square Root
\[
\mathrm{N}:=9003
\]
\(\mathrm{AE}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AE}}{\mathrm{N}} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2}\)
\(\mathrm{DG}:=\mathrm{BD} \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \quad \mathrm{AG}:=\sqrt{\mathrm{AD}^{2}+\mathrm{DG}^{2}}\)
\(\mathrm{BG}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DG}^{2}} \quad \mathrm{FG}:=\mathrm{BG} \quad \mathrm{AF}:=\sqrt{\mathrm{AG}^{2}-\mathrm{FG}^{2}}\)
\(\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}}\)
\(\mathrm{AC}-\mathrm{AF}=0\)
\(\mathrm{AF}=94.884\)
\(\mathrm{AC}=94.884\)

\section*{01_25_A6.MCD}

Given a point on \(B G\), project to the point of cubic similarity.

\(\mathrm{BG}:=100 \mathrm{BD}:=49 \quad \mathrm{BE}:=\frac{\mathrm{BG}}{2}\)
\(\mathrm{EG}:=\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD} \quad \mathrm{EP}:=\mathrm{BE}\)
\(\mathrm{EJ}:=\mathrm{BE} \quad \mathrm{DP}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EP}^{2}} \mathrm{JP}:=\mathrm{EP}+\mathrm{EJ}\)
HP \(:=\frac{\text { EP•JP }}{\text { DP }}\) DH \(:=H P-D P \quad C D:=\frac{D H}{2}\)
\(\mathrm{CP}:=\mathrm{DP}+\mathrm{CD} \quad \mathrm{CF}:=\frac{\mathrm{DE} \cdot \mathrm{CP}}{\mathrm{DP}} \quad \mathrm{FP}:=\frac{\mathrm{EP} \cdot \mathrm{CP}}{\mathrm{DP}}\)
\(\mathrm{EF}:=\mathrm{FP}-\mathrm{EP} \quad \mathrm{FJ}:=\mathrm{EJ}-\mathrm{EF} \quad \mathrm{CJ}:=\sqrt{\mathrm{CF}^{2}+\mathrm{FJ}^{2}}\)
\(\mathrm{JM}:=\frac{\mathrm{FJ} \cdot \mathrm{JP}}{\mathrm{CJ}} \quad \mathrm{JN}:=\frac{\mathrm{FJ} \cdot \mathrm{JM}}{\mathrm{CJ}} \mathrm{NP}:=\mathrm{JP}-\mathrm{JN}\)
MP \(:=\frac{\mathrm{CF} \cdot \mathrm{JP}}{\mathrm{CJ}} \quad \mathrm{AP}:=\frac{\mathrm{MP} \cdot \mathrm{EP}}{\mathrm{NP}} \mathrm{MN}:=\frac{\mathrm{CF} \cdot \mathrm{JM}}{\mathrm{CJ}}\)
\(\frac{\mathrm{BG}^{4}-3 \cdot \mathrm{BG}^{3} \cdot \mathrm{BD}+3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}^{2}-\mathrm{BD}^{3} \cdot \mathrm{BG}}{\mathrm{BG}^{3}-3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}+3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}^{2}-2 \cdot \mathrm{BD}^{3}}=884.222 \mathrm{AE}:=\frac{\mathrm{MN} \cdot \mathrm{AP}}{\mathrm{MP}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}\)
\[
\mathrm{AG}=884.222
\]
\[
\frac{\mathrm{BG} \cdot\left[(\mathrm{AG}-\mathrm{BG})^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}+\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{BG}-\mathrm{AG}^{\frac{4}{3}}-\mathrm{BG} \cdot(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}}+(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}} \cdot \mathrm{AG}\right]}{(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}} \cdot(2 \cdot \mathrm{AG}-\mathrm{BG})}-\mathrm{BD}=0
\]


One may be tempted to state the obvious, \(\frac{A^{N+1}}{A^{N}}:=A\), but what is not so obvious at first blush is that the processes themselves are assigned dimensional values. This has significance when using mathematics to theorize dimensions beyond three. Dimensions are so generally defined that processes are legitimate dimensional differences, but it is also impossible to defend mathematical theory about dimensions as objective. It becomes a point of Philosophical Mystic contemplation to realize that relationships concerning a single dimensional object and several processes adding dimensionally to the whole, is true of a multidimensional object without those processes!

Linear division \(\frac{2 \cdot(\mathrm{~A}+\mathrm{B})}{\mathrm{A}}\)
\[
\begin{aligned}
& \mathrm{BR}:=\frac{1}{4} \quad \mathrm{BS}:=3 \\
& \mathrm{AD}:=\frac{\mathrm{BR}}{\mathrm{BR}} \quad \mathrm{AG}:=\mathrm{AD} \cdot \mathrm{BR} \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2}
\end{aligned}
\]
\[
\mathrm{BF}:=\mathrm{AB} \cdot \mathrm{BS} \quad \mathrm{Ba}:=\frac{\mathrm{AB} \cdot \mathrm{BF}}{\mathrm{AG}} \quad \mathrm{BD}:=\mathrm{AB}
\]
\[
\mathrm{Da}:=\mathrm{BD}+\mathrm{Ba} \quad \mathrm{Bb}:=\frac{\mathrm{Ba} \cdot \mathrm{BD}}{\mathrm{Da}} \mathrm{Db}:=\mathrm{BD}-\mathrm{Bb}
\]
\[
\mathrm{Eb}:=\frac{\mathrm{BF} \cdot \mathrm{Db}}{\mathrm{BD}} \quad \mathrm{DH}:=\mathrm{AG}
\]
\[
\mathrm{DC}:=\frac{\mathrm{Db} \cdot \mathrm{DH}}{\mathrm{DH}+\mathrm{Eb}} \quad \frac{\mathrm{AD}}{\mathrm{DC}}=26
\]
\[
\frac{2 \cdot(\mathrm{BR}+\mathrm{BS})}{\mathrm{BR}}=26
\]

Hitting JG from any BN while maintaining complimentary roots.

\(\mathrm{AB}:=2 \quad \mathrm{BD}:=5 \quad \mathrm{BO}:=\frac{\mathrm{BD}}{2} \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}\)
\(\mathrm{DO}:=\mathrm{BO} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AD}} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB}\)
\(\mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CD}} \quad \mathrm{CO}:=\mathrm{BO}-\mathrm{BC}\)
\(\mathrm{N}:=7 \quad \mathrm{OP}:=\mathrm{BO} \cdot \mathrm{N} \quad \mathrm{BN}:=\mathrm{OP} \quad \mathrm{DM}:=\mathrm{OP}\)
\(\mathrm{NP}:=\mathrm{BO} \quad \mathrm{MP}:=\mathrm{BO} \quad \mathrm{EO}:=\frac{\mathrm{CO} \cdot \mathrm{OP}}{\mathrm{OP}+\mathrm{CG}}\)
\(\mathrm{CE}:=\mathrm{CO}-\mathrm{EO} \quad \mathrm{EF}:=\frac{\mathrm{OP} \cdot \mathrm{CE}}{\mathrm{CO}} \quad \mathrm{GO}:=\mathrm{BO}\)
\(\mathrm{CJ}:=\frac{\mathrm{CG}}{\mathrm{CO}} \quad \mathrm{EJ}:=\mathrm{CJ}+\mathrm{CE} \quad \mathrm{Ca}:=\frac{\mathrm{EJ} \cdot \mathrm{CG}}{\mathrm{EF}}\)
\(\mathrm{DJ}:=\mathrm{CD}+\mathrm{CJ} \quad \mathrm{Da}:=\mathrm{CD}+\mathrm{Ca} \quad \mathrm{JY}:=\frac{\mathrm{Ca} \cdot \mathrm{DJ}}{\mathrm{Da}}\)
\(\mathrm{KY}:=\frac{\mathrm{EF} \cdot \mathrm{JY}}{\mathrm{EJ}} \mathrm{JK}:=\sqrt{\mathrm{JY}}+\mathrm{KY} \quad \mathrm{JG}:=\sqrt{\mathrm{CJ}}+\mathrm{CG}^{2}\)
\(\mathrm{GP}:=\sqrt{\mathrm{CO}^{2}+(\mathrm{OP}+\mathrm{CG})^{2}} \mathrm{EP}:=\sqrt{\mathrm{EO}^{2}+\mathrm{OP}^{2}}\)
\(\mathrm{ET}:=\frac{\mathrm{EO} \cdot \mathrm{EF}}{\mathrm{OP}} \mathrm{JT}:=\mathrm{EJ}+\mathrm{ET} \mathrm{FT}:=\sqrt{\mathrm{ET}^{2}+\mathrm{EF}^{2}}\) \(\mathrm{EG}:=\mathrm{GP}-\mathrm{EP} \mathrm{EQ}:=\frac{\mathrm{FT} \cdot \mathrm{EJ}}{\mathrm{JT}} \quad \mathrm{GQ}:=\mathrm{EG}-\mathrm{EQ}\)

KL \(:=2 \cdot G Q \quad J L:=J K-K L\)
\(\mathrm{DY}:=\mathrm{DJ}-\mathrm{JY} \quad \mathrm{CS}:=\frac{\mathrm{DY} \cdot \mathrm{CG}}{\mathrm{DM}} \quad \mathrm{JS}:=\mathrm{CS}+\mathrm{CJ}\)
\(\mathrm{YR}:=\frac{\mathrm{CS} \cdot \mathrm{JY}}{\mathrm{JS}} \quad \mathrm{JR}:=\mathrm{JY}-\mathrm{YR} \quad \mathrm{HR}:=\frac{\mathrm{CG} \cdot \mathrm{JR}}{\mathrm{CJ}}\)
\(\mathrm{AJ}:=\mathrm{CJ}-\mathrm{AC} \quad \mathrm{JX}:=\frac{\mathrm{JY} \cdot \mathrm{JL}}{\mathrm{JK}}\)
\(\mathrm{BR}_{1}:=\mathrm{JR}-(\mathrm{AJ}+\mathrm{AB}) \quad \mathrm{BX}:=\mathrm{JX}-(\mathrm{AJ}+\mathrm{AB})\)
\(\mathrm{BR}_{2}:=\frac{\mathrm{BX} \cdot(\mathrm{BN}+\mathrm{HR})}{\mathrm{BN}}\)
\(\mathrm{BR}_{2}-\mathrm{BR}_{1}=0\)



\[
\begin{aligned}
& \Delta:=5 \quad \delta:=1 . . \Delta-1 \quad \mathrm{BE}:=5 \quad \mathrm{BF}:=\mathrm{BE} \cdot 2 \\
& \mathrm{BC}_{\delta}:=\frac{\mathrm{BE}}{\Delta} \cdot \delta \quad \mathrm{CE}_{\delta}:=\mathrm{BE}-\mathrm{BC}_{\delta} \quad \mathrm{EG}:=\mathrm{BE}
\end{aligned}
\]
\[
\mathrm{CJ}:=\mathrm{BE} \mathrm{EJ}_{\delta}:=\sqrt{\left(\mathrm{CE}_{\delta}\right)^{2}+\mathrm{CJ}^{2}} \quad \mathrm{DH}:=\frac{\mathrm{CJ}}{2}
\]
\[
\mathrm{DE}_{\delta}:=\frac{\mathrm{CE}_{\delta}}{2} \quad \mathrm{AD}_{\delta}:=\frac{\mathrm{DH}^{2}}{\mathrm{DE}_{\delta}} \mathrm{AE}_{\delta}:=\mathrm{AD}_{\delta}+\mathrm{DE}_{\delta}
\]
\[
\mathrm{AC}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{CE}_{\delta} \quad \mathrm{AJ}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}+\mathrm{CJ}^{2}}
\]
\[
\mathrm{GJ}_{\delta}:=\sqrt{\left(\mathrm{EJ}_{\delta}\right)^{2}-\mathrm{EG}^{2}} \quad \mathrm{AB}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{BE}
\]
\[
\mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}
\]
\[
\mathrm{AB}_{\delta}+\mathrm{BC}_{\delta}-\sqrt{\mathrm{AB}_{\delta} \cdot(\mathrm{AB}+\mathrm{BF})_{\delta}}
\]
\[
\begin{array}{|l|}
\hline 0 \\
\hline
\end{array}
\]
\[
\sqrt{\left(\mathrm{AB}_{2}+\mathrm{BF}\right) \cdot \mathrm{AB}_{2}-\left(\mathrm{AB}_{2}+\mathrm{BC}_{2}\right)=0}
\]
\(\underline{\mathrm{BF} \cdot \mathrm{BC}_{2}-\left(\mathrm{BC}_{2}\right)^{2}}-\) \(\mathrm{BF}-2 \cdot \mathrm{BC}_{2}\)


Use iteration to find any root pair for BE.
Remember that when N is set to 2 , we have cube roots.
\[
\begin{aligned}
& \mathrm{CI}:=1 \quad \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{GI}:=\mathrm{CG} \quad \mathrm{BC}:=1 \\
& \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \quad \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EK}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EG}:=\mathrm{CG}-\mathrm{CE} \\
& \mathrm{AE}:=\frac{\mathrm{EK}^{2}}{\mathrm{EG}} \quad \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AG}:=\mathrm{AC}+\mathrm{CG} \\
& \mathrm{~N}:=2 \quad \mathrm{GN}:=\mathrm{CG} \cdot \mathrm{~N} \quad \mathrm{IO}:=\mathrm{GN} \quad \mathrm{CM}:=\mathrm{GN} \\
& \Delta:=40 \quad \delta:=0 . . \Delta
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AK}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EK}^{2}} \quad \mathrm{AL}:=\sqrt{\left(\mathrm{AF}_{\Delta}\right)^{2}+\left(\mathrm{FL}_{\Delta}\right)^{2}} \quad \mathrm{AJ}:=\frac{\mathrm{AK}^{2}}{\mathrm{AL}} \quad \mathrm{AQ}:=\frac{\mathrm{AF}_{\Delta} \cdot \mathrm{AJ}}{\mathrm{AL}} \mathrm{CQ}:=\mathrm{AQ}-\mathrm{AC} \\
& \mathrm{IQ}:=\mathrm{CI}-\mathrm{CQ} \quad \mathrm{JQ}:=\sqrt{\mathrm{CQ} \cdot \mathrm{IQ}} \mathrm{CD}:=\frac{\mathrm{CQ} \cdot \mathrm{CM}}{\mathrm{CM}+\mathrm{JQ}} \quad \mathrm{HI}:=\frac{\mathrm{IQ} \cdot \mathrm{IO}}{\mathrm{IO}+\mathrm{JQ}} \quad \mathrm{DH}:=\mathrm{CI}-(\mathrm{CD}+\mathrm{HI}) \\
& \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{BH}:=\mathrm{BC}+\mathrm{CD}+\mathrm{DH} \frac{\mathrm{DH}}{\sqrt{\mathrm{CD} \cdot \mathrm{HI}}}=1 \quad \mathrm{BE}-\sqrt{\mathrm{BD} \cdot \mathrm{BH}}=0.0000000000000000
\end{aligned}
\]

The next two equations are for the Delian Problem only.
\(\left(\mathrm{BC}^{2} \cdot \mathrm{BI}\right)^{\frac{1}{3}}-\mathrm{BD}=0.000000000000000 \quad\left({\left.\mathrm{BC} \cdot \mathrm{BI}^{2}\right)^{\frac{1}{3}}-\mathrm{BH}=0.00000000000000000000}\right.\)
\[
\begin{aligned}
\mathrm{BD} & =1.259921049894873 & 2^{\frac{1}{3}} & =1.259921049894873 \\
\mathrm{BH} & =1.587401051968199 & 4^{\frac{1}{3}} & =1.587401051968199
\end{aligned}
\]




The problem as stated was to duplicate the altar of Apollo. The solution demanded was material and not theoretical, and therefore has been solved by a finite number of steps. The next step is to solve it theoretically. That solution alone will conquer contiguous domains and will satisfy the purist.


Does every \(\mathrm{n}^{\text {th }}\) root series have at least one square root pair?
\[
\begin{aligned}
& \mathrm{n}:=5 \quad \delta:=0 \cdot \cdot \frac{\mathrm{n}}{2} \\
& \mathrm{~A}:=3 \quad \mathrm{~B}:=10 \\
& \sqrt{\left(\mathrm{~A}^{\mathrm{n}-1} \cdot \mathrm{~B}^{1}\right)^{\frac{1}{\mathrm{n}}} \cdot\left(\mathrm{~A}^{1} \cdot \mathrm{~B}^{\mathrm{n}-1}\right)^{\frac{1}{n}}-\sqrt{\mathrm{A} \cdot \mathrm{~B}}=0}
\end{aligned}
\]
\[
\sqrt{\left(A^{n-\delta} \cdot B^{\delta}\right)^{\frac{1}{n}} \cdot\left(A^{\delta} \cdot B^{n-\delta}\right)^{\frac{1}{n}}}-\sqrt{A \cdot B}
\]

Because of it's long projection, the last vertices is not drawn. A root series has as many vertices on a circle as it has square root pairs, and it has the greater whole of \(n / 2\) vertices where \(n\) is the root series denominator.

\section*{Method for Unequals}

Given three circles in the said configuration, find the fourth.
I had this sketched out in 95, but if I put it there I would have a lot of document links to redo in "The Quest."

Process Summary.

\(\mathrm{AO}:=5 \quad \mathrm{AG}:=1 \quad \mathrm{BH}:=3 \quad \mathrm{AB}:=2 \cdot \mathrm{AO}\)
\(\mathrm{BO}:=\mathrm{AO} \quad \mathrm{CG}:=\mathrm{AG} \mathrm{GI}:=\mathrm{AG} \quad \mathrm{HJ}:=\mathrm{BH}\)
\(\mathrm{DH}:=\mathrm{BH} \quad \mathrm{GH}:=\mathrm{AB}-(\mathrm{AG}+\mathrm{BH}) \quad \mathrm{HK}:=\mathrm{GI}\)
JK := HJ - HK

\(\mathrm{HS}:=\frac{\mathrm{GH} \cdot \mathrm{HJ}}{\mathrm{JK}} \mathrm{AH}:=\mathrm{AB}-\mathrm{BH}\) \(\mathrm{AS}:=\mathrm{HS}-\mathrm{AH} \quad \mathrm{OS}:=\mathrm{AO}+\mathrm{AS}\)
\(\mathrm{SL}:=\frac{\mathrm{OS}}{2} \mathrm{MO}:=\mathrm{AO} \mathrm{MS}:=\sqrt{\mathrm{OS}^{2}-\mathrm{MO}^{2}}\)
\(\mathrm{MN}:=\frac{\mathrm{MO} \cdot \mathrm{MS}}{\mathrm{OS}} \mathrm{NS}:=\frac{\mathrm{MS} \cdot \mathrm{MN}}{\mathrm{MO}}\)
AN \(:=\mathrm{NS}-\mathrm{AS} \mathrm{ON}:=\mathrm{AO}-\mathrm{AN}\)
\(\mathrm{BN}:=\mathrm{AB}-\mathrm{AN} \quad \mathrm{AM}:=\sqrt{\mathrm{MN}^{2}+\mathrm{AN}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB} \quad \mathrm{BF}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AG}\)
\(\mathrm{BD}:=2 \cdot \mathrm{BH} \quad \mathrm{CD}:=\mathrm{AB}-(\mathrm{AC}+\mathrm{BD})\)
\(\mathrm{PQ}:=\frac{\mathrm{AE} \cdot \mathrm{CD}}{(\mathrm{AC}+\mathrm{BD})} \quad \mathrm{OU}:=\mathrm{PQ}\)
\(\mathrm{CQ}:=\frac{\mathrm{AC} \cdot \mathrm{PQ}}{\mathrm{AE}} \mathrm{AQ}:=\mathrm{AC}+\mathrm{CQ}\)

\(\mathrm{OQ}:=\mathrm{AO}-\mathrm{AQ}\) OT \(:=\mathrm{AO}\)
\(\mathrm{TU}:=\mathrm{OT}+\mathrm{OU} \quad \mathrm{OR}:=\frac{\mathrm{OQ} \cdot \mathrm{OT}}{\mathrm{TU}}\)
\(\mathrm{RV}:=\frac{\mathrm{MN} \cdot \mathrm{OR}}{\mathrm{ON}} \mathrm{BR}:=\mathrm{BO}+\mathrm{OR}\)
\(\mathrm{RW}:=\frac{\mathrm{MN} \cdot \mathrm{BR}}{\mathrm{BN}} \quad \mathrm{AR}:=\mathrm{AO}-\mathrm{OR}\)
\(\mathrm{Ra}:=\frac{\mathrm{AR} \cdot \mathrm{RW}}{\mathrm{RV}} \mathrm{XY}:=\frac{\mathrm{RW} \cdot \mathrm{AB}}{\mathrm{BR}+\mathrm{Ra}}\)
\(\mathrm{Zb}:=\mathrm{XY} \quad \mathrm{OZ}:=\frac{\mathrm{MO} \cdot \mathrm{Zb}}{\mathrm{MN}}\)
\(\mathrm{MZ}:=\mathrm{MO}-\mathrm{OZ} \quad \mathrm{MZ}=1.818\)

\[
\mathrm{MZ}=1.818
\]
\(\frac{\mathrm{AB}^{3}-2 \cdot \mathrm{AB}^{2} \cdot \mathrm{AG}-2 \cdot \mathrm{AB}^{2} \cdot \mathrm{BH}+4 \cdot \mathrm{AB} \cdot \mathrm{BH} \cdot \mathrm{AG}}{2 \cdot \mathrm{AB}^{2}-8 \cdot \mathrm{BH} \cdot \mathrm{AG}}=1.818\)

Neither in the process, nor in the Algebraic name. is the order of AG and BH recognized. Neither does it matter if they intersect.


\section*{On Gemini Roots}


\(\mathrm{IL}:=\sqrt{\mathrm{DI}^{2}-\mathrm{DL}^{2}} \mathrm{CO}:=\frac{\mathrm{GL} \cdot \mathrm{CH}}{\mathrm{IL}}\)
\(\mathrm{NP}:=\frac{\mathrm{CH} \cdot \mathrm{EG}}{(\mathrm{CO}+\mathrm{CE})} \quad \mathrm{EP}:=\frac{\mathrm{CE} \cdot \mathrm{NP}}{\mathrm{CH}}\) \(\mathrm{CQ}:=\frac{\mathrm{IL} \cdot \mathrm{CG}}{\mathrm{GL}} \quad \mathrm{CR}:=\frac{\mathrm{BC} \cdot \mathrm{CQ}}{\mathrm{CH}}\) GR \(:=\mathrm{CG}-\mathrm{CR} \quad \mathrm{BS}:=\frac{\mathrm{CR} \cdot \mathrm{BG}}{\mathrm{GR}}\)

\(\delta:=1 . .100\)
\(\mathrm{E}_{\delta}:=\frac{\mathrm{BE}}{\delta} \quad \mathrm{BT}_{\delta}:=\mathrm{E}_{\delta} \mathrm{EV}_{\delta}:=\mathrm{E}_{\delta}\)
\[
\mathrm{TW}_{\delta}:=\frac{\mathrm{BT}_{\delta} \cdot \mathrm{BM}}{\mathrm{BS}} \mathrm{VX}_{\delta}:=\frac{\mathrm{EV}_{\delta} \cdot \mathrm{EM}}{\mathrm{EP}}
\]



Given three radii, \(\mathrm{AO}>\mathrm{BG}+\mathrm{EH}\), place them such that two by two they are tangent and find the fourth, AX, such that AX is tangent to EH and AO. This of course means that if the sum of BG and EH is equal to AO, we have no result.
\[
\mathrm{AO}:=5 \quad \mathrm{BG}:=2.5 \mathrm{EH}:=1.5
\]
\(\mathrm{AB}:=2 \cdot \mathrm{AO} \quad \mathrm{BC}:=2 \cdot \mathrm{BG} \quad \mathrm{EF}:=2 \cdot \mathrm{EH}\)
\(\mathrm{GH}:=\mathrm{BG}+\mathrm{EH} \mathrm{OH}:=\mathrm{AO}-\mathrm{EH} \mathrm{GO}:=\mathrm{AO}-\mathrm{BG}\)
\(\mathrm{GI}:=\frac{\mathrm{GH}^{2}+\mathrm{GO}^{2}-\mathrm{OH}^{2}}{2 \cdot \mathrm{GO}} \mathrm{HI}:=\sqrt{\mathrm{GH}^{2}-\mathrm{GI}^{2}}\)
\(\mathrm{AG}:=\mathrm{AB}-\mathrm{BGAI}:=\mathrm{AG}\) - GI \(\mathrm{IJ}:=\mathrm{EH}\)
\(\mathrm{AJ}:=\mathrm{AI}+\mathrm{IJ} \quad \mathrm{FJ}:=\mathrm{HI} \quad \mathrm{AF}:=\sqrt{\mathrm{AJ}^{2}+\mathrm{FJ}^{2}}\)
\(\mathrm{FK}:=\frac{\mathrm{AJ} \cdot \mathrm{EF}}{\mathrm{AF}} \quad \mathrm{AK}:=\mathrm{AF}-\mathrm{FK} \quad \mathrm{AY}:=\frac{\mathrm{AF} \cdot \mathrm{AK}}{\mathrm{AJ}}\)
\(\mathrm{AX}:=\frac{\mathrm{AY}}{2} \quad \mathrm{AX}=2.857\)
\(\frac{\mathrm{AO}^{3}-\mathrm{AO}^{2} \cdot \mathrm{EH}-\mathrm{AO}^{2} \cdot \mathrm{BG}}{\mathrm{AO}^{2}-\mathrm{AO} \cdot \mathrm{BG}-\mathrm{EH} \cdot \mathrm{BG}}=2.857\)


\section*{04_17_96.MCD}

Given a point of tangency, draw a circle in a crescent tangent to the other side. This figure is given for the tangent on the exterior of the crescent, the other will become obvious.

AB := Concave_Radius
CD := Convex_Radius AC:= Center_Difference
\(\mathrm{DE}:=2 \cdot \mathrm{CD} \quad \mathrm{BF}:=2 \cdot \mathrm{AB} \quad \mathrm{CE}:=\mathrm{CD}\)
\(\mathrm{AE}:=\mathrm{AC}+\mathrm{CE} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)
\(\mathrm{CG}:=\frac{\mathrm{CD}^{2}+\mathrm{AC}^{2}-\mathrm{AB}^{2}}{2 \cdot \mathrm{AC}} \mathrm{AG}:=\mathrm{AC}-\mathrm{CG}\)
\(\mathrm{GE}:=\mathrm{AE}-\mathrm{AG}\)

GJ := Power_Line_Tangent•GE
EJ := GE-GJ
\(\mathrm{DJ}:=\mathrm{DE}-\mathrm{EJ} \quad \mathrm{JK}:=\sqrt{\mathrm{DJ} \cdot \mathrm{EJ}}\)
CJ := CG - GJ CK := CD KL := GJ
\(\mathrm{LM}:=\frac{\mathrm{CJ} \cdot \mathrm{KL}}{\mathrm{JK}}\) GL \(:=\mathrm{JK}\) GM \(:=\mathrm{GL}-\mathrm{LM}\)
\(A M:=\sqrt{\mathrm{AG}^{2}+\mathrm{GM}^{2}} \quad \mathrm{AN}:=\mathrm{AB}\)
\(\mathrm{AS}:=\frac{\mathrm{AM}^{2}}{\mathrm{AN}} \quad \mathrm{MR}:=\frac{\mathrm{AM}^{2}}{\mathrm{GM}}\)
\(\mathrm{MS}:=\sqrt{A S^{2}-A M^{2}} \mathrm{AR}:=\sqrt{M R^{2}-A M^{2}}\)
\(\mathrm{ST}:=\frac{\mathrm{MR} \cdot \mathrm{MS}}{\mathrm{AR}}\) MT \(:=\frac{\mathrm{AM} \cdot \mathrm{MS}}{\mathrm{AR}}\)

\(\mathrm{MO}:=\frac{\mathrm{ST} \cdot \mathrm{AM}}{\mathrm{AM}+\mathrm{MT}}\)
GO \(:=\mathrm{GM}-\mathrm{MO}\) GP \(:=\frac{\mathrm{CJ} \cdot \mathrm{GO}}{\mathrm{JK}}\)
\(\mathrm{AP}:=\mathrm{AG}+\mathrm{GP} \quad \mathrm{OP}:=\frac{\mathrm{CK} \cdot \mathrm{GO}}{\mathrm{JK}}\)
\(\mathrm{CQ}:=\frac{\mathrm{OP} \cdot \mathrm{AC}}{\mathrm{AP}} \quad \mathrm{QK}:=\mathrm{CK}-\mathrm{CQ}\)
\(\mathrm{QK}=0.206\)
Concave_Radius \(=2.37\)
Convex_Radius \(\equiv 1.5\)
Center_Difference \(\equiv 1.84\)
Power_Line_Tangent \(\equiv \frac{1}{3}\) Given as Fraction \(<1\).


Process summary

\(\mathrm{N}_{1}:=\frac{1}{2} \quad \mathrm{~N}_{2}:=\frac{9}{8} \quad \mathrm{~N}_{3}:=3\)
\(\mathrm{AB}:=108 \quad \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AB} \quad \mathrm{BD}:=\mathrm{AB} \cdot \mathrm{N}_{1}\)
\(\mathrm{CD}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BD}^{2}} \quad \mathrm{EF}:=\frac{\mathrm{CD}-\mathrm{BD}}{\mathrm{N}_{2}}\)
\(\mathrm{DE}:=\mathrm{CD}-\mathrm{EF} \quad \mathrm{BE}:=\sqrt{\mathrm{DE}^{2}-\mathrm{BD}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{GH}:=\frac{\mathrm{AE}-\mathrm{EF}}{\mathrm{N}_{3}}\)
\(\mathrm{EG}:=\mathrm{EF}+\mathrm{GH} \quad \mathrm{DG}:=\mathrm{CD}-\mathrm{GH} \mathrm{Ba}:=\frac{\mathrm{BE} \cdot \mathrm{CD}}{\mathrm{DE}}\)
\(\mathrm{Db}:=\frac{\mathrm{DE}^{2}+\mathrm{DG}^{2}-\mathrm{EG}^{2}}{2 \cdot \mathrm{DG}} \mathrm{Eb}:=\sqrt{\mathrm{DE}^{2}-\mathrm{Db}^{2}}\)

\(\mathrm{Ec}:=\frac{\mathrm{DE}^{2}}{\mathrm{~Eb}} \quad \mathrm{Dc}:=\frac{\mathrm{Db} \cdot \mathrm{DE}}{\mathrm{Eb}} \quad \mathrm{Dd}:=\frac{\mathrm{DE}^{2}}{\mathrm{BD}}\)
\(\mathrm{Ed}:=\frac{\mathrm{BE} \cdot \mathrm{Dd}}{\mathrm{DE}} \quad \mathrm{Ee}:=\frac{\mathrm{DE} \cdot \mathrm{Ed}}{\mathrm{Dc}} \quad \mathrm{Ef}:=\frac{\mathrm{Ee} \cdot \mathrm{DE}}{\mathrm{DE}+\mathrm{Ee}}\)
\(\mathrm{Eg}:=\frac{\mathrm{Ec} \cdot \mathrm{Ef}}{\mathrm{DE}} \quad \mathrm{bg}:=\mathrm{Eb}-\mathrm{Eg} \quad \mathrm{BM}:=\frac{\mathrm{bg} \cdot \mathrm{BD}}{\mathrm{Db}}\)
\(\mathrm{DM}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BM}^{2}} \mathrm{Bk}:=\frac{\mathrm{BM} \cdot \mathrm{CD}}{\mathrm{DM}}\)
\(\mathrm{HM}:=\mathrm{CD}-\mathrm{DM} \quad \mathrm{Hk}:=\frac{\mathrm{BD} \cdot \mathrm{HM}}{\mathrm{DM}}\)
\(\mathrm{Mk}:=\frac{\mathrm{BM} \cdot \mathrm{Hk}}{\mathrm{BD}} \quad \mathrm{Ik}:=\frac{\mathrm{Hk}^{2}}{\mathrm{Mk}} \quad \mathrm{HI}:=\sqrt{\mathrm{Hk}^{2}+\mathrm{Ik}^{2}}\)

\(\mathrm{Ea}:=\frac{\mathrm{BE} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{Ba}:=\mathrm{BE}+\mathrm{Ea} \quad \mathrm{Ia}:=\mathrm{Ik}+\mathrm{Ba}+\mathrm{Bk}\)
\(\mathrm{Fa}:=\frac{\mathrm{BD} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{FI}:=\sqrt{\mathrm{Ia}^{2}+\mathrm{Fa}^{2}} \mathrm{JI}:=\frac{\mathrm{HI}^{2}}{\mathrm{FI}}\)
\(\mathrm{Jm}:=\frac{\mathrm{Fa} \cdot \mathrm{JI}}{\mathrm{FI}} \quad \mathrm{JK}:=\frac{\mathrm{CD} \cdot \mathrm{Jm}}{\mathrm{BD}+\mathrm{Jm}}\)
\(\mathrm{JK}=17.571\)
When GH is small, so that H is on the other side of BD , the similarity point is on the other side of the figure.

\(\mathrm{EP}_{\delta}:=\frac{\mathrm{GL}^{\prime} \cdot \mathrm{AE}_{\delta}}{\mathrm{AG}_{\delta}} \quad \mathrm{GR}_{\delta}:=\mathrm{DJ}_{\delta} \quad \mathrm{NO}:=\mathrm{BG} \quad \mathrm{NR}_{\delta}:=\mathrm{GN}+\mathrm{GR}_{\delta} \quad \mathrm{GQ}_{\delta}:=\frac{\mathrm{NO} \cdot \mathrm{GR}_{\delta}}{\mathrm{NR}_{\delta}} \quad \mathrm{CF}_{\delta}:=2 \cdot \mathrm{GQ}_{\delta}\)




Reducing both by the symbolic processor leaves a little.
\[
\begin{gathered}
\mathrm{BG}:=10 \quad \mathrm{BD}:=\frac{\mathrm{BG}}{13} \\
\mathrm{CF}:=2 \cdot \mathrm{BG} \cdot \sqrt{\mathrm{BD}} \cdot \frac{\sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}}}{(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}})}
\end{gathered}
\]
\[
\mathrm{EP}:=-2 \cdot \mathrm{BG} \cdot \frac{\left(-\mathrm{BG} \cdot \sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}}-2 \cdot \mathrm{BG} \cdot \mathrm{BD}+\mathrm{BD}^{2}\right)}{(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}})^{2}}
\]

And if I divide one by the other and reduce; \(\quad \frac{\left[B G \cdot \sqrt{2 \cdot B G-B D}+2 \cdot B G \cdot \sqrt{B D}-\mathrm{BD}^{\left(\frac{3}{2}\right)}\right]}{[(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot B G-\mathrm{BD}}) \cdot \sqrt{2 \cdot B G-B D}]}=1\)

This is another figure that I had sketched out last year but never got around to writing down.

Given a Circle, place the next on the diameter.
I tried to reduce this series with the symbolic processor, but it is having trouble, at some point it switches AC for EC and I get the other circle.
\(\mathrm{AD}:=\) Radius \(\quad \mathrm{AE}:=2 \cdot \mathrm{AD} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{\mathrm{N}}\)
\(\mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \mathrm{DO}:=\mathrm{AD} \mathrm{CO}:=\sqrt{\mathrm{DO}^{2}+\mathrm{CD}^{2}}\)
\(\mathrm{NO}:=\mathrm{AE} \quad \mathrm{MO}:=\frac{\mathrm{DO} \cdot \mathrm{NO}}{\mathrm{CO}} \mathrm{CM}:=\mathrm{MO}-\mathrm{CO}\)
\(\mathrm{CK}:=\frac{\mathrm{DO} \cdot \mathrm{CM}}{\mathrm{MO}} \mathrm{KO}:=\sqrt{\mathrm{CD}^{2}+(\mathrm{DO}+\mathrm{CK})^{2}}\)
\(\mathrm{JK}:=\mathrm{CK}\)
\(\mathrm{Ke}:=\frac{\mathrm{JK}^{2}}{\mathrm{KO}} \mathrm{Oe}:=\mathrm{KO}-\mathrm{Ke} \quad\) de \(:=\frac{\mathrm{CD} \cdot \mathrm{Oe}}{\mathrm{DO}+\mathrm{CK}}\)
Je \(:=\sqrt{J K^{2}-K^{2}}\)
Jd \(:=\) de + Je \(\quad\) bd \(:=\frac{\mathrm{CD} \cdot \mathrm{Jd}}{\mathrm{KO}}\)
\(\mathrm{Od}:=\frac{\mathrm{KO} \cdot \mathrm{de}}{\mathrm{CD}} \quad \mathrm{Db}:=\mathrm{Od}-\mathrm{DO}-\mathrm{bd}\)

\[
\mathrm{Kh}:=\mathrm{CK}-\mathrm{Db}
\]
\[
\mathrm{Lh}:=\mathrm{CK}+\mathrm{Kh} \quad \mathrm{FJ}:=\frac{\mathrm{JK} \cdot \mathrm{Db}}{\mathrm{Lh}}
\]
\[
\mathrm{N} \equiv \frac{10}{1}
\]
\[
\mathrm{FJ}=3.965
\]
\[
\text { Radius } \equiv 108 \quad C K=19.44
\]

And from the other side;
\[
\mathrm{N} \equiv \frac{10}{9} \quad \mathrm{FJ}=51.53
\]
\[
\text { Radius } \equiv 108 \quad \mathrm{CK}=19.44
\]

This figure might be recognized as the similarity point for Gemini root projection.


Given AC, CF, and that
\(\left.A C=-C F \cdot \frac{(\sqrt{B C} \cdot \sqrt{B C}+C F}{}-B C\right)\) find \(B C\).

N can be any value whatever, except 0 .

\[
\begin{aligned}
& \mathrm{CF}:=216 \quad \mathrm{AC}:=47.29 \quad \mathrm{~N}:=100000 \\
& \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \quad \mathrm{AE}:=\mathrm{AC}+\mathrm{CE}
\end{aligned}
\]
\(\mathrm{FG}:=\mathrm{N} \quad \mathrm{EH}:=\frac{\mathrm{FG} \cdot \mathrm{AE}}{\mathrm{AF}} \mathrm{EF}:=\mathrm{CE}\) \(\mathrm{DF}:=\frac{\mathrm{EF} \cdot \mathrm{FG}}{\mathrm{EH}} \quad \mathrm{CJ}:=\frac{\mathrm{FG} \cdot \mathrm{AC}}{\mathrm{AF}} \quad \mathrm{DP}:=\mathrm{CJ}\)
\(\mathrm{CD}:=\mathrm{CF}-\mathrm{DF} \quad \mathrm{DK}:=\mathrm{FG} \quad \mathrm{KP}:=\mathrm{DK}-\mathrm{DP}\)

\[
\begin{aligned}
& \mathrm{BD}:=\frac{\mathrm{CD} \cdot \mathrm{DK}}{\mathrm{KP}} \quad \mathrm{BD}=40.089 \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{BC}=7.201 \\
& \mathrm{AC}_{\mathrm{f}}:=-\mathrm{CF} \cdot \frac{(\sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-\mathrm{BC})}{(-\mathrm{CF}+2 \cdot \sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-2 \cdot \mathrm{BC})}
\end{aligned}
\]
\[
\frac{\mathrm{AC}_{\mathrm{f}}}{\mathrm{AC}}=1
\]


\section*{Three Base Theorem.}

Three peaks, three predictable bases that intersect our hypotenuse through the Gemini roots.

\[
\begin{aligned}
& \mathrm{BC}:=7.2 \mathrm{CI}:=216 \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \\
& \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \mathrm{BM}:=61.38 \\
& \mathrm{EM}:=\sqrt{\mathrm{BM}^{2}+\mathrm{BE}^{2}} \mathrm{BD}:=\mathrm{EM}-\mathrm{BM} \\
& \mathrm{BH}:=\mathrm{BM}+\mathrm{EM} \quad \mathrm{GN}:=\mathrm{CG} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EN}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EH}:=\mathrm{BH}-\mathrm{BE} \\
& \mathrm{EG}:=\mathrm{EI}-\mathrm{CG} \quad \mathrm{AE}:=\frac{\mathrm{EN}^{2}}{\mathrm{EG}} \mathrm{HI}:=\mathrm{EI}-\mathrm{EH} \\
& \mathrm{HL}:=\frac{\mathrm{EN} \cdot \mathrm{HI}}{\mathrm{EI}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AH}:=\mathrm{AE}+\mathrm{EH} \quad \mathrm{Ea}:=\frac{\mathrm{AH} \cdot \mathrm{EN}}{\mathrm{HL}} \\
& \mathrm{FG}:=\frac{\mathrm{EG} \cdot \mathrm{AG}}{(\mathrm{Ea}+\mathrm{EG})} \mathrm{CF}:=\mathrm{CG}-\mathrm{FG}
\end{aligned}
\]
\(\mathrm{FI}:=\mathrm{CG}+\mathrm{FG} \quad \mathrm{FP}:=\sqrt{\mathrm{CF} \cdot \mathrm{FI}}\)
\(\mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \quad \mathrm{EO}:=\frac{\mathrm{FP} \cdot \mathrm{AE}}{\mathrm{AF}}\)
\(\mathrm{EF}:=\mathrm{AF}-\mathrm{AE} \quad \mathrm{GU}:=\frac{\mathrm{EO} \cdot \mathrm{FG}}{\mathrm{EF}}\)

\[
\begin{aligned}
& \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AI}:=\mathrm{AC}+\mathrm{CI} \\
& \mathrm{AP}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FP}^{2}} \mathrm{AW}:=\frac{\mathrm{AC} \cdot \mathrm{AI}}{\mathrm{AP}} \\
& \mathrm{AX}:=\frac{\mathrm{AF} \cdot \mathrm{AW}}{\mathrm{AP}} \mathrm{CX}:=\mathrm{AX}-\mathrm{AC} \mathrm{XI}:=\mathrm{CI}-\mathrm{CX} \\
& \mathrm{WX}:=\sqrt{\mathrm{CX} \cdot \mathrm{XI}} \mathrm{XG}:=\mathrm{CG}-\mathrm{CX} \mathrm{YU}:=\mathrm{XG} \\
& \mathrm{UV}:=\mathrm{CG} \mathrm{YV}:=\mathrm{YU}+\mathrm{UV} \mathrm{XH}:=\frac{\mathrm{YV} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \mathrm{CH}:=\mathrm{AH}-\mathrm{AC} \frac{\mathrm{CH}}{\mathrm{XH}+\mathrm{CX}}=1 \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{DX}:=\frac{\mathrm{CX} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \frac{\mathrm{CD}}{\mathrm{CX}-\mathrm{DX}}=1
\end{aligned}
\]


EI•EO
\(\mathrm{IZ}:=\frac{\mathrm{GU} \cdot \mathrm{AI}}{\mathrm{AG}} \mathrm{Ed}:=\mathrm{IZ} \quad \frac{\mathrm{EO}+\mathrm{Ed}}{\mathrm{EH}}=1\)
\[
\mathrm{Ce}:=\frac{\mathrm{GU} \cdot \mathrm{AC}}{\mathrm{AG}} \mathrm{Ef}:=\mathrm{Ce} \frac{\mathrm{CD}}{\frac{\mathrm{CE} \cdot \mathrm{Ce}}{\mathrm{EO}+\mathrm{Ef}}}=1
\]

Ek \(:=\mathrm{GU} \quad \mathrm{Ig}:=\frac{\mathrm{Ek} \cdot \mathrm{BI}}{\mathrm{BE}} \mathrm{Cm}:=\frac{\mathrm{Ek} \cdot \mathrm{BC}}{\mathrm{BE}}\)
Fn \(:=\mathrm{Ig} \quad\) gn \(:=\mathrm{FI} \quad \mathrm{FH}:=\frac{\mathrm{gn} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Fn}}\)
\(\frac{\mathrm{FH}}{\mathrm{AH}-\mathrm{AF}}=1 \quad \mathrm{DF}:=\frac{\mathrm{CF} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Cm}}\)
\(\frac{C D}{C F-D F}=1\)


Given CF and CD such that \(\mathrm{CD}=\sqrt{\mathrm{AF} \cdot \mathrm{AC}}-\mathrm{AC}\) find AC.
\[
\mathrm{CF}:=216 \quad \mathrm{CD}:=32.89 \quad \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{EF}:=\mathrm{CE}
\]

Except for \(0, \mathrm{~N}\) can be any value.
\[
\begin{aligned}
& \mathrm{N}:=108 \quad \mathrm{FG}:=\mathrm{N} \quad \mathrm{DK}:=\mathrm{N} \quad \mathrm{DF}:=\mathrm{CF}-\mathrm{CD} \\
& \mathrm{EH}:=\frac{\mathrm{DK} \cdot \mathrm{EF}}{\mathrm{DF}} \mathrm{EM}:=\mathrm{FG} \quad \mathrm{HM}:=\mathrm{EM}-\mathrm{EH} \\
& \mathrm{CN}:=\mathrm{FG} \quad \mathrm{HM}:=\mathrm{EM}-\mathrm{EH} \quad \mathrm{GN}:=\mathrm{CF} \\
& \mathrm{GM}:=\mathrm{EF} \quad \mathrm{JN}:=\frac{\mathrm{HM} \cdot \mathrm{GN}}{\mathrm{GM}} \quad \mathrm{JC}:=\mathrm{CN}-\mathrm{JN}
\end{aligned}
\]
\[
\mathrm{KP}:=\mathrm{JN} \quad \mathrm{JP}:=\mathrm{CD} \quad \mathrm{AD}:=\frac{\mathrm{JP} \cdot \mathrm{DK}}{\mathrm{KP}}
\]
\[
\mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \quad \mathrm{AC}=7.201
\]
\[
\mathrm{AF}:=\mathrm{AC}+\mathrm{CF}
\]
\[
\frac{\sqrt{\mathrm{AF} \cdot \mathrm{AC}}-\mathrm{AC}}{\mathrm{CD}}=1 \quad \frac{\sqrt{\mathrm{AF} \cdot \mathrm{AC}}}{\mathrm{AD}}=1
\]

I had finally decided to write this up in Oct. of 94, and being punctual, here it is.

Given one root in a prime root series, determine the rest of the series using the straight edge method. The other method uses a compass and is shown at the end of document.

Process Summary will use \(5^{\text {th }}\) root series for example.
\[
\begin{aligned}
& \mathrm{AG}:=3^{5} \quad \mathrm{AB}:=1 \quad \mathrm{AE}:=3^{3} \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{GZ}:=\mathrm{BG} \quad \mathrm{YZ}:=\mathrm{BG} \\
& \mathrm{BY}:=\mathrm{BG} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{EG}:=\mathrm{BG}-\mathrm{BE} \\
& \mathrm{GH}:=\frac{\mathrm{BY} \cdot \mathrm{EG}}{\mathrm{BE}}
\end{aligned}
\]
\(\mathrm{Ga}:=\frac{\mathrm{GZ} \cdot \mathrm{AG}}{\mathrm{EG}} \quad \mathrm{Hb}:=\frac{\mathrm{GH} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Gb}:=\mathrm{GH}-\mathrm{Hb} \quad \mathrm{Ib}:=\frac{\mathrm{AG} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Bd}:=\mathrm{BG}-\mathrm{Ib} \quad \mathrm{BC}:=\frac{\mathrm{Bd} \cdot \mathrm{BY}}{\mathrm{BY}+\mathrm{Gb}}\)
\(A C:=A B+B C\)
\(\mathrm{CG}:=\mathrm{BG}-\mathrm{BC} \quad \mathrm{BJ}:=\frac{\mathrm{GZ} \cdot \mathrm{BC}}{\mathrm{CG}}\)


\[
\begin{aligned}
& \mathrm{GK}:=\frac{\mathrm{BJ} \cdot \mathrm{AG}}{\mathrm{AB}} \mathrm{KZ}:=\mathrm{GZ}+\mathrm{GK} \\
& \mathrm{FG}:=\frac{\mathrm{YZ} \cdot \mathrm{GK}}{\mathrm{KZ}} \quad \mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \\
& \mathrm{Ke}:=\frac{\mathrm{GK} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \mathrm{Me}:=\frac{\mathrm{AG} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \\
& \mathrm{BD}:=\frac{(\mathrm{BG}-\mathrm{Me}) \cdot \mathrm{BY}}{\mathrm{KZ}-\mathrm{Ke}} \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}
\end{aligned}
\]

\[
\begin{array}{ll}
\frac{\left(\mathrm{AB}^{5} \cdot \mathrm{AG}^{0}\right)^{\frac{1}{5}}}{\mathrm{AB}}=1 & \frac{\left(\mathrm{AB}^{4} \cdot \mathrm{AG}^{1}\right)^{\frac{1}{5}}}{\mathrm{AC}}=1 \\
\frac{\left(\mathrm{AB}^{3} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{5}}}{\mathrm{AD}}=1 & \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{5}}}{\mathrm{AE}}=1 \\
\frac{\left(\mathrm{AB}^{1} \cdot \mathrm{AG}^{4}\right)^{\frac{1}{5}}}{\mathrm{AF}}=1 & \frac{\left(\mathrm{AB}^{0} \cdot \mathrm{AG}^{5}\right)^{\frac{1}{5}}}{\mathrm{AG}}=1
\end{array}
\]

Compass method

If any of a prime root series can be given exactly, every root of the series can be determined exactly.


Is CX a constant?
I have had so much back work to catch up on I post dated a couple.
\[
\begin{aligned}
& \mathrm{AB}:=54 \quad \mathrm{AG}:=270 \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BF}:=\frac{\mathrm{BG}}{2} \mathrm{FO}:=\mathrm{BF} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FR}:=\mathrm{BF} \\
& \mathrm{AR}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FR}^{2}} \mathrm{AQ}:=\frac{\mathrm{AB} \cdot \mathrm{AG}}{\mathrm{AR}} \\
& \mathrm{Aa}:=\frac{\mathrm{AF} \cdot \mathrm{AQ}}{\mathrm{AR}} \mathrm{Qa}:=\frac{\mathrm{FR} \cdot \mathrm{AQ}}{\mathrm{AR}}
\end{aligned}
\]
\(\mathrm{Fa}:=\mathrm{AF}-\mathrm{Aa} \quad \mathrm{OQ}:=\sqrt{\mathrm{Fa}^{2}+(\mathrm{FO}+\mathrm{Qa})^{2}}\)
\(\mathrm{CQ}:=\frac{\mathrm{OQ} \cdot \mathrm{Qa}}{\mathrm{FO}+\mathrm{Qa}} \mathrm{OX}:=\sqrt{\mathrm{BF}^{2}+\mathrm{FO}^{2}}\)
\(C O:=O Q-C Q\)
\[
\frac{\frac{\mathrm{OX}^{2}}{\mathrm{OQ}}}{\mathrm{CO}}=1
\]

Both expressions reduce to,
\[
\mathrm{CQ}=49.923 \quad \mathrm{OQ}-\frac{\mathrm{OX}^{2}}{\mathrm{OQ}}=49.923
\]
\[
\frac{\mathrm{AG}-\mathrm{AB}}{\mathrm{AG}+\mathrm{AB}} \cdot \frac{\sqrt{2} \cdot(\mathrm{AG} \cdot \mathrm{AB})}{\sqrt{\mathrm{AB}^{2}+\mathrm{AG}^{2}}}=49.923
\]


\section*{Geometric Exponential Series of the form}

\(\underline{\text { Root - } 1}\)

\(N^{\text {Root }}\)

Generalize some of the ratios found in 01_08_96 and 01_16_96 for the sides of the right triangle.
\[
\begin{aligned}
& \mathrm{N}=4 \quad \mathrm{Root}=4 \quad \mathrm{M}=1 \quad \mathrm{BG}:=\mathrm{N} \mathrm{AB}:=\mathrm{M} \\
& \mathrm{AG}:=\mathrm{AB}+\mathrm{BG} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \\
& \mathrm{AC}:=\left(\mathrm{AB}^{\text {Root }-1} \cdot \mathrm{AG}\right)^{\frac{1}{\text { Root }}} \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{\text {Root }-1}\right)^{\frac{1}{\text { Root }}} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \quad \mathrm{FX}:=\sqrt{\mathrm{AF}^{2}+\mathrm{AG}^{2}} \\
& \mathrm{FY}:=\frac{\mathrm{AF}^{2}}{\mathrm{FX}} \quad \mathrm{BD}:=\frac{\mathrm{FY} \cdot \mathrm{BG}}{\mathrm{FX}} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \quad \mathrm{GK}:=\sqrt{\mathrm{DG}}{ }^{2}+\mathrm{DK}^{2} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]


Plug in BG here as N . AB as M . Plug in root series also.
\(\mathrm{N} \equiv 4 \quad\) Root \(\equiv 4 \quad \delta:=1\).. Root
\(M \equiv 1\)
\[
\mathrm{GL}=1.377 \quad \mathrm{BJ}=0.275 \quad \frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]
\[
\frac{\sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-1}{\text { Root }}}}=2.415 \quad \frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}=8.075 \quad \frac{\mathrm{BK}}{\mathrm{BJ}}=8.075
\]

\[
\mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{BM}}=32.665\)
\begin{tabular}{l}
\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta+2}{\text { Root }}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{\text { Root }}}-\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{\text { Root }}}}\) \\
\hline\(\frac{9.769}{14.608}\) \\
\hline 21.844 \\
\hline 32.665 \\
\hline
\end{tabular}
On the left is the first and last of the series, on the right is the entire series.
And the Delian Quest
One Square

By John Clark


\(\mathrm{DO}=16.135\)
CUBE_ROOT \(=16.12\)
\(\mathrm{PI}:=\frac{\mathrm{DO}^{3}}{\frac{4}{3} \cdot \mathrm{R}^{3}} \quad \begin{aligned} & \mathrm{PI}=3.15049 \\ & \pi=3.14159\end{aligned}\)

\section*{Cubing a Sphere, a Rusty Construction.}

Cubing a sphere off the base of a right triangle. I later found out that someone had squared a circle off the base of a right triangle but the figure was lost. This figure is in the 1989 Document on the Delian Solution.
\[
\begin{aligned}
& \mathrm{R}:=10 \\
& \mathrm{AO}:=\mathrm{R} \mathrm{CO}:=\mathrm{R} \quad \mathrm{DF}:=\mathrm{R} \quad \mathrm{CE}:=\sqrt{\frac{\mathrm{CO}^{2}}{2}} \\
& \mathrm{AE}:=\mathrm{R}+\mathrm{CE} \quad \mathrm{AC}:=\sqrt{\mathrm{CE}^{2}+\mathrm{AE}^{2}} \quad \mathrm{AF}:=2 \cdot \mathrm{R} \\
& \mathrm{CF}:=\sqrt{\mathrm{AF}^{2}-\mathrm{AC}^{2} \mathrm{CD}}:=\sqrt{\mathrm{DF}^{2}-\mathrm{CF}^{2}} \mathrm{AD}:=\mathrm{AC}+\mathrm{CD} \\
& \mathrm{DG}:=\frac{\mathrm{CE} \cdot \mathrm{AD}}{\mathrm{AC}} \mathrm{AG}:=\frac{\mathrm{AE} \cdot \mathrm{AD}}{\mathrm{AC}} \mathrm{GO}:=\mathrm{AG}-\mathrm{R} \\
& \mathrm{DO}:=\sqrt{\mathrm{DG}^{2}+\mathrm{GO}^{2}}
\end{aligned}
\]

CUBE_ROOT \(:=\left(\frac{4}{3} \cdot \pi \cdot \text { R }^{3}\right)^{\frac{1}{3}}\)
TOLERANCE \(:=\frac{\text { DO }}{\text { CUBE_ROOT }}\)
TOLERANCE - \(1=0.0009429\)
One Line
And the Delian Quest

1993


\section*{Exploring the properties of the curve CJ.}

> 06_03_93.MCD

Choosing any arbitrary point on CJ does the projection DE equal the square root of CD \(\cdot\) EG? This possibility was suggested by my work on finding the geometrical solution to the problem : Given only the lengths of the three sides of any triangle, find its area. That work suggests that DE will remain constant over a range if CJ had the same center as circle CLG. An essential portion of that solution will be used in this work for finding the difference and position of DE.
\(\mathrm{CG}:=10 \mathrm{FG}:=\frac{\mathrm{CG}}{3} \mathrm{FO}:=\frac{\mathrm{CG}}{6}\) LO \(:=\frac{\mathrm{CG}}{2}\)
\(\mathrm{FL}:=\sqrt{\mathrm{LO}^{2}-\mathrm{FO}^{2}} \mathrm{GL}:=\sqrt{\mathrm{FG}^{2}+\mathrm{FL}^{2}}\)
GO \(:=\frac{\mathrm{CG}}{2}\) GJ \(:=\mathrm{GL}\) JO \(:=\sqrt{G J^{2}-\mathrm{GO}^{2}}\)
\[
\mathrm{JM}:=\mathrm{JO} \cdot 2 \quad \mathrm{CO}:=\mathrm{GO} \quad \mathrm{MN}:=\mathrm{CO}
\]
\[
\delta:=1 . .100 \mathrm{MP}_{\delta}:=\frac{\delta}{100} \cdot \mathrm{MN} \quad \mathrm{HM}:=\mathrm{JM}
\]
\[
\mathrm{HP}_{\delta}:=\sqrt{\mathrm{HM}^{2}-\left(\mathrm{MP}_{\delta}\right)^{2}} \mathrm{MO}:=\mathrm{JO} \mathrm{PQ}:=\mathrm{MO}
\]
\[
\mathrm{HQ}_{\delta}:=\mathrm{HP}_{\delta}-\mathrm{PQ} \quad \mathrm{QO}_{\delta}:=\mathrm{MP}_{\delta}
\]

\[
\begin{aligned}
& \mathrm{GQ}_{\delta}:=\mathrm{GO}+\mathrm{QO}_{\delta} \mathrm{GH}_{\delta}:=\sqrt{\left(\mathrm{GQ}_{\delta}\right)^{2}+\left(\mathrm{HQ}_{\delta}\right)^{2}} \\
& \mathrm{GK}_{\delta}:=\mathrm{GH}_{\delta} \quad \mathrm{EG}_{\delta}:=\frac{\left(\mathrm{GK}_{\delta}\right)^{2}}{\mathrm{CG}} \mathrm{CQ}_{\delta}:=\mathrm{CO}-\mathrm{QO}_{\delta} \\
& \mathrm{CH}_{\delta}:=\sqrt{\left(\mathrm{CQ}_{\delta}\right)^{2}+\left(\mathrm{HQ}_{\delta}\right)^{2}} \quad \mathrm{CI}_{\delta}:=\mathrm{CH}_{\delta} \\
& \mathrm{CD}_{\delta}:=\frac{\left(\mathrm{CI}_{\delta}\right)^{2}}{\mathrm{CG}} \quad \mathrm{DE}_{\delta}:=\mathrm{CG}-\mathrm{EG}_{\delta}-\mathrm{CD}_{\delta} \\
& \mathrm{ERR}_{\delta}:=\sqrt{\mathrm{EG}_{\delta} \cdot \mathrm{CD}_{\delta}}-\mathrm{DE}_{\delta}
\end{aligned}
\]

As can be seen by the graph, the only error is the limits contained in the program itself! So CJ is part of our cube root figure, as the square in a right triangle is equal to the square of the remaining two segments, and all three squares taken to the reduced ratio functions in a cube root relationship.

\title{
For All Triangles Find DC
}

06_07_C3.MCD


The first of these series ran the process through for equalaterals. I expanded in this mod for all triangles, I will use the process later to fi the Euler line, given only the length of three sides of a triangle.

Given: \(\mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}\)
Find: DC

\section*{Process Summary}

> Construct: De
> Construct: Cf
> ef \(=\mathrm{Be}-\mathrm{Bf}\)
> \(\mathrm{Dg}=\mathrm{ef}\)
> \(\mathrm{CD}=\sqrt{\mathrm{Cg}^{2}+\mathrm{Dg}^{2}}\)

Given:

\[
\begin{array}{lll}
\mathrm{AB}:=7.18 & \mathrm{AC}:=9.02 & \mathrm{AD}:=8.09 \\
\mathrm{BD}:=7.28 & \mathrm{BC}:=3.85 &
\end{array}
\]

Find CD.

Find: Be
\(\mathrm{Be}:=\frac{1}{2} \cdot \frac{\mathrm{BD}^{2}}{\mathrm{AB}}+\frac{1}{2} \cdot \mathrm{AB}-\frac{1}{2} \cdot \frac{\mathrm{AD}^{2}}{\mathrm{AB}}\)
\(\mathrm{Be}=2.723\)

\[
\mathrm{Bf}:=\frac{1}{2} \cdot \frac{\mathrm{BC}^{2}}{\mathrm{AB}}+\frac{1}{2} \cdot \mathrm{AB}-\frac{1}{2} \cdot \frac{\mathrm{AC}^{2}}{\mathrm{AB}}
\]
\[
\mathrm{DC}=4.844
\]

Due to the inability to format the equation I had to make some substitutes.
\[
\mathrm{A}:=\mathrm{AB} \quad \mathrm{~B}:=\mathrm{BC} \quad \mathrm{C}:=\mathrm{AC} \quad \mathrm{D}:=\mathrm{BD} \quad \mathrm{E}:=\mathrm{AD}
\]

\[
\begin{gathered}
F:=\sqrt{2 \cdot \frac{B^{2} \cdot A^{2} \ldots}{+\sqrt{C+A}+B} \cdot \sqrt{C-A+B} \cdot \sqrt{C+A+B} \cdot \sqrt{C-A-B} \cdot \sqrt{D+E-A} \cdot \sqrt{D-E-A} \cdot \sqrt{D+A-E} \cdot \sqrt{D+A+E} \ldots} \\
2 \cdot A \\
F=4.844
\end{gathered}
\]
06_09_93.MCD


Given length \(A B\) and length \(C B\) which is \(1 / 2\) of \(A B\) or less, place \(C B\) such that it is the square root of the two constructed segments. The second line in the equations will not permit BC to exceed Euclidean specifications.
\[
\mathrm{AB}:=10 \quad \mathrm{BC}:=4
\]
\[
\mathrm{BC}:=\mathrm{if}\left(\mathrm{BC} \geq 0, \mathrm{if}\left(\mathrm{BC} \leq \frac{\mathrm{AB}}{2}, \mathrm{BC}, 0\right), 0\right)
\]
\[
\mathrm{AD}:=\frac{\mathrm{AB}}{2} \mathrm{DE}:=\mathrm{AD}
\]
\(\mathrm{FE}:=\mathrm{BCDB}:=\mathrm{AD} \quad \mathrm{DF}:=\sqrt{\mathrm{DE}^{2}-\mathrm{FE}^{2}} \quad \mathrm{AF}:=\mathrm{AD}+\mathrm{DBF}:=\mathrm{DB}-\mathrm{DF} \quad\) ROOT \(:=\sqrt{\mathrm{AF} \cdot \mathrm{BF}}\)
\[
\mathrm{BC}=4 \quad \mathrm{ROOT}=4 \quad \mathrm{AF}=8
\]

\section*{A Pyramid of Ratios}

The typical teaching concerning the division of a line in Euclidean geometry is quite straight forward, this work is an extension of the application.


A pyramid of ratios is the expression of the relationships between the base of the right triangle and some bisectors. There is more than one model.

How does this one work? I wish to know the ratio between EF:BF. As you can see the base of the triangle has been divided into two equal parts, and so has the bisector. \(\mathrm{AB}=2\) and \(\mathrm{CD}=2.2 \times 2\) \(=4\), therefore segment EF will be \(1 / 4\) of segment BF. Now let us turn to a more developed expression of the figure.

The base can also be divided into any ratio, it can even be part of a larger figure. One must keep in mind the distinction between numerical measure, which will be used to compute lengths, and the concept of ratio.

The ratio here is 2 to 7 , so that we are working with the number 14. In descending order, \(1 / 14,2 / 14,3 / 14,4 / 14\), \(5 / 14\) and 6/14.

In this work I will be exploring the figure to see what else it will yield. With Mathcad we shall be able to explore drawings that would be too tedious to draw and actually be quite an engineering feat if one could.

One can plug in numbers for the first three variables at the end of the document.
AB := BASE_LENGTH
BR \(:=\) BASE_RATIO
BS := BISEC_SEG
\(\mathrm{Cg}:=\frac{\mathrm{AB}}{2} \mathrm{Ag}:=\mathrm{Cg} \operatorname{Bg}:=\mathrm{Cg}\)
Number that has been defined equals BS \(\times\) BR.
\[
\mathrm{BS} \cdot \mathrm{BR}=0.45 \quad \mathrm{AD}:=\frac{\mathrm{AB}}{\mathrm{BR}}
\]
\[
\delta:=0 \ldots \mathrm{BS} \quad \mathrm{Dg}:=\mathrm{Ag}-\mathrm{AD} \mathrm{CD}:=\sqrt{\mathrm{Dg}^{2}+\mathrm{Cg}^{2} \mathrm{DE}_{\delta}}:=\frac{\mathrm{CD}}{\mathrm{BS}} \cdot \delta \quad \mathrm{Dh}_{\delta}:=\frac{\mathrm{Dg} \cdot \mathrm{DE}_{\delta}}{\mathrm{CD}}
\]
\[
\mathrm{Eh}_{\delta}:=\sqrt{\left(\mathrm{DE}_{\delta}\right)^{2}-\left(\mathrm{Dh}_{\delta}\right)^{2}} \mathrm{gh}_{\delta}:=\mathrm{Dg}-\mathrm{Dh}_{\delta} \mathrm{Bh}_{\delta}:=\mathrm{Bg}+\mathrm{gh}_{\delta} \mathrm{BE}_{\delta}:=\sqrt{\left(\mathrm{Bh}_{\delta}\right)^{2}+\left(\mathrm{Eh}_{\delta}\right)^{2}}
\]
\[
\mathrm{CE}_{\delta}:=\mathrm{CD}-\mathrm{DE}_{\delta}
\]

\[
\begin{aligned}
\mathrm{BC} & :=\sqrt{2 \cdot \mathrm{Bg}^{2}} \quad \mathrm{Bi}_{\delta}:=\frac{\left(\mathrm{BE}_{\delta}\right)^{2}}{\mathrm{BC}} \quad \mathrm{Ck}_{\delta}:=\frac{\left(\mathrm{CE}_{\delta}\right)^{2}}{\mathrm{BC}} \\
\mathrm{ik}_{\delta} & :=\mathrm{BC}-\mathrm{Bi}_{\delta}-\mathrm{Ck}_{\delta} \quad \mathrm{ij}_{\delta}:=\frac{\mathrm{ik}_{\delta}}{2} \\
\mathrm{Bj}_{\delta} & :=\mathrm{Bi}_{\delta}+\mathrm{ij}_{\delta} \mathrm{Cj}_{\delta}:=\mathrm{BC}-\mathrm{Bj}_{\delta}
\end{aligned}
\]

The algorithm, completely Euclidean, can be used to find the area of any triangle knowing just the length of the three sides. Here it is used, even when the sides exceed the base in length.
\[
\begin{aligned}
& \mathrm{Em}_{\delta}:=\mathrm{Cj}_{\delta} \\
& \mathrm{EF}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{Em}_{\delta}}{\mathrm{Bj}_{\delta}} \mathrm{BF}_{\delta}:=\mathrm{BE}_{\delta}+\mathrm{EF}_{\delta}
\end{aligned}
\]
\(\operatorname{if}\left(\mathrm{EF}_{\delta}, \frac{\mathrm{BF}_{\delta}}{\mathrm{EF}_{\delta}}, 0\right) \quad\) if \(\left(\mathrm{BS}-\delta, \frac{\mathrm{BR} \cdot \mathrm{BS}}{\mathrm{BS}-\delta}, 0\right)\)
\begin{tabular}{|c|}
\hline 0.05 \\
\hline 0.056 \\
\hline 0.064 \\
\hline 0.075 \\
\hline 0.09 \\
\hline 0.112 \\
\hline 0.15 \\
\hline 0.225 \\
\hline 0.45 \\
\hline 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 0.05 \\
\hline 0.056 \\
\hline 0.064 \\
\hline 0.075 \\
\hline 0.09 \\
\hline 0.113 \\
\hline 0.15 \\
\hline 0.225 \\
\hline 0.45 \\
\hline 0 \\
\hline
\end{tabular}


\section*{Plug in values here!}

BASE_LENGTH \(\equiv 21\)
\((B S)=\) BISEC_SEG \(\equiv 9\)
\((\mathrm{BR})=\) BASE_RATIO \(\equiv .05\)

A basic Euclidean divisional / multiplicative series.

Try the values of 5 for the vertical number of divisions and \(.5(1 / 2)\) for the base divisions

One can use the numbers generated by the program to discover what a particular set of ratios would draw out to be.

A fractional number for the base means that the entire base is the fractional part of a larger base.

The algorithm places the remainder at the top for fractional divisions.


Determine the relationships involved between the elements of the figure.
06_23_93.mcd

\[
\begin{aligned}
& \mathrm{AC}:=1 \\
& \delta:=1,100 . .1000 \quad \mathrm{CF}_{\delta}:=\delta \quad \mathrm{AF}_{\delta}:=\mathrm{AC}+\mathrm{CF}_{\delta}
\end{aligned}
\]
\[
\mathrm{CE}_{\delta}:=\frac{\mathrm{CF}_{\delta}}{2} \quad \mathrm{DJ}_{\delta}:=\mathrm{CE}_{\delta} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AC} \cdot \mathrm{AF}_{\delta}}
\]
\[
\mathrm{CD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AC} \quad \mathrm{DF}_{\delta}:=\mathrm{CF}_{\delta}-\mathrm{CD}_{\delta}
\]
\[
\mathrm{DI}_{\delta}:=\sqrt{\mathrm{CD}_{\delta} \cdot \mathrm{DF}_{\delta}} \quad \mathrm{DE}_{\delta}:=\mathrm{CE}_{\delta}-\mathrm{CD}_{\delta}
\]
\[
\mathrm{AG}_{\delta}:=\frac{\left[\left(\mathrm{AF}_{\delta}\right)^{2} \cdot \mathrm{AC}\right]^{\frac{1}{3}}-\left[(\mathrm{AC})^{2} \cdot \mathrm{AF}_{\delta}\right]^{\frac{1}{3}}}{2}
\]

\[
\mathrm{DK}_{\delta}:=\frac{\mathrm{AD}_{\delta} \cdot \mathrm{DJ}_{\delta}}{\mathrm{AG}_{\delta}} \quad \mathrm{AK}_{\delta}:=\mathrm{DK}_{\delta}+\mathrm{AD}_{\delta}
\]
\[
\mathrm{AB}_{\delta}:=\frac{\left(\mathrm{AD}_{\delta}\right)^{2}}{\mathrm{AK}_{\delta}} \quad \mathrm{BH}_{\delta}:=\frac{\mathrm{DJ}_{\delta} \cdot \mathrm{AB}_{\delta}}{\mathrm{AD}_{\delta}}
\]



Given the difference between three non-collinear points, find the radius of the circle that circumscribes them.
\(\Delta:=(\mathrm{AB}+\mathrm{AC}>\mathrm{BC}) \cdot(\mathrm{AB}+\mathrm{BC}>\mathrm{A}\)

Inscribe a Circle about a Triangle
 \(\mathrm{Ae}:=\frac{\mathrm{AB}}{2} \quad \mathrm{Ak}:=\mathrm{AC} \quad \mathrm{Bl}:=\mathrm{BC} \quad \delta:=0 . .2\) \(\mathrm{Ai}:=\frac{\mathrm{Ak}^{2}}{\mathrm{AB}} \mathrm{Bh}:=\frac{\mathrm{Bl}^{2}}{\mathrm{AB}} \quad \mathrm{Ah}:=\mathrm{AB}-\mathrm{Bh}\) \(h i:=A h-A i \quad A j:=A i+\frac{h i}{2} C j:=\sqrt{A C^{2}-A j^{2}}\)
\(\mathrm{Be}:=\mathrm{Ae} \quad \mathrm{Bj}:=\mathrm{AB}-\mathrm{Aj} \quad \mathrm{Bg}:=\frac{\mathrm{BC}}{2}\)
\(\mathrm{Bf}:=\frac{\mathrm{BC} \cdot \mathrm{Be}}{\mathrm{Bj}} \mathrm{fg}:=\mathrm{Bf}-\mathrm{Bg} \mathrm{Dg}:=\mathrm{if}\left(\mathrm{Cj}, \frac{\mathrm{Bj} \cdot \mathrm{fg}}{\mathrm{Cj}}, 0\right)\)
\(\mathrm{BD}:=\mathrm{if}\left(\mathrm{Dg}, \sqrt{\mathrm{Dg}^{2}+\mathrm{Bg}^{2}}, \infty\right)\)
radius \(:=\mathrm{if}(\Delta, \mathrm{BD}, 0) \quad\) imaginary_radius \(:=\operatorname{if}(\operatorname{NOT}(\Delta), \mathrm{BD}, 0)\)
radius \(=3.007\)
imaginary_radius \(=0\)
\(\Delta=1\)
\[
\mathrm{S}_{1}:=\left(\begin{array}{l}
\mathrm{AB} \\
\mathrm{AC} \\
\mathrm{BC}
\end{array}\right) \quad \mathrm{S}_{2}:=\left(\begin{array}{c}
\mathrm{AC} \\
\mathrm{BC} \\
\mathrm{AB}
\end{array}\right) \quad \mathrm{S}_{3}:=\left(\begin{array}{c}
\mathrm{BC} \\
\mathrm{AB} \\
\mathrm{AC}
\end{array}\right)
\]

Reducing to one equation,
\(\mathrm{AB} \equiv 3 \quad \mathrm{AC} \equiv 5 \quad \mathrm{BC} \equiv 6\)
\[
\begin{gathered}
\mathrm{R}_{\delta}:=\frac{\mathrm{S}_{1_{\delta}} \cdot \mathrm{S}_{2_{\delta}} \cdot \mathrm{S}_{3_{\delta}}}{\sqrt{\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{-\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}-\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}-\mathrm{S}_{3_{\delta}}}} \\
\mathrm{R}^{\mathrm{T}=\left(\begin{array}{lll}
3.007 & 3.007 & 3.007
\end{array}\right)}
\end{gathered}
\]


Determine the ratio range of HK:HP
\[
\begin{aligned}
& \mathrm{BG}:=10 \quad \delta:=1 . .100 \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \\
& \mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG} \quad \mathrm{AC}_{\delta}:=\sqrt{\mathrm{AG}_{\delta} \cdot \mathrm{AB}_{\delta}}
\end{aligned}
\]
\[
\mathrm{AP}_{\delta}:=\mathrm{AG}_{\delta} \quad \mathrm{AN}_{\delta}:=\mathrm{AG}_{\delta} \quad \mathrm{BF}:=\frac{\mathrm{BG}}{2}
\]
\[
\mathrm{CP}_{\delta}:=\sqrt{\left(\mathrm{AP}_{\delta}\right)^{2}-\left(\mathrm{AC}_{\delta}\right)^{2}} \mathrm{FH}:=\mathrm{BF}
\]
\[
\mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF} \quad \mathrm{AD}_{\delta}:=\frac{\mathrm{AG}_{\delta}}{2}
\]
\[
\mathrm{CD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AC}_{\delta} \quad \mathrm{DH}_{\delta}:=\mathrm{AD}_{\delta}
\]
\[
\begin{aligned}
& \mathrm{CH}_{\delta}:=\sqrt{\left(\mathrm{DH}_{\delta}\right)^{2}-\left(\mathrm{CD}_{\delta}\right)^{2}} \mathrm{HP}_{\delta}:=\mathrm{CP}_{\delta}-\mathrm{CH}_{\delta} \\
& \mathrm{CUBE}_{\delta}:=\left(\mathrm{AG}_{\delta}\right)^{2} \cdot \mathrm{AB}_{\delta} \mathrm{ROOT}_{\delta}:=\left(\mathrm{CUBE}_{\delta}\right)^{\frac{1}{3}} \\
& \mathrm{EN}_{\delta}:=\sqrt{\left(\mathrm{AN}_{\delta}\right)^{2}-\left(\mathrm{ROOT}_{\delta}\right)^{2}} \mathrm{CK}_{\delta}:=\frac{\mathrm{EN}_{\delta} \cdot \mathrm{AC}_{\delta}}{\mathrm{ROOT}_{\delta}} \\
& \mathrm{KP}_{\delta}:=\mathrm{CP}_{\delta}-\mathrm{CK}_{\delta} \mathrm{HK}_{\delta}:=\mathrm{CK}_{\delta}-\mathrm{CH}_{\delta} \\
& \mathrm{RATIO}_{\delta}:=\frac{\mathrm{HP}_{\delta}}{\mathrm{HK}_{\delta}} \quad \frac{\mathrm{HP}_{\delta}}{\mathrm{HK}_{\delta}}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{RATIO}_{1}=38.246 \\
& \mathrm{AB}_{1}=1 \cdot 10^{-8} \\
& \mathrm{RATIO}_{20}=5.164 \\
& \mathrm{AB}_{20}=0.032 \\
& \mathrm{RATIO}_{30}=4.113 \\
& \mathrm{AB}_{30}=0.243
\end{aligned}
\]

RATIO \(_{100}=2.707\)
AB \(_{100}=100\)


\section*{From Maxima and Minima}

\section*{Given}
\(\mathrm{EN}:=10 \quad \delta:=1 . .100 \quad \mathrm{DE}_{\delta}:=\delta^{5} \cdot 10^{-8}\)
Find lengths GJ and FI.
\[
\mathrm{DN}_{\delta}:=\mathrm{DE}_{\delta}+\mathrm{EN} \quad \mathrm{DH}_{\delta}:=\sqrt{\mathrm{DE}_{\delta} \cdot \mathrm{DN}_{\delta}}
\]

K is the center of DN
\[
\begin{aligned}
& \mathrm{DT}_{\delta}:=\mathrm{DN}_{\delta} \quad \mathrm{HT}_{\delta}:=\sqrt{\left(\mathrm{DT}_{\delta}\right)^{2}-\left(\mathrm{DH}_{\delta}\right)^{2}} \mathrm{DK}_{\delta}:=\frac{\mathrm{DN}_{\delta}}{2} \\
& \mathrm{HK}_{\delta}:=\mathrm{DK}_{\delta}-\mathrm{DH}_{\delta} \quad \mathrm{KO}_{\delta}:=\mathrm{DK}_{\delta} \quad \mathrm{HO}_{\delta}:=\sqrt{\left(\mathrm{KO}_{\delta}\right)^{2}-\left(\mathrm{HK}_{\delta}\right)^{2}} \\
& \mathrm{DS}_{\delta}:=\mathrm{DN}_{\delta} \quad \mathrm{DO}_{\delta}:=\sqrt{\left(\mathrm{DH}_{\delta}\right)^{2}+\left(\mathrm{HO}_{\delta}\right)^{2}} \quad \mathrm{LS}_{\delta}:=\frac{\mathrm{HO}_{\delta} \cdot \mathrm{DS}_{\delta}}{\mathrm{DO}_{\delta}} \\
& \mathrm{DL}_{\delta}:=\sqrt{\left(\mathrm{DS}_{\delta}\right)^{2}-\left(\mathrm{LS}_{\delta}\right)^{2}} \quad \mathrm{KL}_{\delta}:=\mathrm{DK}_{\delta}-\mathrm{DL}_{\delta} \quad \mathrm{KQ}_{\delta}:=\mathrm{DK}_{\delta} \\
& \mathrm{LQ}_{\delta}:=\sqrt{\left(\mathrm{KQ}_{\delta}\right)^{2}-\left(\mathrm{KL}_{\delta}\right)^{2}} \quad \mathrm{DQ}_{\delta}:=\sqrt{\left(\mathrm{DL}_{\delta}\right)^{2}+\left(\mathrm{LQ}_{\delta}\right)^{2}} \quad \mathrm{DR}_{\delta}:=\mathrm{DQ}_{\delta}
\end{aligned}
\]
\[
\mathrm{DG}_{\delta}:=\frac{\mathrm{DH}_{\delta} \cdot \mathrm{DR}_{\delta}}{\mathrm{DT}_{\delta}} \quad \mathrm{DP}_{\delta}:=\mathrm{DO}_{\delta} \quad \mathrm{DF}_{\delta}:=\frac{\mathrm{DH}_{\delta} \cdot \mathrm{DP}_{\delta}}{\mathrm{DT}_{\delta}} \quad \mathrm{EM}:=\frac{\mathrm{EN}}{2}
\]
\[
\mathrm{Mf}:=\frac{\mathrm{EN}}{6} \quad \mathrm{Ma}:=\mathrm{EM} \quad \text { af }:=\sqrt{\mathrm{Ma}^{2}-\mathrm{Mf}^{2}} \quad \mathrm{Nf}:=\frac{\mathrm{EN}}{3} \quad \mathrm{Na}:=\sqrt{\mathrm{af}^{2}+\mathrm{Nf}^{2}}
\]
\[
\mathrm{Nn}:=\mathrm{Na} \quad \mathrm{MN}:=\mathrm{EM} \quad \mathrm{Mn}:=\sqrt{\mathrm{Nn}^{2}-\mathrm{MN}^{2}} \quad \mathrm{nr}:=\mathrm{Na} \quad \mathrm{nq}:=\mathrm{EM}
\]
\[
\mathrm{qr}:=\mathrm{nr}-\mathrm{nq} \quad \mathrm{Eq}:=\mathrm{Mn} \quad \mathrm{Er}:=\sqrt{\mathrm{Eq}^{2}+\mathrm{qr}^{2}} \quad \mathrm{En}:=\mathrm{Na} \quad \mathrm{Ek}:=\frac{\mathrm{Er}^{2}}{2 \cdot \mathrm{En}}
\]
\[
\mathrm{EG}_{\delta}:=\mathrm{DG}_{\delta}-\mathrm{DE}_{\delta} \quad \mathrm{GN}_{\delta}:=\mathrm{EN}-\mathrm{EG}_{\delta} \quad \mathrm{Gd}_{\delta}:=\sqrt{\mathrm{EG}_{\delta} \cdot \mathrm{GN}_{\delta}}
\]
\[
\mathrm{Ed}_{\delta}:=\sqrt{\left(\mathrm{EG}_{\delta}\right)^{2}+\left(\mathrm{Gd}_{\delta}\right)^{2}} \quad \mathrm{Ee}_{\delta}:=\mathrm{Ed}_{\delta} \quad \mathrm{Em}_{\delta}:=\frac{\left(\mathrm{Ee}_{\delta}\right)^{2}}{2 \cdot \mathrm{En}} \mathrm{Km}_{\delta}:=\mathrm{Em}_{\delta}-\mathrm{Ek}
\]
\[
\mathrm{em}_{\delta}:=\sqrt{\left(\mathrm{Ee}_{\delta}\right)^{2}-\mathrm{Em}_{\delta}} \mathrm{kr}_{\delta}:=\sqrt{\mathrm{Er}^{2}-\mathrm{Ek}^{2}} \mathrm{er}_{\delta}:=\sqrt{\left(\mathrm{em}_{\delta}+\mathrm{kr}_{\delta}\right)^{2}+\left(\mathrm{km}_{\delta}\right)^{2}}
\]
\[
\mathrm{pr}_{\delta}:=\frac{\left(\mathrm{er}_{\delta}\right)^{2}}{2 \cdot \mathrm{nr}} \quad \mathrm{pq}_{\delta}:=\mathrm{pr}_{\delta}-\mathrm{qr} \quad \mathrm{Eh}_{\delta}:=\mathrm{pq}_{\delta} \quad \mathrm{ep}_{\delta}:=\sqrt{\left(\mathrm{er}_{\delta}\right)^{2}-\left(\mathrm{pr}_{\delta}\right)^{2}}
\]
\[
\mathrm{hp}:=\mathrm{Mn} \quad \mathrm{eh}_{\delta}:=\mathrm{ep}_{\delta}-\mathrm{hp} \quad \mathrm{Nh}_{\delta}:=\mathrm{EN}-\mathrm{Eh}_{\delta} \mathrm{Ne}_{\delta}:=\sqrt{\left(\mathrm{Nh}_{\delta}\right)^{2}+\left(\mathrm{eh}_{\delta}\right)^{2}}
\]
\[
\mathrm{Nb}_{\delta}:=\mathrm{Ne}_{\delta} \quad \mathrm{NJ}_{\delta}:=\frac{\left(\mathrm{Nb}_{\delta}\right)^{2}}{\mathrm{EN}} \quad \mathrm{EJ}_{\delta}:=\mathrm{EN}-\mathrm{NJ}_{\delta} \quad \mathrm{GJ}_{\delta}:=\mathrm{EJ}_{\delta}-\mathrm{EG}_{\delta}
\]

\(\mathrm{EF}_{\delta}:=\mathrm{DF}_{\delta}-\mathrm{DE}_{\delta} \quad \mathrm{FN}_{\delta}:=\mathrm{EN}-\mathrm{EF}_{\delta}\)
\(\mathrm{Ft}_{\delta}:=\sqrt{\mathrm{EF}_{\delta} \cdot \mathrm{FN}_{\delta}} \quad \mathrm{Et}_{\delta}:=\sqrt{\left(\mathrm{EF}_{\delta}\right)^{2}+\left(\mathrm{Ft}_{\delta}\right)^{2}}\)
\(\mathrm{Eu}_{\delta}:=\mathrm{Et}_{\delta} \quad \mathrm{Ex}_{\delta}:=\frac{\left(\mathrm{Eu}_{\delta}\right)^{2}}{2 \cdot \mathrm{En}} \quad \mathrm{kx}_{\delta}:=\mathrm{Ek}-\mathrm{Ex}_{\delta}\)
\(\mathrm{ux}_{\delta}:=\sqrt{\left(\mathrm{Eu}_{\delta}\right)^{2}-\left(\mathrm{Ex}_{\delta}\right)^{2}} \mathrm{ur}_{\delta}:=\sqrt{\left(\mathrm{ux}_{\delta}+\mathrm{kr}_{\delta}\right)^{2}+\mathrm{kx}_{\delta}}\)
\(\mathrm{ry}_{\delta}:=\frac{\left(\mathrm{ur}_{\delta}\right)^{2}}{2 \cdot \mathrm{nr}} \quad \mathrm{qy}_{\delta}:=\mathrm{ry}_{\delta}-\mathrm{qr} \quad \mathrm{Ev}_{\delta}:=\mathrm{qy}_{\delta}\)
\(\mathrm{uy}_{\delta}:=\sqrt{\left(\mathrm{ur}_{\delta}\right)^{2}-\left(\mathrm{ry}_{\delta}\right)^{2}} \quad\) vy \(:=\mathrm{Mn} \mathrm{uv}_{\delta}:=\mathrm{uy}_{\delta}-\mathrm{vy}\)
\(\mathrm{Nv}_{\delta}:=\mathrm{EN}-\mathrm{Ev}_{\delta} \quad \mathrm{Nu} u_{\delta}:=\sqrt{\left(\mathrm{Nv}_{\delta}\right)^{2}+\left(\mathrm{uv} v_{\delta}\right)^{2}}\)
\(\mathrm{Ns}_{\delta}:=\mathrm{Nu}_{\delta} \quad \mathrm{NI}_{\delta}:=\frac{\left(\mathrm{Ns}_{\delta}\right)^{2}}{\mathrm{EN}} \quad \mathrm{EI}_{\delta}:=\mathrm{EN}-\mathrm{NI}_{\delta}\)
\(\mathrm{FI}_{\delta}:=\mathrm{EI}_{\delta}-\mathrm{EF}_{\delta}\)
\(\operatorname{CUBE}_{-} \mathrm{S}_{\delta}:=\left(\mathrm{DE}_{\delta}\right)^{2} \cdot \mathrm{DN}_{\delta} \mathrm{RT}_{-} \mathrm{S}_{\delta}:=\left(\mathrm{CUBE}_{-} \mathrm{S}_{\delta}\right)^{\frac{1}{3}} \mathrm{CUBE}_{-} \mathrm{L}_{\delta}:=\mathrm{DE}_{\delta} \cdot\left(\mathrm{DN}_{\delta}\right)^{2} \quad \mathrm{RT}_{-} \mathrm{L}_{\delta}:=\left(\mathrm{CUBE}_{-} \mathrm{L}_{\delta}\right)^{\frac{1}{3}}\)
\(\mathrm{BASE}_{-} \mathrm{C}_{\delta}:=\mathrm{RT}_{-} \mathrm{L}_{\delta}-\mathrm{RT}_{-} \mathrm{S}_{\delta}\)

\(\mathrm{BS}_{-} \mathrm{PJ} 1_{\delta}:=\sqrt{\mathrm{GJ}_{\delta}+\mathrm{FI}_{\delta}} \mathrm{BS}_{-} \mathrm{PJ}_{\delta}:=\frac{\mathrm{GJ}_{\delta}+\mathrm{FI}_{\delta}}{2}\)
DIF1 \({ }_{\delta}:=\) BASE_C \(_{\delta}-\mathrm{BS}_{-} \mathrm{PJ} 1_{\delta}\)
\(\mathrm{DIF}_{\delta}:=\mathrm{BASE}_{-} \mathrm{C}_{\delta}-\mathrm{BS}_{-} \mathrm{PJ} 2_{\delta}\)
\(\mathrm{E}_{-} \mathrm{L}_{\delta}:=\mathrm{DG}_{\delta}-\mathrm{RT}_{-} \mathrm{S}_{\delta} \quad \mathrm{E}_{-} \mathrm{S}_{\delta}:=\mathrm{RT}_{-} \mathrm{S}_{\delta}-\mathrm{DF}_{\delta}\)
\(\mathrm{RATIO}_{\delta}:=\frac{\mathrm{E}_{-} \mathrm{L}_{\delta}}{\mathrm{E}_{-} \mathrm{S}_{\delta}} \quad \mathrm{A}:=1 . .25 \quad \mathrm{~B}:=26 . .50\)
\(C:=51 . .75 \quad D:=76 . .100\)



Although this is a simpler figure to proof, the ratios involved are quite interesting. The base is divided by the perpendicular bisector into a ratio. The remainder of the base, and the opposite side are then divided into equal ratios. The resultant progressions are very nice.

The two ratios to find are KL:IK and FL:FO.

\[
\mathrm{AJ}:=55 \mathrm{AH}:=\frac{\mathrm{AJ}}{2} \quad \mathrm{HJ}:=\mathrm{AH}
\]

BR := BASE_RATIO
BS := BISEC_SEG
\(\mathrm{AF}:=\frac{\mathrm{AJ}}{\mathrm{BR}} \mathrm{FJ}:=\mathrm{AJ}-\mathrm{AF} \delta:=0 . . \mathrm{BS}\)
\(\mathrm{FI}_{\delta}:=\frac{\mathrm{FJ}}{\mathrm{BS}} \cdot \delta \mathrm{AI}_{\delta}:=\mathrm{AF}+\mathrm{FI}_{\delta}\)
\(\mathrm{AD}_{\delta}:=\frac{\mathrm{AI}_{\delta}}{2} \mathrm{AO}:=\sqrt{\frac{\mathrm{AJ}^{2}}{2}} \quad \mathrm{AK}_{\delta}:=\frac{\mathrm{AO}}{\mathrm{BS}} \cdot \delta \quad \mathrm{FH}:=\mathrm{AH}-\mathrm{AF} \quad \mathrm{HO}:=\mathrm{AH}\)
\(\mathrm{FO}:=\sqrt{\mathrm{HO}^{2}+\mathrm{FH}^{2}} \mathrm{CK}_{\delta}:=\sqrt{\frac{\left(\mathrm{AK}_{\delta}\right)^{2}}{2}} \mathrm{AC}_{\delta}:=\mathrm{CK}_{\delta} \quad \mathrm{CI}_{\delta}:=\mathrm{AI}_{\delta}-\mathrm{AC}_{\delta}\)
\[
\begin{aligned}
& \mathrm{IK}_{\delta}:=\sqrt{\left(\mathrm{CK}_{\delta}\right)^{2}+\left(\mathrm{CI}_{\delta}\right)^{2}} \\
& \mathrm{BC}_{\delta}:=\frac{\mathrm{FH} \cdot \mathrm{CK}_{\delta}}{\mathrm{HO}} \mathrm{BI}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CI}_{\delta} \\
& \mathrm{BK}_{\delta}:=\sqrt{\left(\mathrm{CK}_{\delta}\right)^{2}+\left(\mathrm{BC}_{\delta}\right)^{2}} \\
& \mathrm{FL}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{FI}_{\delta}}{\mathrm{BI}_{\delta}}
\end{aligned}
\]

\(\mathrm{IL}_{\delta}:=\frac{\mathrm{IK}_{\delta} \cdot \mathrm{FL}_{\delta}}{\mathrm{BK}_{\delta}} \quad \mathrm{KL}_{\delta}:=\mathrm{IK}_{\delta}-\mathrm{IL}_{\delta}\)
\[
\begin{array}{ll}
(\mathrm{BR})= & \mathrm{BASE} \_ \text {RATIO } \equiv 3 \\
(\mathrm{BS})= & \mathrm{BISEC} \_ \text {SEG } \equiv 5
\end{array} \quad \leftarrow \text { Insert Values Here } .
\]




\section*{Pyramid of Ratios III}

Another set of ratios to explore is AC/AF Again one can plug in numbers for the first three variables at the end of the document. In most of these early works, I did not use the symbolic processor to find the formula as they seeem rather obvious. I do not think it could have gotten by my switch for AF anyway.

\(\mathrm{Dg}:=\mathrm{Ag}-\mathrm{AD} \quad \mathrm{CD}:=\sqrt{\mathrm{Dg}^{2}+\mathrm{Cg}^{2}} \quad \mathrm{DE}_{\delta}:=\frac{\mathrm{CD}}{\mathrm{BS}} \cdot \delta\)
\(\mathrm{Dh}_{\delta}:=\frac{\mathrm{Dg} \cdot \mathrm{DE}_{\delta}}{\mathrm{CD}} \quad \mathrm{Eh}_{\delta}:=\sqrt{\left(\mathrm{DE}_{\delta}\right)^{2}-\left(\mathrm{Dh}_{\delta}\right)^{2}} \mathrm{gh}_{\delta}:=\mathrm{Dg}-\mathrm{Dh}_{\delta} \mathrm{Bh}_{\delta}:=\mathrm{Bg}+\mathrm{gh}_{\delta}\)

\[
\begin{aligned}
& \mathrm{BE}_{\delta}:=\sqrt{\left(\mathrm{Bh}_{\delta}\right)^{2}+\left(\mathrm{Eh}_{\delta}\right)^{2}} \mathrm{CE}_{\delta}:=\mathrm{CD}-\mathrm{DE}_{\delta} \\
& \mathrm{BC}:=\sqrt{\left.2 \cdot \mathrm{Bg}^{2} \mathrm{Bi}_{\delta}:=\frac{\left(\mathrm{BE}_{\delta}\right)^{2}}{\mathrm{BC}} \mathrm{Ck}_{\delta}:=\frac{(\mathrm{CE}}{\delta}\right)^{2}} \mathrm{BC} \\
& \mathrm{ik}_{\delta}:=\mathrm{BC}-\mathrm{Bi}_{\delta}-\mathrm{Ck}_{\delta} \quad \mathrm{ij}_{\delta}:=\frac{\mathrm{ik}_{\delta}}{2} \\
& \mathrm{Bj}_{\delta}:=\mathrm{Bi}_{\delta}+\mathrm{ij}_{\delta} \quad \mathrm{Cj}_{\delta}:=\mathrm{BC}-\mathrm{Bj}_{\delta} \quad \mathrm{AC}:=\mathrm{BC}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{Em}_{\delta}:=\mathrm{Cj}_{\delta} \quad \mathrm{EF}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{Em}_{\delta}}{\mathrm{Bj}_{\delta}} \\
& \mathrm{BF}_{\delta}:=\mathrm{BE}_{\delta}+\mathrm{EF}_{\delta} \quad \mathrm{CF}_{\delta}:=\sqrt{\left(\mathrm{BF}_{\delta}\right)^{2}-\mathrm{BC}^{2}}
\end{aligned}
\]
\[
\mathrm{AF}_{\delta}:=\mathrm{if}\left(\mathrm{BR}>1, \mathrm{AC}-\mathrm{CF}, \mathrm{if}\left(\mathrm{BF}_{\delta}<0, \mathrm{AC}-\mathrm{CF}, \mathrm{AC}+\mathrm{CF}\right)\right)_{\delta}
\]

Plug in values here!
(AB) BASE_LENGTH \(\equiv 22\)
(BS) BISEC_SEG \(\equiv 5\)
(BR) BASE_RATIO \(\equiv 3\)


\section*{The Pythagorean Completion.}


When one looks at a right triangle, one should see a square root and two square derivatives. The root, BD , is the root of \(\mathrm{AB} \times \mathrm{BC}\).
The two square derivatives are \(\mathrm{AB}=\mathrm{A} \mathrm{L}^{2} / \mathrm{AC}\) and of course \(\mathrm{BC}=\mathrm{CD}^{2} / \mathrm{AC}\). The square derivatives allow one to find the perpendicular bisector of the right triangle. These last two can be found with plain division instead of a root function. Since the area of a triangle is \(1 / 2 b h\), finding the area of a right triangle is easy knowing just the length of two sides.

The process for finding the perpendicular for any other triangle is by completing simultaneous right triangles. The two bisectors created by these triangles will place the bisector of our starting triangle exactly in the center of them. I will use the following algorithm extensively when working in Euclidean geometry.
al \(\lg 0 \cdot r\) ithm \(n\).
1. Math. a) any systematic method of solving a certain kind of problem. Ref. Lib.


In this version, AC has been "formulated" into the lowest terms. I have nothing against Heron's formula, but a correct reduction has only the input constants showing.
\(\mathrm{AE}:=6 \quad \mathrm{AF}:=5 \quad \mathrm{EF}:=4 \quad \leftarrow\) Plug your values in here .
The sum of any two sides of a triangle is greater than the third. Euclid.

Is_This_a_Triangle \(:=\frac{1}{(\mathrm{AE}+\mathrm{AF} \geq \mathrm{EF}) \cdot(\mathrm{AE}+\mathrm{EF} \geq \mathrm{AF}) \cdot(\mathrm{AF}+\mathrm{EF} \geq \mathrm{AE})} \mathrm{AG}:=\mathrm{AF} \mathrm{EH}:=\mathrm{EF}\)
\[
\mathrm{AB}:=\frac{\mathrm{AG}^{2}}{\mathrm{AE}} \mathrm{DE}:=\frac{\mathrm{EH}^{2}}{\mathrm{AE}} \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{AC}:=\frac{1}{2} \cdot \frac{\mathrm{AF}^{2}}{\mathrm{AE}}+\frac{1}{2} \cdot \mathrm{AE}-\frac{1}{2} \cdot \frac{\mathrm{EF}^{2}}{\mathrm{AE}}
\]

The perpendicular bisector from AC is given as
\[
\mathrm{AC}=3.75
\]
\(\mathrm{CE}:=\mathrm{AE}-\mathrm{ACCF} \mathrm{Cl}_{1}:=\sqrt{\mathrm{EF}^{2}-\mathrm{CE}^{2}} \mathrm{CF}_{2}:=\sqrt{\mathrm{AF}^{2}-\mathrm{AC}^{2}} \mathrm{CF}_{1}=3.307\)
The endpoints of two sides of a triangle cannot meet in two different places. Euclid.
\[
\mathrm{CF}_{1}-\mathrm{CF}_{2}=0
\]

Area \(:=\frac{\mathrm{AE}}{2} \cdot \mathrm{CF}_{1} \quad\) Area \(=9.922 \quad \mathrm{~S}_{1}:=\mathrm{AE} \quad \mathrm{S}_{2}:=\mathrm{AF} \quad \mathrm{S}_{3}:=\mathrm{EF}\)
\[
\frac{\sqrt{S_{1}+S_{2}+S_{3}} \cdot \sqrt{-S_{1}+S_{2}+S_{3}} \cdot \sqrt{S_{1}-S_{2}+S_{3}} \cdot \sqrt{S_{1}+S_{2}-S_{3}}}{4}=9.922
\]

The following result could lead to a more general rule regarding the squares on two sides of any triangle as related to the third side.
\[
\left(\mathrm{AE}^{2}-(\mathrm{BD} \cdot \mathrm{AE})\right)-\left(\mathrm{AF}^{2}+\mathrm{EF}^{2}\right)=0
\]
\[
\mathrm{AE}^{2}-(\mathrm{BD} \cdot \mathrm{AE})=41 \quad \mathrm{EF}^{2}+\mathrm{AF}^{2}=41
\]

If we agree to call BD the right angle defect, thenthe squares on two sides of a triangle are equal to the remaining side squared minus its right angle defect multiplied by that side. Or if one wants to be less obtuse,

\[
\begin{array}{ll}
\mathrm{Ax}:=\frac{\mathrm{AE}}{2} \mathrm{Cx}:=\mathrm{Ax}-\mathrm{AC} & \mathrm{Fx}:=\sqrt{\left(\mathrm{CF}_{1}\right)^{2}+\mathrm{Cx}^{2}} \\
\frac{\mathrm{AE}^{2}}{2}+2 \cdot \mathrm{Fx}^{2}=41 & \mathrm{AF}^{2}+\mathrm{EF}^{2}=41
\end{array}
\]

Calling Fx the radial to the bisector,The squares on any two sides of a triangle are equal to half of the square on the remaining side added to twice the square of its. radial bisector.

\[
\left(\mathrm{AF}^{2}+\mathrm{EF}^{2}\right)-\left(\frac{\mathrm{AE}^{2}}{2}+2 \cdot \mathrm{Fx}^{2}\right)=0
\]
\[
F x-\sqrt{\frac{\left(\mathrm{AF}^{2}+\mathrm{EF}^{2}\right)-\frac{\mathrm{AE}^{2}}{2}}{2}}=0
\]
\[
\mathrm{Fx}-\frac{1}{2} \cdot \sqrt{2 \cdot \mathrm{AF}^{2}+2 \cdot \mathrm{EF}^{2}-\mathrm{AE}^{2}}=0
\]

It is shown that there are at least two formulas which relate the squares of any two sides of a triangle to the third, this makes the Pythagorean theorem a statement of a single case. This single case is, however, a fundamental geometrical tool.
\(\frac{\mathrm{DE}_{\delta}}{\mathrm{DG}}\)


07_25_93.MCD

\section*{Pyramid Of Ratio Series IV Working the Curve}

This the ratios will be working \(\quad \overline{\mathrm{CG}_{\delta}}\) against a curve, instead of a straight line intercept. The ratios found are DE:DG and AG:GC. This series is not yet completed, as the ratio \(\mathrm{AB}: \mathrm{AD}\) remains fixed.
At the end of this paper, \(\pi\) will be calculated to any number of given segments by summing all the segments AG.

\[
\mathrm{AD}:=1 \quad \delta:=0 . . \mathrm{BS} \mathrm{AB}:=\frac{\mathrm{AD}}{2}
\]

The following will keep the tables from getting out of hand.
\[
\begin{aligned}
& \mathrm{BC}:=\mathrm{AB} \mathrm{BD}:=\mathrm{AB} \mathrm{BE}_{\delta}:=\frac{\mathrm{BC}}{\mathrm{BS}} \cdot \delta \\
& \mathrm{DE}_{\delta}:=\sqrt{\mathrm{BD}^{2}+\left(\mathrm{BE}_{\delta}\right)^{2}} \mathrm{DF}_{\delta}:=\frac{\mathrm{BD}^{2}}{\mathrm{DE}_{\delta}} \\
& \mathrm{DG}_{\delta}:=2 \cdot \mathrm{DF}_{\delta}
\end{aligned}
\]
\[
\begin{array}{ll}
\frac{\mathrm{DE}_{\delta}}{\mathrm{DG}_{\delta}} & \left(\frac{\left(\frac{\delta}{\mathrm{BS}}\right)^{2}+1}{2}\right. \\
\hline 0.5 \\
\hline 0.514 \\
\hline 0.556 \\
\hline 0.625 \\
\hline 0.722 \\
\hline 0.847 \\
\hline 1 & \begin{array}{|c|}
\hline 0.5 \\
\hline 0.514 \\
\hline 0.556 \\
\hline 0.625 \\
\hline 0.722 \\
\hline 0.847 \\
\hline 1 \\
\hline
\end{array}
\end{array}
\]


The series formed in these papers are somewhat attractive for their simplicity.
\(\mathrm{DH}_{\delta}:=\frac{\left(\mathrm{DG}_{\delta}\right)^{2}}{\mathrm{AD}} \mathrm{BH}_{\delta}:=\mathrm{DH}_{\delta}-\mathrm{BD} \quad \mathrm{GH}_{\delta}:=\sqrt{\left(\mathrm{DG}_{\delta}\right)^{2}-\left(\mathrm{DH}_{\delta}\right)^{2}} \mathrm{BI}_{\delta}:=\mathrm{GH}_{\delta} \quad \mathrm{CI}_{\delta}:=\mathrm{BC}-\mathrm{BI}_{\delta}\)
\[
\mathrm{GI}_{\delta}:=\mathrm{BH}_{\delta} \mathrm{AH}_{\delta}:=\mathrm{AB}-\mathrm{BH}_{\delta}
\]
\[
\mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{GI}_{\delta}\right)^{2}+\left(\mathrm{CI}_{\delta}\right)^{2}}
\]
\[
\mathrm{AG}_{\delta}:=\sqrt{\left(\mathrm{AH}_{\delta}\right)^{2}+\left(\mathrm{GH}_{\delta}\right)^{2}}
\]



Finding the value of PI to any given number of unequal segments.
\[
\begin{aligned}
& \chi:=1 . . \mathrm{BS} \\
& \mathrm{JK}_{\chi}:=\mathrm{GI}_{\chi} \mathrm{GM}_{\chi}:=\mathrm{GI}_{\chi-1}-\mathrm{JK}_{\chi} \\
& \mathrm{CK}_{\chi}:=\mathrm{CI}_{\chi} \quad \mathrm{IK}_{\chi}:=\mathrm{CI}_{\chi-1}-\mathrm{CK}_{\chi} \\
& \mathrm{GJ}_{\delta}:=\sqrt{\left(\mathrm{GM}_{\delta}\right)^{2}+\left(\mathrm{IK}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{BS} \equiv 6 \quad \sum_{\delta} \mathrm{GJ}_{\delta} \cdot 4=3.13154608512668\)
\[
\begin{gathered}
\text { Computed for } 5000 \text { segments } \mathrm{BS} \equiv 5000 \sum_{\delta} \mathrm{GJ}_{\delta} \cdot 4=3.141592639069159 \\
\pi=3.141592653589793
\end{gathered}
\]


10_05_93.MCD
What is the relationship of DE:DF?
\[
\begin{aligned}
& \mathrm{BI}:=10 \\
& \mathrm{BH}:=\frac{\mathrm{BI}}{2} \quad \mathrm{HI}:=\mathrm{BH} \\
& \mathrm{z}:=100 \quad \delta:=1 . . \mathrm{z} \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8}
\end{aligned}
\]
\[
\mathrm{AI}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BIAD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AI}_{\delta}}
\]
\[
\mathrm{JM}:=\mathrm{BH} \quad \mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta}
\]
\[
\mathrm{DH}_{\delta}:=\mathrm{BH}-\mathrm{BD}_{\delta} \mathrm{MK}_{\delta}:=\mathrm{DH}_{\delta}
\]
\[
\mathrm{HO}:=\mathrm{BH} \quad \mathrm{DO}_{\delta}:=\sqrt{\mathrm{HO}^{2}-\left(\mathrm{DH}_{\delta}\right)^{2}}
\]
\[
\mathrm{DK}:=\mathrm{BI} \quad \mathrm{KO}_{\delta}:=\mathrm{DK}+\mathrm{DO}_{\delta}
\]
\[
\mathrm{DF}_{\delta}:=\frac{\mathrm{MK}_{\delta} \cdot \mathrm{DO}_{\delta}}{\mathrm{KO}_{\delta}} \quad \mathrm{AG}_{\delta}:=\left[\mathrm{AB}_{\delta} \cdot\left(\mathrm{AI}_{\delta}\right)^{2}\right]^{\frac{1}{3}}
\]
\[
\mathrm{AC}_{\delta}:=\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AI}_{\delta}\right]^{\frac{1}{3}} \quad \mathrm{AE}_{\delta}:=\frac{\mathrm{AG}_{\delta}+\mathrm{AC}_{\delta}}{2}
\]
\[
\mathrm{DE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AD}_{\delta} \quad \mathrm{R}_{\delta}:=\frac{\mathrm{DF}_{\delta}}{\mathrm{DE}_{\delta}}
\]

Sample points.


Apparently not a constant.

\title{
Gruntwork I on the Delian Solution
}

11_06_93.mcd

According to number theory, it is not possible to develop a cube root relationship using only linear and square root operations. Watch.

Given any circle ABE and any point, D , between AE.


Describe \(\mathrm{AK}, \mathrm{JK}, \mathrm{FJ}\) such that \(\mathrm{AK}=\mathrm{BC}\), \(\mathrm{JK}=\mathrm{HI}, \mathrm{FJ}=\mathrm{AH}\).

Do IJ and HK and CF meet at one and only one point L ?

\[
\begin{aligned}
& \mathrm{AC}:=10 \mathrm{AB}:=\frac{\mathrm{AC}}{2} \mathrm{BC}:=\mathrm{AB} \text { INC }:=500 \\
& \mathrm{MN}:=\mathrm{AC} \mathrm{BD}:=\mathrm{AB} \delta:=0 . . \mathrm{INC}-1
\end{aligned}
\]
\[
\mathrm{AM}_{\delta}:=\frac{\mathrm{AB}}{\mathrm{INC}} \cdot \delta \mathrm{BM}_{\delta}:=\mathrm{AB}-\mathrm{AM}_{\delta} \mathrm{FN}_{\delta}:=\mathrm{AM}_{\delta}
\]
\[
\mathrm{DM}_{\delta}:=\sqrt{\mathrm{BD}^{2}-\left(\mathrm{BM}_{\delta}\right)^{2}} \mathrm{DN}_{\delta}:=\mathrm{MN}+\mathrm{DM}_{\delta}
\]
\[
\mathrm{GN}_{\delta}:=\mathrm{BC}+\mathrm{BM}_{\delta} \quad \mathrm{DG}_{\delta}:=\sqrt{\left(\mathrm{GN}_{\delta}\right)^{2}+\left(\mathrm{DN}_{\delta}\right)^{2}}
\]
\[
\mathrm{IM}_{\delta}:=\frac{\mathrm{GN}_{\delta} \cdot \mathrm{DM}_{\delta}}{\mathrm{DN}_{\delta}} \mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{FN}_{\delta}\right)^{2}+\left(\mathrm{DN}_{\delta}\right)^{2}}
\]
\[
\mathrm{HM}_{\delta}:=\frac{\mathrm{FN}_{\delta} \cdot \mathrm{DM}_{\delta}}{\mathrm{DN}_{\delta}} \quad \mathrm{AH}_{\delta}:=\mathrm{AM}_{\delta}-\mathrm{HM}_{\delta}
\]

Construct BQ and HP parallel with AO.
KT and JU parallel with CF.
RT and SU parallel with AF.
\(\mathrm{AI}_{\delta}:=\mathrm{AM}_{\delta}+\mathrm{IM}_{\delta} \mathrm{CI}_{\delta}:=\mathrm{AC}-\mathrm{AI}_{\delta} \mathrm{CQ}_{\delta}:=\sqrt{\frac{\left(\mathrm{CI}_{\delta}\right)^{2}}{2}}\)
\(\mathrm{CH}_{\delta}:=\mathrm{AC}-\mathrm{AH}_{\delta} \mathrm{CP}_{\delta}:=\sqrt{\frac{\left(\mathrm{CH}_{\delta}\right)^{2}}{2}} \mathrm{CO}:=\sqrt{\frac{\mathrm{AC}^{2}}{2}}\)
\(\mathrm{AK}_{\delta}:=\mathrm{CI}_{\delta} \mathrm{AJ}_{\delta}:=\mathrm{CH}_{\delta} \mathrm{FJ}_{\delta}:=\mathrm{AH}_{\delta} \mathrm{US}_{\delta}:=\mathrm{FJ}_{\delta}\)
\(\mathrm{FK}_{\delta}:=\mathrm{AI}_{\delta} \mathrm{RT}_{\delta}:=\mathrm{FK}_{\delta} \mathrm{IJ}_{\delta}:=\sqrt{\left(\mathrm{AI}_{\delta}\right)^{2}+\left(\mathrm{AJ}_{\delta}\right)^{2}}\)
\(\mathrm{HK}_{\delta}:=\sqrt{\left(\mathrm{AH}_{\delta}\right)^{2}+\left(\mathrm{AK}_{\delta}\right)^{2} \mathrm{QU}_{\delta}:=\sqrt{\frac{\left(\mathrm{US}_{\delta}\right)^{2}}{2}}}\)
\(\mathrm{PT}_{\delta}:=\sqrt{\frac{\left(\mathrm{RT}_{\delta}\right)^{2}}{2}} \mathrm{IQ}_{\delta}:=\mathrm{CQ}_{\delta} \mathrm{HP}_{\delta}:=\mathrm{CP}_{\delta}\)

\[
\begin{aligned}
& \mathrm{IU}_{\delta}:=\mathrm{IQ}_{\delta}-\mathrm{QU}_{\delta} \mathrm{HT}_{\delta}:=\mathrm{HP}_{\delta}-\mathrm{PT}_{\delta} \\
& \mathrm{KT}_{\delta}:=\sqrt{\left(\mathrm{HK}_{\delta}\right)^{2}-\left(\mathrm{HT}_{\delta}\right)^{2}} \mathrm{JU}_{\delta}:=\sqrt{\left(\mathrm{IJ}_{\delta}\right)^{2}-\left(\mathrm{IU}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\mathrm{LQ}_{\delta}:=\frac{\mathrm{JU}_{\delta} \cdot \mathrm{IQ}_{\delta}}{\mathrm{IU}_{\delta}} \mathrm{P}_{\delta}:=\frac{\mathrm{KT}_{\delta} \cdot \mathrm{HP}_{\delta}}{\mathrm{HT}_{\delta}} \mathrm{OQ}_{\delta}:=\mathrm{CO}-\mathrm{CQ}_{\delta}
\]
\[
\mathrm{OP}_{\delta}:=\mathrm{CO}-\mathrm{CP}_{\delta} \mathrm{LO}_{\delta}:=\mathrm{LQ}_{\delta}-\mathrm{OQ}_{\delta}
\]
\[
\mathrm{LO}_{\delta}:=\mathrm{LP}_{\delta}-\mathrm{OP}_{\delta}
\]

DIFF_A \({ }_{\delta}:=\mathrm{LO} 1_{\delta}-\mathrm{LO} 2_{\delta}\)


IJ, HK, and CF meet in one point L
\[
\mathrm{HI}_{\delta}:=\mathrm{HM}_{\delta}+\mathrm{IM}_{\delta} \text { DIFF_B } \delta:=\mathrm{HI}_{\delta}-\sqrt{\mathrm{AH}_{\delta} \cdot \mathrm{CI}_{\delta}}
\]


The segment HI is the square root of the remaining segments \(\mathrm{AH}, \mathrm{CI}\).

\(\mathrm{FO}:=\mathrm{CO} \mathrm{FL} \delta_{\delta}:=\mathrm{LO}_{\delta}-\mathrm{FO}\)
\(\mathrm{FV}_{\delta}:=\sqrt{\frac{\left(\mathrm{FL}_{\delta}\right)^{2}}{2}} \mathrm{AM}_{\delta}:=\mathrm{FV}_{\delta}\)
\(\vee \mathrm{HM}_{\delta}:=\mathrm{AM}_{\delta}+\mathrm{AH}_{\delta} \mathrm{IM}_{\delta}:=\mathrm{HM}_{\delta}+\mathrm{HI}_{\delta}\)
\(\mathrm{CM}_{\delta}:=\mathrm{AM}_{\delta}+\mathrm{AC}\)

DIFF_C \(_{\delta}:=\left[\left(\mathrm{AM}_{\delta}\right)^{2} \cdot \mathrm{CM}_{\delta}\right]^{\frac{1}{3}}-\mathrm{HM}_{\delta}\)


HM is the cube root of \(\left(\mathrm{AM}_{\delta}\right)^{2} \cdot \mathrm{CM}_{\delta}\)
\(\mathrm{DIFF}_{-} \mathrm{D}_{\delta}:=\left[\mathrm{AM}_{\boldsymbol{\delta}} \cdot\left(\mathrm{CM}_{\delta}\right)^{2}\right]^{\frac{1}{3}}-\mathrm{IM}_{\delta}\)


IM is the cube root of \(\mathrm{AM}_{\delta} \cdot\left(\mathrm{CM}_{\delta}\right)^{2}\)

\section*{Solve for Cube Placement}
\(\qquad\)
B

D C
With straight edge and compass only, solve the given problem.
BE is the difference between the segments AE and \(A B\).
CD is the difference between the cube root of AB squared by AE and the cube root of AE squared by \(A B\). Find \(A B\).
\[
\mathrm{BE}=\mathrm{AE}-\mathrm{AB}
\]
\[
\begin{aligned}
& \mathrm{CD}=\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}-\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}} \\
& \mathrm{AB}=?
\end{aligned}
\]

\section*{Process Summary}


\(\Delta:=500 \quad \delta:=1 . . \Delta \quad B E:=100\)
\[
\mathrm{CD}_{\delta}:=\frac{\mathrm{BE}}{3 \cdot \Delta} \cdot \delta \quad \mathrm{CF}_{\delta}:=\frac{\mathrm{CD}_{\delta}}{2} \quad \mathrm{BG}_{\delta}:=\mathrm{CF}_{\delta}
\]
\[
\mathrm{BH}:=\frac{\mathrm{BE}}{2} \quad \mathrm{EH}:=\mathrm{BH} \quad \mathrm{GH}_{\delta}:=\mathrm{BH}-\mathrm{BG}_{\delta}
\]

\[
\begin{aligned}
& \mathrm{HI}_{\delta}:=\mathrm{GH}_{\delta} \quad \mathrm{IL}_{\delta}:=\mathrm{CD}_{\delta} \quad \mathrm{HJ}:=\mathrm{BH} \\
& \mathrm{HL}_{\delta}:=\sqrt{\left(\mathrm{HI}_{\delta}\right)^{2}-\left(\mathrm{IL}_{\delta}\right)^{2}} \quad \mathrm{HK}_{\delta}:=\frac{\mathrm{HL}_{\delta} \cdot \mathrm{HJ}}{\mathrm{HI}_{\delta}}
\end{aligned}
\]
\[
\mathrm{JK}_{\delta}:=\sqrt{\mathrm{HJ}^{2}-\left(\mathrm{HK}_{\delta}\right)^{2}} \mathrm{BK}_{\delta}:=\mathrm{BH}-\mathrm{HK}_{\delta}
\]
\[
\mathrm{EK}_{\delta}:=\mathrm{EH}+\mathrm{HK}_{\delta}
\]
\[
\mathrm{CJ}_{\delta}:=\sqrt{\left(\mathrm{JK}_{\delta}\right)^{2}+\left(\mathrm{BK}_{\delta}\right)^{2}} \quad \mathrm{MO}_{\delta}:=\mathrm{CD}_{\delta}
\]

\(\mathrm{EJ}_{\delta}:=\sqrt{\left(\mathrm{EK}_{\delta}\right)^{2}+\left(\mathrm{JK}_{\delta}\right)^{2}} \quad \mathrm{NP}_{\delta}:=\mathrm{CD}_{\delta}\)
\(\mathrm{EN}_{\delta}:=\frac{\mathrm{EK}_{\delta} \cdot \mathrm{NP}_{\delta}}{\mathrm{JK}_{\delta}} \quad \mathrm{BN}_{\delta}:=\mathrm{BE}-\mathrm{EN}_{\delta}\)
\(\mathrm{BM}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{MO}_{\delta}}{\mathrm{JK}_{\delta}} \mathrm{MN}_{\delta}:=\mathrm{BN}_{\delta}-\mathrm{BM}_{\delta}\) \(\mathrm{OP}_{\delta}:=\mathrm{MN}_{\delta}\)
It appears that \(\mathrm{MN}=\mathrm{CD}\).


\[
\begin{aligned}
& \mathrm{NQ}_{\delta}:=\mathrm{EN}_{\delta} \quad \mathrm{PQ}_{\delta}:=\mathrm{NQ}_{\delta}-\mathrm{NP}_{\delta} \\
& \mathrm{AN}_{\delta}:=\frac{\mathrm{OP}_{\delta} \cdot \mathrm{NQ}_{\delta}}{\mathrm{PQ}_{\delta}} \quad \mathrm{AB}_{\delta}:=\mathrm{AN}_{\delta}-\mathrm{BN}_{\delta}
\end{aligned}
\]
\[
\mathrm{AM}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BM}_{\delta} \quad \mathrm{AN}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BN}_{\delta}
\]
\[
\mathrm{AE}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BE}
\]
\[
\mathrm{ROOT}_{\delta}:=\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AE}_{\delta}\right]^{\frac{1}{3}}
\]
\[
\mathrm{ROOT}_{\delta}:=\left[\mathrm{AB}_{\delta} \cdot\left(\mathrm{AE}_{\delta}\right)^{2}\right]^{\frac{1}{3}}
\]


We seem to have a cube root relationship



Sample Points along the arc.

Last ratio. \(\frac{\mathrm{BE}}{\mathrm{CD}_{\Delta}}=3\)
\(\mathrm{D}_{-} \mathrm{S}_{\delta}:=\sqrt{\mathrm{EN}_{\delta} \cdot \mathrm{BM}_{\delta}}-\mathrm{MN}_{\delta}\)


The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship.


\section*{Gruntwork II on the Delian Solution}

Given any acute angle in the isosceles, divide the base leg as shown. Do the resultant segments show any particular relationship to one another?

Process Summary


The figure indicates a possible cubic relationship. This is what will be tested along with some of the constants involved.
\(\mathrm{D}:=10 \Delta:=90 \quad \delta:=1 . . \Delta \cdot \mathrm{D}\)
\(\Delta\) will give the the range as 90 degrees. D will further divide each degree into smaller segments.

AE \(:=100\)
\(\mathrm{AF}:=\mathrm{AE} \quad \angle \mathrm{A}_{\delta}:=\frac{\delta \cdot \mathrm{deg}}{\mathrm{D}}\)
\(\mathrm{DF}_{\boldsymbol{\delta}}:=\mathrm{AF} \cdot\left(\sin \left(\angle \mathrm{A}_{\boldsymbol{\delta}}\right)\right)\)
\(\mathrm{AD}_{\delta}:=\sqrt{\mathrm{AF}^{2}-\left(\mathrm{DF}_{\delta}\right)^{2}}\)


The simple figure yields a cube root relationship.


Sample points taken along DE.
There are \(\mathrm{D} \cdot \Delta=900\) figures represented.


E E D C I B


I would interpret this to mean yes.

Is then, CD the square root of BC and DE ?


I would interpret this to mean yes also.


E D K C I B

Is AK the square root of AB AE ?
\[
\begin{aligned}
& \mathrm{BE}_{\delta}:=\mathrm{AE}-\mathrm{AB}_{\delta} \mathrm{BJ}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{BE}_{\delta}} \\
& \mathrm{AJ}_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}+\left(\mathrm{BJ}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{A} \quad \mathrm{AK}_{\delta}:=\mathrm{AJ}_{\delta}\)

Apparently so.



E D K C I B

Do N, O, and P lie on the same arc?
\[
\begin{aligned}
& \mathrm{DN}_{\delta}:=\sqrt{\mathrm{AD}_{\delta} \cdot \mathrm{DE}_{\delta}} \\
& \mathrm{AN}_{\delta}:=\sqrt{\left(\mathrm{AD}_{\delta}\right)^{2}+\left(\mathrm{DN}_{\delta}\right)^{2}} \\
& \mathrm{AO}_{\delta}:=\frac{\mathrm{AG}_{\delta} \cdot \mathrm{AK}_{\delta}}{\mathrm{AC}_{\delta}} \\
& \mathrm{AP}_{\delta}:=\frac{\mathrm{AJ}_{\delta} \cdot \mathrm{AC}_{\delta}}{\mathrm{AB}_{\delta}}
\end{aligned}
\]

Another affirmative.


\title{
The Archamedian Paper Trisector: \\ 11_11_B3.MCD
}


I have never seen the developed figure from which the ARchamedian Pager Trisector derives.
\(\mathrm{DE}=\mathrm{AC}\), and by using a piece of marked paper, CDE can be somewhat aligned producing the trisection \(\mathrm{CEB}=1 / 3 \mathrm{CAB}\).

Process Summary


In both cases \(C D B\) is \(1 / 3\) of \(C A B\). It appears that trisection might occur for the entire circle.
\(\mathrm{AE}:=100000 \delta:=0 . . \Delta\)


\(\mathrm{FH}_{\delta}:=\mathrm{CH}-\mathrm{CF}_{\delta} \quad \mathrm{Ca}_{\delta}:=\frac{\mathrm{Cb}_{\delta} \cdot \mathrm{CF}_{\delta}}{\mathrm{CH}} \mathrm{Fa}_{\delta}:=\sqrt{\left(\mathrm{CF}_{\delta}\right)^{2}-\left(\mathrm{Ca}_{\delta}\right)^{2}} \quad \mathrm{DF}_{\delta}:=\mathrm{FH}_{\delta}\)
\(\mathrm{Da}_{\delta}:=\sqrt{\left(\mathrm{DF}_{\delta}\right)^{2}-\left(\mathrm{Fa}_{\delta}\right)^{2}} \quad \mathrm{Aa}_{\delta}:=\mathrm{AC}+\mathrm{Ca}_{\delta} \quad \mathrm{Ba}_{\delta}:=\mathrm{Da}_{\delta} \quad \mathrm{AB}_{\delta}:=\mathrm{Aa}_{\delta}-\mathrm{Ba}_{\delta}\)
By what is known about trisection, AB must equal FH .


\[
\begin{aligned}
& \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\left(2 \cdot \mathrm{Da}_{\delta}\right) \quad \mathrm{Db}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{Ab}_{\delta} \\
& \mathrm{DH}_{\delta}:=\sqrt{\left(\mathrm{Hb}_{\delta}\right)^{2}+\left(\mathrm{Db}_{\delta}\right)^{2}} \mathrm{Bj}_{\delta}:=\frac{\mathrm{DH}_{\delta} \cdot \mathrm{AB}_{\delta}}{\mathrm{AD}_{\delta}}
\end{aligned}
\]
\[
\mathrm{Bh}_{\delta}:=\frac{\mathrm{Bj}_{\delta}}{2} \quad \mathrm{Ah}_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}-\left(\mathrm{Bh}_{\delta}\right)^{2}}
\]
\(\mathrm{Fr}_{\delta}:=\mathrm{Ah}_{\delta} \quad \mathrm{Hn}_{\delta}:=\frac{\mathrm{DH}_{\delta}}{2} \quad \mathrm{pq}_{\delta}:=\mathrm{Bj}_{\delta} \quad \mathrm{mk}_{\delta}:=\mathrm{Bj}_{\delta}\)
\(\mathrm{Fn}_{\delta}:=\mathrm{if}\left[\mathrm{AD}_{\delta}>\mathrm{AC}, \sqrt{\left(\mathrm{FH}_{\delta}\right)^{2}-\left(\mathrm{Hn}_{\delta}\right)^{2}},-\sqrt{\left(\mathrm{FH}_{\delta}\right)^{2}-\left(\mathrm{Hn}_{\delta}\right)^{2}}\right] \quad \mathrm{nr}_{\delta}:=\mathrm{Fr}_{\delta}-\mathrm{Fn}_{\delta}\)
\[
\mathrm{Hm}_{\delta}:=\frac{\mathrm{DH}_{\delta}-\mathrm{mk}_{\delta}}{2} \mathrm{mp}_{\delta}:=\mathrm{nr}_{\delta} \quad \mathrm{Hp} p_{\delta}:=\sqrt{\left(\mathrm{mp}_{\delta}\right)^{2}+\left(\mathrm{Hm}_{\delta}\right)^{2}} \mathrm{HE}_{\delta}:=\sqrt{\left(\mathrm{Hb}_{\delta}\right)^{2}+\left(\mathrm{Eb}_{\delta}\right)^{2}}
\]

\(\angle \mathrm{A}_{\boldsymbol{\delta}}:=\operatorname{asin}\left(\frac{\mathrm{Bh}_{\boldsymbol{\delta}}}{\mathrm{AB}_{\boldsymbol{\delta}}} \cdot \frac{2}{\operatorname{deg}}\right.\)
Plug resolution in here \(\Delta \equiv 1000 \quad \angle \mathrm{~A}_{\Delta-1} \cdot 3=264.5635 \quad\) View \(\equiv|0|\)


One can safely say that the limit of the Archamedian paper trisector is 270 degrees.


\section*{To Square A Circle \\ 11_12_93.MCD}

Sometime in 1992, I remembered reading that some guy spent some time in prison and learned the process for squaring a circle off the base of a right triangle but then history lost it again, so I set out to find it and did. It took a couple hours so I wonder what he did with the rest of his time?

Using the approximation, \(\pi=22 / 7\), square the circle off the base of a right triangle.

\section*{Process Summary}

The most primitive formula for Area is \(\mathrm{A}=1 / 2 \mathrm{bh}\). We will not use its transformation to \(\pi \mathrm{r}^{2}\).

Special Value for BE, try 4, then look at the corresponding value for EJ.

\(\mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}} \quad \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CG}^{2}} \pi \_\mathrm{A}:=\frac{\mathrm{EG}^{2}}{\mathrm{BD}^{2}}\)
\[
\begin{aligned}
\pi_{-} \mathrm{A} & =3.14285714 \\
\frac{22}{7} & =3.14285714
\end{aligned}
\]
\(\mathrm{BE}:=4 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{DE}:=\mathrm{BD}\)
DI \(:=\mathrm{BD} \quad \mathrm{DH}:=\frac{3}{4} \cdot \mathrm{DI}\)
\(\mathrm{AB}:=\mathrm{DH} \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{EJ}:=\frac{\mathrm{DI} \cdot \mathrm{AE}}{\mathrm{AD}}\)
\(\mathrm{CE}:=\mathrm{EJ} \quad \mathrm{BC}:=\mathrm{BE}-\mathrm{CE}\)

Basically we have taken one half of the circle for \(1 / 2 \mathrm{~b}\) and crudely projected the arc EI for the height.


For any point K, construct GL parallel to HM. LK then projects to the point from which the figure forms the cubic.
\[
\begin{aligned}
& \mathrm{EJ}:=100 \Delta:=1000 \quad \delta:=0 . \Delta-1 \\
& \mathrm{EH}:=\frac{\mathrm{EJ}_{2}}{\mathrm{EF}_{\delta}:=\frac{\mathrm{EH}}{\Delta} \cdot \delta \quad \mathrm{FJ}_{\delta}:=\mathrm{EJ}-\mathrm{EF}_{\delta} \quad \mathrm{BH}:=\mathrm{EJ}}
\end{aligned}
\]
\[
\mathrm{FK}_{\delta}:=\sqrt{\mathrm{EF}_{\delta} \cdot \mathrm{FJ}_{\delta} \mathrm{FH}_{\delta}:=\mathrm{EH}-\mathrm{EF}_{\delta} \mathrm{Ka}_{\delta}:=\mathrm{FH}_{\delta} \quad \mathrm{Ha}_{\delta}:=\mathrm{FK}_{\delta}}
\]
\[
\mathrm{Ba}_{\delta}:=\mathrm{BH}+\mathrm{Ha}_{\delta} \quad \mathrm{GH}_{\delta}:=\frac{\mathrm{Ka}_{\delta} \cdot \mathrm{BH}}{\mathrm{Ba}_{\delta}} \mathrm{FG}_{\delta}:=\mathrm{FH}_{\delta}-\mathrm{GH}_{\delta}
\]
\[
\mathrm{Kb}_{\delta}:=\mathrm{FG}_{\delta} \quad \mathrm{GL}:=\mathrm{EH} \mathrm{~Gb}_{\delta}:=\mathrm{FK}_{\delta}
\]
\[
\mathrm{Lb}_{\delta}:=\mathrm{GL}-\mathrm{Gb}_{\delta} \mathrm{DG}_{\delta}:=\text { if }\left(\mathrm{GH}_{\delta}, \frac{\mathrm{Kb}_{\delta} \cdot \mathrm{GL}}{\mathrm{Lb}_{\delta}}, 0\right) \mathrm{DF}_{\delta}:=\mathrm{DG}_{\delta}-\mathrm{FG}_{\delta} \mathrm{DE}_{\delta}:=\mathrm{DG}_{\delta}-\left(\mathrm{FG}_{\delta}+\mathrm{EF}_{\delta}\right)
\]
\[
\mathrm{DJ}_{\delta}:=\mathrm{EJ}+\mathrm{DE}_{\delta} \mathrm{EG}_{\delta}:=\mathrm{EF}_{\delta}+\mathrm{FG}_{\delta}
\]
\[
\mathrm{Dc}_{\delta}:=\mathrm{if}\left[\mathrm{GH}_{\delta},\left[\left(\mathrm{DE}_{\delta}\right)^{2} \cdot \mathrm{DJ}_{\delta}\right]^{\frac{1}{3}}, 0\right]
\]
\[
\mathrm{Dd}_{\delta}:=\mathrm{if}\left[\mathrm{GH}_{\delta},\left[\mathrm{DE}_{\delta} \cdot\left(\mathrm{DJ}_{\delta}\right)^{2}\right]^{\frac{1}{3}}, 0\right]
\]
\[
\mathrm{cd}_{\delta}:=\mathrm{Dd}_{\delta}-\mathrm{Dc}_{\delta} \quad \mathrm{G} 2 \mathrm{c}_{\delta}:=\frac{\mathrm{cd}_{\delta}}{2}
\]
\[
\mathrm{Ec}_{\delta}:=\mathrm{Dc}_{\delta}-\mathrm{DE}_{\delta} \quad \mathrm{EG} 2_{\delta}:=\mathrm{Ec}_{\delta}+\mathrm{G} 2 \mathrm{c}_{\delta}
\]



I should say that fg is equal to DG .
\[
\begin{aligned}
& \mathrm{Gc}_{\delta}:={\mathrm{G} 2 \mathrm{c}_{\delta}} \\
& \mathrm{Df}_{\delta}:=\mathrm{Gc}_{\delta} \mathrm{De}_{\delta}:=\sqrt{\mathrm{DE}_{\delta} \cdot \mathrm{DJ}_{\delta}} \\
& \mathrm{ef}_{\delta}:=\sqrt{\left(\mathrm{Df}_{\delta}\right)^{2}+\left(\mathrm{Defg}_{\delta}\right.}:=\mathrm{ef}_{\delta}
\end{aligned}
\]


I should say that Dh is equal to Dc and that Dk is equal to Dd.




I should say that the circle pDH passes through the point g .
\(\mathrm{DH}_{\delta}:=\mathrm{DE}_{\delta}+\mathrm{EH} \mathrm{Hm}_{\delta}:=\frac{\mathrm{DH}_{\delta}}{2} \quad \mathrm{HO}:=\mathrm{EH}\)
\(\mathrm{Hq}:=\frac{\mathrm{HO}}{2} \quad \mathrm{Hp}_{\delta}:=\sqrt{\mathrm{Hq}^{2}+\left(\mathrm{Hm}_{\delta}\right)^{2}}\)
\(\mathrm{Gg}_{\delta}:=\mathrm{Df}_{\delta} \quad \mathrm{mp}:=\mathrm{Hq} \quad \mathrm{Gm}_{\delta}:=\mathrm{Hm}_{\delta}-\mathrm{GH}_{\delta}\)
\(\mathrm{pg}_{\delta}:=\sqrt{\left(\mathrm{Gg}_{\delta}+\mathrm{mp}\right)^{2}+\left(\mathrm{Gm}_{\delta}\right)^{2}}\)

\(\mathrm{HJ}:=\mathrm{EH} \quad \mathrm{HP}:=\frac{\mathrm{HJ}}{3}\)
\(\mathrm{JP}:=\frac{2 \cdot \mathrm{HJ}}{3} \mathrm{EP}:=\mathrm{EH}+\mathrm{HP} \mathrm{PQ}:=\sqrt{\mathrm{EP} \cdot \mathrm{JP}}\)
\(\mathrm{JQ}:=\sqrt{\mathrm{PQ}^{2}+\mathrm{JP}^{2}} \mathrm{JR}:=\mathrm{JQ} \quad \mathrm{HR}:=\sqrt{\mathrm{JR}^{2}-\mathrm{HJ}^{2}}\)
\(\mathrm{RS}:=\mathrm{JQ} \quad \mathrm{GS}_{\delta}:=\sqrt{\mathrm{RS}^{2}-\left(\mathrm{GH}_{\delta}\right)^{2}}-\mathrm{HR}\)
\(\mathrm{ES}_{\delta}:=\sqrt{\left(\mathrm{EG}_{\delta}\right)^{2}+\left(\mathrm{GS}_{\delta}\right)^{2} \quad \mathrm{GJ}_{\delta}:=\mathrm{HJ}+\mathrm{GH}_{\delta}}\)
\(\mathrm{JS}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{GJ}_{\delta}\right)^{2}+\left(\mathrm{GS}_{\boldsymbol{\delta}}\right)^{2}} \mathrm{ET}_{\boldsymbol{\delta}}:=\mathrm{ES}_{\boldsymbol{\delta}} \quad \mathrm{JU}_{\boldsymbol{\delta}}:=\mathrm{JS}_{\boldsymbol{\delta}}\)
\(\mathrm{Ed} 2_{\delta}:=\mathrm{EJ}-\frac{\left(\mathrm{JU}_{\delta}\right)^{2}}{\mathrm{EJ}} \mathrm{Ec} 2_{\delta}:=\frac{\left(\mathrm{ET}_{\delta}\right)^{2}}{\mathrm{EJ}}\)
\(\mathrm{Ec}_{\delta}:=\mathrm{Dc}_{\delta}-\mathrm{DE}_{\delta} \mathrm{Ed}_{\delta}:=\mathrm{Dd}_{\delta}-\mathrm{DE}_{\delta}\)
\(\mathrm{Ed}_{\Delta-1}=66.633327772\)
\(E d 2_{\Delta-1}=66.633327772\)





OK passes through g.
\[
\begin{aligned}
& \mathrm{Oa}_{\delta}:=\mathrm{HO}+\mathrm{Ha}_{\delta} \mathrm{Hr}_{\delta}:=\mathrm{Gg}_{\delta} \quad \mathrm{Or}_{\delta}:=\mathrm{HO}+\mathrm{Hr}_{\delta} \\
& \mathrm{gr}_{\delta}:=\frac{\mathrm{Ka}_{\delta} \cdot \mathrm{Or}_{\delta}}{\mathrm{Oa}_{\delta}}
\end{aligned}
\]


Using iteration to perform a geometric convergent series for cube root abstraction.
\(A:=\operatorname{if}(X<Y, \operatorname{if}(X<Z, X, Z), \operatorname{if}(Y<Z, Y, Z))\)
\(B:=\operatorname{if}(X>Y, i f(X>Z, X, Z), i f(Y>Z, Y, Z))\)
\(\mathrm{W}:=\mathrm{X}+\mathrm{Y}+\mathrm{Z} \quad \mathrm{C}:=\mathrm{W}-(\mathrm{A}+\mathrm{B})\)
\(\mathrm{AB}:=\sqrt{\mathrm{A} \cdot \mathrm{C}} \mathrm{BE}:=\mathrm{B}-\mathrm{AB} \mathrm{AE}:=\mathrm{AB}+\mathrm{BE}\)
\(\delta:=0 . . \Delta \quad \mathrm{AC}:=\sqrt{\mathrm{AE} \cdot \mathrm{AB}} \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{CG}:=\sqrt{\mathrm{AC} \cdot \mathrm{CE}} \quad \mathrm{AG}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CG}^{2}}\)


\(\mathrm{AH}_{\Delta}:=\sqrt{\left(\mathrm{AD}_{\Delta}\right)^{2}+\left(\mathrm{DH}_{\Delta}\right)^{2}} \mathrm{AM}:=\mathrm{AC} \quad \mathrm{AK}:=\frac{\mathrm{AD}_{\Delta} \cdot \mathrm{AM}}{\mathrm{AH}_{\Delta}}\)
\(\mathrm{AK}=1.6986 \quad \mathrm{AK}^{3}=4.9008 \quad \mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}=4.9005\)
\[
\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}=2.9142
\]
\[
\mathrm{AD}_{\Delta}=2.9143
\]


POR Series IV Figure 11_24_C3.MCD
Generalize the work of 07_25_93 to include the variable base ratio. This particular modification of the file has seen the use of the symbolic processor to figure out the last ratio that I have been unable to putz. The two ratio's found are FJ/JK and AH/AJ. I put the first in the graphic at left, the other would not fit.
\[
\frac{\mathrm{FJ}_{\delta}}{\mathrm{JK}_{\delta}}=\frac{\sqrt{2} \cdot \mathrm{BR} \cdot \delta}{(\mathrm{BS}-\delta) \cdot(\mathrm{BR}-1) \cdot 2}
\]

AF \(:=1 \quad\) BR \(:=\) BASE_RATIO
BS := BISECTOR_SEGMENTS
\(\mathrm{DF}:=\frac{\mathrm{AF}}{\mathrm{BR}} \quad \mathrm{AD}:=\mathrm{AF}-\mathrm{DF} \delta:=1 . . \mathrm{BS}\)
\(\mathrm{AB}:=\frac{\mathrm{AF}}{2} \quad \mathrm{BF}:=\mathrm{AB} \quad \mathrm{BD}:=\mathrm{BF}-\mathrm{DF}\)
\(\mathrm{BK}:=\mathrm{AB} \quad \mathrm{DK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BK}^{2}}\)
\(\mathrm{DH}_{\delta}:=\frac{\mathrm{DK}}{\mathrm{BS}} \cdot \delta \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{BD}}{\mathrm{BS}} \cdot \delta \quad \mathrm{CH}_{\delta}:=\sqrt{\left(\mathrm{DH}_{\delta}\right)^{2}-\left(\mathrm{CD}_{\delta}\right)^{2}} \quad \mathrm{BC}_{\delta}:=\mathrm{BD}-\mathrm{CD}_{\delta}\)
\(\mathrm{AC}_{\delta}:=\mathrm{AB}+\mathrm{BC}_{\delta} \quad \mathrm{AH}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}+\left(\mathrm{CH}_{\delta}\right)^{2}} \quad \mathrm{AG}_{\delta}:=\frac{\mathrm{AC}_{\delta} \cdot \mathrm{AB}}{\mathrm{AH}_{\delta}} \quad \mathrm{AJ}_{\delta}:=\mathrm{AG}_{\delta} \cdot 2\)
\(\mathrm{AE}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AF}} \quad \mathrm{EF}_{\delta}:=\mathrm{AF}-\mathrm{AE}_{\delta} \quad \mathrm{EJ}_{\delta}:=\sqrt{\mathrm{EF}_{\delta} \cdot \mathrm{AE}_{\delta}} \quad \mathrm{FJ}_{\delta}:=\sqrt{\left(\mathrm{EF}_{\delta}\right)^{2}+\left(\mathrm{EJ}_{\delta}\right)^{2}}\)
\(\mathrm{Bm}_{\delta}:=\mathrm{EJ}_{\delta} \quad \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AB}\)
\(\mathrm{Jm}_{\delta}:=\mathrm{BE}_{\delta}\)
\(K m_{\delta}:=\mathrm{BK}-\mathrm{Bm}_{\delta}\)
\(\mathrm{JK}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{Jm}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{Km}_{\boldsymbol{\delta}}\right)^{2}}\)


\begin{tabular}{|c|c|c|}
\hline \[
\text { if }\left(\mathrm{JK}_{\delta}, \frac{\mathrm{FJ}_{\delta}}{\mathrm{JK}_{\delta}},\right.
\] & \({ }_{i f} \mathrm{BS}\) & \[
\text { if }\left[\mathrm{BS}-\delta, \frac{\sqrt{2} \cdot \mathrm{BR} \cdot \delta}{}\right.
\] \\
\hline 0.265 & 0.354 & 0.265 \\
\hline 0.707 & 0.943 & 0.707 \\
\hline 1.591 & 2.121 & 1.591 \\
\hline 4.243 & 5.657 & 4.243 \\
\hline \(6.369 \cdot 10^{15}\) & 0 & 0 \\
\hline
\end{tabular}


I broke down and used the symbolic processor.
Two versions of the formula are given. It is apparent why I could not get this one myself, I'd never 'ave thunk it. From this point on I will use the symbolic processor to find formula's more often.
\[
\left(1-\frac{1}{\mathrm{BR}}-\frac{\frac{1}{2}-\frac{1}{\mathrm{BR}}}{\mathrm{BS}} \cdot \delta\right)^{2}+\frac{\left(\frac{1}{2}-\frac{1}{\mathrm{BR}}\right)^{2}+\frac{1}{4}}{\mathrm{BS}^{2}} \cdot \delta^{2}-\frac{\left(\frac{1}{2}-\frac{1}{\mathrm{BR}}\right)^{2}}{\mathrm{BS}^{2}} \cdot \delta^{2}
\]
\(\frac{\mathrm{AH}_{\delta}}{\mathrm{AJ}_{\delta}}\)
\begin{tabular}{|c|}
\hline 0.649 \\
\hline 0.667 \\
\hline 0.725 \\
\hline 0.833 \\
\hline 1 \\
\hline
\end{tabular}
\[
1-\frac{1}{\mathrm{BR}}-\frac{\frac{1}{2}-\frac{1}{\mathrm{BR}}}{\mathrm{BS}} \cdot \delta
\]
\begin{tabular}{|c|}
\hline 0.649 \\
\hline 0.667 \\
\hline 0.725 \\
\hline 0.833 \\
\hline 1 \\
\hline
\end{tabular}
\(-2 \cdot \mathrm{BR}^{2} \cdot \mathrm{BS}^{2}+4 \cdot \mathrm{BR} \cdot \mathrm{BS}^{2}+2 \cdot \mathrm{BR}^{2} \cdot \mathrm{BS} \cdot \delta \ldots \quad\) BASE_RATIO \(\equiv 3\)
\(+-6 \cdot \mathrm{BR} \cdot \mathrm{BS} \cdot \delta-2 \cdot \mathrm{BS}^{2}+4 \cdot \mathrm{BS} \cdot \delta-\delta^{2} \cdot \mathrm{BR}^{2}+2 \cdot \delta^{2} \cdot \mathrm{BR}-2 \cdot \delta^{2}\) BISECTOR_SEGMENTS \(\equiv 5\)
\(\mathrm{BR} \cdot(\mathrm{BS} \cdot(-2 \cdot \mathrm{BR} \cdot \mathrm{BS}+2 \cdot \mathrm{BS}+\delta \cdot \mathrm{BR}-2 \cdot \delta))\)
\begin{tabular}{|c|}
\hline 0.649 \\
\hline 0.667 \\
\hline 0.725 \\
\hline 0.833 \\
\hline 1 \\
\hline
\end{tabular}

11_25_93.MCD
Use iteration to trisect any given angle.
\(\mathrm{BE}:=200 \mathrm{BC}:=\frac{\mathrm{BE}}{2} \quad \mathrm{CE}:=\mathrm{BC}\)
\(\mathrm{CD}:=\operatorname{if}(\mathrm{CDI}>0, \operatorname{if}(\mathrm{CDI}<\mathrm{BC}, \mathrm{CDI}, 100), 0)\)
\(\mathrm{CF}:=\mathrm{CE} \quad \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} D F:=\sqrt{\mathrm{CF}^{2}}-\mathrm{CD}^{2}\)
DG \(:=\) DF Gc \(:=\mathrm{CF}\) Dc \(:=\mathrm{CD} \quad \delta:=0 . . \Delta\)
\(\left[\begin{array}{c}\mathrm{Ac}_{0} \\ \mathrm{CH}_{0} \\ \mathrm{FH}_{0} \\ \mathrm{AC}_{0} \\ \mathrm{bc}_{0} \\ \mathrm{Hb}_{0}\end{array}\right]:=\left[\begin{array}{c}\mathrm{BE}+\mathrm{Dc}+\mathrm{CD} \\ \frac{\mathrm{Gc} \cdot \mathrm{BE}}{\mathrm{BE}+\mathrm{Dc}} \\ \mathrm{CF}+\frac{\mathrm{Gc} \cdot \mathrm{BE}}{\mathrm{BE}+\mathrm{Dc}} \\ \mathrm{BE} \\ \sqrt{\left(\frac{\mathrm{Gc} \cdot \mathrm{BE}}{\mathrm{BE}+\mathrm{Dc}}\right)^{2}-\left(\frac{\mathrm{Dc} \cdot \mathrm{BE}}{\mathrm{BE}+\mathrm{Dc}}\right)^{2}}\end{array}\right]\left[\begin{array}{l}\mathrm{AC}_{\boldsymbol{\delta}+1} \\ \mathrm{Ac}_{\boldsymbol{\delta}+1} \\ \mathrm{CH}_{\delta+1} \\ \mathrm{FH}_{\boldsymbol{\delta}+1} \\ \mathrm{bc}_{\boldsymbol{\delta}+1} \\ \mathrm{Hb}_{\boldsymbol{\delta}+1}\end{array}\right]:=\)
\(\left[\begin{array}{c}\sqrt{\left(\mathrm{FH}_{\delta}\right)^{2}-\left(\mathrm{Hb}_{\delta}\right)^{2}}+\mathrm{bc}_{\delta} \\ \mathrm{AC}_{\delta}+\mathrm{Dc}+\mathrm{CD} \\ \frac{\mathrm{CF} \cdot \mathrm{AC}_{\delta}}{\mathrm{Ac}_{\delta}} \\ \mathrm{CF}+\mathrm{CH}_{\delta} \\ \frac{\mathrm{Dc} \cdot \mathrm{AC}_{\delta}}{\mathrm{Ac}_{\delta}} \\ \sqrt{\left(\mathrm{CH}_{\delta}\right)^{2}-\left(\mathrm{bc}_{\delta}\right)^{2}}\end{array}\right]\)

\(\Delta \equiv 53\)
\(\mathrm{CDI} \equiv 50\)
\(\angle \mathrm{KCD}=60\)
\(\angle \mathrm{BAI}=20\)

\[
\frac{\angle \mathrm{KCD}}{\angle \mathrm{BAI}}=3
\]
Range: >0 and <100



C B A

\([B G K M A\)

\[
\sum_{\delta}\left[\left[\left(\mathrm{AM}_{\delta}\right)^{2} \cdot \mathrm{AC}\right]^{\frac{1}{3}}-\mathrm{AK}_{\delta}\right]=-3.539 \cdot 10^{-15}
\]
\[
\sum\left[\left(\mathrm{AM}_{\delta} \cdot \mathrm{AC}^{2}\right)^{\frac{1}{3}}-\mathrm{AB}_{\delta}\right]=-1.471 \cdot 10^{-15}
\]
\[
\delta
\]
\[
\mathrm{A}:=0 \quad \Delta:=\mathrm{A} . . \mathrm{A}+10 \quad \mathrm{p} \equiv 1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AK}_{\Delta}\) & \(\left(\mathrm{AM}_{\Delta}\right)^{2} \cdot \mathrm{AC}\) & \(\mathrm{AM}_{\Delta} \cdot \mathrm{AC}^{2}\) & \(\mathrm{AB}_{\Delta}\) & \(\mathrm{AG}_{\Delta}\) & \[
\frac{\mathrm{AB}_{\Delta}}{\mathrm{AG}_{A}}
\] & \(\mathrm{CM}_{\Delta}\) & \(\mathrm{AM}_{\Delta}\) & \[
\frac{\mathrm{AM}_{\Delta}}{\text { if }\left(\mathrm{CM}_{\Lambda}, \mathrm{CM}\right.}
\] \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0.001 & \(1 \cdot 10^{-9}\) & 0.001 & 0.1 & 0.01 & 10 & 10 & \(1 \cdot 10^{-5}\) & \(1 \cdot 10^{-6}\) \\
\hline 0.016 & 4.096.10 \({ }^{-6}\) & 0.064 & 0.4 & 0.08 & \begin{tabular}{|l|}
\hline 5 \\
\hline 3.333 \\
\hline
\end{tabular} & 9.999 & 6.4-10-4 & 6.4 \(10^{-5}\) \\
\hline \begin{tabular}{|l|}
\hline 0.081 \\
\hline 0.256 \\
\hline 0.65 \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline \(4.096 \cdot 10^{-6}\) \\
\hline \(5.314 \cdot 10^{-4}\) \\
\hline 0.017 \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline 0.729 \\
\hline 4.096 \\
\hline 15.625 \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline 0.9 \\
\hline 1.6 \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline 0.27 \\
\hline 0.64 \\
\hline
\end{tabular} & 3.333 & 9.993 & 0.007 & \(7.295 \cdot 10^{-4}\) \\
\hline 0.625 & 0.017 & 15.625 & 2.5 & 1.25 & \(\frac{2}{2}\) & 9.844 & 0.041 & 0.004 \\
\hline 1.296 & 0.244 & 46.656 & 3.6 & 2.16 & 1.667 & 9.533 & 0.156 & 0.016 \\
\hline 2.401 & 2.177 & 117.649 & 4.9 & 3.43 & 1.429 & 8.824 & 0.467 & 0.049 \\
\hline 4.096 & 13.841 & 262.144 & 6.4 & 5.12 & 1.25 & 7.379 & 1.176 & 0.133 \\
\hline 6.561 & 68.719 & 531.441 & 8.1 & 7.29 & 1.111 & 4.686 & 2.621 & 0.355 \\
\hline 10 & 282.43 & \(1 \cdot 10^{3}\) & 10 & 10 & 1 & 0 & 5.314 & 1.134 \\
\hline & \(1 \cdot 10^{3}\) & & & & & & 10 & 10 \\
\hline
\end{tabular}

\(A C:=10 d:=1 . . A C \cdot p \quad A B_{d}:=A C-\frac{d}{p}\) \(B C_{d}:=A C-A B_{d} \quad B D_{d}:=\sqrt{A B_{d} \cdot B C_{d}}\) \(A D_{d}:=\sqrt{\left(A B_{d}\right)^{2}+\left(B D_{d}\right)^{2}}\)

\[
\sum_{d}\left[\left[\left(A M_{d}\right)^{2} \cdot A C\right]^{\frac{1}{3}}-A K_{d}\right]=-3.126 \cdot 10^{-13}
\]
\[
\begin{aligned}
& A E_{d}:=A B_{d} \quad A G_{d}:=\frac{\left(A B_{d}\right)^{2}}{A D_{d}} \\
& A K_{d}:=\frac{\left(A G_{d}\right)^{2}}{A E_{d}} \quad A J_{d}:=A G_{d} \\
& A M_{d}:=\frac{\left(A J_{d}\right)^{2}}{A C} C M_{d}:=A C-A M_{d}
\end{aligned}
\]
\[
\sum_{d}\left[\left(A M_{d} \cdot A C^{2}\right)^{\frac{1}{3}}-A B_{d}\right]=-5.083 \cdot 10^{-13}
\]
\(\mathrm{A}:=50 \quad \Delta:=\mathrm{A} . . \mathrm{A}+10 \quad \mathrm{P} \equiv 100\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\mathrm{AG}_{\Delta}\)} & \(\mathrm{AB}_{\Delta}\) & \multirow[b]{2}{*}{\(\mathrm{CM}_{\Delta}\)} & \multirow[b]{2}{*}{\(\mathrm{AM}_{\Delta}\)} & \multirow[t]{2}{*}{\[
\frac{\mathrm{AM}_{\Delta}}{\mathrm{CM}_{\Delta}}
\]} \\
\hline & \(\mathrm{AG}_{\Delta}\) & & & \\
\hline 9.259 & 1.026 & 1.426 & 8.574 & 6.011 \\
\hline 9.245 & 1.027 & 1.453 & 8.547 & 5.881 \\
\hline 9.23 & 1.027 & 1.48 & 8.52 & 5.755 \\
\hline 9.216 & 1.028 & 1.507 & 8.493 & 5.635 \\
\hline 9.201 & 1.028 & 1.534 & 8.466 & 5.519 \\
\hline 9.186 & 1.029 & 1.561 & 8.439 & 5.407 \\
\hline 9.172 & 1.029 & 1.588 & 8.412 & 5.299 \\
\hline 9.157 & 1.03 & 1.614 & 8.386 & 5.194 \\
\hline 9.143 & 1.03 & 1.641 & 8.359 & 5.094 \\
\hline 9.128 & 1.031 & 1.668 & 8.332 & 4.997 \\
\hline 9.114 & 1.031 & 1.694 & 8.306 & 4.903 \\
\hline
\end{tabular}

11_29_3A.MCD


The ray that performs the cube root abstraction must pass through the window OJ, take a look at it.
\[
\mathrm{AF}:=10 \quad \delta:=0 . .1000 \quad \mathrm{AB}_{\delta}:=\frac{\delta}{100}
\]
\(\mathrm{BF}_{\delta}:=\mathrm{AF}-\mathrm{AB}_{\delta} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AF}}\)
\(\mathrm{AK}_{\delta}:=\mathrm{AD}_{\delta} \quad \mathrm{DF}_{\delta}:=\mathrm{AF}-\mathrm{AD}_{\delta}\)
\(\mathrm{DM}_{\delta}:=\sqrt{\mathrm{AD}_{\delta} \cdot \mathrm{DF}_{\delta}} \quad \mathrm{BK}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{BF}_{\delta}}\)
\[
\mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{BD}_{\delta}}{3}
\]
\[
\mathrm{AC}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{CF}_{\delta}:=\mathrm{AF}-\mathrm{AC}_{\delta}
\]
\(\mathrm{CL}_{\delta}:=\sqrt{\mathrm{AC}_{\delta} \cdot \mathrm{CF}_{\delta}}\)
\(\mathrm{AL}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}+\left(\mathrm{CL}_{\delta}\right)^{2}} \quad \mathrm{AE}_{\delta}:=\mathrm{AL}_{\delta}\)
\[
\begin{aligned}
& \mathrm{AH}_{\delta}:=\mathrm{AL}_{\delta} \quad \mathrm{AG}_{\delta}:=\mathrm{AK}_{\delta} \\
& \mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{AG}_{\delta}\right)^{2}-\left(\mathrm{AC}_{\delta}\right)^{2}} \\
& \mathrm{DH}_{\delta}:=\sqrt{\left(\mathrm{AH}_{\delta}\right)^{2}-\left(\mathrm{AD}_{\delta}\right)^{2}} \\
& \mathrm{EO}_{\delta}:=\frac{\mathrm{DH}_{\delta} \cdot \mathrm{AE}_{\delta}}{\mathrm{AD}_{\delta}} \quad \mathrm{EJ}_{\delta}:=\frac{\mathrm{CG}_{\delta} \cdot \mathrm{AE}_{\delta}}{\mathrm{AC}_{\delta}} \\
& \mathrm{JO}_{\delta}:=\mathrm{EO}_{\delta}-\mathrm{EJ}_{\delta}
\end{aligned}
\]






12_02_93.MCD POR Roots and Powers
(Pyramid of Ratio Series V)
Is the progression noticed in 11_29_93 a continuous phenomenon?
\[
\begin{aligned}
& \mathrm{AH}:=17 \quad \delta:=1 . . \mathrm{AH} \quad \mathrm{AP}_{\delta}:=\frac{\mathrm{AH}}{\delta} \\
& \mathrm{AG}_{\delta}:=\frac{\left(\mathrm{AP}_{\delta}\right)^{2}}{\mathrm{AH}} \quad \mathrm{AO}_{\delta}:=\mathrm{AG}_{\delta}
\end{aligned}
\]
\[
\begin{array}{ll}
\mathrm{AF}_{\delta}:=\frac{\left(\mathrm{AG}_{\delta}\right)^{2}}{\mathrm{AP}_{\delta}} \quad \mathrm{AE}_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{\mathrm{AO}_{\delta}} \quad \mathrm{AN}_{\delta}:=\mathrm{AF}_{\delta} \quad \mathrm{AD}_{\delta}:=\frac{\left(\mathrm{AE}_{\delta}\right)^{2}}{\mathrm{AN}_{\delta}} \quad \mathrm{AM}_{\delta}:=\mathrm{AE}_{\delta} \\
\mathrm{AC}_{\delta}:=\frac{\left(\mathrm{AD}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}} \quad \mathrm{AK}_{\delta}:=\mathrm{AD}_{\delta} \quad \mathrm{AB}_{\delta}:=\frac{\left(\mathrm{AC}_{\delta}\right)^{2}}{\mathrm{AK}_{\delta}} \quad \mathrm{A}:=1 \quad \Delta:=\mathrm{A} . .5
\end{array}
\]
\[
\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\left(\frac{\mathrm{AH}}{\mathrm{AG}_{\Delta}}\right)^{\frac{1}{2}}\left(\frac{\mathrm{AH}}{\mathrm{AF}_{\Delta}}\right)^{\frac{1}{3}}\left(\frac{\mathrm{AH}}{\mathrm{AE}_{\Delta}}\right)^{\frac{1}{4}}\left(\frac{\mathrm{AH}}{\mathrm{AD}_{\Delta}}\right)^{\frac{1}{5}}\left(\frac{\mathrm{AH}}{\mathrm{AC}_{\Delta}}\right)^{\frac{1}{6}}\left(\frac{\mathrm{AH}}{\mathrm{AB}_{\Delta}}\right)^{\frac{1}{7}}
\]
\[
\begin{array}{|r|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline
\end{array}
\]
\[
\begin{array}{|r|}
\hline 1 \\
\hline \frac{2}{3} \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline
\end{array}
\]
\begin{tabular}{|l|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline\(\frac{1}{2}\) \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\frac{\mathrm{AH}}{1}, \frac{\mathrm{AH}}{1^{2}}, \frac{\mathrm{AH}}{1^{3}}, \frac{\mathrm{AH}}{1^{4}}\), etc AH AH AH AH & \(\mathrm{AP}_{\Delta}\) & \(\mathrm{AG}_{\Delta}\) & \(\mathrm{AF}_{\Delta}\) & \(\mathrm{AE}_{\Delta}\) & \(\mathrm{AD}_{\Delta}\) & \(\mathrm{AC}_{\Delta}\) & \(\mathrm{AB}_{\Delta}\) & \\
\hline \(2{ }^{2}, \overline{2^{2}}, \overline{2^{3}}, \overline{2^{4}}\), etc & 17 & 17 & 17 & 17 & 17 & 17 & 17 & \\
\hline & 8.5 & 4.25 & 2.125 & 1.063 & 0.531 & 0.266 & 0.133 & \\
\hline AH \(, ~ \mathrm{AH}, \mathrm{AH}, \mathrm{AH}\) & 5.667 & 1.889 & 0.63 & 0.21 & 0.07 & 0.023 & 0.008 & \\
\hline \(3^{\prime} 3^{2}{ }^{\prime} 3^{3} 3^{4}\) & 4.25 & 1.063 & \begin{tabular}{|l|}
\hline 0.266 \\
\hline 0.6 \\
\hline
\end{tabular} & 0.066 & 0.017 & 0.004 & 0.001 & \\
\hline AH AH AH AH & 3.4 & 0.68 & 0.136 & 0.027 & 0.005 & 0.001 & \(2.176 \cdot 10^{-4}\) & H \\
\hline \[
\frac{1}{4}, \frac{1}{4^{2}}, \frac{x}{4^{3}}, \frac{x}{4^{4}}, \text { etc }
\] & & & & & & & & \(\frac{5^{7}}{}=2.176 \cdot 10\) \\
\hline AH AH AH AH & & & & & & & & \\
\hline \(\frac{5}{5}, \frac{5^{2}}{}, \frac{5^{3}}{5^{3}}, \frac{\text { ch }}{5^{4}}\), etc & & & & & & & & \\
\hline
\end{tabular}

\[
\mathrm{AG}_{\Delta} \cdot \frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}} \quad \mathrm{AF}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{2} \mathrm{AE}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{3}
\]
\begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular} \begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline 17 \\
\hline \hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular}
\(\mathrm{AD}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{4} \mathrm{AC}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{5} \mathrm{AB}_{\Delta} \cdot\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{6}\)
\begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|}
\hline 17 \\
\hline 8.5 \\
\hline 5.667 \\
\hline 4.25 \\
\hline 3.4 \\
\hline
\end{tabular}

\(\frac{\mathrm{AH}^{2}}{\mathrm{AP}_{\Delta}}\left(\frac{\mathrm{AH}^{3}}{\mathrm{AG}_{\Delta}}\right)^{\frac{1}{2}}\left(\frac{\mathrm{AH}^{4}}{\mathrm{AF}_{\Delta}}\right)^{\frac{1}{3}}\left(\frac{\mathrm{AH}^{5}}{\mathrm{AE}_{\Delta}}\right)^{\frac{1}{4}}\left(\frac{\mathrm{AH}^{6}}{\mathrm{AD}_{\Delta}}\right)^{\frac{1}{5}}\left(\frac{\mathrm{AH}^{7}}{\mathrm{AC}_{\Delta}}\right)^{\frac{1}{6}} \quad\left(\frac{\mathrm{AH}^{8}}{\mathrm{AB}_{\Delta}}\right)^{\frac{1}{7}} \quad\left(\frac{\mathrm{AH}}{\mathrm{AB}}\right)_{\Delta}^{\frac{1}{7}} \cdot \mathrm{AH}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 17 & 17 & 17 & 17 & 17 & 17 & 17 & 17 \\
\hline 34 & 34 & 34 & 34 & 34 & 34 & 34 & 34 \\
\hline 51 & 51 & 51 & 51 & 51 & 51 & 51 & 51 \\
\hline 68 & 68 & 68 & 68 & 68 & 68 & 68 & 68 \\
\hline 85 & 85 & 85 & 85 & 85 & 85 & 85 & 85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \({ }^{3}\) & 3 & & 3 & & & \\
\hline \(\left(\frac{\mathrm{AH}}{\mathrm{AB}_{\Delta}}\right)^{7}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AC}_{\Delta}}\right)^{6}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AD}}\right)^{5}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AE}_{\Delta}}\right)^{4}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AF}_{\Delta}}\right)^{3}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AG}_{\Delta}}\right)^{\text {a }}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{\text {a }}\) \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
\hline 27 & 27 & 27 & 27 & 27 & 27 & 27 \\
\hline 64 & 64 & 64 & 64 & 64 & 64 & 64 \\
\hline 125 & 125 & 125 & 125 & 125 & 125 & 125 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\underline{7}\) & 7 & \(\frac{7}{7}\) & 7 & 7 & 7 & \(\underline{7}\) \\
\hline \((\mathrm{AH})^{7}\) & \((\mathrm{AH})^{6}\) & \((\mathrm{AH})^{5}\) & \((\mathrm{AH})^{4}\) & \((\mathrm{AH})^{3}\) & \((\mathrm{AH})^{2}\) & ( AH \\
\hline \(\left(\mathrm{AB}_{\Delta}\right)^{7}\) & \(\mathrm{AC}_{\Delta}\) & \(\left(\mathrm{AD}_{\Delta}\right.\) & \(\left(\mathrm{AE}_{\Delta}\right.\) & \(\left(\mathrm{AF}_{\Delta}{ }^{\text {/ }}\right.\) & \(\mathrm{AG}_{\Delta}\) & \(\left(\mathrm{AP}_{\Delta}\right.\) \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 128 & 128 & 128 & 128 & 128 & 128 & 128 \\
\hline \(2.187 \cdot 10^{3}\) & \(2.187 \cdot 10^{3}\) & \(2.187 \cdot 10^{3}\) & 2.187.10 \({ }^{3}\) & \(2.187 \cdot 10^{3}\) & \(2.187 \cdot 10^{3}\) & \(2.187 \cdot 10^{3}\) \\
\hline 1.638.10 \({ }^{4}\) & 1.638•104 & 1.638.104 & 1.638.104 & 1.638.104 & 1.638.104 & 1.638.104 \({ }^{4}\) \\
\hline \(7.813 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) & \(7.812 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) & \(7.813 \cdot 10^{4}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{GP}_{\Delta}\) & \(\mathrm{FO}_{\Delta}\) & \(\mathrm{EN}_{\Delta}\) & \(\mathrm{DM}_{\Delta}\) & \(\mathrm{CK}_{\Delta}\) & \(\mathrm{BJ}_{\Delta}\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7.361 & 3.681 & 1.84 & 0.92 & 0.46 & 0.23 \\
\hline 5.343 & 1.781 & 0.594 & 0.198 & 0.066 & 0.022 \\
\hline 4.115 & 1.029 & 0.257 & 0.064 & 0.016 & 0.004 \\
\hline 3.331 & 0.666 & 0.133 & 0.027 & 0.005 & 0.001 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{GP}_{\Delta}\) & \(\mathrm{FO}_{\Delta}\) & \(\mathrm{EN}_{\Delta}\) & \(\mathrm{DM}_{\Delta}\) & \(\mathrm{CK}_{\Delta}\) & \\
\hline \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{5}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{4}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{3}\) & \(\left(\frac{\mathrm{AH}}{\mathrm{AP}_{\Delta}}\right)^{2}\) & \(\frac{\frac{\mathrm{AH}}{}}{\mathrm{AP}_{\Delta}}\) & BJ \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0.23 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 \\
\hline 0.022 & 0.022 & 0.022 & 0.022 & 0.022 & 0.022 \\
\hline 0.004 & 0.004 & 0.004 & 0.004 & 0.004 & 0.004 \\
\hline 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{GP}_{\Delta}\) & \(\mathrm{FO}_{\Delta}\) & \(\mathrm{EN}_{\Delta}\) & \(\mathrm{DM}_{\Delta}\) & \(\mathrm{CK}_{\Delta}\) & \(\mathrm{BJ}_{\Delta}\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7.361 & 3.681 & 1.84 & 0.92 & 0.46 & 0.23 \\
\hline 5.343 & 1.781 & 0.594 & 0.198 & 0.066 & 0.022 \\
\hline 4.115 & 1.029 & 0.257 & 0.064 & 0.016 & 0.004 \\
\hline 3.331 & 0.666 & 0.133 & 0.027 & 0.005 & 0.001 \\
\hline
\end{tabular}

\(\frac{\sqrt{\mathrm{AG}_{2} \cdot \mathrm{GH}_{2}}}{2}=3.681 \quad \frac{\sqrt{\mathrm{AG}_{2} \cdot \mathrm{GH}_{2}}}{2^{2}}=1.84 \quad \frac{\sqrt{\mathrm{AG}_{2} \cdot \mathrm{GH}_{2}}}{2^{3}}=0.92\)
\(\frac{\sqrt{\mathrm{AG}_{3} \cdot \mathrm{GH}_{3}}}{3}=1.781 \quad \frac{\sqrt{\mathrm{AG}_{3} \cdot \mathrm{GH}_{3}}}{3^{2}}=0.594 \quad \frac{\sqrt{\mathrm{AG}_{3} \cdot \mathrm{GH}_{3}}}{3^{3}}=0.198\)


12_04_B3.MCD \(2 \cdot 2^{\mathrm{N}}\)

Exponential Ratio.
\(\mathrm{AR}:=10 \quad \Delta:=5 \quad \delta:=2 . . \Delta+1 \mathrm{AB}_{\delta}:=\frac{\mathrm{AR}}{\delta}\)
\(A J_{\delta}:=\sqrt{A B_{\delta} \cdot A R} \quad J R_{\delta}:=A R-A J_{\delta}\)
\(J W_{\delta}:=\sqrt{A J_{\delta} \cdot \mathrm{JR}_{\delta}} \quad A W_{\delta}:=\sqrt{\left(A J_{\delta}\right)^{2}+\left(J W_{\delta}\right)^{2}}\)
\begin{tabular}{|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) \\
\hline 5 & 7.071 \\
\hline 3.333 & 5.774 \\
\hline 2.5 & 5 \\
\hline 2 & 4.472 \\
\hline 1.667 & 4.082 \\
\hline
\end{tabular}

I think that one is in the position that they are in when dividing an angle, twice never gets to thrice, at least that is what I decided some time ago. Let me double check anyway. An obvious pattern should emerge.
\[
\begin{aligned}
& \mathrm{AT}:=\mathrm{AR} \quad \mathrm{AN}_{\delta}:=\mathrm{AW}_{\delta} \quad \mathrm{AF}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AW}_{\delta}} \\
& \mathrm{NR}_{\delta}:=\mathrm{AR}-\mathrm{AN}_{\delta} \quad \mathrm{NX} X_{\delta}:=\sqrt{\mathrm{AN}_{\delta} \cdot \mathrm{NR}_{\delta}} \\
& \mathrm{AX}_{\delta}:=\sqrt{\left(\mathrm{AN}_{\delta}\right)^{2}+\left(\mathrm{NX}_{\delta}\right)^{2}}
\end{aligned}
\]
\begin{tabular}{c}
\(\mathrm{AB}_{\delta}\) \\
\hline 5 \\
\hline 3.333 \\
\hline 2.5 \\
\hline 2 \\
\hline 1.667 \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\mathrm{AF}_{\delta}\) \\
\hline 5.946 \\
\hline 4.387 \\
\hline 3.536 \\
\hline 2.991 \\
\hline 2.608 \\
\hline
\end{tabular}
\(\mathrm{AJ}_{\delta}\)
\begin{tabular}{|c|}
\hline 7.071 \\
\hline 5.774 \\
\hline 5 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\mathrm{AN}_{\delta}\) \\
\hline 8.409 \\
\hline 7.598 \\
\hline 7.071 \\
\hline 6.687 \\
\hline 6.389 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & \(\mathrm{AD}_{\delta}\) & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AH}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AL}_{\delta}\) \\
\hline 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.711 \\
\hline 3.333 & 3.824 & 4.387 & 5.033 & 5.774 & 6.623 \\
\hline 2.5 & 2.973 & 3.536 & 4.204 & 5 & 5.946 \\
\hline 2 & 2.446 & 2.991 & 3.657 & 4.472 & 5.469 \\
\hline 1.667 & 2.085 & 2.608 & 3.263 & 4.082 & 5.107 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \mathrm{AU}:=\mathrm{AR} \quad \mathrm{AP}_{\delta}:=\mathrm{AX} \mathrm{~A}_{\delta} \quad \mathrm{AL} \\
& \delta
\end{aligned}: \frac{\left(\mathrm{AN}_{\delta}\right)^{2}}{\mathrm{AX}} .
\]
\begin{tabular}{|l|l|}
\multicolumn{1}{l}{\(\mathrm{AN}_{\delta}\)} & \(\mathrm{AP}_{\delta}\) \\
\hline 8.409 & \begin{tabular}{|l|}
\hline 9.17 \\
\hline 7.598 \\
\hline 7.071 \\
\hline 6.717 \\
\hline 6.687 \\
\hline 6.389 \\
\hline
\end{tabular} \\
\hline 8.178 \\
\hline 7.993 \\
\hline
\end{tabular}
\[
\begin{aligned}
& A V:=A R \quad A Q_{\delta}:=A Y_{\delta} \quad A O_{\delta}:=\frac{\left(A P_{\delta}\right)^{2}}{A Y_{\delta}} \\
& \mathrm{AM}_{\delta}:=\frac{\left(\mathrm{AN}_{\delta}\right)^{2}}{\mathrm{AO}_{\delta}} \quad \mathrm{AK} K_{\delta}:=\frac{\left(\mathrm{AL}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}} \\
& \left.\mathrm{Al}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AK}} \quad \mathrm{AG} \mathrm{~K}_{\delta}:=\frac{(\mathrm{AH}}{\delta}\right)^{2} \\
& A E_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{\mathrm{AG}_{\delta}} \quad \mathrm{AC} \mathrm{C}_{\delta}:=\frac{\left(\mathrm{AD}_{\delta}\right)^{2}}{\mathrm{AE}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & & \(\mathrm{AD}_{\delta}\) & \(\mathrm{AE}_{\delta}\) & \(\mathrm{AF}_{\delta}\) \\
\hline 5 & 5.221 & 5.453 & 5.694 & 5.946 \\
\hline 3.333 & 3.57 & 3.824 & 4.096 & 4.38 \\
\hline 2.5 & 2.726 & 2.973 & 3. & 3.536 \\
\hline 2 & 2.212 & 2.446 & 2.704 & 2.991 \\
\hline 1.667 & 1.8 & 2.08 & 2.332 & 2.608 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AG}_{\delta}\) & \(\mathrm{AH}_{8}\) & \(\mathrm{Al}_{\delta}\) & \({ }^{\text {d }}\) & \({ }^{\text {¢ }}\) & \(\mathrm{L}_{\delta}\) & \({ }^{\circ}\) & \({ }^{\circ}\) & \({ }^{\circ}\) & \({ }^{\text {d }}\) \% & \(\mathrm{A}_{\delta}\) \\
\hline 209 & 6.484 & 6.771 & 7.071 & 7.384 & 7.711 & 8.052 & 8.409 & 8.781 & 9.17 & 9.576 \\
\hline & 5.0 & 5.3 & 5.774 & 6. & 6. & 7.094 & 7.598 & 8.138 & 8.71 & 9.336 \\
\hline 3.856 & 4.2 & 4.585 & 5 & 5.453 & 5.94 & 6.4 & 7.071 & 7.71 & 8.40 & 9.17 \\
\hline 3.307 & 3.65 & 4.044 & 4.472 & 4.945 & 5.469 & 6.047 & 6.68 & 7.395 & 8.17 & 9.043 \\
\hline 2.918 & 3.2 & 3.65 & 4.08 & 4.56 & 5.10 & 5.71 & 6.38 & 7.14 & 7.993 & 8.9 \\
\hline
\end{tabular}

\(\left(\frac{\mathrm{AR}}{\mathrm{AK}_{\delta}}\right)^{\frac{16}{7}}\left(\frac{\mathrm{AR}}{\mathrm{AL}_{\delta}}\right)^{\frac{16}{6}}\left(\frac{\mathrm{AR}}{\mathrm{AM}_{\delta}}\right)^{\frac{16}{5}}\left(\frac{\mathrm{AR}}{\mathrm{AN}_{\delta}}\right)^{\frac{16}{4}}\left(\frac{\mathrm{AR}}{\mathrm{AO}_{\delta}}\right)^{\frac{16}{3}}\left(\frac{\mathrm{AR}}{\mathrm{AP}_{\delta}}\right)^{\frac{16}{2}}\left(\frac{\mathrm{AR}}{\mathrm{AQ}_{\delta}}\right)^{\frac{16}{1}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 3 & 3 & & & 3 & 3 & \\
\hline 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\left(\frac{\mathrm{AR}}{\mathrm{AQ}_{\delta}}\right)^{8}\) \\
\hline \(1 .\left(\frac{\mathrm{AR}}{\mathrm{AP}_{\delta}}\right)^{\frac{8}{2}}\) \\
\hline 1.414 \\
\hline 1.732 \\
\hline 2 \\
\hline 2.236 \\
\hline 2.449 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 8 & & & & & & & & 8 \\
\hline \(\left.\left(\frac{\mathrm{AR}}{\mathrm{Al}}\right)^{\text {d }}\right)^{9}\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AH}_{\delta}}\right)\) & \(\left(\frac{A R}{A G_{\delta}}\right)\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AF}_{\delta}}\right)\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AE}_{\delta}}\right)\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AD}} \mathrm{S}_{\delta}\right)\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AC}_{\delta}}\right)\) & \(\left(\frac{\mathrm{AR}}{\mathrm{AB}_{\delta}}\right)\) & \\
\hline 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & 1.414 & \\
\hline 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & 1.732 & \\
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & \\
\hline 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & 2.236 & \\
\hline 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & 2.449 & \\
\hline
\end{tabular}




\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\mathrm{Al}_{\delta}\) & \multicolumn{1}{l}{\(\mathrm{AH}_{\delta}\)} & \(\mathrm{AG}_{\delta}\) & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AE}_{\delta}\) & \(\mathrm{AD}_{\delta}\) \\
\hline 6.771 \\
\hline 5.39 \\
\hline 4.585 \\
\hline 4.044 \\
\hline 3.65 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\underline{1}\) & 1 & 1 & 1 & 1 & 1 \\
\hline \(\left(A H_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(\mathrm{Al}_{8} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(\mathrm{AJ}_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(A K_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(A L_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(A M_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) \\
\hline 8.655 & 8.781 & 8.909 & 9.039 & 9.17 & 9.303 \\
\hline 7.954 & 8.138 & 8.327 & 8.52 & 8.717 & 8.919 \\
\hline 7.492 & 7.711 & 7.937 & 8.17 & 8.409 & 8.655 \\
\hline 7.151 & 7.395 & 7.647 & 7.908 & 8.178 & 8.456 \\
\hline 6.885 & 7.147 & 7.418 & 7.701 & 7.993 & 8.297 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\underline{1}\) & 1 & 1 & 1 \\
\hline \(\left(A N_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(\mathrm{AO}_{\delta} \cdot \mathrm{AR}^{2}\right)^{3}\) & \(\left(A P_{\delta} \cdot R^{2}\right)^{3}\) & \(\left(A Q_{\delta} \cdot A R^{2}\right)^{3}\) \\
\hline 9.439 & 9.576 & 9.715 & 9.857 \\
\hline 9.125 & 9.336 & 9.553 & 9.774 \\
\hline 8.909 & 9.17 & 9.439 & 9.715 \\
\hline 8.745 & 9.043 & 9.351 & 9.67 \\
\hline 8.613 & 8.941 & 9.281 & 9.634 \\
\hline
\end{tabular}


\begin{tabular}{ll}
\(\mathrm{AH}_{\delta}\) & \(\mathrm{AM}_{\delta}\) \\
\hline \begin{tabular}{|l|}
\hline 6.484 \\
\hline 5.033 \\
\hline 4.204 \\
\hline 3.657 \\
\hline 3.263 \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline 8.052 \\
\hline 7.094 \\
\hline 6.484 \\
\hline 6.047 \\
\hline 5.713 \\
\hline
\end{tabular}
\end{tabular}

\begin{tabular}{|l|l|}
\hline \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AN}_{\delta}\) \\
\hline 7.071 \\
\hline 5.774 \\
\hline 5 & \begin{tabular}{|l|}
\hline 8.409 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular} \\
\hline 7.598 \\
\hline & 6.681 \\
\hline 6.389 & \\
\hline
\end{tabular}

There are five found cubics between the givens.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline \(\left[\left(\mathrm{Al}_{\delta}\right)^{2}\right.\) & \(\mathrm{Al}_{\delta} \cdot \mathrm{AR}^{2}\) & \(\left[\left(\mathrm{AL}_{\delta}\right)^{2}\right.\) & \(\left(\mathrm{AL}_{\delta} \cdot \mathrm{A}\right.\) & \(\left[\left(\mathrm{AO}_{\delta}\right)^{2}\right.\) & \(\left(\mathrm{AO}_{\delta} \cdot \mathrm{A}\right.\) \\
\hline 7.711 & 8.781 & 8.409 & 9.17 & 9.17 & 9.576 \\
\hline 6.623 & 8.138 & 7.598 & 8.717 & 8.717 & 9.336 \\
\hline 5.946 & 7.711 & 7.071 & 8.409 & 8.409 & 9.17 \\
\hline 5.469 & 7.395 & 6.687 & 8.178 & 8.178 & 9.043 \\
\hline 5.107 & 7.147 & 6.389 & 7.993 & 7.993 & 8.941 \\
\hline \(\mathrm{AL}_{\delta}\) & \(\mathrm{AO}_{\delta}\) & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AP}_{\delta}\) & \(\mathrm{AP}_{\delta}\) & \(\mathrm{AQ}_{\delta}\) \\
\hline 7.711 & 8.781 & 8.409 & 9.17 & 9.17 & 9.576 \\
\hline 6.623 & 8.138 & 7.598 & 8.717 & 8.717 & 9.336 \\
\hline 5.946 & 7.711 & 7.071 & 8.409 & 8.409 & 9.17 \\
\hline 5.469 & 7.395 & 6.687 & 8.178 & 8.178 & 9.043 \\
\hline 5.107 & 7.147 & 6.389 & 7.993 & 7.993 & 8.941 \\
\hline
\end{tabular}


\[
\operatorname{Root}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AC}_{\delta}}
\]


12_06_93

\section*{Alternate methods; Square Root}

Demonstrate that the square root of two segments can never be more than one half of the difference between them

Let \(A B\) and \(A C\) be the two segments and \(B C\) the difference between them.
\(B C:=10 \delta:=1 . .100 \quad B F:=\frac{B C}{2}\)
\(\mathrm{AB}_{\delta}:=\delta \mathrm{AF}_{\delta}=\mathrm{AB}_{\delta}+\mathrm{BF} \quad \mathrm{FG}:=\mathrm{BF}\)
\(\mathrm{DF}_{\delta}:=\frac{\mathrm{FG}^{2}}{\mathrm{AF}_{\delta}} \quad \mathrm{FJ}:=\mathrm{BF} \quad \mathrm{AD} \mathrm{D}_{\delta}=\mathrm{AF} \delta_{\delta}-\mathrm{DF}_{\delta}\)
\(\mathrm{DG}_{\delta}=\sqrt{\mathrm{AD}_{\delta} \cdot \mathrm{DF}_{\delta}} \mathrm{EH}:=\mathrm{BF}\)
\(A E_{\delta}:=\frac{A D_{\delta} \cdot E H}{D G_{\delta}} A C_{\delta}:=A B_{\delta}+B C\)
\(\sum_{\delta}\left(\operatorname{Root}_{\delta}-\mathrm{AE}_{\delta}\right)=0\)
Since AG can never exceed AF, the result is obvious.

Loging the constant relationship K and \(\mathbf{J}\) on the cubic.


12_06_B3.MCD

\section*{Gruntwork 4 on the Delian Solution}
\(\mathrm{BH}:=10 \quad \delta:=1 . .1000 \mathrm{AB}_{\delta}:=\delta\)
\(\mathrm{AH}_{\delta}:=\mathrm{BH}+\mathrm{AB}_{\delta} \mathrm{AF}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AH}_{\delta}}\)
\(\mathrm{AG}_{\delta}:=\left[\left(\mathrm{AH}_{\delta}\right)^{2} \cdot \mathrm{AB}_{\delta}\right]^{\frac{1}{3}}\)
\(\mathrm{AD}_{\delta}:=\left[\mathrm{AH}_{\delta} \cdot\left(\mathrm{AB}_{\delta}\right)^{2}\right]^{\frac{1}{3}}\)
\(\mathrm{BG}_{\delta}:=\mathrm{AG}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{GH}_{\delta}:=\mathrm{BH}-\mathrm{BG}_{\delta} \mathrm{GL}_{\delta}:=\sqrt{\mathrm{GH}_{\delta}} \cdot \mathrm{BG}_{\delta}\)

\[
\mathrm{Aa}_{\delta}:=\frac{\mathrm{AD}_{\delta}}{2} \quad \mathrm{Be}:=\frac{\mathrm{BH}}{2} \quad \mathrm{Ka}_{\delta}:=\mathrm{Aa}_{\delta}
\]
\(\mathrm{Ke}:=\mathrm{Be}\) eg \(:=\operatorname{Ke} \quad \mathrm{af}_{\delta}:=\mathrm{Ka}_{\delta}\)
\(\mathrm{ce}_{\delta}:=\frac{\mathrm{eg}^{2}}{\mathrm{ae}_{\delta}} \mathrm{ab}_{\delta}:=\frac{\left(\mathrm{af}_{\delta}\right)^{2}}{\mathrm{ae}_{\delta}} \quad \mathrm{ac}_{\delta}:=\mathrm{ae}_{\delta}-\mathrm{ce}_{\delta} \quad \mathrm{bc}_{\delta}:=\mathrm{ac}_{\delta}-\mathrm{ab}_{\delta} \quad \mathrm{Cb}_{\delta}:=\frac{\mathrm{bc}_{\delta}}{2}\)
\(\mathrm{Ca}_{\boldsymbol{\delta}}:=\mathrm{ab}_{\boldsymbol{\delta}}+\mathrm{Cb}_{\boldsymbol{\delta}} \quad \mathrm{AC}_{\boldsymbol{\delta}}:=\mathrm{Aa}_{\boldsymbol{\delta}}+\mathrm{Ca}_{\boldsymbol{\delta}} \quad \mathrm{Ce}_{\boldsymbol{\delta}}:=\mathrm{ae}_{\boldsymbol{\delta}}-\mathrm{Ca}_{\boldsymbol{\delta}} \quad \mathrm{CK}_{\boldsymbol{\delta}}:=\sqrt{\mathrm{Ke}^{2}-\left(\mathrm{Ce}_{\delta}\right)^{2}}\)

\(\mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta}\)
\(\mathrm{BJ}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{AB}_{\delta}} \quad \mathrm{GM}_{\delta}:=\sqrt{\mathrm{AG}_{\delta} \cdot \mathrm{GH}_{\delta}}\)

Is K on CK colinear with AL?
\(\sum_{\delta}\left(\frac{\mathrm{GL}_{\delta}}{\mathrm{AG}_{\delta}}-\frac{\mathrm{CK}_{\delta}}{\mathrm{AC}_{\delta}}\right)=2.35 \cdot 10^{-13}\)



12_07_93.MCD

A few years back I seen a relationship that I had promised myself to take a closer look at one day; \(\mathrm{BJ}=\mathrm{CK}=\mathrm{HM}\).
\(\mathrm{DG}:=10 \mathrm{DF}:=\frac{\mathrm{DG}}{2} \quad \Delta:=1000\)
\(\delta:=0 . . \Delta \mathrm{EF}_{\delta}:=\frac{\mathrm{DF} \cdot \delta}{\Delta} \mathrm{AB}_{\delta}:=\mathrm{EF}_{\delta}\)
\(\mathrm{BF}:=\mathrm{DF} \quad \mathrm{AE}:=\mathrm{DF} \mathrm{DE}_{\delta}:=\mathrm{DF}-\mathrm{EF}_{\delta}\)
\(\mathrm{FG}:=\mathrm{DF} \quad \mathrm{EG}_{\delta}:=\mathrm{FG}+\mathrm{EF}_{\delta}\)
\(E J_{\delta}:=\sqrt{\mathrm{DE}_{\delta} \cdot \mathrm{EG}_{\delta} \quad \mathrm{AJ}_{\delta}:=\mathrm{AE}+\mathrm{EJ}_{\delta}}\)
\(\mathrm{BJ}_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}+\left(\mathrm{AJ}_{\delta}\right)^{2}}\)
\[
\begin{aligned}
& \mathrm{DJ}_{\delta}:=\sqrt{\left(\mathrm{DE}_{\delta}\right)^{2}+\left(\mathrm{EJ}_{\delta}\right)^{2}} \mathrm{HJ}_{\delta}:=\frac{\sqrt{2 \cdot\left(\mathrm{DJ}_{\delta}\right)^{2}}}{2} \\
& \mathrm{GJ}_{\delta}:=\sqrt{\left(\mathrm{EG}_{\delta}\right)^{2}+\left(\mathrm{EJ}_{\delta}\right)^{2}} \mathrm{JM}_{\delta}:=\frac{\sqrt{2 \cdot\left(\mathrm{GJ}_{\delta}\right)^{2}}}{2} \\
& \mathrm{HM}_{\delta}:=\mathrm{HJ}_{\delta}+\mathrm{JM}_{\delta} \\
& \sum_{\delta}\left(\mathrm{HM}_{\delta}-\mathrm{BJ}_{\delta}\right)=-1.776 \cdot 10^{-15}
\end{aligned}
\]


12_07_B3Exploring the ratio of squares.

\[
\begin{aligned}
& \mathrm{BF}:=1000 \quad \Delta:=400 \quad \delta:=1 . . \Delta \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-9} \\
& \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AF}_{\delta}}
\end{aligned}
\]
\[
\mathrm{AE}_{\delta}:=\left[\mathrm{AB}_{\delta} \cdot\left(\mathrm{AF}_{\delta}\right)^{2}\right]^{\frac{1}{3}} \quad \mathrm{AC}_{\delta}:=\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AF}_{\delta}\right]^{\frac{1}{3}}
\]
\[
\mathrm{EF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AE}_{\delta} \quad \mathrm{DF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AD}_{\delta}
\]
\[
\mathrm{CF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AC}_{\delta} \quad \mathrm{EKO}_{\delta}:=\left(\mathrm{EF}_{\delta}\right)^{2}
\]
\[
\operatorname{DJN}_{\delta}:=\left(\mathrm{DF}_{\delta}\right)^{2} \quad \mathrm{CHM}_{\delta}:=\left(\mathrm{CF}_{\delta}\right)^{2}
\]

\[
\mathrm{AB}_{1}=1 \cdot 10^{-9} \quad \mathrm{AB}_{25}=0.01 \quad \mathrm{AB}_{100}=10
\]




\section*{12_11_93.MCD}

The structure in red appears to be a constant.
\[
\begin{aligned}
& \mathrm{BH}:=5000 \quad \delta:=\mathrm{S} . . \mathrm{F} \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \\
& \mathrm{BG}:=\frac{\mathrm{BH}}{2} \quad \mathrm{AH}_{\delta}:=\mathrm{BH}+\mathrm{AB}_{\delta} \\
& \mathrm{AC}_{\delta}:=\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AH}_{\delta}\right]^{\frac{1}{3}} \\
& \mathrm{AF}_{\delta}:=\left[\mathrm{AB}_{\delta} \cdot\left(\mathrm{AH}_{\delta}\right)^{2}\right]^{\frac{1}{3}} \\
& \mathrm{AJ}_{\delta}:=\frac{\mathrm{AF}_{\delta}-\mathrm{AC}_{\delta}}{2} \mathrm{BC}_{\delta}:=\mathrm{AC}_{\delta}-\mathrm{AB}_{\delta} \\
& \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AH}_{\delta}} \mathrm{BF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AB}_{\delta}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AC}_{\delta} \quad \mathrm{FH}_{\delta}:=\mathrm{AH}_{\delta}-\mathrm{AF}_{\delta} \\
& \mathrm{CO}_{\delta}:=\frac{\mathrm{BC}_{\delta} \cdot \mathrm{CF}_{\delta}}{\mathrm{FH}_{\delta}+\mathrm{BC}_{\delta}} \quad \mathrm{BO}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CO}_{\delta} \\
& \mathrm{GO}_{\delta}:=\mathrm{BG}-\mathrm{BO}_{\delta} \mathrm{GL}:=\mathrm{BG} \\
& \mathrm{LO}_{\delta}:=\sqrt{\mathrm{GL}^{2}-\left(\mathrm{GO}_{\delta}\right)^{2}} \\
& \mathrm{AO}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BO}_{\delta}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{JD}_{\delta}:=\sqrt{\left(\mathrm{AD}_{\delta}\right)^{2}+\left(\mathrm{AJ}_{\delta}\right)^{2}} \mathrm{JN}_{\delta}:=\mathrm{JD}_{\delta} \\
& \mathrm{NP}_{\delta}:=\mathrm{AJ}_{\delta} \quad \mathrm{AN}_{\delta}:=\sqrt{\left(\mathrm{AJ}_{\delta}\right)^{2}+\left(\mathrm{JN}_{\delta}\right)^{2}} \\
& \mathrm{AP}_{\delta}:=\mathrm{JN}_{\delta} \quad \mathrm{AE}_{\delta}:=\frac{\left(\mathrm{AN}_{\delta}\right)^{2}}{\mathrm{AP}_{\delta}}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AM}_{\delta}:=\frac{\mathrm{AE}_{\delta}}{2} \quad \mathrm{MK}_{\delta}:=\mathrm{AM}_{\delta} \quad \mathrm{GK}:=\mathrm{BG} \\
& \mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG} \\
& \mathrm{GM}_{\delta}:=\mathrm{AG}_{\delta}-\mathrm{AM}_{\delta} \quad \mathrm{Ma}_{\delta}:=\frac{\left(\mathrm{MK}_{\delta}\right)^{2}}{\mathrm{GM}_{\delta}} \\
& \mathrm{Gb}_{\delta}:=\frac{(\mathrm{GK})^{2}}{\mathrm{GM}_{\delta}} \quad \mathrm{Ga}_{\delta}:=\mathrm{GM}_{\delta}-\mathrm{Ma}_{\delta} \\
& \mathrm{ab}_{\delta}:=\mathrm{Gb}_{\delta}-\mathrm{Ga}_{\delta} \quad \mathrm{Qa}_{\delta}:=\frac{\mathrm{ab}_{\delta}}{2} \\
& \mathrm{GQ}_{\delta}:=\mathrm{Ga}_{\delta}+\mathrm{Qa}_{\delta} \quad \mathrm{AQ}_{\delta}:=\mathrm{AG}_{\delta}-\mathrm{GQ}_{\delta} \\
& \mathrm{KQ}_{\delta}:=\sqrt{\mathrm{GK}^{2}-\left(\mathrm{GQ}_{\delta}\right)^{2}}
\end{aligned}
\]

\[
\begin{array}{ll}
\left(\mathrm{AB}_{\mathrm{S}}\right)^{2} \cdot \mathrm{AH}_{\mathrm{S}}=4.886 \cdot 10^{4} & \mathrm{BO}_{\mathrm{S}}=36.27 \\
\mathrm{AB}_{\mathrm{S}} \cdot\left(\mathrm{AH}_{\mathrm{S}}\right)^{2}=7.822 \cdot 10^{7} & \mathrm{BO}_{\mathrm{F}}=109.49532 \\
\left(\mathrm{AB}_{\mathrm{F}}\right)^{2} \cdot \mathrm{AH}_{\mathrm{F}}=1.417 \cdot 10^{6} & \mathrm{AB}_{\mathrm{S}}=3.125 \\
\mathrm{AB}_{\mathrm{F}} \cdot\left(\mathrm{AH}_{\mathrm{F}}\right)^{2}=4.23 \cdot 10^{8} & \mathrm{AB}_{\mathrm{F}}=16.807 \\
\mathrm{LO}_{\mathrm{S}}=424.30457 & \mathrm{KQ}_{\mathrm{S}}=36.53305 \\
\mathrm{LO}_{\mathrm{F}}=731.77 & \mathrm{KQ}_{\mathrm{F}}=111.891
\end{array}
\]
\[
\begin{gathered}
\sum_{\delta}\left(\frac{\mathrm{LO}_{\delta}}{\mathrm{AO}_{\delta}}-\frac{\mathrm{KQ}_{\delta}}{\mathrm{AQ}_{\delta}}\right)=8.477 \cdot 10^{-12} \\
\mathrm{~S} \equiv 50 \quad \mathrm{~F} \equiv 70
\end{gathered}
\]



\section*{The Square Root}

It may be noticed that I use the adjacent figure in my work for doing square roots. I believe that it is the primary figure for doing square roots. Given segment AE and segment BD , segment FG is their square root. It has a major advantage of being able to square larger figures on paper, not to mention makes something of the development of exponential series.

\(\mathrm{AE}:=100 \quad \delta:=1 . . \mathrm{AE} \quad \mathrm{BD}_{\boldsymbol{\delta}}:=\boldsymbol{\delta}\)
\(\mathrm{AC}:=\frac{\mathrm{AE}}{2} \quad \mathrm{BC}_{\delta}:=\frac{\mathrm{BD}_{\delta}}{2} \quad \mathrm{AB}_{\delta}:=\mathrm{AC}-\mathrm{BC}_{\delta}\)
\(\mathrm{AD}_{\delta}:=\mathrm{AC}+\mathrm{BC}_{\delta} \mathrm{AH}_{\delta}:=\frac{\mathrm{AD}_{\delta}}{2}\)
\(\mathrm{GH}_{\delta}:=\mathrm{AH}_{\delta} \quad \mathrm{CH}_{\delta}:=\mathrm{AC}-\mathrm{AH}_{\delta}\)
\(\mathrm{FG}_{\delta}:=2 \cdot \sqrt{\left(\mathrm{GH}_{\delta}\right)^{2}-\left(\mathrm{CH}_{\delta}\right)^{2}}\)
\(\mathrm{ROOT}_{\delta}:=\sqrt{\left(\mathrm{BD}_{\delta}\right) \cdot \mathrm{AE}}\)



12_12_B3.MCD
Completely generalize the square root figure.
\[
\mathrm{AF}:=7 \quad \mathrm{DF}:=\frac{\mathrm{AF}}{\mathrm{BR}} \mathrm{AD}:=\mathrm{AF}-\mathrm{DF}
\]
\(\delta:=1 . . \mathrm{LBR} \mathrm{DE}_{\delta}:=\frac{\mathrm{DF}}{\mathrm{LBR}} \cdot \delta\)
\(\mathrm{CE}_{\delta}:=2 \cdot \mathrm{DE}_{\delta} \mathrm{AE}_{\delta}:=\mathrm{AD}+\mathrm{DE}_{\delta}\)
\(\mathrm{AB}_{\delta}:=\frac{\mathrm{AE}_{\delta}}{2} \quad \mathrm{BD}_{\delta}:=\mathrm{AD}-\mathrm{AB}_{\delta}\)
\(\mathrm{BH}_{\delta}:=\mathrm{AB}_{\delta} \mathrm{GH}_{\delta}:=2 \cdot \sqrt{\left|\left(\mathrm{BH}_{\delta}\right)^{2}-\left(\mathrm{BD}_{\delta}\right)^{2}\right|}\)
Set AF to unity so that it may be eliminated. Setting BR to 2 will yeild the familiar square root. BR may even take fractional values.
Plug in values here. BR=BASE RATIO,
\(\mathrm{BR} \equiv 3 \quad \mathrm{LBR} \equiv 5\) LBR=LITTLE BASE RATIO

The equation below
\[
\left|\frac{(2 \cdot \mathrm{BR})-2}{\mathrm{BR}}\right|=1.333
\]

\(\mathrm{CE}_{\delta} \quad \frac{\mathrm{BR}-(\mathrm{BR}-2)}{\mathrm{BR} \cdot \mathrm{LBR}} \cdot \delta \cdot \mathrm{AF}\)
\begin{tabular}{|c|c|}
\hline 0.933 & 0.933 \\
\hline 1.867 & 1.867 \\
\hline 2.8 & 2.8 \\
\hline 3.733 & 3.733 \\
\hline 4.667 & 4.667 \\
\hline
\end{tabular}


\[
A J_{\delta}:=\sqrt{A B_{\delta} \cdot A R} \quad \mathrm{JR}_{\delta}:=\mathrm{AR}-\mathrm{AJ} \mathrm{~J}_{\delta}
\]
\[
J W_{\delta}:=\sqrt{A J_{\delta} \cdot J R_{\delta}} \quad A W_{\delta}:=\sqrt{\left(A J_{\delta}\right)^{2}+\left(J W_{\delta}\right)^{2}}
\]
\begin{tabular}{|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) \\
\hline 5 & 7.071 \\
\hline 3.333 & 5.774 \\
\hline 2.5 & 5 \\
\hline 2 & 4.472 \\
\hline 1.667 & 4.082 \\
\hline
\end{tabular}

The figure presents me with a progression. What is it's formula? It turns out not only that I can do square roots, but any two-prime root. It took me 48 pages of sieve work to realize what I was looking at.

\section*{Euclidean Exponential Series}

\[
\begin{aligned}
& \mathrm{AT}:=\mathrm{AR} \quad \mathrm{AN}_{\delta}:=\mathrm{AW}_{\delta} \quad \mathrm{AF}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AW}_{\delta}} \\
& \mathrm{NR}_{\delta}:=\mathrm{AR}-\mathrm{AN}_{\delta} \quad \mathrm{NX} X_{\delta}:=\sqrt{\mathrm{AN}_{\delta} \cdot \mathrm{NR}_{\delta}} \\
& \left.\mathrm{AX}_{\delta}:=\sqrt{\left(\mathrm{AN}_{\delta}\right)^{2}+(\mathrm{NX}}{ }_{\delta}\right)^{2}
\end{aligned}
\]
\begin{tabular}{llll}
\multicolumn{1}{l}{\(\mathrm{AB}_{\delta}\)} & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AN}_{\delta}\) \\
\hline \begin{tabular}{|c|}
\hline 5 \\
\hline 3.333 \\
\hline 2.5 \\
\hline 2 \\
\hline 1.667 \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline 5.946 \\
\hline 4.387 \\
\hline 3.536 \\
\hline 2.991 \\
\hline 2.608 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
\hline 7.071 \\
\hline 5.774 \\
\hline 5 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
\hline 8.409 \\
\hline 7.598 \\
\hline 7.071 \\
\hline 6.687 \\
\hline 6.389 \\
\hline
\end{tabular}
\end{tabular}

What I find interesting, foremost, is the implication for number theory-- We learn exponential notation prior to any naturally occurring exponential examples- Here is one example. The figure removes the conception that exponentiation is purely a notational device and raises it's rank to that of a realistic abstraction.

\[
\begin{aligned}
& A U:=A R \quad A P_{\delta}:=A X_{\delta} \quad A L_{\delta}:=\frac{\left(A N_{\delta}\right)^{2}}{A X_{\delta}} \\
& A H_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{A L_{\delta}} \quad A D_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{A H_{\delta}} \\
& P R_{\delta}:=A R-A P_{\delta} \quad P Y_{\delta}:=\sqrt{A P_{\delta} \cdot P R_{\delta}} \\
& A Y_{\delta}:=\sqrt{\left(A P_{\delta}\right)^{2}+\left(P Y_{\delta}\right)^{2}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & \(\mathrm{AD}_{\delta}\) & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AH}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AL}_{\delta}\) & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AP}_{\delta}\) \\
\hline 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.711 & 8.409 & 9.17 \\
\hline 3.333 & 3.824 & 4.387 & 5.033 & 5.774 & 6.623 & 7.598 & 8.717 \\
\hline 2.5 & 2.973 & 3.536 & 4.204 & 5 & 5.946 & 7.071 & 8.409 \\
\hline 2 & 2.446 & 2.991 & 3.657 & 4.472 & 5.469 & 6.687 & 8.178 \\
\hline 1.667 & 2.085 & 2.608 & 3.263 & 4.082 & 5.107 & 6.389 & 7.993 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \mathrm{AV}:=\mathrm{AR} \quad A Q_{\delta}:=A Y_{\delta} \quad A O_{\delta}:=\frac{\left(A P_{\delta}\right)^{2}}{A Y_{\delta}} \\
& A M_{\delta}:=\frac{\left(A N_{\delta}\right)^{2}}{A O_{\delta}} \quad A K_{\delta}:=\frac{\left(A L_{\delta}\right)^{2}}{A M_{\delta}} \\
& \mathrm{Al}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AK}_{\delta}} \quad \mathrm{AG}_{\delta}:=\frac{\left.(\mathrm{AH})_{\delta}\right)^{2}}{\mathrm{Al}} \\
& A E_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{A G_{\delta}} \quad A C_{\delta}:=\frac{\left(\mathrm{AD}_{\delta}\right)^{2}}{\mathrm{AE}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AG}_{\delta}\) & \({ }^{\circ}\) & \({ }^{\circ}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AK}_{\delta}\) & \(\mathrm{AL}_{\delta}\) & & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AO}_{\delta}\) & \({ }^{\circ}\) & \(\mathrm{AQ}_{\delta}\) \\
\hline 6.209 & 6.484 & 6.771 & 7.071 & 7.384 & 7.711 & 8.052 & 8.409 & 8.781 & 9.17 & 9.576 \\
\hline 4.699 & 5.03 & 5.39 & 5.774 & 6. & 6.623 & 7.094 & 7.598 & 8.138 & 8.71 & 9.3 \\
\hline 3.856 & 4. & 4.585 & 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.71 & 8.409 & 9.17 \\
\hline 3.307 & 3.657 & 4. & 4.472 & 4.945 & 5.469 & 6.047 & 6.687 & 7.395 & 8.178 & 9.043 \\
\hline 2.918 & 3.26 & 3.65 & 4.08 & 4.56 & 5.10 & 5.713 & 6.38 & 7.14 & 7.9 & 8.9 \\
\hline
\end{tabular}





\begin{tabular}{l|l|l|l|} 
\\
\(\mathrm{AC}_{\delta}\) & {\(\left[\left(\mathrm{AB}_{\delta}\right)^{15} \cdot \mathrm{AR}\right]^{16}\)} & \(\mathrm{AB}_{\delta}\) & \(\left.\left(\mathrm{AB}_{\delta}\right)^{16} \cdot \mathrm{AR}^{0}\right]^{\frac{1}{16}}\) \\
\begin{tabular}{|c||c||c|}
\hline 5.221 & 5.221 \\
\hline 3.57 & 3.57 \\
\hline 2.726 & 2.726 \\
\hline 2.212 & 2.212 \\
\hline 1.864 & 1.864 \\
\hline
\end{tabular} & \begin{tabular}{|c|c|}
\hline 5 & 5 \\
\hline 3.333 & 3.333 \\
\hline 2.5 & 2.5 \\
\hline & \\
\hline & \\
\hline
\end{tabular} &
\end{tabular}
\(\left(A^{\delta} \cdot B^{\text {DIV }-\delta)^{\frac{1}{\text { DIV }}}}\right.\)
Or
\[
\left(A^{\text {DIV }-\delta} \cdot B^{\delta}\right)^{\frac{1}{\text { DIV }}}
\]

Resultant Equation
depending on direction of transcription.
And the Delian Quest
One Square

By John Clark


\section*{1 \\ 9 \\ }

\section*{Inscribing a Circle in a given Triangle.}

Place the length for the sides of the triangle at the end of the document.

\[
\begin{aligned}
& \text { AB }:=\left(\begin{array}{l}
\text { Side_1 } \\
\text { Side_2 } \\
\text { Side_3 }
\end{array}\right) \text { AC }:=\left(\begin{array}{l}
\text { Side_2 } \\
\text { Side_3 } \\
\text { Side_1 }
\end{array}\right) \\
& \text { BC }:=\left(\begin{array}{l}
\text { Side_3 } \\
\text { Side_1 } \\
\text { Side_2 }
\end{array}\right) \delta:=0 . .2
\end{aligned}
\]

Is_This_A_Triangle \(:=\left(\mathrm{AB}_{0}+\mathrm{AC}_{0} \geq \mathrm{BC}_{0}\right) \cdot\left(\mathrm{AB}_{0}+\mathrm{BC}_{0} \geq \mathrm{AC}_{0}\right) \cdot\left(\mathrm{AC}_{0}+\mathrm{BC}_{0} \geq \mathrm{AB}_{0}\right) \mathrm{AQ}_{\delta}:=\mathrm{AC}_{\delta}\)

\[
\begin{aligned}
\mathrm{BR}_{\delta} & :=\mathrm{BC}_{\delta} \mathrm{AN}_{\delta}:=\frac{\left(\mathrm{AQ}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \\
\mathrm{BP}_{\delta} & :=\frac{\left(\mathrm{BR}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \mathrm{AP}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{BP}_{\delta}
\end{aligned}
\]
\[
\mathrm{NP}_{\delta}:=\mathrm{AP}_{\delta}-\mathrm{AN}_{\delta} \quad \mathrm{NO}_{\delta}:=\frac{\mathrm{NP}_{\delta}}{2}
\]
\[
\mathrm{AO}:=\mathrm{AN}+\mathrm{NO} \mathrm{BO}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AO}_{\delta}
\]
\[
\mathrm{CO}_{\delta}:=\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}-\left(\mathrm{BO}_{\delta}\right)^{2}}
\]

\[
\mathrm{BS}_{\delta}:=\mathrm{BC}_{\delta} \quad \mathrm{SO}_{\delta}:=\mathrm{BS}_{\delta}-\mathrm{BO}_{\delta}
\]
\[
\mathrm{CS}_{\delta}:=\sqrt{\left(\mathrm{SO}_{\delta}\right)^{2}+\left(\mathrm{CO}_{\delta}\right)^{2}} \mathrm{SU}_{\delta}:=\frac{\mathrm{CS}_{\delta}}{2}
\]
\[
\mathrm{BU}_{\delta}:=\sqrt{\left(\mathrm{BS}_{\delta}\right)^{2}-\left(\mathrm{SU}_{\delta}\right)^{2}}
\]
\[
\mathrm{ST}_{\delta}:=\frac{\left(\mathrm{SU}_{\delta}\right)^{2}}{\mathrm{BS}_{\delta}} \mathrm{TU}_{\delta}:=\sqrt{\left(\mathrm{SU}_{\delta}\right)^{2}-\left(\mathrm{ST}_{\delta}\right)^{2}}
\]

\[
\mathrm{AW}_{\delta}:=\mathrm{AC}_{\delta} \mathrm{WO}_{\delta}:=\mathrm{AW}_{\delta}-\mathrm{AO}_{\delta}
\]
\[
\mathrm{CW}_{\delta}:=\sqrt{\left(\mathrm{WO}_{\delta}\right)^{2}+\left(\mathrm{CO}_{\delta}\right)^{2}}
\]
\[
\mathrm{WX}_{\delta}:=\frac{\mathrm{CW}_{\delta}}{2}
\]
\[
\mathrm{AX}_{\delta}:=\sqrt{\left(\mathrm{AW}_{\delta}\right)^{2}-\left(\mathrm{WX}_{\delta}\right)^{2}}
\]

\(\mathrm{WV}_{\delta}:=\frac{\left(\mathrm{WX}_{\delta}\right)^{2}}{\mathrm{AW}_{\delta}}\)
\[
\mathrm{VX}_{\delta}:=\sqrt{\left(\mathrm{WX}_{\delta}\right)^{2}-\left(\mathrm{WV}_{\delta}\right)^{2}}
\]
\[
\mathrm{WV}_{\delta}:=\sqrt{\left(\mathrm{WX}_{\delta}\right)^{2}-\left(\mathrm{VX}_{\delta}\right)^{2}}
\]
\[
\mathrm{AV}_{\delta}:=\mathrm{AW}_{\delta}-\mathrm{WV}_{\delta} \quad \mathrm{BV}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AV}_{\delta} \quad \mathrm{XY}_{\delta}:=\frac{\mathrm{BU}_{\delta} \cdot \mathrm{VX}_{\delta}}{\mathrm{TU}_{\delta}} \quad \mathrm{VY}_{\delta}:=\sqrt{\left(\mathrm{XY}_{\delta}\right)^{2}-\left(\mathrm{VX}_{\delta}\right)^{2}}
\]

\[
\begin{aligned}
& \mathrm{AY}_{\delta}:=\mathrm{AV}_{\delta}+\mathrm{VY}_{\delta} \\
& \mathrm{AD}_{\delta}:=\frac{\mathrm{AV}_{\delta} \cdot \mathrm{AB}_{\delta}}{\mathrm{AY}} \mathrm{AE}_{\delta}:=\frac{\mathrm{AX}_{\delta} \cdot \mathrm{AD}_{\delta}}{\mathrm{AV}_{\delta}} \\
& \mathrm{DE}_{\delta}:=\sqrt{\left(\mathrm{AE}_{\delta}\right)^{2}-\left(\mathrm{AD}_{\delta}\right)^{2}}
\end{aligned}
\]

Plug Side Values In Here \(\quad\) Side \(\_1 \equiv 20 \quad\) Side \(\_2=26 \quad\) Side_3 \(\equiv 21\)
\(A B^{T}=\left(\begin{array}{lll}20 & 26 & 21\end{array}\right) \quad\) Is_This_A_Triangle \(=1\)
Given 3 lengths, no matter what order they are entered, DE should remain a constant.

\[
\mathrm{S}_{1}:=\mathrm{AB} \quad \mathrm{~S}_{2}:=\mathrm{AC} \quad \mathrm{~S}_{3}:=\mathrm{BC}
\]

You will note that the formula derived from the process is more consistent with imaginaries.
\(\operatorname{Radius}_{\delta}:=\frac{\sqrt{-\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}-\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}-\mathrm{S}_{3_{\delta}}}}{2 \cdot \sqrt{\mathrm{~S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}}}\)
\[
\text { Radius }=\left(\begin{array}{l}
6.147 \\
6.147 \\
6.147
\end{array}\right) \quad \mathrm{DE}=\left(\begin{array}{l}
6.147 \\
6.147 \\
6.147
\end{array}\right)
\]


\section*{The Cradle}

Is EL and EK always collinear?
\(1:=100 \quad \delta:=1 . .1 \quad \mathrm{EF}_{\delta}:=\delta^{5} \cdot 10^{-8}\)
\(\mathrm{FJ}:=10 \quad \mathrm{EJ}_{\delta}:=\mathrm{FJ}+\mathrm{EF}_{\delta}\)
\(\mathrm{EH}_{\delta}:=\sqrt{\mathrm{EF}_{\delta} \cdot \mathrm{EJ}_{\delta}} \quad \mathrm{FH}_{\delta}:=\mathrm{EH}_{\delta}-\mathrm{EF}_{\delta}\)
\(\mathrm{EG}_{\delta}:=\left[\left(\mathrm{EF}_{\delta}\right)^{2} \cdot \mathrm{EJ}_{\delta}\right]^{\frac{1}{3}} \quad \mathrm{FG}_{\delta}:=\mathrm{EG}_{\delta}-\mathrm{EF}_{\delta}\)
\(\mathrm{EI}_{\delta}:=\left[\left(\mathrm{EJ}_{\delta}\right)^{2} \cdot \mathrm{EF}_{\delta}\right]^{\frac{1}{3}} \quad \mathrm{FI}_{\delta}:=\mathrm{EI}_{\delta}-\mathrm{EF}_{\delta}\)


Basically it is demonstrated that the two triangles EKM and ELN are proportional, which is sufficient.
\[
\begin{aligned}
& \mathrm{IJ}_{\delta}:=\mathrm{FJ}-\mathrm{FI}_{\delta} \\
& \mathrm{HJ}_{\delta}:=\mathrm{FJ}-\mathrm{FH}_{\delta} \\
& \mathrm{FN}_{\delta}:=\frac{\mathrm{FH}_{\delta} \cdot \mathrm{FJ}}{\left(\mathrm{FH}_{\delta}+\mathrm{IJ}_{\delta}\right)} \mathrm{EN}_{\delta}:=\mathrm{FN}_{\delta}+\mathrm{EF}_{\delta}
\end{aligned}
\]
\[
\mathrm{FM}_{\delta}:=\frac{\mathrm{FG}_{\delta} \cdot \mathrm{FJ}}{\left(\mathrm{FG}_{\delta}+\mathrm{HJ}_{\delta}\right)} \mathrm{EM}_{\delta}:=\mathrm{FM}_{\delta}+\mathrm{EF}_{\delta}
\]

\[
\begin{aligned}
& \mathrm{JN}_{\delta}:=\mathrm{FJ}-\mathrm{FN}_{\delta} \quad \mathrm{LP}_{\delta}:=\mathrm{JN}_{\delta} \\
& \mathrm{BJ}:=\mathrm{FJ} \quad \mathrm{BP}_{\delta}:=\frac{\mathrm{BJ} \cdot \mathrm{LP}_{\delta}}{\mathrm{IJ}_{\delta}} \\
& \mathrm{JP}_{\delta}:=\mathrm{BP}_{\delta}-\mathrm{BJ} \quad \mathrm{LN}_{\delta}:=\mathrm{JP}_{\delta} \\
& \mathrm{KO}_{\delta}:=\mathrm{FM}_{\delta} \quad \mathrm{AF}:=\mathrm{FJ} \\
& \mathrm{AO}_{\delta}:=\frac{\mathrm{AF}^{2} \mathrm{KO}_{\delta}}{\mathrm{FG}_{\delta}} \mathrm{FO}_{\delta}:=\mathrm{AO}_{\delta}-\mathrm{AF} \\
& \mathrm{KM}_{\delta}:=\mathrm{FO}_{\delta} \quad \sum_{\delta}\left(\frac{\mathrm{LN}_{\delta}}{\mathrm{EN}_{\delta}}-\frac{\mathrm{KM}_{\delta}}{\mathrm{EM}_{\delta}}\right)=1.015 \cdot 100^{-10}
\end{aligned}
\]

They are two lines with identical slopes, terminating at the same point.


\[
\begin{aligned}
& \mathrm{HR}_{\delta}:=\sqrt{\mathrm{FH}_{\delta} \cdot \mathrm{HJ}_{\delta}} \quad \mathrm{HS}_{\delta}:=\frac{\mathrm{LN}_{\delta} \cdot \mathrm{EH}_{\delta}}{\mathrm{EN}_{\delta}} \\
& \mathrm{RATIO}_{\delta}:=\frac{\mathrm{HR}_{\delta}}{\mathrm{HS}_{\delta}} \quad \mathrm{GI}_{\delta}:=\mathrm{EI}_{\delta}-\mathrm{EG}_{\delta}
\end{aligned}
\]
\[
\mathrm{RATIO}_{\delta}:=\frac{\mathrm{GI}_{\delta}}{\mathrm{HS}_{\delta}}
\]


\section*{Tangents and Similarity Points}


O and P are points of origin for the ratio of the two circles that can also have a tangent ray to both circles. Develop formulas that would locate the particular points given using just the radius of the two circles and the difference between them.

O and P are called the similarity points ( sp ) of the two circles. \(O\) is the external similarity point and \(P\) is the internal similarity point.

I will work with point O first.
Given \(\mathrm{R}_{\mathrm{L}}=\) large radius
\(\mathrm{R}_{\mathrm{S}}=\) small radius
\(\mathrm{D}=\) difference between origins.
\(R_{L}:=4 \quad R_{S}:=1 \quad D:=8\)
\(\mathrm{AC}:=\mathrm{R}_{\mathrm{L}} \quad \mathrm{BD}:=\mathrm{R}_{\mathrm{S}} \quad \mathrm{AB}:=\mathrm{D}\)
If the difference between the circles is less than \(P_{\mathrm{I}}-\mathrm{R}_{\mathrm{s}}\), than one of course has an imaginary situation for the external similarity point, \(R_{L}+R_{S}\) for the internal. At \(R_{L}-R_{S}\) the smaller is in the larger and they touch at one point, \(R_{L}+R_{S}\) they are external to one another and touching.

\(\mathrm{DE}:=\mathrm{AB} \quad \mathrm{AE}:=\mathrm{BD} \quad \mathrm{CE}:=\mathrm{AC}-\mathrm{AE}\)
\(\mathrm{AO}:=\frac{\mathrm{DE} \cdot \mathrm{AC}}{\mathrm{CE}} \quad \mathrm{AO}=10.667\)
\(\mathrm{EOR}_{\mathrm{L}}\) "External similarity point Origin to center of Radius Large"
\[
\operatorname{EOR}_{\mathrm{L}}:=\operatorname{if}\left(\mathrm{R}_{\mathrm{L}} \neq \mathrm{R}_{\mathrm{S}}, \text { if }\left(\mathrm{R}_{\mathrm{S}^{>}} \mathrm{R}_{\mathrm{L}}, 0, \frac{\mathrm{D} \cdot \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\right), \infty\right)
\]
\(\operatorname{EOR}_{\mathrm{L}}=10.667\)


What is the length of line (OG) tangent to both circles?
\(\mathrm{AG}:=\mathrm{AC} \quad \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}}\)
\(\mathrm{GO}=9.888\)

And what is the formula?
\(\mathrm{EOT}_{\mathrm{LR}}\) " External similarity point Origin to Tangent
(Large Radius)"
EOT \(_{\text {LR }}=\mathrm{R}_{\mathrm{L}} \cdot \frac{\sqrt{\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(-\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\)
EOT \(_{\text {LR }}=9.888\)

What is the length of the line tangent to the least circle (HO)?

\(\mathrm{BH}:=\mathrm{BD} \quad \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \quad \mathrm{BO}=2.667\)
\(\mathrm{HO}:=\sqrt{\mathrm{BO}^{2}}-\mathrm{BH}^{2}\)
\(\mathrm{HO}=2.472\)
And what is the formula?
\(\mathrm{EOT}_{\mathrm{SR}}\) " External similarity point Origin to Tangent (Small Radius)"

EOT \(_{\text {SR }}:=\mathrm{R}_{\mathrm{S}} \cdot \frac{\sqrt{-\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right)}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\)
\(\mathrm{EOT}_{\mathrm{SR}}=2.472\)


Lastly what is the length of line from tangent to tangent of these circles?

GH := EOT \(L R-\) EOT \(_{\text {SR }}\)
\(\mathrm{GH}=7.416\)

And what is the formula?
ETT "Tangent to Tangent"

ETT \(:=\sqrt{-\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right)}\)
\(\mathrm{ETT}=7.416\)


I will now turn my attention to the point P , the internal similarity point.
\(\mathrm{AP}:=\frac{\mathrm{AB} \cdot \mathrm{AC}}{\mathrm{AC}+\mathrm{BD}} \quad \mathrm{AP}=6.4\)

\(\mathrm{IOR}_{\mathrm{L}}\) "Internal similarity point to center of Radius Large"
\(\operatorname{IOR}_{\mathrm{L}}:=\mathrm{D} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}}\) IOR \(_{\mathrm{L}}=6.4\)
\(\mathrm{BP}:=\mathrm{AB}-\mathrm{AP} \quad \mathrm{BP}=1.6\)
\(\mathrm{IOR}_{\mathrm{s}}\) "Internal similarity point to center of Radius Small"
\(\operatorname{IOR}_{S}:=D \cdot \frac{R_{S}}{R_{L}+R_{S}} \quad \operatorname{IOR}_{S}=1.6\)

\(\mathrm{AJ}:=\mathrm{AC} \quad \mathrm{BK}:=\mathrm{BD} \quad \mathrm{JP}:=\sqrt{\mathrm{AP}^{2}-\mathrm{AJ}^{2}}\)
\(\mathrm{JP}=4.996\)
\(\mathrm{IOT}_{\mathrm{LR}}\) "Internal similarity point Origin to Tangent (Large Radius)"

\(\mathrm{IOT}_{\mathrm{LR}}=4.996\)
\(\mathrm{KP}:=\sqrt{\mathrm{BP}^{2}-\mathrm{BK}^{2}} \quad \mathrm{KP}=1.249\)

\(\mathrm{IOT}_{\mathrm{SR}}\) "Internal similarity point Origin to Tangent (Small Radius)"
IOT \(_{\mathrm{SR}}:=\mathrm{R}_{\mathrm{S}} \frac{\sqrt{\frac{-\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}{}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}}\)
\(\mathrm{IOT}_{\mathrm{SR}}=1.249\)
\(\mathrm{JK}:=\mathrm{JP}+\mathrm{KP} \quad \mathrm{JK}=6.245\)
ITT "Internal similarity point Tangent to Tangent"
ITT \(:=\sqrt{-\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}\)
ITT \(=6.245\)

\section*{The Chordal or Power Line of two Circles 04_27_94.MCD}


The solution for finding the chordal as outlined in 100 Great Problems of Elementary Mathematics Their History and Solution by Heinrich Dörrie did not lend itself to this kind of process, so I took a couple of minuets (Bach) and developed my own method.
The figure I work with is a transformation of the one on the left.

Given two circles find their chordal or power line given just their radius and difference between their centers, and reduce the tautological chains to formulas.
\[
\begin{aligned}
& \mathrm{R}_{1}:=3 \quad \mathrm{R}_{2}:=1 \quad \mathrm{D}:=1 \\
& \mathrm{AH}:=\mathrm{R}_{1} \quad \mathrm{GJ}:=\mathrm{R}_{2} \quad \mathrm{AG}:=\mathrm{D} \\
& \mathrm{AB}:=\frac{\mathrm{AH}^{2}}{\mathrm{AG}} \mathrm{FG}:=\frac{\mathrm{GJ}^{2}}{\mathrm{AG}} \\
& \mathrm{BF}:=\mathrm{AG}-\mathrm{AB}-\mathrm{FG} \quad \mathrm{BD}:=\frac{\mathrm{BF}}{2} \\
& \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \quad \mathrm{DF}:=\mathrm{BD} \\
& \mathrm{DG}:=\mathrm{DF}+\mathrm{FG}
\end{aligned}
\]
\[
\begin{array}{lll}
\mathrm{CR}_{1}:=\frac{1}{2} \cdot \frac{\left(\mathrm{R}_{1}^{2}-\mathrm{R}_{2}^{2}+\mathrm{D}^{2}\right)}{\mathrm{D}} & \mathrm{CR}_{1}=4.5 & \mathrm{AD}=4.5 \\
\mathrm{CR}_{2}:=\frac{1}{2} \cdot \frac{\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{1}^{2}+\mathrm{D}^{2}\right)}{\mathrm{D}} \mathrm{CR}_{2}=-3.5 & \mathrm{DG}=-3.5
\end{array}
\]


LT "Length of radial Tangent" LP is the variable chosen for circle center on the power line.
\(\mathrm{LT}:=\frac{1}{2} \cdot\left|\frac{\sqrt{4 \cdot \mathrm{LP}^{2} \cdot \mathrm{D}^{2}+\mathrm{R}_{1}{ }^{4}-2 \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}^{2}-2 \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{2}^{2}+\mathrm{D}^{4}-2 \cdot \mathrm{D}^{2} \cdot \mathrm{R}_{2}^{2}+\mathrm{R}_{2}^{4}}}{\mathrm{D}}\right|\)
\(\mathrm{LT}=6.021 \quad \mathrm{JK}=6.021\)
The process does not seem to recognize any special cases.


\section*{Power Point}

Given three circles find their power point and if it is at all possible, cut all three perpendicularly. Demonstrate the formula for the Power Point and the Length of the resultant Tangent.

The distance between each set of circles is given as \(\mathrm{D}_{1}, \mathrm{D}_{2}\), and \(\mathrm{D}_{3}\). Naturally they must form a triangle.
\(D_{1}:=4\)
\(\mathrm{D}_{2}:=5\)
\(D_{3}:=2\)
\(\Delta:=\left(\mathrm{D}_{1}+\mathrm{D}_{2} \geq \mathrm{D}_{3}\right) \cdot\left(\mathrm{D}_{2}+\mathrm{D}_{3} \geq \mathrm{D}_{1}\right) \cdot\left(\mathrm{D}_{1}+\mathrm{D}_{3} \geq \mathrm{D}_{2}\right)\)

\(\Delta=1 \quad \Delta\) "Is this a Triangle?
\(\mathrm{R}_{1}:=3 \quad \mathrm{R}_{2}:=2 \quad \mathrm{R}_{3}:=4\)
\[
\mathrm{AE}:=\mathrm{D}_{1} \quad \mathrm{AH}:=\mathrm{D}_{2} \quad \mathrm{EH}:=\mathrm{D}_{3}
\]
\(\mathrm{AF}:=\mathrm{R}_{1} \quad \mathrm{HK}:=\mathrm{R}_{2} \quad \mathrm{EG}:=\mathrm{R}_{3}\)
Af \(:=\mathrm{AF} \mathrm{Hk}:=\mathrm{HK} \quad \mathrm{Eg}:=\mathrm{EG}\)
\(\mathrm{AB}:=\frac{\mathrm{AF}^{2}}{\mathrm{AE}} \mathrm{DE}:=\frac{\mathrm{EG}^{2}}{\mathrm{AE}}\)
\(\mathrm{Ab}:=\frac{\mathrm{Af}^{2}}{\mathrm{AH}} \mathrm{HJ}:=\frac{\mathrm{HK}^{2}}{\mathrm{AH}}\)
\(\mathrm{Hj}:=\frac{\mathrm{Hk}^{2}}{\mathrm{EH}} \quad \mathrm{Ed}:=\frac{\mathrm{Eg}^{2}}{\mathrm{EH}}\)

\(\mathrm{BD}:=\mathrm{AE}-\mathrm{AB}-\mathrm{DE} \quad \mathrm{BX}:=\frac{\mathrm{BD}}{2}\)
\(\mathrm{bJ}:=\mathrm{AH}-\mathrm{Ab}-\mathrm{HJ} \quad \mathrm{bY}:=\frac{\mathrm{bJ}}{2}\)
\(d j:=E H-E d-H j \quad d Z:=\frac{d j}{2}\)
\(\mathrm{AX}:=\mathrm{AB}+\mathrm{BX} \quad \mathrm{AX}=1.125\)
\(A Y:=A b+b Y\)
\(\mathrm{EZ}:=\mathrm{Ed}+\mathrm{dZ} \quad \mathrm{EZ}=4\)

\(\mathrm{Ah}:=\mathrm{AH} \quad \mathrm{Ei}:=\mathrm{EH}\)
\(\mathrm{Am}:=\frac{\mathrm{Ah}^{2}}{\mathrm{AE}}\) En \(:=\frac{\mathrm{Ei}^{2}}{\mathrm{AE}}\)
\(\mathrm{An}:=\mathrm{AE}-\mathrm{En} \mathrm{mn}:=\mathrm{Am}-\mathrm{An}\)
\(n \mathrm{x}:=\frac{\mathrm{mn}}{2} \quad \mathrm{Ax}:=\mathrm{An}+\mathrm{nx}\)
\(H x:=\sqrt{A H^{2}-A x^{2}}\)

\[
\mathrm{WX}:=\frac{\mathrm{Hx} \cdot \mathrm{AX}}{\mathrm{Ax}} \quad \mathrm{WX}=0.462
\]
\[
\mathrm{VY}:=\frac{\mathrm{Hx} \cdot \mathrm{AY}}{\mathrm{Ax}} \quad \mathrm{VY}=1.232
\]
\[
\mathrm{AV}:=\frac{\mathrm{AH} \cdot \mathrm{AY}}{\mathrm{Ax}} \mathrm{AV}=3.243
\]
\[
\mathrm{VX}:=\mathrm{AV}-\mathrm{AX}
\]
\[
\mathrm{OX}:=\frac{\mathrm{AY} \cdot \mathrm{VX}}{\mathrm{VY}} \mathrm{OX}=5.157
\]

PP "Power Point"
\(\mathrm{PP}:=\frac{1}{2} \cdot \frac{\binom{\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{D}_{1}{ }^{4}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{O}}{+\mathrm{R}_{1}{ }^{2}-\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}}}{\left(\mathrm{D}_{1} \cdot \sqrt{\left|-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{4}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{3}{ }^{4}-2 \cdot \mathrm{D}_{2}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{2}^{4}\right|}\right)}\)
\(\mathrm{PP}=5.157\)

\[
\mathrm{EX}:=\mathrm{AE}-\mathrm{AX}
\]
\[
\begin{array}{ll}
\mathrm{AO}:=\sqrt{\mathrm{AX}^{2}+\mathrm{OX}^{2}} & \mathrm{EO}:=\sqrt{\mathrm{EX}^{2}+\mathrm{OX}^{2}} \\
\mathrm{AP}:=\mathrm{AF} & \mathrm{EP}:=\mathrm{EG} \\
\mathrm{OP}_{\mathrm{A}}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AP}^{2}} & \mathrm{OP}_{\mathrm{E}}:=\sqrt{\mathrm{EO}^{2}-\mathrm{EP}^{2}} \\
\mathrm{OP}_{\mathrm{A}}=4.342 & \mathrm{OP}_{\mathrm{E}}=4.342
\end{array}
\]

\section*{LT "Length of Tangent"}
\[
\begin{aligned}
& -\mathrm{R}_{1}^{4} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{1}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{4}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}^{2} \ldots \\
& +\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{1}^{2} \cdot \mathrm{D}_{2}^{2}-\mathrm{R}_{2}^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{3}^{2} \cdot \mathrm{D}_{2}^{2} \ldots \\
& +\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{4}-\mathrm{R}_{3}{ }^{4} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2} \cdot \mathrm{R}_{2}^{2} \ldots \\
& +\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{4} \ldots \\
& +-\mathrm{D}_{1}{ }^{4} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2} \\
& \sqrt{-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{4}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{3}{ }^{4}-2 \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{2}^{4}}
\end{aligned}
\]
\(\mathrm{LT}=4.342\)


\section*{Division, \(\mathbf{A}^{2}\)}
04_30_94.MCD

One does not work with geometry often, so it may be that one does not keep basics in mind when trying to work a figure. This little paper is about a basic move. I bring this to light, as I have seen a ratio often given as division. In geometry, so far as I know, one cannot divide a line by a line, but can form a series of the nature \(A N: B N\) as a linear figure. Given A and B one can raise them to any whole power simultaneously with a couple of simple moves based on the figure immediately below. See work done in 1995.

Divide \(\mathrm{AC}^{2}\) by AB.
Process Summary
I have noticed that my solutions depend upon this basic move.


In some works I have represent it simply as the figure on the left. One may realize that in my Pythagorean Completion I used the circular form and it is often expressed as a pole and polar arrangement. A terminology that does not seem fit for the processes that they represent, physical and not mathematical.


The jargon is that B is called a Pole and D is on a polar, a segment of which is DE. But it can easily be seen that the figure is a transformation. It is another way of dividing \(A(2\) by \(A B\). The figure now raises a question for me. I had thought that I answered it previously, but I cannot find it in my files. Is BE always collinear with BG? This paper is helping me mediate on poles and polars, which names do not help me understand the true ratio involved.
Mathematicians seem to like a proliferation of names. And, god forbid, B and D are called conjugate in respect to each other. I have a hard enough time remembering my own name, that is why I keep my id. (in the Freudian sense) close at hand.
\[
\mathrm{AC}:=5 \quad \delta:=1 . .1000 \quad \mathrm{BC}_{\delta}:=\delta
\]
\[
\mathrm{CF}:=2 \cdot \mathrm{AC} \quad \mathrm{AG}:=\mathrm{AC} \mathrm{BF}_{\delta}:=\mathrm{CF}+\mathrm{BC}_{\delta}
\]
\[
\mathrm{BH}_{\delta}:=\sqrt{\mathrm{BF}_{\delta} \cdot \mathrm{BC}_{\delta}} \quad \mathrm{GH}:=\mathrm{AC}
\]
\[
\mathrm{BG}_{\delta}:=\sqrt{\left(\mathrm{BH}_{\delta}\right)^{2}+\mathrm{GH}^{2}} \mathrm{AE}:=\mathrm{AC}
\]
\[
\mathrm{AB}_{\delta}:=\mathrm{AC}+\mathrm{BC}_{\delta} \quad \mathrm{AD}_{\delta}:=\frac{\mathrm{AE}^{2}}{\mathrm{AB}_{\delta}}
\]
\[
\mathrm{BE}_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}-\mathrm{AE}^{2}} \mathrm{BD}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AD}_{\delta}
\]
\[
\mathrm{DE}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}-\left(\mathrm{BD}_{\delta}\right)^{2}}
\]


\section*{Two Circles and a Parallel}

What I would like to do is to is drop in a circle that is tangent to the given two circles that are already tangent and tangent to the line from the similarity point and also have this circle tangent to the parallel of the similarity line that lies tangent to the first circle. The formula derived for my process tells me that I will do it the hard way. It willpredict an easier method.


Process Summary

Given the radius of the two circles, what is the radius of the third? Attempt to develop a formula for the resultant radius. And also, of the power line between parallels, what is the ratio of \(\mathrm{AC}: \mathrm{BC}\) in terms of the given radius' ?


Find the Similarity Point.
\[
\begin{aligned}
& \mathrm{AB}:=\mathrm{R}_{1} \mathrm{CF}:=\mathrm{R}_{2} \mathrm{BC}:=\mathrm{CF} \\
& \mathrm{CB}:=\mathrm{CF} \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \\
& \mathrm{PQ}:=\mathrm{AC} \mathrm{AR}:=\mathrm{AB} \\
& \mathrm{CQ}:=\mathrm{CF} \mathrm{AP}:=\mathrm{CQ} \\
& \mathrm{PR}:=\mathrm{AR}-\mathrm{AP} \\
& \mathrm{AO}:=\frac{\mathrm{PQ} \cdot \mathrm{AR}}{\mathrm{PR}}
\end{aligned}
\]

Find the segment of the power line (HN) between parallels.
\[
\begin{aligned}
& \mathrm{AG}:=\mathrm{AB} \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}} \\
& \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \\
& \mathrm{BH}:=\frac{\mathrm{AG} \cdot \mathrm{BO}}{\mathrm{GO}} \mathrm{BN}:=\frac{\mathrm{BH} \cdot \mathrm{AB}}{\mathrm{BC}} \\
& \mathrm{HO}:=\frac{\mathrm{AO} \cdot \mathrm{BH}}{\mathrm{AG}} \mathrm{CO}:=\mathrm{BO}-\mathrm{BC} \\
& \mathrm{JO}:=\frac{\mathrm{GO} \cdot \mathrm{CO}}{\mathrm{AO}} \mathrm{HN}:=\mathrm{BH}+\mathrm{BN}
\end{aligned}
\]

Find JN
\(\mathrm{HJ}:=\mathrm{HO}-\mathrm{JO} \mathrm{KH}:=\frac{\mathrm{AG} \cdot \mathrm{HJ}}{\mathrm{AO}}\)
\(\mathrm{KN}:=\mathrm{HN}-\mathrm{KH}\)

\[
\begin{aligned}
& \mathrm{KJ}:=\sqrt{\mathrm{HJ}^{2}-\mathrm{KH}^{2}} \\
& \mathrm{JN}:=\sqrt{\mathrm{KN}^{2}+\text { Find }} \mathrm{MS} \\
& \mathrm{BD}:=\frac{\mathrm{KJ} \cdot \mathrm{BN}}{\mathrm{KN}} \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \\
& \mathrm{CE}:=\frac{\mathrm{KN} \cdot \mathrm{CD}}{\mathrm{JN}} \mathrm{CJ}:=\mathrm{BC} \\
& \mathrm{EJ}:=\sqrt{\mathrm{CJ}^{2}-\mathbb{C E}^{2}}=2 \cdot \mathrm{EJ} \\
& \mathrm{NS}:=\mathrm{JN}-\mathrm{JS} \quad \mathrm{CS}:=\mathrm{BC} \\
& \mathrm{MS}:=\frac{\mathrm{CS} \cdot \mathrm{NS}}{\mathrm{JS}}
\end{aligned}
\]

\section*{Plug Values in Here}
\[
\mathrm{R}_{1} \equiv 8 \quad \mathrm{R}_{2} \equiv 6
\]

There was too much work here for the symbolic processor to reduce all the equations to one, easily. It took me three days to nurse the processor through it, and this is a short work. The formula does not have the "sour" spot. (Place both \(R_{1}\) and \(R_{2}\) to the same value to see it.) When \(R_{2}\) is \(1 / 4\) of \(R_{1}\), there are six tangents.
\[
\mathrm{R}_{3}:=\frac{\mathrm{R}_{1}^{2}}{4 \cdot \mathrm{R}_{2}} \quad \mathrm{R}_{3}=2.667 \quad \mathrm{MS}=2.667
\]

The formula tells me at least two things, 1) There is a second method to solve the problem, 2) the process is a rather baroque method of dividing a square.
\[
\frac{\mathrm{HN}}{\mathrm{BN}}=1.75 \quad \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}}=1.75 \quad \frac{\mathrm{HN}}{\mathrm{BH}}=2.333 \quad \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}=2.333
\]

The results for the ratios of the power line segment are very nice also.

What is the construction suggested by the found formula of
\[
\frac{\mathrm{R}_{1}^{2}}{4 \cdot \mathrm{R}_{2}} ?
\]
\(\mathrm{AB}:=\mathrm{R}_{1} \quad \mathrm{BC}:=\mathrm{R}_{2}\)
\(\mathrm{AE}:=4 \cdot \mathrm{BC}\)
\(\mathrm{AD}:=\frac{\mathrm{AB}^{2}}{\mathrm{AE}}\)
\(\mathrm{AF}:=\mathrm{AB}+\mathrm{AD}\)
\(C G:=B C+A D\)
\(R_{3}=2.667 \quad \mathrm{AD}=2.667\)

For those who may become confused as to the dashed lines, the segment AD is added to the radius of the both circles their intersection is the center of the circle sought.

05_04_94.MCD

\section*{Two Circles, given a tangent on one.}


Given two circles and a point that is on the circumference of one, find a circle tangent to the circle at that point and also tangent to the other circle. The convention for this point will be "from the power line".

Process Summary


Find the power line.

\(\mathrm{AB}:=\mathrm{R}_{1} \quad \mathrm{CD}:=\mathrm{R}_{2} \quad \mathrm{AD}:=\mathrm{D}\)
\(\mathrm{AG}:=\mathrm{AB} \quad \mathrm{DH}:=\mathrm{CD} \quad \mathrm{AE}:=\frac{\mathrm{AG}^{2}}{\mathrm{AD}}\)
\(\mathrm{DF}:=\frac{\mathrm{DH}^{2}}{\mathrm{AD}} \quad \mathrm{EF}:=\mathrm{AD}-\mathrm{AE}-\mathrm{DF}\)
\(\mathrm{EP}:=\frac{\mathrm{EF}}{2} \quad \mathrm{AP}:=\mathrm{AE}+\mathrm{EP} \quad \mathrm{DP}:=\mathrm{DF}+\mathrm{EP}\)
\(\mathrm{BP}:=\mathrm{AP}-\mathrm{AB}\)

\[
\begin{aligned}
& \mathrm{Hj}:=\mathrm{AD} \quad \mathrm{Aj}:=\mathrm{DH} \\
& \mathrm{Gj}:=\mathrm{AG}-\mathrm{DH} \quad \mathrm{AJ}:=\frac{\mathrm{Hj} \cdot \mathrm{AG}}{\mathrm{Gj}}
\end{aligned}
\]
\[
\mathrm{DJ}:=\mathrm{AJ}-\mathrm{AD} \quad \mathrm{HJ}:=\sqrt{\mathrm{DJ}^{2}-\mathrm{DH}^{2}}
\]

\[
\begin{array}{ll}
\mathrm{GJ}:=\sqrt{\mathrm{AJ}^{2}-\mathrm{AG}^{2}} & \mathrm{Aa}:=\frac{\mathrm{AG}^{2}}{\mathrm{AJ}} \\
\mathrm{Ga}:=\sqrt{\mathrm{AG}^{2}-\mathrm{Aa}^{2}} & \mathrm{Db}:=\frac{\mathrm{DH}^{2}}{\mathrm{DJ}}
\end{array}
\]
\[
\mathrm{Hb}:=\sqrt{\mathrm{DH}^{2}-\mathrm{Db}^{2}}
\]
\[
\mathrm{Ba}:=\mathrm{AB}-\mathrm{Aa}
\]
\[
\mathrm{Pb}:=\mathrm{DP}+\mathrm{Db}
\]
\[
\begin{aligned}
& \mathrm{P}:=|\mathrm{if}(\mathrm{P} \leq 2 \cdot \mathrm{AB}, \mathrm{P}, 0)| \\
& \mathrm{Bd}:=\mathrm{P} \\
& \mathrm{AK}:=\mathrm{AB} \quad \mathrm{ad}:=\mathrm{Ba}-\mathrm{Bd} \\
& \mathrm{Ad}:=\mathrm{AB}-\mathrm{Bd} \quad \mathrm{Kd}:=\sqrt{\mathrm{AK}^{2}-\mathrm{Ad}^{2}} \\
& \mathrm{de}:=\frac{\mathrm{ad} \cdot \mathrm{Kd}}{\mathrm{Kd}+\mathrm{Ga}} \quad \mathrm{Pe}:=\mathrm{BP}+\mathrm{Bd}+\mathrm{de} \\
& \mathrm{NP}:=\frac{\mathrm{Kd} \cdot \mathrm{Pe}}{\mathrm{de}} \quad \mathrm{HS}:=\mathrm{Pb} \quad \mathrm{PS}:=\mathrm{Hb} \\
& \mathrm{NS}:=\mathrm{NP}+\mathrm{PS} \quad \mathrm{Pg}:=\frac{\mathrm{HS} \cdot \mathrm{NP}}{\mathrm{NS}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{Dg}:=\mathrm{DP}-\mathrm{Pg} \quad \mathrm{bg}:=\mathrm{Dg}+\mathrm{Db} \\
& \mathrm{Hg}:=\sqrt{\mathrm{bg}^{2}+\mathrm{Hb}^{2}}
\end{aligned}
\]

To save clutter, see 07_18_93.MCD Mod C.
\[
\begin{aligned}
& \mathrm{gk}:=\frac{1}{2} \cdot \frac{\mathrm{Dg}^{2}}{\mathrm{Hg}}+\frac{1}{2} \cdot \mathrm{Hg}-\frac{1}{2} \cdot \frac{\mathrm{DH}}{} \mathrm{Hg}^{2} \\
& \mathrm{Dk}:=\sqrt{\mathrm{Dg}^{2}-\mathrm{gk}^{2}} \quad \mathrm{Hk}:=\sqrt{\mathrm{DH}^{2}-\mathrm{Dk}^{2}} \\
& \mathrm{Rg}:=\mathrm{Hk}-\mathrm{gk} \\
& \mathrm{Df}:=\frac{1}{2} \cdot \frac{\mathrm{CD}^{2}}{\mathrm{Dg}}+\frac{1}{2} \cdot \mathrm{Dg}-\frac{1}{2} \cdot \frac{\mathrm{Rg}^{2}}{\mathrm{Dg}} \\
& \mathrm{DR}:=\mathrm{CD} \quad \mathrm{Rf}:=\sqrt{\mathrm{DR}^{2}-\mathrm{Df}^{2}} \\
& \mathrm{dm}:=\frac{\mathrm{Df} \cdot \mathrm{Kd}}{\mathrm{Rf}} \quad \mathrm{Am}:=\mathrm{Ad}+\mathrm{dm} \\
& \mathrm{MT}:=\frac{\mathrm{Kd} \cdot \mathrm{AD}}{\mathrm{Am}} \quad \mathrm{AM}:=\frac{\mathrm{AK} \cdot \mathrm{MT}}{\mathrm{Kd}} \\
& \mathrm{KM}:=\mathrm{AM}-\mathrm{AK} \\
& \mathrm{R} \mathrm{R}_{3}:=|\mathrm{KM}| \quad \mathrm{P}=19
\end{aligned}
\]


Plug Values in Here. Results is in \(\mathrm{R}_{3}\).
\(\mathrm{R}_{1} \equiv 10\)
\(\mathrm{R}_{2} \equiv 3\)
\(\mathrm{D} \equiv 16\)
\(\mathrm{P} \equiv 19\)
\(\mathrm{R}_{3}=14.836\)


Let us say that instead of choosing a point of tangency upon one of the circles, I wish to place a given circle tangent to both. Derive the name of the length of the power line indicated and find th points of tangency.

Work in progress.


Given that \(\mathrm{CP}=\mathrm{CO}\) what is the relationship between AE and CF?

In order to derive a resonable answer, I have constrained the figure to a maximum of \(180^{\circ}\). You will recall that the figure is capable of \(270^{\circ}\).
\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\frac{\frac{1}{2} \cdot \sqrt{2} \cdot \mathrm{CP}}{\delta} \quad \mathrm{FP}_{\delta}:=\sqrt{\mathrm{CP}^{2}-\left(\mathrm{CF}_{\delta}\right)^{2}} \\
& \mathrm{CH}_{\delta}:=\frac{\left(\mathrm{CF}_{\delta}\right)^{2}}{\mathrm{CP}} \quad \mathrm{FH}_{\delta}:=\sqrt{\left(\mathrm{CF}_{\delta}\right)^{2}-\left(\mathrm{CH}_{\delta}\right)^{2}} \\
& \mathrm{OP}_{\delta}:=2 \cdot \mathrm{FP}_{\delta} \mathrm{GO}_{\delta}:=\frac{\mathrm{FH}_{\delta} \cdot \mathrm{OP}_{\delta}}{\mathrm{FP}_{\delta}} \mathrm{CO}:=\mathrm{CP} \\
& \mathrm{CG}_{\delta}:=\sqrt{\mathrm{CO}^{2}-\left(\mathrm{GO}_{\delta}\right)^{2}} \mathrm{AC}_{\delta}:=2 \cdot \mathrm{CG}_{\delta} \\
& \mathrm{AP}_{\delta}:=\mathrm{AC}_{\delta}+\mathrm{CP} \quad \mathrm{AE}_{\delta}:=\frac{\mathrm{CF}_{\delta} \cdot \mathrm{AP}_{\delta}}{\mathrm{CP}}
\end{aligned}
\]

CF is adjusted through D and cannot be less than 1 for the ratio to hold. This constrains the answer to between \(0^{\circ}\) and \(180^{\circ}\).
\[
\begin{aligned}
& \mathrm{CP} \equiv 10 \quad \delta \equiv 1 . .100 \quad 3 \cdot \mathrm{CF}-\frac{4}{\mathrm{CP}^{2}} \cdot \mathrm{CF}^{3}-\mathrm{AE}=0
\end{aligned}
\]

The resultant equation seems to support my earlier statement that the same tool used on the cube root figure could also be used on the trisector. To eliminate the radius, simply set it equal to 1 .


What is the relationship of DE to BC?D := 4
\[
\begin{aligned}
& \mathrm{AB}:=99 \quad \mathrm{BC}:=\frac{\mathrm{AB}}{2} \cdot \mathrm{D} \quad \mathrm{BG}:=\mathrm{AB} \\
& \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{AF}:=\frac{\mathrm{BG} \cdot \mathrm{AC}}{\mathrm{BC}} \quad \mathrm{FJ}:=\mathrm{AB} \\
& \mathrm{AJ}:=\mathrm{AF}-\mathrm{FJ} \quad \mathrm{HJ}:=\frac{\mathrm{AJ}}{2} \quad \mathrm{BJ}:=\mathrm{AB} \\
& \mathrm{BH}:=\sqrt{\mathrm{BJ}^{2}-\mathrm{HJ}^{2}} \mathrm{FH}:=\mathrm{HJ}+\mathrm{FJ} \\
& \mathrm{BF}:=\sqrt{\mathrm{BH}^{2}+\mathrm{FH}^{2}} \quad \mathrm{BD}:=\mathrm{AB} \quad \mathrm{DF}:=\mathrm{BF}+\mathrm{BD} \\
& \mathrm{EF}:=\frac{\mathrm{FH} \cdot \mathrm{AF}}{\mathrm{BF}} \quad \mathrm{DE}:=\mathrm{DF}-\mathrm{EF} \quad \mathrm{DE}=138.133
\end{aligned}
\]
\[
\sqrt{\mathrm{AB}^{2}+\mathrm{AB}^{2} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}}+\mathrm{AB}-\left[\frac{1}{2} \cdot \mathrm{AB} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}+\frac{1}{2} \cdot \mathrm{AB}\right] \cdot \mathrm{AB} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\left[\mathrm{BC} \cdot \sqrt{\left.\mathrm{AB}^{2}+\mathrm{AB}^{2} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}\right]}\right.}=138.133
\]
\[
\frac{-1}{2} \cdot \mathrm{AB} \cdot \frac{\left[-\sqrt{2 \cdot \mathrm{BC}+\mathrm{AB}} \cdot \mathrm{BC}-2 \cdot \mathrm{BC}^{\left(\frac{3}{2}\right)}+\mathrm{AB} \cdot \sqrt{2 \cdot \mathrm{BC}+\mathrm{AB}}\right]}{\mathrm{BC}^{\left(\frac{3}{2}\right)}}=138.133
\]


Given the radius of three tangent circles, what is the length of the sides of the triangle that contains them?
\[
\mathrm{R}_{1}:=1 \quad \mathrm{R}_{2}:=2 \quad \mathrm{R}_{3}:=3
\]
\[
\begin{aligned}
& \mathrm{AF}:=\mathrm{R}_{1} \mathrm{AD}:=\mathrm{R}_{1} \quad \mathrm{AF}:=\mathrm{R}_{1} \\
& \mathrm{AN}:=\mathrm{R}_{1} \\
& \mathrm{BD}:=\mathrm{R}_{2} \mathrm{BH}:=\mathrm{R}_{2} \quad \mathrm{BJ}:=\mathrm{R}_{2} \\
& \mathrm{BE}:=\mathrm{R}_{2} \mathrm{AB}:=\mathrm{AD}+\mathrm{BD} \\
& \mathrm{CE}:=\mathrm{R}_{3} \quad \mathrm{CF}:=\mathrm{R}_{3} \quad \mathrm{CK}:=\mathrm{R}_{3} \\
& \mathrm{CM}:=\mathrm{R}_{3} \quad \mathrm{BC}:=\mathrm{BE}+\mathrm{CE} \\
& \mathrm{AC}:=\mathrm{AF}+\mathrm{CF}
\end{aligned}
\]


The smaller circle is tangent to the diameter of the larger and also tangent to circumference of the larger. Given the point of tangency on the diameter, what is the radius that will make it tangent to the circumference?

Given a point on the diameter, what is the radius of the inner tangent circle?
\[
\mathrm{AB}:=100 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \mathrm{CB}:=\mathrm{AC}
\]
\[
\Delta:=100 \quad \delta:=1 . . \Delta \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{CB}}{\Delta} \cdot \delta
\]
\[
\mathrm{CH}:=\mathrm{AC} \mathrm{DH}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\mathrm{CH}^{2}}
\]
\[
\mathrm{Ha}_{\delta}:=\frac{\mathrm{CH}^{2}}{\mathrm{DH}_{\delta}} \quad \mathrm{EH}_{\delta}:=2 \cdot \mathrm{Ha}_{\delta} \quad \mathrm{HJ}:=\mathrm{AC}
\]
\[
\mathrm{Eb}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{EH}_{\delta}}{\mathrm{DH}_{\delta}} \quad \mathrm{Hb}_{\delta}:=\sqrt{\left(\mathrm{EH}_{\delta}\right)^{2}-\left(\mathrm{Eb}_{\delta}\right)^{2}}
\]
\[
\mathrm{Cb}_{\delta}:=\mathrm{Hb}_{\delta}-\mathrm{CH} \quad \mathrm{CJ}:=\mathrm{CH}+\mathrm{HJ}
\]
\[
\mathrm{Jb}_{\delta}:=\mathrm{CJ}+\mathrm{Cb}_{\delta} \quad \mathrm{CF}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CJ}}{\mathrm{Jb}_{\delta}}
\]
\[
\mathrm{DF}_{\delta}:=\mathrm{CF}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{DG}_{\delta}:=\frac{\mathrm{CJ} \cdot \mathrm{DF}_{\delta}}{\mathrm{CF}_{\delta}}
\]


Does CG \(+\mathrm{GK}=\mathrm{AC}\) ?
\[
\begin{aligned}
& \mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{DG}_{\delta}\right)^{2}} \mathrm{GK}_{\delta}:=\mathrm{DG}_{\delta} \\
& \mathrm{CK}_{\delta}:=\mathrm{CG}_{\delta}+\mathrm{GK}_{\delta} \sum_{\delta}\left(\mathrm{AC}-\mathrm{CK}_{\delta}\right)=3.908 \cdot 10^{-13}
\end{aligned}
\]



Does \(\mathrm{Cb}=\mathrm{KM}\) ?
\[
\mathrm{KM}_{\delta}:=\frac{\mathrm{DG}_{\delta} \cdot \mathrm{CK}_{\delta}}{\mathrm{CG}_{\delta}} \sum_{\delta}\left(\mathrm{KM}_{\delta}-\mathrm{Cb}_{\delta}\right)=-3.524 \cdot 10^{-13}
\]


What is the formula for DG when given CD?

\[
\begin{aligned}
& \sum_{\delta}\left[\frac{\mathrm{AB}^{2}-4 \cdot\left(\mathrm{CD}_{\delta}\right)^{2}}{4 \cdot \mathrm{AB}}-\mathrm{DG}_{\delta}\right]=2.072 \cdot 10^{-13}
\end{aligned}
\]


Given the point on the radius, find DG.
\(\mathrm{AB}:=4 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \quad \mathrm{CB}:=\mathrm{AC} \quad \mathrm{CM}_{\delta}:=\frac{\mathrm{CB}}{\Delta} \cdot \delta\)
\(\mathrm{AM}_{\delta}:=\mathrm{AC}+\mathrm{CM}_{\delta} \quad \mathrm{BM}_{\delta}:=\mathrm{CB}-\mathrm{CM}_{\delta}\)
\(\mathrm{KM}_{\delta}:=\sqrt{\mathrm{AM}_{\delta} \cdot \mathrm{BM}_{\delta}} \quad \mathrm{Cb}_{\delta}:=\mathrm{KM}_{\delta}\)
\(\mathrm{CH}:=\mathrm{AC} \mathrm{HJ}:=\mathrm{AC} \quad \mathrm{CJ}:=\mathrm{CH}+\mathrm{HJ}\)
\(\mathrm{Jb}_{\boldsymbol{\delta}}:=\mathrm{CJ}+\mathrm{Cb}_{\boldsymbol{\delta}} \quad \mathrm{Hb}_{\boldsymbol{\delta}}:=\mathrm{CH}+\mathrm{Cb}_{\delta}\)

\[
\begin{aligned}
& \mathrm{Eb}_{\delta}:=\mathrm{CM}_{\delta} \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CH}}{\mathrm{Hb}_{\delta}} \quad \mathrm{CF}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CJ}}{\mathrm{Jb}_{\delta}} \\
& \mathrm{DF}_{\delta}:=\mathrm{CF}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{DG}_{\delta}:=\frac{\mathrm{CJ} \cdot \mathrm{DF}_{\delta}}{\mathrm{CF}_{\delta}}
\end{aligned}
\]

Does CK \(=\mathrm{CB}\) ? Make sure there is no typo.
\[
\begin{aligned}
& \mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{DG}_{\delta}\right)^{2}} \quad \mathrm{GK}_{\delta}:=\mathrm{DG}_{\delta} \\
& \mathrm{CK}_{\delta}:=\mathrm{CG}_{\delta}+\mathrm{GK}_{\delta} \sum_{\delta}\left(\mathrm{CB}-\mathrm{CK}_{\delta}\right)=-3.331 \cdot 10^{-15}
\end{aligned}
\]

What is the formula for DG, given CM, the perpendicular to the point on the circumference?
\(\sum_{\delta}\left[\frac{\mathrm{AB} \cdot \sqrt{\mathrm{AB}+2 \cdot \mathrm{CM}_{\delta}} \cdot \sqrt{\mathrm{AB}-2 \cdot \mathrm{CM}_{\delta}}}{2 \cdot\left(\mathrm{AB}+\sqrt{\mathrm{AB}+2 \cdot \mathrm{CM}_{\delta}} \cdot \sqrt{\mathrm{AB}-2 \cdot \mathrm{CM}_{\delta}}\right)}-\mathrm{DG}_{\delta}\right]=-1.749 \cdot 10^{-15}\)



HM :HK is not a \(1: 1\) ratio, but what does the graph of the ratio look like?
\[
\begin{aligned}
& \mathrm{BF}:=3 \quad \Delta:=500 \quad \delta:=1 . . \Delta \\
& \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-12} \quad \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}
\end{aligned}
\]
\[
\mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AF}_{\delta}}
\]
\[
\mathrm{AE}_{\delta}:=\left[\left(\mathrm{AF}_{\delta}\right)^{2} \cdot \mathrm{AB}_{\delta}\right]^{\frac{1}{3}} \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AB}_{\delta}
\]
\[
\mathrm{EF}_{\delta}:=\mathrm{BF}-\mathrm{BE}_{\delta} \quad \mathrm{EJ}_{\delta}:=\sqrt{\mathrm{BE}_{\delta} \cdot \mathrm{EF}_{\delta}}
\]
\[
\mathrm{AC}_{\delta}:=\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AF}_{\delta}\right]^{\frac{1}{3}} \mathrm{BC}_{\delta}:=\mathrm{AC}_{\delta}-\mathrm{AB}_{\delta}
\]
\[
\mathrm{CF}_{\delta}:=\mathrm{BF}-\mathrm{BC}_{\delta} \mathrm{CG}_{\delta}:=\sqrt{\mathrm{BC}_{\delta} \cdot \mathrm{CF}_{\delta}}
\]
\[
\mathrm{DF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AD}_{\delta} \quad \mathrm{DK}_{\delta}:=\frac{\mathrm{EJ}_{\delta} \cdot \mathrm{DF}_{\delta}}{\mathrm{EF}_{\delta}}
\]
\[
\mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{DH}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DF}_{\delta}}
\]
\[
\mathrm{HK}_{\delta}:=\mathrm{DK}_{\delta}-\mathrm{DH}_{\delta}
\]


\[
\mathrm{FP}:=\frac{\mathrm{BF}}{3} \quad \mathrm{BP}:=\mathrm{BF}-\mathrm{FP} \quad \mathrm{PR}:=\sqrt{\mathrm{BP} \cdot \mathrm{FP}}
\]
\[
\mathrm{FR}:=\sqrt{\mathrm{FP}^{2}+\mathrm{PR}^{2}} \mathrm{FN}:=\mathrm{FR} \quad \mathrm{FO}:=\frac{\mathrm{BF}}{2}
\]
\[
\mathrm{EN}:=\sqrt{\mathrm{FN}^{2}-\mathrm{FO}^{2}} \mathrm{BO}:=\mathrm{FO}
\]
\[
\mathrm{DO}_{\delta}:=\mathrm{BO}-\mathrm{BD}_{\delta} \quad \mathrm{NS}_{\delta}:=\mathrm{DO}_{\delta} \quad \mathrm{MN}:=\mathrm{FR}
\]
\[
\mathrm{MS}_{\delta}:=\sqrt{\mathrm{MN}^{2}-\left(\mathrm{NS}_{\delta}\right)^{2}} \mathrm{DS}:=\mathrm{EN}
\]
\[
\mathrm{DM}_{\delta}:=\mathrm{MS}_{\delta}-\mathrm{DS} \mathrm{HM}_{\delta}:=\mathrm{DH}_{\delta}-\mathrm{DM}_{\delta}
\]




A fair pencil construction.
\[
\begin{aligned}
& \delta:=1 . .100 \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \quad \mathrm{BC}:=2 \\
& \mathrm{AC}_{\delta}:=\mathrm{BC}+\mathrm{AB}_{\delta} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AC}_{\delta}} \\
& \mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CD}_{\delta}:=\mathrm{BC}-\mathrm{BD}_{\delta} \\
& \mathrm{DH}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{CD}_{\delta}} \quad \mathrm{EF}_{\delta}:=\mathrm{BD}_{\delta} \\
& \mathrm{FD}:=\mathrm{BC} \quad \mathrm{FH}_{\delta}:=\mathrm{FD}+\mathrm{DH}_{\delta} \\
& \mathrm{FG}_{\delta}:=\mathrm{CD}_{\delta} \quad \mathrm{FH}_{\delta}:=\mathrm{FD}+\mathrm{DH}_{\delta} \\
& \mathrm{DI}_{\delta}:=\frac{\mathrm{EF}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{FH}_{\delta}} \quad \mathrm{DJ}_{\delta}:=\frac{\mathrm{FG}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{FH}_{\delta}} \\
& \mathrm{BI}_{\delta}:=\mathrm{BD}_{\delta}-\mathrm{DI}_{\delta}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{BJ}_{\delta}:=\mathrm{BD}_{\delta}+\mathrm{DJ}_{\delta} \quad \mathrm{CG}:=\mathrm{BC} \\
& \mathrm{CJ}_{\delta}:=\mathrm{BC}-\mathrm{BJ}_{\delta} \quad \mathrm{BE}:=\mathrm{BC} \\
& \mathrm{LN}_{\delta}:=\frac{\mathrm{CG} \cdot \mathrm{DJ}_{\delta}}{\mathrm{CJ}_{\delta}+\mathrm{BD}_{\delta}} \mathrm{DL}_{\delta}:=\frac{\mathrm{BD}_{\delta} \cdot \mathrm{LN}_{\delta}}{\mathrm{BE}} \\
& \mathrm{KM}_{\delta}:=\frac{\mathrm{BE} \cdot \mathrm{DI}_{\delta}}{\mathrm{CD}_{\delta}+\mathrm{BI}_{\delta}} \quad \mathrm{DK}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{KM}_{\delta}}{\mathrm{CG}} \\
& \mathrm{DR}_{\delta}:=\mathrm{KM}_{\delta} \mathrm{LQ}_{\delta}:=\mathrm{KM}_{\delta} \mathrm{NQ}_{\delta}:=\mathrm{LN}_{\delta}-\mathrm{LQ}_{\delta} \\
& \mathrm{KL}_{\delta}:=\mathrm{DL}_{\delta}+\mathrm{DK}_{\delta} \quad \mathrm{MQ}_{\delta}:=\mathrm{KL}_{\delta} \\
& \mathrm{MR}_{\delta}:=\mathrm{DK}_{\delta} \quad \mathrm{RS}_{\delta}:=\frac{\mathrm{NQ}_{\delta} \cdot \mathrm{MR}_{\delta}}{\mathrm{MQ}_{\delta}} \\
& \mathrm{DS}_{\delta}:=\mathrm{DR}_{\delta}+\mathrm{RS}_{\delta}
\end{aligned}
\]




A fair pencil construction. Taking \(S\) as a projecton point for AS, with which to develope the roots.
\[
\begin{aligned}
& \delta:=1 . .100 \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \quad \mathrm{BC}:=2 \\
& \mathrm{AC}_{\delta}:=\mathrm{BC}+\mathrm{AB}_{\delta} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AC}_{\delta}} \\
& \mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CD}_{\delta}:=\mathrm{BC}-\mathrm{BD}_{\delta} \\
& \mathrm{DH}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{CD}_{\delta}} \quad \mathrm{EF}_{\delta}:=\mathrm{BD}_{\delta} \\
& \mathrm{FD}:=\mathrm{BC} \quad \mathrm{FH}_{\delta}:=\mathrm{FD}+\mathrm{DH}_{\delta} \\
& \mathrm{FG}_{\delta}:=\mathrm{CD}_{\delta} \quad \mathrm{FH}_{\delta}:=\mathrm{FD}+\mathrm{DH}_{\delta} \\
& \mathrm{DI}_{\delta}:=\frac{\mathrm{EF}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{FH}_{\delta}} \quad \mathrm{DJ} \\
& \delta
\end{aligned}: \frac{\mathrm{FG}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{FH}_{\delta}} \mathrm{BI}_{\delta}:=\mathrm{BD}_{\delta}-\mathrm{DI}_{\delta} \quad, ~ l
\]
\[
\begin{aligned}
& \mathrm{BJ}_{\delta}:=\mathrm{BD}_{\delta}+\mathrm{DJ}_{\delta} \quad \mathrm{CG}:=\mathrm{BC} \\
& \mathrm{CJ}_{\delta}:=\mathrm{BC}-\mathrm{BJ}_{\delta} \quad \mathrm{BE}:=\mathrm{BC} \\
& \mathrm{LN}_{\delta}:=\frac{\mathrm{CG} \cdot \mathrm{DJ}_{\delta}}{\mathrm{CJ}_{\delta}+\mathrm{BD}_{\delta}} \quad \mathrm{DL}_{\delta}:=\frac{\mathrm{BD}_{\delta} \cdot \mathrm{LN}_{\delta}}{\mathrm{BE}} \\
& \mathrm{KM}_{\delta}:=\frac{\mathrm{BE} \cdot \mathrm{DI}_{\delta}}{\mathrm{CD}_{\delta}+\mathrm{BI}_{\delta}} \quad \mathrm{DK}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{KM}_{\delta}}{\mathrm{CG}}
\end{aligned}
\]
\[
\mathrm{DR}_{\delta}:=\mathrm{KM}_{\delta} \mathrm{LQ}_{\delta}:=\mathrm{KM}_{\delta} \quad \mathrm{NQ}_{\delta}:=\mathrm{LN}_{\delta}-\mathrm{LQ}_{\delta}
\]
\[
\mathrm{KL}_{\delta}:=\mathrm{DL}_{\delta}+\mathrm{DK}_{\delta} \quad \mathrm{MQ}_{\delta}:=\mathrm{KL}_{\delta}
\]
\[
\mathrm{MR}_{\delta}:=\mathrm{DK}_{\delta} \quad \mathrm{RS}_{\delta}:=\frac{\mathrm{NQ}_{\delta} \cdot \mathrm{MR}_{\delta}}{\mathrm{MQ}_{\delta}}
\]
\[
\mathrm{DS}_{\delta}:=\mathrm{DR}_{\delta}+\mathrm{RS}_{\delta} \quad \mathrm{DS}_{\delta}:=\mathrm{DS}_{\delta}
\]


\[
\begin{aligned}
& \mathrm{IQ}_{\delta}:=\frac{\mathrm{FR} \cdot \mathrm{DI}_{\delta}}{\mathrm{DF}_{\delta}} \mathrm{BH}_{\delta}:=\mathrm{IQ}_{\delta} \quad \mathrm{DQ}_{\delta}:=\frac{\mathrm{DR}_{\delta} \cdot \mathrm{DI}_{\delta}}{\mathrm{DF}_{\delta}} \\
& \mathrm{BQ}_{\delta}:=\mathrm{BD}_{\delta}-\mathrm{DQ}_{\delta} \quad \mathrm{HI}_{\delta}:=\mathrm{BQ}_{\delta} \\
& \mathrm{EH}_{\delta}:=\mathrm{BE}+\mathrm{BH}_{\delta} \quad \mathrm{BK}_{\delta}:=\frac{\mathrm{HI}_{\delta} \cdot \mathrm{BE}}{\mathrm{EH}_{\delta}} \\
& \mathrm{DK}_{\delta}:=\mathrm{BD}_{\delta}-\mathrm{BK}_{\delta} \quad \mathrm{DL}_{\delta}:=\mathrm{DK}_{\delta} \\
& \mathrm{BL}_{\delta}:=\mathrm{BD}_{\delta}+\mathrm{DL}_{\delta} \mathrm{CL}_{\delta}:=\mathrm{BC}-\mathrm{BL}_{\delta} \\
& \mathrm{NP}_{\delta}:=\frac{\mathrm{CG}^{2} \cdot \mathrm{DL}_{\delta}}{\mathrm{CL}_{\delta}+\mathrm{BD}_{\delta}} \quad \mathrm{MO}_{\delta}:=\frac{\mathrm{BE}^{2} \cdot \mathrm{DK}_{\delta}}{\mathrm{CD}_{\delta}+\mathrm{BK}_{\delta}}
\end{aligned}
\]

The sum of NP and MO should be 0 , ie. parallel to BC.
\[
\sum_{\delta}\left(\mathrm{NP}_{\delta}-\mathrm{MO}_{\delta}\right)=0 \quad \mathrm{JS}_{\delta}:=\mathrm{MO}_{\delta}
\]




\[
\begin{aligned}
& \mathrm{JP}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{MP}_{\delta}}{\mathrm{CF}} \mathrm{AJ}_{\delta}:=\mathrm{AP}_{\delta}+\mathrm{JP}_{\delta} \\
& \mathrm{DK}_{\delta}:=\frac{\mathrm{JP}_{\delta} \cdot \mathrm{AD}_{\delta}}{\mathrm{AJ}_{\delta}} \quad \mathrm{KO}_{\delta}:=\frac{\mathrm{MP}_{\delta} \cdot \mathrm{DK}_{\delta}}{\mathrm{JP}_{\delta}} \\
& \mathrm{BK}_{\delta}:=\mathrm{BD}_{\delta}-\mathrm{DK}_{\delta} \quad \mathrm{KU}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{KO}_{\delta}}{\mathrm{BE}+\mathrm{KO}_{\delta}}
\end{aligned}
\]
\[
\mathrm{BU}_{\delta}:=\mathrm{BK}_{\delta}-\mathrm{KU}_{\delta} \quad \mathrm{AU}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BU}_{\delta}
\]
\(\operatorname{Target}_{\delta}:=\frac{\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AC}_{\delta}\right]^{\frac{1}{3}}+\left[\mathrm{AB}_{\delta} \cdot\left(\mathrm{AC}_{\delta}\right)^{2}\right]^{\frac{1}{3}}}{2}\)
Result \(_{\delta}:=\frac{\mathrm{AU}_{\delta}+\mathrm{AV}_{\delta}}{2}\)


\section*{DI represents sample points.}


10_27_94.MCD
Trivial method for doing Square Roots.

If I draw a circle BE , then a line \(\mathrm{AG}, \mathrm{BD}\) is the square root of \(\mathrm{BC} \times \mathrm{BF}\).
\[
\begin{aligned}
& \mathrm{CF}:=1000 \delta:=1 . .1000 \quad \mathrm{BC}_{\delta}:=\delta \\
& \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{BE}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CE} \\
& \mathrm{EG}:=\mathrm{CE} \quad \mathrm{BG}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}-\mathrm{EG}^{2}} \\
& \mathrm{EH}_{\delta}:=\frac{\mathrm{EG}^{2}}{\mathrm{BE}_{\delta}} \quad \mathrm{GH}_{\delta}:=\sqrt{\mathrm{EG}^{2}-\left(\mathrm{EH}_{\delta}\right)^{2}} \\
& \mathrm{GI}_{\delta}:=\mathrm{EH}_{\delta} \quad \mathrm{EI}_{\delta}:=\mathrm{GH}_{\delta} \mathrm{AE}:=\mathrm{CE} \\
& \mathrm{AI}_{\delta}:=\mathrm{AE}+\mathrm{EI}_{\delta} \quad \mathrm{DE}_{\delta}:=\frac{\mathrm{GI}_{\delta} \cdot \mathrm{AE}}{\mathrm{AI}_{\delta}} \\
& \mathrm{BD}_{\delta}:=\mathrm{BE}_{\delta}-\mathrm{DE}_{\delta} \quad \mathrm{BF}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CF}
\end{aligned}
\]



10_28_94.MCD
Trivial method for doing Square Root.
If I drop in a circle CHE, another ABE , and a right triangle, CHE, then AG provides CP which is the square root of \(\mathrm{CD} \times \mathrm{CF}\).
\[
\begin{aligned}
& \mathrm{DF}:=10 \quad \delta:=1 . .100 \quad \mathrm{CD}_{\delta}:=\delta \\
& \mathrm{DE}:=\frac{\mathrm{DF}}{2} \quad \mathrm{AC}:=\mathrm{DE} \quad \mathrm{CE}_{\delta}:=\mathrm{DE}+\mathrm{CD}_{\delta} \\
& \mathrm{EH}:=\mathrm{DE} \quad \mathrm{AE}_{\delta}:=\sqrt{\mathrm{AC}^{2}+\left(\mathrm{CE}_{\delta}\right)^{2}} \\
& \mathrm{CH}_{\delta}:=\sqrt{\left(\mathrm{CE}_{\delta}\right)^{2}-\mathrm{EH}^{2}} \mathrm{EI}_{\delta}:=\frac{\mathrm{EH}^{2}}{\mathrm{CE}_{\delta}} \\
& \mathrm{HI}_{\delta}:=\sqrt{\mathrm{EH}^{2}-\left(\mathrm{EI}_{\delta}\right)^{2}} \mathrm{CJ}_{\delta}:=\mathrm{HI}_{\delta} \\
& \mathrm{CI}_{\delta}:=\mathrm{CE}_{\delta}-\mathrm{EI}_{\delta} \quad \mathrm{HJ}_{\delta}:=\mathrm{CI}_{\delta} \\
& \mathrm{AJ}_{\delta}:=\mathrm{AC}+\mathrm{CJ}_{\delta} \quad \mathrm{AH}_{\delta}:=\sqrt{\left(\mathrm{AJ}_{\delta}\right)^{2}+\left(\mathrm{HJ}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{HG}_{\delta}:=\frac{1}{2} \cdot \frac{\left(\mathrm{AH}_{\delta}\right)^{2}}{\mathrm{EH}}+\frac{1}{2} \cdot \mathrm{EH} \\
& \mathrm{EG}_{\delta}:=\mathrm{EH}-\mathrm{HG}_{\delta} \\
& \mathrm{AG}_{\delta}:=\sqrt{\left(\mathrm{AE}_{\delta}\right)^{2}-\left(\mathrm{EG}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\mathrm{GK}_{\delta}:=\frac{\mathrm{HI}_{\delta} \cdot \mathrm{EG}_{\delta}}{\mathrm{EH}} \quad \mathrm{GP}_{\delta}:=\frac{\mathrm{AG}_{\delta} \cdot \mathrm{GK}_{\delta}}{\mathrm{AC}+\mathrm{GK}_{\delta}}
\]
\[
\mathrm{EP}_{\delta}:=\sqrt{\left(\mathrm{EG}_{\delta}\right)^{2}+\left(\mathrm{GP}_{\delta}\right)^{2}}
\]
\[
\mathrm{CP}_{\delta}:=\mathrm{CE}_{\delta}-\mathrm{EP}_{\delta} \quad \mathrm{CF}_{\delta}:=\mathrm{CD}_{\delta}+\mathrm{DF}
\]


I H


10_31_94.MCD
Given AB \& BE , divide BE such that \(\mathrm{BD}+\) \(\mathrm{DE}=\mathrm{BE}\) and \(\mathrm{BD}=\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\) \(\square\)
The square in a right triangle on the hypotenuse is equal to the square of the remaining two segments (and all three squares taken to the point of similarity form a cubic relationship).
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{2}\)
\(\mathrm{AH}:=\mathrm{AE} \mathrm{EI}:=\mathrm{AE} \mathrm{BH}:=\sqrt{\mathrm{AB}^{2}+\mathrm{AH}^{2}}\)
\(\mathrm{CG}:=\mathrm{AC} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BF}:=\frac{\mathrm{AB} \cdot \mathrm{BC}}{\mathrm{BH}}\)
\(\mathrm{CF}:=\frac{\mathrm{AH} \cdot \mathrm{BC}}{\mathrm{BH}} \quad \mathrm{FG}:=\sqrt{\mathrm{CG}^{2}-\mathrm{CF}^{2}}\)
\(\mathrm{BG}:=\mathrm{BF}+\mathrm{FG} \quad \mathrm{BJ}:=\frac{\mathrm{AB} \cdot \mathrm{BG}}{\mathrm{BH}}\)
\(\mathrm{GJ}:=\frac{\mathrm{AH} \cdot \mathrm{BJ}}{\mathrm{AB}} \quad \mathrm{AJ}:=\mathrm{AB}+\mathrm{BJ}\)
\(\mathrm{EJ}:=\mathrm{AE}-\mathrm{AJ} \quad \mathrm{GK}:=\mathrm{EJ} \quad \mathrm{EK}:=\mathrm{GJ}\)
\(\mathrm{IK}:=\mathrm{EI}+\mathrm{EK} \quad \mathrm{DE}:=\frac{\mathrm{GK} \cdot \mathrm{EI}}{\mathrm{IK}}\)
\(\mathrm{BD}:=\mathrm{BE}-\mathrm{DE}\)
\(\mathrm{BE}-(\mathrm{BD}+\mathrm{DE})=0 \quad \mathrm{BD}-\sqrt{\mathrm{AB} \cdot \mathrm{DE}}=0\)


Reducing the previous tautological chain to single equations for BD and DE .
\(\mathrm{AB} \equiv 20 \quad \mathrm{BE} \equiv 12\)
\(\left.\mathrm{BD}:=\frac{\sqrt{\mathrm{AB}} \cdot\left[\begin{array}{l}-\mathrm{AB} \\ +\mathrm{BE} \cdot \sqrt{\left(\frac{3}{2}\right)}+\mathrm{AB} \cdot \sqrt{\mathrm{AB}}+4 \cdot \mathrm{BE}\end{array} \mathrm{BE}+\sqrt{\mathrm{AB}} \cdot \mathrm{BE} \ldots\right.}{}\right]\)
\(B D=8.439\)
\(\mathrm{DE}:=\frac{\mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BE}-\mathrm{AB}}{} \mathrm{B}^{\left(\frac{3}{2}\right)} \cdot \sqrt{\mathrm{AB}+4 \cdot \mathrm{BE}}+2 \cdot \mathrm{BE}^{2}{ }_{3 \cdot \mathrm{AB}+2 \cdot \mathrm{BE}+\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+4 \cdot \mathrm{BE}}}\)
\(\mathrm{DE}=3.561\)
\(B E-(B D+D E)=0\)
\(\mathrm{BD}-\sqrt{\mathrm{AB} \cdot \mathrm{DE}}=0\)

Given \(\mathrm{AB} \& \mathrm{BE}, \mathrm{BE}\) has been divided such that \(\mathrm{BD}+\mathrm{DE}=\mathrm{BE}\) and \(\mathrm{BD}=\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\)


11_01_94.MCD

Given \(A G-A B=B G\) and \(\left(A B^{2} \cdot A G\right)^{1 / 3}-A B=B C\), find \(A B\), AG , and \(\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{1 / 3}\).
For obvious reasons, \(\mathrm{BG}>3 \mathrm{BC}\).
\(B G:=6 \quad B C:=1.9 \quad B N:=B G\)
\(\mathrm{BF}:=\frac{\mathrm{BG}}{2}\) FL \(:=\mathrm{BF} \mathrm{CF}:=\mathrm{BF}-\mathrm{BC}\)
\(\mathrm{CN}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BN}^{2}} \mathrm{CH}:=\frac{\mathrm{BC} \cdot \mathrm{CF}}{\mathrm{CN}}\)
\(\mathrm{FH}:=\frac{\mathrm{BN} \cdot \mathrm{CF}}{\mathrm{CN}} \mathrm{HL}:=\sqrt{\mathrm{FL}^{2}-\mathrm{FH}^{2}}\)
\(\mathrm{CL}:=\mathrm{CH}+\mathrm{HL} \quad \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathrm{CL}}{\mathrm{CN}} \mathrm{DL}:=\frac{\mathrm{BN} \cdot \mathrm{CL}}{\mathrm{CN}}\)
\(\mathrm{GM}:=\mathrm{DL} \quad \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{DG}:=\mathrm{BG}-\mathrm{BD}\)
\(\mathrm{LM}:=\mathrm{DG}\) GO \(:=\mathrm{BG} \mathrm{MO}:=\mathrm{GO}+\mathrm{GM}\)
\(\mathrm{EG}:=\frac{\mathrm{LM} \cdot \mathrm{GO}}{\mathrm{MO}} \mathrm{CG}:=\mathrm{BG}-\mathrm{BC}\)

CE \(:=\mathrm{CG}-\mathrm{EG} \quad \mathrm{CJ}:=\mathrm{BC} \quad \mathrm{CK}:=\mathrm{CE}\)
A \(\mathrm{IJ}:=\mathrm{BC} \quad \mathrm{JK}:=\mathrm{CK}-\mathrm{CJ} \quad \mathrm{IK}:=\sqrt{\mathrm{IJ}^{2}+\mathrm{JK}^{2}}\)
\(\mathrm{BI}:=\mathrm{BC} \quad \mathrm{AB}:=\frac{\mathrm{IJ} \cdot \mathrm{BI}}{\mathrm{JK}} \quad \mathrm{AG}:=\mathrm{AB}+\mathrm{BG}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BC}+\mathrm{CE}\)
\(\mathrm{AB}=36.723 \quad \mathrm{AG}=42.723 \quad \mathrm{AE}=40.621\)
\(\left(A B \cdot A G^{2}\right)^{\frac{1}{3}}-A E=0\)
Given \(A G-A B=B G\) and \(\left(A B^{2} \cdot A G\right)^{1 / 3}-A B=B C\), found was \(A B, A G\), and \(\left(A B \cdot \mathrm{AG}^{2}\right)^{1 / 3}\).


Given \(\mathrm{AE}-\mathrm{AB}=\mathrm{BE}\) and
\(\frac{\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}}{2}+\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}-A E=B C\), find \(A B\).
\[
\begin{aligned}
& \mathrm{BE}:=70 \quad \mathrm{BC}:=34 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{BI}:=\mathrm{BE} \\
& \mathrm{DJ}:=\mathrm{BE} \quad \mathrm{EK}:=\mathrm{BE} \quad \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \\
& \mathrm{CJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{CD}^{2}} \mathrm{DF}:=\frac{\mathrm{DJ} \cdot \mathrm{CD}}{\mathrm{CJ}}
\end{aligned}
\]
\[
\text { DG }:=\mathrm{BD} \quad \mathrm{FG}:=\sqrt{\mathrm{DG}^{2}-\mathrm{DF}^{2}} \mathrm{CF}:=\frac{\mathrm{CD} \cdot \mathrm{DF}}{\mathrm{DJ}}
\]
\[
\mathrm{CG}:=\mathrm{FG}-\mathrm{CF} \quad \mathrm{CO}:=\frac{\mathrm{CD} \cdot \mathrm{CG}}{\mathrm{CJ}}
\]
\[
\mathrm{DO}:=\mathrm{CD}+\mathrm{CO}
\]
\[
\mathrm{BO}:=\mathrm{BD}-\mathrm{DO} \mathrm{GP}:=\mathrm{BO} \quad \mathrm{GO}:=\frac{\mathrm{DJ} \cdot \mathrm{CG}}{\mathrm{CJ}}
\]
\[
\mathrm{BP}:=\mathrm{GO} \quad \mathrm{IP}:=\mathrm{BI}+\mathrm{BP} \quad \mathrm{BL}:=\frac{\mathrm{GP} \cdot \mathrm{BI}}{\mathrm{IP}}
\]
\[
\mathrm{EH}:=\mathrm{GO} \quad \mathrm{HK}:=\mathrm{EK}+\mathrm{EH} \quad \mathrm{EO}:=\mathrm{BE}-\mathrm{BO}
\]
\[
\mathrm{GH}:=\mathrm{EO} \quad \mathrm{EM}:=\frac{\mathrm{GH} \cdot \mathrm{EK}}{\mathrm{HK}} \mathrm{BM}:=\mathrm{BE}-\mathrm{EM}
\]
\[
\mathrm{BQ}:=\mathrm{BL} \quad \mathrm{LR}:=\mathrm{BL} \quad \mathrm{QR}:=\mathrm{BL}
\]
\[
\mathrm{LM}:=\mathrm{BM}-\mathrm{BL}
\]
\[
\mathrm{LS}:=\mathrm{LM} \quad \mathrm{RS}:=\mathrm{LS}-\mathrm{LR} \quad \mathrm{AB}:=\frac{\mathrm{QR} \cdot \mathrm{BQ}}{\mathrm{RS}}
\]
\[
\mathrm{AE}:=\mathrm{AB}+\mathrm{BE}
\]

\[
\begin{aligned}
& \mathrm{AB}=510.028 \quad \mathrm{AE}=580.028 \quad \mathrm{BC}=34 \\
& \frac{\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}-\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}}{2}+\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AB}=34
\end{aligned}
\]


11_17_94.MCD
How close is DN/3 to CF/2? Graph it.
Given \(\quad \delta:=1 . .1000 \quad B H:=1000\)
\(\mathrm{BX}:=\mathrm{BH} \quad \mathrm{HY}:=\mathrm{BH} \quad \mathrm{AB}_{\delta}:=\delta\)
\(\mathrm{AH}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BH} \quad \mathrm{AE}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AH}_{\delta}}\)
\(\mathrm{AC}_{\delta}:=\left[\left(\mathrm{AB}_{\delta}\right)^{2} \cdot \mathrm{AH}_{\delta}\right]^{\frac{1}{3}}\)
\(\mathrm{AF}_{\delta}:=\left[\mathrm{AB}_{\boldsymbol{\delta}} \cdot\left(\mathrm{AH}_{\delta}\right)^{2}\right]^{\frac{1}{3}}\)
\(\mathrm{CF}_{\delta}:=\mathrm{AF}_{\delta}-\mathrm{AC}_{\delta} \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AB}_{\delta}\)
\(\mathrm{EH}_{\delta}:=\mathrm{BH}-\mathrm{BE}_{\delta} \quad \mathrm{EO}_{\delta}:=\sqrt{\mathrm{BE}_{\delta} \cdot \mathrm{EH}_{\delta}}\)
\(\mathrm{BO}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}+\left(\mathrm{EO}_{\delta}\right)^{2}}\)
\(\mathrm{HO}_{\delta}:=\sqrt{\left(\mathrm{EH}_{\delta}\right)^{2}+\left(\mathrm{EO}_{\delta}\right)^{2}}\)
\(\mathrm{EQ}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{EH}_{\delta}}{\mathrm{BX}} \mathrm{HQ}_{\delta}:=\mathrm{EH}_{\delta}+\mathrm{EQ}_{\delta}\)
\(\mathrm{EP}_{\delta}:=\frac{\mathrm{EQ}_{\delta} \cdot \mathrm{EH}_{\delta}}{\mathrm{HQ}_{\delta}} \quad \mathrm{BP}_{\delta}:=\mathrm{BE}_{\delta}+\mathrm{EP}_{\delta}\)


Plate 3
\[
\begin{aligned}
& \mathrm{ES}_{\delta}:=\frac{\mathrm{EH}_{\delta} \cdot \mathrm{EO}_{\delta}}{\mathrm{HY}} \quad \mathrm{BS}_{\delta}:=\mathrm{BE}_{\delta}+\mathrm{ES}_{\delta} \\
& \mathrm{BR}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{BE}_{\delta}}{\mathrm{BS}_{\delta}}
\end{aligned}
\]
\[
\mathrm{PR}_{\delta}:=\mathrm{BP}_{\delta}-\mathrm{BR}_{\delta}
\]
\[
\mathrm{DR}_{\delta}:=\frac{\mathrm{PR}_{\delta}}{2} \quad \mathrm{BD}_{\delta}:=\mathrm{BR}_{\delta}+\mathrm{DR}_{\delta}
\]
\[
\mathrm{DH}_{\delta}:=\mathrm{BH}-\mathrm{BD}_{\delta} \quad \mathrm{DN}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DH}_{\delta}}
\]


\(\mathrm{BI}_{\delta}:=\frac{\mathrm{BF}_{\delta} \cdot \mathrm{BE}}{\mathrm{BL}_{\delta}} \mathrm{FI}_{\delta}:=\mathrm{BI}_{\delta}-\mathrm{BF}_{\delta} \quad \mathrm{GI}_{\delta}:=\frac{\mathrm{BE} \cdot \mathrm{FI}_{\delta}}{\mathrm{BF}_{\delta}}\)
\(\mathrm{HJ}_{\delta}:=\frac{\mathrm{GI}_{\delta}}{2} \quad \mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{CF}_{\delta}\right)^{2}} \quad \mathrm{FH}_{\delta}:=\frac{\mathrm{DF}_{\delta} \cdot \mathrm{GI}_{\delta}}{\mathrm{BE}}\)

- Is Tangent?

\[
\mathrm{DH}_{\delta}:=\mathrm{DF}_{\delta}+\mathrm{FH}_{\delta} \mathrm{DM}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{DF}_{\delta}} \quad \mathrm{CE}_{\delta}:=\mathrm{DE}+\mathrm{CD}_{\delta}
\]
\[
\mathrm{CM}_{\delta}:=\mathrm{DM}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{CN}_{\delta}:=\frac{\mathrm{CE}_{\delta}}{2} \quad \mathrm{MN}_{\delta}:=\mathrm{CN}_{\delta}+\mathrm{CM}_{\delta}
\]
\[
\mathrm{HM}_{\delta}:=\frac{\mathrm{CF}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{DF}_{\delta}} \quad \mathrm{HN}_{\delta}:=\sqrt{\left(\mathrm{MN}_{\delta}\right)^{2}+\left(\mathrm{HM}_{\delta}\right)^{2}}
\]
- Is Tangent?

\(\mathrm{CO}_{\delta}:=\frac{\mathrm{BC}_{\delta}}{2} \quad \mathrm{MO}_{\delta}:=\mathrm{CO}_{\delta}-\mathrm{CM}_{\delta}\)
\(\mathrm{HO}_{\delta}:=\sqrt{\left(\mathrm{HM}_{\delta}\right)^{2}+\left(\mathrm{MO}_{\delta}\right)^{2}}\)
- Is Tangent?


\section*{Two prime exponential series developed through power line progression.}

I will present a series of plates to explain the process. The process can be infinitly repeated, supposing you had the tools to do it with.


It is clear how OA uses the power line XY to provide a 2 prime exponential series.

Possible Problem: From a similarity point outside of a circle, place some 2 prine sequence of smaller circles on the larger circles diameter, all tangent in sequence.

\[
\begin{aligned}
& \mathrm{AB}:=1 \quad \mathrm{BF}:=5 \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \\
& \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EO}:=\mathrm{BE} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CF}:=\mathrm{BF}-\mathrm{BC} \\
& \mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{EI}:=\mathrm{CH} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{HI}:=\mathrm{CE} \quad \mathrm{IO}:=\mathrm{EO}+\mathrm{EI} \quad \mathrm{DE}:=\frac{\mathrm{HI} \cdot \mathrm{EO}}{\mathrm{IO}}
\end{aligned}
\]

See 12_26_94.MCD for next equation.
\(\mathrm{GK}:=\frac{\mathrm{BF} \cdot(\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BF}})}{(2 \cdot \mathrm{AB}+\mathrm{BF})}\)
\(\mathrm{EG}:=\mathrm{BE} \quad \mathrm{EK}:=\sqrt{\mathrm{EG}^{2}-\mathrm{GK}^{2}}\)
DL \(:=\frac{\mathrm{GK} \cdot \mathrm{DE}}{\mathrm{EK}}\)
\(\mathrm{KN}:=\mathrm{BE}-\mathrm{EK} \mathrm{DM}:=\frac{\mathrm{KN} \cdot \mathrm{DE}}{\mathrm{EK}}\)
\(\mathrm{EF}:=\mathrm{BE} \quad \mathrm{FM}:=\mathrm{EF}+\mathrm{DM}+\mathrm{DE}\)
\(\mathrm{BN}:=\frac{\mathrm{DM} \cdot \mathrm{BF}}{\mathrm{FM}} \mathrm{NP}:=\frac{\mathrm{DL} \cdot \mathrm{BF}}{\mathrm{FM}}\)

\(\mathrm{KF}:=\mathrm{EK}+\mathrm{EF} \quad \mathrm{DQ}:=\frac{\mathrm{KF} \cdot \mathrm{DL}}{\mathrm{GK}}\)
\(\mathrm{BD}:=\mathrm{BE}-\mathrm{DE} \quad \mathrm{BQ}:=\mathrm{BD}+\mathrm{DQ}\)
\(\mathrm{BR}:=\frac{\mathrm{BD} \cdot \mathrm{BF}}{\mathrm{BQ}} \mathrm{RS}:=\frac{\mathrm{DL} \cdot \mathrm{BR}}{\mathrm{BD}}\)

\section*{Are RS and NP equal?}
\[
\mathrm{RS}-\mathrm{NP}=0
\]
\(\mathrm{TU}:=\mathrm{NP} \quad \mathrm{ET}:=\frac{\mathrm{EK} \cdot \mathrm{TU}}{\mathrm{GK}} \mathrm{NR}:=\mathrm{BR}-\mathrm{BN}\)
\(\mathrm{EN}:=\mathrm{BE}-\mathrm{BN}\) NT \(:=\mathrm{EN}-\mathrm{ET}\)
\(\mathrm{PS}:=\mathrm{NR} \quad \mathrm{PU}:=\mathrm{NT} \quad \mathrm{EU}:=\sqrt{\mathrm{ET}^{2}+\mathrm{TU}^{2}}\)
Is NT half of NR? \(\frac{\mathrm{NR}}{\mathrm{NT}}=2\)
Does GU \(=\mathrm{PU}\) ? GU \(:=\mathrm{EG}-\mathrm{EU}\)
\(\mathrm{GU}-\mathrm{PU}=0\)
\(\mathrm{BT}:=\mathrm{BN}+\mathrm{NT}\) FN \(:=\mathrm{BF}-\mathrm{BN}\) FP \(:=\sqrt{\mathrm{NP}^{2}+\mathrm{FN}^{2}}\)
\(\mathrm{FV}:=\frac{\mathrm{FP}^{2}}{\mathrm{FN}} \mathrm{PX}:=\frac{\mathrm{FP} \cdot \mathrm{PS}}{\mathrm{FV}} \quad \mathrm{FX}:=\mathrm{FP}-\mathrm{PX}\)
\(\mathrm{FW}:=\frac{\mathrm{FV} \cdot \mathrm{FX}}{\mathrm{FP}} \quad \mathrm{BW}:=\mathrm{BF}-\mathrm{FW}\) AW \(:=\mathrm{AB}+\mathrm{BW}\)
Is AW a quarter root of \(\mathrm{AB}, \mathrm{AF}\) ?
\(\left(A B \cdot A^{3}\right)^{\frac{1}{4}}-A W=0\)

\[
\begin{aligned}
& \mathrm{BS}:=\sqrt{\mathrm{BR}^{2}+\mathrm{RS}^{2}} \mathrm{SZ}:=\frac{\mathrm{BR} \cdot \mathrm{PS}}{\mathrm{BS}} \\
& \mathrm{BZ}:=\mathrm{BS}-\mathrm{SZ} \text { BY }:=\frac{\mathrm{PS} \cdot \mathrm{BZ}}{\mathrm{SZ}}
\end{aligned}
\]
\[
A Y:=A B+B Y
\]

Is \(A Y\) a quarter root of \(\mathrm{AB}, \mathrm{AF}\) ?
\(\left(A B^{3} \cdot A F\right)^{\frac{1}{4}}-A Y=0\)


Does H and G have a constant relationship?
\[
\begin{aligned}
& \delta:=1 . .1000 \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \\
& \mathrm{BF}:=6 \quad \mathrm{BD}:=\frac{\mathrm{BF}}{2} \quad \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF} \\
& \mathrm{AC}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AF}_{\delta}} \mathrm{DJ}:=\mathrm{BD} \quad \mathrm{DF}:=\mathrm{BD} \\
& \mathrm{BC}_{\delta}:=\mathrm{AC}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CD}_{\delta}:=\mathrm{BD}-\mathrm{BC}_{\delta} \\
& \mathrm{CH}_{\delta}:=\frac{\mathrm{DJ} \cdot \mathrm{BC}_{\delta}}{\mathrm{BD}} \quad \mathrm{AG}_{\delta}:=\mathrm{AC}_{\delta} \\
& \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BD} \quad \mathrm{AK}_{\delta}:=\frac{\left(\mathrm{AG}_{\delta}\right)^{2}}{\mathrm{AD}_{\delta}} \\
& \mathrm{GK}_{\delta}:=\sqrt{\left(\mathrm{AG}_{\delta}\right)^{2}-\left(\mathrm{AK}_{\delta}\right)^{2}} \\
& \mathrm{BK}_{\delta}:=\mathrm{AK}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CK}_{\delta}:=\mathrm{BC}_{\delta}-\mathrm{BK}_{\delta}
\end{aligned}
\]
\[
\mathrm{KF}_{\delta}:=\mathrm{CK}_{\delta}+\mathrm{CD}_{\delta}+\mathrm{DF}
\]

Does FH and FG have identical slopes?

\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\mathrm{CD}_{\delta}+\mathrm{DF} \\
& \mathrm{GK}_{\delta}:=\frac{\mathrm{CH}_{\delta} \cdot \mathrm{KF}_{\delta}}{\mathrm{CF}_{\delta}}
\end{aligned}
\]

Therefore G and H are constantly co-linear.



Thus this file can be redone as: "Given \(\mathrm{BC}=\) \(\sqrt{\mathrm{AB}} \cdot \mathrm{AF}\) and BF , find \(\mathrm{AB} . "\)

The Formula for GK vs. GK2 demonstrates that the symbolic processor cannot always resolve to simplest form. GK2 is the processors final attempt. An attempt with Mathcad 6 gives the same result.
\[
\mathrm{A}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{B}:=\mathrm{BF}
\]
\(G K 2_{\delta}:=B \cdot \frac{\left[\left(A_{\delta}\right)^{\left(\frac{3}{2}\right)} \cdot \sqrt{A_{\delta}+B}-\left(A_{\delta}\right)^{2}+B \cdot \sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}-B \cdot A_{\delta}\right]}{\left[\left(2 \cdot A_{\delta}+B\right) \cdot\left(B-\sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}+A_{\delta}\right)\right]} \quad G K_{\delta}:=\frac{B \cdot\left(\sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}\right)}{\left(2 \cdot A_{\delta}+B\right)}\)



\section*{And the Delian Quest}



\section*{Alternate method for Quad Roots}
\(\delta:=1 . .100 \quad \mathrm{AB}_{\delta}:=\delta \quad \mathrm{BG}:=10 \quad \mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG}\)
\(\mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AG}_{\delta}} \mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta}\)
\(\mathrm{DG}_{\delta}:=\mathrm{BG}-\mathrm{BD}_{\delta} \quad \mathrm{DI}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DG}_{\delta}}\)
\(\mathrm{HI}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{IJ}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{HJ}_{\delta}:=\mathrm{HI}_{\delta}+\mathrm{IJ}_{\delta}\)
\(\mathrm{DK}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{JK}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{BK}_{\delta}:=\mathrm{BD}_{\delta}+\mathrm{DK}_{\delta}\)
\(\mathrm{BJ}_{\delta}:=\sqrt{\left(\mathrm{BK}_{\delta}\right)^{2}+\left(\mathrm{JK}_{\delta}\right)^{2}} \quad \mathrm{JL}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{HJ}_{\delta}}{\mathrm{BJ}_{\delta}}\)
\(\mathrm{BL}_{\delta}:=\mathrm{BJ}_{\delta}-\mathrm{JL}_{\delta} \mathrm{BC}_{\delta}:=\frac{\mathrm{HJ}_{\delta} \cdot \mathrm{BL}_{\delta}}{\mathrm{JL}_{\delta}}\)
\[
\begin{aligned}
& \mathrm{HM}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{DM}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{MG}_{\delta}:=\mathrm{DM}_{\delta}+\mathrm{DG}_{\delta} \\
& \mathrm{GH}_{\delta}:=\sqrt{\left(\mathrm{MG}_{\delta}\right)^{2}+\left(\mathrm{HM}_{\delta}\right)^{2}} \quad \mathrm{HN}_{\delta}:=\frac{\mathrm{MG}_{\delta} \cdot \mathrm{HJ}_{\delta}}{\mathrm{GH}_{\delta}} \\
& \mathrm{GN}_{\delta}:=\mathrm{GH}_{\delta}-\mathrm{HN}_{\delta} \quad \mathrm{FG}_{\delta}:=\frac{\mathrm{HJ}_{\delta} \cdot \mathrm{GN}_{\delta}}{\mathrm{HN}_{\delta}} \\
& \mathrm{BF}_{\delta}:=\mathrm{BG}-\mathrm{FG}_{\delta} \\
& \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}_{\delta} \\
& \mathrm{AC}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BC}_{\delta}
\end{aligned}
\]


The symbolic processor on my computer could not reduce the chain to the final equations.


\section*{Archamedian Trisector Revisited.}

I am curious as to why the Archamedian trisector is still taught the way it was given so long ago and the idea from which it derives is not in any of my books.

I am going to use a circle to demonstrate some principles concerning angles. To help log the results in mathematical terms, I will divide the circle into quadrants and label them either plus or minus. The top is labled one.

The circle is divided into \(1 / 8\) segments of 90 degrees for each quadrant. I start at the top. Since the angle at the perimiter is \(1 / 2\) of the angle at the center, when I start the figure I use twice the arc segment for the agle I am working with. I have maked some quadrants with plus and minus and have found that for the figure, I would say that I have \(1+1 / 8-1 / 8\). From this I have learned that my starting angle of the smaller circle will be 90 degrees.
\[
\begin{aligned}
& \frac{90}{8}=11.25 \\
& 90+\frac{90}{8}-\frac{90}{8}=90 \quad\left(1+\frac{1}{8}-\frac{1}{8}\right) \cdot 90=90
\end{aligned}
\]


\(B:=1+\frac{1}{8}-\frac{1}{8} \quad B=1\)
\(\frac{B \cdot 4}{4} \cdot 90=90 \quad \frac{B \cdot 3}{4} \cdot 90=67.5\)
\(\frac{\mathrm{B} \cdot 2}{4} \cdot 90=45 \quad \frac{\mathrm{~B}}{4} \cdot 90=22.5\)
\(8+1-1=8\)
\(8 \cdot 11.25=90\)
\(8+1-1-2=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1-2-2=4\)
\(4 \cdot 11.25=45\)
\(8+1-1-2-2-2=2\)
\(2 \cdot 11.25=22.5\)
\(8+1-1-2-2-2-2=0\)
\(\bmod (8+1-1,2)=0\)

I have added another plus to a quadrant at the bottom of the figure.
\(\mathrm{B}:=1+\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1.125 \quad \frac{9}{8}=1.125\)
\[
\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75
\]
\[
\frac{B \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{B \cdot 1.5}{4.5} \cdot 90=33.75
\]
\[
\frac{\mathrm{B} \cdot .5}{4.5} \cdot 90=11.25
\]
\(8+1+1-1=9\)
\(8+1+1-1-2=7\)
\(8+1+1-1-2-2=5\)
\(8+1+1-1-2-2-2=3\)
\(8+1+1-1-2-2-2-2=1 \quad 1 \cdot 11.25=11.25\)
\(\bmod (8+1+1-1,2)=1\)
\(9 \cdot 11.25=101.25\)
\(7 \cdot 11.25=78.75\)
\(5 \cdot 11.25=56.25\)
\(3 \cdot 11.25=33.75\)
\(1 \cdot 11.25=11.25\)


\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8}+\frac{1}{8} \quad \mathrm{~B}=1.125 \quad \frac{9}{8}=1.125\)
\(\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75\)
\(\frac{\mathrm{B} \cdot 2.5}{4.5} \cdot 90=56.25 \frac{\mathrm{~B} \cdot 1.5}{4.5} \cdot 90=33.75\)
\(\frac{\mathrm{B} \cdot .5}{4.5} \cdot 90=11.25\)
\(8+1=9\)
\(9 \cdot 11.25=101.25\)
\(8+1-(1 \cdot 2)=7\)
\(7 \cdot 11.25=78.75\)
\(8+1-(2 \cdot 2)=5\)
\(5 \cdot 11.25=56.25\)
\(8+1-(3 \cdot 2)=3\)
\(3 \cdot 11.25=33.75\)
\(8+1-(4 \cdot 2)=1\)
\(1 \cdot 11.25=11.25\)
\(\bmod (8+1,2)=1\)

\(B:=1+\frac{3}{24}-\frac{8}{24} B=0.79166667924=0.79166667\)
\[
\frac{B \cdot 3.1666}{3.1666} \cdot 90=71.25 \quad \frac{B \cdot 2.1666}{3.1666} \cdot 90=48.74952631
\]
\(\frac{\mathrm{B} \cdot 1.16666}{3.16666} \cdot 90=26.249995 \cdot .166666\) 3.166666 \(\cdot 90=3.74998579\)
\begin{tabular}{ll}
\((24+3)-8=19\) & \(19 \cdot 3.75=71.25\) \\
\((24+3)-8-(1 \cdot 6)=13\) & \(13 \cdot 3.75=48.75\) \\
\((24+3)-8-(2 \cdot 6)=7\) & \(7 \cdot 3.75=26.25\) \\
\((24+3)-8-(3 \cdot 6)=1\) & \(1 \cdot 3.75=3.75\)
\end{tabular}
\(\bmod (24+3-8,2)=1\)
\(B:=1+\frac{1}{8}-\frac{1}{8}+\frac{10}{8} \quad B=2.25 \quad \frac{18}{8}=2.25\)
\(\frac{\mathrm{B} \cdot 9}{9} \cdot 90=202.5 \quad \frac{\mathrm{~B} \cdot 8}{9} \cdot 90=180\)
\begin{tabular}{ll}
\(\frac{\mathrm{B} \cdot 7}{9} \cdot 90=157.5\) & \(\frac{\mathrm{~B} \cdot 6}{9} \cdot 90=13.5\) \\
& \\
\(8+1-1+10=18\) & \(18 \cdot 11.25=202.5\) \\
\(8+1-1+10-(2 \cdot 1)=16\) & \(16 \cdot 11.25=180\) \\
\(8+1-1+10-(2 \cdot 2)=14\) & \(14 \cdot 11.25=157.5\) \\
\(8+1-1+10-(2 \cdot 3)=12\) & \(12 \cdot 11.25=135\) \\
\(8+1-1+10-(2 \cdot 4)=10\) & \(10 \cdot 11.25=112.5\) \\
\(8+1-1+10-(2 \cdot 5)=8\) & \(8 \cdot 11.25=90\) \\
\(8+1-1+10-(2 \cdot 6)=6\) & \(6 \cdot 11.25=67.5\) \\
\(8+1-1+10-(2 \cdot 7)=4\) & \(4 \cdot 11.25=45\) \\
\(8+1-1+10-(2 \cdot 8)=2\) & \(2 \cdot 11.25=22.5\) \\
\(\bmod ((8+1-1)+10,2)=0\) &
\end{tabular}

\(\mathrm{B}:=1+\frac{1}{7}-\frac{2}{7} \quad \mathrm{~B}=0.85714286 \frac{6}{7}=0.85714286\) \(\frac{B \cdot 6}{6} \cdot 90=77.14285714 \frac{B \cdot 4}{6} \cdot 90=51.42857143\) \(\frac{B \cdot 2}{6} \cdot 90=25.71428571\)
c \(:=\frac{90}{7}\)
\(7+1-(1 \cdot 2)=6 \quad 6 \cdot c=77.14285714\)
\(7+1-(2 \cdot 2)=4 \quad 4 \cdot c=51.42857143\)
\(7+1-(3 \cdot 2)=2\)
\(2 \cdot \mathrm{C}=25.71428571\)
\(\bmod (7+1-2,2)=0\)
B \(:=1+\frac{1}{7}-\frac{1}{7}\)
B \(=1\)
\(\frac{7}{7}=1\)
\(\frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.28571429\) \(\frac{\mathrm{B} \cdot 3}{7} \cdot 90=38.57142857_{7}^{\mathrm{B} \cdot 1} \cdot 90=12.85714286\)
\(7+1-1=7\)
\[
7 \cdot \mathrm{c}=90
\]
\(7+1-1-(1 \cdot 2)=5 \quad 5 \cdot c=64.28571429\)
\(7+1-1-(2 \cdot 2)=3 \quad 3 \cdot \mathrm{c}=38.57142857\)
\(7+1-1-(3 \cdot 2)=1 \quad 1 \cdot \mathrm{c}=12.85714286\) \(\bmod (7+1-1,2)=1\)
\[
\mathrm{B}:=1+\frac{8}{56}-\frac{7}{56} \quad \mathrm{~B}=1.01785714
\]
\(\frac{\mathrm{B} \cdot 57}{57} \cdot 90=91.6071428 \cdot 41 \mathrm{57} \cdot 90=65.89285714\)
\[
\frac{B \cdot 25}{57} \cdot 90=40.17857143
\]
\(\mathrm{c}:=\frac{90}{56}\)
\(56+8-7=57\)
\(57 \cdot \mathrm{c}=91.60714286\)
\(\begin{array}{ll}56+8-7-(1 \cdot 16)=41 & 41 \cdot c=65.89285714 \\ 56+8-7-(2 \cdot 16)=25 & 25 \cdot c=40.17857143\end{array}\)
\(56+8-7-(2 \cdot 16)=25 \quad 25 \cdot \mathrm{c}=40.17857143\)
\(56+8-7-(3 \cdot 16)=9 \quad 9 \cdot c=14.46428571\)
\(\bmod (56+8-7,16)=9\)

\[
\frac{91.607}{12.857} \cdot 8=57.00054445
\]



Exploring the cube.
03_28_95.MCD

I have noticed a relationship among perfect cubes for the curve listed in previous work as CJ. Because of the nature of the projection the curve is not actually needed here to demonstrate.

Using perfect cube numbers ( N ), the point \(F\) seems to fall exactly on some unit value of N-1. It also appears to fall on sequencial multiples of \(\mathrm{N}-1\) in its own sequence.
\[
\begin{aligned}
& \delta:=1 . . \Delta-1 \quad \mathrm{AB}:=1 \\
& \mathrm{EG}:=\mathrm{AB} \quad \mathrm{CD}:=\mathrm{AB} \quad \mathrm{CE}:=\mathrm{AB} \\
& \mathrm{EF}_{\delta}:=\frac{\mathrm{EG}}{\Delta-1} \cdot \delta \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{DE}:=\mathrm{CD}+\mathrm{CE} \mathrm{CH}_{\delta}:=\frac{\mathrm{EF}_{\delta} \cdot \mathrm{CD}}{\mathrm{DE}} \\
& \mathrm{DF}_{\delta}:=\sqrt{\mathrm{DE}^{2}+\left(\mathrm{EF}_{\delta}\right)^{2}} \\
& \mathrm{CJ}_{\delta}:=\frac{\mathrm{DE} \cdot \mathrm{CH}_{\delta}}{\mathrm{DF}_{\delta}}
\end{aligned}
\]
\[
\mathrm{HJ}_{\delta}:=\sqrt{\left(\mathrm{CH}_{\delta}\right)^{2}-\left(\mathrm{CJ}_{\delta}\right)^{2}}
\]
\[
\mathrm{CP}:=\mathrm{AC} \quad \mathrm{JP}_{\delta}:=\sqrt{\mathrm{CP}^{2}-\left(\mathrm{CJ}_{\delta}\right)^{2}}
\]
\[
\mathrm{HP}_{\delta}:=\mathrm{JP}_{\delta}-\mathrm{HJ}_{\delta}
\]
\[
\mathrm{DE} \cdot \mathrm{HP}_{\delta}
\]
\[
\mathrm{KP}_{\delta}:=\frac{\mathrm{DE}^{2} \cdot \mathrm{HP}_{\delta}}{\mathrm{DF}_{\delta}}
\]

\[
\begin{aligned}
& \mathrm{KR}:=\mathrm{CD} \quad \mathrm{PR}_{\delta}:=\mathrm{KR}+\mathrm{KP}_{\delta} \\
& \mathrm{LM}:=\mathrm{AB} \mathrm{AS}_{\delta}:=\mathrm{KP}_{\delta} \quad \mathrm{BT}_{\delta}:=\mathrm{KP}_{\delta} \\
& \mathrm{NO}_{\delta}:=\frac{\mathrm{LM} \cdot \mathrm{KP}_{\delta}}{\mathrm{PR}_{\delta}} \\
& \mathrm{HK}_{\delta}:=\frac{\mathrm{EF}_{\delta} \cdot \mathrm{KP}_{\delta}}{\mathrm{DE}} \mathrm{CK}_{\delta}:=\mathrm{CH}_{\delta}+\mathrm{HK}_{\delta} \\
& \mathrm{AK}_{\delta}:=\mathrm{AC}-\mathrm{CK}_{\delta} \quad \mathrm{PS}_{\delta}:=\mathrm{AK}_{\delta} \\
& \mathrm{AM}^{2}:=\mathrm{AB} \quad \mathrm{MS}_{\delta}:=\mathrm{AM}+\mathrm{AS}_{\delta} \\
& \mathrm{AO}_{\delta}:=\frac{\mathrm{PS}_{\delta} \cdot \mathrm{AM}^{2}}{\mathrm{MS}_{\delta}} \quad \mathrm{AN}_{\delta}:=\mathrm{AO}_{\delta}+\mathrm{NO}_{\delta}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{OT}_{\delta}:=\mathrm{NO}_{\delta} \quad \mathrm{OU}_{\delta}:=\mathrm{AO}_{\delta} \\
& \mathrm{TU}_{\delta}:=\mathrm{OT}_{\delta}-\mathrm{OU}_{\delta} \quad \mathrm{UV}_{\delta}:=\mathrm{AO}_{\delta} \\
& \mathrm{OX}_{\delta}:=\mathrm{if}\left(\mathrm{TU}_{\delta}, \frac{\mathrm{UV}_{\delta} \cdot \mathrm{OT}_{\delta}}{\mathrm{TU}_{\delta}}, 0\right) \\
& \mathrm{AX}_{\delta}:=\mathrm{OX}_{\delta}-\mathrm{AO}_{\delta} \\
& \mathrm{DIVS}_{\delta}:=\mathrm{if}\left(\mathrm{AX}_{\delta}, \frac{\mathrm{AB}+\mathrm{AX}_{\delta}}{\mathrm{AX}}, 0\right)
\end{aligned}
\]

TABLE \(:=\operatorname{augment}\left(\operatorname{DIVS},(\operatorname{augment}(\operatorname{AX}, \operatorname{augment}(E F, \operatorname{DIVS})))^{\mathrm{T}}\right.\)

\(\Delta \equiv 8\)

TABLE \(=\left[\begin{array}{llllllll}0 & 1.911411471 & 3.770673353 & 8 & 19.557606074 & 64 & 454.830372231 & 0 \\ 0 & 1.097199269 & 0.360923094 & 0.142857143 & 0.053886261 & 0.015873016 & 0.002203466 & 0 \\ 0 & 0.142857143 & 0.285714286 & 0.428571429 & 0.571428571 & 0.714285714 & 0.857142857 & 1 \\ 0 & 1.911411471 & 3.770673353 & 8 & 19.557606074 & 64 & 454.830372231 & 0\end{array}\right]\)


\section*{Exponential}

Progressions. 04_01_95

If I want to multiply any number by any power, this is the a geometric process for doing so.

The given figure is drawn for the third power of 3 .
\[
\mathrm{AH}:=10 \quad \delta:=0 . .10 \quad \mathrm{BS}:=8
\]

The third division between A and F is very hard to see. BS = Base Segments


Making the number of divisions 3, provides 3 cube result. AB divides AF 27 times. Etc. It can be seen that using a normal straight edge and compass one needs a very large piece of paper to work this.

\(\mathrm{BS}^{\boldsymbol{\delta}}\)
\begin{tabular}{|l|}
\hline 1 \\
\hline 8 \\
\hline 64 \\
\hline 512 \\
\hline 4096 \\
\hline 32768 \\
\hline 262144 \\
\hline 2097152 \\
\hline 16777216 \\
\hline 134217728 \\
\hline \(1.07374182 \cdot 10^{9}\) \\
\hline
\end{tabular}

You will notice that I took only one of the possible two divisions from which to project from. The other would be \(2 / 3\). At \(2 / 3\) my unit divisions would still be 27 , but now \(A B\) would take up 2 cube of them, or AB would be 8 units.

For an 8 cube series then, the value for AB would be 1 of 512,8 of 512,27 of 512,64 of 512,125 of 512,216 of 512,343 of 512



\section*{About The Laws of 04_22_95.MCD Exponents and Ratios}
\(\Delta:=22 \quad \delta:=1 . . \Delta \quad \mathrm{AB}:=7\)
Base Segments \(=\) BS BS : \(=99\)
Base Index \(=\mathrm{BI} \quad\) BI \(:=13\)

Root Series \(=\mathrm{RS} \quad \mathrm{RS}_{\delta}:=\left[\left(\frac{\mathrm{BI}}{\mathrm{BS}} \cdot \mathrm{AB}\right)^{\Delta-\delta} \cdot \mathrm{AB}^{\delta}\right]^{\frac{1}{\Delta}}\)

Root Series By Ratio \(=\mathrm{RR} \quad \mathrm{RR}_{\delta}:=\left(\frac{\mathrm{BI}}{\mathrm{BS}}\right)^{\frac{\Delta-\delta}{\Delta}} \cdot \mathrm{AB}\)

Root Series By Inverse Ratio = RI
\[
\mathrm{RI}_{\delta}:=\left(\frac{\mathrm{BS}}{\mathrm{BI}}\right)^{\frac{\delta}{\Delta}} \cdot\left(\frac{\mathrm{BI}}{\mathrm{BS}} \cdot \mathrm{AB}\right)
\]

\(\sum_{\delta}\left(\mathrm{RS}_{\delta}-\mathrm{RR}_{\delta}\right)=0\)

\[
\sum_{\delta}\left(\mathrm{RS}_{\delta}-\mathrm{RI}_{\delta}\right)=0
\]


The resultant equation in terms of the givens is
\[
\mathrm{EF}:=\frac{\mathrm{AC} \cdot(\mathrm{AM}-\mathrm{AB})}{2 \cdot \mathrm{AC}-\mathrm{AM}} \quad \mathrm{EF}=3.80843
\]


\section*{Segment B.}

\section*{Given AC, AB, DN, find EF.}
\(\mathrm{AN}:=2 \cdot \mathrm{AC} \quad \mathrm{MN}:=\frac{\mathrm{DN}^{2}}{\mathrm{AN}} \quad \mathrm{CN}:=\mathrm{AC} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BN}:=\mathrm{CN}+\mathrm{BC}\)
\(\mathrm{EN}:=\frac{\mathrm{DN} \cdot \mathrm{BN}}{\mathrm{MN}} \quad \mathrm{ED}:=\mathrm{EN}-\mathrm{DN} \quad \mathrm{EF}:=\frac{\mathrm{AC} \cdot \mathrm{ED}}{\mathrm{DN}} \quad \mathrm{EF}=3.80844\)

The equation for this process is
\[
\mathrm{EF}:=\frac{\mathrm{AC} \cdot\left(4 \cdot \mathrm{AC}^{2}-2 \cdot \mathrm{AC} \cdot \mathrm{AB}-\mathrm{DN}^{2}\right)}{\mathrm{DN}^{2}} \quad \mathrm{EF}=3.80844
\]


Segment C.
Given \(\mathrm{AC}, \mathrm{AB}, \mathrm{BE}\), find EF .
\(\mathrm{AN}:=2 \cdot \mathrm{AC} \quad \mathrm{BN}:=\mathrm{AN}-\mathrm{AB} \quad \mathrm{EN}:=\sqrt{\mathrm{BE}^{2}+\mathrm{BN}^{2}} \quad \mathrm{ON}:=\frac{\mathrm{EN}^{2}}{\mathrm{BN}}\)
\(\mathrm{DN}:=\frac{\mathrm{EN} \cdot \mathrm{AN}}{\mathrm{ON}} \quad \mathrm{DE}:=\mathrm{EN}-\mathrm{DN} \quad \mathrm{EF}:=\frac{\mathrm{AC} \cdot \mathrm{DE}}{\mathrm{DN}} \quad \mathrm{EF}=3.80844\)

The equation for this process is \(\quad \mathrm{EF}:=\frac{\mathrm{BE}^{2}-2 \cdot \mathrm{AC} \cdot \mathrm{AB}+\mathrm{AB}^{2}}{2 \cdot(2 \cdot \mathrm{AC}-\mathrm{AB})} \quad \mathrm{EF}=3.80844\)

\section*{10_14_5C.MCD}

Trivial Method: Square Root
Generalize the figure of 10_14_95.MCD


Starting at any point G, between A and J, the square root of \(\mathrm{AB} \cdot \mathrm{AF}\) can always be projected to point C. Such a progression can be used on the cube root figure.
\(\delta:=1 . .1000 \mathrm{AB}:=10 \quad \mathrm{BF}:=10 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2}\)
\[
\begin{aligned}
& \mathrm{AE}:=\mathrm{BE}+\mathrm{AB} \quad \mathrm{AJ}:=\mathrm{BE} \quad \mathrm{AG}_{\delta}:=\frac{\mathrm{AJ}}{\delta} \\
& \mathrm{EI}_{\delta}:=\mathrm{AG}_{\delta} \mathrm{AI}_{\delta}:=\sqrt{(\mathrm{AE})^{2}+\left(\mathrm{EI}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{AK}_{\delta}:=\mathrm{AI}_{\delta} \quad \mathrm{DK}:=\mathrm{AJ} \mathrm{AD}_{\delta}:=\sqrt{\left(\mathrm{AK}_{\delta}\right)^{2}-\mathrm{DK}^{2} \mathrm{GH}_{\delta}}:=\mathrm{AD}_{\delta} \quad \mathrm{CG}_{\delta}:=\mathrm{GH}_{\delta}\)
\[
\mathrm{AF}_{\delta}:=\mathrm{BF}+\mathrm{AB} \quad \mathrm{AC}_{\delta}:=\sqrt{\left(\mathrm{CG}_{\delta}\right)^{2}-\left(\mathrm{AG}_{\delta}\right)^{2}}
\]



Given \(A B\) and \(B D\) divide \(B D\) such that \(A B \cdot C D=\) \(\frac{B C^{2}}{4}\). And what is the reltionship of \(A C\) to \(A B\) and BD? Now the date on this file is not exact as I sketched this out on a piece of paper and forgot to date it.

\[
\begin{aligned}
& \mathrm{AB}:=5 \quad \mathrm{BD}:=1 \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BD}} \quad \mathrm{AE}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BF}^{2}} \\
& \mathrm{DE}:=\mathrm{AD}-\mathrm{AE} \quad \mathrm{DG}:=\mathrm{DE} \quad \mathrm{CD}:=\frac{\mathrm{DG}^{2}}{\mathrm{AD}} \\
& \mathrm{CD}=0.046 \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{AB} \cdot \mathrm{CD}-\frac{\mathrm{BC}^{2}}{4}=0
\end{aligned}
\]
\(\mathrm{CE}:=\mathrm{DE}-\mathrm{CD} \quad \mathrm{CH}:=\mathrm{CE} \quad \mathrm{CJ}:=\frac{\mathrm{CH}^{2}}{\mathrm{CD}} \quad \mathrm{AB}-\mathrm{CJ}=0\)
\(\mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{AC}=5.954\)
\(A C-\left[2 \cdot \frac{\mathrm{AB}^{\left(\frac{3}{2}\right)}}{\sqrt{\mathrm{AB}+\mathrm{BD}}}+2 \cdot \frac{\sqrt{\mathrm{AB}}}{\sqrt{\mathrm{AB}+\mathrm{BD}}} \cdot \mathrm{BD}-\mathrm{AB}\right]=0\)

\section*{A Modification of a Square Root Figure. Gemini Roots}

One of the square root figures displays a one to one ratio between what could be called the vertical segment OP and the root of the two horizontal segments AP and BP. With a slight modification however, one can demonstrate a many to one relationship between three base segments.

GL has a ratio to the root of AL•BG.
Developing the arc AIC from it will give a means of keeping that ratio.
\(B S=\) Base Segments, set at end of doc.
\(\mathrm{AB}:=10 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \quad \mathrm{EG}:=\frac{\mathrm{AB}}{\mathrm{BS}}\)
\(\mathrm{BC}:=\mathrm{AC} \quad \mathrm{CD}:=\mathrm{AC} \quad \mathrm{CE}:=\frac{\mathrm{EG}}{2}\)
\(\mathrm{AE}:=\mathrm{AC}-\mathrm{CE} \quad \mathrm{BE}:=\mathrm{BC}+\mathrm{CE}\)
\(\mathrm{EF}:=\sqrt{\mathrm{AE} \cdot \mathrm{BE}} \quad \mathrm{AF}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EF}^{2}}\)
\(\mathrm{AI}:=\mathrm{AF} \quad \mathrm{AM}:=\frac{\mathrm{AI}}{2} \quad \mathrm{CI}:=\sqrt{\mathrm{AI}^{2}-\mathrm{AC}^{2}}\)
\(\mathrm{AL}:=\frac{\mathrm{AI} \cdot \mathrm{AM}}{\mathrm{AC}} \mathrm{CL}:=\mathrm{AC}-\mathrm{AL}\)
\(\mathrm{CK}:=\frac{\mathrm{AC} \cdot \mathrm{CE}}{\mathrm{CI}} \quad \mathrm{IK}:=\mathrm{CI}+\mathrm{CK}\)
\[
\begin{aligned}
& \begin{array}{l}
\delta:=1 . . \Delta \quad \mathrm{AN}_{\delta}:=\frac{\mathrm{AC}}{\Delta} \cdot \delta \\
\mathrm{CN}_{\delta}:=\mathrm{AC}-\mathrm{AN}_{\delta} \quad \mathrm{KO}:=\mathrm{IK} \\
\mathrm{KN}_{\delta}:=\sqrt{\mathrm{CK}^{2}+\left(\mathrm{CN}_{\delta}\right)^{2}} \quad \mathrm{NO}_{\delta}:=\mathrm{KO}-\mathrm{KN}_{\delta} \\
\mathrm{NP}_{\delta}:=\frac{\mathrm{CN}_{\delta} \cdot \mathrm{NO}_{\delta}}{\mathrm{KN}_{\delta}} \quad \mathrm{AP}_{\delta}:=\mathrm{AC}-\mathrm{CN}_{\delta}-\mathrm{NP}_{\delta}
\end{array} \\
& \mathrm{OP}_{\delta}:=\frac{\mathrm{CK} \cdot \mathrm{NO}_{\delta}}{\mathrm{KN}_{\delta}} \quad \mathrm{AO}_{\delta}:=\sqrt{\left(\mathrm{AP}_{\delta}\right)^{2}+\left(\mathrm{OP}_{\delta}\right)^{2}} \\
& \mathrm{AQ}_{\delta}:=\mathrm{AO}_{\delta} \quad \mathrm{AR}_{\delta}:=\frac{\left(\mathrm{AQ}_{\delta}\right)^{2}}{\mathrm{AB}} \\
& \mathrm{BP}_{\delta}:=\mathrm{BC}+\mathrm{CN}_{\delta}+\mathrm{NP}_{\delta} \\
& \mathrm{BO}_{\delta}:=\sqrt{\left(\mathrm{BP}_{\delta}\right)^{2}+\left(\mathrm{OP}_{\delta}\right)^{2}} \quad \mathrm{BS}_{\delta}:=\mathrm{BO}_{\delta} \quad \mathrm{BT}_{\delta}:=\frac{\left(\mathrm{BS}_{\delta}\right)^{2}}{\mathrm{AB}} \quad \mathrm{AT}_{\delta}:=\mathrm{AB}-\mathrm{BT}_{\delta} \quad \mathrm{RT}_{\delta}:=\mathrm{AT}_{\delta}-\mathrm{AR}_{\delta}
\end{aligned}
\]

Set the number of Base Segments here and see if a constant relationship is expressed in the graph.
\(B S \equiv 9\) \(\Delta \equiv 100\)



\section*{Short Method Gemini Roots.}

Given AG, CE, AH, place CE so that
CE:AH as CE:CI. Or more simply that CI
\(=\sqrt{\mathrm{AC}_{\delta} \cdot \mathrm{EG}_{\delta}}=\mathrm{AH}\).
\(\delta:=1 . .100\)
\(\Delta:=8\)
\(\mathrm{AG}:=\Delta \cdot 2+1 \quad \mathrm{CE}_{\delta}:=\frac{1}{\delta} \quad \quad \mathrm{AH}_{\delta}:=\Delta \cdot \mathrm{CE}_{\delta}\)
With the values given is the constuction possible? ( 1 for yes and 0 for no.)

\(\mathrm{DJ}_{\delta}:=\mathrm{AH}_{\delta} \quad \mathrm{AB}_{\boldsymbol{\delta}}:=\frac{\mathrm{CE}_{\delta}}{2} \quad \mathrm{AF}:=\frac{\mathrm{AG}}{2} \quad \mathrm{FG}:=\mathrm{AF} \quad \mathrm{BF}_{\boldsymbol{\delta}}:=\mathrm{AF}-\mathrm{AB}_{\delta} \quad \mathrm{FJ}_{\boldsymbol{\delta}}:=\mathrm{BF}_{\boldsymbol{\delta}}\)
\(\mathrm{FD}_{\delta}:=\sqrt{\left(\mathrm{FJ}_{\delta}\right)^{2}-\left(\mathrm{DJ}_{\delta}\right)^{2}} \quad \mathrm{DC}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{DE}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{AD}_{\delta} i=\mathrm{AF}-\mathrm{FD}_{\delta}\)
\(\mathrm{AC}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{DC}_{\delta} \quad \mathrm{AE}_{\delta}:=\mathrm{AD}_{\delta}+\mathrm{DE}_{\delta} \quad \mathrm{EF}_{\delta}:=\mathrm{AF}-\mathrm{AE}_{\delta} \quad \mathrm{EG}_{\delta}:=\mathrm{EF}_{\delta}+\mathrm{FG}\)



\section*{Method for Equals.}

At the inner extremities of a great circle I have two equal smaller ones. Find the circle tangent to all three

\[
\begin{aligned}
& \mathrm{AH}:=10 \quad \mathrm{AC}:=3 \quad \mathrm{AO}:=\frac{\mathrm{AH}}{2} \quad \mathrm{AB}:=\frac{\mathrm{AC}}{2} \\
& \mathrm{JO}:=\mathrm{AB} \quad \mathrm{OP}:=\mathrm{JO} \quad \mathrm{HO}:=\mathrm{AO} \\
& \mathrm{JP}:=\sqrt{\mathrm{JO}^{2}+\mathrm{OP}^{2}} \quad \mathrm{HP}:=\mathrm{HO}+\mathrm{OP}
\end{aligned}
\]
\[
\mathrm{AL}:=\frac{\mathrm{JP} \cdot \mathrm{AH}}{\mathrm{HP}} \mathrm{NO}:=\mathrm{AO} \quad \mathrm{AN}:=\sqrt{\mathrm{AO}^{2}+\mathrm{NO}^{2}}
\]
\[
\mathrm{LN}:=\mathrm{AN}-\mathrm{AL} \quad \mathrm{LQ}:=\frac{\mathrm{AO} \cdot \mathrm{LN}}{\mathrm{AN}} \quad \mathrm{LQ}=2.692
\]

Reducing \(L Q\) as an expression of the two givens, \(L_{F}:=\frac{A H \cdot(A H-A C)}{2 \cdot(A H+A C)} \quad L Q_{F}-L Q=0\)

Scholia: 100 Great Problems of Elementary Mathematics H. Dorrie Problem 27 Euler's Line
\[
\delta:=0 . .2 \quad \text { AC }:=\left(\begin{array}{l}
\text { Side_1 } \\
\text { Side_2 } \\
\text { Side_3 }
\end{array}\right) \quad \mathrm{BC}:=\left(\begin{array}{l}
\text { Side_2 } \\
\text { Side_3 } \\
\text { Side_1 }
\end{array}\right) \quad \mathrm{AB}:=\left(\begin{array}{l}
\text { Side_3 } \\
\text { Side_1 } \\
\text { Side_2 }
\end{array}\right) \begin{aligned}
& \text { 12_07_95.MCD } \\
& \begin{array}{l}
\text { Given three sides of a triangle, } \\
\text { determine the length of the Euler line. } \\
\text { Work the drawing from each of the } \\
\text { sides. }
\end{array}
\end{aligned}
\]

TRIANGLE \(:=(\) Side_1 + Side_2 \(>\) Side_3 \() \cdot(\) Side_1 + Side_3 \(>\) Side_2 \() \cdot(\) Side_2 + Side_3 \(>\) Side_1 \()\)

\[
\begin{aligned}
& \mathrm{AE}_{\delta}:=\frac{\mathrm{AB}_{\delta}}{2} \mathrm{Ak}_{\delta}:=\mathrm{AC}_{\delta} \quad \mathrm{Bl}_{\delta}:=\mathrm{BC}_{\delta} \\
& \mathrm{Ai}_{\delta}:=\frac{\left(\mathrm{Ak}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \quad \mathrm{Bh}_{\delta}:=\frac{\left(\mathrm{Bl}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \mathrm{Ah}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Bh}_{\delta} \\
& \mathrm{hi}_{\delta}:=\mathrm{Ah}_{\delta}-\mathrm{Ai}_{\delta} \quad \mathrm{Aj}_{\delta}:=\mathrm{Ai}_{\delta}+\frac{\mathrm{hi}_{\delta}}{2} \\
& \mathrm{Cj}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}-\left(\mathrm{Aj}_{\delta}\right)^{2}} \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta} \\
& \mathrm{Bj}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Aj}_{\delta} \mathrm{Bg}_{\delta}:=\frac{\mathrm{BC}_{\delta}}{2} \quad \mathrm{Bf}_{\delta}:=\frac{\mathrm{BC}_{\delta} \cdot \mathrm{BE}_{\delta}}{\mathrm{Bj}_{\delta}} \\
& \mathrm{fg}_{\delta}:=\mathrm{Bf}_{\delta}-\mathrm{Bg}_{\delta} \quad \mathrm{Ug}_{\delta}:=\mathrm{if}\left(\mathrm{Cj}_{\delta}, \frac{\mathrm{Bj}_{\delta} \cdot \mathrm{fg}_{\delta}}{\mathrm{Cj}_{\delta}}, 0\right) \\
& \mathrm{BU}_{\delta}:=\mathrm{if}\left[\mathrm{Ug}_{\delta}, \sqrt{\left.\left(\mathrm{Ug}_{\delta}\right)^{2}+\left(\mathrm{Bg}_{\delta}\right)^{2}, \infty\right]}\right.
\end{aligned}
\]
\(\mathrm{AM}_{\delta}:=\frac{\mathrm{AC}_{\delta}}{2} \quad \mathrm{AGG}_{\delta}:=\frac{\mathrm{Aj}_{\delta} \cdot \mathrm{AM}_{\delta}}{\mathrm{AC}_{\delta}} \quad \mathrm{BGG}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AGG}_{\delta}\)
\(\mathrm{GGM}_{\delta}:=\sqrt{\left(\mathrm{AM}_{\delta}\right)^{2}-\left(\mathrm{AGG}_{\delta}\right)^{2}} \mathrm{BM}_{\delta}:=\sqrt{\left(\mathrm{GGM}_{\delta}\right)^{2}+\left(\mathrm{BGG}_{\delta}\right)^{2}}\)
\(\mathrm{BS}_{\delta}:=\frac{2 \cdot \mathrm{BM}_{\delta}}{3} \mathrm{BG}_{\delta}:=\frac{\mathrm{BGG}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}} \quad \mathrm{GS}_{\delta}:=\frac{\mathrm{GGM}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}}\)
\(A G_{\delta}:=A B_{\delta}-\mathrm{BG}_{\boldsymbol{\delta}} \mathrm{AS}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{AG}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{GS}_{\boldsymbol{\delta}}\right)^{2}}\)

\(\mathrm{MS}_{\delta}:=\mathrm{BM}_{\delta}-\mathrm{BS}_{\delta} \quad \mathrm{AU}_{\delta}:=\mathrm{BU}_{\delta} \quad \mathrm{MU}_{\delta}:=\sqrt{\left(\mathrm{AU}_{\delta}\right)^{2}-\left(\mathrm{AM}_{\delta}\right)^{2}} \quad \mathrm{Ae}_{\delta}:=\frac{1}{2} \cdot \frac{\left(\mathrm{AS}_{\delta}\right)^{2}}{\mathrm{AM}}+\frac{1}{2} \cdot \mathrm{AM}_{\delta}-\frac{1}{2} \cdot \frac{\left(\mathrm{MS}_{\delta}\right)^{2}}{\mathrm{AM}}\)

The following sequence is from 06_07_93.MCD. In that paper I treated it as a problem between two triangles, which it is. One can restate it as finding the fourth side of a quadrilateral by pulling up a line.
\(\mathrm{eM}_{\delta}:=\mathrm{Ae}_{\delta}-\mathrm{AM}_{\delta} \mathrm{Sm}_{\delta}:=\mathrm{eM}_{\delta} \quad \mathrm{Se}_{\delta}:=\sqrt{\left(\mathrm{AS}_{\delta}\right)^{2}-\left(\mathrm{Ae}_{\delta}\right)^{2}} \quad \mathrm{Mm}_{\delta}:=\mathrm{Se}_{\delta}\)
\(\mathrm{Um}_{\delta}:=\operatorname{if}\left[\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}, \mathrm{MU}_{\delta}-\mathrm{Mm}_{\delta}, \mathrm{MU}_{\delta}+\mathrm{Mm}_{\delta}\right] \mathrm{SU}_{\delta}:=\sqrt{\left(\mathrm{Um}_{\delta}\right)^{2}+\left(\mathrm{Sm}_{\delta}\right)^{2}} \mathrm{UO}_{\delta}:=3 \cdot \mathrm{SU}_{\delta}\)
Due to the way in which certain lines lay, the above switch was needed.

Is this a TRIANGLE \(=1 \quad ? \quad\) Side_1 \(\equiv 21 \quad\) Side_2 \(\equiv 14.4 \quad\) Side_3 \(\equiv 7.75\)

\(\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}\)

\begin{tabular}{|c|c|c|}
\hline \(\mathrm{SU}_{\delta}\) & \(\mathrm{UO}_{\delta}\) & \(\mathrm{AU}_{\delta}\) \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline
\end{tabular}

Descartes gives a figure for solving \(z^{2}=a z+b^{2}\) which should have been stated as \(z^{2}=2 a z+b^{2}\), generalize the figure. Descartes' figure was given only when \(n=2\). In this form, it is an equation of two givens and one unknown, generalized it as three givens and solves for three unknowns. Attempt to eliminate two of th unknowns as a function of the three givens.

12_16_95.MCD


Z

Given \(\mathrm{a}, \mathrm{n}\) and b for the equation \(\mathrm{z}^{2}=\mathrm{naz}+\mathrm{b}^{2}+\) cd find \(\mathrm{z}, \mathrm{c}\), and d.
\(\mathrm{AD}:=\mathrm{n} \cdot \mathrm{a} \quad \mathrm{BE}:=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2} \quad \mathrm{BC}:=\frac{\mathrm{a}^{2}}{\mathrm{BE}}}\)
\(\mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}}\)
\(\mathrm{FG}:=\frac{\mathrm{AD}}{2} \quad \mathrm{CG}:=\sqrt{\mathrm{FG}^{2}-C F^{2}}\)
\(\mathrm{AG}:=\mathrm{FG} \quad \mathrm{AC}:=\mathrm{AG}+\mathrm{CG}\)
\(\mathrm{BG}:=\mathrm{CG}-\mathrm{BC} \quad \mathrm{DG}:=\mathrm{FG}\)
\(\mathrm{BD}:=\mathrm{DG}-\mathrm{BG} \quad \mathrm{AB}:=\mathrm{AG}+\mathrm{BG}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD}\)
\(\mathrm{DH}:=\frac{\mathrm{b}^{2}}{\mathrm{DE}} \quad \mathrm{DI}:=\mathrm{AE} \quad \mathrm{HI}:=\mathrm{DI}-\mathrm{DH}\)
\[
C E:=B E-B C \quad C F:=\sqrt{B C \cdot C E}
\]
\[
F G:=\frac{A D}{2} \quad C G:=\sqrt{F G^{2}-C F^{2}}
\]
\[
A G:=F G \quad A C:=A G+C G
\]
\[
B G:=C G-B C \quad D G:=F G
\]
\[
B D:=D G-B G \quad A B:=A G+B G
\]
\[
\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD}
\]
\[
\mathrm{DH}:=\frac{\mathrm{b}^{2}}{\mathrm{DE}} \quad \mathrm{DI}:=\mathrm{AE} \quad \mathrm{HI}:=\mathrm{DI}-\mathrm{DH}
\]
\(z:=A E \quad z=12.622\)
\(c:=D E \quad c=0.622\)
\(d:=H I \quad d=6.186\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0\)
Place values here :
\(n \equiv 3\)
\(a=4\)
\(b \equiv 2\)


Expressing c and d in terms of the givens does not really look esthetically pleasing.
\[
\left.d=2 \cdot a \cdot \frac{b^{2}}{\sqrt{a^{2}+b^{2}}} \cdot \frac{\left(2 \cdot a-\sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right)}{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right.}\right)
\]
\[
c=\frac{-1}{2} \cdot \frac{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\sqrt{a^{2}+b^{2}}}
\]

The symbolic processor could not reduce cd directly so I had to do it in terms of the equation by resolving \(z\).
\(z=\frac{1}{2} \cdot \frac{\left(n \cdot a \cdot \sqrt{a^{2}+b^{2}}+a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}+2 \cdot b^{2}\right)}{\sqrt{a^{2}+b^{2}}}\)
\[
z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0 \quad p=-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}
\]
\((c \cdot d)-p=0\)
\(z^{2}-\left[n \cdot a \cdot z+b^{2}+\left[-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\right]\right]=0\)
Solve for z below.
\(\left[\begin{array}{l}\frac{1}{2} \cdot n \cdot a+\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}} \\ \frac{1}{2} \cdot n \cdot a-\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}}\end{array}\right]\)


C

\(b^{2}\)
\(z^{2}\)

Scholia: The Geometry of Rene Descartes with a facsimile of the first edition. Translated by D. Eugene and M. Latham
\(z^{2}:=a z-b^{2}\)
The problem is given for the solution of z when \(a\) and \(b\) are given. Working the problem backward, \(z^{2}+b^{2}:=a z\) ione can see constants in the figure for solving when only a and b are given.
\[
b:=2.12 \quad z:=1.41
\]

Finding \(a\) is just a matter of expressing \(b\) in terms of cz , and a becomes \(\mathrm{z}+\mathrm{c}\).
\[
c:=\frac{b^{2}}{z} \quad a:=z+c
\]

We find that this c has another relation to z , for it holds a proportion to it in the given equation.
\[
\begin{aligned}
& \left(c^{2}+b^{2}\right)-a \cdot c=0 \\
& \left(c^{2}+b^{2}\right)-((z+c) \cdot c)=0 \\
& \left(c^{2}+b^{2}\right)-(c \cdot z)-c^{2}=0 \\
& \left(z^{2}+b^{2}\right)-(z+c) \cdot z=0 \\
& \left(z^{2}+b^{2}\right)-(c \cdot z)-z^{2}=0
\end{aligned}
\]

Descartes and other mathematicians speak as if we have two different values for z , however, I see quite plainly that we have a z and a c that was found. The unique name of the symbols in context are thus preserved.

One can also see that working the figure in a straight forward manner, imaginary situations are not possible,





The primitive form of construction is very suggestive of Descartes process. If however we use Pythagorean division, the figure may not be so apparent. One should note that contrary to his statement on page 4 , one cannot divide a line by a line. In geometry one can divide a square by a line. This is the law of tautology, which holds for all mathematics. It will also be noted that Descartes claims to be working with a quadratic equation, and his solution is indeed for one, however he states it as a quadratic deficient by a rectangle, deficient in fact by az. The authors of the notes make the same mistake.

Just for fun.


The ratio of BC to CE is common to another cube root expression, which?

Pascal's triangle with exponential division.

\[
\begin{aligned}
& A B:=3 \quad A D:=5 \\
& B D:=A D-A B \quad A C:=\sqrt{A B \cdot A D} \\
& C D:=A D-A C \quad B C:=B D-C D \\
& C D:=B D-B C \quad C E:=\sqrt{B C \cdot C D} \\
& B E:=\sqrt{B C^{2}+C E^{2}} \quad D E:=\sqrt{C D^{2}+C E^{2}} \\
& B G:=\frac{B D \cdot B E}{D E} \quad F G:=\frac{B C \cdot B G}{B D} \\
& E G:=\frac{B E \cdot B G}{B D} \quad D G:=D E+E G \\
& G H:=\frac{B C \cdot E G}{B D} \quad G J:=\frac{B C \cdot G H}{B D} \\
& \frac{B D}{B C}=2.291 \quad \frac{D G}{G H}=5.249 \\
& M
\end{aligned}
\]

Dividing an exponentiated integer by an exponentiated integer of the same power, straight edge and compass construction.


A formula for the figure is then,

\(\sqrt{B D \cdot B C}=1.299\)
\(\sqrt{\mathrm{DG} \cdot \mathrm{GH}}=0.919\)
\(\sqrt{D G \cdot G J}=0.53 \quad \frac{\sqrt{B C+C D}}{\sqrt{C D}} \cdot \frac{\sqrt{B C}}{\sqrt{B D}} \cdot \sqrt{B D \cdot B C}=0.919\)
\(\frac{a^{n}}{b^{n}} \quad n:=3 \quad \frac{B D^{n}}{B C^{n}}=27\)
\[
\begin{aligned}
& \frac{\sqrt{B C}+C D}{\sqrt{C D}} \cdot B C=0.919 \\
& \frac{(\sqrt{B C})^{3}}{\sqrt{C D}}=0.53
\end{aligned}
\]

\(\mathrm{Bg} \cdot \mathrm{GJ}=0.631\)
\(\sqrt{\mathrm{Bg} \cdot \mathrm{GH}}=1.092\)
\(\mathrm{Bg} \cdot \mathrm{EG}=1.892\)
\(\frac{B C^{\left(\frac{7}{4}\right)}}{C D^{\left(\frac{1}{4}\right)} \cdot \sqrt{B C+C D}} \cdot \frac{(\sqrt{B C+C D})^{n}}{(\sqrt{B C})^{n}}=3.277\)
\(\sqrt{\mathrm{Bg} \cdot \mathrm{DG}}=3.277\)


Just curious on how BC works out between AC and CD.
\[
\begin{aligned}
& \mathrm{AC}:=15 \quad \mathrm{CD}:=5 \quad \mathrm{AO}:=\frac{\mathrm{AC}}{2} \\
& \mathrm{AD}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CD}^{2}} \\
& \mathrm{AG}:=\frac{\mathrm{AC} \cdot \mathrm{AO}}{\mathrm{AD}} \quad \mathrm{AE}:=2 \cdot \mathrm{AG} \\
& \mathrm{AB}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AD}} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BC}=1.5 \\
& \mathrm{BC}:=\frac{\mathrm{AC} \cdot \mathrm{CD}^{2}}{\left(\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)} \quad \mathrm{BC}=1.5
\end{aligned}
\]

A cube divided by the sum of two squares.

\section*{One Square}
One Line

And the Delian Quest

\title{
1996
}

The Euclidean proof of 11_11_93.MCD may be reminiscent of trimming hedges with a jack knife, but the method is for exercise of those methodical parts which comprise it. I can never get too much of those practices. There is however a golden approach to proofing the figure which has almost no regard for the practices of basic moves- a eunuch in regards to teaching, but whose simplicity implants the concepts of the figure with a clarity unrivaled by more energetic methods.

\section*{The Archamedian Paper Trisector- Without the Numbers.}

One of the distinctions that this and the paper of 11_11_93.MCD bring to the subject is that the construction of figure is not assumed, but done.


Given any circle AB


Given any circle BC such that \(\mathrm{BC} \leq 2 \mathrm{AB}\).


Construct AE such that \(\mathrm{AE}=\mathrm{AC}\).

Since \(\mathrm{AE}=\mathrm{AC}+\mathrm{BE}\) and \(\mathrm{AD}=\mathrm{AB}, \mathrm{DE}=\mathrm{BC}\).


Construct DH parallel to BD. Construct CE. Since \(\mathrm{AB}=\mathrm{AD}\) and \(\mathrm{AC}=\mathrm{AE}, \triangle \mathrm{ABD}\) is proportional to \(\Delta \mathrm{ACE}\), therefore CE is parallel to BD. From here one can take two paths. First the more dubious one.


Construct GJ parallel to EF. Now Since CE is parallel to \(\mathrm{DH}, \mathrm{DG}=\mathrm{CH}\). Since GJ is parallel to EF , \(\mathrm{DG}=\mathrm{FJ}\). Since \(\angle \mathrm{HBJ}\) is opposite and equal to \(\angle \mathrm{GBD}, \mathrm{DG}=\mathrm{HJ}\), therefore DG is \(\frac{1}{3}\)
CF. The construction of GJ makes this more dubious than the next, which has no faults.


By construction \(\mathrm{DK}=\mathrm{KM}\). Since DH is parallel to \(\mathrm{CE}, \mathrm{CH}=\mathrm{DG}\). Since DK is equal and opposite \(\mathrm{CH}, \mathrm{MK}+\mathrm{DK}+\mathrm{DG}\) is \(\frac{1}{3} \mathrm{DG}\). It would not take much then to arrive at the last construction with the elimination of any doubt. But like I said at the start, there is no real work in this figure.

I have given two constructions for the figure, I cannot understand why sliding paper is still used. The figure adds a few moves to Euclid's figure for demonstrating that the angle from the circumference is half the angle from the center of the circle.

A rusty Compass construction.

\[
\begin{aligned}
& \mathrm{AD}:=2 \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2} \quad \mathrm{AF}:=\sqrt{2 \cdot \mathrm{AB}^{2}} \quad \mathrm{AE}:=\frac{\mathrm{AF}}{9} \cdot 8 \\
& \mathrm{AC}:=\mathrm{AE} \quad \mathrm{AC}=1.257 \\
& \left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}=1.26 \quad \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}}{\mathrm{AC}}=1.002
\end{aligned}
\]

I remember a rusty construction for squaring a circle off the base of a right triangle. Here is one more rust pile construction.

01_08_96.MCD

The figure cuts the base line in quad roots. As such it would be another trivial method for doing quad roots, however I am interested in some of the ratio's of the figure instead.

\[
\begin{aligned}
& \mathrm{N}=5 \quad \mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{~N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \\
& \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AG}} \quad \mathrm{AC}:=\left(\mathrm{AB}^{3} \cdot \mathrm{AG}\right)^{\frac{1}{4}} \\
& \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{4}} \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \mathrm{GK}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DK}^{2}} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]

\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}}=2.415\)
\(\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=8.075\)

\[
\frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]

Plug in AG here. AB will become " 1 ".
\(\mathrm{N} \equiv 5\)
\(\frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}}{\mathrm{~N}^{\frac{3}{4}}}=2.415\)
\[
\frac{\mathrm{BK}}{\text { BJ }}=8.075 \quad \mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=8.075
\]
\[
\mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \mathrm{DF}:=\mathrm{AF}-\mathrm{AD} \quad \mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}}
\]
\[
\mathrm{CN}:=\frac{\mathrm{BD} \cdot \mathrm{CD}}{\mathrm{BG}} \mathrm{DP}:=\frac{\mathrm{BD} \cdot \mathrm{DF}}{\mathrm{BG}} \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{5}{4}}+\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=26.132 \quad \frac{\mathrm{BG}}{\mathrm{BM}}=26.132
\]
\[
\mathrm{N}^{\frac{5}{4}}+\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=26.132
\]
\[
\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}=17.475 \quad \frac{\mathrm{BG}}{\mathrm{CN}}=17.475
\]
\[
\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}=17.475
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}=11.686 \frac{\mathrm{BG}}{\mathrm{DP}}=11.686
\]
\[
\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}=11.686
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{3}{4}}=7.815 \quad \frac{\mathrm{BG}}{\mathrm{FQ}}=7.815
\]
\[
\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}+\frac{1}{\mathrm{~N}^{\frac{3}{4}}}=7.815
\]

\(\frac{\mathrm{AG}^{\frac{6}{4}}+\mathrm{AG}^{\frac{4}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{5}{4}}-\mathrm{AB}^{\frac{6}{4}}}=32.665\)
\(\frac{A G}{B M}=32.665 \quad \frac{\mathrm{~N}^{\frac{3}{2}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=32.665\)
\(\begin{array}{ll}\mathrm{AG}^{\frac{5}{4}}+\mathrm{AG}^{\frac{3}{4}} \cdot \mathrm{AB}^{\frac{2}{4}} \\ \mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{4}{4}}-\mathrm{AB}^{\frac{5}{4}} & =21.844 \\ \mathrm{CN} & =21.844 \\ \frac{\mathrm{~N}^{\frac{5}{4}}+\mathrm{N}^{\frac{3}{4}}}{\frac{1}{4}}=21.844 \\ \mathrm{~N}^{\frac{0}{4}}\end{array}\)
\(\frac{\mathrm{AG}^{\frac{4}{4}}+\mathrm{AG}^{\frac{2}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{3}{4}}-\mathrm{AB}^{\frac{4}{4}}}=14.608\)
\(\frac{A G}{D P}=14.608 \quad \frac{\mathrm{~N}+\mathrm{N}^{\frac{2}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=14.608\)
\(\frac{\mathrm{AG}^{\frac{3}{4}}+\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}-\mathrm{AB}^{\frac{3}{4}}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{1}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=9.769\)


If the figure was drawn differently, XC
would be \(\sqrt{\mathrm{XB} \cdot \mathrm{XE} \text {, irregardless of how XB and XE }}\) were placed, however that would require part of the figure that is not given here.
\[
\begin{aligned}
& \mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{~N}} \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BH}:=\sqrt{\mathrm{AB} \cdot \mathrm{BG}} \\
& \mathrm{AH}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BH}^{2}} \mathrm{AD}:=\mathrm{AH} \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \\
& \mathrm{GK}:=\mathrm{DG} \mathrm{GE}:=\frac{\mathrm{GK}^{2}}{\mathrm{AG}} \mathrm{AE}:=\mathrm{AG}-\mathrm{GE} \\
& \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \\
& \mathrm{EG}:=\mathrm{AG}-\mathrm{AE} \quad \mathrm{EK}:=\sqrt{\mathrm{AE} \cdot \mathrm{EG}} \quad \mathrm{BL}:=\frac{\mathrm{BE} \cdot \mathrm{BH}}{\mathrm{EK}} \\
& \mathrm{EL}:=\mathrm{BE}+\mathrm{BL} \quad \mathrm{BC}:=\frac{\mathrm{BL} \cdot \mathrm{BE}}{\mathrm{EL}} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC}
\end{aligned}
\]
\[
\mathrm{N} \equiv 4
\]

Make N any number and watch the equations, then make it equal to 1 and see what happens. Now this is strange work, for the formula is an identity with AC, so what happens at 1? This is an example of Binary contradiction.
\(\mathrm{AC}=2\)
\[
\left[\begin{array}{l}
\mathrm{AB}^{\left(\frac{5}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}} \ldots}} \\
\left.+-\mathrm{AB}{ }^{\left(\frac{7}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}}+2 \cdot \mathrm{AB} \cdot \sqrt{\mathrm{BG} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{2}\right)}} \ldots} \begin{array}{l}
\left(\frac{3}{\frac{3}{2}}\right) \\
+-\mathrm{AB}^{\mathrm{BG}}-\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \mathrm{BG}^{\left(\frac{3}{2}\right)} \\
\mathrm{AB}^{\left(\frac{1}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}} \ldots} \\
+-\mathrm{AB}^{\left(\frac{3}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}}+\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \sqrt{\mathrm{BG}}+\sqrt{\mathrm{AB} \cdot \mathrm{BG}^{\left(\frac{3}{2}\right.}}}
\end{array}\right]=2
\end{array}\right]=
\]


\section*{Pyramid of Ratios, Moving the Point}
\(B R=\) Base Ratio, BS \(=\) Bisector Segments, BI \(=\) Base Index.
\[
\begin{aligned}
& \mathrm{BR} \equiv 4 \quad \mathrm{BS} \equiv 5 \quad \mathrm{BI}:=2 \quad \mathrm{AC}:=\mathrm{BR} \quad \mathrm{AB}:=\frac{\mathrm{AC}}{\mathrm{BR}} \cdot \mathrm{BI} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BG}:=\sqrt{\mathrm{AB} \cdot \mathrm{BC}} \quad \delta:=1 . . \mathrm{BS}-1 \\
& \mathrm{BD}_{\delta}:=\frac{\mathrm{BG}}{\mathrm{BS}} \cdot \delta \quad \mathrm{BF}_{\delta}:=\frac{\mathrm{BC} \cdot \mathrm{BD}_{\delta}}{\mathrm{BG}} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}^{2}+\left(\mathrm{BD}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\mathrm{AE}_{\delta}:=\frac{\mathrm{AD}_{\delta} \cdot \mathrm{AC}}{\mathrm{AB}+\mathrm{BF}_{\delta}} \quad \mathrm{DE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AD}_{\delta}
\]


What is AD. What is BD to \(\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\) ?

\[
\mathrm{AE}:=5.5 \mathrm{AB}:=1.05 \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}
\]
\(A C:=\left(A B^{2} \cdot A E\right)^{\frac{1}{3}} C E:=A E-A C\)
\(\mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BE}} \quad \mathrm{CO}:=\frac{\mathrm{BF} \cdot \mathrm{CE}}{\mathrm{BE}} \mathrm{AO}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CO}^{2}}\)
\(\mathrm{AP}:=\frac{1}{2} \cdot \frac{\mathrm{AO}^{2}}{\mathrm{AC}} \quad \mathrm{AK}:=2 \cdot \mathrm{AP} \quad \mathrm{AD}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AK}}\)
\[
\mathrm{DE}:=\mathrm{AE}-\mathrm{AD} \mathrm{BD}:=\mathrm{AD}-\mathrm{AB}
\]
\(\mathrm{AD}=2.807\)
\[
\frac{\mathrm{AE}^{\frac{3}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{2}{3}}+\mathrm{AE}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{3}{3}}}{2 \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{1}{3}}}=2.807
\]

\[
\frac{\mathrm{AB}^{\frac{1}{6}} \cdot \mathrm{AE} \cdot \frac{1}{6} \cdot \sqrt{\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}-\mathrm{AE}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{2}{3}}-\mathrm{AB} \cdot \sqrt{2 \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{1}{3}}}}}{\mathrm{AE}+\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}-2 \cdot \mathrm{AB}}=0.957
\]

The figure cuts the base in Cube Roots and provides some interesting ratios.
\(\mathrm{N}:=10\)

\(\mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2}\)
\(A C:=\left(A B^{2} \cdot A G\right)^{\frac{1}{3}} B C:=A C-A B\)
\(\mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{3}} \mathrm{BF}:=\mathrm{AF}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{BG}-\mathrm{BF}\)
\(\mathrm{HJ}:=\frac{\mathrm{BC} \cdot \mathrm{BG}}{\mathrm{BC}+\mathrm{FG}} \quad \mathrm{BD}:=\mathrm{HJ} \quad \mathrm{DG}:=\mathrm{BG}-\mathrm{BD}\)
\(\mathrm{DJ}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \quad \mathrm{GJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{DG}^{2}} \quad \mathrm{BJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{BD}^{2}}\)
\(\mathrm{GN}:=\frac{\mathrm{GJ} \cdot \mathrm{FG}}{\mathrm{BG}} \quad \mathrm{BM}:=\frac{\mathrm{BJ} \cdot \mathrm{BC}}{\mathrm{BG}}\)
\(\frac{\mathrm{AG}}{\mathrm{AB}}=10 \quad \frac{\mathrm{GN}}{\mathrm{BM}}=10\)
\(\begin{array}{lll}\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}=1.68 & \frac{\mathrm{GJ}}{\mathrm{GN}}=1.68 & \frac{\mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}}{\mathrm{~N}^{\frac{2}{3}}}=1.68 \\ \left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=7.796 & \frac{\mathrm{BJ}}{\mathrm{BM}}=7.796 & \mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=7.796\end{array}\)

\[
\mathrm{CF}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{BP}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{CD}:=\frac{\mathrm{BD} \cdot \mathrm{CF}}{\mathrm{BG}}
\]
\(F R:=\frac{B D \cdot F G}{B G}\)
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{4}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=43.982 \quad \frac{\mathrm{BG}}{\mathrm{BP}}=43.982
\]
\[
\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=43.982
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}=20.415
\]
\[
\frac{\mathrm{BG}}{\mathrm{CD}}=20.415
\]
\[
\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}=20.415
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}=9.476
\]
\[
\frac{\mathrm{BG}}{\mathrm{FR}}=9.476
\]
\[
\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}+\frac{1}{\mathrm{~N}^{\frac{2}{3}}}=9.476
\]

\(\frac{\mathrm{AG}^{\frac{5}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}}{\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{4}{3}}-\mathrm{AB}^{\frac{5}{3}}}=48.869\)
\(\frac{\mathrm{AG}^{\frac{4}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}}{\frac{1}{4}}=22.683\) \(\frac{\mathrm{AG}}{\mathrm{CD}}=22.683 \quad \frac{\mathrm{~N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(A G^{3} \cdot A B-A B^{3}\)
\(\frac{A G+A B^{\frac{2}{3}} \cdot A G^{\frac{1}{3}}}{A G^{\frac{1}{3}} \cdot A B^{\frac{2}{3}}-A B}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{FR}}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{BP}}=48.869\)
\(\frac{\mathrm{N}^{\frac{5}{3}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=48.869\)
\(\frac{\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(\frac{\mathrm{N}+\mathrm{N}^{\frac{1}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=10.528\)



Given \(A D\) and \(A B\) on \(A D\), place a right triangle on BD as base such that the opposite sides are in the ratio of AB to AD .
\[
\begin{aligned}
& \mathrm{BD}:=8 \quad \mathrm{AB}:=2 \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{BC}:=\frac{\mathrm{BD}}{2} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CF}:=\mathrm{BC} \\
& \mathrm{CI}:=\mathrm{BC} \quad \mathrm{CH}:=\mathrm{BC} \quad \mathrm{AE}:=\mathrm{BC} \\
& \mathrm{CE}:=\sqrt{\mathrm{AC}^{2}+\mathrm{AE}^{2}} \quad \mathrm{CG}:=\frac{\mathrm{CH}^{2}}{\mathrm{CE}} \\
& \mathrm{GH}:=\sqrt{\mathrm{CH}^{2}-\mathrm{CG}^{2}} \quad \mathrm{FH}:=2 \cdot \mathrm{GH} \quad \mathrm{FI}:=\mathrm{CF}+\mathrm{CI} \\
& \mathrm{HI}:=\sqrt{\mathrm{FI}^{2}-\mathrm{FH}^{2}} \quad \mathrm{AI}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CI}} \\
& \mathrm{AH}:=\mathrm{AI}-\mathrm{HI} \quad \mathrm{AO}:=\frac{\mathrm{AC} \cdot \mathrm{AH}}{\mathrm{AI}} \mathrm{HO}:=\frac{\mathrm{CI} \cdot \mathrm{AO}}{\mathrm{AC}} \\
& \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \quad \mathrm{DO} \\
& \mathrm{AD} \\
& \mathrm{BD}-\mathrm{BO} \\
& \mathrm{DH}:=\sqrt{\mathrm{DO}^{2}+\mathrm{HO}^{2}} \mathrm{BH}:=\sqrt{\mathrm{BO}^{2}+\mathrm{HO}^{2}}
\end{aligned}
\]
\[
\frac{\mathrm{DH}}{\mathrm{BH}}=5 \quad \frac{\mathrm{AD}}{\mathrm{AB}}=5
\]

Given a straight edge and compass, AB and BD find the sum of six cubes divided by the sum of five squares.
\[
\frac{2 \cdot \mathrm{AB}^{3}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{BD}+\mathrm{AB} \cdot \mathrm{BD}^{2}}{2 \cdot \mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BD}+\mathrm{BD}^{2}}=2.308 \quad \mathrm{AO}=2.308
\]


Given AF and AB on AF and a right triangle on BF divide the sides of the triangle such that a section on one side is to the other as AB is to AF .

Now it can be realized that there are stipulations as to possible placements of the given triangle.
\[
\begin{aligned}
& \mathrm{AB}:=3 \quad \mathrm{BF}:=10 \quad \mathrm{BC}:=1 \\
& \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \\
& \text { DOABLE }:=\frac{2 \cdot \mathrm{AB}^{3}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{BF}+\mathrm{AB} \cdot \mathrm{BF}^{2}}{2 \cdot \mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BF}+\mathrm{BF}^{2}} \leq \mathrm{AC}<\mathrm{AE} \\
& \text { DOABLE }=1 \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \\
& \mathrm{CF}:=\mathrm{BF}-\mathrm{BC} \quad \mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{EJ}:=\mathrm{BE} \\
& \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \quad \mathrm{JH}:=\sqrt{\mathrm{CE}^{2}+(\mathrm{CH}+\mathrm{EJ})^{2}} \\
& \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{EJ}}{\mathrm{EJ}+\mathrm{CH}} \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \\
& \mathrm{JD}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EJ}^{2}} \quad \mathrm{DG}:=\frac{\mathrm{DE} \cdot \mathrm{AD}}{\mathrm{JD}} \\
& \mathrm{AG}:=\sqrt{\mathrm{AD}^{2}-\mathrm{DG}^{2}} \mathrm{GH}:=\mathrm{JH}-(\mathrm{JD}+\mathrm{DG}) \\
& \mathrm{HK}:=\sqrt{2 \cdot \mathrm{GH}^{2}} \quad \mathrm{BH}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CH}^{2}} \quad \mathrm{HL}:=\mathrm{HK} \\
& \mathrm{BK}:=\mathrm{BH}-\mathrm{HK} \mathrm{FH}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CH}^{2}} \\
& \text { FL := FH - HL }
\end{aligned}
\]

\(\left(\frac{\mathrm{AE}}{\mathrm{AB}}\right)^{\frac{1}{2}}=1.2649 \quad \frac{\mathrm{AE}}{\mathrm{AB}}=1.6\)

Projecting from KL or HJ is productive, can I find any other productive points?
\[
\begin{aligned}
& \mathrm{AB}:=5 \quad \mathrm{BE}:=3 \quad \mathrm{BK}:=\mathrm{BE} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \\
& \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}} \mathrm{HI}:=\mathrm{BD} \quad \mathrm{IJ}:=\mathrm{BD} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}
\end{aligned}
\]
\(\Delta:=2 \quad \delta:=1 . . \Delta\)
\[
\begin{aligned}
& \mathrm{BH}_{\delta}:=\frac{\mathrm{BK}}{\Delta} \cdot \delta \quad \mathrm{Ha}_{\delta}:=\frac{\mathrm{BH}_{\delta} \cdot \mathrm{HI}}{\mathrm{BC}} \quad \mathrm{EJ}_{\delta}:=\mathrm{BH}_{\delta} \\
& \mathrm{Ba}_{\delta}:=\mathrm{Ha}_{\delta}+\mathrm{BD} \quad \mathrm{Bb}_{\delta}:=\frac{\left(\mathrm{BH}_{\delta}\right)^{2}}{\mathrm{Ba}_{\delta}} \quad \mathrm{Jc}_{\delta}:=\frac{\mathrm{EJ}_{\delta} \cdot \mathrm{IJ}}{\mathrm{CE}}
\end{aligned}
\]
\[
\mathrm{Ec}_{\delta}:=\mathrm{Jc}_{\delta}+\mathrm{BD} \quad \mathrm{Ed}_{\delta}:=\frac{\left(\mathrm{EJ}_{\delta}\right)^{2}}{\mathrm{Ec}_{\delta}} \quad \mathrm{Ef}_{\delta}:=\mathrm{Bb}_{\delta}
\]
\[
\mathrm{df}_{\delta}:=\mathrm{Ed}_{\delta}-\mathrm{Ef}_{\delta} \quad \mathrm{Ge}_{\delta}:=\mathrm{df}_{\delta} \quad \mathrm{Fb}_{\delta}:=\frac{\mathrm{HI} \cdot \mathrm{BH}_{\delta}}{\mathrm{Ba}_{\delta}}
\]
\[
\mathrm{Gd}_{\delta}:=\frac{\mathrm{IJ} \cdot \mathrm{EJ}_{\delta}}{\mathrm{Ec}_{\delta}} \quad \mathrm{ef}_{\delta}:=\mathrm{Gd}_{\delta} \quad \mathrm{Fe}_{\delta}:=\mathrm{BE}-\left(\mathrm{ef}_{\delta}+\mathrm{Fb}_{\delta}\right)
\]
\[
\mathrm{Gg}_{\delta}:=\mathrm{Ed}_{\delta} \quad \mathrm{Og}_{\delta}:=\frac{\mathrm{Fe}_{\delta} \cdot \mathrm{Gg}_{\delta}}{\mathrm{Ge}_{\delta}} \quad \mathrm{Eg}_{\delta}:=\mathrm{ef}_{\delta}
\]
\[
\mathrm{EO}_{\delta}:=\mathrm{Og}_{\delta}+\mathrm{Eg}_{\delta} \mathrm{BO}_{\delta}:=\mathrm{EO}_{\delta}-\mathrm{BE}
\]

I have not found any.


The power line for cube root abstraction is developed off from a simple curve.
\(\mathrm{AB}:=33 \quad \mathrm{BE}:=11 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE}\)
\(\mathrm{R}_{1}:=\frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AB}}{2} \quad \mathrm{R}_{2}:=\frac{\left.\mathrm{AE}-(\mathrm{AB} \cdot \mathrm{AE})^{2}\right)^{\frac{1}{3}}}{2}\)
\(D:=\left[\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}\right]+R_{1}+R_{2}\)
\(\mathrm{BC}:=\frac{\left(\mathrm{R}_{1}+\mathrm{D}+\mathrm{R}_{2}\right) \cdot\left(\mathrm{D}-\mathrm{R}_{2}+\mathrm{R}_{1}\right)}{2 \cdot \mathrm{D}}\)
\(\mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{AC}:=\mathrm{BC}+\mathrm{AB} \quad \mathrm{DM}:=\mathrm{BD}\)
The formula for the power line ( BC ) was given in 01_08_96.MCD
\(\mathrm{DL}:=\mathrm{BD} \quad \mathrm{CM}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DM}^{2} \quad \mathrm{ML}}:=\mathrm{DM}+\mathrm{DL}\)
\(\mathrm{MK}:=\frac{\mathrm{DM} \cdot \mathrm{ML}}{\mathrm{CM}} \mathrm{CK}:=\mathrm{MK}-\mathrm{CM} \quad \mathrm{CJ}:=\frac{\mathrm{CK}}{2}\)

\(\mathrm{JG}:=\mathrm{CJ} \quad \mathrm{JM}:=\mathrm{CM}+\mathrm{CJ} \quad \mathrm{BM}:=\sqrt{2 \cdot \mathrm{~B}}\)
\(\mathrm{GM}:=\mathrm{BM} \quad \mathrm{FJ}:=\frac{\mathrm{JG}^{2}}{\mathrm{JM}} \quad \mathrm{FM}:=\mathrm{JM}-\mathrm{FJ}\)
\(\mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \quad \mathrm{HM}:=\frac{\mathrm{CM} \cdot \mathrm{FM}}{\mathrm{DM}}\)
\(\mathrm{DH}:=\mathrm{HM}-\mathrm{DM} \quad \mathrm{AH}:=\sqrt{\mathrm{DH}^{2}+\mathrm{AD}^{2}}\)
\(\mathrm{CF}:=\mathrm{FM}-\mathrm{CM} \quad \mathrm{FH}:=\frac{\mathrm{CD} \cdot \mathrm{HM}}{\mathrm{CM}}\)
\(\mathrm{AF}_{1}:=\mathrm{AH}-\mathrm{FH} A \mathrm{AF}_{2}:=\sqrt{\mathrm{AC}^{2}-\mathrm{CF}^{2}}\)
\(A F_{1}-A F_{2}=0\)

Trivial Method; Square Root
\(\mathrm{N}:=9003\)
\(\mathrm{AE}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AE}}{\mathrm{N}} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2}\)
\(\mathrm{DG}:=\mathrm{BD} \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \quad \mathrm{AG}:=\sqrt{\mathrm{AD}^{2}+\mathrm{DG}^{2}}\)
\(\mathrm{BG}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DG}^{2}} \quad \mathrm{FG}:=\mathrm{BG} \quad \mathrm{AF}:=\sqrt{\mathrm{AG}^{2}-\mathrm{FG}^{2}}\)
\(\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}}\)
\(\mathrm{AC}-\mathrm{AF}=0\)
\(\mathrm{AF}=94.884\)
\(\mathrm{AC}=94.884\)

Given a point on BG, project to the point of cubic similarity.

\(\mathrm{BG}:=100 \mathrm{BD}:=49 \quad \mathrm{BE}:=\frac{\mathrm{BG}}{2}\)
\(\mathrm{EG}:=\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD} \quad \mathrm{EP}:=\mathrm{BE}\)
\(\mathrm{EJ}:=\mathrm{BE} \quad \mathrm{DP}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EP}^{2}} \mathrm{JP}:=\mathrm{EP}+\mathrm{EJ}\)
\(\mathrm{HP}:=\frac{\mathrm{EP} \cdot \mathrm{JP}}{\mathrm{DP}}\) DH \(:=\mathrm{HP}-\mathrm{DP} \quad \mathrm{CD}:=\frac{\mathrm{DH}}{2}\)
\(\mathrm{CP}:=\mathrm{DP}+\mathrm{CD} \quad \mathrm{CF}:=\frac{\mathrm{DE} \cdot \mathrm{CP}}{\mathrm{DP}} \quad \mathrm{FP}:=\frac{\mathrm{EP} \cdot \mathrm{CP}}{\mathrm{DP}}\)
\(\mathrm{EF}:=\mathrm{FP}-\mathrm{EP} \quad \mathrm{FJ}:=\mathrm{EJ}-\mathrm{EF} \quad \mathrm{CJ}:=\sqrt{\mathrm{CF}^{2}+\mathrm{FJ}^{2}}\)
\(\mathrm{JM}:=\frac{\mathrm{FJ} \cdot \mathrm{JP}}{\mathrm{CJ}} \mathrm{JN}:=\frac{\mathrm{FJ} \cdot \mathrm{JM}}{\mathrm{CJ}} \mathrm{NP}:=\mathrm{JP}-\mathrm{JN}\)
\(\mathrm{MP}:=\frac{\mathrm{CF} \cdot \mathrm{JP}}{\mathrm{CJ}} \quad \mathrm{AP}:=\frac{\mathrm{MP} \cdot \mathrm{EP}}{\mathrm{NP}} \mathrm{MN}:=\frac{\mathrm{CF} \cdot \mathrm{JM}}{\mathrm{CJ}}\)
\(\frac{\mathrm{BG}^{4}-3 \cdot \mathrm{BG}^{3} \cdot \mathrm{BD}+3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}^{2}-\mathrm{BD}^{3} \cdot \mathrm{BG}}{\mathrm{BG}^{3}-3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}+3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}^{2}-2 \cdot \mathrm{BD}^{3}}=884.222 \quad \mathrm{AE}:=\frac{\mathrm{MN} \cdot \mathrm{AP}}{\mathrm{MP}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}\)
\[
\mathrm{AG}=884.222
\]
\[
\frac{\mathrm{BG} \cdot\left[(\mathrm{AG}-\mathrm{BG})^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}+\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{BG}-\mathrm{AG}^{\frac{4}{3}}-\mathrm{BG} \cdot(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}}+(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}} \cdot \mathrm{AG}\right]}{(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}} \cdot(2 \cdot \mathrm{AG}-\mathrm{BG})}-\mathrm{BD}=0
\]


One may be tempted to state the obvious, \(\frac{A^{N+1}}{A^{N}}:=A\), but what is not so obvious at first blush is that the processes themselves are assigned dimensional values. This has significance when using mathematics to theorize dimensions beyond three. Dimensions are so generally defined that processes are legitimate dimensional differences, but it is also impossible to defend mathematical theory about dimensions as objective. It becomes a point of Philosophical Mystic contemplation to realize that relationships concerning a single dimensional object and several processes adding dimensionally to the whole, is true of a multidimensional object without those processes!
\[
\begin{aligned}
& \text { Linear division } \frac{2 \cdot(\mathrm{~A}+\mathrm{B})}{\mathrm{A}} \\
& \mathrm{BR}:=\frac{1}{4} \quad \mathrm{BS}:=3 \\
& \mathrm{AD}:=\frac{\mathrm{BR}}{\mathrm{BR}} \quad \mathrm{AG}:=\mathrm{AD} \cdot \mathrm{BR} \mathrm{AB}:=\frac{\mathrm{AD}}{2} \\
& \mathrm{BF}:=\mathrm{AB} \cdot \mathrm{BS} \quad \mathrm{Ba}:=\frac{\mathrm{AB} \cdot \mathrm{BF}}{\mathrm{AG}} \quad \mathrm{BD}:=\mathrm{AB} \\
& \mathrm{Da}:=\mathrm{BD}+\mathrm{Ba} \quad \mathrm{Bb}:=\frac{\mathrm{Ba} \cdot \mathrm{BD}}{\mathrm{Da}} \quad \mathrm{Db}:=\mathrm{BD}-\mathrm{Bb} \\
& \mathrm{~Eb}:=\frac{\mathrm{BF} \cdot \mathrm{Db}}{\mathrm{BD}} \quad \mathrm{DH}:=\mathrm{AG} \\
& \mathrm{DC}:=\frac{\mathrm{Db} \cdot \mathrm{DH}}{\mathrm{DH}+\mathrm{Eb}} \quad \frac{\mathrm{AD}}{\mathrm{DC}}=26 \\
& \frac{2 \cdot(\mathrm{BR}+\mathrm{BS})}{\mathrm{BR}}=26
\end{aligned}
\]

Hitting JG from any BN while maintaining complimentary roots.

\[
\begin{aligned}
& \mathrm{AB}:=2 \quad \mathrm{BD}:=5 \quad \mathrm{BO}:=\frac{\mathrm{BD}}{2} \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{DO}:=\mathrm{BO} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AD} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB}} \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CD}} \quad \mathrm{CO}:=\mathrm{BO}-\mathrm{BC} \\
& \mathrm{~N}:=7 \quad \mathrm{OP}:=\mathrm{BO} \cdot \mathrm{~N} \quad \mathrm{BN}:=\mathrm{OP} \quad \mathrm{DM}:=\mathrm{OP} \\
& \mathrm{NP}:=\mathrm{BO} \quad \mathrm{MP}:=\mathrm{BO} \quad \mathrm{EO}:=\frac{\mathrm{CO} \cdot \mathrm{OP}}{\mathrm{OP}+\mathrm{CG}} \\
& \mathrm{CE}:=\mathrm{CO}-\mathrm{EO} \quad \mathrm{EF}:=\frac{\mathrm{OP} \cdot \mathrm{CE}}{\mathrm{CO}} \quad \mathrm{GO}:=\mathrm{BO} \\
& \mathrm{CJ}:=\frac{\mathrm{CG}}{\mathrm{CO}} \quad \mathrm{EJ}:=\mathrm{CJ}+\mathrm{CE} \quad \mathrm{Ca}:=\frac{\mathrm{EJ} \cdot \mathrm{CG}}{\mathrm{EF}} \\
& \mathrm{DJ}:=\mathrm{CD}+\mathrm{CJ} \quad \mathrm{Da}:=\mathrm{CD}+\mathrm{Ca} \quad \mathrm{JY}:=\frac{\mathrm{Ca} \cdot \mathrm{DJ}}{\mathrm{Da}} \\
& \mathrm{KY}:=\frac{\mathrm{EF} \cdot \mathrm{JY}}{\mathrm{EJ}} \mathrm{JK}:=\sqrt{\mathrm{JY}}+\mathrm{KY} \quad \mathrm{JG}:=\sqrt{\mathrm{CJ}}+\mathrm{CG}^{2}
\end{aligned}
\]
\[
\mathrm{GP}:=\sqrt{\mathrm{CO}^{2}+(\mathrm{OP}+\mathrm{CG})^{2}} \mathrm{EP}:=\sqrt{\mathrm{EO}^{2}+\mathrm{OP}^{2}}
\]
\[
\mathrm{ET}:=\frac{\mathrm{EO} \cdot \mathrm{EF}}{\mathrm{OP}} \mathrm{JT}:=\mathrm{EJ}+\mathrm{ET} \quad \mathrm{FT}:=\sqrt{\mathrm{ET}^{2}+\mathrm{EF}^{2}}
\]
\[
\mathrm{EG}:=\mathrm{GP}-\mathrm{EP} \mathrm{EQ}:=\frac{\mathrm{FT} \cdot \mathrm{EJ}}{\mathrm{JT}} \quad \mathrm{GQ}:=\mathrm{EG}-\mathrm{EQ}
\]
\[
\mathrm{KL}:=2 \cdot \mathrm{GQ} \quad \mathrm{JL}:=\mathrm{JK}-\mathrm{KL}
\]
\[
\mathrm{DY}:=\mathrm{DJ}-\mathrm{JY} \quad \mathrm{CS}:=\frac{\mathrm{DY} \cdot \mathrm{CG}}{\mathrm{DM}} \quad \mathrm{JS}:=\mathrm{CS}+\mathrm{CJ}
\]
\[
\mathrm{YR}:=\frac{\mathrm{CS} \cdot \mathrm{JY}}{\mathrm{JS}} \quad \mathrm{JR}:=\mathrm{JY}-\mathrm{YR} \quad \mathrm{HR}:=\frac{\mathrm{CG} \cdot \mathrm{JR}}{\mathrm{CJ}}
\]
\[
\mathrm{AJ}:=\mathrm{CJ}-\mathrm{AC} \quad \mathrm{JX}:=\frac{\mathrm{JY} \cdot \mathrm{JL}}{\mathrm{JK}}
\]
\[
\mathrm{BR}_{1}:=\mathrm{JR}-(\mathrm{AJ}+\mathrm{AB}) \mathrm{BX}:=\mathrm{JX}-(\mathrm{AJ}+\mathrm{AB})
\]
\[
\mathrm{BR}_{2}:=\frac{\mathrm{BX} \cdot(\mathrm{BN}+\mathrm{HR})}{\mathrm{BN}}
\]
\[
\mathrm{BR}_{2}-\mathrm{BR}_{1}=0
\]




Given \(B F\) and \(B C\) such that \(\sqrt{(A B+B F) \cdot A B}=A B+B C\), find \(A B\). It is obvious from the construction that answers are obtainable when \(B C\) is less than \(1 / 2\) of \(B F\).
\[
\begin{aligned}
& \Delta:=5 \quad \delta:=1 . . \Delta-1 \mathrm{BE}:=5 \quad \mathrm{BF}:=\mathrm{BE} \cdot 2 \\
& \mathrm{BC}_{\delta}:=\frac{\mathrm{BE}}{\Delta} \cdot \delta \quad \mathrm{CE}_{\delta}:=\mathrm{BE}-\mathrm{BC}_{\delta} \quad \mathrm{EG}:=\mathrm{BE} \\
& \mathrm{CJ}:=\mathrm{BE}^{2} \mathrm{EJ}_{\delta}:=\sqrt{\left(\mathrm{CE}_{\delta}\right)^{2}+\mathrm{CJ}^{2}} \mathrm{DH}:=\frac{\mathrm{CJ}}{2} \\
& \mathrm{DE}_{\delta}:=\frac{\mathrm{CE}_{\delta}}{2} \mathrm{AD}_{\delta}:=\frac{\mathrm{DH}^{2}}{\mathrm{DE}_{\delta}} \mathrm{AE}_{\delta}:=\mathrm{AD}_{\delta}+\mathrm{DE}_{\delta} \\
& \mathrm{AC}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{CE}_{\delta} \quad \mathrm{AJ}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}+\mathrm{CJ}^{2}} \\
& \mathrm{GJ}_{\delta}:=\sqrt{\left(\mathrm{EJ}_{\delta}\right)^{2}-\mathrm{EG}^{2}} \quad \mathrm{AB}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{BE} \\
& \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}
\end{aligned}
\]
\[
\begin{array}{lll}
{\left[\frac{1}{2} \cdot \frac{\mathrm{BE}}{\Delta} \cdot \delta \cdot \frac{(-2 \cdot \Delta+\delta)}{(-\Delta+\delta)}\right]-\mathrm{AC}_{\delta}} & \mathrm{GJ}_{\delta}-\mathrm{CE}_{\delta} & \mathrm{AB}_{\delta}+\mathrm{BC}_{\delta}-\sqrt{\mathrm{AB}_{\delta} \cdot(\mathrm{AB}+\mathrm{BF})_{\delta}} \\
\begin{array}{lll}
0 & & 0 \\
\hline 0 \\
\hline 0 & \frac{0}{0} & \frac{0}{0} \\
\hline 0 & \frac{0}{0} & \frac{0}{0} \\
\hline 0 & 0 &
\end{array}
\end{array}
\]
\[
\mathrm{A}:=\frac{\mathrm{BF}}{2} \quad \mathrm{~B}:=\mathrm{BC}_{2} \quad \frac{2 \cdot \mathrm{~A} \cdot \mathrm{~B}-\mathrm{B}^{2}}{2 \cdot \mathrm{~A}-2 \cdot \mathrm{~B}}-\left(\mathrm{AB}_{2}+\mathrm{BC}_{2}\right)=0
\]
\[
\sqrt{\left(\mathrm{AB}_{2}+\mathrm{BF}\right) \cdot \mathrm{AB}_{2}}-\left(\mathrm{AB}_{2}+\mathrm{BC}_{2}\right)=0
\]
\(\underline{\mathrm{BF} \cdot \mathrm{BC}_{2}-\left(\mathrm{BC}_{2}\right)^{2}}-\) \(\mathrm{BF}-2 \cdot \mathrm{BC}_{2}\)

> 02_14_96.MCD


Use iteration to find any root pair for BE.
Remember that when N is set to 2 , we have cube roots.
\[
\begin{aligned}
& \mathrm{CI}:=1 \quad \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{GI}:=\mathrm{CG} \quad \mathrm{BC}:=1 \\
& \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \quad \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EK}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EG}:=\mathrm{CG}-\mathrm{CE} \\
& \mathrm{AE}:=\frac{\mathrm{EK}^{2}}{\mathrm{EG}} \quad \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AG}:=\mathrm{AC}+\mathrm{CG} \\
& \mathrm{~N}:=2 \quad \mathrm{GN}:=\mathrm{CG} \cdot \mathrm{~N} \quad \mathrm{IO}:=\mathrm{GN} \quad \mathrm{CM}:=\mathrm{GN} \\
& \Delta:=40 \quad \delta:=0 . . \Delta
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AK}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EK}^{2}} \mathrm{AL}:=\sqrt{\left(\mathrm{AF}_{\Delta}\right)^{2}+\left(\mathrm{FL}_{\Delta}\right)^{2}} \quad \mathrm{AJ}:=\frac{\mathrm{AK}^{2}}{\mathrm{AL}} \quad \mathrm{AQ}:=\frac{\mathrm{AF}_{\Delta} \cdot \mathrm{AJ}}{\mathrm{AL}} \mathrm{CQ}:=\mathrm{AQ}-\mathrm{AC} \\
& \mathrm{IQ}:=\mathrm{CI}-\mathrm{CQ} \quad \mathrm{JQ}:=\sqrt{\mathrm{CQ} \cdot \mathrm{IQ}} \mathrm{CD}:=\frac{\mathrm{CQ} \cdot \mathrm{CM}}{\mathrm{CM}+\mathrm{JQ}} \quad \mathrm{HI}:=\frac{\mathrm{IQ} \cdot \mathrm{IO}}{\mathrm{IO}+\mathrm{JQ}} \quad \mathrm{DH}:=\mathrm{CI}-(\mathrm{CD}+\mathrm{HI}) \\
& \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{BH}:=\mathrm{BC}+\mathrm{CD}+\mathrm{DH} \frac{\mathrm{DH}}{\sqrt{\mathrm{CD} \cdot \mathrm{HI}}}=1 \quad \mathrm{BE}-\sqrt{\mathrm{BD} \cdot \mathrm{BH}}=0.000000000000000
\end{aligned}
\]

The next two equations are for the Delian Problem only.


The problem as stated was to duplicate the altar of Apollo. The solution demanded was material and not theoretical, and therefore has been solved by a finite number of steps. The next step is to solve it theoretically. This solution alone will conquer contiguous domains and will satisfy the purist.


Does every \(n^{\text {th }}\) root series have at least one square root pair?
\[
\begin{aligned}
& \mathrm{n}:=5 \quad \delta:=0 \cdot \cdot \frac{n}{2} \\
& \mathrm{~A}:=3 \quad \mathrm{~B}:=10 \\
& \sqrt{\left(\mathrm{~A}^{\mathrm{n}-1} \cdot \mathrm{~B}^{1}\right)^{\frac{1}{n}} \cdot\left(\mathrm{~A}^{1} \cdot \mathrm{~B}^{\mathrm{n}-1}\right)^{\frac{1}{n}}-\sqrt{\mathrm{A} \cdot \mathrm{~B}}=0} \\
& \sqrt{\left(\mathrm{~A}^{\mathrm{n}-\delta} \cdot \mathrm{B}^{\delta}\right)^{\frac{1}{n}} \cdot\left(\mathrm{~A}^{\delta} \cdot \mathrm{B}^{\mathrm{n}-\delta}\right)^{\frac{1}{n}}-\sqrt{\mathrm{A} \cdot \mathrm{~B}}} \\
& \frac{0}{\frac{0}{0}} \\
& \hline 0
\end{aligned}
\]

Because of it's long projection, the last vertices is not drawn. A root series has as many vertices on a circle as it has square root pairs, and it has the greater whole of \(n / 2\) vertices where \(n\) is the root series denominator.


\section*{Method for Unequals}

Given three circles in the said configuration, find the fourth. I had this sketched out in 95, but if I put it there I would have a lot of document links to redo in "The Quest."

\(\mathrm{AO}:=5\)
AG := 1
\(\mathrm{BH}:=3 \quad \mathrm{AB}:=2 \cdot \mathrm{AO}\)
BO := AO
\(\mathrm{CG}:=\mathrm{AG}\)
GI := AG
HJ := BH
\(\mathrm{DH}:=\mathrm{BH} \quad \mathrm{GH}:=\mathrm{AB}-(\mathrm{AG}+\mathrm{BH}) \quad \mathrm{HK}:=\mathrm{GI}\)
JK := HJ - HK

\[
\mathrm{HS}:=\frac{\mathrm{GH} \cdot \mathrm{HJ}}{\mathrm{JK}} \quad \mathrm{AH}:=\mathrm{AB}-\mathrm{BH}
\]
\[
\mathrm{AS}:=\mathrm{HS}-\mathrm{AH} \quad \mathrm{OS}:=\mathrm{AO}+\mathrm{AS}
\]
\[
\mathrm{SL}:=\frac{\mathrm{OS}}{2} \mathrm{MO}:=\mathrm{AO} \mathrm{MS}:=\sqrt{\mathrm{OS}^{2}-\mathrm{MO}^{2}}
\]
\[
\mathrm{MN}:=\frac{\mathrm{MO} \cdot \mathrm{MS}}{\mathrm{OS}} \quad \mathrm{NS}:=\frac{\mathrm{MS} \cdot \mathrm{MN}}{\mathrm{MO}}
\]
\[
\mathrm{AN}:=\mathrm{NS}-\mathrm{AS} \quad \mathrm{ON}:=\mathrm{AO}-\mathrm{AN}
\]
\[
\mathrm{BN}:=\mathrm{AB}-\mathrm{AN} \quad \mathrm{AM}:=\sqrt{\mathrm{MN}^{2}+\mathrm{AN}^{2}}
\]
\[
\mathrm{AE}:=\mathrm{AB} \quad \mathrm{BF}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AG}
\]
\[
\mathrm{BD}:=2 \cdot \mathrm{BH} \quad \mathrm{CD}:=\mathrm{AB}-(\mathrm{AC}+\mathrm{BD})
\]
\[
\mathrm{PQ}:=\frac{\mathrm{AE} \cdot \mathrm{CD}}{(\mathrm{AC}+\mathrm{BD})} \quad \mathrm{OU}:=\mathrm{PQ}
\]
\[
\mathrm{CQ}:=\frac{\mathrm{AC} \cdot \mathrm{PQ}}{\mathrm{AE}} \quad \mathrm{AQ}:=\mathrm{AC}+\mathrm{CQ}
\]
\[
\mathrm{OQ}:=\mathrm{AO}-\mathrm{AQ} \quad \mathrm{OT}:=\mathrm{AO}
\]
\[
\mathrm{TU}:=\mathrm{OT}+\mathrm{OU} \quad \mathrm{OR}:=\frac{\mathrm{OQ} \cdot \mathrm{OT}}{\mathrm{TU}}
\]
\[
\mathrm{RV}:=\frac{\mathrm{MN} \cdot \mathrm{OR}}{\mathrm{ON}} \quad \mathrm{BR}:=\mathrm{BO}+\mathrm{OR}
\]
\[
\mathrm{RW}:=\frac{\mathrm{MN} \cdot \mathrm{BR}}{\mathrm{BN}} \quad \mathrm{AR}:=\mathrm{AO}-\mathrm{OR}
\]
\[
\mathrm{Ra}:=\frac{\mathrm{AR} \cdot \mathrm{RW}}{\mathrm{RV}} \mathrm{XY}:=\frac{\mathrm{RW} \cdot \mathrm{AB}}{\mathrm{BR}+\mathrm{Ra}}
\]
\[
\mathrm{Zb}:=\mathrm{XY} \quad \mathrm{OZ}:=\frac{\mathrm{MO} \cdot \mathrm{Zb}}{\mathrm{MN}}
\]
\[
\mathrm{MZ}:=\mathrm{MO}-\mathrm{OZ} \quad \mathrm{MZ}=1.818
\]

\[
\mathrm{MZ}=1.818
\]
\(\frac{\mathrm{AB}^{3}-2 \cdot \mathrm{AB}^{2} \cdot \mathrm{AG}-2 \cdot \mathrm{AB}^{2} \cdot \mathrm{BH}+4 \cdot \mathrm{AB} \cdot \mathrm{BH} \cdot \mathrm{AG}}{2 \cdot \mathrm{AB}^{2}-8 \cdot \mathrm{BH} \cdot \mathrm{AG}}=1.818\)

Neither in the process, nor in the Algebraic name. is the order of AG and BH recognized. Neither does it matter if they intersect.


\section*{On Gemini Roots}
\(\mathrm{AB}:=1 \quad \mathrm{BE}:=10 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}}\)
\(\mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}\)
\(\mathrm{DF}:=\mathrm{BD} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}}\)
\(\mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{CG}:=\frac{\mathrm{CF}}{}{ }^{2}\)
CD
\(\mathrm{BG}:=\mathrm{CG}-\mathrm{BC} \quad \mathrm{EG}:=\mathrm{BG}+\mathrm{BE}\)
\(\mathrm{CH}:=\frac{1}{2} \cdot \mathrm{CF} \quad \mathrm{DH}:=\sqrt{\mathrm{CH}}{ }^{2}+\mathrm{CD}\)
\(\mathrm{D} \cdot \mathrm{DH} \quad \mathrm{DL}:=\frac{\mathrm{CD} \cdot \mathrm{DI}}{\mathrm{DH}}\)
\(\mathrm{BL}:=\mathrm{BD}-\mathrm{DL} \quad \mathrm{EL}:=\mathrm{BE}-\mathrm{BL}\)
\(\mathrm{JL}:=\sqrt{\mathrm{BL} \cdot \mathrm{EL}} \mathrm{GL}:=\mathrm{BL}+\mathrm{BG}\)
\(\mathrm{GJ}:=\sqrt{\mathrm{JL}}+\mathrm{GL} \mathrm{BL}^{2} \mathrm{GK}:=\frac{\mathrm{BG} \cdot \mathrm{EG}}{\mathrm{GJ}}\)
\(\mathrm{GM}:=\frac{\mathrm{GL} \cdot \mathrm{GK}}{\mathrm{GJ}} \quad \mathrm{BM}:=\mathrm{GM}-\mathrm{BG}\)
\(\mathrm{EM}:=\mathrm{BE}-\mathrm{BM}\)

\[
\mathrm{IL}:=\sqrt{\mathrm{DI}^{2}-\mathrm{DL}^{2}} \quad \mathrm{CO}:=\frac{\mathrm{GL} \cdot \mathrm{CH}}{\mathrm{IL}}
\]
\[
\mathrm{NP}:=\frac{\mathrm{CH} \cdot \mathrm{EG}}{(\mathrm{CO}+\mathrm{CE})} \quad \mathrm{EP}:=\frac{\mathrm{CE} \cdot \mathrm{NP}}{\mathrm{CH}}
\]
\[
\mathrm{CQ}:=\frac{\mathrm{IL} \cdot \mathrm{CG}}{\mathrm{GL}} \quad \mathrm{CR}:=\frac{\mathrm{BC} \cdot \mathrm{CQ}}{\mathrm{CH}}
\]
\[
\mathrm{GR}:=\mathrm{CG}-\mathrm{CR} \quad \mathrm{BS}:=\frac{\mathrm{CR} \cdot \mathrm{BG}}{\mathrm{GR}}
\]

\[
\begin{aligned}
& \delta:=1 . .100 \\
& \mathrm{E}_{\delta}:=\frac{\mathrm{BE}}{\delta} \quad \mathrm{BT}_{\delta}:=\mathrm{E}_{\delta} \quad \mathrm{EV}_{\delta}:=\mathrm{E}_{\delta} \\
& \mathrm{TW}_{\delta}:=\frac{\mathrm{BT}_{\delta} \cdot \mathrm{BM}}{\mathrm{BS}} \quad \mathrm{VX}_{\delta}:=\frac{\mathrm{EV}_{\delta} \cdot \mathrm{EM}}{\mathrm{EP}}
\end{aligned}
\]
\[
\mathrm{TW}_{\delta}-\mathrm{VX}_{\delta-2 \cdot 10^{-15}} \prod_{-4 \cdot 10^{-15}}^{0} \mathrm{~N}^{\frac{1}{1}-\sqrt[20]{20}}
\]


Given three radii, \(\mathrm{AO}>\mathrm{BG}+\mathrm{EH}\), place them such that two by two they are tangent and find the fourth, AX, such that AX is tangent to EH and AO . This of course means that if the sum of BG and EH is equal to AO, we have no result.
\[
\mathrm{AO}:=5 \quad \mathrm{BG}:=2.5 \quad \mathrm{EH}:=1.5
\]
\[
\mathrm{AB}:=2 \cdot \mathrm{AO} \quad \mathrm{BC}:=2 \cdot \mathrm{BG} \quad \mathrm{EF}:=2 \cdot \mathrm{EH}
\]
\[
\begin{aligned}
& \mathrm{GH}:=\mathrm{BG}+\mathrm{EH} \quad \mathrm{OH}:=\mathrm{AO}-\mathrm{EH} \quad \mathrm{GO}:=\mathrm{AO}-\mathrm{BG} \\
& \mathrm{GI}:=\frac{\mathrm{GH}^{2}+\mathrm{GO}^{2}-\mathrm{OH}^{2}}{2 \cdot \mathrm{GO}} \quad \mathrm{HI}:=\sqrt{\mathrm{GH}^{2}-\mathrm{GI}^{2}}
\end{aligned}
\]
\[
\mathrm{AG}:=\mathrm{AB}-\mathrm{BG} \mathrm{AI}:=\mathrm{AG}-\mathrm{GI} \quad \mathrm{IJ}:=\mathrm{EH}
\]
\[
\mathrm{AJ}:=\mathrm{AI}+\mathrm{IJ} \quad \mathrm{FJ}:=\mathrm{HI} \quad \mathrm{AF}:=\sqrt{\mathrm{AJ}^{2}+\mathrm{FJ}^{2}}
\]
\[
\mathrm{FK}:=\frac{\mathrm{AJ} \cdot \mathrm{EF}}{\mathrm{AF}} \quad \mathrm{AK}:=\mathrm{AF}-\mathrm{FK} \quad \mathrm{AY}:=\frac{\mathrm{AF} \cdot \mathrm{AK}}{\mathrm{AJ}}
\]

\[
\mathrm{AX}:=\frac{\mathrm{AY}}{2} \quad \mathrm{AX}=2.857
\]
\[
\frac{\mathrm{AO}^{3}-\mathrm{AO}^{2} \cdot \mathrm{EH}-\mathrm{AO}^{2} \cdot \mathrm{BG}}{\mathrm{AO}^{2}-\mathrm{AO} \cdot \mathrm{BG}-\mathrm{EH} \cdot \mathrm{BG}}=2.857
\]


Given a point of tangency, draw a circle in a crescent tangent to the other side. This figure is given for the tangent on the exterior of the crescent, the other will become obvious.

AB := Concave_Radius
CD := Convex_Radius AC := Center_Difference
\(\mathrm{DE}:=2 \cdot \mathrm{CD} \quad \mathrm{BF}:=2 \cdot \mathrm{AB} \quad \mathrm{CE}:=\mathrm{CD}\)
\(\mathrm{AE}:=\mathrm{AC}+\mathrm{CE} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)
\(\mathrm{CG}:=\frac{\mathrm{CD}^{2}+\mathrm{AC}^{2}-\mathrm{AB}^{2}}{2 \cdot \mathrm{AC}} \quad \mathrm{AG}:=\mathrm{AC}-\mathrm{CG}\)
\(\mathrm{GE}:=\mathrm{AE}-\mathrm{AG}\)

GJ := Power_Line_TangentGE
EJ := GE - GJ
DJ \(:=\mathrm{DE}-\mathrm{EJ} \quad \mathrm{JK}:=\sqrt{\mathrm{DJ} \cdot \mathrm{EJ}}\)
CJ := CG - GJ CK := CD KL := GJ
\(\mathrm{LM}:=\frac{\mathrm{CJ} \cdot \mathrm{KL}}{\mathrm{JK}} \quad\) GL \(:=\mathrm{JK} \quad\) GM \(:=\mathrm{GL}-\mathrm{LM}\)
\(\mathrm{AM}:=\sqrt{\mathrm{AG}^{2}+\mathrm{GM}^{2}} \quad \mathrm{AN}:=\mathrm{AB}\)
\(\mathrm{AS}:=\frac{\mathrm{AM}^{2}}{\mathrm{AN}} \quad \mathrm{MR}:=\frac{\mathrm{AM}^{2}}{\mathrm{GM}}\)
\(\mathrm{MS}:=\sqrt{\mathrm{AS}^{2}-\mathrm{AM}^{2}} \quad \mathrm{AR}:=\sqrt{\mathrm{MR}^{2}-\mathrm{AM}^{2}}\)
\(\mathrm{ST}:=\frac{\mathrm{MR} \cdot \mathrm{MS}}{\mathrm{AR}} \quad \mathrm{MT}:=\frac{\mathrm{AM} \cdot \mathrm{MS}}{\mathrm{AR}}\)

\(\mathrm{MO}:=\frac{\mathrm{ST} \cdot \mathrm{AM}}{\mathrm{AM}+\mathrm{MT}}\)
GO \(:=\mathrm{GM}-\mathrm{MO} \quad \mathrm{GP}:=\frac{\mathrm{CJ} \cdot \mathrm{GO}}{\mathrm{JK}}\)
\(\mathrm{AP}:=\mathrm{AG}+\mathrm{GP} \quad \mathrm{OP}:=\frac{\mathrm{CK} \cdot \mathrm{GO}}{\mathrm{JK}}\)
\(\mathrm{CQ}:=\frac{\mathrm{OP} \cdot \mathrm{AC}}{\mathrm{AP}} \quad \mathrm{QK}:=\mathrm{CK}-\mathrm{CQ}\)
\(\mathrm{QK}=0.206\)
Concave_Radius= 2.37
Convex_Radius= 1.5
Center_Difference \(=1.84\)
Power_Line_Tangen \(\frac{1}{3}\) Given as Fraction \(<1\).


Process summary

\(\mathrm{N}_{1}:=\frac{1}{2} \quad \mathrm{~N}_{2}:=\frac{9}{8} \quad \mathrm{~N}_{3}:=3\)
\(\mathrm{AB}:=108 \quad \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AB} \quad \mathrm{BD}:=\mathrm{AB} \cdot \mathrm{N}_{1}\)
\(\mathrm{CD}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BD}^{2}} \quad \mathrm{EF}:=\frac{\mathrm{CD}-\mathrm{BD}}{\mathrm{N}_{2}}\)
\(\mathrm{DE}:=\mathrm{CD}-\mathrm{EF} \quad \mathrm{BE}:=\sqrt{\mathrm{DE}^{2}-\mathrm{BD}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{GH}:=\frac{\mathrm{AE}-\mathrm{EF}}{\mathrm{N}_{3}}\)
\(\mathrm{EG}:=\mathrm{EF}+\mathrm{GH} \quad \mathrm{DG}:=\mathrm{CD}-\mathrm{GH} \quad \mathrm{Ba}:=\frac{\mathrm{BE} \cdot \mathrm{CD}}{\mathrm{DE}}\)
\(\mathrm{Db}:=\frac{\mathrm{DE}^{2}+\mathrm{DG}^{2}-\mathrm{EG}^{2}}{2 \cdot \mathrm{DG}} \quad \mathrm{Eb}:=\sqrt{\mathrm{DE}^{2}-\mathrm{Db}^{2}}\)

\(\mathrm{Ec}:=\frac{\mathrm{DE}^{2}}{\mathrm{~Eb}} \quad \mathrm{Dc}:=\frac{\mathrm{Db} \cdot \mathrm{DE}}{\mathrm{Eb}} \quad \mathrm{Dd}:=\frac{\mathrm{DE}^{2}}{\mathrm{BD}}\)
\(\mathrm{Ed}:=\frac{\mathrm{BE} \cdot \mathrm{Dd}}{\mathrm{DE}} \quad \mathrm{Ee}:=\frac{\mathrm{DE} \cdot \mathrm{Ed}}{\mathrm{Dc}} \quad \mathrm{Ef}:=\frac{\mathrm{Ee} \cdot \mathrm{DE}}{\mathrm{DE}+\mathrm{Ee}}\)
\(\mathrm{Eg}:=\frac{\mathrm{Ec} \cdot \mathrm{Ef}}{\mathrm{DE}} \quad \mathrm{bg}:=\mathrm{Eb}-\mathrm{Eg} \quad \mathrm{BM}:=\frac{\mathrm{bg} \cdot \mathrm{BD}}{\mathrm{Db}}\)
\(\mathrm{DM}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BM}^{2}} \quad \mathrm{Bk}:=\frac{\mathrm{BM} \cdot \mathrm{CD}}{\mathrm{DM}}\)
\(\mathrm{HM}:=\mathrm{CD}-\mathrm{DM} \quad \mathrm{Hk}:=\frac{\mathrm{BD} \cdot \mathrm{HM}}{\mathrm{DM}}\)
\(\mathrm{Mk}:=\frac{\mathrm{BM} \cdot \mathrm{Hk}}{\mathrm{BD}} \quad \mathrm{Ik}:=\frac{\mathrm{Hk}^{2}}{\mathrm{Mk}} \quad \mathrm{HI}:=\sqrt{\mathrm{Hk}^{2}+\mathrm{Ik}^{2}}\)

\(\mathrm{Ea}:=\frac{\mathrm{BE} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{Ba}:=\mathrm{BE}+\mathrm{Ea} \quad \mathrm{Ia}:=\mathrm{Ik}+\mathrm{Ba}+\mathrm{Bk}\)
\(\mathrm{Fa}:=\frac{\mathrm{BD} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{FI}:=\sqrt{\mathrm{Ia}^{2}+\mathrm{Fa}^{2}} \quad \mathrm{JI}:=\frac{\mathrm{HI}^{2}}{\mathrm{FI}}\)
\(\mathrm{Jm}:=\frac{\mathrm{Fa} \cdot \mathrm{JI}}{\mathrm{FI}} \quad \mathrm{JK}:=\frac{\mathrm{CD} \cdot \mathrm{Jm}}{\mathrm{BD}+\mathrm{Jm}}\)
\(\mathrm{JK}=17.571\)
When GH is small, so that H is on the other side of BD , the similarity point is on the other side of the figure.


I found this little sketch in my notebook and have no idea of when I did it or why.

Does CF always equal EP?
\[
\begin{aligned}
& \Delta:=100 \quad \delta:=1 . . \Delta-1 \quad \mathrm{BG}:=10 \quad \mathrm{GH}:=\mathrm{BG} \\
& \mathrm{GN}:=\mathrm{BG} \quad \mathrm{BD}_{\delta}:=\frac{\mathrm{BG}}{\Delta} \cdot \delta \quad \mathrm{DG}_{\delta}:=\mathrm{BG}-\mathrm{BD}_{\delta}
\end{aligned}
\]

\[
\begin{array}{ll}
\mathrm{DH}_{\delta}:=\mathrm{GH}+\mathrm{DG}_{\delta} & \mathrm{DJ}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DH}_{\delta}} \\
\mathrm{EG}_{\delta}:=\frac{\mathrm{DG}_{\delta} \cdot \mathrm{GN}}{\mathrm{GN}+\mathrm{DJ}_{\delta}} & \mathrm{BE}_{\delta}:=\mathrm{BG}-\mathrm{EG}_{\delta}
\end{array}
\]
\[
\mathrm{EH}_{\delta}:=\mathrm{EG}_{\delta}+\mathrm{GH} \quad \mathrm{EK}_{\delta}:=\sqrt{\mathrm{BE}_{\delta} \cdot \mathrm{EH}_{\delta}}
\]
\[
\mathrm{AE}_{\delta}:=\frac{\left(\mathrm{EK}_{\delta}\right)^{2}}{\mathrm{EG}_{\delta}} \quad \mathrm{AB}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{BE}_{\delta}
\]
\[
\mathrm{GL}:=\mathrm{BG} \quad \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BD}_{\delta}
\]
\[
\mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG} \quad \mathrm{DJ} 2_{\delta}:=\frac{\mathrm{GL} \cdot \mathrm{AD}_{\delta}}{\mathrm{AG}_{\delta}}
\]
\[
\mathrm{EP}_{\delta}:=\frac{\mathrm{GL}^{2} \cdot \mathrm{AE}_{\delta}}{\mathrm{AG}_{\delta}} \quad \mathrm{GR}_{\delta}:=\mathrm{DJ}_{\delta} \quad \mathrm{NO}:=\mathrm{BG} \quad \mathrm{NR}_{\delta}:=\mathrm{GN}+\mathrm{GR}_{\delta} \quad \mathrm{GQ}_{\delta}:=\frac{\mathrm{NO} \cdot \mathrm{GR}_{\delta}}{\mathrm{NR}_{\delta}} \quad \mathrm{CF}_{\delta}:=2 \cdot \mathrm{GQ}_{\delta}
\]




Reducing both by the symbolic processor leaves a little.
\[
\mathrm{BG}:=10 \quad \mathrm{BD}:=\frac{\mathrm{BG}}{13}
\]
\[
\mathrm{CF}:=2 \cdot \mathrm{BG} \cdot \sqrt{\mathrm{BD}} \cdot \frac{\sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}}}{(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}})}
\]
\[
\mathrm{EP}=5.556 \quad \mathrm{EP}-\mathrm{CF}=0
\]
\[
\mathrm{EP}:=-2 \cdot \mathrm{BG} \cdot \frac{\left(-\mathrm{BG} \cdot \sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}}-2 \cdot \mathrm{BG} \cdot \mathrm{BD}+\mathrm{BD}^{2}\right)}{(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}})^{2}}
\]

And if I divide one by the other and reduce; \(\quad \frac{\left[B G \cdot \sqrt{2 \cdot B G-B D}+2 \cdot B G \cdot \sqrt{B D}-B^{\left(\frac{3}{2}\right.}\right)}{[(B G+\sqrt{B D} \cdot \sqrt{2 \cdot B G-B D}) \cdot \sqrt{2 \cdot B G-B D}]}=1\)

This is another figure that I had sketched out last year but never got around to writing down.

Given a Circle, place the next on the diameter.
I tried to reduce this series with the symbolic processor, but it is having trouble, at some point it switches AC for EC and I get the other circle.
\[
\begin{aligned}
& \mathrm{AD}:=\text { Radius } \quad \mathrm{AE}:=2 \cdot \mathrm{AD} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{\mathrm{~N}} \\
& \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \quad \mathrm{DO}:=\mathrm{AD} \quad \mathrm{CO}:=\sqrt{\mathrm{DO}^{2}+\mathrm{CD}^{2}} \\
& \mathrm{NO}:=\mathrm{AE} \quad \mathrm{MO}:=\frac{\mathrm{DO} \cdot \mathrm{NO}}{\mathrm{CO}} \quad \mathrm{CM}:=\mathrm{MO}-\mathrm{CO} \\
& \mathrm{CK}:=\frac{\mathrm{DO} \cdot \mathrm{CM}}{\mathrm{MO}} \quad \mathrm{KO}:=\sqrt{\mathrm{CD}^{2}+(\mathrm{DO}+\mathrm{CK})^{2}} \\
& \mathrm{JK}:=\mathrm{CK}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{Ke}:=\frac{\mathrm{JK}^{2}}{\mathrm{KO}} \quad \mathrm{Oe}:=\mathrm{KO}-\mathrm{Ke} \quad \mathrm{de}:=\frac{\mathrm{CD} \cdot \mathrm{Oe}}{\mathrm{DO}+\mathrm{CK}} \\
& \mathrm{Je}:=\sqrt{\mathrm{JK}^{2}-\mathrm{Ke}^{2}} \\
& \mathrm{Jd}:=\mathrm{de}+\mathrm{Je} \quad \mathrm{bd}:=\frac{\mathrm{CD} \cdot \mathrm{Jd}}{\mathrm{KO}} \\
& \mathrm{Od}:=\frac{\mathrm{KO} \cdot \mathrm{de}}{\mathrm{CD}} \quad \mathrm{Db}:=\mathrm{Od}-\mathrm{DO}-\mathrm{bd}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{Kh}:=\mathrm{CK}-\mathrm{Db} \\
& \mathrm{Lh}:=\mathrm{CK}+\mathrm{Kh} \quad \mathrm{FJ}:=\frac{\mathrm{JK} \cdot \mathrm{Db}}{\mathrm{Lh}} \\
& \mathrm{~N} \equiv \frac{10}{1} \quad \mathrm{FJ}=3.965 \\
& \text { Radius } \equiv 108 \quad \mathrm{CK}=19.44 \\
& \text { And from the other side; } \\
& \mathrm{N} \equiv \frac{10}{9} \quad \mathrm{FJ}=51.53
\end{aligned}
\]
\[
\text { Radius } \equiv 108 \quad \mathrm{CK}=19.44
\]

This figure might be recognized as the similarity point for Gemini root projection.


Given AC, CF, and that
\(\mathrm{AC}=-\mathrm{CF} \cdot \frac{(\sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-\mathrm{BC})}{(-\mathrm{CF}+2 \cdot \sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-2 \cdot \mathrm{BC})}\)
find \(B C\).

N can be any value whatever, except 0 .

\[
\begin{aligned}
& \mathrm{CF}:=216 \quad \mathrm{AC}:=47.29 \quad \mathrm{~N}:=100000 \\
& \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \quad \mathrm{AE}:=\mathrm{AC}+\mathrm{CE} \\
& \mathrm{FG}:=\mathrm{N} \quad \mathrm{EH}:=\frac{\mathrm{FG} \cdot \mathrm{AE}}{\mathrm{AF}} \quad \mathrm{EF}:=\mathrm{CE} \\
& \mathrm{DF}:=\frac{\mathrm{EF} \cdot \mathrm{FG}}{\mathrm{EH}} \quad \mathrm{CJ}:=\frac{\mathrm{FG} \cdot \mathrm{AC}}{\mathrm{AF}} \quad \mathrm{DP}:=\mathrm{CJ} \\
& \mathrm{CD}:=\mathrm{CF}-\mathrm{DF} \quad \mathrm{DK}:=\mathrm{FG} \quad \mathrm{KP}:=\mathrm{DK}-\mathrm{DP} \\
& \mathrm{BD}:=\frac{\mathrm{CD} \cdot \mathrm{DK}}{\mathrm{KP}} \quad \mathrm{BD}=40.089 \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{BC}=7.201 \\
& \mathrm{AC}_{\mathrm{f}}:=-\mathrm{CF} \cdot \frac{(\sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-\mathrm{BC})}{(-\mathrm{CF}+2 \cdot \sqrt{\mathrm{BC} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-2 \cdot \mathrm{BC})}} \\
& \mathrm{AC}_{\mathrm{f}} \\
& \mathrm{AC}_{\mathrm{AC}}=1
\end{aligned}
\]


\section*{Three Base Theorem.}

Three peaks, three predictable bases that intersect our hypotenuse through the Gemini roots.

\(\mathrm{BC}:=7.2 \quad \mathrm{CI}:=216 \quad \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{BI}:=\mathrm{BC}+\mathrm{CI}\)
\(B E:=\sqrt{B C \cdot B I} \quad B M:=61.38\)
\(\mathrm{EM}:=\sqrt{\mathrm{BM}^{2}+\mathrm{BE}^{2}} \quad \mathrm{BD}:=\mathrm{EM}-\mathrm{BM}\)
\(\mathrm{BH}:=\mathrm{BM}+\mathrm{EM} \quad \mathrm{GN}:=\mathrm{CG} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}\)
\(\mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EN}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EH}:=\mathrm{BH}-\mathrm{BE}\)
\(\mathrm{EG}:=\mathrm{EI}-\mathrm{CG} \quad \mathrm{AE}:=\frac{\mathrm{EN}^{2}}{\mathrm{EG}} \quad \mathrm{HI}:=\mathrm{EI}-\mathrm{EH}\)
\(\mathrm{HL}:=\frac{\mathrm{EN} \cdot \mathrm{HI}}{\mathrm{EI}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}\)

\[
\begin{array}{ll}
\mathrm{AH}:=\mathrm{AE}+\mathrm{EH} & \mathrm{Ea}:=\frac{\mathrm{AH} \cdot \mathrm{EN}}{\mathrm{HL}} \\
\mathrm{FG}:=\frac{\mathrm{EG} \cdot \mathrm{AG}}{(\mathrm{Ea}+\mathrm{EG})} & \mathrm{CF}:=\mathrm{CG}-\mathrm{FG}
\end{array}
\]
\[
\mathrm{FI}:=\mathrm{CG}+\mathrm{FG} \quad \mathrm{FP}:=\sqrt{\mathrm{CF} \cdot \mathrm{FI}}
\]
\[
\mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \quad \mathrm{EO}:=\frac{\mathrm{FP} \cdot \mathrm{AE}}{\mathrm{AF}}
\]
\[
\mathrm{EF}:=\mathrm{AF}-\mathrm{AE} \quad \mathrm{GU}:=\frac{\mathrm{EO} \cdot \mathrm{FG}}{\mathrm{EF}}
\]

\[
\begin{aligned}
& \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AI}:=\mathrm{AC}+\mathrm{CI} \\
& \mathrm{AP}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FP}^{2} \quad \mathrm{AW}:=\frac{\mathrm{AC} \cdot \mathrm{AI}}{\mathrm{AP}}} \\
& \mathrm{AX}:=\frac{\mathrm{AF} \cdot \mathrm{AW}}{\mathrm{AP}} \quad \mathrm{CX}:=\mathrm{AX}-\mathrm{AC} \quad \mathrm{XI}:=\mathrm{CI}-\mathrm{CX} \\
& \mathrm{WX}:=\sqrt{\mathrm{CX} \cdot \mathrm{XI}} \quad \mathrm{XG}:=\mathrm{CG}-\mathrm{CX} \quad \mathrm{YU}:=\mathrm{XG} \\
& \mathrm{UV}:=\mathrm{CG} \quad \mathrm{YV}:=\mathrm{YU}+\mathrm{UV} \quad \mathrm{XH}:=\frac{\mathrm{YV} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \mathrm{CH}:=\mathrm{AH}-\mathrm{AC} \quad \frac{\mathrm{CH}}{\mathrm{XH}+\mathrm{CX}}=1 \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{DX}:=\frac{\mathrm{CX} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \frac{\mathrm{CD}}{\mathrm{CX}-\mathrm{DX}}=1
\end{aligned}
\]

\(\mathrm{IZ}:=\frac{\mathrm{GU} \cdot \mathrm{AI}}{\mathrm{AG}} \quad \mathrm{Ed}:=\mathrm{IZ} \quad \frac{\mathrm{EO}+\mathrm{Ed}}{\mathrm{EH}}=1\)
\[
\mathrm{Ce}:=\frac{\mathrm{GU} \cdot \mathrm{AC}}{\mathrm{AG}} \quad \mathrm{Ef}:=\mathrm{Ce} \frac{\mathrm{CD}}{\frac{\mathrm{CE} \cdot \mathrm{Ce}}{\mathrm{EO}+\mathrm{Ef}}}=1
\]
\(\mathrm{Ek}:=\mathrm{GU} \quad \mathrm{Ig}:=\frac{\mathrm{Ek} \cdot \mathrm{BI}}{\mathrm{BE}} \quad \mathrm{Cm}:=\frac{\mathrm{Ek} \cdot \mathrm{BC}}{\mathrm{BE}}\)
\(\mathrm{Fn}:=\mathrm{Ig} \quad\) gn \(:=\mathrm{FI} \quad \mathrm{FH}:=\frac{\mathrm{gn} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Fn}}\)
\(\frac{\mathrm{FH}}{\mathrm{AH}-\mathrm{AF}}=1 \quad \mathrm{DF}:=\frac{\mathrm{CF} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Cm}}\)
\(\frac{C D}{C F-D F}=1\)


Given \(C F\) and \(C D\) such that \(C D=\sqrt{A F \cdot A C}-A C\) find AC.
\[
\mathrm{CF}:=216 \quad \mathrm{CD}:=32.89 \quad \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{EF}:=\mathrm{CE}
\]

Except for \(0, \mathrm{~N}\) can be any value.
\[
\begin{aligned}
& \mathrm{N}:=108 \quad \mathrm{FG}:=\mathrm{N} \quad \mathrm{DK}:=\mathrm{N} \quad \mathrm{DF}:=\mathrm{CF}-\mathrm{CD} \\
& \mathrm{EH}:=\frac{\mathrm{DK} \cdot \mathrm{EF}}{\mathrm{DF}} \quad \mathrm{EM}:=\mathrm{FG} \quad \mathrm{HM}:=\mathrm{EM}-\mathrm{EH} \\
& \mathrm{CN}:=\mathrm{FG} \quad \mathrm{HM}:=\mathrm{EM}-\mathrm{EH} \quad \mathrm{GN}:=\mathrm{CF} \\
& \mathrm{GM}:=\mathrm{EF} \quad \mathrm{JN}:=\frac{\mathrm{HM} \cdot \mathrm{GN}}{\mathrm{GM}} \quad \mathrm{JC}:=\mathrm{CN}-\mathrm{JN} \\
& \mathrm{KP}:=\mathrm{JN} \quad \mathrm{JP}:=\mathrm{CD} \quad \mathrm{AD}:=\frac{\mathrm{JP} \cdot \mathrm{DK}}{\mathrm{KP}} \\
& \mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \quad \mathrm{AC}=7.201 \\
& \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \\
& \sqrt{\mathrm{AF} \cdot \mathrm{AC}}-\mathrm{AC} \\
& \mathrm{CD}
\end{aligned}=1 \quad \frac{\sqrt{\mathrm{AF} \cdot \mathrm{AC}}}{\mathrm{AD}}=1 .
\]


I had finally decided to write this up in Oct. of 94, and being punctual, here it is.

Given one root in a prime root series, determine the rest of the series using the straight edge method. The other method uses a compass and is shown at the end of document.
Process Summary will use th root series for example.
\[
\begin{aligned}
& \mathrm{AG}:=3^{5} \quad \mathrm{AB}:=1 \quad \mathrm{AE}:=3^{3} \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{GZ}:=\mathrm{BG} \quad \mathrm{YZ}:=\mathrm{BG} \\
& \mathrm{BY}:=\mathrm{BG} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{EG}:=\mathrm{BG}-\mathrm{BE} \\
& \mathrm{GH}:=\frac{\mathrm{BY} \cdot \mathrm{EG}}{\mathrm{BE}}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{GK}:=\frac{\mathrm{BJ} \cdot \mathrm{AG}}{\mathrm{AB}} \quad \mathrm{KZ}:=\mathrm{GZ}+\mathrm{GK} \\
& \mathrm{FG}:=\frac{\mathrm{YZ} \cdot \mathrm{GK}}{\mathrm{KZ}} \quad \mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \\
& \mathrm{Ke}:=\frac{\mathrm{GK} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \quad \mathrm{Me}:=\frac{\mathrm{AG} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \\
& \mathrm{BD}:=\frac{(\mathrm{BG}-\mathrm{Me}) \cdot \mathrm{BY}}{\mathrm{KZ}-\mathrm{Ke}} \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}
\end{aligned}
\]

\[
\begin{array}{ll}
\frac{\left(\mathrm{AB}^{5} \cdot \mathrm{AG}^{0}\right)^{\frac{1}{5}}}{\mathrm{AB}}=1 & \frac{\left(\mathrm{AB}^{4} \cdot \mathrm{AG}^{1}\right)^{\frac{1}{5}}}{\mathrm{AC}}=1 \\
\frac{\left(\mathrm{AB}^{3} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{5}}}{\mathrm{AD}}=1 & \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{5}}}{\mathrm{AE}}=1 \\
\frac{\left(\mathrm{AB}^{1} \cdot \mathrm{AG}^{4}\right)^{\frac{1}{5}}}{\mathrm{AF}}=1 & \frac{\left(\mathrm{AB}^{0} \cdot \mathrm{AG}^{5}\right)^{\frac{1}{5}}}{\mathrm{AG}}=1
\end{array}
\]

Compass method
If any of a prime root series can be given exactly, every root of the series can be determined exactly.


\section*{What is CX?}

I have had so much back work to catch up on I post dated a couple.
\[
\begin{aligned}
& \mathrm{AB}:=54 \quad \mathrm{AG}:=270 \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BF}:=\frac{\mathrm{BG}}{2} \quad \mathrm{FO}:=\mathrm{BF} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FR}:=\mathrm{BF} \\
& \mathrm{AR}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FR}^{2}} \quad \mathrm{AQ}:=\frac{\mathrm{AB} \cdot \mathrm{AG}}{\mathrm{AR}} \\
& \mathrm{Aa}:=\frac{\mathrm{AF} \cdot \mathrm{AQ}}{\mathrm{AR}} \quad \mathrm{Qa}:=\frac{\mathrm{FR} \cdot \mathrm{AQ}}{\mathrm{AR}}
\end{aligned}
\]
\(\mathrm{Fa}:=\mathrm{AF}-\mathrm{Aa} \quad \mathrm{OQ}:=\sqrt{\mathrm{Fa}^{2}+(\mathrm{FO}+\mathrm{Qa})^{2}}\)
\[
\mathrm{CQ}:=\frac{\mathrm{OQ} \cdot \mathrm{Qa}}{\mathrm{FO}+\mathrm{Qa}} \mathrm{OX}:=\sqrt{\mathrm{BF}^{2}+\mathrm{FO}^{2}}
\]
\[
\mathrm{CO}:=\mathrm{OQ}-\mathrm{CQ} \quad \mathrm{CQ}=49.923
\]
\[
\frac{\mathrm{AG}-\mathrm{AB}}{\mathrm{AG}+\mathrm{AB}} \cdot \frac{\sqrt{2} \cdot(\mathrm{AG} \cdot \mathrm{AB})}{\sqrt{\mathrm{AB}^{2}+\mathrm{AG}^{2}}}=49.923
\]
\[
\mathrm{CX}:=\sqrt{\mathrm{CQ} \cdot \mathrm{CO}} \quad \mathrm{CX}=80.498
\]
\[
\mathrm{CX}:=\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AG}} \cdot \frac{(\mathrm{AG}-\mathrm{AB})}{(\mathrm{AB}+\mathrm{AG})}
\]
\(\mathrm{CX} 2:=\mathrm{AB}^{3} \cdot \frac{\mathrm{AG}}{(\mathrm{AB}+\mathrm{AG})^{2}}-2 \cdot \mathrm{AB}^{2} \cdot \frac{\mathrm{AG}^{2}}{(\mathrm{AB}+\mathrm{AG})^{2}}+\mathrm{AB} \cdot \frac{\mathrm{AG}^{3}}{(\mathrm{AB}+\mathrm{AG})^{2}} \quad \sqrt{\mathrm{CX} 2}=80.498\)

It is the square root of the intersection of two cubic equations. I wonder what the geometry of those equations would look like?


\section*{Geometric Exponential Series of the form}
\(\frac{\sum_{\delta} N^{\frac{\text { Root }-\delta}{\text { Root }}}}{N^{\frac{\text { Root }-1}{\text { Root }}}}\)


Generalize some of the ratios found in 01_08_96 and 01_16_96 for the sides of the right triangle.
\[
\begin{aligned}
& \mathrm{N}=4 \quad \mathrm{Root}=4 \quad \mathrm{M}=1 \quad \mathrm{BG}:=\mathrm{N} \quad \mathrm{AB}:=\mathrm{M} \\
& \mathrm{AG}:=\mathrm{AB}+\mathrm{BG} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \\
& \mathrm{AC}:=\left(\mathrm{AB}{ }^{\text {Root-1} \cdot \mathrm{AG})^{\frac{1}{\text { Root }}} \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{\text {Root-1 }}\right)^{\frac{1}{\text { Root }}}}\right. \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \quad \mathrm{FX}:=\sqrt{\mathrm{AF}^{2}+\mathrm{AG}^{2}} \\
& \mathrm{FY}:=\frac{\mathrm{AF}}{\mathrm{FX}} \quad \mathrm{BD}:=\frac{\mathrm{FY} \cdot \mathrm{BG}}{\mathrm{FX}} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}}{ }^{2}+\mathrm{DK}^{2} \quad \mathrm{GK}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DK}^{2}} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]


Plug in BG here as \(\mathrm{N} . \mathrm{AB}\) as M . Plug in root series also.
\[
\mathrm{N} \equiv 4 \quad \text { Root } \equiv 4 \quad \delta:=1 \text {.. Root }
\]
\(M \equiv 1\)
\[
\mathrm{GL}=1.377 \quad \mathrm{BJ}=0.275 \quad \frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]
\[
\frac{\sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root-1 }}{\text { Root }}}}=2.415
\]
\[
\frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\mathrm{Root}-\delta}{\text { Root }}}=8.075 \quad \frac{\mathrm{BK}}{\mathrm{BJ}}=8.075
\]

\[
\mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{BM}}=32.665\)
\[
\begin{aligned}
& \left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta+2}{\text { Root }}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta}{\text { Root }}} \\
& \left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{\text { Root }}}-\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{\text { Root }}} \\
& \hline \frac{9.769}{\left\lvert\, \frac{14.608}{21.844}\right.} \\
& \hline 32.665 \\
& \hline
\end{aligned}
\]

First Day. Page 74 (28) Galileo
Imagine a cylinder about the axis CF. The area of the circular ribbon Gl is always equal to the area of the circle HL cut by the cone CDF. Galileo uses this to "prove" that a point is equal to a circle. He will first states that the volume of the cone, CDE is equal to volume of the bowl ADF. Because they both degenerate, one to a point, \(C\), the other to a circle with radius \(A C\), the point must be equal to the circle. He further states, since this is the case, all circles are equal to each other.
"Now, since as these solids diminish equality is maintained between them up to the very last, we are justified in saying that, at the extreme and final end of this diminution, they are still equal and th one is not infinitely greater than the other. It appears therefore that we may equate the circumference of a large circle to a single point. And this which is true of the solids is true also of the surfaces"

Galileo took this example from "twelfth proposition of the second book oDe centro gravitatis solidorem by the Archimedes of our age, Luca Valerio."

\[
\mathrm{t}:=0 . .1 \quad \mathrm{~N}:=1 \cdot 10^{153}
\]
\[
\mathrm{AD}:=5 \quad \mathrm{CI}:=\mathrm{AD} \quad \mathrm{CP}_{0}:=0 \quad \mathrm{CP}_{1}:=\frac{\mathrm{AD}}{\mathrm{~N}} \quad \mathrm{CI}:=\mathrm{AD} \quad \mathrm{GP}:=\mathrm{AD}
\]
\[
\mathrm{IP}_{\mathrm{t}}:=\sqrt{\mathrm{CI}^{2}-\left(\mathrm{CP}_{\mathrm{t}}\right)^{2}} \quad \mathrm{HP} \mathrm{t}_{\mathrm{t}}:=\mathrm{CP}_{\mathrm{t}} \mathrm{GP}^{2}-\left[\left(\mathrm{IP}_{\mathrm{t}}\right)^{2}+\left(\mathrm{HP}_{\mathrm{t}}\right)^{2}\right]
\]
\[
\begin{array}{|l|}
\hline 0 \\
\hline 0 \\
\hline
\end{array}
\]
\(\mathrm{GN}:=2 \cdot \mathrm{AD} \quad \mathrm{IO}_{\mathrm{t}}:=2 \cdot \mathrm{IP}_{\mathrm{t}} \mathrm{HL}_{\mathrm{t}}:=2 \cdot \mathrm{HP}_{\mathrm{t}} \mathrm{GN}^{2}-\left[\left(\mathrm{IO}_{\mathrm{t}}\right)^{2}+\left(\mathrm{HL}_{\mathrm{t}}\right)^{2}\right] \pi \cdot \mathrm{GN}^{2}-\left[\pi \cdot\left(\mathrm{IO}_{\mathrm{t}}\right)^{2}+\pi \cdot\left(\mathrm{HL}_{\mathrm{t}}\right)^{2}\right]\)
\begin{tabular}{ll} 
& \begin{tabular}{|c|}
\hline 0 \\
0 \\
0
\end{tabular} \\
\hline\(\left.\pi \cdot \mathrm{GN}^{2}-\pi \cdot\left(\mathrm{IO}_{\mathrm{t}}\right)^{2}\right]\) & \(\pi \cdot\left(\mathrm{HL}_{\mathrm{t}}\right)^{2}\) \\
\hline 0 \\
\hline 0 & 0 \\
\hline \(3.142 \cdot 10^{-304}\) & \(\left.\pi \cdot \mathrm{GN}^{2}-\pi \cdot\left(\mathrm{IO}_{\mathrm{t}}\right)^{2}\right]-\pi \cdot\left(\mathrm{HL}_{\mathrm{t}}\right)^{2}\) \\
\hline
\end{tabular}

I will completely agree with his analysis, providing that he does not change the subject. They are both still equal in volume, in his original statement, or area in his proof, which is 0 . He does not \(s \epsilon\) what he has done, he has in fact exonerated Euclid. The boundary is not part of the figure. By the loo of the text, Galileo was completely awestruck by this simple little miracle. Galileo was not the first to change coordinate systems of reference to make it appear that he won a bad argument. Plato used it to stun many audiences in his dialogues. Einstein used it to bend space. Galileo still had a "ball bearing" metaphor for geometry.

Given a straight line divided into unequal parts which bear to each other any ratio whatever, to describe a circle such that two straight lines drawn from the ends of the given line to any point on the circumference will bs each other the same ratio as the two parts of the given line, thus making those lines which are drawn from the same terminal points homologous.

\[
\begin{aligned}
& \mathrm{AB}:=100 \quad \mathrm{CB}:=\frac{\mathrm{AB}}{2 \cdot 2} \quad \mathrm{CB}<\frac{\mathrm{AB}}{2}=1 \\
& \mathrm{AC}:=\mathrm{AB}-\mathrm{CB} \quad \mathrm{CD}:=\mathrm{CB} \\
& \mathrm{AD}:=\sqrt{\mathrm{AC}^{2}-\mathrm{CD}^{2}} \\
& \mathrm{BE}:=\frac{\mathrm{CD} \cdot \mathrm{AB}}{\mathrm{AD}} \quad \mathrm{AE}:=\frac{\mathrm{AC} \cdot \mathrm{AB}}{\mathrm{AD}} \\
& \mathrm{AF}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AD}} \quad \mathrm{FE}:=\frac{\mathrm{CD} \cdot \mathrm{AF}}{\mathrm{AC}}
\end{aligned}
\]
\[
\mathrm{FC}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{FE}=\mathrm{FC}=1
\]
\[
\mathrm{FE}=\mathrm{FC}=1 \quad \mathrm{FE}=\mathrm{AF}-\mathrm{AC}=1 \quad \mathrm{FE}=\mathrm{AC} \cdot \frac{\mathrm{AE}}{\mathrm{AD}}-\mathrm{AC}=1 \quad \mathrm{FE}=\mathrm{AC}^{2} \cdot \frac{\mathrm{AB}}{\mathrm{AD}^{2}}-\mathrm{AC}=1
\]
\[
\mathrm{FE}=-\mathrm{AC} \cdot \frac{\left(\mathrm{AC} \cdot \mathrm{AB}-\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)}{\left(-\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)}=1 \quad \mathrm{FE}=-\mathrm{AC} \cdot \frac{\left(\mathrm{AC} \cdot \mathrm{AB}-\mathrm{AC}^{2}+\mathrm{CB}^{2}\right)}{\left(-\mathrm{AC}^{2}+\mathrm{CB}^{2}\right)}=1 \quad \mathrm{FE}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1
\]
\[
\mathrm{CD} \cdot \frac{\mathrm{AF}}{\mathrm{AC}}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1 \quad \mathrm{CD} \cdot \frac{\mathrm{AE}}{\mathrm{AD}}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1 \quad \mathrm{CD} \cdot \mathrm{AC} \cdot \frac{\mathrm{AB}}{\mathrm{AD}^{2}}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1
\]
\(\mathrm{CD} \cdot \mathrm{AC} \cdot \frac{\mathrm{AB}}{\left(\mathrm{AC}^{2}-\mathrm{CD}^{2}\right)}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1 \quad \mathrm{CB} \cdot \mathrm{AC} \cdot \frac{\mathrm{AB}}{\left(\mathrm{AC}^{2}-\mathrm{CB}^{2}\right)}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1\)
\(C B \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=\mathrm{CB} \cdot \frac{(\mathrm{AB}-\mathrm{CB})}{(\mathrm{AB}-2 \cdot \mathrm{CB})}=1\)

\[
\frac{\mathrm{AC}}{\mathrm{CB}}=\frac{\mathrm{AE}}{\mathrm{BE}}=1 \quad \frac{\mathrm{AE}}{\mathrm{BE}}=\mathrm{AC} \cdot \frac{\mathrm{AB}}{(\mathrm{AD} \cdot \mathrm{BE})}=1
\]
\[
\mathrm{AC} \cdot \frac{\mathrm{AB}}{(\mathrm{AD} \cdot \mathrm{BE})}=\frac{\mathrm{AC}}{\mathrm{CD}}=1 \quad \frac{\mathrm{AC}}{\mathrm{CD}}=\frac{\mathrm{AC}}{\mathrm{CB}}=1
\]

\[
\mathrm{CG}:=2 \cdot \mathrm{FC} \quad \mathrm{CX}:=\frac{\mathrm{CG}}{.3} \quad \mathrm{GX}:=\mathrm{CG}-\mathrm{CX}
\]
\[
\mathrm{XY}:=\sqrt{\mathrm{GX} \cdot \mathrm{CX}} \quad \mathrm{AX}:=\mathrm{AC}+\mathrm{CX}
\]
\[
\mathrm{BX}:=\mathrm{CX}-\mathrm{CB} \quad \mathrm{AY}:=\sqrt{\mathrm{AX}^{2}+X \mathrm{Y}^{2}}
\]
\[
B Y:=\sqrt{B X^{2}+X Y^{2}}
\]
\[
\frac{A C}{C B}=\frac{A Y}{B Y}=1
\]


\section*{And the Delian Quest}


1997


Not changing the height of a given triangle, or the length of the subtended side, what happens to it's area if we halve the angle of one side?
\(\mathrm{n}:=1\).. 3
\(\mathrm{S}_{1}:=\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c}\end{array}\right] \quad \mathrm{S}_{2}:=\left[\begin{array}{l}\mathrm{b} \\ \mathrm{c} \\ \mathrm{a}\end{array}\right] \quad \mathrm{S}_{3}:=\left[\begin{array}{l}\mathrm{c} \\ \mathrm{a} \\ \mathrm{b}\end{array}\right]\)


Is_This_a_Triangle: \(=\left(\mathrm{S}_{1_{1}}+\mathrm{S}_{2_{1}}>\mathrm{S}_{3_{1}}\right) \cdot\left(\mathrm{S}_{1_{1}}+\mathrm{S}_{3_{1}}>\mathrm{S}_{2_{1}}\right) \cdot\left(\mathrm{S}_{2_{1}}+\mathrm{S}_{3_{1}}>\mathrm{S}_{1_{1}}\right)\)
As was learned in school, the area of a triagle is given \(1 \frac{1}{2} \cdot B \cdot H\).
From 04_02_97.MCD I show that
\[
H_{n}:=\frac{\sqrt{S_{1_{n}}+S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{-S_{1_{n}}+S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{S_{1_{n}}-S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{S_{1_{n}}+S_{2_{n}}-S_{3_{n}}}}{2 \cdot S_{1_{n}}}
\]

And since \(B:=S_{1}\)
Area is defined as \(A_{n}:=\frac{\sqrt{S_{1_{n}}+S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{-S_{1_{n}}+S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{S_{1_{n}}-S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{S_{1_{n}}+S_{2_{n}}-S_{3_{n}}}}{4}\)
\[
\begin{aligned}
& \frac{1 \cdot B_{\mathrm{n}} \cdot \mathrm{H}_{\mathrm{n}}}{2}-\mathrm{A}_{\mathrm{n}} \\
& \frac{0}{\frac{0}{0}} \begin{array}{l}
0 \\
\hline
\end{array}
\end{aligned}
\]
\begin{tabular}{ll}
\(\mathrm{A}_{\mathrm{n}}\) & \(\mathrm{H}_{\mathrm{n}}\) \\
\hline 2.905 & \begin{tabular}{|l|}
\hline 2.905 \\
\hline 2.905 \\
\hline 2.905 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

What is the definition of acute, solely in terms of the sides of a triangle? Basically from this it can be argued that Euclid's definition of acute or obtuse was out of order.

Acute \(_{n}:=\operatorname{if}\left[\sqrt{\left(S_{1_{n}}\right)^{2}+\left(S_{2_{n}}\right)^{2}}>S_{3_{n}}, 1,0\right] \quad\) Acute \(_{n} \quad\) Acute \(2_{n}:=\operatorname{if}\left[\sqrt{\left(S_{1}\right)^{2}+\left(S_{3_{n}}\right)^{2}}>S_{2_{n}}, 1,0\right] \quad\) Acute \(2_{n}\)
\begin{tabular}{|l|}
\hline 0 \\
\hline 1 \\
\hline 1 \\
\hline
\end{tabular}



Given two sides of a triangle, the height and if the angle contained by the two sides is acute or not, find the remaining side. What would happen if you were given just the equation and had no idea what the equation represented? You could not possibly solve it so quickly.
\[
\begin{gathered}
H_{n}=\frac{\sqrt{S_{1_{n}}+S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{-S_{1_{n}}+S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{S_{1_{n}}-S_{2_{n}}+S_{3_{n}}} \cdot \sqrt{S_{1_{n}}+S_{2_{n}}-S_{3_{n}}}}{2 \cdot S_{1_{n}}} \\
S_{1}, S_{2} \text { and } \sqrt{S_{1}{ }^{2}+S_{2}^{2}}>S_{3} \text { find } S_{3}
\end{gathered}
\]

Acute \(_{n}\)
Is_This_a_Triangle= 1
\begin{tabular}{|l|}
\hline 0 \\
\hline 1 \\
\hline 1 \\
\hline
\end{tabular}
\[
\mathrm{S}_{4_{\mathrm{n}}}:=\sqrt{\left(\mathrm{S}_{2}\right)^{2}-\left(\mathrm{H}_{\mathrm{n}}\right)^{2}}
\]

\[
\begin{aligned}
& S_{X_{n}}:=\text { if }\left(\text { Acute }_{n}, S_{1_{n}}-S_{4_{n}}, S_{1_{n}}+S_{4_{n}}\right) \\
& \mathrm{a} \equiv 2 \quad \mathrm{~b} \equiv 3 \quad \mathrm{c} \equiv 4 \leftarrow \text { Plug your values in here. }
\end{aligned}
\]
\[
\mathrm{S}_{3}:=\sqrt{\left(\mathrm{H}_{\mathrm{n}}\right)^{2}+\left(\mathrm{S}_{\mathrm{X}_{\mathrm{n}}}\right)^{2}}
\]
\[
\begin{array}{lll}
\mathrm{S}_{1} & \mathrm{~S}_{2}{ }_{\mathrm{n}} & \mathrm{~S}_{3 \mathrm{n}} \\
\hline \frac{2}{2} & \begin{array}{|l|}
\hline 3 \\
\hline 4 \\
\hline 4 \\
\hline \frac{4}{2} \\
\hline
\end{array} & \begin{array}{|c|}
\hline \frac{4}{2} \\
\hline 3 \\
\hline
\end{array}
\end{array}
\]
04_04_97.MCD

Given the base, one side and the height of a triangle, find the remaining side.
\[
S_{1}:=3 \quad S_{2}:=4 \quad H:=1
\]
\[
\mathrm{H}=\frac{\sqrt{\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}} \cdot \sqrt{-\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}} \cdot \sqrt{\mathrm{~S}_{1}-\mathrm{S}_{2}+\mathrm{S}_{3}} \cdot \sqrt{\mathrm{~S}_{1}+\mathrm{S}_{2}-\mathrm{S}_{3}}}{2 \cdot \mathrm{~S}_{1}}
\]


Just try asking Mathcad Plus 6 to solve for S3 in the previous equation.
\[
\begin{gathered}
\mathrm{S}_{4}:=\sqrt{\mathrm{S}_{2}^{2}-\mathrm{H}^{2}} \quad \mathrm{~S}_{\mathrm{Xa}}:=\mathrm{S}_{1}+\mathrm{S}_{4} \quad \mathrm{~S}_{\mathrm{Xb}}:=\mathrm{S}_{1}-\mathrm{S}_{4} \\
\mathrm{~S}_{4}=3.873 \\
\mathrm{~S}_{3 \mathrm{a}}:=\sqrt{\mathrm{H}^{2}+\mathrm{S}_{\mathrm{Xa}}^{2}} \quad \mathrm{~S}_{3 \mathrm{a}}=6.945 \\
\mathrm{~S}_{3 \mathrm{~b}}:=\sqrt{\mathrm{H}^{2}+\mathrm{S}_{\mathrm{Xb}}}{ }^{2} \quad \mathrm{~S}_{3 \mathrm{~b}}=1.327 \\
\mathrm{~S}_{4}<\mathrm{S}_{1}=0
\end{gathered}
\]

Given that the major axis is AD and the minor axis is twice CX , derive the formula for the radius CE , the height BE , and the foci axis MN.

\[
\begin{aligned}
& \mathrm{AD}:=10 \quad \mathrm{AC}:=\frac{\mathrm{AD}}{2} \quad \mathrm{R}:=7 \quad \delta:=1 . . \mathrm{R}-1 \\
& \mathrm{AB}_{\delta}:=\delta \cdot \frac{\mathrm{AD}}{\mathrm{R}} \quad \mathrm{BD}_{\delta}:=\mathrm{AD}-\mathrm{AB}_{\delta} \\
& \mathrm{CX}:=\frac{\mathrm{AC} \cdot 3}{4} \quad \mathrm{CY}:=\mathrm{CX} \quad \mathrm{CF}:=\mathrm{AC} \\
& \mathrm{BF}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{BD}_{\delta}} \quad \mathrm{BC}_{\delta}:=\sqrt{\mathrm{CF}^{2}-\left(\mathrm{BF}_{\delta}\right)^{2}} \\
& \mathrm{BE}_{\delta}:=\frac{\mathrm{BF}_{\delta} \cdot \mathrm{CY}}{\mathrm{CF}} \quad \mathrm{CE}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}+\left(\mathrm{BC}_{\delta}\right)^{2}} \\
& \mathrm{CE}:=\frac{\sqrt{16 \cdot \mathrm{AB} \cdot \mathrm{BD} \cdot \mathrm{CX}^{2}+\mathrm{AD}^{4}-4 \cdot \mathrm{AB} \cdot \mathrm{BD} \cdot \mathrm{AD}^{2}}}{2 \cdot \mathrm{AD}} \\
& \mathrm{MN}:=2 \cdot \sqrt{\left(\frac{\mathrm{AD}}{2}\right)^{2}-\mathrm{CX}^{2}} \mathrm{BE}:=2 \cdot \sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{BD}} \cdot \frac{\mathrm{CX}}{\mathrm{AD}}
\end{aligned}
\]

The length of the radius is given in CE , the height in BE , and the foci axis in MN.


\section*{The Delian Quest}

Introduction
The Delian Quest is a novel written primarily in two languages, Geometry and Algebra. The smattering of English is of no great consequence. The figure is Geometric Grammar, the equations are Algebraic Grammar.
Place Introduction to logic here.


This was originally type written and hand drawn figures. I ran copies off to send out into a non receptive world. I did not blush at my own ignorance.

\section*{THE DELIAN SOLUTION}

I do not view the Delian Problem in the traditional sense, that is as the problem of duplicating a cube. I view the problem of duplication as only one application for a Geometric process of general cube root abstraction. Truisms and processes are there to be discovered, if they are at all possible, it is possible to discover them. The Delian Problem is, for the correct Geometric figure, just one application of that figure. But then I am not a Geometer. In fact I dropped out of College to work on some items that I think are of particular importance, and tracing down the solution of the Delian Problem was just an example of some of the researches for that work. I have not even studied much of applied Geometry, I have been working on the theoretical aspects of it. Therefor this is an amateurs presentation and is not anything resembling a "finished" demonstration. The preceding figures are, however, technically correct abstractions.

While doing my first once over of the Elements, I found the propositions in Book 2 relating to the equality of complements. It occurred to me that since this was the correct method in which to manipulate area, an extension of it could be used to manipulate volume. This proved, after much searching, to be true. An extension of the figure can be used to abstract cube roots as well.

To cube a three dimensional rectilineal figure one has to start with the concepts of area manipulation on the two dimensional level. Starting with the rectangle in plate 1, one can see step by step, through plate 4, how to manipulate the figure while retaining the same area. If you study the Elements you will find a more complete set of abstracts to learn from. The method of squaring two sides is an abstract from this method.


Plate 1

Plate 3



Plate 2


Plate 4

The question becomes- "Can the figure be extended to work with three sides and retain the same volume?"

I will take a short side trip. Turn to plate 5 . Given a square and any point on the diagonal ray off the square, that is, extended outside of that square, divide two sides of that square into identical ratios with a ray from the chosen point. Plate 5 demonstrates the solution. If you play with the figure long enough you will find that it is a direct abstract from the figure that yields square roots. Length \(A B=C D, B C=D E\). This is not a trivial matter, for to perform cubic reductions we will have to find a method to divide this square into three such segments that have a special relationship.


Plate 5
\(A B=C D \cdot B C=D E\)

Let us take a "bar" as in P. 6 and put two of its sides back to back as in P.7. Also lay out a 45 degree angle, as that is what our cube will have to end with. In P. 8 we lay out where the cube is suppose to take place and we place in the two rays that will make the respective area manipulations. After several of these figures we will note that the two angles are indeed related because it always takes exactly two divisions to cube the figure, however, in this configuration I cannot gather any hint of another relationship between these two rays, or their angles.

P. 7

\section*{P. 6}

P. 8

P. 9

If I place both rays on the same side of the figure, I not only save paper, I also see a relationship, \(A=D, B=E, C=F\), and by working with these segments find that the square root of \(A C=B\).

P. \(10 A=D, B=E, C=F\)

P. 11

With a little more playing around, I note also that I can put a "hat" on the figure and that rays from the corners of the square under that figure will always converge on that semicircle. The immediate implication is that, not only is the square root related to the right angle, but the cube root as well.


Let us work with the square in a right angle for a moment. In P. 12 we find the answer to the question"How do I find the square in a right triangle?"


Plate 13


Plate 14


Plate 15

In Plates 13 through 16, we find the answer to the question-"Given a length of line, and another that must be one third or less of the first, what is the right angle which contains this segment as one side of a square?" The questions could be stated more technically than this, but-.

Plate 16



In P. 17 We see that "The square in a right triangle is equal to the square of the remaining two segments, and in a duplicate ratio and"

P. 18 "The three triangles on the sides of that square are in a triplicate ratio to those sides of that square."

P. 19 Shows another square that can be formed using the same segments as the square in a right triangle. This square will be used in demonstrating another triplicate ratio, and that is the Pythagorean principle for cube roots.


Plate 20 Demonstrates the triple implication of the Pythagorean theorem in the cubic expression. It will also do well to note that the three squares in continued proportion on the diagonal of the square under the right angle major have the same relationship as the segments on the hypotenuse of that given right angle.

There is one more triple proportion to look at. Plate 21.


All three semicircles intersect the semicircle which we draw our right angle in at the same point (A). From the center of the square under our eventual right angle (E) until they all intersect on that semicircle (A) they will produce a 90 degree angle divided into a 45 in the semicircle that is used for the square root application. I will leave it to the inquisitive reader to find the proper method of using this information to find a the method to find the intersect of the two rays under this figure. One will note that I have written in the progression along the bottom of the plate of the lengths involved.

Let us turn now to a simple but very productive diagram, Plate 22.


How close is the segment \(A B\) to the cube root of the circle given as a sphere? Is it well within pencil tolerances?

What approximate cube root figure is the segment CB a part of? (for abstract see Plate 12.)


Plate 23

On Plate 24 the radius for the circle OP is given by MN.


One of the items that one will find in working with the figure is that it is infinitely recursive, by adding a couple of lines in the right place, one has another cubic relationship.

How do we test for accuracy of our cubic results? It will be noted that on the line that is the cube root of \(B^{2} A\) (if you have missed it, the figure gives both roots, \(A^{2} B\) and \(B^{2} A\) ) there is a series of intersects, (three of them). When these intersects form a line
parallel to the base of the figure then the result is accurate, this should have been abstracted, and used for proof, during one's play with P. 7 and P.8.

A great number of propositions relating to the figure can be generated, of which I shall not here produce any. Doubling of the cube came very early in my search, the difficult part was in learning how to abstract any root. Now I have much work to do, and much learning to do to complete that work and I hope you have fun with the figure.J.C.

I was so happy with myself that I found all this out on my own that I sent it out to see if anyone would publish it. The returns indicate that it was stillborn, however I continue my explorations. Good books on Geometrical constructions are not readily available and I am quite ignorant of what has been done in the way of plane Geometry. I strike out more or less on my own on the Delian Quest. I take only One Cirlce, One Square, and One Line as my travel companions, not to mention Elementary Algebra as a consultant.

\section*{GEOMETRIAE DEDICATA}

ManagingEditors:
K. STRAMBACH

MathematischesInstitut
Bismarckstr. 1 1/2
D-8520 Eriangen
ER. Germany
Telephone: (0)9131-8525(X)
or 852502
F. D. VELDKANW

NblemakchMm4uw
Postbus 80.010
3508 TA Utrecht
The Netherlands
Telephone: (0)30-531519
Utrecht, 15 December 1989

\section*{Dear Mr. Clark,}

From Kluwer academic publishers I received your manuscript The Delian Solution which they presumed you wanted to submit
for Geometriae Dedicata. It is not clear to me what these considerations on elementary Euclidean geometry are aiming at.
Geometriae Dedicata is a journal for research in modern geometry and related fields. I think it is not the place to publish your manuscript, which we cannot accept therefore. I return the three copies under separated cover.

Sincerely,
F.D. Veldkamp

American Mathematical Society
PO. Box 6248, Providence, Rhode Island 02940 USA Telephone (401) 272-9500
Telex 797192, FAX 401-331-3842
Location:
201 Charles Street
Providence, RI
02904
December 8, 1989
Professor Professor John J. Clark
Dear Professor Clark,
I recently received your manuscript entitled "The Delian solution" for consideration in BULLETIN (NEW SERIES) OF THE AMERICAN MATHEMATICAL SOCIETY. Please note that I am forwarding your paper to Professor Roger E. Howe (Department of Mathematics, Yale University, New Haven. CT 06520) and that you should address all your inquiries to the editor.

Sincerely yours,
Christine Vendettuoli
Publications Department

Serving the mathematical community for over 100 years

\section*{American Mathematical Society}

Mathematics

\section*{Roger E.Howe}

Bulletin
Editorial Committee

Department of
Yale University
Box 2155, Yale Station
New Haven, CT 06520

December 14, 1989
Dear Professor Clark:
I regret to inform you that we are unable to accept your paper, "The Delian solution" for publication in the Bulletin. Our reviewers felt that the results are not of sufficient general interest or significance to warrant publication in the Bulletin.

Yours truly, Roger E. Howe Editor
Research Bulletin
REH/med

\section*{JOURNAL OF GEOMETRY}

\author{
Editor's Office
}

Prof. Dr. H.-J. Kroll
Mathematisches Institut
Technische Universitiit Munchen
Arcisstr. 21
D-8000 Munchen 2
January 17, 1990

\section*{Dear Professor Clark,}

Thank you very much for your manuscript on "THE DELIAN SOLUTION".
Date of receipt is January 12, 1990. As soon as we have the referee's report at hand, you will receive further information.

Yours sincerely, H. -J. Kroll

Expert opinion on the article "The Delian Solution" of John J. Clark: You can find some interesting statements in the submitted version of this article but exact constructions are missing. Mostly it's not clear where some points or lines come from. Therefore the proofs also cannot be examined very good. And for the more complicated constructions it's very difficult to follow the ideas of the author. Moreover the relation between the single statements and the opening problem doesn't come out very good.
All together the article in the given version is not understandable.

\section*{JOURNAL OF GEOMETRY \\ Editor's Office}

München, 1 June 1990
Dear Professor Clark, Your paper "The Delian Solution" submitted to the Journal of Geometry is hereby regrettably returned by the decision of the reviewers.
We are very sorry that we could not be of any help to you.
Sincerely yours,

\author{
H. -J. Kroll
}
(This one is a form letter.)

\section*{société mathématique defrance}
paris, le
BULLETIN
n. réf.
a l'attention de
v. réf.

Cher(e) collègue,
Le Comité de Rédacton du Bulletin de la Société Mathématique de France n'a pas pu accepter votre article intitulé


Malgré l'intérêt de votre travail, celui-ci ne correspond pas à l'esprit de notre Revue destinée à un large public de mathématiciens et non à des lecteurs trop spécialisés.

Nous vous prions d'agréer, cher(e) collégue, l'expression de nos sentiments les meilleurs.

\section*{P. SCHAPIRA}

Directeur de la Publication
P.J. : Manuscrit



\section*{A Triplicate Ratio 06/20/92}

Given some point \(O\) place CE on BF such that \(O\) is the point of similarity.
\[
\begin{aligned}
& \mathrm{N}:=1.52 \quad \mathrm{~N}_{2}:=.89 \quad \mathrm{~N}_{3}:=.66 \\
& B F:=N \quad M O:=N_{2} \quad C E:=N_{3} \\
& \text { FM }:=\sqrt{2 \cdot \text { BF }^{2}} \quad \text { AB }:=\frac{B F \cdot M O}{\text { FM }} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{AQ}:=\frac{\mathrm{CE}}{2} \\
& \mathrm{DQ}:=\sqrt{\mathrm{AD}^{2}+\mathrm{AQ}^{2}} \text { QR }:=\mathrm{DQ} \text { QP }:=\mathrm{DQ} \\
& A P:=\mathbf{Q P}-\mathbf{A Q} \quad \mathbf{A R}:=\mathbf{Q R}+A Q \quad \mathbf{A C}:=\mathbf{A P} \\
& \mathrm{AE}:=\mathrm{AR} \text { AO: }:=\mathrm{AF} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \\
& \text { EF :=AF - AE EK := EF BH := EK } \\
& \frac{\mathbf{B C}}{\mathbf{B H}}-\frac{\mathbf{A C}}{\mathbf{A O}}=\mathbf{0}
\end{aligned}
\]

The last ratiocan be tediously proved by reducing each term to the givens.

Edit 062800

\section*{08/12/92 Rusty Cube of a Sphere}

Given AB, how close is BJ to the cube root of \(A B\) taken as a sphere?


\(\mathrm{CD}:=\mathrm{BD}-\mathrm{CG} \quad \mathrm{DG}:=\sqrt{\mathrm{CD}^{2}+\mathrm{CG}^{2}}\)
\[
\mathbf{G J}:=\sqrt{\mathbf{D J}^{2}-\mathrm{DG}^{2}} \quad \mathrm{AC}:=\mathrm{AB}+\mathbf{B C}
\]
\[
A G:=\sqrt{A C^{2}+\mathbf{C G}^{2}}
\]
\[
\mathbf{A} \mathbf{J}:=\mathbf{A} \mathbf{G}+\mathbf{G} \mathbf{J}
\]
\(A E:=\frac{\mathbf{A C} \cdot \mathbf{A J}}{\mathbf{A G}}\)
EJ \(:=\frac{C G \cdot A J}{A G}\)
BE :=AE-AB
\(\mathbf{B J}:=\sqrt{\mathbf{E J}^{2}+\mathbf{B E}^{2}}\)


\section*{01/08/93 Pythagoras Revisited}

Given \(A B, B C, A C\), what is \(C D\) and CJ?

\[
\mathrm{DE}:=\frac{\mathrm{EF}}{2} \quad \mathrm{AD}:=\mathrm{AE}+\mathrm{DE} \quad \mathrm{AD}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot \mathrm{~S}_{1}}
\]
BD := BF + DE
\[
\mathrm{BD}:=\frac{\mathrm{S}_{2}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{2 \cdot \mathrm{~S}_{1}}
\]
\[
\mathbf{C D}:=\sqrt{\mathbf{A C}^{2}-\mathrm{AD}^{2}}
\]
\[
\mathrm{CD}:=\frac{\sqrt{\left(-\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}\right)}}{2 \cdot \mathbf{S}_{\mathbf{1}}}
\]

\[
\begin{aligned}
& \mathbf{A J}:=\frac{\mathbf{A B}}{2} \quad \mathbf{J D}:=\mathbf{A D}-\mathbf{A J} \quad \mathbf{C J}:=\sqrt{\mathbf{J D}^{2}+\mathbf{C D}^{2}} \\
& \mathbf{C J}:=\frac{1}{2} \cdot \sqrt{2 \cdot S_{3}{ }^{2}-\mathrm{S}_{1}{ }^{2}+2 \cdot \mathbf{S}_{2}{ }^{2}} \\
& \left(\mathbf{A C}^{2}+\mathbf{B C}^{2}\right)-\left(\frac{\mathbf{A B}^{2}}{2}+2 \cdot \mathbf{C J}^{2}\right)=0
\end{aligned}
\]

The sum of the squares on any two sides of any triangle is equal to the sum of half the square on the remaining side plus twice the square on the medial bisector (CJ).
\[
\begin{aligned}
& S_{1}:=\mathbf{2 . 2 4} \quad S_{2}:=1.046 \quad S_{3}:=1.7 \\
& S_{1}:=S_{1} \quad S_{\mathbf{2}}:=\mathbf{S}_{\mathbf{2}} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{S}_{\mathbf{3}} \\
& A B:=\mathbf{S}_{1} \quad B C:=\mathbf{S}_{\mathbf{2}} \quad \mathrm{AC}:=\mathbf{S}_{\mathbf{3}} \\
& \mathrm{AG}:=\mathrm{AC} \quad \mathrm{BH}:=\mathrm{BC} \quad \mathrm{AE}:=\frac{\mathbf{A G ^ { 2 }}}{\mathrm{AB}} \\
& \mathrm{BF}:=\frac{\mathrm{BH}^{2}}{\mathrm{AB}} \quad \mathrm{EF}:=\mathrm{AB}-(\mathrm{AE}+\mathrm{BF})
\end{aligned}
\]

\section*{06/03/93.MCD Exploring The Curve CJ}


Given AG and GF = AG/3 and any \(A C\), is \(B D\) the square root of \(A B x\) DG?
\[
\begin{aligned}
& \mathrm{N}:=\mathbf{2} \quad \mathbf{N}_{2}:=\mathbf{4} \\
& \text { AG }:=\mathbf{N} \quad \text { AC }:=\frac{\mathbf{A G}}{\mathbf{N}_{2}} \quad \text { GF }:=\frac{\mathbf{A G}}{3} \quad \text { AE }:=\frac{\mathbf{A G}}{2} \\
& \text { EG }:=\mathbf{A E} \quad \text { AF }:=\mathbf{A G}-\mathbf{G F} \quad \text { FM }:=\sqrt{\mathbf{A F} \cdot \mathbf{G F}} \\
& \text { GM }:=\sqrt{\mathbf{G F}^{2}+\mathbf{F M}^{2}} \quad \mathbf{G N}:=\mathbf{G M} \quad \text { EN }:=\sqrt{\mathbf{G N}^{2}-\mathbf{E G}^{2}} \\
& \text { NH }:=\mathbf{G M} \quad \text { NS }:=\mathbf{G M} \quad \text { PN }:=\mathbf{A E} \quad \text { PS }:=\mathbf{N S}-\mathbf{P N} \\
& \text { ST }:=\mathbf{2} \cdot \mathbf{G M} \quad \text { SQ }:=\mathbf{A C}+\mathbf{P S} \quad \text { QT }:=\mathbf{S T}-\mathbf{S Q} \\
& \text { QH }:=\sqrt{\text { SQ } \cdot \mathbf{Q T}} \quad \text { CQ }:=\mathbf{E N} \quad \text { CH }:=\mathbf{Q H}-\mathbf{C Q}
\end{aligned}
\]
\[
\mathrm{AH}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CH}^{2}} \quad \mathrm{CG}:=\mathrm{AG}-\mathrm{AC} \quad \mathrm{GH}:=\sqrt{\mathrm{CG}^{2}+\mathrm{CH}^{2}} \quad \mathrm{AJ}:=\mathrm{AH} \quad \mathrm{AB}:=\frac{\mathbf{A J}}{\mathrm{AG}}
\]
\[
\mathbf{G L}:=\mathbf{G H} \quad \mathbf{D G}:=\frac{\mathbf{G L}^{2}}{\mathbf{A G}} \quad \mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G}) \quad \sqrt{\mathbf{A B} \cdot \mathbf{D G}}-\mathbf{B D}=\mathbf{0}
\]
\[
\left(\frac{-\mathbf{N}}{3}+\frac{\mathbf{N}}{3} \cdot \frac{\sqrt{\mathbf{N}_{2}^{2}+12 \cdot \mathbf{N}_{2}-12}}{\mathbf{N}_{2}}\right)-B D=0
\]

06/07/93 For All Triangles Find BD


Given \(A B, B C, A C, C D, A D\), find \(B D\)

To simplify use line names found in 010893
\(S_{1}:=5.55\)
\(S_{2}:=4.61\)
\(S_{3}:=1.5\)
\(S_{5}:=4.5\)
\[
S_{6}:=5.48
\]
\(A B:=S_{5} \quad B C:=S_{6} \quad A C:=S_{1} \quad C D:=S_{3} \quad A D:=S_{2}\)
\(\mathrm{DE}:=\frac{\sqrt{\left(-S_{1}+S_{2}-S_{3}\right) \cdot\left(S_{1}+S_{2}+S_{3}\right) \cdot\left(S_{1}-S_{2}-S_{3}\right) \cdot\left(S_{1}+S_{2}-S_{3}\right)}}{2 \cdot S_{1}}\)
\(B F:=\frac{\sqrt{\left(-S_{1}+S_{5}-S_{6}\right) \cdot\left(S_{1}+S_{5}+S_{6}\right) \cdot\left(S_{1}-S_{5}-S_{6}\right) \cdot\left(S_{1}+S_{5}-S_{6}\right)}}{2 \cdot S_{1}}\)
\(\mathrm{CE}:=\sqrt{\mathrm{CD}^{2}-\mathrm{DE}^{2}} \quad \mathrm{CF}:=\sqrt{\mathrm{BC}^{2}-\mathrm{BF}^{2}} \quad \mathrm{EF}:=\mathrm{CF}-\mathrm{CE} \quad \mathrm{GF}:=\mathrm{DE}\)
\(B G:=B F-G F \quad D G:=E F \quad B D:=\sqrt{D G G^{2}+\mathbf{B G}^{2}} \quad B D=3.983\)
OR
\[
\mathrm{BG}_{2}:=\mathrm{BF}+\mathrm{GF} \quad \mathrm{DG}_{2}:=\mathrm{EF} \quad \mathrm{BD}_{2}:=\sqrt{\mathrm{DG}^{2}+\mathrm{BG}_{2}^{2}} \quad \mathrm{BD}_{2}=5.757
\]

\section*{06/09/93 Rectangular Roots}


Given AD and DE divide AD into the rectangular roots of \(D E\).
\[
\mathbf{N}:=5 \quad \mathbf{N}_{2}:=\mathbf{2}
\]
\[
\text { AD }:=\mathbf{N} \quad \text { DE }:=\mathbf{N}_{2} \quad \text { CF }:=\mathrm{DE} \quad \text { BF }:=\frac{\mathbf{A D}}{2}
\]
\(\mathrm{AB}:=\mathrm{BF} \quad \mathrm{BC}:=\sqrt{\mathrm{BF}^{2}-\mathrm{CF}^{2}} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \quad \sqrt{\mathrm{CD} \cdot \mathrm{AC}}-\mathrm{DE}=0\)
\[
A C:=\frac{1}{2} \cdot N+\frac{1}{2} \cdot \sqrt{-4 \cdot N_{2}^{2}+N^{2}} \quad C D:=\frac{1}{2} \cdot N-\frac{1}{2} \cdot \sqrt{-4 \cdot N_{2}^{2}+N^{2}}
\]

\section*{06/21/93 Pyramid of Ratios I}


Divide AB by N 1 then divide CD by N2, what are \(B F / E F\) and \(A C / A F\) ?
\[
\begin{aligned}
& \mathrm{N} 1:=3 \quad \mathrm{~N} 2:=5 \quad \delta:=1 . . \mathrm{N} 2 \\
& \mathrm{AB}:=1 \quad \mathrm{AD}:=\frac{\mathrm{AB}}{\mathrm{~N} 1} \quad \mathrm{AL}:=\frac{\mathrm{AB}}{2} \\
& \mathrm{DL}:=\mathrm{AL}-\mathrm{AD} \quad \mathrm{AC}:=\sqrt{\frac{\mathbf{A B}^{2}}{2}}
\end{aligned}
\]
\[
\mathrm{CL}:=\mathrm{AL} \quad \mathrm{CD}:=\sqrt{\mathrm{DL}^{2}+\mathrm{CL}^{2}}
\]
\[
\begin{aligned}
& \mathrm{DE}_{\delta}:=\frac{\mathrm{CD} \cdot \delta}{\mathrm{~N} 2} \quad \mathrm{DK}_{\delta}:=\frac{\mathrm{DL} \cdot \mathrm{DE}_{\delta}}{\mathrm{CD}} \quad \mathrm{AK}_{\delta}:=\mathrm{AD}+\mathrm{DK}_{\delta} \quad \mathrm{BK}_{\delta}:=\mathrm{AB}-\mathrm{AK}_{\delta} \quad \mathrm{EK}_{\delta}:=\frac{\mathrm{CL} \cdot \mathrm{DK}_{\delta}}{\mathrm{DL}} \\
& \mathrm{BE}_{\delta}:=\sqrt{\left(\mathbf{E K}_{\delta}\right)^{2}+\left(\mathrm{BK}_{\delta}\right)^{2}} \quad \mathrm{HK}_{\delta}:=\frac{\mathrm{AL} \cdot \mathrm{DK}_{\delta}}{\mathrm{DL}} \quad \mathrm{BH}_{\delta}:=\mathrm{BK}_{\delta}+\mathrm{HK}_{\delta} \quad \mathrm{EH}_{\delta}:=\frac{\mathrm{AC} \cdot \mathrm{DK}}{\delta} \\
& \mathrm{DL} \\
& \mathrm{AF}_{\delta}:=\frac{\mathrm{EH}_{\delta} \cdot \mathbf{A B}}{\mathrm{BH}_{\delta}} \quad \mathrm{BF}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{AB}}{\mathrm{BH}_{\delta}} \quad \mathrm{EF}_{\delta}:=\mathrm{BF}_{\delta}-\mathrm{BE}_{\delta}
\end{aligned}
\]


\section*{06/27/93 Describe A Circle About a Triangle}

Given the difference between three non-collinear points, find the radius of the circle that circumscribes them
\[
\Delta:=(\mathbf{A B}+\mathbf{A C}>\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{B C}>\mathbf{A C}) \cdot(\mathbf{B C}+\mathbf{A C}>\mathbf{A B}) \quad \text { NOT }(X):=\mathrm{X}=\mathbf{0} \quad \delta:=0 . .2
\]

\[
\begin{aligned}
& \mathbf{B K}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A E}:=\mathbf{A C} \quad \mathbf{B F}:=\mathbf{B C} \\
& \mathbf{A G}:=\frac{\mathbf{A E}}{\mathbf{A B}} \quad \mathbf{B J}:=\frac{\mathbf{B F ^ { 2 }}}{\mathbf{A B}} \quad \mathbf{G J}:=\mathbf{A B}-(\mathbf{A G}+\mathbf{B J}) \\
& \mathbf{H J}:=\frac{\mathbf{G J}}{\mathbf{2}} \quad \mathbf{B H}:=\mathbf{B J}+\mathbf{H J} \quad \mathbf{C H}:=\sqrt{\mathbf{B C}^{2}-\mathbf{B H}^{2}} \\
& \mathbf{B N}:=\frac{\mathbf{B C}}{\mathbf{2}} \quad \mathbf{B M}:=\frac{\mathbf{B C} \cdot \mathbf{B K}}{\mathbf{B H}} \quad \mathbf{M N}:=\mathbf{B M}-\mathbf{B N} \\
& \mathbf{D N}:=\frac{\mathbf{B H} \cdot \mathbf{M N}}{\mathbf{C H}} \quad \mathbf{B D}:=\sqrt{\mathbf{B N}^{2}+\mathbf{D N}^{2}}
\end{aligned}
\]
radius := \(\mathbf{i f}(\Delta, \mathbf{B D}, \mathbf{0})\)
imaginary_radius \(:=\mathbf{i f}(\operatorname{NOT}(\Delta), B D, 0)\)
radius \(=\mathbf{3 . 3 7 5}\)
imaginary_radius \(=0\)
\(\Delta=1\)
\[
\mathrm{S}_{1}:=\left[\begin{array}{c}
\mathrm{AB} \\
\mathrm{AC} \\
\mathrm{BC}
\end{array}\right] \quad \mathrm{S}_{2}:=\left[\begin{array}{c}
\mathrm{AC} \\
\mathrm{BC} \\
\mathrm{AB}
\end{array}\right] \quad \mathrm{S}_{3}:=\left[\begin{array}{c}
\mathrm{BC} \\
\mathrm{AB} \\
\mathrm{AC}
\end{array}\right]
\]
\[
A B \equiv 3 \quad A C \equiv 4 \quad B C \equiv 6
\]

The name of the Radius as a proportion of the given names
\[
\begin{gathered}
\mathbf{R}_{\delta}:=\frac{S_{1_{\delta}} \cdot S_{2_{\delta}} \cdot S_{3_{\delta}}}{\sqrt{S_{1_{\delta}}+S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{-S_{1_{\delta}}+S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{S_{1_{\delta}}-S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{S_{1_{\delta}}+S_{2_{\delta}}-S_{3_{\delta}}}} \\
\mathbf{R}^{T}=\left[\begin{array}{lll}
3.375 & 3.375 & 3.375
\end{array}\right]
\end{gathered}
\]

\section*{07/15/93 Pyramid of Ratios II}
\(A B\) is divided by \(N 1\) and \(A C\) and \(B D\) is divided by \(N 2\), what are EG/FG and CD/DF?

\(\mathbf{N}_{1}:=3 \quad \mathbf{N}_{2}:=5 \quad \delta:=1 . . \mathbf{N}_{2}\)
AB \(:=1 \quad\) AD \(:=\frac{\mathbf{A B}}{\mathbf{N}_{1}} \quad\) AC \(:=\sqrt{\frac{\mathbf{A B}^{2}}{2}} \quad\) BD \(:=\mathrm{AB}-\mathbf{A D}\)
\(\mathrm{DE}_{\delta}:=\frac{\mathrm{BD} \cdot \delta}{\mathbf{N}_{2}} \quad \mathrm{AG}_{\delta}:=\frac{\mathbf{A C} \cdot \delta}{\mathbf{N}_{2}} \quad \mathrm{AE}_{\delta}:=\mathrm{AD}+\mathrm{DE}_{\delta}\)
\(A H_{\delta}:=\sqrt{\frac{\left(A G_{\delta}\right)^{2}}{2}} \quad G H_{\delta}:=A H_{\delta} \quad E H_{\delta}:=A E_{\delta}-A H_{\delta}\)
\(\mathbf{E G}_{\delta}:=\sqrt{\left(\mathbf{E H}_{\delta}\right)^{2}+\left(\mathbf{G H}_{\delta}\right)^{2}} \quad \mathrm{AL}:=\frac{\mathrm{AB}}{2} \quad \mathrm{DL}:=\mathrm{AL}-\mathrm{AD}\)
\[
\begin{aligned}
& \mathrm{CL}:=\sqrt{\frac{\mathrm{AC}^{2}}{2}} \quad \mathrm{HK}_{\delta}:=\frac{{\mathrm{DL} \cdot \mathrm{GH}_{\delta}}_{\mathrm{CL}}^{E K_{\delta}}:=\mathrm{EH}_{\delta}+\mathrm{HK}_{\delta} \quad \mathrm{DJ}_{\delta}:=\frac{\mathrm{HK}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}} \quad \mathrm{FJ}_{\delta}:=\frac{\mathrm{GH}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}}}{\mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{DJ}_{\delta}\right)^{2}+\left(\mathrm{FJ}_{\delta}\right)^{2}} \quad \mathrm{EF}_{\delta}:=\frac{\mathrm{EG}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}} \quad \mathrm{FG}_{\delta}:=\mathrm{EG}_{\delta}-\mathrm{EF}_{\delta} \quad \mathrm{CD}:=\sqrt{\mathrm{CL}^{2}+\mathrm{DL}^{2}}}
\end{aligned}
\]
\[
\left.\begin{array}{ll}
\text { if }\left(\mathbf{F G}_{\delta}, \frac{\mathbf{E G}_{\delta}}{\mathbf{F G}_{\delta}}, 0\right.
\end{array}\right) \quad \text { if }\left[\mathbf{N}_{2}-\delta, \frac{\mathbf{N}_{2}+\delta \cdot\left(\mathbf{N}_{1}-2\right)}{\mathbf{N}_{2}-\delta}, 0\right]
\]
\[
\mathbf{i f}\left(\delta, \frac{\mathrm{CD}}{\mathrm{DF}_{\delta}}, \mathbf{0}\right)
\]
\[
\text { if }\left[\delta, \mathbf{N}_{2} \cdot \frac{\left[\left(\mathbf{N}_{2}+\delta \cdot \mathbf{N}_{1}\right)-2 \cdot \delta\right]}{\left[\delta^{2} \cdot\left(\mathbf{N}_{1}-1\right)\right]}, 0\right]
\]
\begin{tabular}{|c|}
\hline 15 \\
\hline 4.375 \\
\hline 2.222 \\
\hline 1.406 \\
\hline 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 15 \\
\hline 4.375 \\
\hline 2.222 \\
\hline 1.406 \\
\hline 1 \\
\hline
\end{tabular}

\section*{07/25/93 Pyramid of Ratios III}

\section*{Dividing DC by an number provides wht in terms of BE/BF and AF/CF?}


\section*{11/06/93 Gruntwork I on the Delian Solution}


Does \(\left(A B^{2} \times A H\right)^{1 / 3}=A C\) and \(\left(A B \times A H^{2}\right)^{1 / 2}=A E ?\)
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{4} \quad \text { BH : }=\mathbf{1} \\
& \text { BF }:=\frac{B H}{2} \text { BD }:=\frac{B F}{N} \text { DH }:=B H-B D \\
& \text { DK }:=\sqrt{\text { BD } \cdot \text { DH }} \quad \text { BJ }:=\mathrm{DK} \quad \mathrm{BO}:=\mathrm{BH} \\
& \text { JO }:=\text { BJ }+ \text { BO } \quad \text { JK }:=\text { BD } \quad \text { CD }:=\frac{\text { JK DK }}{\text { JO }} \\
& \text { KL }:=\text { DH LP }:=\text { JO } \quad \text { DE }:=\frac{\text { KL } \cdot \text { DK }}{\text { LP }} \\
& \text { BC :=BD - CD CE := CD + DE MN:= BC }
\end{aligned}
\]

GH \(:=\mathbf{M N} \quad \mathbf{C H}:=\mathbf{B H}-\mathbf{B C} \quad\) HN \(:=\sqrt{2 \cdot \mathbf{C H}^{2}} \quad\) GM \(:=\mathbf{H N} \quad\) EH \(:=\mathbf{C H}-\) CE \(\quad\) EG \(:=\mathbf{E H}-\mathbf{G H}\) HQ \(:=\frac{G M \cdot E H}{E G} \quad H O:=\sqrt{2 \cdot B^{2}} \quad\) OQ \(:=H Q-H O \quad O R:=\sqrt{\frac{O Q^{2}}{2}} \quad\) AB \(:=O R \quad A C:=A B+B C\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BD}+\mathrm{DE} \quad \mathrm{AH}:=\mathrm{AB}+\mathrm{BH} \quad\left(\mathrm{AB}^{2} \cdot \mathrm{AH}\right)^{\frac{1}{3}}-\mathrm{AC}=0 \quad\left(\mathrm{AB} \cdot \mathrm{AH}^{2}\right)^{\frac{1}{3}}-\mathrm{AE}=0\)

\section*{11/09/93 Solve For Cube Root Placement}

With straight edge and compass only, solve the given problem. BH is the difference between the segments AH and AB.
CF is the difference between the cube root of \(A B\) squared by \(A H\) and the cube root of \(A H\) squared by \(A B\). Find \(A B\) and place the roots.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{2} \quad \mathbf{B H}:=\mathbf{N} \mathbf{- 1} \\
& B G:=\frac{B H}{2} \quad C F:=N^{\frac{2}{3}}-N^{\frac{1}{3}} \\
& \text { BL }:=\text { CF } \quad \text { GP }:=B G \quad B K:=\frac{B L}{2} \\
& \text { BD := BK NP := BD GN := GP - NP } \\
& \mathbf{E N}:=\mathbf{B L} \quad \text { GE }:=\sqrt{\mathbf{G N}^{2}-\mathbf{E N}^{2}} \\
& \mathbf{C E}:=\mathrm{BD} \quad \mathrm{BC}:=\mathrm{BG}-(\mathbf{G E}+\mathbf{C E})
\end{aligned}
\]
\[
\text { GH }:=\text { BG } \quad \text { EF }:=\text { BD }
\]
\[
\begin{aligned}
& \mathrm{FH}:=\mathrm{GH}+\mathrm{GE}-\mathbf{E F} \quad \mathrm{FQ}:=\mathrm{FH} \quad \mathrm{FO}:=\mathrm{BL} \quad \text { OQ }:=\mathrm{FQ}-\mathrm{FO} \quad \text { MO }:=\mathrm{CF} \quad \mathrm{AF}:=\frac{\mathrm{MO} \cdot \mathrm{FQ}}{\mathrm{OQ}} \\
& \mathrm{AC}:=\mathrm{AF}-\mathrm{CF} \quad \mathrm{AH}:=\mathrm{AF}+\mathrm{FH} \quad \mathrm{AB}:=\mathrm{AH}-\mathrm{BH}
\end{aligned}
\]
\[
\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A F=0 \quad \frac{A H}{A B}=2
\]

The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship.

\section*{11/10/93 Gruntwork II on the Delian Solution}

Given any acute angle in the isosceles, divide the base leg as shown. Do the resultant segments show any particular relationship to one another?
\[
\mathbf{N}:=1.1 \quad \text { AE }:=10
\]

\[
\begin{aligned}
& \text { DE }:=\frac{\mathbf{A E}}{\mathbf{N}} \quad \text { AD }:=\mathbf{A E}-\mathbf{D E} \quad \text { AH }:=\mathrm{AE} \\
& \text { AG }:=\mathbf{A D} \quad \mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A E}} \quad \mathbf{A F}:=\mathbf{A C} \\
& \mathbf{A B}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A D}} \\
& \left.\left(\mathbf{A B}^{\mathbf{2}} \cdot \mathbf{A E}\right)^{\frac{1}{3}}-\mathbf{A C}=\mathbf{0} \quad(\mathbf{A B} \cdot \mathbf{A E})^{2}\right)^{\frac{1}{3}}-\mathbf{A D}=\mathbf{0}
\end{aligned}
\]
\[
\frac{A E}{A B}=1331 \quad \frac{A D}{A B}=121 \quad \frac{A C}{A B}=11
\]

\section*{11/11/93 The Archamedian Paper Trisector}

If one accepts the facts of the original figure, one only need prove that \(B K=A B\).
If one does not accept the facts, examination of the construction should make it apparent. Does \(\mathrm{FK}=\mathrm{BK}=\mathrm{AB}\) ?

\[
\mathbf{N}:=4 \quad \text { AJ }:=1 \quad \text { AE }:=\frac{\mathbf{A J}}{2} \quad \text { EJ }:=\text { AE } \quad \text { EN }:=\text { AE EM }:=\text { AE } \quad \text { AC }:=\frac{\mathbf{A J}}{\mathbf{N}}
\]
\(\mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{C N}:=\sqrt{A C \cdot C J} \quad J N:=\sqrt{\mathbf{C N}^{2}+\mathbf{C J}^{2}} \quad \mathbf{J L}:=\frac{\mathbf{J N}}{2} \quad\) GL \(:=\frac{\mathbf{C N} \cdot \mathbf{J L}}{\mathbf{J N}} \quad\) GJ \(:=\frac{\mathbf{C J} \cdot \mathbf{J L}}{\mathbf{J N}}\)
EG \(:=\) EJ-GJ \(\quad E L:=\sqrt{E G^{2}+G^{2}} \quad\) EH \(:=\frac{E G \cdot E M}{E L} \quad H M:=\frac{G L \cdot E M}{E L} \quad A H:=A E+E H\)
\(\mathrm{CO}:=\frac{\mathrm{AH} \cdot \mathrm{CN}}{\mathrm{HM}} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{EO}:=\mathrm{CO}+\mathrm{CE} \quad \mathrm{EK}:=\frac{\mathrm{EN} \cdot \mathrm{AE}}{\mathrm{EO}} \quad \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{AE}}{\mathrm{EO}} \quad \mathrm{DK}:=\frac{\mathrm{CN} \cdot \mathrm{EK}}{\mathrm{EN}}\)
\(\mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{KN}:=\mathrm{EN}-\mathrm{EK} \quad \mathrm{BK}:=\mathrm{KN} \quad \mathrm{BD}:=\sqrt{\mathrm{BK}^{2}-\mathrm{DK}^{2}} \quad \mathrm{AB}:=\mathrm{AD}-\mathrm{BD}\)
\[
A B-B K=0 \quad A B=0.25 \quad \text { If PK is parallel to AJ, then } \ldots
\]


11/12/93 To Square A Circle Off The Base Of A Right Triangle.

Sometime in 1992, I remembered
 reading that some guy spent some time in prison and learned the process for squaring a circle off the base of a right triangle but then history lost it again, so I set out to find it and did. It took a couple hours so I wonder what he did with the rest of his time?

Using the approximation,\(\pi=\) 22/7, square the circle off the base of a right triangle.
\(\mathrm{BF}:=1 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EF}:=\mathrm{BE} \quad \mathrm{EH}:=\mathrm{BE} \quad \mathrm{BD}:=\frac{3}{4} \cdot \mathrm{BE} \quad \mathrm{AB}:=\mathrm{BD}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FK}:=\frac{\mathrm{EH} \cdot \mathrm{AF}}{\mathrm{AE}} \quad \mathrm{CF}:=\mathrm{FK} \quad \mathrm{BC}:=\mathrm{BF}-\mathrm{CF}\)
\(\mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{FG}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CG}^{2}} \quad \pi_{-} \mathrm{A}:=\frac{\mathrm{FG}^{2}}{\mathrm{BE}^{2}}\)
\[
\begin{aligned}
& \pi=3.14159265359 \\
& \pi \_A=3.142857142857 \\
& \frac{\pi}{\pi \_A}=\mathbf{0 . 9 9 9 5 9 7 6 6 2 5 0 5 8 4 3}
\end{aligned}
\]

\section*{11/18/93 Exploring Cube Roots Plate A}

Using the parallel FO to project to the point of similarity for the square root, point \(L\) is used for the cube root.


N: \(=2\)

BJ \(:=1 \quad\) BH \(:=\frac{B J}{2} \quad\) HL \(:=\) BH \(\quad\) BF \(:=\frac{B H}{\mathrm{~N}}\)
\(\mathrm{FH}:=\mathrm{BH}-\mathrm{BF} \quad \mathrm{HR}:=\mathrm{BJ} \quad \mathrm{FR}:=\sqrt{\mathrm{FH}^{2}+\mathrm{HR}^{2}}\)
\(F P:=\frac{F^{2}}{F R} \quad P H:=\frac{H R \cdot F P}{F H} \quad L P:=\sqrt{H L^{2}-P^{2}}\)
FL \(:=L P-F P \quad\) DF \(:=\frac{\text { FH•FL }}{\text { FR }} \quad\) DL \(:=\frac{\text { HR } \cdot F L}{\text { FR }}\)
FO := BH MO :=FO - DL LM :=DF
\(\mathrm{AF}:=\frac{\mathrm{LM} \cdot \mathrm{FO}}{\mathrm{MO}} \quad \mathrm{AB}:=\mathrm{AF}-\mathrm{BF} \quad \mathrm{BQ}:=\mathrm{BJ}\)

BK := DL BD := BH - (FH + DF \()\)
\(K Q:=B Q+B K \quad K L:=B D \quad B C:=\frac{K L \cdot B Q}{K Q} \quad\) HJ \(:=\) BH \(\quad D J:=H J+F H+D F \quad L N:=D J\) JS \(:=\) BJ JN \(:=\mathbf{D L} \quad\) NS \(:=\mathbf{J S}+\mathbf{J N} \quad\) GJ \(:=\frac{\text { LN } \cdot \mathbf{J S}}{\text { NS }} \quad\) BG \(:=\mathbf{B J}-\mathbf{G J} \quad\) AC \(:=\mathbf{A B}+\mathbf{B C}\)
\(A G:=A B+B G \quad A J:=A B+B J \quad\left(A B^{2} \cdot A J\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A J^{2}\right)^{\frac{1}{3}}-A G=0\)

\section*{11/18/93 Exploring Cube Roots Plate B}

If \(A L=\mathbf{1 / 2}\) of \(C G\), then the circle LM passes through the square root of \(A B \times A K\), being point \(E\).

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{1 . 2} \quad \text { BK :=1 } \\
& \mathbf{B H}:=\frac{B K}{2} \quad \text { BD }:=\frac{\mathbf{B H}}{\mathbf{N}} \quad \text { DK }:=B K-B D \\
& D N:=\sqrt{B D \cdot D K} \quad B Q:=B K \quad K S:=B K \quad H R:=B K \\
& \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B Q}}{\mathbf{B Q}+\mathbf{D N}} \quad \mathbf{G K}:=\frac{\mathrm{DK} \cdot \mathrm{KS}}{K S+\mathbf{D N}} \quad \mathbf{B G}:=\mathbf{B K}-\mathbf{G K} \\
& \mathrm{DH}:=\mathrm{BH}-\mathrm{BD} \quad \mathrm{FH}:=\frac{\mathrm{DH} \cdot \mathbf{H R}}{\mathrm{HR}+\mathrm{DN}} \quad \mathrm{BF}:=\mathrm{BH}-\mathbf{F H} \\
& C F:=B F-B C \quad A L:=C F \quad D F:=B F-B D \\
& \text { NO }:=\mathrm{DF} \quad \text { FP }:=\mathrm{BH} \quad \text { PO }:=\mathrm{FP}-\mathrm{DN} \\
& \mathrm{AD}:=\frac{\mathrm{NO} \cdot \mathbf{D N}}{\mathrm{PO}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{A B}=1.523
\end{aligned}
\]
\(\mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{LM}:=\mathrm{AF} \quad \mathrm{EL}:=\mathrm{AF} \quad \mathrm{AK}:=\mathrm{AD}+\mathrm{DK}\)
\[
A E_{1}:=\sqrt{E L^{2}-\mathbf{A L}^{2}} \quad \quad A E_{2}:=\sqrt{A B \cdot A K} \quad \quad A E_{1}-\mathbf{A E}_{2}=0
\]

\section*{11/18/93 Exploring Cube Roots Plate C}

The circle AO passes through point M.
\[
\begin{aligned}
& \text { N:=1 } \\
& \text { BK :=1 } \\
& \mathbf{A B}:=\frac{\mathbf{B K}}{\mathbf{N}} \quad \mathbf{A K}:=\mathbf{A B}+\mathbf{B K} \\
& A C:=\left(A B^{2} \cdot A K\right)^{\frac{1}{3}} \quad A G:=\left(A B \cdot A K^{2}\right)^{\frac{1}{3}} \quad \frac{A K}{A B}=2 \\
& \mathbf{C G}:=\mathrm{AG}-\mathrm{AC} \quad \mathrm{CF}:=\frac{\mathrm{CG}}{2} \quad \mathrm{BH}:=\frac{\mathrm{BK}}{2} \\
& \mathbf{A H}:=\mathrm{AB}+\mathrm{BH} \quad \mathrm{HP}:=\mathrm{BH} \quad \mathrm{AP}:=\sqrt{\mathrm{AH}^{2}+\mathrm{HP}^{2}} \\
& \text { AO }:=\frac{\mathrm{AP}}{2} \quad \text { DO }:=\frac{\mathrm{HP}}{2} \quad \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \quad \mathrm{AD}:=\frac{\mathrm{AH}}{2} \\
& \text { DF }:=\mathrm{AF}-\mathrm{AD} \quad \text { FM }:=\mathrm{CF} \text { MO }:=\mathrm{AO} \\
& \mathbf{M O}^{2}-\left[\mathrm{DF}^{2}+(\mathbf{D O}+\mathbf{F M})^{2}\right]=0
\end{aligned}
\]


11/22/93 Cube by Iteration

When \(F_{1}\) and \(F_{2}\) are the same point on \(C\), then a sixth root series has been constructed. Use iteration to place \(\overline{5}\) on \(\mathrm{F}_{1}\).
\[
\mathbf{A B}:=\mathbf{1} \quad \mathbf{A E}:=\mathbf{2} \quad \delta:=\mathbf{0} . . \Delta
\]
\[
\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathbf{A E}} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathbf{C G}:=\sqrt{\mathrm{AC} \cdot \mathbf{C E}} \quad \mathrm{AG}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CG}^{2}}
\]

\[
\left[\begin{array}{c}
\mathbf{A D}_{\delta+1} \\
\mathbf{D E}_{\delta+1} \\
\mathbf{D H}_{\delta+1} \\
\mathbf{C F}_{\delta+1} \\
\mathbf{A F}_{\delta+1}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{A F}_{\delta} \\
\mathbf{A E}-\mathbf{A F}_{\delta} \\
\sqrt{\mathbf{A F}_{\delta} \cdot \mathbf{D E}}{ }_{\delta} \\
\frac{\mathbf{D H}_{\delta} \cdot \mathbf{A C}}{\mathbf{A D}_{\delta}} \\
\sqrt{\mathbf{A C}^{2}+\left(\mathbf{C F _ { \delta } ) ^ { 2 }}\right.}
\end{array}\right] \quad \Delta \equiv 166
\]


\section*{11/24/93 POR Series IV}

\section*{Generalize the work of 07/25/93 for dividing the} base AE with K constant.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{A E}:=\mathbf{1} \\
& \alpha:=\mathbf{1} . . \mathbf{N}_{\mathbf{1}}-\mathbf{1} \quad \beta:=\mathbf{1} . . \mathbf{N}_{\mathbf{2}}-\mathbf{1}
\end{aligned}
\]
\[
\mathrm{AB}:=\frac{\mathrm{AE}}{\mathbf{N}_{1}} \quad \text { AD }:=\frac{\mathrm{AE}}{\mathbf{2}} \quad \text { DK }:=\mathrm{AD} \quad \mathrm{DE}:=\mathrm{AD}
\]
\(\mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{BK}:=\sqrt{\mathbf{B D}^{2}+\mathrm{DK}^{2}} \quad \mathrm{BG}:=\frac{\mathrm{BK}}{\mathbf{N}_{2}} \quad \mathrm{BC}:=\frac{\mathrm{BD} \cdot \mathrm{BG}}{\mathrm{BK}}\)
CG \(:=\frac{\text { DK }}{\text { BK }} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{DF}:=\frac{\mathrm{CG} \cdot \mathrm{DE}}{\mathrm{CE}} \quad \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CG}^{2}}\)
EF \(:=\sqrt{\text { DE }^{2}+\text { DF }^{2}}\) AH \(:=\frac{\text { DF AE }}{\text { EF }} \quad\) EH \(:=\frac{\text { DE } \cdot \mathbf{A E}}{\text { EF }} \quad\) GH \(:=\) EH \(-\mathbf{E G} \quad\) FH \(:=\) EH \(-\mathbf{E F}\)
FJ \(:=\frac{\text { DF } \cdot \text { FH }}{\text { EF }} \quad\) HJ \(:=\frac{\text { DE•FH }}{\text { EF }} \quad\) DJ \(:=\) DF + FJ \(\quad\) JK \(:=\) DK - DJ \(\quad\) HK \(:=\sqrt{H^{2}+J^{2}}\)
\(\frac{\mathbf{A H}}{\mathrm{HK}}=0.265 \quad \frac{\sqrt{2} \cdot \mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)}=0.265 \quad \operatorname{SeriesAH}_{\alpha, \beta}:=\frac{\sqrt{2} \cdot \mathbf{N}_{1} \cdot \beta}{2 \cdot\left(\mathbf{N}_{1}-\alpha\right) \cdot\left(\mathbf{N}_{2}-\beta\right)}\)

Series \(A H=\left[\begin{array}{llll}0.265 & 0.707 & 1.591 & 4.243 \\ 0.53 & 1.414 & 3.182 & 8.485\end{array}\right]\)
\(\frac{\mathbf{E H}}{\mathrm{GH}}=2.85 \quad \mathrm{~N}_{1} \cdot \mathrm{~N}_{2} \cdot \frac{2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}+2}{\left(\mathrm{~N}_{2}-1\right) \cdot\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}+\mathrm{N}_{1}{ }^{2}-2 \cdot \mathrm{~N}_{1}+2\right)}=2.85\)
SeriesEH \(_{\alpha, \beta}:=\mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \frac{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{N}_{1} \cdot \beta+2 \cdot \alpha \cdot \beta}{\left(\mathbf{N}_{2}-\beta\right) \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \alpha^{2}+\mathbf{N}_{1} \cdot{ }^{2} \cdot \beta-2 \cdot \mathbf{N}_{1} \cdot \alpha \cdot \beta+2 \cdot \alpha^{2} \cdot \beta\right)}\)

SeriesEH \(=\left[\begin{array}{llll}2.85 & 3 & 3.643 & 6 \\ 1.65 & 2 & 2.786 & 5.25\end{array}\right]\)

\section*{12/04/93 Exponential Series \(\mathrm{M}^{\wedge}\left(1 / \mathbf{2}^{\wedge} \mathrm{N}\right)\)}

Given some number, construct a two prime exponential series from it, such as a Quad Root Series, using the common segment, common

\[
\mathbf{N}:=\mathbf{8}
\]
\[
\mathbf{A F}:=\mathbf{N} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}
\]
\[
\mathbf{B M}:=\sqrt{\mathbf{A B} \cdot \mathbf{B F}} \quad \mathbf{A M}:=\sqrt{\mathbf{A B}^{2}+\mathrm{BM}^{2}}
\]
\[
\mathbf{A N}:=\mathbf{A F} \quad \mathbf{A D}:=\frac{\mathbf{A B} \cdot \mathbf{A N}}{\mathbf{A M}} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D}
\]
\[
\mathbf{D J}:=\sqrt{\mathrm{AD} \cdot \mathrm{DF}} \quad \mathbf{A J}:=\sqrt{\mathrm{AD}^{2}+\mathrm{DJ}^{2}}
\]
\[
\begin{aligned}
& \mathbf{A K}:=\mathbf{A F} \quad \mathbf{A E}:=\frac{\mathbf{A D} \cdot \mathbf{A K}}{\mathbf{A J}} \quad \mathbf{A H}:=\mathbf{A D} \quad \mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A H}}{\mathbf{A J}} \\
& \left(A B^{3} \cdot A F^{1}\right)^{\frac{1}{4}}-A C=0 \quad\left(A B^{2} \cdot A F^{2}\right)^{\frac{1}{4}}-A D=0 \quad\left(A B^{1} \cdot A F^{3}\right)^{\frac{1}{4}}-A E=0 \\
& N^{\frac{1}{4}}-A C=0 \\
& \mathbf{N}^{\frac{2}{4}}-\mathbf{A D}=0 \\
& \mathbf{N}^{\frac{3}{4}}-\mathbf{A E}=0
\end{aligned}
\]

\section*{12/06/93 Alternate Method: Square Root} Common Segment Common Endpoint

\[
\begin{aligned}
& \mathrm{N}:=6 \quad \text { AB }:=1 \quad \mathrm{AE}:=\mathrm{AB} \cdot \mathbf{N} \\
& \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \\
& \mathrm{DF}:=\mathrm{BD} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{AF}:=\sqrt{\mathbf{A D}^{2}-\mathrm{DF}^{2}} \quad \mathrm{AC}:=\mathrm{AF} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]

\section*{12/06/93B Gruntwork IV on the Delian Solution}

Are APQ colinear? Are AKN colinear?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \text { AC }:=1 \quad \text { AJ }:=\mathbf{A C} \cdot \mathbf{N} \\
& \text { AE } \left.:=\left(\mathbf{A C}^{2} \cdot \mathbf{A J}\right)^{\left(\frac{1}{3}\right)} \quad \text { AG }:=(\mathbf{A C} \cdot \mathbf{A J})^{2}\right)^{\left(\frac{1}{3}\right)} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \\
& \text { GJ }:=\mathbf{C J}-\mathbf{C G} \quad \mathbf{G N}:=\sqrt{\mathbf{C G} \cdot \mathbf{G J}} \\
& \text { AB }:=\frac{\mathbf{A E}}{\mathbf{2}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C H}:=\frac{\mathbf{C J}}{2}
\end{aligned}
\]
\(\mathrm{BK}:=\frac{\mathrm{AE}}{2} \quad \mathrm{HK}:=\mathrm{CH} \quad \mathrm{HJ}:=\mathrm{CH} \quad \mathrm{AH}:=\mathrm{AJ}-\mathrm{HJ} \quad \mathrm{BH}:=\mathrm{AH}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BK}^{2}+\mathrm{BH}^{2}-\mathrm{HK}^{2}}{2 \cdot \mathrm{BH}}\) \(\mathrm{DE}:=\mathrm{AE}-(\mathrm{AB}+\mathbf{B D}) \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{DK}:=\sqrt{\mathrm{AD} \cdot \mathrm{DE}} \quad \frac{\mathbf{A G}}{\mathrm{GN}}-\frac{\mathbf{A D}}{\mathrm{DK}}=0\)
\(\mathbf{G Q}:=\sqrt{\mathbf{A G} \cdot \mathbf{G J}} \quad \mathbf{C P}:=\sqrt{\mathbf{A C} \cdot \mathbf{C E}} \quad \frac{\mathbf{A G}}{\mathbf{G Q}}-\frac{\mathbf{A C}}{\mathbf{C P}}=\mathbf{0}\)

\section*{12/11/93}


The structure in red appears to be a constant.
N:=6
AB :=1
AL:=AB \(\cdot \mathbf{N}\)
\(\mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{A E}:=\left(\mathbf{A B}^{\mathbf{2}} \cdot \mathbf{A L}\right)^{\frac{\mathbf{1}}{\mathbf{3}}}\)
\(A J:=\left(A B \cdot A L^{2}\right)^{\frac{1}{3}} B E:=A E-A B \quad B J:=A J-A B\)
\(\mathbf{J L}:=\mathbf{B L}-\mathbf{B J} \quad \mathbf{E J}:=\mathbf{A J}-\mathbf{A E} \quad\) FJ \(:=\frac{\mathbf{J L} \cdot \mathbf{E J}}{\mathbf{J L}+\mathbf{B E}}\)
FL \(:=\mathbf{J L}+\mathbf{F J} \quad\) BF \(:=\mathbf{B L}-\mathrm{FL} \quad\) FP \(:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}}\)

\(\mathrm{AD}:=\frac{\mathrm{AI}}{2} \quad \mathrm{KT}:=\mathrm{BL} \quad \mathrm{FH}:=\frac{\mathrm{FK} \cdot \mathrm{FP}}{\mathrm{KT}+\mathrm{FP}} \quad \mathrm{AF}:=\mathrm{BF}+\mathrm{AB} \quad \mathrm{AH}:=\mathrm{AF}+\mathrm{FH} \quad \mathrm{HI}:=\mathrm{AI}-\mathrm{AH}\) HO \(:=\sqrt{\text { AH•HI }} \quad\) DN \(:=A D \quad K N:=B K \quad D K:=A K-A D \quad C K:=\frac{K^{2}+D K^{2}-D^{2}}{2 \cdot D K}\) \(\mathrm{AC}:=\mathrm{AK}-\mathrm{CK} \quad \mathrm{CI}:=\mathrm{AI}-\mathrm{AC} \quad \mathrm{CN}:=\sqrt{\mathrm{AC} \cdot \mathrm{CI}} \quad \frac{\mathrm{KR}}{\mathrm{IK}}-\frac{\mathrm{HO}}{\mathrm{HI}}=0 \quad \frac{\mathrm{AF}}{\mathrm{FP}}-\frac{\mathrm{AC}}{\mathrm{CN}}=0\)

\section*{12/12/93 The Square Root}


Square root by common segment common midpoint. Given AF BE is GH their root?
\(\mathrm{N}:=5 \quad\) BE \(:=1 \quad\) AF \(:=\mathrm{BE} \cdot \mathbf{N}\)
\[
\begin{aligned}
& \text { AD }:=\frac{\mathbf{A F}}{2} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A B}:=\mathrm{AD}-\mathbf{B D} \\
& \mathrm{AE}:=\mathbf{B E}+\mathrm{AB} \quad \mathrm{AC}:=\frac{\mathbf{A E}}{2} \quad \mathrm{CG}:=\mathrm{AC}
\end{aligned}
\]
\[
\mathbf{C D}:=\mathrm{AD}-\mathrm{AC} \quad \mathrm{GH}:=2 \cdot \sqrt{\mathrm{CG}^{2}-\mathrm{CD}^{2}}
\]
\(\mathbf{G H}-\sqrt{\mathbf{A F} \cdot \mathbf{B E}}=\mathbf{0}\)

\section*{12/12/93 Generalize The Previous Square Root Figure}

\[
\begin{aligned}
& \mathbf{N}_{1}:=1 \quad \mathbf{N}_{2}:=3 \quad \mathbf{N}_{3}:=2 \\
& \text { AF }:=\mathbf{N}_{1} \quad \text { DF }:=\frac{\mathbf{A F}}{\mathbf{N}_{2}} \quad \text { AD }:=\mathbf{A F}-\mathbf{D F} \\
& \text { DE }:=\frac{\mathbf{D F}}{\mathbf{N}_{3}} \quad \text { AE }:=\mathbf{A D}+\mathbf{D E} \quad \text { AB }:=\frac{\mathbf{A E}}{2} \\
& \text { BD }:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B H}:=\mathrm{AB} \\
& \text { GH }:=2 \cdot \sqrt{(\mathbf{B H})^{2}-(\mathbf{B D})^{2}} \\
& \text { GH }-2 \cdot \frac{\mathbf{N}_{1} \cdot \sqrt{\mathbf{N}_{2}-1}}{\mathbf{N}_{2} \cdot \sqrt{\mathbf{N}_{3}}}=\mathbf{0}
\end{aligned}
\]


\section*{04/06/94 Inscribing A Circle In A Given Triangle}

Given three sides of a triangle, what is the length of the radius?
\[
\begin{aligned}
& \mathrm{AB}:=3 \quad \mathrm{BC}:=4 \quad \mathrm{AC}:=5 \\
& \mathrm{AK}:=\mathrm{AC} \quad \mathrm{BD}:=\mathrm{BC} \quad \mathrm{AF}:=\frac{\mathrm{AC}^{2}+\mathrm{AB}^{2}-\mathrm{BC}^{2}}{2 \cdot \mathrm{AB}} \\
& \mathrm{FK}:=\mathrm{AK}-\mathrm{AF} \quad \mathrm{CF}:=\sqrt{\mathrm{AC}^{2}-\mathrm{AF}^{2}} \\
& \mathrm{CK}:=\sqrt{\mathbf{F K}^{2}+\mathrm{CF}^{2}} \quad \mathrm{AN}:=\frac{\mathrm{CF} \cdot \mathbf{A K}}{\mathrm{CK}}
\end{aligned}
\]
\[
\mathrm{AH}:=\frac{\mathrm{CF} \cdot \mathrm{AN}}{\mathrm{CK}} \mathrm{HN}:=\frac{\mathrm{FK} \cdot \mathrm{AN}}{\mathrm{CK}} \quad \mathrm{BF}:=\mathrm{AB}-\mathrm{AF}
\]
\[
\mathrm{DF}:=\mathrm{BD}-\mathrm{BF} \quad \mathrm{CD}:=\sqrt{\mathrm{CF}^{2}+\mathrm{DF}^{2}} \quad \mathrm{BM}:=\frac{\mathrm{CF} \cdot \mathrm{BD}}{\mathrm{CD}} \quad \mathrm{BE}:=\frac{\mathrm{CF} \cdot \mathrm{BM}}{\mathrm{CD}} \quad \mathrm{GL}:=\frac{\mathrm{HN} \cdot \mathrm{AB}}{\mathrm{AH}+\mathrm{BE}}
\]
\[
\mathrm{S}_{1}:=\left[\begin{array}{c}
\mathrm{AB} \\
\mathrm{BC} \\
\mathrm{AC}
\end{array}\right] \quad \mathrm{S}_{2}:=\left[\begin{array}{c}
\mathrm{BC} \\
\mathrm{AC} \\
\mathrm{AB}
\end{array}\right] \quad \mathrm{S}_{3}:=\left[\begin{array}{c}
\mathrm{AC} \\
\mathrm{AB} \\
\mathrm{BC}
\end{array}\right] \quad \delta:=\mathbf{0 . . 2}
\]
\[
\operatorname{Radius}_{\delta}:=\frac{\sqrt{-\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{\mathbf{3}_{\delta}}} \cdot \sqrt{\mathrm{S}_{\mathbf{1}_{\delta}}-\mathrm{S}_{\mathbf{2}_{\delta}}+\mathrm{S}_{\mathbf{3}_{\delta}}} \cdot \sqrt{\mathrm{S}_{\mathbf{1}_{\delta}}+\mathrm{S}_{\mathbf{2}_{\delta}}-\mathrm{S}_{\mathbf{3}_{\delta}}}}{2 \cdot \sqrt{\mathrm{~S}_{\mathbf{1}_{\delta}}+\mathrm{S}_{\mathbf{2}_{\delta}}+\mathrm{S}_{\mathbf{3}_{\delta}}}}
\]
\[
\text { Radius }=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]

\section*{04/21/94 The Cradle}

\section*{Are AMN colinear?}

\(\mathbf{N}:=5 \quad\) AB \(:=\mathbf{1} \quad\) AL \(:=A B \cdot \mathbf{N}\)
\(\mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}} \quad \mathbf{A C}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A L}\right)^{\frac{1}{3}} \quad \mathbf{A J}:=\left(\mathbf{A B} \cdot \mathbf{A L} \mathbf{L}^{\frac{1}{3}}\right.\)

BL := AL-AB BP := BL LR := BL FL := AL - AF
BC :=AC-AB BJ :=AJ - AB JL := BL - BJ

BF :=AF - AB FJ :=AJ - AF CF := AF - AC
FG \(:=\frac{B F \cdot F J}{B F+J L} \quad G N:=\frac{B P \cdot F G}{B F} \quad C D:=\frac{B C \cdot C F}{B C+F L}\)
\(D M:=\frac{B P \cdot C D}{B C} \quad A D:=A C+C D \quad A G:=A F+F G\)
\(\frac{A G}{G N}-\frac{A D}{D M}=0\)

\section*{04/26/94 Tangents and Similarity Points}


What is the Algebraic names of the similarity points \(O\) and \(P\) in relation to the radius of each circle and the difference between their centers?

I will work with point O first.
Given \(R_{L}=\) large radius
\(\mathbf{R}_{\mathbf{S}}=\) small radius
\(\mathrm{D}=\) difference between origins.
\(\mathbf{R}_{\mathbf{L}}:=\mathbf{4} \quad \mathbf{R}_{\mathrm{S}}:=\mathbf{1} \quad \mathbf{D}:=\mathbf{8}\)
AC := \(\mathbf{R}_{\mathbf{L}} \quad\) BD \(:=\mathbf{R}_{\mathbf{S}} \quad\) AB \(:=\mathbf{D}\)
\(\mathrm{DE}:=\mathrm{AB} \quad \mathrm{AE}:=\mathrm{BD} \quad \mathrm{CE}:=\mathrm{AC}-\mathrm{AE}\)
\(\mathrm{AO}:=\frac{\text { DE•AC }}{\text { CE }} \quad\) AO \(=10.667\)
\(E_{\mathrm{L}}\) "External similarity point Origin to center of Radius Large"

What is the length of line (OG) tangent to both circles?
\(\mathrm{AG}:=\mathrm{AC} \quad \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}} \quad \mathbf{G O}=9.888\)
And what is the formula?
\(E O T_{\text {LR }}\) " External similarity point Origin to Tangent (Large Radius)"
\(\mathbf{E O T}_{\mathbf{L R}}:=\mathbf{R}_{\mathbf{L}} \frac{\sqrt{\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}^{+}} \mathbf{D}\right) \cdot\left(-\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}}\)
\[
\mathrm{EOT}_{\mathrm{LR}}=9.888
\]


What is the length of the line tangent to the least circle (HO)?
\(\mathbf{B H}:=\mathbf{B D} \quad\) BO \(:=\mathbf{A O}-\mathbf{A B} \quad\) BO \(=2.667\)
\(\mathbf{H O}:=\sqrt{\mathrm{BO}^{2}-\mathrm{BH}^{2}}\)
\(\mathrm{HO}=2.472\)
And what is the formula?
\(E_{\text {ER }}\) " External similarity point Origin to Tangent (Small Radius)"

EOT \(_{\mathbf{S R}}:=\mathbf{R}_{\mathbf{S}} \cdot \frac{\sqrt{-\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}} \mathbf{D}^{\mathbf{D}}\right)}}{\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}}\)
EOT \(_{\text {SR }}=2.472\)

Lastly what is the length of line from tangent to tangent of these circles?

\(\mathbf{G H}:=\mathbf{E O T}_{\mathbf{L R}^{-}} \mathbf{E O T}_{\mathbf{S R}}\)
\(\mathbf{G H}=\mathbf{7 . 4 1 6}\)
And what is the formula?
ETT "Tangent to Tangent"
ETT \(:=\sqrt{-\left(\mathbf{R}_{\mathbf{L}^{-}} \mathbf{R}_{\mathbf{S}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}^{-}} \mathbf{R}_{\mathbf{S}^{-}} \mathbf{D}\right)}\)
\(\mathbf{E T T}=7.416\)

I will now turn my attention to the point \(P\), the internal similarity point.
\[
\mathbf{A P}:=\frac{\mathbf{A B} \cdot \mathbf{A C}}{\mathbf{A C}+\mathbf{B D}}
\]
\[
\mathrm{AP}=6.4
\]

IOR \({ }_{\mathrm{L}}\) "Internal similarity point to center of Radius Large"
\(\operatorname{IOR}_{L}:=D \cdot \frac{R_{L}}{R_{L}+R_{S}} \quad \operatorname{IOR}_{L}=6.4\)
\[
\mathbf{B P}:=\mathrm{AB}-\mathbf{A P} \quad \mathbf{B P}=\mathbf{1 . 6}
\]

IOR \(_{s}\) "Internal similarity point to center of Radius

\(10 T_{\mathrm{LR}}\) "Internal similarity point Origin to Tangent (Large Radius)"

\[
\begin{aligned}
& \text { IOT }_{\mathbf{L R}}:=\mathbf{R}_{\mathbf{L}} \frac{\sqrt{-\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}-\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}}{\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}\right)} \\
& \text { IOT }_{\mathbf{L R}}=4.996 \quad \mathbf{K P}:=\sqrt{\mathbf{B P}^{2}-\mathbf{B K}} \quad \mathbf{K P}=\mathbf{1 . 2 4 9}
\end{aligned}
\]
\(10 T_{S R}\) "Internal similarity point Origin to Tangent (Small Radius)"

\[
\begin{aligned}
& \text { IOT }_{\mathbf{S R}}:=\mathbf{R}_{\mathbf{S}} \cdot \frac{\sqrt{-\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}-\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}} \\
& \text { IOT }_{\mathbf{S R}}=\mathbf{1 . 2 4 9} \quad \mathbf{J K}:=\mathbf{J P}+\mathbf{K P} \quad \mathbf{J K}=\mathbf{6 . 2 4 5}
\end{aligned}
\]

ITT "Internal similarity point Tangent to Tangent"
ITT \(:=\sqrt{-\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}^{-}} \mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}\)
\(\mathbf{I T T}=\mathbf{6 . 2 4 5}\)

The solution for finding the chordal as outlined in 100 Great Problems of Elementary Mathematics Their History and Solutionby Heinrich Dörrie did not lend itself to this kind of process, so I took a couple of minuets (Bach) and developed my own method.
One of the attributes of the powerline is that a circle drawn with a center on the powerline which cuts one perpendicularly will cut the other as such.
Given two circles find their chordal or power line given just their radius and difference between their centers.



If these equations look familiar, see 01/08/93 The perpendicular of a Triangle would be on the powerline.

IJ := 1.112
\[
A J:=\sqrt{{A I^{2}+J^{2}}^{2}} \quad A K:=A D
\]
\[
\mathbf{J K}:=\sqrt{\mathbf{A J}^{2}-\mathbf{A K}^{2}} \quad \mathbf{P}:=\mathbf{I J}
\]
\[
J K-\frac{\sqrt{R_{1}{ }^{4}-2 \cdot R_{1}{ }^{2} \cdot D^{2}-2 \cdot R_{1}{ }^{2} \cdot R_{2}{ }^{2}+D^{4}-2 \cdot R_{2}{ }^{2} \cdot D^{2}+R_{2}{ }^{4}+4 \cdot P^{2} \cdot D^{2}}}{2 \cdot D}=0
\]
\[
\begin{aligned}
& \mathrm{AB}:=1.323 \quad \mathrm{AD}:=.771 \quad \mathrm{BC}:=.448 \quad \mathrm{AE}:=\frac{\mathrm{AD}^{2}}{\mathrm{AB}} \quad \mathrm{BF}:=\frac{\mathrm{BC}^{2}}{\mathrm{AB}} \quad \mathrm{GH}:=\mathrm{AB}-(\mathrm{AE}+\mathrm{BF}) \\
& \text { GI }:=\frac{\mathbf{G H}}{2} \quad \mathbf{A I}:=\mathbf{A E}+\mathbf{G I} \quad \text { BI }:=\mathbf{B F}+\mathbf{G I} \\
& \mathbf{D}:=\mathrm{AB} \quad \mathbf{R}_{\mathbf{1}}:=\mathrm{AD} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{B C} \\
& \mathrm{AI}-\frac{\left(\mathbf{R}_{1}{ }^{2}+\mathrm{D}^{2}-\mathrm{R}_{\mathbf{2}}{ }^{2}\right)}{2 \cdot \mathrm{D}}=\mathbf{0} \\
& \mathrm{BI}-\frac{\left(\mathbf{R}_{\mathbf{2}}{ }^{2}+\mathbf{D}^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}\right)}{\mathbf{2 \cdot D}}=\mathbf{0}
\end{aligned}
\]

Given three circles find their power point and if it is at all possible, cut all three perpendicularly. Demonstrate the formula for the Power Point and the Length of the resultant Tangent.

\[
\begin{aligned}
& \mathrm{AB}:=.438 \quad \mathrm{CD}:=.354 \quad \mathrm{EF}:=.471 \\
& \mathrm{AC}:=\mathbf{1 . 6 6 7} \quad \mathrm{AE}:=1.559 \quad \mathrm{CE}:=1.357 \\
& \mathbf{R}_{1}:=\mathrm{AB} \quad \mathrm{R}_{2}:=\mathrm{CD} \quad \mathrm{R}_{3}:=\mathrm{EF} \\
& \mathrm{D}_{1}:=\mathrm{AC} \quad \mathrm{D}_{2}:=\mathrm{AE} \quad \mathrm{D}_{3}:=\mathrm{CE} \\
& \mathrm{AG}:=\frac{\mathbf{R}_{1}{ }^{2}+\mathrm{D}_{1}{ }^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}}{\mathbf{2} \cdot \mathrm{D}_{\mathbf{1}}} \\
& \mathrm{AH}:=\frac{\mathbf{R}_{1}{ }^{2}+\mathrm{D}_{\mathbf{2}}{ }^{2}-\mathbf{R}_{\mathbf{3}}{ }^{\mathbf{2}}}{\mathbf{2} \cdot \mathrm{D}_{\mathbf{2}}}
\end{aligned}
\]
\[
A M:=\frac{D_{2}{ }^{2}+D_{1}{ }^{2}-D_{3}{ }^{2}}{2 \cdot D_{1}} \quad E M:=\sqrt{A E^{2}-A^{2}} \quad A K:=\frac{A E \cdot A H}{A M} \quad \text { GK }:=A K-A G \quad G J:=\frac{A M \cdot G K}{E M}
\]
\[
G J-\frac{1}{2} \cdot \frac{\left[\begin{array}{l}
\left(D_{2}{ }^{2} \cdot D_{1}{ }^{2}-D_{2}{ }^{2} \cdot R_{1}{ }^{2}+D_{2}{ }^{2} \cdot R_{2}{ }^{2}+D_{3}{ }^{2} \cdot R_{1}{ }^{2}-2 \cdot D_{1}{ }^{2} \cdot R_{3}{ }^{2}\right) \ldots \\
+R_{2}{ }^{2} \cdot D_{1}{ }^{2}-D_{3}{ }^{2} \cdot R_{2}{ }^{2}-D_{1}^{4}+D_{3}{ }^{2} \cdot D_{1}{ }^{2}+D_{1}{ }^{2} \cdot R_{1}{ }^{2}
\end{array}\right]}{-\left(D_{2}+D_{1}-D_{3}\right) \cdot\left(D_{2}+D_{1}+D_{3}\right) \cdot\left(D_{2}-D_{1}-D_{3}\right) \cdot\left(D_{2}-D_{1}+D_{3}\right)}=0
\]

\[
A J:=\sqrt{A G^{2}+G J^{2}} \quad A N:=A B \quad J N:=\sqrt{A J^{2}-A N^{2}}
\]
\[
\mathbf{J N}=0.786
\]



\section*{04/30/94 Division N \({ }^{2}\)}

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{5} \quad \mathbf{N}_{2}:=2 \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B C}:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{A C}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B C}^{2}} \quad \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{A C}}{\mathbf{A B}} \\
& \mathbf{B D}_{1}:=\sqrt{\mathbf{C D}^{2}-\mathbf{B C}^{2}} \\
& \mathbf{B D}_{2}:=\frac{\mathbf{B C}^{2}}{\mathbf{A B}} \quad \mathbf{B D}_{1}-\mathbf{B D}_{2}=0
\end{aligned}
\]

\section*{05/01/94 Two Circles And A Parallel}

Given the radius of two tangent circles find the radius of the third that is tangent two the two circles and tangent to the parallel opposite AP which is tangent to the larger circle.
\[
\begin{aligned}
& \mathbf{R}_{1}:=3^{\prime} \quad \mathbf{R}_{2}:=2 \\
& \text { DE }:=\mathbf{R}_{1} \quad \text { BC }:=\mathbf{R}_{2} \quad \text { CN }:=\mathrm{BC} \\
& \text { EQ }:=\mathrm{DE} \quad \text { CD }:=\mathrm{BC} \quad \text { CE }:=\mathrm{CD}+\mathrm{DE} \\
& \text { ES }:=\mathrm{CN} \\
& \text { NS }:=\text { CE } \quad \text { SQ }:=\mathrm{EQ}-\mathrm{ES}
\end{aligned}
\]
\[
\text { AE }:=\frac{\mathrm{NS} \cdot \mathbf{E Q}}{\mathrm{SQ}} \quad \mathbf{A D}:=\mathrm{AE}-\mathrm{DE} \quad \text { EP }:=\mathbf{D E}
\]
\[
\mathbf{A P}:=\sqrt{\mathbf{A E}^{2}-\mathbf{E P}^{2}} \quad \text { DO }:=\frac{\mathbf{E P} \cdot \mathbf{A D}}{\mathbf{A P}}
\]
\(\mathrm{DL}:=\frac{\mathrm{DO} \cdot \mathrm{DE}}{\mathrm{CD}} \quad \mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \quad \mathrm{AM}:=\frac{\mathrm{AP} \cdot \mathbf{A C}}{\mathrm{AE}} \quad \mathrm{AO}:=\frac{\mathrm{AE} \cdot \mathrm{AD}}{\mathrm{AP}} \quad\) MO \(:=\mathrm{AO}-\mathrm{AM}\)
MR \(:=\frac{\text { AD } \cdot \text { MO }}{\text { AO }}\) RO \(:=\frac{\text { DO } \cdot \text { MR }}{\text { AD }} \quad\) DR \(:=D O-R O\)
\(L R:=D R+D L \quad M L:=\sqrt{M R^{2}+L R^{2}}\)
DK \(:=\frac{\text { MR•DL }}{\mathrm{LR}} \quad \mathrm{CK}:=\mathrm{DK}-\mathrm{CD} \quad \mathrm{CH}:=\frac{\mathrm{LR} \cdot \mathrm{CK}}{\mathrm{ML}}\)
\(C M:=B C \quad M H:=\sqrt{C M^{2}-C H^{2}}\)
MG \(:=2 \cdot M H \quad\) GL \(:=\) ML-MG GJ \(:=\frac{\text { CM } \cdot \mathbf{G L}}{\text { MG }}\)
The Algebraic name for GJ suggests a simpler method of construction.

\[
\begin{aligned}
& R_{3}:=\frac{R_{1}{ }^{2}}{4 \cdot R_{2}} \quad G J-R_{3}=0 \\
& \text { ET }:=4 \cdot \text { BC } \quad \text { EV }:=\text { DE } \quad \text { EU }:=\frac{\text { DE }^{2}}{\text { ET }} \\
& \text { VW := EU XY := EU EV := DE CX := BC } \\
& \text { EW :=EV + VW CY:= CX + XY } \\
& \mathbf{G J}_{2}:=\mathbf{E U} \quad \mathbf{G J}-\mathbf{G J}_{2}=\mathbf{0}
\end{aligned}
\]

\section*{05/04/94 Two Circles And A Tangent}


Given two circles, the difference between them and a point on one expressed as a ratio of the diameter, find the circle tangent to both at that point.
\(\mathrm{R}_{\mathbf{1}}:=\mathbf{5}\)
\(R_{2}:=4\)
D :=3
\[
\text { FK := } \mathbf{R}_{1} \quad \text { BC }:=\mathbf{R}_{2} \quad \text { CH }:=\mathbf{D} \quad \text { FL }:=\mathbf{2} \cdot \mathrm{FK}
\]
\[
\mathrm{AK}:=\frac{\mathbf{D} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{1}-\mathbf{R}_{\mathbf{2}}} \quad \mathrm{EK}:=\frac{\mathbf{R}_{\mathbf{1}}{ }^{2}+\mathrm{D}^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}}{2 \cdot \mathrm{D}}
\]
\[
\mathbf{A Q}:=\mathbf{R}_{\mathbf{1}} \cdot \frac{\sqrt{\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(-\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}}
\]
\[
\mathbf{N}_{1}:=4 \quad \mathbf{N}_{2}:=8 \quad \text { FG }:=F L \cdot \frac{N_{1}}{\mathbf{N}_{2}} \quad G L:=F L-F G \quad G M:=\sqrt{F G \cdot G L} \quad A J:=\frac{A Q \cdot A Q}{A K}
\]
\[
\text { AF }:=A K-\text { FK } \quad \text { FJ }:=A J-A F \quad \text { AL }:=F L-F J \quad \text { JQ }:=\sqrt{F J \cdot J L} \quad \text { GJ }:=F J-F G
\]
\[
\text { QM }:=\sqrt{(\mathbf{J Q}+\mathbf{G M})^{2}+\mathbf{G J}^{2}} \quad \mathbf{G H}:=\frac{\mathbf{G J} \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}} \quad \mathbf{H M}:=\frac{\mathbf{Q M} \cdot \mathbf{G M}}{\mathbf{J Q + G M}} \quad \mathbf{E F}:=\mathbf{E K}-\mathbf{F K}
\]
\[
\text { EH }:=\text { EF }+ \text { FG }+ \text { GH HO }:=\frac{\text { HM EH }}{\text { GH }} \quad \text { MO }:=|\mathbf{H O}-\mathbf{H M}| \text { KM }:=F K \quad \text { MN }:=\frac{\text { KM } \cdot M O}{\text { QM }}
\]

The Algebraic name of the radius of the tangent circle,


\section*{05/06/94 A Ratio In Trisection}

\section*{What is AK to CG?}

\[
\begin{aligned}
& \mathbf{N}_{1}:=3 \quad \mathbf{N}_{2}:=8 \quad \text { FH }:=1 \quad \text { CE }:=\mathrm{FH} \\
& \text { CG }:=\frac{\mathbf{N}_{1}}{2 \cdot \mathbf{N}_{2}} \cdot \sqrt{2} \cdot \mathrm{CE} \quad \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}-\mathrm{CG}^{2}} \quad \mathrm{CD}:=\frac{\mathrm{CG}^{2}}{\mathrm{CE}} \\
& \text { DG }:=\sqrt{\mathrm{CG}^{2}-\mathrm{CD}^{2}} \quad \text { EH }:=2 \cdot \mathrm{EG} \quad \mathrm{BH}:=\frac{\mathrm{DG} \cdot \mathrm{EH}}{\mathrm{EG}} \quad \mathrm{CH}:=\mathrm{FH}
\end{aligned}
\]
\[
\mathrm{BC}:=\sqrt{\mathrm{CH}^{2}-\mathrm{BH}^{2}} \quad \mathrm{AC}:=2 \cdot \mathrm{BC} \quad \mathrm{AE}:=\mathrm{AC}+\mathrm{CE} \quad \mathrm{AJ}:=\frac{\mathrm{CG} \cdot \mathrm{AE}}{\mathrm{CE}} \quad 3 \cdot \mathrm{CG}-\frac{4 \cdot \mathrm{CG}^{3}}{\mathrm{CE}^{2}}-\mathrm{AJ}=0
\]
\[
3 \cdot C G-4 \cdot C G^{3}-A J=0
\]


\section*{05/07/94 A Trisection Ratio}

\section*{In trisection, what is the ratio of \(\mathrm{FG} / \mathrm{EK}\) ?}

\[
\mathbf{N}:=\mathbf{2}
\]
EG := AE DG := DE + EG FG :=DG - DF

Algebraic Names,
\[
\begin{aligned}
& F G-\left[A E+\frac{A E \cdot(N+1) \cdot(2 \cdot N-1)}{(2 N+1) \cdot \sqrt{(N+1) \cdot(2 N+1)}}\right]=0 \quad \quad E K-\left(\frac{1}{2} \cdot A E+A E \cdot N\right)=0 \\
& \frac{\mathbf{F G}}{\mathbf{E K}}-\mathbf{2} \cdot \frac{[(\mathbf{2} \mathbf{N}+\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{2 N + 1})}+(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})]}{\left[(\mathbf{2} \mathbf{N}+\mathbf{1})^{2} \cdot \sqrt{(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{2 N + 1})}\right]}=0
\end{aligned}
\]
\[
\begin{aligned}
& A E:=3 \quad \text { EH }:=\frac{\text { AE }}{2} \quad \text { HK }:=A E \cdot N \quad \text { AK }:=A E+\mathbf{E H}+\mathbf{H K} \\
& \text { EJ }:=\mathrm{AE} \quad \mathrm{EK}:=\mathrm{EH}+\mathrm{HK} \quad \mathrm{AD}:=\frac{\mathrm{EJ} \cdot \mathrm{AK}}{\mathrm{EK}} \quad \mathrm{CD}:=\mathrm{AE} \\
& \mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \quad \mathrm{BC}:=\frac{\mathrm{AC}}{2} \quad \mathrm{CE}:=\mathrm{AE} \quad \mathrm{BE}:=\sqrt{\mathrm{CE}^{2}-\mathrm{BC}^{2}} \\
& \mathrm{BD}:=\mathrm{CD}+\mathrm{BC} \quad \mathrm{DE}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BE}^{2}} \quad \mathrm{DF}:=\frac{\mathrm{BD} \cdot \mathrm{AD}}{\mathrm{DE}}
\end{aligned}
\]

\section*{05/16/94A Tangent Diameter and Circles}

Choose a point along DF and the number of circles tanget to it and to the circumscribing
 circle and place them in the downright position.
\[
\left.\mathrm{DH}-\frac{\sqrt{\mathrm{N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{3}{ }^{2} \cdot \mathrm{~N}_{2}^{2}-4 \cdot \mathrm{~N}_{3}{ }^{2} \cdot \mathrm{~N}_{1}^{2}} \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}^{2}}{2 \cdot \mathrm{~N}_{2} \cdot\left(\sqrt{\mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{3}{ }^{2} \cdot \mathrm{~N}_{2}^{2}-4 \cdot \mathrm{~N}_{3}^{2} \cdot \mathrm{~N}_{1}^{2}}+4 \cdot \mathrm{~N}_{3}^{2} \cdot \mathrm{~N}_{2}\right.}\right)=0
\]
\[
\begin{aligned}
& C F:=1 \quad C E:=\frac{C F}{2} \quad N_{1}:=4 \quad N_{2}:=8 \quad N_{3}:=1 \\
& \mathrm{DE}:=\mathrm{CE} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}} \quad \text { EJ }:=\mathrm{CF} \cdot \mathbf{N}_{3} \quad \text { DJ }:=\sqrt{\mathrm{DE}^{2}+\mathrm{EJ}^{2}} \\
& \text { JG }:=\frac{\mathbf{E J}^{2}}{\mathbf{D J}} \quad \mathrm{BE}:=\mathbf{C E} \quad \mathbf{E G}:=\sqrt{\mathbf{E J} \mathbf{J}^{2}-\mathbf{J G}^{\mathbf{2}}} \\
& B G:=\sqrt{\mathbf{B E}^{2}-E^{2}} \quad B J:=B G+J G \quad J K:=C E \\
& \text { BD := BJ - DJ DH := } \frac{\text { JK•BD }}{\text { BJ }}
\end{aligned}
\]

\section*{05/16/94B Tangent Diameter and Circles}


Choose a point along DF and the number of circles tanget to it and to the circumscribing circle and place them in the upright position.
\[
\mathrm{BJ}:=\mathrm{BE}+\mathrm{EJ} \quad \mathrm{CE}:=\frac{\mathrm{HJ} \cdot \mathrm{BE}}{\mathrm{BJ}} \quad \mathrm{BC}:=\mathrm{BF}-\sqrt{E F^{2}+\left[\left(\frac{\mathrm{AJ}-\mathrm{AF}}{\mathrm{AF}}\right) \cdot \mathrm{CE}\right]^{2}} \quad \mathrm{BC}-\mathrm{CE}=0 \quad \mathrm{CE}=0.10286
\]
\[
\begin{aligned}
& N_{1}:=4 \quad N_{2}:=8 \quad N_{3}:=2 \quad A H:=1 \quad A F:=\frac{A H}{2} \\
& \mathrm{DF}:=\mathrm{AF} \quad \mathrm{DE}:=\mathrm{DF} \cdot \frac{\mathrm{~N}_{\mathbf{1}}}{\mathbf{N}_{2}} \quad \mathrm{AJ}:=\mathrm{AH} \cdot \mathrm{~N}_{3} \\
& \text { HJ :=AF EF :=DF - DE FJ :=AJ - AF } \\
& \mathbf{E J}:=\sqrt{\mathbf{E F}^{2}+\mathbf{F J}^{2}} \quad \mathbf{E G}:=\frac{\mathbf{E F}^{2}}{\mathbf{E J}} \quad \mathrm{BF}:=\mathrm{AF} \\
& \text { FG }:=\sqrt{\mathbf{E F}^{2}-\mathbf{E G}^{2}} \quad \mathbf{B G}:=\sqrt{\mathbf{B F}^{2}-\mathrm{FG}^{2}} \quad \mathbf{B E}:=\mathrm{BG}-\mathbf{E G}
\end{aligned}
\]

\section*{10/27/94 Trivial Method Square Root}

\section*{\(A E\) is the square root of \(A B \times A G\).}

\[
\begin{aligned}
& \mathrm{N}:=\mathbf{5} \quad \mathrm{AB}:=\mathbf{1} \\
& \mathbf{A G}:=\mathrm{AB} \cdot \mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \text { AF }:=\mathrm{AB}+\mathbf{B F} \quad \mathbf{F H}:=\mathbf{B F} \quad \mathbf{F D}:=\frac{\mathbf{F H}^{2}}{\mathbf{A F}} \\
& \mathbf{A D}:=\mathbf{A F}-\mathbf{F D} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \text { FJ }:=\mathbf{B F} \quad \mathbf{D H}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \\
& \mathbf{D E}:=\frac{\mathbf{D F} \cdot \mathbf{D H}}{\mathbf{D H}+\mathbf{F J}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B D}+\mathbf{D E} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A G}}-\mathbf{A E}=\mathbf{0}
\end{aligned}
\]

\section*{10/28/94 Trivial Method Square Root}


FG \(:=\frac{\text { DG•GJ }}{\text { GK }} \quad\) AF \(:=\) AG - FG \(\quad\) FJ \(:=\frac{\text { DK } \cdot \text { GJ }}{\text { GK }} \quad\) EF \(:=\frac{\text { AF } \cdot \mathbf{F J}}{\text { FJ +AL }} \quad\) AE \(:=A F-E F \quad \sqrt{A B \cdot A H}-A E=0\)

\section*{10/31/94 Square Root of a Segment}

Given a unit take the square root of a segment.

\[
\mathbf{N}:=\mathbf{1 1} \quad \text { AB }:=\mathbf{1}
\]
\[
\mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{2}
\]
\[
\mathbf{A J}:=\mathrm{AF} \quad \text { FK }:=\mathbf{A F} \quad \mathbf{B D}:=\mathrm{AD}-\mathbf{A B} \quad \mathbf{B J}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A J}^{2}}
\]
\[
\mathbf{B G}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \mathbf{D H}:=\mathbf{A D} \quad \mathbf{D G}:=\frac{\mathbf{A J} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \text { GH }:=\sqrt{\mathbf{D H}^{2}-\mathbf{D G}^{2}}
\]
\[
\mathbf{H J}:=\mathbf{B J}+\mathbf{B G}+\mathbf{G H} \quad \mathbf{B C}:=\frac{\mathbf{A B} \cdot(\mathbf{B G}+\mathbf{G H})}{\mathbf{B J}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}
\]
\[
\mathrm{CF}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{CH}:=\sqrt{\mathrm{AC} \cdot \mathrm{CF}} \quad \mathrm{CE}:=\frac{\mathrm{CF} \cdot \mathrm{CH}}{(\mathrm{CH}+\mathrm{FK})}
\]
\[
\mathbf{E F}:=\mathbf{C F}-\mathbf{C E} \quad \mathbf{B E}:=\mathbf{B C}+\mathbf{C E} \quad \sqrt{\mathbf{E F} \cdot \mathbf{A B}}-\mathbf{B E}=\mathbf{0}
\]
DF := BF - BE
\(B E-\frac{N-2+N \cdot \sqrt{4 \cdot N-3}}{2 \cdot N+1+\sqrt{4 \cdot N-3}}=0\)
\(D F-\frac{2 N^{2}-2 \cdot N+1-\sqrt{4 \cdot N-3}}{2 \cdot N+1+\sqrt{4 \cdot N-3}}=0\)

\section*{12/24/94 Power Line At Square Root}

In this square root figure, what is the Algebraic name of the tangent circle in red?

\[
B P:=\frac{B K \cdot B J}{B I} \quad K P:=B P-B K \quad M P:=\frac{B J \cdot K P}{B K} \quad O S:=\frac{M P}{2} \quad O S-\frac{-2 \cdot N^{2}+2 \cdot N-\sqrt{N}+N^{\left(\frac{5}{2}\right)}}{2 \cdot\left[N^{2}-\sqrt{N}-N^{\left(\frac{3}{2}\right)}+1\right]}=0
\]
\[
\begin{aligned}
& \mathbf{N}:=5 \quad \text { AB }:=\mathbf{1} \quad \text { AJ }:=A B \cdot \mathbf{N} \\
& \text { AF }:=\sqrt{\mathbf{A B} \cdot \mathbf{A J}} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \text { BG }:=\frac{\mathbf{B J}}{\mathbf{2}} \\
& A G:=A B+B G \quad G S:=B G \quad D G:=\frac{G S^{2}}{A G} \\
& \text { FG :=AG - AF BD := BG - DG DJ := BJ - BD } \\
& \text { DS }:=\sqrt{\text { BD } \cdot \text { DJ }} \quad \text { FK }:=\frac{\text { DS } \cdot \text { FG }}{\text { DG }} \quad \text { BF }:=A F-A B \\
& B K:=\sqrt{B^{2}+F^{2}} \quad \text { FI }:=\frac{\text { DJ•FK }}{\text { DS }} \quad B I:=F I+B F
\end{aligned}
\]


\section*{Two prime exponential series developed through power line progression.}

I will present a series of plates to explain the process. The process can be infinitly repeated, supposing you had the tools to do it with.


It is clear how OA uses the power line XY to provide a 2 prime exponential series.

Possible Problem: From a similarity point outside of a circle, place some 2 prine sequence of smaller circles on the larger circles diameter, all tangent in sequence.

\[
\mathrm{AB}:=1 \quad \mathrm{BF}:=5 \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF}
\]
\[
\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EO}:=\mathrm{BE}
\]
\[
\mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CF}:=\mathrm{BF}-\mathrm{BC}
\]
\[
\mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{EI}:=\mathrm{CH} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}
\]
\[
\mathrm{HI}:=\mathrm{CE} \quad \mathrm{IO}:=\mathrm{EO}+\mathrm{EI} \quad \mathrm{DE}:=\frac{\mathrm{HI} \cdot \mathrm{EO}}{\mathrm{IO}}
\]

See 12_26_94.MCD for next equation.
\(\mathrm{GK}:=\frac{\mathrm{BF} \cdot(\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BF}})}{(2 \cdot \mathrm{AB}+\mathrm{BF})}\)
\(\mathrm{EG}:=\mathrm{BE} \quad \mathrm{EK}:=\sqrt{\mathrm{EG}^{2}-\mathrm{GK}^{2}}\)
\(\mathrm{DL}:=\frac{\mathrm{GK} \cdot \mathrm{DE}}{\mathrm{EK}}\)
\[
\begin{aligned}
& \mathrm{KN}:=\mathrm{BE}-\mathrm{EK} \quad \mathrm{DM}:=\frac{\mathrm{KN} \cdot \mathrm{DE}}{\mathrm{EK}} \\
& \mathrm{EF}:=\mathrm{BE} \quad \mathrm{FM}:=\mathrm{EF}+\mathrm{DM}+\mathrm{DE} \\
& \mathrm{BN}:=\frac{\mathrm{DM} \cdot \mathrm{BF}}{\mathrm{FM}} \mathrm{NP}:=\frac{\mathrm{DL} \cdot \mathrm{BF}}{\mathrm{FM}}
\end{aligned}
\]

\(\mathrm{KF}:=\mathrm{EK}+\mathrm{EF} \quad \mathrm{DQ}:=\frac{\mathrm{KF} \cdot \mathrm{DL}}{\mathrm{GK}}\)
\(\mathrm{BD}:=\mathrm{BE}-\mathrm{DE} \quad \mathrm{BQ}:=\mathrm{BD}+\mathrm{DQ}\)
\(\mathrm{BR}:=\frac{\mathrm{BD} \cdot \mathrm{BF}}{\mathrm{BQ}} \mathrm{RS}:=\frac{\mathrm{DL} \cdot \mathrm{BR}}{\mathrm{BD}}\)

Are RS and NP equal?
\(R S-N P=0\)
\(\mathrm{TU}:=\mathrm{NP} \quad \mathrm{ET}:=\frac{\mathrm{EK} \cdot \mathrm{TU}}{\mathrm{GK}} \mathrm{NR}:=\mathrm{BR}-\mathrm{BN}\)
\(\mathrm{EN}:=\mathrm{BE}-\mathrm{BN}\) NT \(:=\mathrm{EN}-\mathrm{ET}\)
\(\mathrm{PS}:=\mathrm{NR} \quad \mathrm{PU}:=\mathrm{NT} \quad \mathrm{EU}:=\sqrt{\mathrm{ET}^{2}+\mathrm{TU}^{2}}\)
Is NT half of NR? \(\frac{\mathrm{NR}}{\mathrm{NT}}=2\)
Does GU \(=\mathrm{PU}\) ? GU \(:=\mathrm{EG}-\mathrm{EU}\)
\(\mathrm{GU}-\mathrm{PU}=0\)
\(\mathrm{BT}:=\mathrm{BN}+\mathrm{NT}\) FN \(:=\mathrm{BF}-\mathrm{BN}\) FP \(:=\sqrt{\mathrm{NP}^{2}+\mathrm{FN}^{2}}\) \(\mathrm{FV}:=\frac{\mathrm{FP}^{2}}{\mathrm{FN}} \mathrm{PX}:=\frac{\mathrm{FP} \cdot \mathrm{PS}}{\mathrm{FV}} \quad \mathrm{FX}:=\mathrm{FP}-\mathrm{PX}\)

FW \(:=\frac{\mathrm{FV} \cdot \mathrm{FX}}{\mathrm{FP}} \quad \mathrm{BW}:=\mathrm{BF}-\mathrm{FW}\) AW \(:=\mathrm{AB}+\mathrm{BW}\)
Is AW a quarter root of \(\mathrm{AB}, \mathrm{AF}\) ?
\(\left(A B \cdot A F^{3}\right)^{\frac{1}{4}}-A W=0\)

\(\mathrm{BS}:=\sqrt{\mathrm{BR}^{2}+\mathrm{RS}^{2}} \mathrm{SZ}:=\frac{\mathrm{BR} \cdot \mathrm{PS}}{\mathrm{BS}}\)
\(\mathrm{BZ}:=\mathrm{BS}-\mathrm{SZ} \mathrm{BY}:=\frac{\mathrm{PS} \cdot \mathrm{BZ}}{\mathrm{SZ}}\)
\(A Y:=A B+B Y\)
Is AY a quarter root of \(\mathrm{AB}, \mathrm{AF}\) ?
\(\left(A B^{3} \cdot A F\right)^{\frac{1}{4}}-A Y=0\)


Does H and G have a constant relationship?
\[
\begin{aligned}
& \delta:=1 . .1000 \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \\
& \mathrm{BF}:=6 \quad \mathrm{BD}:=\frac{\mathrm{BF}}{2} \quad \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF} \\
& \mathrm{AC}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AF}_{\delta}} \mathrm{DJ}:=\mathrm{BD} \quad \mathrm{DF}:=\mathrm{BD} \\
& \mathrm{BC}_{\delta}:=\mathrm{AC}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CD}_{\delta}:=\mathrm{BD}-\mathrm{BC}_{\delta} \\
& \mathrm{CH}_{\delta}:=\frac{\mathrm{DJ} \cdot \mathrm{BC}_{\delta}}{\mathrm{BD}} \quad \mathrm{AG}_{\delta}:=\mathrm{AC}_{\delta} \\
& \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BD} \quad \mathrm{AK}_{\delta}:=\frac{\left(\mathrm{AG}_{\delta}\right)^{2}}{\mathrm{AD}_{\delta}} \\
& \mathrm{GK}_{\delta}:=\sqrt{\left(\mathrm{AG}_{\delta}\right)^{2}-\left(\mathrm{AK}_{\delta}\right)^{2}} \\
& \mathrm{BK}_{\delta}:=\mathrm{AK}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CK}_{\delta}:=\mathrm{BC}_{\delta}-\mathrm{BK}_{\delta}
\end{aligned}
\]
\[
\mathrm{KF}_{\delta}:=\mathrm{CK}_{\delta}+\mathrm{CD}_{\delta}+\mathrm{DF}
\]

Does FH and FG have identical slopes?

\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\mathrm{CD}_{\delta}+\mathrm{DF} \\
& \mathrm{GK}_{\delta}:=\frac{\mathrm{CH}_{\delta} \cdot \mathrm{KF}_{\delta}}{\mathrm{CF}_{\delta}}
\end{aligned}
\]

Therefore G and H are constantly co-linear.



Thus this file can be redone as: "Given \(\mathrm{BC}=\) \(\sqrt{\mathrm{AB}} \cdot \mathrm{AF}\) and BF , find \(\mathrm{AB} . "\)

The Formula for GK vs. GK2 demonstrates that the symbolic processor cannot always resolve to simplest form. GK2 is the processors final attempt. An attempt with Mathcad 6 gives the same result.
\[
\mathrm{A}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{B}:=\mathrm{BF}
\]
\(G K 2_{\delta}:=B \cdot \frac{\left[\left(A_{\delta}\right)^{\left(\frac{3}{2}\right)} \cdot \sqrt{A_{\delta}+B}-\left(A_{\delta}\right)^{2}+B \cdot \sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}-B \cdot A_{\delta}\right]}{\left[\left(2 \cdot A_{\delta}+B\right) \cdot\left(B-\sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}+A_{\delta}\right)\right]} \quad G K_{\delta}:=\frac{B \cdot\left(\sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}\right)}{\left(2 \cdot A_{\delta}+B\right)}\)



\section*{And the Delian Quest}



\section*{Alternate method for Quad Roots}
\(\delta:=1 . .100 \quad \mathrm{AB}_{\delta}:=\delta \quad \mathrm{BG}:=10 \quad \mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG}\)
\(\mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AG}_{\delta}} \mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta}\)
\(\mathrm{DG}_{\delta}:=\mathrm{BG}-\mathrm{BD}_{\delta} \quad \mathrm{DI}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DG}_{\delta}}\)
\(\mathrm{HI}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{IJ}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{HJ}_{\delta}:=\mathrm{HI}_{\delta}+\mathrm{IJ}_{\delta}\)
\(\mathrm{DK}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{JK}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{BK}_{\delta}:=\mathrm{BD}_{\delta}+\mathrm{DK}_{\delta}\)
\(\mathrm{BJ}_{\delta}:=\sqrt{\left(\mathrm{BK}_{\delta}\right)^{2}+\left(\mathrm{JK}_{\delta}\right)^{2}} \quad \mathrm{JL}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{HJ}_{\delta}}{\mathrm{BJ}_{\delta}}\)
\(\mathrm{BL}_{\delta}:=\mathrm{BJ}_{\delta}-\mathrm{JL}_{\delta} \mathrm{BC}_{\delta}:=\frac{\mathrm{HJ}_{\delta} \cdot \mathrm{BL}_{\delta}}{\mathrm{JL}_{\delta}}\)
\[
\begin{aligned}
& \mathrm{HM}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{DM}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{MG}_{\delta}:=\mathrm{DM}_{\delta}+\mathrm{DG}_{\delta} \\
& \mathrm{GH}_{\delta}:=\sqrt{\left(\mathrm{MG}_{\delta}\right)^{2}+\left(\mathrm{HM}_{\delta}\right)^{2}} \quad \mathrm{HN}_{\delta}:=\frac{\mathrm{MG}_{\delta} \cdot \mathrm{HJ}_{\delta}}{\mathrm{GH}_{\delta}} \\
& \mathrm{GN}_{\delta}:=\mathrm{GH}_{\delta}-\mathrm{HN}_{\delta} \quad \mathrm{FG}_{\delta}:=\frac{\mathrm{HJ}_{\delta} \cdot \mathrm{GN}_{\delta}}{\mathrm{HN}_{\delta}} \\
& \mathrm{BF}_{\delta}:=\mathrm{BG}-\mathrm{FG}_{\delta} \\
& \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}_{\delta} \\
& \mathrm{AC}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BC}_{\delta}
\end{aligned}
\]


The symbolic processor on my computer could not reduce the chain to the final equations.


\section*{Archamedian Trisection Revisited.}

I am curious as to why the Archamedian trisection is still taught the way it was given so long ago and the idea from which it derives is not in any of my books.

I am going to use a circle to demonstrate some principles concerning angles. To help log the results in mathematical terms, I will divide the circle into quadrants and label them either plus or minus. The top is labeled one.

The circle is divided into \(1 / 8\) segments of 90 degrees for each quadrant. I start at the top. Since the angle at the perimeter is \(1 / 2\) of the angle at the center, when I start the figure I use twice the arc segment for the angle I am working with. I have marked some quadrants with plus and minus and have found that for the figure, I would say that I have \(1+1 / 8-1 / 8\). From this I have learned that my starting angle of the smaller circle will be 90 degrees.
\[
\begin{aligned}
& \frac{90}{8}=11.25 \\
& 90+\frac{90}{8}-\frac{90}{8}=90 \quad\left(1+\frac{1}{8}-\frac{1}{8}\right) \cdot 90=90
\end{aligned}
\]


\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1\)
\(\frac{\mathrm{~B} \cdot 4}{4} \cdot 90=90 \quad \frac{\mathrm{~B} \cdot 3}{4} \cdot 90=67.5\)
\(\frac{B \cdot 2}{4} \cdot 90=45 \quad \frac{B}{4} \cdot 90=22.5\)
\(8+1-1=8\)
\(8 \cdot 11.25=90\)
\(8+1-1-2=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1-2-2=4\)
\(4 \cdot 11.25=45\)
\(8+1-1-2-2-2=2\)
\(2 \cdot 11.25=22.5\)

I have added another plus to a quadrant at the bottom of the figure.
\(\mathrm{B}:=1+\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1.125 \quad \frac{9}{8}=1.125\)
\[
\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75
\]
\[
\frac{B \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{B \cdot 1.5}{4.5} \cdot 90=33.75
\]
\(\frac{B \cdot 5}{4.5} \cdot 90=11.25\)
\begin{tabular}{ll}
\(8+1+1-1=9\) & \(9 \cdot 11.25=101.25\) \\
\(8+1+1-1-2=7\) & \(7 \cdot 11.25=78.75\) \\
\(8+1+1-1-2-2=5\) & \(5 \cdot 11.25=56.25\) \\
\(8+1+1-1-2-2-2=3\) & \(3 \cdot 11.25=33.75\) \\
\(8+1+1-1-2-2-2-2=1\) & \(1 \cdot 11.25=11.25\)
\end{tabular}
\(\bmod (8+1+1-1,2)=1\)

\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8}+\frac{1}{8}\)
\(B=1.125 \quad \frac{9}{8}=1.125\)
\(\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75\)
\[
\frac{\mathrm{B} \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{\mathrm{~B} \cdot 1.5}{4.5} \cdot 90=33.75
\]
\(\frac{B \cdot .5}{4.5} \cdot 90=11.25\)
\(8+1=9\) \(9 \cdot 11.25=101.25\)
\(8+1-(1 \cdot 2)=7\)
\(7 \cdot 11.25=78.75\)
\(8+1-(2 \cdot 2)=5\)
\(5 \cdot 11.25=56.25\)
\(8+1-(3 \cdot 2)=3\)
\(3 \cdot 11.25=33.75\)
\(8+1-(4 \cdot 2)=1\)
\(1 \cdot 11.25=11.25\)
\(\bmod (8+1,2)=1\)

\(B:=1+\frac{3}{24}-\frac{8}{24} B=0.7917 \quad \frac{19}{24}=0.7917\)
\(\frac{B \cdot 3.1666}{3.1666} \cdot 90=71.25 \quad \frac{B \cdot 2.1666}{3.1666} \cdot 90=48.7495\)
\(\frac{B \cdot 1.16666}{3.16666} \cdot 90=26.2499 \frac{B \cdot .166666}{3.166666} \cdot 90=3.75\)
\begin{tabular}{ll}
\((24+3)-8=19\) & \(19 \cdot 3.75=71.25\) \\
\((24+3)-8-(1 \cdot 6)=13\) & \(13 \cdot 3.75=48.75\) \\
\((24+3)-8-(2 \cdot 6)=7\) & \(7 \cdot 3.75=26.25\) \\
\((24+3)-8-(3 \cdot 6)=1\) & \(1 \cdot 3.75=3.75\)
\end{tabular}
\(\bmod (24+3-8,2)=1\)
\(B:=1+\frac{1}{8}-\frac{1}{8}+\frac{10}{8} \quad B=2.25 \quad \frac{18}{8}=2.25\)
\(\frac{B \cdot 9}{9} \cdot 90=202.5 \quad \frac{B \cdot 8}{9} \cdot 90=180\)
\(\frac{\mathrm{B} \cdot 7}{9} \cdot 90=157.5 \quad \frac{\mathrm{~B} \cdot .6}{9} \cdot 90=13.5\)
\(8+1-1+10=18\)
\(18 \cdot 11.25=202.5\)
\(8+1-1+10-(2 \cdot 1)=16\)
\(16 \cdot 11.25=180\)
\(8+1-1+10-(2 \cdot 2)=14\)
\(14 \cdot 11.25=157.5\)
\(8+1-1+10-(2 \cdot 3)=12\)
\(12 \cdot 11.25=135\)
\(8+1-1+10-(2 \cdot 4)=10\)
\(10 \cdot 11.25=112.5\)
\(8+1-1+10-(2 \cdot 5)=8\)
\(8 \cdot 11.25=90\)
\(8+1-1+10-(2 \cdot 6)=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1+10-(2 \cdot 7)=4\)
\(4 \cdot 11.25=45\)
\(8+1-1+10-(2 \cdot 8)=2\)
\(2 \cdot 11.25=22.5\)
\(\bmod ((8+1-1)+10,2)=0\)
\(\mathrm{B}:=1+\frac{1}{7}-\frac{2}{7} \quad \mathrm{~B}=0.8571 \quad \frac{6}{7}=0.8571\)
\(\frac{B \cdot 6}{6} \cdot 90=77.1429 \quad \frac{B \cdot 4}{6} \cdot 90=51.4286\)
\(\frac{B \cdot 2}{6} \cdot 90=25.7143\)
c : \(=\frac{90}{7}\)
\(7+1-(1 \cdot 2)=6\)
\(6 \cdot \mathrm{c}=77.1429\)
\(7+1-(2 \cdot 2)=4\)
\(4 \cdot \mathrm{c}=51.4286\)
\(7+1-(3 \cdot 2)=2\)
\(2 \cdot \mathrm{c}=25.7143\)
B:=1+ \(\frac{1}{7}-\frac{1}{7}\)
B \(=1\)
\(\frac{7}{7}=1\)
\(\frac{B \cdot 7}{7} \cdot 90=90\)
\(\frac{B \cdot 5}{7} \cdot 90=64.2857\)
\[
\frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571
\]
\(7+1-1=7\)
\[
7 \cdot \mathrm{c}=90
\]
\(7+1-1-(1 \cdot 2)=5 \quad 5 \cdot \mathrm{c}=64.2857\)
\(7+1-1-(2 \cdot 2)=3 \quad 3 \cdot c=38.5714\)
\(7+1-1-(3 \cdot 2)=1 \quad 1 \cdot \mathrm{c}=12.8571\)
\(\bmod (7+1-1,2)=1\)
\(\mathrm{B}:=1+\frac{8}{56}-\frac{7}{56} \quad \mathrm{~B}=1.0179\)
\(\frac{\mathrm{~B} \cdot 57}{57} \cdot 90=91.6071 \quad \frac{\mathrm{~B} \cdot 41}{57} \cdot 90=65.8929\)
\[
\frac{\mathrm{B} \cdot 25}{57} \cdot 90=40.1786 \quad \mathrm{c}:=\frac{90}{56}
\]
\(56+8-7=57\)
\(57 \cdot \mathrm{c}=91.6071\)
\(56+8-7-(1 \cdot 16)=41\)
\(41 \cdot \mathrm{c}=65.8929\)
\(56+8-7-(2 \cdot 16)=25 \quad 25 \cdot \mathrm{c}=40.1786\)
\(56+8-7-(3 \cdot 16)=9 \quad 9 \cdot c=14.4643\)
\(\bmod (56+8-7,16)=9\)
\[
\begin{aligned}
& B:=1+\frac{1}{7}-\frac{1}{7} \quad B=1 \\
& \frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.2857 \\
& \frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571 \\
& 7+1-1=7 \\
& 7+1-1-(1 \cdot 2)=5 \\
& 7+1-1-(2 \cdot 2)=3 \\
& 7+1-1-2-2-2=1 \\
& \bmod (7+1-1,2)=1
\end{aligned}
\]

Work in progress.



\section*{Exponential}

Progressions. 04_01_95

If I want to multiply any number by any power, this is the a geometric process for doing so.

The given figure is drawn for the third power of 3 .
\[
\mathrm{AH}:=10 \quad \delta:=0 . .10 \quad \mathrm{BS}:=8
\]

The third division between A and F is very hard to see. BS = Base Segments


Making the number of divisions 3, provides 3 cube result. AB divides AF 27 times. Etc. It can be seen that using a normal straight edge and compass one needs a very large piece of paper to work this.

\(\mathrm{BS}^{\boldsymbol{\delta}}\)
\begin{tabular}{|l|}
\hline 1 \\
\hline 8 \\
\hline 64 \\
\hline 512 \\
\hline 4096 \\
\hline 32768 \\
\hline 262144 \\
\hline 2097152 \\
\hline 16777216 \\
\hline 134217728 \\
\hline \(1.07374182 \cdot 10^{9}\) \\
\hline
\end{tabular}

You will notice that I took only one of the possible two divisions from which to project from. The other would be \(2 / 3\). At \(2 / 3\) my unit divisions would still be 27 , but now \(A B\) would take up 2 cube of them, or AB would be 8 units.

For an 8 cube series then, the value for AB would be 1 of 512,8 of 512,27 of 512,64 of 512,125 of 512,216 of 512,343 of 512



\section*{About The Laws of 04_22_95.MCD Exponents and Ratios}
\(\Delta:=22 \quad \delta:=1 . . \Delta \quad \mathrm{AB}:=7\)
Base Segments \(=\) BS BS : \(=99\)
Base Index \(=\mathrm{BI} \quad\) BI \(:=13\)

Root Series \(=\mathrm{RS} \quad \mathrm{RS}_{\delta}:=\left[\left(\frac{\mathrm{BI}}{\mathrm{BS}} \cdot \mathrm{AB}\right)^{\Delta-\delta} \cdot \mathrm{AB}^{\delta}\right]^{\frac{1}{\Delta}}\)

Root Series By Ratio \(=\mathrm{RR} \quad \mathrm{RR}_{\delta}:=\left(\frac{\mathrm{BI}}{\mathrm{BS}}\right)^{\frac{\Delta-\delta}{\Delta}} \cdot \mathrm{AB}\)

Root Series By Inverse Ratio = RI
\[
\mathrm{RI}_{\delta}:=\left(\frac{\mathrm{BS}}{\mathrm{BI}}\right)^{\frac{\delta}{\Delta}} \cdot\left(\frac{\mathrm{BI}}{\mathrm{BS}} \cdot \mathrm{AB}\right)
\]

\(\sum_{\delta}\left(\mathrm{RS}_{\delta}-\mathrm{RR}_{\delta}\right)=0\)

\[
\sum_{\delta}\left(\mathrm{RS}_{\delta}-\mathrm{RI}_{\delta}\right)=0
\]

On the concept of unit and universe of discourse:
Euclidean exponentiation provides a good example with which to demonstrate the distinction between the concepts of unit and the universe of discourse.

Taking 2 for theuniverse of discourse would be represented graphically as:


To represent \(2^{2}\) within this universe of discourse one would draw:


Our original 2 is divided into \(\mathrm{a}^{\text {th }} 4\) segment.
Now if 2 is taken as themit of discourse we may still represent it as;

however to represent 2 now would be drawn as


One will notice that in example 1, the unit changed while the universe remained, in example 2 the unit remained while the universe changed. One could call example 1 an example of deduction and example 2 an example of induction.


The resultant equation in terms of the givens is
\[
\mathrm{EF}:=\frac{\mathrm{AC} \cdot(\mathrm{AM}-\mathrm{AB})}{2 \cdot \mathrm{AC}-\mathrm{AM}} \quad \mathrm{EF}=3.80843
\]


\section*{Segment B.}

\section*{Given AC, AB, DN, find EF.}
\(\mathrm{AN}:=2 \cdot \mathrm{AC} \quad \mathrm{MN}:=\frac{\mathrm{DN}^{2}}{\mathrm{AN}} \quad \mathrm{CN}:=\mathrm{AC} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BN}:=\mathrm{CN}+\mathrm{BC}\)
\(\mathrm{EN}:=\frac{\mathrm{DN} \cdot \mathrm{BN}}{\mathrm{MN}} \quad \mathrm{ED}:=\mathrm{EN}-\mathrm{DN} \quad \mathrm{EF}:=\frac{\mathrm{AC} \cdot \mathrm{ED}}{\mathrm{DN}} \quad \mathrm{EF}=3.80844\)

The equation for this process is
\[
\mathrm{EF}:=\frac{\mathrm{AC} \cdot\left(4 \cdot \mathrm{AC}^{2}-2 \cdot \mathrm{AC} \cdot \mathrm{AB}-\mathrm{DN}^{2}\right)}{\mathrm{DN}^{2}} \quad \mathrm{EF}=3.80844
\]


Segment C.
Given \(\mathrm{AC}, \mathrm{AB}, \mathrm{BE}\), find EF .
\(\mathrm{AN}:=2 \cdot \mathrm{AC} \quad \mathrm{BN}:=\mathrm{AN}-\mathrm{AB} \quad \mathrm{EN}:=\sqrt{\mathrm{BE}^{2}+\mathrm{BN}^{2}} \quad \mathrm{ON}:=\frac{\mathrm{EN}^{2}}{\mathrm{BN}}\)
\(\mathrm{DN}:=\frac{\mathrm{EN} \cdot \mathrm{AN}}{\mathrm{ON}} \quad \mathrm{DE}:=\mathrm{EN}-\mathrm{DN} \quad \mathrm{EF}:=\frac{\mathrm{AC} \cdot \mathrm{DE}}{\mathrm{DN}} \quad \mathrm{EF}=3.80844\)

The equation for this process is \(\quad \mathrm{EF}:=\frac{\mathrm{BE}^{2}-2 \cdot \mathrm{AC} \cdot \mathrm{AB}+\mathrm{AB}^{2}}{2 \cdot(2 \cdot \mathrm{AC}-\mathrm{AB})} \quad \mathrm{EF}=3.80844\)

\section*{10_14_5C.MCD}

Trivial Method: Square Root
Generalize the figure of 10_14_95.MCD


Starting at any point G, between A and J, the square root of \(\mathrm{AB} \cdot \mathrm{AF}\) can always be projected to point C. Such a progression can be used on the cube root figure.
\(\delta:=1 . .1000 \mathrm{AB}:=10 \quad \mathrm{BF}:=10 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2}\)
\[
\begin{aligned}
& \mathrm{AE}:=\mathrm{BE}+\mathrm{AB} \quad \mathrm{AJ}:=\mathrm{BE} \quad \mathrm{AG}_{\delta}:=\frac{\mathrm{AJ}}{\delta} \\
& \mathrm{EI}_{\delta}:=\mathrm{AG}_{\delta} \mathrm{AI}_{\delta}:=\sqrt{(\mathrm{AE})^{2}+\left(\mathrm{EI}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{AK}_{\delta}:=\mathrm{AI}_{\delta} \quad \mathrm{DK}:=\mathrm{AJ} \mathrm{AD}_{\delta}:=\sqrt{\left(\mathrm{AK}_{\delta}\right)^{2}-\mathrm{DK}^{2} \mathrm{GH}_{\delta}}:=\mathrm{AD}_{\delta} \quad \mathrm{CG}_{\delta}:=\mathrm{GH}_{\delta}\)
\[
\mathrm{AF}_{\delta}:=\mathrm{BF}+\mathrm{AB} \quad \mathrm{AC}_{\delta}:=\sqrt{\left(\mathrm{CG}_{\delta}\right)^{2}-\left(\mathrm{AG}_{\delta}\right)^{2}}
\]



Given \(A B\) and \(B D\) divide \(B D\) such that \(A B \cdot C D=\) \(\frac{B C^{2}}{4}\). And what is the reltionship of \(A C\) to \(A B\) and BD? Now the date on this file is not exact as I sketched this out on a piece of paper and forgot to date it.

\[
\begin{aligned}
& \mathrm{AB}:=5 \quad \mathrm{BD}:=1 \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BD}} \quad \mathrm{AE}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BF}^{2}} \\
& \mathrm{DE}:=\mathrm{AD}-\mathrm{AE} \quad \mathrm{DG}:=\mathrm{DE} \quad \mathrm{CD}:=\frac{\mathrm{DG}^{2}}{\mathrm{AD}} \\
& \mathrm{CD}=0.046 \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{AB} \cdot \mathrm{CD}-\frac{\mathrm{BC}^{2}}{4}=0
\end{aligned}
\]
\(\mathrm{CE}:=\mathrm{DE}-\mathrm{CD} \quad \mathrm{CH}:=\mathrm{CE} \quad \mathrm{CJ}:=\frac{\mathrm{CH}^{2}}{\mathrm{CD}} \quad \mathrm{AB}-\mathrm{CJ}=0\)
\(\mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{AC}=5.954\)
\(A C-\left[2 \cdot \frac{\mathrm{AB}^{\left(\frac{3}{2}\right)}}{\sqrt{\mathrm{AB}+\mathrm{BD}}}+2 \cdot \frac{\sqrt{\mathrm{AB}}}{\sqrt{\mathrm{AB}+\mathrm{BD}}} \cdot \mathrm{BD}-\mathrm{AB}\right]=0\)

\section*{A Modification of a Square Root Figure. Gemini Roots}

One of the square root figures displays a one to one ratio between what could be called the vertical segment OP and the root of the two horizontal segments AP and BP. With a slight modification however, one can demonstrate a many to one relationship between three base segments.

GL has a ratio to the root of AL•BG.
Developing the arc AIC from it will give a means of keeping that ratio.
\(B S=\) Base Segments, set at end of doc.
\(\mathrm{AB}:=10 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \quad \mathrm{EG}:=\frac{\mathrm{AB}}{\mathrm{BS}}\)
\(\mathrm{BC}:=\mathrm{AC} \quad \mathrm{CD}:=\mathrm{AC} \quad \mathrm{CE}:=\frac{\mathrm{EG}}{2}\)
\(\mathrm{AE}:=\mathrm{AC}-\mathrm{CE} \quad \mathrm{BE}:=\mathrm{BC}+\mathrm{CE}\)
\(\mathrm{EF}:=\sqrt{\mathrm{AE} \cdot \mathrm{BE}} \quad \mathrm{AF}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EF}^{2}}\)
\(\mathrm{AI}:=\mathrm{AF} \quad \mathrm{AM}:=\frac{\mathrm{AI}}{2} \quad \mathrm{CI}:=\sqrt{\mathrm{AI}^{2}-\mathrm{AC}^{2}}\)
\(\mathrm{AL}:=\frac{\mathrm{AI} \cdot \mathrm{AM}}{\mathrm{AC}} \mathrm{CL}:=\mathrm{AC}-\mathrm{AL}\)
\(\mathrm{CK}:=\frac{\mathrm{AC} \cdot \mathrm{CE}}{\mathrm{CI}} \quad \mathrm{IK}:=\mathrm{CI}+\mathrm{CK}\)
\[
\begin{aligned}
& \begin{array}{l}
\delta:=1 . . \Delta \quad \mathrm{AN}_{\delta}:=\frac{\mathrm{AC}}{\Delta} \cdot \delta \\
\mathrm{CN}_{\delta}:=\mathrm{AC}-\mathrm{AN}_{\delta} \quad \mathrm{KO}:=\mathrm{IK} \\
\mathrm{KN}_{\delta}:=\sqrt{\mathrm{CK}^{2}+\left(\mathrm{CN}_{\delta}\right)^{2}} \quad \mathrm{NO}_{\delta}:=\mathrm{KO}-\mathrm{KN}_{\delta} \\
\mathrm{NP}_{\delta}:=\frac{\mathrm{CN}_{\delta} \cdot \mathrm{NO}_{\delta}}{\mathrm{KN}_{\delta}} \quad \mathrm{AP}_{\delta}:=\mathrm{AC}-\mathrm{CN}_{\delta}-\mathrm{NP}_{\delta}
\end{array} \\
& \mathrm{OP}_{\delta}:=\frac{\mathrm{CK} \cdot \mathrm{NO}_{\delta}}{\mathrm{KN}_{\delta}} \quad \mathrm{AO}_{\delta}:=\sqrt{\left(\mathrm{AP}_{\delta}\right)^{2}+\left(\mathrm{OP}_{\delta}\right)^{2}} \\
& \mathrm{AQ}_{\delta}:=\mathrm{AO}_{\delta} \quad \mathrm{AR}_{\delta}:=\frac{\left(\mathrm{AQ}_{\delta}\right)^{2}}{\mathrm{AB}} \\
& \mathrm{BP}_{\delta}:=\mathrm{BC}+\mathrm{CN}_{\delta}+\mathrm{NP}_{\delta} \\
& \mathrm{BO}_{\delta}:=\sqrt{\left(\mathrm{BP}_{\delta}\right)^{2}+\left(\mathrm{OP}_{\delta}\right)^{2}} \quad \mathrm{BS}_{\delta}:=\mathrm{BO}_{\delta} \quad \mathrm{BT}_{\delta}:=\frac{\left(\mathrm{BS}_{\delta}\right)^{2}}{\mathrm{AB}} \quad \mathrm{AT}_{\delta}:=\mathrm{AB}-\mathrm{BT}_{\delta} \quad \mathrm{RT}_{\delta}:=\mathrm{AT}_{\delta}-\mathrm{AR}_{\delta}
\end{aligned}
\]

Set the number of Base Segments here and see if a constant relationship is expressed in the graph.
\(B S \equiv 9\) \(\Delta \equiv 100\)



\section*{Short Method Gemini Roots.}

Given AG, CE, AH, place CE so that
CE:AH as CE:CI. Or more simply that CI
\(=\sqrt{\mathrm{AC}_{\delta} \cdot \mathrm{EG}_{\delta}}=\mathrm{AH}\).
\(\delta:=1 . .100\)
\(\Delta:=8\)
\(\mathrm{AG}:=\Delta \cdot 2+1 \quad \mathrm{CE}_{\delta}:=\frac{1}{\delta} \quad \quad \mathrm{AH}_{\delta}:=\Delta \cdot \mathrm{CE}_{\delta}\)
With the values given is the constuction possible? ( 1 for yes and 0 for no.)

\(\mathrm{DJ}_{\delta}:=\mathrm{AH}_{\delta} \quad \mathrm{AB}_{\boldsymbol{\delta}}:=\frac{\mathrm{CE}_{\delta}}{2} \quad \mathrm{AF}:=\frac{\mathrm{AG}}{2} \quad \mathrm{FG}:=\mathrm{AF} \quad \mathrm{BF}_{\boldsymbol{\delta}}:=\mathrm{AF}-\mathrm{AB}_{\delta} \quad \mathrm{FJ}_{\boldsymbol{\delta}}:=\mathrm{BF}_{\boldsymbol{\delta}}\)
\(\mathrm{FD}_{\delta}:=\sqrt{\left(\mathrm{FJ}_{\delta}\right)^{2}-\left(\mathrm{DJ}_{\delta}\right)^{2}} \quad \mathrm{DC}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{DE}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{AD}_{\delta} i=\mathrm{AF}-\mathrm{FD}_{\delta}\)
\(\mathrm{AC}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{DC}_{\delta} \quad \mathrm{AE}_{\delta}:=\mathrm{AD}_{\delta}+\mathrm{DE}_{\delta} \quad \mathrm{EF}_{\delta}:=\mathrm{AF}-\mathrm{AE}_{\delta} \quad \mathrm{EG}_{\delta}:=\mathrm{EF}_{\delta}+\mathrm{FG}\)



\section*{Method for Equals.}

At the inner extremities of a great circle I have two equal smaller ones. Find the circle tangent to all three

\[
\begin{aligned}
& \mathrm{AH}:=10 \quad \mathrm{AC}:=3 \quad \mathrm{AO}:=\frac{\mathrm{AH}}{2} \quad \mathrm{AB}:=\frac{\mathrm{AC}}{2} \\
& \mathrm{JO}:=\mathrm{AB} \quad \mathrm{OP}:=\mathrm{JO} \quad \mathrm{HO}:=\mathrm{AO} \\
& \mathrm{JP}:=\sqrt{\mathrm{JO}^{2}+\mathrm{OP}^{2}} \quad \mathrm{HP}:=\mathrm{HO}+\mathrm{OP}
\end{aligned}
\]
\[
\mathrm{AL}:=\frac{\mathrm{JP} \cdot \mathrm{AH}}{\mathrm{HP}} \mathrm{NO}:=\mathrm{AO} \quad \mathrm{AN}:=\sqrt{\mathrm{AO}^{2}+\mathrm{NO}^{2}}
\]
\[
\mathrm{LN}:=\mathrm{AN}-\mathrm{AL} \quad \mathrm{LQ}:=\frac{\mathrm{AO} \cdot \mathrm{LN}}{\mathrm{AN}} \quad \mathrm{LQ}=2.692
\]

Reducing \(L Q\) as an expression of the two givens, \(L_{F}:=\frac{A H \cdot(A H-A C)}{2 \cdot(A H+A C)} \quad L Q_{F}-L Q=0\)

Scholia: 100 Great Problems of Elementary Mathematics H. Dorrie Problem 27 Euler's Line \(\delta:=0 . .2 \quad\) AC \(:=\left(\begin{array}{l}\text { Side_1 } \\ \text { Side_2 } \\ \text { Side_3 }\end{array}\right) \quad \mathrm{BC}:=\left(\begin{array}{l}\text { Side_2 } \\ \text { Side_3 } \\ \text { Side_1 }\end{array}\right) \quad \mathrm{AB}:=\left(\begin{array}{l}\text { Side_3 } \\ \text { Side_1 } \\ \text { Sid.MCD } \\ \text { Side_2 }\end{array}\right) \begin{aligned} & \text { Given three sides of a triangle, } \\ & \text { determine the length of the Euler line } . \\ & \text { Work the drawing from each of the } \\ & \text { sides. }\end{aligned}\)

TRIANGLE \(:=(\) Side_1 + Side_2 \(>\) Side_3 \() \cdot(\) Side_1 + Side_3 \(>\) Side_2 \() \cdot(\) Side_2 + Side_3 \(>\) Side_1 \()\)

\[
\begin{aligned}
& \mathrm{AE}_{\delta}:=\frac{\mathrm{AB}_{\delta}}{2} \mathrm{Ak}_{\delta}:=\mathrm{AC}_{\delta} \quad \mathrm{Bl}_{\delta}:=\mathrm{BC}_{\delta} \\
& \mathrm{Ai}_{\delta}:=\frac{\left(\mathrm{Ak}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \quad \mathrm{Bh}_{\delta}:=\frac{\left(\mathrm{Bl}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \mathrm{Ah}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Bh}_{\delta} \\
& \mathrm{hi}_{\delta}:=\mathrm{Ah}_{\delta}-\mathrm{Ai}_{\delta} \quad \mathrm{Aj}_{\delta}:=\mathrm{Ai}_{\delta}+\frac{\mathrm{hi}_{\delta}}{2} \\
& \mathrm{Cj}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}-\left(\mathrm{Aj}_{\delta}\right)^{2}} \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta} \\
& \mathrm{Bj}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Aj}_{\delta} \mathrm{Bg}_{\delta}:=\frac{\mathrm{BC}_{\delta}}{2} \quad \mathrm{Bf}_{\delta}:=\frac{\mathrm{BC}_{\delta} \cdot \mathrm{BE}_{\delta}}{\mathrm{Bj}_{\delta}} \\
& \mathrm{fg}_{\delta}:=\mathrm{Bf}_{\delta}-\mathrm{Bg}_{\delta} \quad \mathrm{Ug}_{\delta}:=\mathrm{if}\left(\mathrm{Cj}_{\delta}, \frac{\mathrm{Bj}_{\delta} \cdot \mathrm{fg}_{\delta}}{\mathrm{Cj}_{\delta}}, 0\right) \\
& \mathrm{BU}_{\delta}:=\mathrm{if}\left[\mathrm{Ug}_{\delta}, \sqrt{\left.\left(\mathrm{Ug}_{\delta}\right)^{2}+\left(\mathrm{Bg}_{\delta}\right)^{2}, \infty\right]}\right.
\end{aligned}
\]
\(\mathrm{AM}_{\delta}:=\frac{\mathrm{AC}_{\delta}}{2} \quad \mathrm{AGG}_{\delta}:=\frac{\mathrm{Aj}_{\delta} \cdot \mathrm{AM}_{\delta}}{\mathrm{AC}_{\delta}} \quad \mathrm{BGG}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AGG}_{\delta}\)
\(\mathrm{GGM}_{\delta}:=\sqrt{\left(\mathrm{AM}_{\delta}\right)^{2}-\left(\mathrm{AGG}_{\delta}\right)^{2}} \mathrm{BM}_{\delta}:=\sqrt{\left(\mathrm{GGM}_{\delta}\right)^{2}+\left(\mathrm{BGG}_{\delta}\right)^{2}}\)
\(\mathrm{BS}_{\delta}:=\frac{2 \cdot \mathrm{BM}_{\delta}}{3} \mathrm{BG}_{\delta}:=\frac{\mathrm{BGG}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}} \quad \mathrm{GS}_{\delta}:=\frac{\mathrm{GGM}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}}\)
\(A G_{\delta}:=A B_{\delta}-\mathrm{BG}_{\boldsymbol{\delta}} \mathrm{AS}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{AG}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{GS}_{\boldsymbol{\delta}}\right)^{2}}\)

\(\mathrm{MS}_{\delta}:=\mathrm{BM}_{\delta}-\mathrm{BS}_{\delta} \quad \mathrm{AU}_{\delta}:=\mathrm{BU}_{\delta} \quad \mathrm{MU}_{\delta}:=\sqrt{\left(\mathrm{AU}_{\delta}\right)^{2}-\left(\mathrm{AM}_{\delta}\right)^{2}} \quad \mathrm{Ae}_{\delta}:=\frac{1}{2} \cdot \frac{\left(\mathrm{AS}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}}+\frac{1}{2} \cdot \mathrm{AM}_{\delta}-\frac{1}{2} \cdot \frac{\left(\mathrm{MS}_{\delta}\right)^{2}}{\mathrm{AM}}\)

The following sequence is from 06_07_93.MCD. In that paper I treated it as a problem between two triangles, which it is. One can restate it as finding the fourth side of a quadrilateral by pulling up a line.
\(\mathrm{eM}_{\delta}:=\mathrm{Ae}_{\delta}-\mathrm{AM}_{\delta} \mathrm{Sm}_{\delta}:=\mathrm{eM}_{\delta} \quad \mathrm{Se}_{\delta}:=\sqrt{\left(\mathrm{AS}_{\delta}\right)^{2}-\left(\mathrm{Ae}_{\delta}\right)^{2}} \quad \mathrm{Mm}_{\delta}:=\mathrm{Se}_{\delta}\)
\(\mathrm{Um}_{\delta}:=\operatorname{if}\left[\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}, \mathrm{MU}_{\delta}-\mathrm{Mm}_{\delta}, \mathrm{MU}_{\delta}+\mathrm{Mm}_{\delta}\right] \mathrm{SU}_{\delta}:=\sqrt{\left(\mathrm{Um}_{\delta}\right)^{2}+\left(\mathrm{Sm}_{\delta}\right)^{2}} \mathrm{UO}_{\delta}:=3 \cdot \mathrm{SU}_{\delta}\)
Due to the way in which certain lines lay, the above switch was needed.

Is this a TRIANGLE \(=1 \quad ? \quad\) Side_1 \(\equiv 21 \quad\) Side_2 \(\equiv 14.4 \quad\) Side_3 \(\equiv 7.75\)

\(\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}\)

\begin{tabular}{|c|c|c|}
\hline \(\mathrm{SU}_{\delta}\) & \(\mathrm{UO}_{\delta}\) & \(\mathrm{AU}_{\delta}\) \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline
\end{tabular}

Descartes gives a figure for solving \(\mathrm{z}^{2}=\mathrm{az}+\mathrm{b}^{2}\) which should have been stated as \(\mathrm{z}^{2}=2 \mathrm{az}\) \(+b^{2}\), generalize the figure. Descartes' figure was given only when \(n=2\). In this form, it is an equation of two givens and one unknown, generalized it as three givens and solves for three unknowns. Attempt to eliminate two of the unknowns as a function of the three givens.


Z
Z

Given \(\mathrm{a}, \mathrm{n}\) and b for the equation \(\mathrm{z}^{2}=\mathrm{naz}+\mathrm{b}^{2}+\) cd find \(\mathrm{z}, \mathrm{c}\), and d .
\(A D:=n \cdot a \quad B E:=\sqrt{a^{2}+b^{2}} \quad B C:=\frac{a^{2}}{B E}\)
\(C E:=B E-B C \quad C F:=\sqrt{B C \cdot C E}\)
\(F G:=\frac{A D}{2} \quad C G:=\sqrt{F G^{2}-C F^{2}}\)
\(A G:=F G \quad A C:=A G+C G\)
\(B G:=C G-B C \quad D G:=F G\)
\(B D:=D G-B G \quad A B:=A G+B G\)
\(A E:=A B+B E \quad D E:=B E-B D\)
\(D H:=\frac{b^{2}}{D E} \quad D I:=A E \quad H I:=D I-D H\)
\(z:=A E \quad z=12.622\)
\(c:=D E \quad c=0.622\)
\(d:=H I \quad d=6.186\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0\)
Place values here:
\[
n \equiv 3
\]
\[
a \equiv 4
\]
\[
b \equiv 2
\]

Expressing c and d in terms of the givens does not really look esthetically pleasing.
\[
\left.d=2 \cdot a \cdot \frac{b^{2}}{\sqrt{a^{2}+b^{2}}} \cdot \frac{\left(2 \cdot a-\sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right)}{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right.}\right)
\]
\[
c=\frac{-1}{2} \cdot \frac{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\sqrt{a^{2}+b^{2}}}
\]

The symbolic processor could not reduce cd directly so I had to do it in terms of the equation by resolving \(z\).
\(z=\frac{1}{2} \cdot \frac{\left(n \cdot a \cdot \sqrt{a^{2}+b^{2}}+a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}+2 \cdot b^{2}\right)}{\sqrt{a^{2}+b^{2}}}\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0 \quad p=-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\)
\((c \cdot d)-p=0\)
\(z^{2}-\left[n \cdot a \cdot z+b^{2}+\left[-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\right]\right]=0\)
Solve for z below.
\(\left[\begin{array}{l}\frac{1}{2} \cdot n \cdot a+\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}} \\ \frac{1}{2} \cdot n \cdot a-\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}}\end{array}\right]\)


C


Scholia: The Geometry of Rene Descartes with a facsimile of the first edition. Translated by D. Eugene and M. Latham
\(z^{2}:=a z-b^{2}\)
The problem is given for the solution of z when a and b are given. Working the problem backward, \(z^{2}+b^{2}:=a z\) ione can see constants in the figure for solving when only a and b are given.
\[
b:=2.12 \quad z:=1.41
\]

Finding \(a\) is just a matter of expressing \(b\) in terms of cz, and a becomes \(\mathrm{z}+\mathrm{c}\).
\[
c:=\frac{b^{2}}{z} \quad a:=z+c
\]

We find that this c has another relation to z , for it holds a proportion to it in the given equation.
\[
\begin{aligned}
& \left(c^{2}+b^{2}\right)-a \cdot c=0 \\
& \left(c^{2}+b^{2}\right)-((z+c) \cdot c)=0 \\
& \left(c^{2}+b^{2}\right)-(c \cdot z)-c^{2}=0 \\
& \left(z^{2}+b^{2}\right)-(z+c) \cdot z=0 \\
& \left(z^{2}+b^{2}\right)-(c \cdot z)-z^{2}=0
\end{aligned}
\]

Descartes and other mathematicians speak as if we have two different values for z , however, I see quite plainly that we have a \(z\) and a c that was found. The unique name of the symbols in context are thus preserved.

One can also see that working the figure in a straight forward manner, imaginary situations are not possible,

\(b^{2}\)




The primitive form of construction is very suggestive of Descartes process. If however we use Pythagorean division, the figure may not be so apparent. One should note that contrary to his statement on page 4 , one cannot divide a line by a line. In geometry one can divide a square by a line. This is the law of tautology, which holds for all mathematics. It will also be noted that Descartes claims to be working with a quadratic equation, and his solution is indeed for one, however he states it as a quadratic deficient by a rectangle, deficient in fact by az. The authors of the notes make the same mistake.

\section*{Just for fun.}


The ratio of BC to CE is common to another cube root expression, which?


\[
\begin{gathered}
\sqrt{A D}+\sqrt{A B} \\
(\sqrt{A D})^{2}+2 \cdot \sqrt{A B} \cdot \sqrt{A D}+(\sqrt{A B})^{2} \\
(\sqrt{A D})^{3}+3 \cdot A D \cdot \sqrt{A B}+3 \cdot \sqrt{A D} \cdot A B+(\sqrt{A B})^{3}
\end{gathered}
\]

Pascal's triangle with exponential division.
\[
A B:=3 \quad A D:=5
\]
\(B D:=A D-A B \quad A C:=\sqrt{A B \cdot A D}\)
\[
B D:=A D-A B \quad A C:=\sqrt{A B \cdot A D}
\]
\[
C D:=A D-A C \quad B C:=B D-C D
\]
\[
C D:=B D-B C \quad C E:=\sqrt{B C \cdot C D}
\]
\[
B E:=\sqrt{B C^{2}+C E^{2}} \quad D E:=\sqrt{C D^{2}+C E^{2}}
\]
\[
\mathrm{BG}:=\frac{\mathrm{BD} \cdot \mathrm{BE}}{\mathrm{DE}} \quad \mathrm{FG}:=\frac{\mathrm{BC} \cdot \mathrm{BG}}{\mathrm{BD}}
\]
\[
\mathrm{EG}:=\frac{\mathrm{BE} \cdot \mathrm{BG}}{\mathrm{BD}} \quad \mathrm{DG}:=\mathrm{DE}+\mathrm{EG}
\]
\[
\mathrm{GH}:=\frac{\mathrm{BC} \cdot \mathrm{EG}}{\mathrm{BD}} \quad \mathrm{GJ}:=\frac{\mathrm{BC} \cdot \mathrm{GH}}{\mathrm{BD}}
\]
\[
\frac{\mathrm{BD}}{\mathrm{BC}}=2.291 \quad \frac{\mathrm{DG}}{\mathrm{GH}}=5.249 \quad \frac{\mathrm{DG}}{\mathrm{GJ}}=12.025
\]
\[
\begin{aligned}
& N:=1 . .3 \frac{(\sqrt{A D}+\sqrt{A B})^{N}}{\sqrt{A B^{N}}} \\
& \frac{2.291}{5.249} \\
& \hline 12.025 \\
&
\end{aligned}
\]
\[
\frac{A+B}{A}
\]
\[
\frac{A^{2}+2 A B+B^{2}}{A^{2}}
\]
\[
\frac{A^{3}+3 A^{2} \cdot B+3 A \cdot B^{2}+B^{3}}{A^{3}}
\]

Dividing an exponentiated integer by an exponentiated integer of the same power, straight edge and compass construction. Followed by who knows what!

\(C D:=1.5 \quad B C:=.75 \quad B D:=B C+C D\)
\(C E:=\sqrt{B C \cdot C D} \quad B E:=\sqrt{B C^{2}+C E^{2}}\)
\(E F:=B C \quad F G:=\frac{B C \cdot E F}{C E} \quad F G=0.53\)
\(D E:=\sqrt{C D^{2}+C E^{2}} \quad E G:=\frac{B D \cdot E F}{D E}\)
\[
\mathrm{GH}:=\frac{\mathrm{BC} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{DG}:=\mathrm{DE}+\mathrm{EG}
\]
\(J K:=\frac{F G \cdot G H}{E G} \quad G J:=\frac{B C \cdot G H}{B D} \quad F H:=\frac{C E \cdot E G}{B D} \quad \frac{B D}{B C}=3 \quad \frac{D G}{G H}=9 \quad \frac{D G}{G J}=27\)

\[
\mathrm{n}:=1 . .3
\]
\(\begin{array}{ll}\frac{a^{n}}{b^{n}} & \frac{B D^{n}}{B C^{n}} \\
&\)\begin{tabular}{|l|}
\hline 3 \\
\hline 27 \\
\hline
\end{tabular}\end{array}



Given AC and CD find BC when it is equal to \(\frac{\mathrm{AC} \cdot \mathrm{CD}^{2}}{\mathrm{AC}^{2}+\mathrm{CD}^{2}}\).
\[
\begin{aligned}
& \mathrm{AC}:=15 \quad \mathrm{CD}:=5 \quad \mathrm{AO}:=\frac{\mathrm{AC}}{2} \\
& \mathrm{AD}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CD}^{2}} \\
& \mathrm{AG}:=\frac{\mathrm{AC} \cdot \mathrm{AO}}{\mathrm{AD}} \quad \mathrm{AE}:=2 \cdot \mathrm{AG} \\
& \mathrm{AB}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AD}} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BC}=1.5 \\
& \mathrm{BC}:=\frac{\mathrm{AC} \cdot \mathrm{CD}^{2}}{\left(\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)} \quad \mathrm{BC}=1.5
\end{aligned}
\]

A cube divided by the sum of two squares.

\section*{One Square}
One Line

And the Delian Quest

\title{
1996
}

The Euclidean proof of 11_11_93.MCD may be reminiscent of trimming hedges with a jack knife, but the method is for exercise of those methodical parts which comprise it. I can never get too much of those practices. There is however a golden approach to proofing the figure which has almost no regard for the practices of basic moves- a eunuch in regards to teaching, but whose simplicity implants the concepts of the figure with a clarity unrivaled by more energetic methods.

\section*{The Archamedian Paper Trisector- Without the Numbers.}

One of the distinctions that this and the paper of \(11 \_11 \_93 . \mathrm{MCD}\) bring to the subject is that the construction of the figure is not assumed, but done.


Given any circle \(A B\)


Given any circle BC such that \(\mathrm{BC} \leq 2 \mathrm{AB}\).


Construct AE such that \(\mathrm{AE}=\mathrm{AC}\).

Since \(A C=A B+B C\) and \(A D=A B, D E=B C\).


Construct DH parallel to BD. Construct CE. Since \(\mathrm{AB}=\mathrm{AD}\) and \(\mathrm{AC}=\mathrm{AE}, \triangle \mathrm{ABD}\) is proportional to \(\Delta \mathrm{ACE}\), therefore CE is parallel to BD. From here one can take two paths.


Construct GJ parallel to EF. Now Since CE is parallel to \(\mathrm{DH}, \mathrm{DG}=\mathrm{CH}\). Since GJ is parallel to \(\mathrm{EF}, \mathrm{DG}=\mathrm{FJ}\). Since \(\angle \mathrm{HBJ}\) is opposite and equal to \(\angle \mathrm{GBD}, \mathrm{DG}=\mathrm{HJ}\), therefore DG is \(\frac{1}{3}\) CF.
Since CE is parallel to DH and EF is parallel to GJ, EGBD is equilateral.


By construction \(\mathrm{DK}=\mathrm{KM}\). Since DH is parallel to \(\mathrm{CE}, \mathrm{CH}=\mathrm{DG}\). Since DK is equal and opposite \(\mathrm{CH}, \mathrm{MK}+\mathrm{DK}+\mathrm{DG}\) is \(\frac{1}{3} \mathrm{DG}\).
But like I said at the start, there is no real work in this figure.

I have given two constructions for the figure, I cannot understand why sliding paper is still used to demonstrate it. The figure adds a few moves to Euclid's figure for demonstrating that the angle from the circumference is half the angle from the center of the circle.

A rusty Compass construction for the duplication of the cube.

\[
\begin{aligned}
& \mathrm{AD}:=2 \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2} \quad \mathrm{AF}:=\sqrt{2 \cdot \mathrm{AB}^{2}} \quad \mathrm{AE}:=\frac{\mathrm{AF}}{9} \cdot 8 \\
& \mathrm{AC}:=\mathrm{AE} \quad \mathrm{AC}=1.257 \\
& \left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}=1.26 \quad \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}}{\mathrm{AC}}=1.002
\end{aligned}
\]

I remember a rusty construction for squaring a circle off the base of a right triangle. Here is one more rust pile construction.



\section*{Alternate Method, Power Line.}

Given \(\mathrm{AB}, \mathrm{EF}, \mathrm{BF}\), find the power line intersection on BF. Looking back to 94 , it seems I never derived a formula for it either.
\[
\begin{aligned}
& \mathrm{AB}:=\mathrm{R} 1 \quad \mathrm{BF}:=\mathrm{D} \quad \mathrm{EF}:=\mathrm{R}_{2} \\
& \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{FG}:=\mathrm{EF} \\
& \mathrm{EG}:=\mathrm{EF}+\mathrm{FG} \quad \mathrm{AG}:=\mathrm{AB}+\mathrm{BF}+\mathrm{FG} \mathrm{AH}:=\mathrm{AG} \\
& \mathrm{GJ}:=\mathrm{AG} \quad \mathrm{AP}:=\frac{\mathrm{AG}}{2} \mathrm{CE}:=\mathrm{BF}-(\mathrm{BC}+\mathrm{EF}) \\
& \mathrm{LR}:=\frac{\mathrm{AH} \cdot \mathrm{CE}}{\mathrm{AC}+\mathrm{EG}} \mathrm{PO}:=\mathrm{AP} \quad \mathrm{AK}:=\mathrm{LR} \\
& \mathrm{KL}:=\frac{\mathrm{AC} \cdot(\mathrm{AH}+\mathrm{AK})}{\mathrm{AH}} \mathrm{AR}:=\mathrm{KL} \\
& \mathrm{PR}:=\mathrm{AP}-\mathrm{AR} \quad \mathrm{OQ}:=\mathrm{PR} \quad \mathrm{QR}:=\mathrm{PO} \\
& \mathrm{LQ}:=\mathrm{QR}+\mathrm{LR} \quad \mathrm{DR}:=\frac{\mathrm{OQ} \cdot \mathrm{LR}}{\mathrm{LQ}} \mathrm{AD}:=\mathrm{AR}+\mathrm{DR}
\end{aligned}
\]
\(\mathrm{AD}=25.333\) Plug values in below.
\(\mathrm{R}_{1} \equiv 9 \quad \mathrm{R}_{2} \equiv 1 \quad \mathrm{D} \equiv 30\)
\(\frac{\left(\mathrm{R}_{1}+\mathrm{D}+\mathrm{R}_{2}\right) \cdot\left(\mathrm{D}-\mathrm{R}_{2}+\mathrm{R}_{1}\right)}{2 \cdot \mathrm{D}}=25.333\)


The figure cuts the base line in quad roots. As such it would be another trivial method for doing quad roots, however I am interested in some of the ratio's of the figure instead.

\[
\begin{aligned}
& \mathrm{N}=5 \quad \mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{~N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \\
& \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AG}} \quad \mathrm{AC}:=\left(\mathrm{AB}^{3} \cdot \mathrm{AG}\right)^{\frac{1}{4}} \\
& \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{4}} \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \mathrm{GK}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DK}^{2}} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]

\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}}=2.415\)
\(\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=8.075\)

\[
\frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]

Plug in AG here. AB will become " 1 ".
\(\mathrm{N} \equiv 5\)
\(\frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}}{\mathrm{~N}^{\frac{3}{4}}}=2.415\)
\[
\frac{\mathrm{BK}}{\text { BJ }}=8.075 \quad \mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=8.075
\]
\[
\mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \mathrm{DF}:=\mathrm{AF}-\mathrm{AD} \quad \mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}}
\]
\[
\mathrm{CN}:=\frac{\mathrm{BD} \cdot \mathrm{CD}}{\mathrm{BG}} \mathrm{DP}:=\frac{\mathrm{BD} \cdot \mathrm{DF}}{\mathrm{BG}} \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{5}{4}}+\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=26.132 \quad \frac{\mathrm{BG}}{\mathrm{BM}}=26.132
\]
\[
\mathrm{N}^{\frac{5}{4}}+\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=26.132
\]
\[
\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}=17.475 \quad \frac{\mathrm{BG}}{\mathrm{CN}}=17.475
\]
\[
\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}=17.475
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}=11.686 \frac{\mathrm{BG}}{\mathrm{DP}}=11.686
\]
\[
\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}=11.686
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{3}{4}}=7.815 \quad \frac{\mathrm{BG}}{\mathrm{FQ}}=7.815
\]
\[
\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}+\frac{1}{\mathrm{~N}^{\frac{3}{4}}}=7.815
\]

\(\frac{\mathrm{AG}^{\frac{6}{4}}+\mathrm{AG}^{\frac{4}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{5}{4}}-\mathrm{AB}^{\frac{6}{4}}}=32.665\)
\(\frac{A G}{B M}=32.665 \quad \frac{\mathrm{~N}^{\frac{3}{2}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=32.665\)
\(\begin{array}{ll}\mathrm{AG}^{\frac{5}{4}}+\mathrm{AG}^{\frac{3}{4}} \cdot \mathrm{AB}^{\frac{2}{4}} \\ \mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{4}{4}}-\mathrm{AB}^{\frac{5}{4}} & =21.844 \\ \mathrm{CN} & =21.844 \\ \frac{\mathrm{~N}^{\frac{5}{4}}+\mathrm{N}^{\frac{3}{4}}}{\frac{1}{4}}=21.844 \\ \mathrm{~N}^{\frac{0}{4}}\end{array}\)
\(\frac{\mathrm{AG}^{\frac{4}{4}}+\mathrm{AG}^{\frac{2}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{3}{4}}-\mathrm{AB}^{\frac{4}{4}}}=14.608\)
\(\frac{A G}{D P}=14.608 \quad \frac{\mathrm{~N}+\mathrm{N}^{\frac{2}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=14.608\)
\(\frac{\mathrm{AG}^{\frac{3}{4}}+\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}-\mathrm{AB}^{\frac{3}{4}}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{1}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=9.769\)


If the figure was drawn differently, XC
would be \(\sqrt{\mathrm{XB} \cdot \mathrm{XE} \text {, irregardless of how XB and XE }}\) were placed, however that would require part of the figure that is not given here.
\(\mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{N}}\)
\(\mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \mathrm{BH}:=\sqrt{\mathrm{AB} \cdot \mathrm{BG}}\)
\(\mathrm{AH}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BH}^{2}} \mathrm{AD}:=\mathrm{AH} \quad \mathrm{DG}:=\mathrm{AG}-\mathrm{AD}\)
\(\mathrm{GK}:=\mathrm{DG} \mathrm{GE}:=\frac{\mathrm{GK}^{2}}{\mathrm{AG}} \mathrm{AE}:=\mathrm{AG}-\mathrm{GE}\)
\(\mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)
\(\mathrm{EG}:=\mathrm{AG}-\mathrm{AE} \quad \mathrm{EK}:=\sqrt{\mathrm{AE} \cdot \mathrm{EG}} \quad \mathrm{BL}:=\frac{\mathrm{BE} \cdot \mathrm{BH}}{\mathrm{EK}}\)
\(\mathrm{EL}:=\mathrm{BE}+\mathrm{BL} \quad \mathrm{BC}:=\frac{\mathrm{BL} \cdot \mathrm{BE}}{\mathrm{EL}} \mathrm{AC}:=\mathrm{AB}+\mathrm{BC}\)
Make N any number and watch the equations, then make it equal to 1 and see what
\[
\mathrm{N} \equiv 4
\] happens. Now this is strange work, for the formula is an identity with AC, so what happens at 1? This is an example of Binary contradiction.
\(\mathrm{AC}=2\)
\[
\left[\begin{array}{l}
\mathrm{AB}^{\left(\frac{5}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}} \ldots} \\
\left.+-\mathrm{AB}{ }^{\left(\frac{7}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}}+2 \cdot \mathrm{AB} \cdot \sqrt{\mathrm{BG} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{2}\right)}} \ldots} \begin{array}{l}
+-\mathrm{AB}^{\left(\frac{5}{2}\right)} \cdot \sqrt{\mathrm{BG}-\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \mathrm{BG}^{\left(\frac{3}{2}\right)}} \\
\mathrm{AB}^{\left(\frac{1}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}} \ldots} \\
+-\mathrm{AB}^{\left(\frac{3}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}}+\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \sqrt{\mathrm{BG}}+\sqrt{\mathrm{AB} \cdot \mathrm{BG}^{\left(\frac{3}{2}\right)}}}
\end{array}\right]
\end{array}\right]=2
\]


\section*{Pyramid of Ratios, Moving the Point}
\(B R=\) Base Ratio, BS \(=\) Bisector Segments, BI \(=\) Base Index.
\[
\begin{aligned}
& \mathrm{BR} \equiv 4 \quad \mathrm{BS} \equiv 5 \quad \mathrm{BI}:=2 \quad \mathrm{AC}:=\mathrm{BR} \quad \mathrm{AB}:=\frac{\mathrm{AC}}{\mathrm{BR}} \cdot \mathrm{BI} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BG}:=\sqrt{\mathrm{AB} \cdot \mathrm{BC}} \quad \delta:=1 . . \mathrm{BS}-1 \\
& \mathrm{BD}_{\delta}:=\frac{\mathrm{BG}}{\mathrm{BS}} \cdot \delta \quad \mathrm{BF}_{\delta}:=\frac{\mathrm{BC} \cdot \mathrm{BD}_{\delta}}{\mathrm{BG}} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}^{2}+\left(\mathrm{BD}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\mathrm{AE}_{\delta}:=\frac{\mathrm{AD}_{\delta} \cdot \mathrm{AC}}{\mathrm{AB}+\mathrm{BF}_{\delta}} \quad \mathrm{DE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AD}_{\delta}
\]


What is AD. What is BD to \(\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\) ?

\[
\mathrm{AE}:=5.5 \mathrm{AB}:=1.05 \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}
\]
\(A C:=\left(A B^{2} \cdot A E\right)^{\frac{1}{3}} C E:=A E-A C\)
\(\mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BE}} \quad \mathrm{CO}:=\frac{\mathrm{BF} \cdot \mathrm{CE}}{\mathrm{BE}} \mathrm{AO}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CO}^{2}}\)
\(\mathrm{AP}:=\frac{1}{2} \cdot \frac{\mathrm{AO}^{2}}{\mathrm{AC}} \quad \mathrm{AK}:=2 \cdot \mathrm{AP} \quad \mathrm{AD}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AK}}\)
\[
\mathrm{DE}:=\mathrm{AE}-\mathrm{AD} \mathrm{BD}:=\mathrm{AD}-\mathrm{AB}
\]
\(\mathrm{AD}=2.807\)
\[
\frac{\mathrm{AE}^{\frac{3}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{2}{3}}+\mathrm{AE}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{3}{3}}}{2 \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{1}{3}}}=2.807
\]

\[
\frac{\mathrm{AB}^{\frac{1}{6}} \cdot \mathrm{AE} \cdot \frac{1}{6} \cdot \sqrt{\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}-\mathrm{AE}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{2}{3}}-\mathrm{AB} \cdot \sqrt{2 \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{1}{3}}}}}{\mathrm{AE}+\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}-2 \cdot \mathrm{AB}}=0.957
\]

The figure cuts the base in Cube Roots and provides some interesting ratios.
\(\mathrm{N}:=10\)

\(\mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2}\)
\(A C:=\left(A B^{2} \cdot A G\right)^{\frac{1}{3}} B C:=A C-A B\)
\(\mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{3}} \mathrm{BF}:=\mathrm{AF}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{BG}-\mathrm{BF}\)
\(\mathrm{HJ}:=\frac{\mathrm{BC} \cdot \mathrm{BG}}{\mathrm{BC}+\mathrm{FG}} \quad \mathrm{BD}:=\mathrm{HJ} \quad \mathrm{DG}:=\mathrm{BG}-\mathrm{BD}\)
\(\mathrm{DJ}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \quad \mathrm{GJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{DG}^{2}} \quad \mathrm{BJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{BD}^{2}}\)
\(\mathrm{GN}:=\frac{\mathrm{GJ} \cdot \mathrm{FG}}{\mathrm{BG}} \quad \mathrm{BM}:=\frac{\mathrm{BJ} \cdot \mathrm{BC}}{\mathrm{BG}}\)
\(\frac{\mathrm{AG}}{\mathrm{AB}}=10 \quad \frac{\mathrm{GN}}{\mathrm{BM}}=10\)
\(\begin{array}{lll}\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}=1.68 & \frac{\mathrm{GJ}}{\mathrm{GN}}=1.68 & \frac{\mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}}{\mathrm{~N}^{\frac{2}{3}}}=1.68 \\ \left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=7.796 & \frac{\mathrm{BJ}}{\mathrm{BM}}=7.796 & \mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=7.796\end{array}\)

\[
\mathrm{CF}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{BP}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{CD}:=\frac{\mathrm{BD} \cdot \mathrm{CF}}{\mathrm{BG}}
\]
\(F R:=\frac{B D \cdot F G}{B G}\)
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{4}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=43.982 \quad \frac{\mathrm{BG}}{\mathrm{BP}}=43.982
\]
\[
\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=43.982
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}=20.415
\]
\[
\frac{\mathrm{BG}}{\mathrm{CD}}=20.415
\]
\[
\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}=20.415
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}=9.476
\]
\[
\frac{\mathrm{BG}}{\mathrm{FR}}=9.476
\]
\[
\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}+\frac{1}{\mathrm{~N}^{\frac{2}{3}}}=9.476
\]

\(\frac{\mathrm{AG}^{\frac{5}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}}{\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{4}{3}}-\mathrm{AB}^{\frac{5}{3}}}=48.869\)
\(\frac{\mathrm{AG}^{\frac{4}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}}{\frac{1}{4}}=22.683\) \(\frac{\mathrm{AG}}{\mathrm{CD}}=22.683 \quad \frac{\mathrm{~N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(A G^{3} \cdot A B-A B^{3}\)
\(\frac{A G+A B^{\frac{2}{3}} \cdot A G^{\frac{1}{3}}}{A G^{\frac{1}{3}} \cdot A B^{\frac{2}{3}}-A B}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{FR}}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{BP}}=48.869\)
\(\frac{\mathrm{N}^{\frac{5}{3}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=48.869\)
\(\frac{\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(\frac{\mathrm{N}+\mathrm{N}^{\frac{1}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=10.528\)



Given \(A D\) and \(A B\) on \(A D\), place a right triangle on BD as base such that the opposite sides are in the ratio of AB to AD .
\[
\begin{aligned}
& \mathrm{BD}:=8 \quad \mathrm{AB}:=2 \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{BC}:=\frac{\mathrm{BD}}{2} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CF}:=\mathrm{BC} \\
& \mathrm{CI}:=\mathrm{BC} \quad \mathrm{CH}:=\mathrm{BC} \quad \mathrm{AE}:=\mathrm{BC} \\
& \mathrm{CE}:=\sqrt{\mathrm{AC}^{2}+\mathrm{AE}^{2}} \quad \mathrm{CG}:=\frac{\mathrm{CH}^{2}}{\mathrm{CE}} \\
& \mathrm{GH}:=\sqrt{\mathrm{CH}^{2}-\mathrm{CG}^{2}} \quad \mathrm{FH}:=2 \cdot \mathrm{GH} \quad \mathrm{FI}:=\mathrm{CF}+\mathrm{CI} \\
& \mathrm{HI}:=\sqrt{\mathrm{FI}^{2}-\mathrm{FH}^{2}} \quad \mathrm{AI}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CI}} \\
& \mathrm{AH}:=\mathrm{AI}-\mathrm{HI} \quad \mathrm{AO}:=\frac{\mathrm{AC} \cdot \mathrm{AH}}{\mathrm{AI}} \mathrm{HO}:=\frac{\mathrm{CI} \cdot \mathrm{AO}}{\mathrm{AC}} \\
& \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \quad \mathrm{DO} \\
& \mathrm{AD} \\
& \mathrm{BD}-\mathrm{BO} \\
& \mathrm{DH}:=\sqrt{\mathrm{DO}^{2}+\mathrm{HO}^{2}} \mathrm{BH}:=\sqrt{\mathrm{BO}^{2}+\mathrm{HO}^{2}}
\end{aligned}
\]
\[
\frac{\mathrm{DH}}{\mathrm{BH}}=5 \quad \frac{\mathrm{AD}}{\mathrm{AB}}=5
\]

Given a straight edge and compass, AB and BD find the sum of six cubes divided by the sum of five squares.
\[
\frac{2 \cdot \mathrm{AB}^{3}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{BD}+\mathrm{AB} \cdot \mathrm{BD}^{2}}{2 \cdot \mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BD}+\mathrm{BD}^{2}}=2.308 \quad \mathrm{AO}=2.308
\]


Given AF and AB on AF and a right triangle on BF divide the sides of the triangle such that a section on one side is to the other as AB is to AF .

Now it can be realized that there are stipulations as to possible placements of the given triangle.
\[
\begin{aligned}
& \mathrm{AB}:=3 \quad \mathrm{BF}:=10 \quad \mathrm{BC}:=1 \\
& \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \\
& \text { DOABLE }:=\frac{2 \cdot \mathrm{AB}^{3}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{BF}+\mathrm{AB} \cdot \mathrm{BF}^{2}}{2 \cdot \mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BF}+\mathrm{BF}^{2}} \leq \mathrm{AC}<\mathrm{AE} \\
& \text { DOABLE }=1 \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \\
& \mathrm{CF}:=\mathrm{BF}-\mathrm{BC} \quad \mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{EJ}:=\mathrm{BE} \\
& \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \quad \mathrm{JH}:=\sqrt{\mathrm{CE}^{2}+(\mathrm{CH}+\mathrm{EJ})^{2}} \\
& \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{EJ}}{\mathrm{EJ}+\mathrm{CH}} \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \\
& \mathrm{JD}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EJ}^{2}} \quad \mathrm{DG}:=\frac{\mathrm{DE} \cdot \mathrm{AD}}{\mathrm{JD}} \\
& \mathrm{AG}:=\sqrt{\mathrm{AD}^{2}-\mathrm{DG}^{2}} \mathrm{GH}:=\mathrm{JH}-(\mathrm{JD}+\mathrm{DG}) \\
& \mathrm{HK}:=\sqrt{2 \cdot \mathrm{GH}^{2}} \quad \mathrm{BH}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CH}^{2}} \quad \mathrm{HL}:=\mathrm{HK} \\
& \mathrm{BK}:=\mathrm{BH}-\mathrm{HK} \mathrm{FH}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CH}^{2}} \\
& \text { FL := FH - HL }
\end{aligned}
\]

\(\left(\frac{\mathrm{AE}}{\mathrm{AB}}\right)^{\frac{1}{2}}=1.2649 \quad \frac{\mathrm{AE}}{\mathrm{AB}}=1.6\)

Projecting from KL or HJ is productive, can I find any other productive points?
\[
\begin{aligned}
& \mathrm{AB}:=5 \quad \mathrm{BE}:=3 \quad \mathrm{BK}:=\mathrm{BE} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \\
& \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}} \mathrm{HI}:=\mathrm{BD} \quad \mathrm{IJ}:=\mathrm{BD} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}
\end{aligned}
\]
\(\Delta:=2 \quad \delta:=1 . . \Delta\)
\[
\begin{aligned}
& \mathrm{BH}_{\delta}:=\frac{\mathrm{BK}}{\Delta} \cdot \delta \quad \mathrm{Ha}_{\delta}:=\frac{\mathrm{BH}_{\delta} \cdot \mathrm{HI}}{\mathrm{BC}} \quad \mathrm{EJ}_{\delta}:=\mathrm{BH}_{\delta} \\
& \mathrm{Ba}_{\delta}:=\mathrm{Ha}_{\delta}+\mathrm{BD} \quad \mathrm{Bb}_{\delta}:=\frac{\left(\mathrm{BH}_{\delta}\right)^{2}}{\mathrm{Ba}_{\delta}} \quad \mathrm{Jc}_{\delta}:=\frac{\mathrm{EJ}_{\delta} \cdot \mathrm{IJ}}{\mathrm{CE}}
\end{aligned}
\]
\[
\mathrm{Ec}_{\delta}:=\mathrm{Jc}_{\delta}+\mathrm{BD} \quad \mathrm{Ed}_{\delta}:=\frac{\left(\mathrm{EJ}_{\delta}\right)^{2}}{\mathrm{Ec}_{\delta}} \quad \mathrm{Ef}_{\delta}:=\mathrm{Bb}_{\delta}
\]
\[
\mathrm{df}_{\delta}:=\mathrm{Ed}_{\delta}-\mathrm{Ef}_{\delta} \quad \mathrm{Ge}_{\delta}:=\mathrm{df}_{\delta} \quad \mathrm{Fb}_{\delta}:=\frac{\mathrm{HI} \cdot \mathrm{BH}_{\delta}}{\mathrm{Ba}_{\delta}}
\]
\[
\mathrm{Gd}_{\delta}:=\frac{\mathrm{IJ} \cdot \mathrm{EJ}_{\delta}}{\mathrm{Ec}_{\delta}} \quad \mathrm{ef}_{\delta}:=\mathrm{Gd}_{\delta} \quad \mathrm{Fe}_{\delta}:=\mathrm{BE}-\left(\mathrm{ef}_{\delta}+\mathrm{Fb}_{\delta}\right)
\]
\[
\mathrm{Gg}_{\delta}:=\mathrm{Ed}_{\delta} \quad \mathrm{Og}_{\delta}:=\frac{\mathrm{Fe}_{\delta} \cdot \mathrm{Gg}_{\delta}}{\mathrm{Ge}_{\delta}} \quad \mathrm{Eg}_{\delta}:=\mathrm{ef}_{\delta}
\]
\[
\mathrm{EO}_{\delta}:=\mathrm{Og}_{\delta}+\mathrm{Eg}_{\delta} \mathrm{BO}_{\delta}:=\mathrm{EO}_{\delta}-\mathrm{BE}
\]

I have not found any.


The power line for cube root abstraction is developed off from a simple curve.
\(\mathrm{AB}:=33 \quad \mathrm{BE}:=11 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE}\)
\(\mathrm{R}_{1}:=\frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AB}}{2} \quad \mathrm{R}_{2}:=\frac{\left.\mathrm{AE}-(\mathrm{AB} \cdot \mathrm{AE})^{2}\right)^{\frac{1}{3}}}{2}\)
\(D:=\left[\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}\right]+R_{1}+R_{2}\)
\(\mathrm{BC}:=\frac{\left(\mathrm{R}_{1}+\mathrm{D}+\mathrm{R}_{2}\right) \cdot\left(\mathrm{D}-\mathrm{R}_{2}+\mathrm{R}_{1}\right)}{2 \cdot \mathrm{D}}\)
\(\mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{AC}:=\mathrm{BC}+\mathrm{AB} \quad \mathrm{DM}:=\mathrm{BD}\)
The formula for the power line ( BC ) was given in 01_08_96.MCD
\(\mathrm{DL}:=\mathrm{BD} \quad \mathrm{CM}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DM}^{2} \quad \mathrm{ML}}:=\mathrm{DM}+\mathrm{DL}\)
\(\mathrm{MK}:=\frac{\mathrm{DM} \cdot \mathrm{ML}}{\mathrm{CM}} \mathrm{CK}:=\mathrm{MK}-\mathrm{CM} \quad \mathrm{CJ}:=\frac{\mathrm{CK}}{2}\)

\(\mathrm{JG}:=\mathrm{CJ} \quad \mathrm{JM}:=\mathrm{CM}+\mathrm{CJ} \quad \mathrm{BM}:=\sqrt{2 \cdot \mathrm{~B}}\)
\(\mathrm{GM}:=\mathrm{BM} \quad \mathrm{FJ}:=\frac{\mathrm{JG}^{2}}{\mathrm{JM}} \quad \mathrm{FM}:=\mathrm{JM}-\mathrm{FJ}\)
\(\mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \quad \mathrm{HM}:=\frac{\mathrm{CM} \cdot \mathrm{FM}}{\mathrm{DM}}\)
\(\mathrm{DH}:=\mathrm{HM}-\mathrm{DM} \quad \mathrm{AH}:=\sqrt{\mathrm{DH}^{2}+\mathrm{AD}^{2}}\)
\(\mathrm{CF}:=\mathrm{FM}-\mathrm{CM} \quad \mathrm{FH}:=\frac{\mathrm{CD} \cdot \mathrm{HM}}{\mathrm{CM}}\)
\(\mathrm{AF}_{1}:=\mathrm{AH}-\mathrm{FH} A \mathrm{AF}_{2}:=\sqrt{\mathrm{AC}^{2}-\mathrm{CF}^{2}}\)
\(A F_{1}-A F_{2}=0\)

Trivial Method; Square Root
\(\mathrm{N}:=9003\)
\(\mathrm{AE}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AE}}{\mathrm{N}} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2}\)
\(\mathrm{DG}:=\mathrm{BD} \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \quad \mathrm{AG}:=\sqrt{\mathrm{AD}^{2}+\mathrm{DG}^{2}}\)
\(\mathrm{BG}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DG}^{2}} \quad \mathrm{FG}:=\mathrm{BG} \quad \mathrm{AF}:=\sqrt{\mathrm{AG}^{2}-\mathrm{FG}^{2}}\)
\(\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}}\)
\(\mathrm{AC}-\mathrm{AF}=0\)
\(\mathrm{AF}=94.884\)
\(\mathrm{AC}=94.884\)

\section*{01/24/96 Tangent}

The tangent from any point outside a circle is equal to the square root of the difference to the circle and that difference plus the diameter of the circle.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A E}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathbf{D M}:=\mathbf{B D} \quad \mathbf{D H}:=\mathbf{B D} \quad \mathbf{C D}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{A D}} \\
& \mathbf{B C}:=\mathbf{B D}-\mathbf{C D} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \\
& \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{A J}:=\sqrt{(\mathbf{A B}+\mathbf{B C})^{2}+\mathbf{C J}}
\end{aligned}
\]
\[
\sqrt{(\mathbf{A B}+\mathbf{B C})^{2}+\mathbf{C J}^{2}}-\sqrt{\mathbf{A B} \cdot \mathbf{A E}}=\mathbf{0}
\]

Given a point on BG, project to the point of cubic similarity.

\(\mathrm{BG}:=100 \mathrm{BD}:=49 \quad \mathrm{BE}:=\frac{\mathrm{BG}}{2}\)
\(\mathrm{EG}:=\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD} \quad \mathrm{EP}:=\mathrm{BE}\)
\(\mathrm{EJ}:=\mathrm{BE} \quad \mathrm{DP}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EP}^{2}} \mathrm{JP}:=\mathrm{EP}+\mathrm{EJ}\)
\(\mathrm{HP}:=\frac{\mathrm{EP} \cdot \mathrm{JP}}{\mathrm{DP}}\) DH \(:=\mathrm{HP}-\mathrm{DP} \quad \mathrm{CD}:=\frac{\mathrm{DH}}{2}\)
\(\mathrm{CP}:=\mathrm{DP}+\mathrm{CD} \quad \mathrm{CF}:=\frac{\mathrm{DE} \cdot \mathrm{CP}}{\mathrm{DP}} \quad \mathrm{FP}:=\frac{\mathrm{EP} \cdot \mathrm{CP}}{\mathrm{DP}}\)
\(\mathrm{EF}:=\mathrm{FP}-\mathrm{EP} \quad \mathrm{FJ}:=\mathrm{EJ}-\mathrm{EF} \quad \mathrm{CJ}:=\sqrt{\mathrm{CF}^{2}+\mathrm{FJ}^{2}}\)
\(\mathrm{JM}:=\frac{\mathrm{FJ} \cdot \mathrm{JP}}{\mathrm{CJ}} \mathrm{JN}:=\frac{\mathrm{FJ} \cdot \mathrm{JM}}{\mathrm{CJ}} \mathrm{NP}:=\mathrm{JP}-\mathrm{JN}\)
\(\mathrm{MP}:=\frac{\mathrm{CF} \cdot \mathrm{JP}}{\mathrm{CJ}} \quad \mathrm{AP}:=\frac{\mathrm{MP} \cdot \mathrm{EP}}{\mathrm{NP}} \mathrm{MN}:=\frac{\mathrm{CF} \cdot \mathrm{JM}}{\mathrm{CJ}}\)
\(\frac{\mathrm{BG}^{4}-3 \cdot \mathrm{BG}^{3} \cdot \mathrm{BD}+3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}^{2}-\mathrm{BD}^{3} \cdot \mathrm{BG}}{\mathrm{BG}^{3}-3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}+3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}^{2}-2 \cdot \mathrm{BD}^{3}}=884.222 \quad \mathrm{AE}:=\frac{\mathrm{MN} \cdot \mathrm{AP}}{\mathrm{MP}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}\)
\[
\mathrm{AG}=884.222
\]
\[
\frac{\mathrm{BG} \cdot\left[(\mathrm{AG}-\mathrm{BG})^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}+\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{BG}-\mathrm{AG}^{\frac{4}{3}}-\mathrm{BG} \cdot(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}}+(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}} \cdot \mathrm{AG}\right]}{(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}} \cdot(2 \cdot \mathrm{AG}-\mathrm{BG})}-\mathrm{BD}=0
\]


One may be tempted to state the obvious, \(\frac{A^{N+1}}{A^{N}}:=A\), but what is not so obvious at first blush is that the processes themselves are assigned dimensional values. This has significance when using mathematics to theorize dimensions beyond three. Dimensions are so generally defined that processes are legitimate dimensional differences, but it is also impossible to defend mathematical theory about dimensions as objective. It becomes a point of Philosophical Mystic contemplation to realize that relationships concerning a single dimensional object and several processes adding dimensionally to the whole, is true of a multidimensional object without those processes!

Linear division \(\frac{2 \cdot(\mathrm{~A}+\mathrm{B})}{\mathrm{A}}\)
\(\mathrm{BR}:=\frac{1}{4} \quad \mathrm{BS}:=3\)
\(\mathrm{AD}:=\frac{\mathrm{BR}}{\mathrm{BR}} \quad \mathrm{AG}:=\mathrm{AD} \cdot \mathrm{BR} \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2}\)
\(\mathrm{BF}:=\mathrm{AB} \cdot \mathrm{BS} \quad \mathrm{Ba}:=\frac{\mathrm{AB} \cdot \mathrm{BF}}{\mathrm{AG}} \mathrm{BD}:=\mathrm{AB}\)
\(\mathrm{Da}:=\mathrm{BD}+\mathrm{Ba} \mathrm{Bb}:=\frac{\mathrm{Ba} \cdot \mathrm{BD}}{\mathrm{Da}} \mathrm{Db}:=\mathrm{BD}-\mathrm{Bb}\)
\(\mathrm{Eb}:=\frac{\mathrm{BF} \cdot \mathrm{Db}}{\mathrm{BD}} \quad \mathrm{DH}:=\mathrm{AG}\)
\(\mathrm{DC}:=\frac{\mathrm{Db} \cdot \mathrm{DH}}{\mathrm{DH}+\mathrm{Eb}} \quad \frac{\mathrm{AD}}{\mathrm{DC}}=26\)
\(\frac{2 \cdot(\mathrm{BR}+\mathrm{BS})}{\mathrm{BR}}=26\)

Hitting JG from any BN while maintaining complimentary roots.

\[
\begin{aligned}
& \mathrm{AB}:=2 \quad \mathrm{BD}:=5 \quad \mathrm{BO}:=\frac{\mathrm{BD}}{2} \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{DO}:=\mathrm{BO} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AD} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB}} \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CD}} \quad \mathrm{CO}:=\mathrm{BO}-\mathrm{BC} \\
& \mathrm{~N}:=7 \quad \mathrm{OP}:=\mathrm{BO} \cdot \mathrm{~N} \quad \mathrm{BN}:=\mathrm{OP} \quad \mathrm{DM}:=\mathrm{OP} \\
& \mathrm{NP}:=\mathrm{BO} \quad \mathrm{MP}:=\mathrm{BO} \quad \mathrm{EO}:=\frac{\mathrm{CO} \cdot \mathrm{OP}}{\mathrm{OP}+\mathrm{CG}} \\
& \mathrm{CE}:=\mathrm{CO}-\mathrm{EO} \quad \mathrm{EF}:=\frac{\mathrm{OP} \cdot \mathrm{CE}}{\mathrm{CO}} \quad \mathrm{GO}:=\mathrm{BO} \\
& \mathrm{CJ}:=\frac{\mathrm{CG}}{\mathrm{CO}} \quad \mathrm{EJ}:=\mathrm{CJ}+\mathrm{CE} \quad \mathrm{Ca}:=\frac{\mathrm{EJ} \cdot \mathrm{CG}}{\mathrm{EF}} \\
& \mathrm{DJ}:=\mathrm{CD}+\mathrm{CJ} \quad \mathrm{Da}:=\mathrm{CD}+\mathrm{Ca} \quad \mathrm{JY}:=\frac{\mathrm{Ca} \cdot \mathrm{DJ}}{\mathrm{Da}} \\
& \mathrm{KY}:=\frac{\mathrm{EF} \cdot \mathrm{JY}}{\mathrm{EJ}} \mathrm{JK}:=\sqrt{\mathrm{JY}}+\mathrm{KY} \quad \mathrm{JG}:=\sqrt{\mathrm{CJ}}+\mathrm{CG}^{2}
\end{aligned}
\]
\[
\mathrm{GP}:=\sqrt{\mathrm{CO}^{2}+(\mathrm{OP}+\mathrm{CG})^{2}} \mathrm{EP}:=\sqrt{\mathrm{EO}^{2}+\mathrm{OP}^{2}}
\]
\[
\mathrm{ET}:=\frac{\mathrm{EO} \cdot \mathrm{EF}}{\mathrm{OP}} \mathrm{JT}:=\mathrm{EJ}+\mathrm{ET} \quad \mathrm{FT}:=\sqrt{\mathrm{ET}^{2}+\mathrm{EF}^{2}}
\]
\[
\mathrm{EG}:=\mathrm{GP}-\mathrm{EP} \mathrm{EQ}:=\frac{\mathrm{FT} \cdot \mathrm{EJ}}{\mathrm{JT}} \quad \mathrm{GQ}:=\mathrm{EG}-\mathrm{EQ}
\]
\[
\mathrm{KL}:=2 \cdot \mathrm{GQ} \quad \mathrm{JL}:=\mathrm{JK}-\mathrm{KL}
\]
\[
\mathrm{DY}:=\mathrm{DJ}-\mathrm{JY} \quad \mathrm{CS}:=\frac{\mathrm{DY} \cdot \mathrm{CG}}{\mathrm{DM}} \quad \mathrm{JS}:=\mathrm{CS}+\mathrm{CJ}
\]
\[
\mathrm{YR}:=\frac{\mathrm{CS} \cdot \mathrm{JY}}{\mathrm{JS}} \quad \mathrm{JR}:=\mathrm{JY}-\mathrm{YR} \quad \mathrm{HR}:=\frac{\mathrm{CG} \cdot \mathrm{JR}}{\mathrm{CJ}}
\]
\[
\mathrm{AJ}:=\mathrm{CJ}-\mathrm{AC} \quad \mathrm{JX}:=\frac{\mathrm{JY} \cdot \mathrm{JL}}{\mathrm{JK}}
\]
\[
\mathrm{BR}_{1}:=\mathrm{JR}-(\mathrm{AJ}+\mathrm{AB}) \mathrm{BX}:=\mathrm{JX}-(\mathrm{AJ}+\mathrm{AB})
\]
\[
\mathrm{BR}_{2}:=\frac{\mathrm{BX} \cdot(\mathrm{BN}+\mathrm{HR})}{\mathrm{BN}}
\]
\[
\mathrm{BR}_{2}-\mathrm{BR}_{1}=0
\]




Given \(B F\) and \(B C\) such that \(\sqrt{(A B+B F) \cdot A B}=A B+B C\), find \(A B\). It is obvious from the construction that answers are obtainable when \(B C\) is less than \(1 / 2\) of \(B F\).
\[
\begin{aligned}
& \Delta:=5 \quad \delta:=1 . . \Delta-1 \mathrm{BE}:=5 \quad \mathrm{BF}:=\mathrm{BE} \cdot 2 \\
& \mathrm{BC}_{\delta}:=\frac{\mathrm{BE}}{\Delta} \cdot \delta \quad \mathrm{CE}_{\delta}:=\mathrm{BE}-\mathrm{BC}_{\delta} \quad \mathrm{EG}:=\mathrm{BE} \\
& \mathrm{CJ}:=\mathrm{BE}^{2} \mathrm{EJ}_{\delta}:=\sqrt{\left(\mathrm{CE}_{\delta}\right)^{2}+\mathrm{CJ}^{2}} \mathrm{DH}:=\frac{\mathrm{CJ}}{2} \\
& \mathrm{DE}_{\delta}:=\frac{\mathrm{CE}_{\delta}}{2} \mathrm{AD}_{\delta}:=\frac{\mathrm{DH}^{2}}{\mathrm{DE}_{\delta}} \mathrm{AE}_{\delta}:=\mathrm{AD}_{\delta}+\mathrm{DE}_{\delta} \\
& \mathrm{AC}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{CE}_{\delta} \quad \mathrm{AJ}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}+\mathrm{CJ}^{2}} \\
& \mathrm{GJ}_{\delta}:=\sqrt{\left(\mathrm{EJ}_{\delta}\right)^{2}-\mathrm{EG}^{2}} \quad \mathrm{AB}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{BE} \\
& \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}
\end{aligned}
\]
\[
\begin{array}{lll}
{\left[\frac{1}{2} \cdot \frac{\mathrm{BE}}{\Delta} \cdot \delta \cdot \frac{(-2 \cdot \Delta+\delta)}{(-\Delta+\delta)}\right]-\mathrm{AC}_{\delta}} & \mathrm{GJ}_{\delta}-\mathrm{CE}_{\delta} & \mathrm{AB}_{\delta}+\mathrm{BC}_{\delta}-\sqrt{\mathrm{AB}_{\delta} \cdot(\mathrm{AB}+\mathrm{BF})_{\delta}} \\
\begin{array}{lll}
0 & & 0 \\
\hline 0 \\
\hline 0 & \frac{0}{0} & \frac{0}{0} \\
\hline 0 & \frac{0}{0} & \frac{0}{0} \\
\hline 0 & 0 &
\end{array}
\end{array}
\]
\[
\mathrm{A}:=\frac{\mathrm{BF}}{2} \quad \mathrm{~B}:=\mathrm{BC}_{2} \quad \frac{2 \cdot \mathrm{~A} \cdot \mathrm{~B}-\mathrm{B}^{2}}{2 \cdot \mathrm{~A}-2 \cdot \mathrm{~B}}-\left(\mathrm{AB}_{2}+\mathrm{BC}_{2}\right)=0
\]
\[
\sqrt{\left(\mathrm{AB}_{2}+\mathrm{BF}\right) \cdot \mathrm{AB}_{2}}-\left(\mathrm{AB}_{2}+\mathrm{BC}_{2}\right)=0
\]
\(\underline{\mathrm{BF} \cdot \mathrm{BC}_{2}-\left(\mathrm{BC}_{2}\right)^{2}}-\) \(\mathrm{BF}-2 \cdot \mathrm{BC}_{2}\)


Use iteration to find any root pair for BE.
Remember that when N is set to 2 , we have cube roots.
\[
\begin{aligned}
& \mathrm{CI}:=1 \quad \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{GI}:=\mathrm{CG} \quad \mathrm{BC}:=1 \\
& \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \quad \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EK}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EG}:=\mathrm{CG}-\mathrm{CE} \\
& \mathrm{AE}:=\frac{\mathrm{EK}^{2}}{\mathrm{EG}} \quad \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AG}:=\mathrm{AC}+\mathrm{CG} \\
& \mathrm{~N}:=2 \quad \mathrm{GN}:=\mathrm{CG} \cdot \mathrm{~N} \quad \mathrm{IO}:=\mathrm{GN} \quad \mathrm{CM}:=\mathrm{GN} \\
& \Delta:=40 \quad \delta:=0 . . \Delta
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AK}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EK}^{2}} \mathrm{AL}:=\sqrt{\left(\mathrm{AF}_{\Delta}\right)^{2}+\left(\mathrm{FL}_{\Delta}\right)^{2}} \quad \mathrm{AJ}:=\frac{\mathrm{AK}^{2}}{\mathrm{AL}} \quad \mathrm{AQ}:=\frac{\mathrm{AF}_{\Delta} \cdot \mathrm{AJ}}{\mathrm{AL}} \mathrm{CQ}:=\mathrm{AQ}-\mathrm{AC} \\
& \mathrm{IQ}:=\mathrm{CI}-\mathrm{CQ} \quad \mathrm{JQ}:=\sqrt{\mathrm{CQ} \cdot \mathrm{IQ}} \mathrm{CD}:=\frac{\mathrm{CQ} \cdot \mathrm{CM}}{\mathrm{CM}+\mathrm{JQ}} \quad \mathrm{HI}:=\frac{\mathrm{IQ} \cdot \mathrm{IO}}{\mathrm{IO}+\mathrm{JQ}} \quad \mathrm{DH}:=\mathrm{CI}-(\mathrm{CD}+\mathrm{HI}) \\
& \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{BH}:=\mathrm{BC}+\mathrm{CD}+\mathrm{DH} \frac{\mathrm{DH}}{\sqrt{\mathrm{CD} \cdot \mathrm{HI}}}=1 \quad \mathrm{BE}-\sqrt{\mathrm{BD} \cdot \mathrm{BH}}=0.000000000000000
\end{aligned}
\]

The next two equations are for the Delian Problem only.
\(\left(\mathrm{BC}^{2} \cdot \mathrm{BI}\right)^{\frac{1}{3}}-\mathrm{BD}=0.000000000000000 \quad\left({\left.\mathrm{BC} \cdot \mathrm{BI}^{2}\right)^{\frac{1}{3}}-\mathrm{BH}=0.00000000000000000000}\right.\)
\[
\begin{aligned}
\mathrm{BD} & =1.259921049894873 & 2^{\frac{1}{3}} & =1.259921049894873 \\
\mathrm{BH} & =1.587401051968199 & 4^{\frac{1}{3}} & =1.587401051968199
\end{aligned}
\]




The problem as stated was to duplicate the altar of Apollo. The solution demanded was material and not theoretical, and therefore has been solved by a finite number of steps. The next step is to solve it theoretically. That solution alone will conquer contiguous domains and will satisfy the purist.


Does every \(n^{\text {th }}\) root series have at least one square root pair?
\[
\begin{aligned}
& \mathrm{n}:=5 \quad \delta:=0 \cdot \cdot \frac{n}{2} \\
& \mathrm{~A}:=3 \quad \mathrm{~B}:=10 \\
& \sqrt{\left(\mathrm{~A}^{\mathrm{n}-1} \cdot \mathrm{~B}^{1}\right)^{\frac{1}{n}} \cdot\left(\mathrm{~A}^{1} \cdot \mathrm{~B}^{\mathrm{n}-1}\right)^{\frac{1}{n}}-\sqrt{\mathrm{A} \cdot \mathrm{~B}}=0} \\
& \sqrt{\left(\mathrm{~A}^{\mathrm{n}-\delta} \cdot \mathrm{B}^{\delta}\right)^{\frac{1}{n}} \cdot\left(\mathrm{~A}^{\delta} \cdot \mathrm{B}^{\mathrm{n}-\delta}\right)^{\frac{1}{n}}-\sqrt{\mathrm{A} \cdot \mathrm{~B}}} \\
& \frac{0}{\frac{0}{0}} \\
& \hline 0
\end{aligned}
\]

Because of it's long projection, the last vertices is not drawn. A root series has as many vertices on a circle as it has square root pairs, and it has the greater whole of \(n / 2\) vertices where \(n\) is the root series denominator.


\section*{Method for Unequals}

Given three circles in the said configuration, find the fourth.
I had this sketched out in 95, but if I put it there I would have a lot of document links to redo in "The Quest."

\(\mathrm{AO}:=5 \quad \mathrm{AG}:=1 \quad \mathrm{BH}:=3 \quad \mathrm{AB}:=2 \cdot \mathrm{AO}\)
\(\mathrm{BO}:=\mathrm{AO} \quad \mathrm{CG}:=\mathrm{AG} \mathrm{GI}:=\mathrm{AG} \quad \mathrm{HJ}:=\mathrm{BH}\)
\(\mathrm{DH}:=\mathrm{BH} \quad \mathrm{GH}:=\mathrm{AB}-(\mathrm{AG}+\mathrm{BH}) \quad \mathrm{HK}:=\mathrm{GI}\)
\(\mathrm{JK}:=\mathrm{HJ}-\mathrm{HK}\)

\(\mathrm{HS}:=\frac{\mathrm{GH} \cdot \mathrm{HJ}}{\mathrm{JK}} \mathrm{AH}:=\mathrm{AB}-\mathrm{BH}\) \(\mathrm{AS}:=\mathrm{HS}-\mathrm{AH} \quad \mathrm{OS}:=\mathrm{AO}+\mathrm{AS}\)
\(\mathrm{SL}:=\frac{\mathrm{OS}}{2} \mathrm{MO}:=\mathrm{AO} \mathrm{MS}:=\sqrt{\mathrm{OS}^{2}-\mathrm{MO}^{2}}\)
\(\mathrm{MN}:=\frac{\mathrm{MO} \cdot \mathrm{MS}}{\mathrm{OS}} \mathrm{NS}:=\frac{\mathrm{MS} \cdot \mathrm{MN}}{\mathrm{MO}}\)
AN \(:=\mathrm{NS}-\mathrm{AS} \mathrm{ON}:=\mathrm{AO}-\mathrm{AN}\)
\(\mathrm{BN}:=\mathrm{AB}-\mathrm{AN} \quad \mathrm{AM}:=\sqrt{\mathrm{MN}^{2}+\mathrm{AN}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB} \quad \mathrm{BF}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AG}\)
\(\mathrm{BD}:=2 \cdot \mathrm{BH} \quad \mathrm{CD}:=\mathrm{AB}-(\mathrm{AC}+\mathrm{BD})\)
\(\mathrm{PQ}:=\frac{\mathrm{AE} \cdot \mathrm{CD}}{(\mathrm{AC}+\mathrm{BD})} \quad \mathrm{OU}:=\mathrm{PQ}\)
\(\mathrm{CQ}:=\frac{\mathrm{AC} \cdot \mathrm{PQ}}{\mathrm{AE}} \mathrm{AQ}:=\mathrm{AC}+\mathrm{CQ}\)

\(\mathrm{OQ}:=\mathrm{AO}-\mathrm{AQ}\) OT \(:=\mathrm{AO}\)
\(\mathrm{TU}:=\mathrm{OT}+\mathrm{OU} \quad \mathrm{OR}:=\frac{\mathrm{OQ} \cdot \mathrm{OT}}{\mathrm{TU}}\)
\(\mathrm{RV}:=\frac{\mathrm{MN} \cdot \mathrm{OR}}{\mathrm{ON}} \mathrm{BR}:=\mathrm{BO}+\mathrm{OR}\)
\(\mathrm{RW}:=\frac{\mathrm{MN} \cdot \mathrm{BR}}{\mathrm{BN}} \quad \mathrm{AR}:=\mathrm{AO}-\mathrm{OR}\)
\(\mathrm{Ra}:=\frac{\mathrm{AR} \cdot \mathrm{RW}}{\mathrm{RV}} \mathrm{XY}:=\frac{\mathrm{RW} \cdot \mathrm{AB}}{\mathrm{BR}+\mathrm{Ra}}\)
\(\mathrm{Zb}:=\mathrm{XY} \quad \mathrm{OZ}:=\frac{\mathrm{MO} \cdot \mathrm{Zb}}{\mathrm{MN}}\)
\(\mathrm{MZ}:=\mathrm{MO}-\mathrm{OZ} \quad \mathrm{MZ}=1.818\)

\[
\mathrm{MZ}=1.818
\]
\(\frac{\mathrm{AB}^{3}-2 \cdot \mathrm{AB}^{2} \cdot \mathrm{AG}-2 \cdot \mathrm{AB}^{2} \cdot \mathrm{BH}+4 \cdot \mathrm{AB} \cdot \mathrm{BH} \cdot \mathrm{AG}}{2 \cdot \mathrm{AB}^{2}-8 \cdot \mathrm{BH} \cdot \mathrm{AG}}=1.818\)

Neither in the process, nor in the Algebraic name. is the order of AG and BH recognized. Neither does it matter if they intersect.


\section*{On Gemini Roots}


\(\mathrm{IL}:=\sqrt{\mathrm{DI}^{2}-\mathrm{DL}^{2}} \mathrm{CO}:=\frac{\mathrm{GL} \cdot \mathrm{CH}}{\mathrm{IL}}\)
\(\mathrm{NP}:=\frac{\mathrm{CH} \cdot \mathrm{EG}}{(\mathrm{CO}+\mathrm{CE})} \quad \mathrm{EP}:=\frac{\mathrm{CE} \cdot \mathrm{NP}}{\mathrm{CH}}\) \(\mathrm{CQ}:=\frac{\mathrm{IL} \cdot \mathrm{CG}}{\mathrm{GL}} \quad \mathrm{CR}:=\frac{\mathrm{BC} \cdot \mathrm{CQ}}{\mathrm{CH}}\) GR \(:=\mathrm{CG}-\mathrm{CR} \quad \mathrm{BS}:=\frac{\mathrm{CR} \cdot \mathrm{BG}}{\mathrm{GR}}\)

\(\delta:=1 . .100\)
\(\mathrm{E}_{\delta}:=\frac{\mathrm{BE}}{\delta} \quad \mathrm{BT}_{\delta}:=\mathrm{E}_{\delta} \mathrm{EV}_{\delta}:=\mathrm{E}_{\delta}\)
\[
\mathrm{TW}_{\delta}:=\frac{\mathrm{BT}_{\delta} \cdot \mathrm{BM}}{\mathrm{BS}} \mathrm{VX}_{\delta}:=\frac{\mathrm{EV}_{\delta} \cdot \mathrm{EM}}{\mathrm{EP}}
\]



Given three radii, \(\mathrm{AO}>\mathrm{BG}+\mathrm{EH}\), place them such that two by two they are tangent and find the fourth, AX, such that AX is tangent to EH and AO. This of course means that if the sum of BG and EH is equal to AO , we have no result.
\[
\mathrm{AO}:=5 \quad \mathrm{BG}:=2.5 \mathrm{EH}:=1.5
\]
\(\mathrm{AB}:=2 \cdot \mathrm{AO} \quad \mathrm{BC}:=2 \cdot \mathrm{BG} \quad \mathrm{EF}:=2 \cdot \mathrm{EH}\)
\(\mathrm{GH}:=\mathrm{BG}+\mathrm{EH} \mathrm{OH}:=\mathrm{AO}-\mathrm{EH} \mathrm{GO}:=\mathrm{AO}-\mathrm{BG}\)
\(\mathrm{GI}:=\frac{\mathrm{GH}^{2}+\mathrm{GO}^{2}-\mathrm{OH}^{2}}{2 \cdot \mathrm{GO}} \mathrm{HI}:=\sqrt{\mathrm{GH}^{2}-\mathrm{GI}^{2}}\)
\(\mathrm{AG}:=\mathrm{AB}-\mathrm{BGAI}:=\mathrm{AG}-\mathrm{GI} \mathrm{IJ}:=\mathrm{EH}\)
\(A J:=A I+I J \quad F J:=H I \quad A F:=\sqrt{A J^{2}+\mathrm{FJ}^{2}}\)
\(\mathrm{FK}:=\frac{\mathrm{AJ} \cdot \mathrm{EF}}{\mathrm{AF}} \quad \mathrm{AK}:=\mathrm{AF}-\mathrm{FK} \quad \mathrm{AY}:=\frac{\mathrm{AF} \cdot \mathrm{AK}}{\mathrm{AJ}}\)

AX \(:=\frac{\mathrm{AY}}{2} \quad \mathrm{AX}=2.857\)
\(\frac{\mathrm{AO}^{3}-\mathrm{AO}^{2} \cdot \mathrm{EH}-\mathrm{AO}^{2} \cdot \mathrm{BG}}{\mathrm{AO}^{2}-\mathrm{AO} \cdot \mathrm{BG}-\mathrm{EH} \cdot \mathrm{BG}}=2.857\)


Given a point of tangency, draw a circle in a crescent tangent to the other side. This figure is given for the tangent on the exterior of the crescent, the other will become obvious.

AB := Concave_Radius
CD := Convex_Radius AC:= Center_Difference
\(\mathrm{DE}:=2 \cdot \mathrm{CD} \quad \mathrm{BF}:=2 \cdot \mathrm{AB} \quad \mathrm{CE}:=\mathrm{CD}\)
\(\mathrm{AE}:=\mathrm{AC}+\mathrm{CE} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)
\(\mathrm{CG}:=\frac{\mathrm{CD}^{2}+\mathrm{AC}^{2}-\mathrm{AB}^{2}}{2 \cdot \mathrm{AC}} \mathrm{AG}:=\mathrm{AC}-\mathrm{CG}\)
\(\mathrm{GE}:=\mathrm{AE}-\mathrm{AG}\)

GJ := Power_Line_Tangent•GE
EJ := GE-GJ
DJ \(:=\) DE - EJ \(\quad \mathrm{JK}:=\sqrt{\mathrm{DJ} \cdot \mathrm{EJ}}\)
CJ \(:=\) CG - GJ CK \(:=\) CD KL \(:=\mathrm{GJ}\)
\(\mathrm{LM}:=\frac{\mathrm{CJ} \cdot \mathrm{KL}}{\mathrm{JK}}\) GL \(:=\mathrm{JK}\) GM \(:=\mathrm{GL}-\mathrm{LM}\)
\(A M:=\sqrt{A G^{2}+G M^{2}} \quad A N:=A B\)
\(\mathrm{AS}:=\frac{\mathrm{AM}^{2}}{\mathrm{AN}} \quad \mathrm{MR}:=\frac{\mathrm{AM}^{2}}{\mathrm{GM}}\)
\(\mathrm{MS}:=\sqrt{\mathrm{AS}^{2}-A M^{2}} \mathrm{AR}:=\sqrt{\mathrm{MR}^{2}-A M^{2}}\)
\(\mathrm{ST}:=\frac{\mathrm{MR} \cdot \mathrm{MS}}{\mathrm{AR}} \mathrm{MT}:=\frac{\mathrm{AM} \cdot \mathrm{MS}}{\mathrm{AR}}\)

\(\mathrm{MO}:=\frac{\mathrm{ST} \cdot \mathrm{AM}}{\mathrm{AM}+\mathrm{MT}}\)
GO \(:=\mathrm{GM}-\mathrm{MO}\) GP \(:=\frac{\mathrm{CJ} \cdot \mathrm{GO}}{\mathrm{JK}}\)
\(\mathrm{AP}:=\mathrm{AG}+\mathrm{GP} \quad \mathrm{OP}:=\frac{\mathrm{CK} \cdot \mathrm{GO}}{\mathrm{JK}}\)
\(\mathrm{CQ}:=\frac{\mathrm{OP} \cdot \mathrm{AC}}{\mathrm{AP}} \quad \mathrm{QK}:=\mathrm{CK}-\mathrm{CQ}\)
\(\mathrm{QK}=0.206\)
Concave_Radius \(=2.37\)
Convex_Radius \(\equiv 1.5\)
Center_Difference \(\equiv 1.84\)
Power_Line_Tangent \(\equiv \frac{1}{3}\) Given as Fraction \(<1\).


Process summary

\[
\mathrm{N}_{1}:=\frac{1}{2} \quad \mathrm{~N}_{2}:=\frac{9}{8} \quad \mathrm{~N}_{3}:=3
\]
\(\mathrm{AB}:=108 \quad \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AB} \quad \mathrm{BD}:=\mathrm{AB} \cdot \mathrm{N}_{1}\)
\(\mathrm{CD}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BD}^{2}} \quad \mathrm{EF}:=\frac{\mathrm{CD}-\mathrm{BD}}{\mathrm{N}_{2}}\)
\(\mathrm{DE}:=\mathrm{CD}-\mathrm{EF} \quad \mathrm{BE}:=\sqrt{\mathrm{DE}^{2}-\mathrm{BD}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{GH}:=\frac{\mathrm{AE}-\mathrm{EF}}{\mathrm{N}_{3}}\)
\(\mathrm{EG}:=\mathrm{EF}+\mathrm{GH} \quad \mathrm{DG}:=\mathrm{CD}-\mathrm{GH} \mathrm{Ba}:=\frac{\mathrm{BE} \cdot \mathrm{CD}}{\mathrm{DE}}\)
\(\mathrm{Db}:=\frac{\mathrm{DE}^{2}+\mathrm{DG}^{2}-\mathrm{EG}^{2}}{2 \cdot \mathrm{DG}} \quad \mathrm{Eb}:=\sqrt{\mathrm{DE}^{2}-\mathrm{Db}^{2}}\)

\(\mathrm{Ec}:=\frac{\mathrm{DE}^{2}}{\mathrm{~Eb}} \quad \mathrm{Dc}:=\frac{\mathrm{Db} \cdot \mathrm{DE}}{\mathrm{Eb}} \quad \mathrm{Dd}:=\frac{\mathrm{DE}^{2}}{\mathrm{BD}}\)
\(\mathrm{Ed}:=\frac{\mathrm{BE} \cdot \mathrm{Dd}}{\mathrm{DE}} \quad \mathrm{Ee}:=\frac{\mathrm{DE} \cdot \mathrm{Ed}}{\mathrm{Dc}} \quad \mathrm{Ef}:=\frac{\mathrm{Ee} \cdot \mathrm{DE}}{\mathrm{DE}+\mathrm{Ee}}\)
\(\mathrm{Eg}:=\frac{\mathrm{Ec} \cdot \mathrm{Ef}}{\mathrm{DE}} \quad \mathrm{bg}:=\mathrm{Eb}-\mathrm{Eg} \quad \mathrm{BM}:=\frac{\mathrm{bg} \cdot \mathrm{BD}}{\mathrm{Db}}\)
\(\mathrm{DM}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BM}^{2}} \mathrm{Bk}:=\frac{\mathrm{BM} \cdot \mathrm{CD}}{\mathrm{DM}}\)
\(\mathrm{HM}:=\mathrm{CD}-\mathrm{DM} \quad \mathrm{Hk}:=\frac{\mathrm{BD} \cdot \mathrm{HM}}{\mathrm{DM}}\)
\(\mathrm{Mk}:=\frac{\mathrm{BM} \cdot \mathrm{Hk}}{\mathrm{BD}} \quad \mathrm{Ik}:=\frac{\mathrm{Hk}^{2}}{\mathrm{Mk}} \quad \mathrm{HI}:=\sqrt{\mathrm{Hk}^{2}+\mathrm{Ik}^{2}}\)

\(\mathrm{Ea}:=\frac{\mathrm{BE} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{Ba}:=\mathrm{BE}+\mathrm{Ea} \quad \mathrm{Ia}:=\mathrm{Ik}+\mathrm{Ba}+\mathrm{Bk}\)
\(\mathrm{Fa}:=\frac{\mathrm{BD} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{FI}:=\sqrt{\mathrm{Ia}^{2}+\mathrm{Fa}^{2}} \mathrm{JI}:=\frac{\mathrm{HI}^{2}}{\mathrm{FI}}\)
\(\mathrm{Jm}:=\frac{\mathrm{Fa} \cdot \mathrm{JI}}{\mathrm{FI}} \quad \mathrm{JK}:=\frac{\mathrm{CD} \cdot \mathrm{Jm}}{\mathrm{BD}+\mathrm{Jm}}\)
\(\mathrm{JK}=17.571\)
When GH is small, so that H is on the other side of BD , the similarity point is on the other side of the figure.


I found this little sketch in my notebook and have no idea of when I did it or why.

Does CF always equal EP?
\[
\begin{aligned}
& \Delta:=100 \quad \delta:=1 . . \Delta-1 \quad \mathrm{BG}:=10 \quad \mathrm{GH}:=\mathrm{BG} \\
& \mathrm{GN}:=\mathrm{BG} \quad \mathrm{BD}_{\delta}:=\frac{\mathrm{BG}}{\Delta} \cdot \delta \quad \mathrm{DG}_{\delta}:=\mathrm{BG}-\mathrm{BD}_{\delta}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{DH}_{\delta}:=\mathrm{GH}+\mathrm{DG}_{\delta} \mathrm{DJ}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DH}_{\delta}} \\
& \mathrm{EG}_{\delta}:=\frac{\mathrm{DG}_{\delta} \cdot \mathrm{GN}^{\mathrm{GN}+\mathrm{DJ}_{\delta}}}{} \quad \mathrm{BE}_{\delta}:=\mathrm{BG}-\mathrm{EG}_{\delta}
\end{aligned}
\]
\[
\mathrm{EH}_{\delta}:=\mathrm{EG}_{\delta}+\mathrm{GH} \quad \mathrm{EK}_{\delta}:=\sqrt{\mathrm{BE}_{\delta} \cdot \mathrm{EH}_{\delta}}
\]
\[
\mathrm{AE}_{\delta}:=\frac{\left(\mathrm{EK}_{\delta}\right)^{2}}{\mathrm{EG}_{\delta}} \quad \mathrm{AB}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{BE}_{\delta}
\]
\[
\mathrm{GL}:=\mathrm{BG} \quad \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BD}_{\delta}
\]
\[
\mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG} \quad \mathrm{DJ} 2_{\delta}:=\frac{\mathrm{GL} \cdot \mathrm{AD}_{\delta}}{\mathrm{AG}_{\delta}}
\]
\[
\mathrm{EP}_{\delta}:=\frac{\mathrm{GL}^{2} \cdot \mathrm{AE}_{\delta}}{\mathrm{AG}_{\delta}} \quad \mathrm{GR}_{\delta}:=\mathrm{DJ} \delta_{\delta} \quad \mathrm{NO}:=\mathrm{BG} \quad \mathrm{NR}_{\delta}:=\mathrm{GN}+\mathrm{GR}_{\delta} \quad \mathrm{GQ}_{\delta}:=\frac{\mathrm{NO} \cdot \mathrm{GR}_{\delta}}{\mathrm{NR}_{\delta}} \quad \mathrm{CF}_{\delta}:=2 \cdot \mathrm{GQ}_{\delta}
\]




Reducing both by the symbolic processor leaves a little.
\[
\begin{gathered}
\mathrm{BG}:=10 \quad \mathrm{BD}:=\frac{\mathrm{BG}}{13} \\
\mathrm{CF}:=2 \cdot \mathrm{BG} \cdot \sqrt{\mathrm{BD}} \cdot \frac{\sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}}}{(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}})}
\end{gathered}
\]
\[
\mathrm{EP}:=-2 \cdot \mathrm{BG} \cdot \frac{\left(-\mathrm{BG} \cdot \sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}}-2 \cdot \mathrm{BG} \cdot \mathrm{BD}+\mathrm{BD}^{2}\right)}{(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}})^{2}}
\]

And if I divide one by the other and reduce; \(\quad \frac{\left[B G \cdot \sqrt{2 \cdot B G-B D}+2 \cdot B G \cdot \sqrt{B D}-\mathrm{BD}^{\left(\frac{3}{2}\right)}\right]}{[(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot B G-\mathrm{BD}}) \cdot \sqrt{2 \cdot B G-B D}]}=1\)

This is another figure that I had sketched out last year but never got around to writing down.

Given a Circle, place the next on the diameter.
I tried to reduce this series with the symbolic processor, but it is having trouble, at some point it switches AC for EC and I get the other circle.
\(\mathrm{AD}:=\) Radius \(\quad \mathrm{AE}:=2 \cdot \mathrm{AD} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{\mathrm{N}}\)
\(\mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \mathrm{DO}:=\mathrm{AD} \mathrm{CO}:=\sqrt{\mathrm{DO}^{2}+\mathrm{CD}^{2}}\)
\(\mathrm{NO}:=\mathrm{AE} \quad \mathrm{MO}:=\frac{\mathrm{DO} \cdot \mathrm{NO}}{\mathrm{CO}} \mathrm{CM}:=\mathrm{MO}-\mathrm{CO}\)
\(\mathrm{CK}:=\frac{\mathrm{DO} \cdot \mathrm{CM}}{\mathrm{MO}} \mathrm{KO}:=\sqrt{\mathrm{CD}^{2}+(\mathrm{DO}+\mathrm{CK})^{2}}\)
\(\mathrm{JK}:=\mathrm{CK}\)
\(\mathrm{Ke}:=\frac{\mathrm{JK}^{2}}{\mathrm{KO}} \mathrm{Oe}:=\mathrm{KO}-\mathrm{Ke} \quad\) de \(:=\frac{\mathrm{CD} \cdot \mathrm{Oe}}{\mathrm{DO}+\mathrm{CK}}\)
Je \(:=\sqrt{J K^{2}-K^{2}}\)
Jd \(:=\) de + Je \(\quad\) bd \(:=\frac{\mathrm{CD} \cdot \mathrm{Jd}}{\mathrm{KO}}\)
\(\mathrm{Od}:=\frac{\mathrm{KO} \cdot \mathrm{de}}{\mathrm{CD}} \quad \mathrm{Db}:=\mathrm{Od}-\mathrm{DO}-\mathrm{bd}\)

\[
\mathrm{Kh}:=\mathrm{CK}-\mathrm{Db}
\]
\[
\mathrm{Lh}:=\mathrm{CK}+\mathrm{Kh} \quad \mathrm{FJ}:=\frac{\mathrm{JK} \cdot \mathrm{Db}}{\mathrm{Lh}}
\]
\[
\mathrm{N} \equiv \frac{10}{1}
\]
\[
\mathrm{FJ}=3.965
\]
\[
\text { Radius } \equiv 108 \quad C K=19.44
\]

And from the other side;
\[
\mathrm{N} \equiv \frac{10}{9} \quad \mathrm{FJ}=51.53
\]
\[
\text { Radius } \equiv 108 \quad \mathrm{CK}=19.44
\]

This figure might be recognized as the similarity point for Gemini root projection.


Given AC, CF, and that
\(\left.A C=-C F \cdot \frac{(\sqrt{B C} \cdot \sqrt{B C}+C F}{}-B C\right)\) find \(B C\).

N can be any value whatever, except 0 .

\[
\begin{aligned}
& \mathrm{CF}:=216 \quad \mathrm{AC}:=47.29 \quad \mathrm{~N}:=100000 \\
& \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \quad \mathrm{AE}:=\mathrm{AC}+\mathrm{CE}
\end{aligned}
\]
\(\mathrm{FG}:=\mathrm{N} \quad \mathrm{EH}:=\frac{\mathrm{FG} \cdot \mathrm{AE}}{\mathrm{AF}} \mathrm{EF}:=\mathrm{CE}\) \(\mathrm{DF}:=\frac{\mathrm{EF} \cdot \mathrm{FG}}{\mathrm{EH}} \quad \mathrm{CJ}:=\frac{\mathrm{FG} \cdot \mathrm{AC}}{\mathrm{AF}} \quad \mathrm{DP}:=\mathrm{CJ}\)
\(\mathrm{CD}:=\mathrm{CF}-\mathrm{DF} \quad \mathrm{DK}:=\mathrm{FG} \quad \mathrm{KP}:=\mathrm{DK}-\mathrm{DP}\)

\[
\begin{aligned}
& \mathrm{BD}:=\frac{\mathrm{CD} \cdot \mathrm{DK}}{\mathrm{KP}} \quad \mathrm{BD}=40.089 \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{BC}=7.201 \\
& \mathrm{AC}_{\mathrm{f}}:=-\mathrm{CF} \cdot \frac{(\sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-\mathrm{BC})}{(-\mathrm{CF}+2 \cdot \sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-2 \cdot \mathrm{BC})}
\end{aligned}
\]
\[
\frac{\mathrm{AC}_{\mathrm{f}}}{\mathrm{AC}}=1
\]


\section*{Three Base Theorem.}

Three peaks, three predictable bases that intersect our hypotenuse through the Gemini roots.

\[
\begin{aligned}
& \mathrm{BC}:=7.2 \mathrm{CI}:=216 \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \\
& \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \mathrm{BM}:=61.38 \\
& \mathrm{EM}:=\sqrt{\mathrm{BM}^{2}+\mathrm{BE}^{2}} \mathrm{BD}:=\mathrm{EM}-\mathrm{BM} \\
& \mathrm{BH}:=\mathrm{BM}+\mathrm{EM} \quad \mathrm{GN}:=\mathrm{CG} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EN}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EH}:=\mathrm{BH}-\mathrm{BE} \\
& \mathrm{EG}:=\mathrm{EI}-\mathrm{CG} \quad \mathrm{AE}:=\frac{\mathrm{EN}^{2}}{\mathrm{EG}} \mathrm{HI}:=\mathrm{EI}-\mathrm{EH} \\
& \mathrm{HL}:=\frac{\mathrm{EN} \cdot \mathrm{HI}}{\mathrm{EI}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AH}:=\mathrm{AE}+\mathrm{EH} \quad \mathrm{Ea}:=\frac{\mathrm{AH} \cdot \mathrm{EN}}{\mathrm{HL}} \\
& \mathrm{FG}:=\frac{\mathrm{EG} \cdot \mathrm{AG}}{(\mathrm{Ea}+\mathrm{EG})} \mathrm{CF}:=\mathrm{CG}-\mathrm{FG}
\end{aligned}
\]
\(\mathrm{FI}:=\mathrm{CG}+\mathrm{FG} \quad \mathrm{FP}:=\sqrt{\mathrm{CF} \cdot \mathrm{FI}}\)
\(\mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \quad \mathrm{EO}:=\frac{\mathrm{FP} \cdot \mathrm{AE}}{\mathrm{AF}}\)
\(\mathrm{EF}:=\mathrm{AF}-\mathrm{AE} \quad \mathrm{GU}:=\frac{\mathrm{EO} \cdot \mathrm{FG}}{\mathrm{EF}}\)

\[
\begin{aligned}
& \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AI}:=\mathrm{AC}+\mathrm{CI} \\
& \mathrm{AP}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FP}^{2}} \mathrm{AW}:=\frac{\mathrm{AC} \cdot \mathrm{AI}}{\mathrm{AP}} \\
& \mathrm{AX}:=\frac{\mathrm{AF} \cdot \mathrm{AW}}{\mathrm{AP}} \mathrm{CX}:=\mathrm{AX}-\mathrm{AC} \mathrm{XI}:=\mathrm{CI}-\mathrm{CX} \\
& \mathrm{WX}:=\sqrt{\mathrm{CX} \cdot \mathrm{XI}} \mathrm{XG}:=\mathrm{CG}-\mathrm{CX} \mathrm{YU}:=\mathrm{XG} \\
& \mathrm{UV}:=\mathrm{CG} \mathrm{YV}:=\mathrm{YU}+\mathrm{UV} \mathrm{XH}:=\frac{\mathrm{YV} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \mathrm{CH}:=\mathrm{AH}-\mathrm{AC} \frac{\mathrm{CH}}{\mathrm{XH}+\mathrm{CX}}=1 \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{DX}:=\frac{\mathrm{CX} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \frac{\mathrm{CD}}{\mathrm{CX}-\mathrm{DX}}=1
\end{aligned}
\]


EI•EO
\(\mathrm{IZ}:=\frac{\mathrm{GU} \cdot \mathrm{AI}}{\mathrm{AG}} \mathrm{Ed}:=\mathrm{IZ} \quad \frac{\mathrm{EO}+\mathrm{Ed}}{\mathrm{EH}}=1\)
\[
\mathrm{Ce}:=\frac{\mathrm{GU} \cdot \mathrm{AC}}{\mathrm{AG}} \mathrm{Ef}:=\mathrm{Ce} \frac{\mathrm{CD}}{\frac{\mathrm{CE} \cdot \mathrm{Ce}}{\mathrm{EO}+\mathrm{Ef}}}=1
\]

Ek \(:=\mathrm{GU} \quad \mathrm{Ig}:=\frac{\mathrm{Ek} \cdot \mathrm{BI}}{\mathrm{BE}} \mathrm{Cm}:=\frac{\mathrm{Ek} \cdot \mathrm{BC}}{\mathrm{BE}}\)
Fn \(:=\mathrm{Ig} \quad\) gn \(:=\mathrm{FI} \quad \mathrm{FH}:=\frac{\mathrm{gn} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Fn}}\)
\(\frac{\mathrm{FH}}{\mathrm{AH}-\mathrm{AF}}=1 \quad \mathrm{DF}:=\frac{\mathrm{CF} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Cm}}\)
\(\frac{C D}{C F-D F}=1\)


Given CF and CD such that \(\mathrm{CD}=\sqrt{\mathrm{AF} \cdot \mathrm{AC}}-\mathrm{AC}\) find AC.
\[
\mathrm{CF}:=216 \quad \mathrm{CD}:=32.89 \quad \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{EF}:=\mathrm{CE}
\]

Except for \(0, \mathrm{~N}\) can be any value.
\[
\begin{aligned}
& \mathrm{N}:=108 \quad \mathrm{FG}:=\mathrm{N} \quad \mathrm{DK}:=\mathrm{N} \quad \mathrm{DF}:=\mathrm{CF}-\mathrm{CD} \\
& \mathrm{EH}:=\frac{\mathrm{DK} \cdot \mathrm{EF}}{\mathrm{DF}} \mathrm{EM}:=\mathrm{FG} \quad \mathrm{HM}:=\mathrm{EM}-\mathrm{EH} \\
& \mathrm{CN}:=\mathrm{FG} \quad \mathrm{HM}:=\mathrm{EM}-\mathrm{EH} \quad \mathrm{GN}:=\mathrm{CF} \\
& \mathrm{GM}:=\mathrm{EF} \quad \mathrm{JN}:=\frac{\mathrm{HM} \cdot \mathrm{GN}}{\mathrm{GM}} \quad \mathrm{JC}:=\mathrm{CN}-\mathrm{JN}
\end{aligned}
\]
\[
\mathrm{KP}:=\mathrm{JN} \quad \mathrm{JP}:=\mathrm{CD} \quad \mathrm{AD}:=\frac{\mathrm{JP} \cdot \mathrm{DK}}{\mathrm{KP}}
\]
\[
\mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \quad \mathrm{AC}=7.201
\]
\[
\mathrm{AF}:=\mathrm{AC}+\mathrm{CF}
\]
\[
\frac{\sqrt{\mathrm{AF} \cdot \mathrm{AC}}-\mathrm{AC}}{\mathrm{CD}}=1 \quad \frac{\sqrt{\mathrm{AF} \cdot \mathrm{AC}}}{\mathrm{AD}}=1
\]

I had finally decided to write this up in Oct. of 94, and being punctual, here it is.

Given one root in a prime root series, determine the rest of the series using the straight edge method. The other method uses a compass and is shown at the end of document.

Process Summary will use \(5^{\text {th }}\) root series for example.
\[
\begin{aligned}
& \mathrm{AG}:=3^{5} \quad \mathrm{AB}:=1 \quad \mathrm{AE}:=3^{3} \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{GZ}:=\mathrm{BG} \quad \mathrm{YZ}:=\mathrm{BG} \\
& \mathrm{BY}:=\mathrm{BG} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{EG}:=\mathrm{BG}-\mathrm{BE} \\
& \mathrm{GH}:=\frac{\mathrm{BY} \cdot \mathrm{EG}}{\mathrm{BE}}
\end{aligned}
\]
\(\mathrm{Ga}:=\frac{\mathrm{GZ} \cdot \mathrm{AG}}{\mathrm{EG}} \quad \mathrm{Hb}:=\frac{\mathrm{GH} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Gb}:=\mathrm{GH}-\mathrm{Hb} \quad \mathrm{Ib}:=\frac{\mathrm{AG} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Bd}:=\mathrm{BG}-\mathrm{Ib} \quad \mathrm{BC}:=\frac{\mathrm{Bd} \cdot \mathrm{BY}}{\mathrm{BY}+\mathrm{Gb}}\)
\(A C:=A B+B C\)
\(\mathrm{CG}:=\mathrm{BG}-\mathrm{BC} \quad \mathrm{BJ}:=\frac{\mathrm{GZ} \cdot \mathrm{BC}}{\mathrm{CG}}\)


\[
\begin{aligned}
& \mathrm{GK}:=\frac{\mathrm{BJ} \cdot \mathrm{AG}}{\mathrm{AB}} \mathrm{KZ}:=\mathrm{GZ}+\mathrm{GK} \\
& \mathrm{FG}:=\frac{\mathrm{YZ} \cdot \mathrm{GK}}{\mathrm{KZ}} \quad \mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \\
& \mathrm{Ke}:=\frac{\mathrm{GK} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \mathrm{Me}:=\frac{\mathrm{AG} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \\
& \mathrm{BD}:=\frac{(\mathrm{BG}-\mathrm{Me}) \cdot \mathrm{BY}}{\mathrm{KZ}-\mathrm{Ke}} \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}
\end{aligned}
\]

\[
\begin{array}{ll}
\frac{\left(\mathrm{AB}^{5} \cdot \mathrm{AG}^{0}\right)^{\frac{1}{5}}}{\mathrm{AB}}=1 & \frac{\left(\mathrm{AB}^{4} \cdot \mathrm{AG}^{1}\right)^{\frac{1}{5}}}{\mathrm{AC}}=1 \\
\frac{\left(\mathrm{AB}^{3} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{5}}}{\mathrm{AD}}=1 & \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{5}}}{\mathrm{AE}}=1 \\
\frac{\left(\mathrm{AB}^{1} \cdot \mathrm{AG}^{4}\right)^{\frac{1}{5}}}{\mathrm{AF}}=1 & \frac{\left(\mathrm{AB}^{0} \cdot \mathrm{AG}^{5}\right)^{\frac{1}{5}}}{\mathrm{AG}}=1
\end{array}
\]

Compass method

If any of a prime root series can be given exactly, every root of the series can be determined exactly.


Is CX a constant?
I have had so much back work to catch up on I post dated a couple.
\[
\begin{aligned}
& \mathrm{AB}:=54 \quad \mathrm{AG}:=270 \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BF}:=\frac{\mathrm{BG}}{2} \mathrm{FO}:=\mathrm{BF} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FR}:=\mathrm{BF} \\
& \mathrm{AR}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FR}^{2}} \mathrm{AQ}:=\frac{\mathrm{AB} \cdot \mathrm{AG}}{\mathrm{AR}} \\
& \mathrm{Aa}:=\frac{\mathrm{AF} \cdot \mathrm{AQ}}{\mathrm{AR}} \mathrm{Qa}:=\frac{\mathrm{FR} \cdot \mathrm{AQ}}{\mathrm{AR}}
\end{aligned}
\]
\(\mathrm{Fa}:=\mathrm{AF}-\mathrm{Aa} \quad \mathrm{OQ}:=\sqrt{\mathrm{Fa}^{2}+(\mathrm{FO}+\mathrm{Qa})^{2}}\)
\(\mathrm{CQ}:=\frac{\mathrm{OQ} \cdot \mathrm{Qa}}{\mathrm{FO}+\mathrm{Qa}} \mathrm{OX}:=\sqrt{\mathrm{BF}^{2}+\mathrm{FO}^{2}}\)
\(C O:=O Q-C Q\)
\[
\frac{\frac{\mathrm{OX}^{2}}{\mathrm{OQ}}}{\mathrm{CO}}=1
\]

Both expressions reduce to,
\[
\mathrm{CQ}=49.923 \quad \mathrm{OQ}-\frac{\mathrm{OX}^{2}}{\mathrm{OQ}}=49.923
\]
\[
\frac{\mathrm{AG}-\mathrm{AB}}{\mathrm{AG}+\mathrm{AB}} \cdot \frac{\sqrt{2} \cdot(\mathrm{AG} \cdot \mathrm{AB})}{\sqrt{\mathrm{AB}^{2}+\mathrm{AG}^{2}}}=49.923
\]


\section*{Geometric Exponential Series of the form}

\(\underline{\text { Root - } 1}\)

\(N^{\text {Root }}\)

Generalize some of the ratios found in 01_08_96 and 01_16_96 for the sides of the right triangle.
\[
\begin{aligned}
& \mathrm{N}=4 \quad \mathrm{Root}=4 \quad \mathrm{M}=1 \quad \mathrm{BG}:=\mathrm{N} \mathrm{AB}:=\mathrm{M} \\
& \mathrm{AG}:=\mathrm{AB}+\mathrm{BG} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \\
& \mathrm{AC}:=\left(\mathrm{AB}^{\text {Root }-1} \cdot \mathrm{AG}\right)^{\frac{1}{\text { Root }}} \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{\text {Root }-1}\right)^{\frac{1}{\text { Root }}} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \quad \mathrm{FX}:=\sqrt{\mathrm{AF}^{2}+\mathrm{AG}^{2}} \\
& \mathrm{FY}:=\frac{\mathrm{AF}^{2}}{\mathrm{FX}} \quad \mathrm{BD}:=\frac{\mathrm{FY} \cdot \mathrm{BG}}{\mathrm{FX}} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \quad \mathrm{GK}:=\sqrt{\mathrm{DG}}{ }^{2}+\mathrm{DK}^{2} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]


Plug in BG here as N . AB as M . Plug in root series also.
\(\mathrm{N} \equiv 4 \quad\) Root \(\equiv 4 \quad \delta:=1\).. Root
\(M \equiv 1\)
\[
\mathrm{GL}=1.377 \quad \mathrm{BJ}=0.275 \quad \frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]
\[
\frac{\sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-1}{\text { Root }}}}=2.415 \quad \frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}=8.075 \quad \frac{\mathrm{BK}}{\mathrm{BJ}}=8.075
\]

\[
\mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{BM}}=32.665\)
\begin{tabular}{l}
\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta+2}{\text { Root }}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{\text { Root }}}-\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{\text { Root }}}}\) \\
\hline\(\frac{9.769}{14.608}\) \\
\hline 21.844 \\
\hline 32.665 \\
\hline
\end{tabular}
On the left is the first and last of the series, on the right is the entire series.

\section*{12/20/96 Alternate Method Quad Roots}

If \(F N: F P\) as \(B Q: B S\) then quad roots series can be

\(\mathbf{N}_{1}:=2 \quad \mathbf{N}_{2}:=.2\)
AB :=1 \(A L:=A B \cdot \mathbf{N}_{1}\)

BL : = AL - AB BS := BL LT := BL
\(B H:=\frac{B L}{2} \quad H L:=B H \quad B Q:=B S \cdot N_{2}\)
\(\mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}} \quad \mathbf{F L}:=\mathbf{A L}-\mathbf{A F} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}\)
\(F P:=\sqrt{B F \cdot F L} \quad\) FN \(:=\frac{B Q \cdot F P}{B S} \quad E F:=\frac{B F \cdot F N}{B Q}\)
\(\mathrm{EL}:=\mathrm{EF}+\mathrm{FL} \quad \mathrm{FG}:=\frac{\mathrm{EF} \cdot \mathrm{FL}}{\mathrm{EL}} \mathrm{GO}:=\frac{\mathrm{FN} \cdot \mathrm{FG}}{\mathrm{EF}}\)
GL \(:=\) FL - FG \(\quad\) LR \(:=\) BQ \(\quad\) JL \(:=\frac{\mathbf{G L} \cdot \mathbf{L R}}{\mathbf{L R}+\mathbf{G O}}\)
AJ := AL \(-\mathbf{J L}\)
\(\left(A B \cdot A L^{3}\right)^{\frac{1}{4}}-A J=0\)

\section*{09/11/97 The Ellipse}

Given that the major axis is AD and the minor axis EF, derive the formula for the radius CG, the height BG, and the foci axis MN.

\(\mathrm{CG}-\frac{1}{2} \cdot \sqrt{\frac{-\left(-4 \cdot \mathrm{~N}_{3} \cdot \mathrm{~N}_{2}{ }^{2} \cdot \mathrm{~N}_{4}+4 \cdot \mathrm{~N}_{3}{ }^{2} \cdot \mathrm{~N}_{2}{ }^{2}-\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{4}{ }^{2}+4 \cdot \mathrm{~N}_{1}{ }^{2} \cdot \mathrm{~N}_{3} \cdot \mathrm{~N}_{4}-4 \cdot \mathrm{~N}_{1}{ }^{2} \cdot \mathrm{~N}_{3}{ }^{2}\right)}{\mathrm{N}_{4}{ }^{2}}}=0\)
\(\mathbf{M N}-\sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad \quad \mathbf{B G}-\sqrt{\frac{\left(\mathbf{N}_{3} \cdot \mathbf{N}_{4}-\mathbf{N}_{3}{ }^{2}\right)}{\mathbf{N}_{4}{ }^{2}}} \cdot \mathbf{N}_{\mathbf{2}}=\mathbf{0}\)


a two Dimensional Solution to the Delian Problem.
\(P D=0.601\) inches
\(P C=5.299\) inches



Since the figure only uses proportion, which has been proven any proof of the figure can be left for an exersize.


\section*{07/09/00 Alternate Method Quad Roots}

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{3} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{D M}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \\
& \mathbf{A J}:=\mathbf{A D} \quad \mathbf{A K}:=\mathbf{A D} \quad \mathbf{B M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D M}^{2}} \\
& \mathbf{G M}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D M}^{2}} \quad \mathbf{A F}:=\frac{\mathbf{G M} \cdot \mathbf{A J}}{\mathbf{B M}} \\
& \mathbf{A C}:=\frac{\mathbf{B M} \cdot \mathbf{A K}}{\mathbf{G M}} \\
& (\mathbf{A B} \cdot \mathbf{A G})^{3}-\mathbf{A F}=\mathbf{0} \quad(\mathbf{A B} \cdot \mathbf{A G})^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]

\section*{08/01/00 Alternate Method Quad Roots}


\section*{08/07/00 Proportion Series II}

Two unknowns have the same proportion as two givens and the sum of the unknowns are known. Find the
 two unknowns.
\[
\begin{aligned}
& \mathrm{AB}:=9 \quad \mathrm{CD}:=3 \quad \mathrm{BC}:=5 \\
& \mathrm{BO}:=\frac{\mathrm{AB} \cdot \mathrm{BC}}{\mathrm{AB}+\mathrm{CD}} \quad \mathrm{CO}:=\frac{\mathrm{CD} \cdot \mathrm{BC}}{\mathrm{AB}+\mathrm{CD}} \\
& \mathrm{BO}=3.75 \quad \mathrm{CO}=1.25 \\
& \mathrm{BO}+\mathrm{CO}-\mathrm{BC}=0 \\
& \frac{\mathrm{AB}}{\mathrm{CD}}-\frac{\mathrm{BO}}{\mathrm{CO}}=0
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{m} \angle \mathrm{UDG}=69.867^{\circ} \\
& \mathrm{m} \angle \mathrm{UDCI}=23.289^{\circ} \\
& \frac{\mathrm{m} \angle U D G}{\mathrm{~m} \angle U D C I}=3.000
\end{aligned}
\]

Trisection and the square root figure.

```
\(\mathrm{m} \angle \mathrm{UDG}=69.867^{\circ}\)
\(\mathrm{m} \angle \mathrm{UDCI}=23.289^{\circ}\)
\(\frac{m \angle U D G}{m \angle U D C I}=3.000\)
```

Trisection and the square root figure.


\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{4} \quad \mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathbf{B N}:=\frac{\mathbf{B D}}{\mathbf{2}} \quad \mathbf{K N}:=\mathbf{B N} \quad \mathbf{C J}:=\mathbf{B N} \\
& \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}} \quad \mathbf{A K}:=\mathbf{A J} \\
& \mathbf{A N}:=\mathbf{A B}+\mathbf{B N} \quad \mathbf{A P}:=\frac{\mathbf{A K} \mathbf{K}^{2}+\mathbf{A N}^{2}-\mathbf{K N}^{2}}{\mathbf{2} \cdot \mathbf{A N}} \\
& \mathbf{A F}:=\frac{\mathbf{A P} \cdot \mathbf{A N}}{\mathbf{A K}} \quad \mathbf{F K}:=\mathbf{A K}-\mathbf{A F}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{E F}:=\mathbf{F K} \quad \mathbf{A E}:=\mathbf{A K}-\mathbf{2} \cdot(\mathbf{E F}) \quad \mathrm{AR}:=\frac{\mathbf{A P} \cdot \mathbf{A E}}{\mathbf{A K}} \\
& \mathbf{A B} \cdot(\mathbf{A B}+\mathbf{B D}) \cdot \frac{\left(8 \cdot \mathbf{A B}^{2}+\mathbf{8} \cdot \mathbf{A B} \cdot \mathbf{B D}+\mathbf{B D}^{2}\right)}{(2 \cdot \mathbf{A B}+\mathbf{B D})^{3}}-\mathbf{A R}=\mathbf{0} \\
& \mathbf{B P}:=\mathbf{A P}-\mathbf{A B} \quad \mathbf{D P}:=\mathbf{B D}-\mathbf{B P} \quad \mathbf{N P}:=\mathbf{B N}-\mathbf{B P} \quad \mathbf{K S}:=\mathbf{N P} \quad \text { KS }-\mathbf{F K}=\mathbf{0}
\end{aligned}
\]

\section*{09/03/00 A Ratio In Trisection}

How does BF vary with BC?

\(\mathbf{N}_{1}:=\mathbf{1} \quad \mathbf{N}_{2}:=\mathbf{8}\)
\(B E:=1 \quad\) EM \(:=B E \quad B O:=\sqrt{2 \cdot B_{E}^{2}} \quad\) EN \(:=B E\)
A \(\quad\) EK \(:=\frac{\text { BE } \cdot \mathrm{BE}}{\mathrm{BO}} \quad\) KN \(:=\mathbf{E N}-\) EK \(\quad\) BK \(:=\frac{\text { BO }}{2} \quad\) BG \(:=2 \cdot \mathrm{BE}\)
\(\mathrm{BN}:=\sqrt{\mathrm{BK}^{2}+\mathrm{KN}^{2}} \quad \mathrm{BD}:=\frac{\mathrm{BN}^{2}}{\mathbf{B G}} \quad \mathrm{BC}:=\mathrm{BD} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}\)
\(\mathbf{C G}:=\mathbf{B G}-\mathrm{BC} \quad \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C G}} \quad \mathrm{AJ}:=\mathrm{BE}\)
\(\mathbf{A C}:=\sqrt{\mathbf{A J}^{2}-\mathbf{C J}^{2}} \quad \mathrm{AB}:=\mathbf{A C}-\mathbf{B C} \quad \mathbf{A E}:=\mathrm{AB}+\mathbf{B E}\)
\(\mathbf{J H}:=\frac{\mathbf{C J}^{\mathbf{2}}}{\mathbf{A J}} \quad\) AH \(:=\mathbf{A J}-\mathbf{J H} \quad\) AL \(:=\frac{\mathbf{A H} \cdot \mathbf{A E}}{\mathbf{A C}} \quad \mathrm{JL}:=\mathbf{A L}-\mathrm{AJ}\)
\(\mathbf{L M}:=\mathbf{J L} \quad\) AM \(:=\mathbf{A L}+\mathbf{L M} \quad \mathbf{A F}:=\frac{\mathbf{A H} \cdot \mathbf{A M}}{\mathbf{A C}} \quad\) BF \(:=\mathrm{AF}-\mathrm{AB}\)

BF \(-\frac{1}{4} \cdot(7 \cdot \sqrt{2}-10) \cdot\left(N_{1}-4 \cdot N_{2}-2 \cdot N_{2} \cdot \sqrt{2}\right) \cdot \frac{\left(2 \cdot N_{1}-2 \cdot N_{2}-N_{2} \cdot \sqrt{2}\right)^{2}}{N_{2}{ }^{3}}=0\)
\(\frac{14 \cdot N_{1} \cdot \sqrt{2}-24 \cdot \mathrm{~N}_{1}{ }^{2} \cdot \sqrt{2} \cdot \mathrm{~N}_{2}+36 \cdot \mathrm{~N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}+9 \cdot \mathrm{~N}_{1} \cdot \sqrt{2} \cdot \mathrm{~N}_{2}{ }^{2}-18 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}{ }^{2}+4 \cdot \mathrm{~N}_{2}{ }^{3}-20 \cdot \mathrm{~N}_{1}{ }^{3}}{2 \cdot \mathrm{~N}_{2}{ }^{3}}\)

\section*{The Delian Quest}

\begin{abstract}
"Socrates: And I, Meno, like what I am saying. Some things I have said of which I am not altogether confident. But that we shall be better and braver and less helpless if we think that we ought to inquire, than we should have been if we indulged in the idle fancy that there was no knowing and no use in seeking to know what we do not know;-that is a theme upon which I am ready to fight, in word and deed, to the utmost of my power." Meno, by Plato
\end{abstract}

\section*{Introduction}

The Delian Quest is a novel written primarily in two languages, Geometry and Algebra. The smattering of English is of no great consequence. The figure is Geometric Grammar, the equations are Algebraic Grammar. I take exception to any teaching that does not recognize the geometric figure as the Grammar of Geometry. Much of what is called geometry is apparently stated by those who have no clue. The Geometric Grammar system is a relatiologic and Algebraic Grammar is a tautologic-together they make a proposition-and together and only together can knowledge be imparted.

\section*{The Delian Problem}

From what I remember, the Delian Problem acquired its name from the circumstances of the problems inception. In order to stop a plague in ancient Greece an oracle at Delos suggested-supposedly by direction of a God-that the alter of Apollo be doubled. The alter of Apollo was a cube. What it boiled down to was the abstraction of the cube root of 2 -the cube root of twice its current volume. Now if in only geometry can one precisely abstract the square root of 2 , it seemed reasonable that only in geometry could one abstract the cube root of 2 as well. What this means is that an act of will can be performed for which no Arithmetic name is possible. The conventions of Arithmetic Grammar cannot provide an Arithmetic name for the square root of 2. Algebraic grammar overcomes this problem of irrationality in Arithmetic Grammar by incorporating operands as part of the Algebraic name. The problem in Geometric Grammar was, no one knew how to abstract cube roots. No one knew how to assert that act of will. In time, the general response to the Delian Problem was that it is an impossible problem to solve. No name could be provided in Arithmetic Grammar, and none in the Grammar of Geometry, while in Algebraic grammar, a name could be simply had, but no clue as to how to render the fact.

\section*{A Class Idea}

Those things that are grouped in accordance by a common characteristic all have the same name by that measure. Some people may recognize this notion as Set Theory, some may see it as the founding principle of all Grammars because it is the foundation upon which the concept of words are based, a fact of the craft of measurement itself, some may realize that it is the Sensor Model of reality, however one comprehends it, it is derived from \(\mathrm{A}=\mathrm{A}\) and \(\mathrm{A}-\mathrm{A}=0\) which is derived from knowing and not knowing. This has a very important application for if there is no difference between two things, then there is no knowledge of 'two-ness' under the class definition-therefore both items are regarded as the same-treated the same, respected the same. By definition, it is not possible to act
differently in any case or any instance toward members of the same set. Action is a reaction from cause, but one has stated that all members are the same, no difference or cause can then exist between them under that class definition.

In regard to the Delian problem one might apply it in this manner; take the straightedge and compass and see if they have a common characteristic which would group them into one class. To my knowledge such an application of the foundation of logic has never been proposed. If one finds that common characteristic then one can look around and see if they can abstract other tools that have that same characteristic. Perhaps these tools are what is needed to solve some problems. It would be the class characteristic that would define a Two Dimensional Geometers Writing Instrument-this is the true custom, the same notion that determines any language that one speaks. Logically, reasonably, factually, one cannot state that Geometry is to be written in only two tools of a class of tools if that class is well defined, for there is no way to distinguish these tools under the class concept, the definition of class membership-providing of course one can abstract the class concept that the tools reside in. Aristotle quite rightly determined that a definition renders both substance and form-every bit of knowledge is known that way, substance and form. Even in our mind, to think of substance we supply a generic form to it, and to think of form we assert a generic substance for it-otherwisde we could not conceive of either. What is the substance and the form of the Geometric Writing Instruments we are familiar with?

A straight edge provides one with one and only one difference (substance) between two points (form). A compass provides us with one and only one difference (substance) between two points (form). One may comprehend the straightedge however as providing the Unit of discourse, while the compass the Universe. Has anyone ever comprehended the ellipse as a figure that is produced as one with one difference (substance)-a sumbetween two points (form)? Is it possible that the Gods gave a problem, just like the problem of understanding the Bible, whereby the only solution is to think by one measure-class concepts? The only possible path to a solution is when men start to reason by respecting what the Bible calls a Holy understanding, the Law of Reciprocity? \(\boldsymbol{A}=\boldsymbol{A}\). I don't know. I do know that the tool that constructs an ellipse is in the same class as the straightedge and compass in regard to the same definition of substance and form, and also that the ellipse can solve the Delian Problem. I would strongly suspect that the problems given by the Gods all have a common solution which involves a growth in men's understanding. I did not suspect it when I started my search, I started the search because either no God gave the Delian Problem, or if given it would seem reasonable that a God would only ask for the possible and if it were possible, then it was possible for me to find it.

\section*{Proof}

What is proof? What proof is seems to have taken a bad turn in history. Currently what is called proof is a mess of non-sense. Since all knowledge is in propositional form, that being substance constrained by form, which produces the first division in logic, that of tautologics and relatiologics, proof is not different in concept from all knowledge. Proof is not different from the concept of definition. Proof is circumscribing substance with form. Tautologics are based on form, Relatiologics on substance, proof is saying in a
tautologic what is said in a relatiologic. In this text, I used Geometric Grammar (figuressubstance) for the relatiologic and for the tautologic I use Algebraic Grammar (form). When the grammar is correct in each, and when the form is the form of the substance and the substance is the substance of the form, then and only then does one have proof and truth.

It does not matter if we construct a 'word', a 'sentence', a 'definition', a 'proof' these all reside under one concept. That concept can be called Set Theory or propositional form, or 'to know' all of these words are based on the definition of body sense,
'That which acquires something from the environment (substance), processes it (reforms), and the product is used to sustain and promote life.'
The idea that we are composed of seven senses, all of which acquire something to build that one group, the one proposition, of human life called 'me' is fundamental and undeniable of our own psychology and physiology.

\section*{Proposition}

Even the process of group construction (propositional construction) follows the definition of proposition itself. One method is particular (the substance), each member is enumerated, the other method is universal (the form), each member has the same definition. Each method renders a judgment as to inclusion and exclusion of a member into a class. As Plato pointed out, only by comprehending all the details of both methods can one be said to have understanding. The methods themselves follow propositional form in another respect-the particular method is not effected through understanding but the method of forms (definition) is-this too Plato pointed out and is why he championed the method. Using class definition to define Geometric Writing Instruments is an idea that has not been promoted or conceived, and if enacted many mistakes will be made, but nevertheless, we may not be altogether certain as to what we are doing, but we can be certain that life is in that quest for knowing. Perception determines conception, conception determines will.

\section*{Reading}

Since perception determines conception and conception determines will, learning to 'say' what we 'see' can be improved by practice-being fully aware of what we are doing and why. One must read the figure and the equations together in this work. j.c.


\section*{The Delian Quest}

Introduction
The Delian Quest is a novel written primarily in two languages, Geometry and Algebra. The smattering of English is of no great consequence. The figure is Geometric Grammar, the equations are Algebraic Grammar.
Place Introduction to logic here.


This was originally type written and hand drawn figures. I ran copies off to send out into a non receptive world. I did not blush at my own ignorance.

\section*{THE DELIAN SOLUTION}

I do not view the Delian Problem in the traditional sense, that is as the problem of duplicating a cube. I view the problem of duplication as only one application for a Geometric process of general cube root abstraction. Truisms and processes are there to be discovered, if they are at all possible, it is possible to discover them. The Delian Problem is, for the correct Geometric figure, just one application of that figure. But then I am not a Geometer. In fact I dropped out of College to work on some items that I think are of particular importance, and tracing down the solution of the Delian Problem was just an example of some of the researches for that work. I have not even studied much of applied Geometry, I have been working on the theoretical aspects of it. Therefor this is an amateurs presentation and is not anything resembling a "finished" demonstration. The preceding figures are, however, technically correct abstractions.

While doing my first once over of the Elements, I found the propositions in Book 2 relating to the equality of complements. It occurred to me that since this was the correct method in which to manipulate area, an extension of it could be used to manipulate volume. This proved, after much searching, to be true. An extension of the figure can be used to abstract cube roots as well.

To cube a three dimensional rectilineal figure one has to start with the concepts of area manipulation on the two dimensional level. Starting with the rectangle in plate 1, one can see step by step, through plate 4, how to manipulate the figure while retaining the same area. If you study the Elements you will find a more complete set of abstracts to learn from. The method of squaring two sides is an abstract from this method.


Plate 1

Plate 3



Plate 2


Plate 4

The question becomes- "Can the figure be extended to work with three sides and retain the same volume?"

I will take a short side trip. Turn to plate 5 . Given a square and any point on the diagonal ray off the square, that is, extended outside of that square, divide two sides of that square into identical ratios with a ray from the chosen point. Plate 5 demonstrates the solution. If you play with the figure long enough you will find that it is a direct abstract from the figure that yields square roots. Length \(A B=C D, B C=D E\). This is not a trivial matter, for to perform cubic reductions we will have to find a method to divide this square into three such segments that have a special relationship.


Plate 5
\(A B=C D \cdot B C=D E\)

Let us take a "bar" as in P. 6 and put two of its sides back to back as in P.7. Also lay out a 45 degree angle, as that is what our cube will have to end with. In P. 8 we lay out where the cube is suppose to take place and we place in the two rays that will make the respective area manipulations. After several of these figures we will note that the two angles are indeed related because it always takes exactly two divisions to cube the figure, however, in this configuration I cannot gather any hint of another relationship between these two rays, or their angles.

P. 7

\section*{P. 6}

P. 8

P. 9

If I place both rays on the same side of the figure, I not only save paper, I also see a relationship, \(A=D, B=E, C=F\), and by working with these segments find that the square root of \(A C=B\).

P. \(10 A=D, B=E, C=F\)

P. 11

With a little more playing around, I note also that I can put a "hat" on the figure and that rays from the corners of the square under that figure will always converge on that semicircle. The immediate implication is that, not only is the square root related to the right angle, but the cube root as well.


Let us work with the square in a right angle for a moment. In P. 12 we find the answer to the question"How do I find the square in a right triangle?"


Plate 13


Plate 14


Plate 15

In Plates 13 through 16, we find the answer to the question-"Given a length of line, and another that must be one third or less of the first, what is the right angle which contains this segment as one side of a square?" The questions could be stated more technically than this, but-.

Plate 16



In P. 17 We see that "The square in a right triangle is equal to the square of the remaining two segments, and in a duplicate ratio and"

P. 18 "The three triangles on the sides of that square are in a triplicate ratio to those sides of that square."

P. 19 Shows another square that can be formed using the same segments as the square in a right triangle. This square will be used in demonstrating another triplicate ratio, and that is the Pythagorean principle for cube roots.


Plate 20 Demonstrates the triple implication of the Pythagorean theorem in the cubic expression. It will also do well to note that the three squares in continued proportion on the diagonal of the square under the right angle major have the same relationship as the segments on the hypotenuse of that given right angle.

There is one more triple proportion to look at. Plate 21.


All three semicircles intersect the semicircle which we draw our right angle in at the same point (A). From the center of the square under our eventual right angle (E) until they all intersect on that semicircle (A) they will produce a 90 degree angle divided into a 45 in the semicircle that is used for the square root application. I will leave it to the inquisitive reader to find the proper method of using this information to find a the method to find the intersect of the two rays under this figure. One will note that I have written in the progression along the bottom of the plate of the lengths involved.

Let us turn now to a simple but very productive diagram, Plate 22.


How close is the segment \(A B\) to the cube root of the circle given as a sphere? Is it well within pencil tolerances?

What approximate cube root figure is the segment CB a part of? (for abstract see Plate 12.)


Plate 23

On Plate 24 the radius for the circle OP is given by MN.


One of the items that one will find in working with the figure is that it is infinitely recursive, by adding a couple of lines in the right place, one has another cubic relationship.

How do we test for accuracy of our cubic results? It will be noted that on the line that is the cube root of \(B^{2} A\) (if you have missed it, the figure gives both roots, \(A^{2} B\) and \(B^{2} A\) ) there is a series of intersects, (three of them). When these intersects form a line
parallel to the base of the figure then the result is accurate, this should have been abstracted, and used for proof, during one's play with P. 7 and P.8.

A great number of propositions relating to the figure can be generated, of which I shall not here produce any. Doubling of the cube came very early in my search, the difficult part was in learning how to abstract any root. Now I have much work to do, and much learning to do to complete that work and I hope you have fun with the figure.J.C.

I was so happy with myself that I found all this out on my own that I sent it out to see if anyone would publish it. The returns indicate that it was stillborn, however I continue my explorations. Good books on Geometrical constructions are not readily available and I am quite ignorant of what has been done in the way of plane Geometry. I strike out more or less on my own on the Delian Quest. I take only One Cirlce, One Square, and One Line as my travel companions, not to mention Elementary Algebra as a consultant.

\section*{GEOMETRIAE DEDICATA}

ManagingEditors:
K. STRAMBACH

MathematischesInstitut
Bismarckstr. 1 1/2
D-8520 Eriangen
ER. Germany
Telephone: (0)9131-8525(X)
or 852502
F. D. VELDKANW

NblemakchMm4uw
Postbus 80.010
3508 TA Utrecht
The Netherlands
Telephone: (0)30-531519
Utrecht, 15 December 1989

\section*{Dear Mr. Clark,}

From Kluwer academic publishers I received your manuscript The Delian Solution which they presumed you wanted to submit
for Geometriae Dedicata. It is not clear to me what these considerations on elementary Euclidean geometry are aiming at.
Geometriae Dedicata is a journal for research in modern geometry and related fields. I think it is not the place to publish your manuscript, which we cannot accept therefore. I return the three copies under separated cover.

Sincerely,
F.D. Veldkamp

American Mathematical Society
PO. Box 6248, Providence, Rhode Island 02940 USA Telephone (401) 272-9500
Telex 797192, FAX 401-331-3842
Location:
201 Charles Street
Providence, RI
02904
December 8, 1989
Professor Professor John J. Clark
Dear Professor Clark,
I recently received your manuscript entitled "The Delian solution" for consideration in BULLETIN (NEW SERIES) OF THE AMERICAN MATHEMATICAL SOCIETY. Please note that I am forwarding your paper to Professor Roger E. Howe (Department of Mathematics, Yale University, New Haven. CT 06520) and that you should address all your inquiries to the editor.

Sincerely yours,
Christine Vendettuoli
Publications Department

Serving the mathematical community for over 100 years

\section*{American Mathematical Society}

Mathematics

\section*{Roger E.Howe}

Bulletin
Editorial Committee

Department of
Yale University
Box 2155, Yale Station
New Haven, CT 06520

December 14, 1989
Dear Professor Clark:
I regret to inform you that we are unable to accept your paper, "The Delian solution" for publication in the Bulletin. Our reviewers felt that the results are not of sufficient general interest or significance to warrant publication in the Bulletin.

Yours truly, Roger E. Howe Editor
Research Bulletin
REH/med

\section*{JOURNAL OF GEOMETRY}

\author{
Editor's Office
}

Prof. Dr. H.-J. Kroll
Mathematisches Institut
Technische Universitiit Munchen
Arcisstr. 21
D-8000 Munchen 2
January 17, 1990

\section*{Dear Professor Clark,}

Thank you very much for your manuscript on "THE DELIAN SOLUTION".
Date of receipt is January 12, 1990. As soon as we have the referee's report at hand, you will receive further information.

Yours sincerely, H. -J. Kroll

Expert opinion on the article "The Delian Solution" of John J. Clark: You can find some interesting statements in the submitted version of this article but exact constructions are missing. Mostly it's not clear where some points or lines come from. Therefore the proofs also cannot be examined very good. And for the more complicated constructions it's very difficult to follow the ideas of the author. Moreover the relation between the single statements and the opening problem doesn't come out very good.
All together the article in the given version is not understandable.

\section*{JOURNAL OF GEOMETRY \\ Editor's Office}

München, 1 June 1990
Dear Professor Clark, Your paper "The Delian Solution" submitted to the Journal of Geometry is hereby regrettably returned by the decision of the reviewers.
We are very sorry that we could not be of any help to you.
Sincerely yours,

\author{
H. -J. Kroll
}
(This one is a form letter.)

\section*{société mathématique defrance}
paris, le
BULLETIN
n. réf.
a l'attention de
v. réf.

Cher(e) collègue,
Le Comité de Rédacton du Bulletin de la Société Mathématique de France n'a pas pu accepter votre article intitulé


Malgré l'intérêt de votre travail, celui-ci ne correspond pas à l'esprit de notre Revue destinée à un large public de mathématiciens et non à des lecteurs trop spécialisés.

Nous vous prions d'agréer, cher(e) collégue, l'expression de nos sentiments les meilleurs.

\section*{P. SCHAPIRA}

Directeur de la Publication
P.J. : Manuscrit



\section*{A Triplicate Ratio 06/20/92}

Given some point \(O\) place CE on BF such that \(O\) is the point of similarity.
\[
\begin{aligned}
& \mathrm{N}:=1.52 \quad \mathrm{~N}_{2}:=.89 \quad \mathrm{~N}_{3}:=.66 \\
& B F:=N \quad M O:=N_{2} \quad C E:=N_{3} \\
& \text { FM }:=\sqrt{2 \cdot \text { BF }^{2}} \quad \text { AB }:=\frac{B F \cdot M O}{\text { FM }} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{AQ}:=\frac{\mathrm{CE}}{2} \\
& \mathrm{DQ}:=\sqrt{\mathrm{AD}^{2}+\mathrm{AQ}^{2}} \text { QR }:=\mathrm{DQ} \text { QP }:=\mathrm{DQ} \\
& A P:=\mathbf{Q P}-\mathbf{A Q} \quad \mathbf{A R}:=\mathbf{Q R}+A Q \quad \mathbf{A C}:=\mathbf{A P} \\
& \mathrm{AE}:=\mathrm{AR} \text { AO: }:=\mathrm{AF} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \\
& \text { EF :=AF - AE EK := EF BH := EK } \\
& \frac{\mathbf{B C}}{\mathbf{B H}}-\frac{\mathbf{A C}}{\mathbf{A O}}=\mathbf{0}
\end{aligned}
\]

The last ratiocan be tediously proved by reducing each term to the givens.

Edit 062800

\section*{08/12/92 Rusty Cube of a Sphere}

Given AB, how close is BJ to the cube root of \(A B\) taken as a sphere?


\(\mathrm{CD}:=\mathrm{BD}-\mathrm{CG} \quad \mathrm{DG}:=\sqrt{\mathrm{CD}^{2}+\mathrm{CG}^{2}}\)
\[
\mathbf{G J}:=\sqrt{\mathbf{D J}^{2}-\mathrm{DG}^{2}} \quad \mathrm{AC}:=\mathrm{AB}+\mathbf{B C}
\]
\[
A G:=\sqrt{A C^{2}+\mathbf{C G}^{2}}
\]
\[
\mathbf{A} \mathbf{J}:=\mathbf{A} \mathbf{G}+\mathbf{G} \mathbf{J}
\]
\(A E:=\frac{\mathbf{A C} \cdot \mathbf{A J}}{\mathbf{A G}}\)
EJ \(:=\frac{C G \cdot A J}{A G}\)
BE :=AE-AB
\(\mathbf{B J}:=\sqrt{\mathbf{E J}^{2}+\mathbf{B E}^{2}}\)


\section*{01/08/93 Pythagoras Revisited}

Given \(A B, B C, A C\), what is \(C D\) and CJ?

\[
\mathrm{DE}:=\frac{\mathrm{EF}}{2} \quad \mathrm{AD}:=\mathrm{AE}+\mathrm{DE} \quad \mathrm{AD}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot \mathrm{~S}_{1}}
\]
BD := BF + DE
\[
\mathrm{BD}:=\frac{\mathrm{S}_{2}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{2 \cdot \mathrm{~S}_{1}}
\]
\[
\mathbf{C D}:=\sqrt{\mathbf{A C}^{2}-\mathrm{AD}^{2}}
\]
\[
\mathrm{CD}:=\frac{\sqrt{\left(-\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}\right)}}{2 \cdot \mathbf{S}_{\mathbf{1}}}
\]

\[
\begin{aligned}
& \mathbf{A J}:=\frac{\mathbf{A B}}{2} \quad \mathbf{J D}:=\mathbf{A D}-\mathbf{A J} \quad \mathbf{C J}:=\sqrt{\mathbf{J D}^{2}+\mathbf{C D}^{2}} \\
& \mathbf{C J}:=\frac{1}{2} \cdot \sqrt{2 \cdot S_{3}{ }^{2}-\mathrm{S}_{1}{ }^{2}+2 \cdot \mathbf{S}_{2}{ }^{2}} \\
& \left(\mathbf{A C}^{2}+\mathbf{B C}^{2}\right)-\left(\frac{\mathbf{A B}^{2}}{2}+2 \cdot \mathbf{C J}^{2}\right)=0
\end{aligned}
\]

The sum of the squares on any two sides of any triangle is equal to the sum of half the square on the remaining side plus twice the square on the medial bisector (CJ).
\[
\begin{aligned}
& S_{1}:=\mathbf{2 . 2 4} \quad S_{2}:=1.046 \quad S_{3}:=1.7 \\
& S_{1}:=S_{1} \quad S_{\mathbf{2}}:=\mathbf{S}_{\mathbf{2}} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{S}_{\mathbf{3}} \\
& A B:=\mathbf{S}_{1} \quad B C:=\mathbf{S}_{\mathbf{2}} \quad \mathrm{AC}:=\mathbf{S}_{\mathbf{3}} \\
& \mathrm{AG}:=\mathrm{AC} \quad \mathrm{BH}:=\mathrm{BC} \quad \mathrm{AE}:=\frac{\mathbf{A G ^ { 2 }}}{\mathrm{AB}} \\
& \mathrm{BF}:=\frac{\mathrm{BH}^{2}}{\mathrm{AB}} \quad \mathrm{EF}:=\mathrm{AB}-(\mathrm{AE}+\mathrm{BF})
\end{aligned}
\]

\section*{06/03/93.MCD Exploring The Curve CJ}


Given AG and GF = AG/3 and any \(A C\), is \(B D\) the square root of \(A B x\) DG?
\[
\begin{aligned}
& \mathrm{N}:=\mathbf{2} \quad \mathbf{N}_{2}:=\mathbf{4} \\
& \text { AG }:=\mathbf{N} \quad \text { AC }:=\frac{\mathbf{A G}}{\mathbf{N}_{2}} \quad \text { GF }:=\frac{\mathbf{A G}}{3} \quad \text { AE }:=\frac{\mathbf{A G}}{2} \\
& \text { EG }:=\mathbf{A E} \quad \text { AF }:=\mathbf{A G}-\mathbf{G F} \quad \text { FM }:=\sqrt{\mathbf{A F} \cdot \mathbf{G F}} \\
& \text { GM }:=\sqrt{\mathbf{G F}^{2}+\mathbf{F M}^{2}} \quad \mathbf{G N}:=\mathbf{G M} \quad \text { EN }:=\sqrt{\mathbf{G N}^{2}-\mathbf{E G}^{2}} \\
& \text { NH }:=\mathbf{G M} \quad \text { NS }:=\mathbf{G M} \quad \text { PN }:=\mathbf{A E} \quad \text { PS }:=\mathbf{N S}-\mathbf{P N} \\
& \text { ST }:=\mathbf{2} \cdot \mathbf{G M} \quad \text { SQ }:=\mathbf{A C}+\mathbf{P S} \quad \text { QT }:=\mathbf{S T}-\mathbf{S Q} \\
& \text { QH }:=\sqrt{\text { SQ } \cdot \mathbf{Q T}} \quad \text { CQ }:=\mathbf{E N} \quad \text { CH }:=\mathbf{Q H}-\mathbf{C Q}
\end{aligned}
\]
\[
\mathrm{AH}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CH}^{2}} \quad \mathrm{CG}:=\mathrm{AG}-\mathrm{AC} \quad \mathrm{GH}:=\sqrt{\mathrm{CG}^{2}+\mathrm{CH}^{2}} \quad \mathrm{AJ}:=\mathrm{AH} \quad \mathrm{AB}:=\frac{\mathbf{A J}}{\mathrm{AG}}
\]
\[
\mathbf{G L}:=\mathbf{G H} \quad \mathbf{D G}:=\frac{\mathbf{G L}^{2}}{\mathbf{A G}} \quad \mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G}) \quad \sqrt{\mathbf{A B} \cdot \mathbf{D G}}-\mathbf{B D}=\mathbf{0}
\]
\[
\left(\frac{-\mathbf{N}}{3}+\frac{\mathbf{N}}{3} \cdot \frac{\sqrt{\mathbf{N}_{2}^{2}+12 \cdot \mathbf{N}_{2}-12}}{\mathbf{N}_{2}}\right)-B D=0
\]

06/07/93 For All Triangles Find BD


Given \(A B, B C, A C, C D, A D\), find \(B D\)

To simplify use line names found in 010893
\(S_{1}:=5.55\)
\(S_{2}:=4.61\)
\(S_{3}:=1.5\)
\(S_{5}:=4.5\)
\[
S_{6}:=5.48
\]
\(A B:=S_{5} \quad B C:=S_{6} \quad A C:=S_{1} \quad C D:=S_{3} \quad A D:=S_{2}\)
\(\mathrm{DE}:=\frac{\sqrt{\left(-S_{1}+S_{2}-S_{3}\right) \cdot\left(S_{1}+S_{2}+S_{3}\right) \cdot\left(S_{1}-S_{2}-S_{3}\right) \cdot\left(S_{1}+S_{2}-S_{3}\right)}}{2 \cdot S_{1}}\)
\(B F:=\frac{\sqrt{\left(-S_{1}+S_{5}-S_{6}\right) \cdot\left(S_{1}+S_{5}+S_{6}\right) \cdot\left(S_{1}-S_{5}-S_{6}\right) \cdot\left(S_{1}+S_{5}-S_{6}\right)}}{2 \cdot S_{1}}\)
\(\mathrm{CE}:=\sqrt{\mathrm{CD}^{2}-\mathrm{DE}^{2}} \quad \mathrm{CF}:=\sqrt{\mathrm{BC}^{2}-\mathrm{BF}^{2}} \quad \mathrm{EF}:=\mathrm{CF}-\mathrm{CE} \quad \mathrm{GF}:=\mathrm{DE}\)
\(B G:=B F-G F \quad D G:=E F \quad B D:=\sqrt{D G G^{2}+\mathbf{B G}^{2}} \quad B D=3.983\)
OR
\[
\mathrm{BG}_{2}:=\mathrm{BF}+\mathrm{GF} \quad \mathrm{DG}_{2}:=\mathrm{EF} \quad \mathrm{BD}_{2}:=\sqrt{\mathrm{DG}^{2}+\mathrm{BG}_{2}^{2}} \quad \mathrm{BD}_{2}=5.757
\]

\section*{06/09/93 Rectangular Roots}


Given AD and DE divide AD into the rectangular roots of \(D E\).
\[
\mathbf{N}:=5 \quad \mathbf{N}_{2}:=\mathbf{2}
\]
\[
\text { AD }:=\mathbf{N} \quad \text { DE }:=\mathbf{N}_{2} \quad \text { CF }:=\mathrm{DE} \quad \text { BF }:=\frac{\mathbf{A D}}{2}
\]
\(\mathrm{AB}:=\mathrm{BF} \quad \mathrm{BC}:=\sqrt{\mathrm{BF}^{2}-\mathrm{CF}^{2}} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \quad \sqrt{\mathrm{CD} \cdot \mathrm{AC}}-\mathrm{DE}=0\)
\[
A C:=\frac{1}{2} \cdot N+\frac{1}{2} \cdot \sqrt{-4 \cdot N_{2}^{2}+N^{2}} \quad C D:=\frac{1}{2} \cdot N-\frac{1}{2} \cdot \sqrt{-4 \cdot N_{2}^{2}+N^{2}}
\]

\section*{06/21/93 Pyramid of Ratios I}


Divide AB by N 1 then divide CD by N2, what are \(B F / E F\) and \(A C / A F\) ?
\[
\begin{aligned}
& \mathrm{N} 1:=3 \quad \mathrm{~N} 2:=5 \quad \delta:=1 . . \mathrm{N} 2 \\
& \mathrm{AB}:=1 \quad \mathrm{AD}:=\frac{\mathrm{AB}}{\mathrm{~N} 1} \quad \mathrm{AL}:=\frac{\mathrm{AB}}{2} \\
& \mathrm{DL}:=\mathrm{AL}-\mathrm{AD} \quad \mathrm{AC}:=\sqrt{\frac{\mathbf{A B}^{2}}{2}}
\end{aligned}
\]
\[
\mathrm{CL}:=\mathrm{AL} \quad \mathrm{CD}:=\sqrt{\mathrm{DL}^{2}+\mathrm{CL}^{2}}
\]
\[
\begin{aligned}
& \mathrm{DE}_{\delta}:=\frac{\mathrm{CD} \cdot \delta}{\mathrm{~N} 2} \quad \mathrm{DK}_{\delta}:=\frac{\mathrm{DL} \cdot \mathrm{DE}_{\delta}}{\mathrm{CD}} \quad \mathrm{AK}_{\delta}:=\mathrm{AD}+\mathrm{DK}_{\delta} \quad \mathrm{BK}_{\delta}:=\mathrm{AB}-\mathrm{AK}_{\delta} \quad \mathrm{EK}_{\delta}:=\frac{\mathrm{CL} \cdot \mathrm{DK}_{\delta}}{\mathrm{DL}} \\
& \mathrm{BE}_{\delta}:=\sqrt{\left(\mathbf{E K}_{\delta}\right)^{2}+\left(\mathrm{BK}_{\delta}\right)^{2}} \quad \mathrm{HK}_{\delta}:=\frac{\mathrm{AL} \cdot \mathrm{DK}_{\delta}}{\mathrm{DL}} \quad \mathrm{BH}_{\delta}:=\mathrm{BK}_{\delta}+\mathrm{HK}_{\delta} \quad \mathrm{EH}_{\delta}:=\frac{\mathrm{AC} \cdot \mathrm{DK}}{\delta} \\
& \mathrm{DL} \\
& \mathrm{AF}_{\delta}:=\frac{\mathrm{EH}_{\delta} \cdot \mathbf{A B}}{\mathrm{BH}_{\delta}} \quad \mathrm{BF}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathrm{AB}}{\mathrm{BH}_{\delta}} \quad \mathrm{EF}_{\delta}:=\mathrm{BF}_{\delta}-\mathrm{BE}_{\delta}
\end{aligned}
\]


\section*{06/27/93 Describe A Circle About a Triangle}

Given the difference between three non-collinear points, find the radius of the circle that circumscribes them
\[
\Delta:=(\mathbf{A B}+\mathbf{A C}>\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{B C}>\mathbf{A C}) \cdot(\mathbf{B C}+\mathbf{A C}>\mathbf{A B}) \quad \text { NOT }(X):=\mathrm{X}=\mathbf{0} \quad \delta:=0 . .2
\]

\[
\begin{aligned}
& \mathbf{B K}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A E}:=\mathbf{A C} \quad \mathbf{B F}:=\mathbf{B C} \\
& \mathbf{A G}:=\frac{\mathbf{A E}}{\mathbf{A B}} \quad \mathbf{B J}:=\frac{\mathbf{B F ^ { 2 }}}{\mathbf{A B}} \quad \mathbf{G J}:=\mathbf{A B}-(\mathbf{A G}+\mathbf{B J}) \\
& \mathbf{H J}:=\frac{\mathbf{G J}}{\mathbf{2}} \quad \mathbf{B H}:=\mathbf{B J}+\mathbf{H J} \quad \mathbf{C H}:=\sqrt{\mathbf{B C}^{2}-\mathbf{B H}^{2}} \\
& \mathbf{B N}:=\frac{\mathbf{B C}}{\mathbf{2}} \quad \mathbf{B M}:=\frac{\mathbf{B C} \cdot \mathbf{B K}}{\mathbf{B H}} \quad \mathbf{M N}:=\mathbf{B M}-\mathbf{B N} \\
& \mathbf{D N}:=\frac{\mathbf{B H} \cdot \mathbf{M N}}{\mathbf{C H}} \quad \mathbf{B D}:=\sqrt{\mathbf{B N}^{2}+\mathbf{D N}^{2}}
\end{aligned}
\]
radius := \(\mathbf{i f}(\Delta, \mathbf{B D}, \mathbf{0})\)
imaginary_radius \(:=\mathbf{i f}(\operatorname{NOT}(\Delta), B D, 0)\)
radius \(=\mathbf{3 . 3 7 5}\)
imaginary_radius \(=0\)
\(\Delta=1\)
\[
\mathrm{S}_{1}:=\left[\begin{array}{c}
\mathrm{AB} \\
\mathrm{AC} \\
\mathrm{BC}
\end{array}\right] \quad \mathrm{S}_{2}:=\left[\begin{array}{c}
\mathrm{AC} \\
\mathrm{BC} \\
\mathrm{AB}
\end{array}\right] \quad \mathrm{S}_{3}:=\left[\begin{array}{c}
\mathrm{BC} \\
\mathrm{AB} \\
\mathrm{AC}
\end{array}\right]
\]
\[
A B \equiv 3 \quad A C \equiv 4 \quad B C \equiv 6
\]

The name of the Radius as a proportion of the given names
\[
\begin{gathered}
\mathbf{R}_{\delta}:=\frac{S_{1_{\delta}} \cdot S_{2_{\delta}} \cdot S_{3_{\delta}}}{\sqrt{S_{1_{\delta}}+S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{-S_{1_{\delta}}+S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{S_{1_{\delta}}-S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{S_{1_{\delta}}+S_{2_{\delta}}-S_{3_{\delta}}}} \\
\mathbf{R}^{T}=\left[\begin{array}{lll}
3.375 & 3.375 & 3.375
\end{array}\right]
\end{gathered}
\]

\section*{07/15/93 Pyramid of Ratios II}
\(A B\) is divided by \(N 1\) and \(A C\) and \(B D\) is divided by \(N 2\), what are EG/FG and CD/DF?

\(\mathbf{N}_{1}:=3 \quad \mathbf{N}_{2}:=5 \quad \delta:=1 . . \mathbf{N}_{2}\)
AB \(:=1 \quad\) AD \(:=\frac{\mathbf{A B}}{\mathbf{N}_{1}} \quad\) AC \(:=\sqrt{\frac{\mathbf{A B}^{2}}{2}} \quad\) BD \(:=\mathrm{AB}-\mathbf{A D}\)
\(\mathrm{DE}_{\delta}:=\frac{\mathrm{BD} \cdot \delta}{\mathbf{N}_{2}} \quad \mathrm{AG}_{\delta}:=\frac{\mathbf{A C} \cdot \delta}{\mathbf{N}_{2}} \quad \mathrm{AE}_{\delta}:=\mathrm{AD}+\mathrm{DE}_{\delta}\)
\(A H_{\delta}:=\sqrt{\frac{\left(A G_{\delta}\right)^{2}}{2}} \quad G H_{\delta}:=A H_{\delta} \quad E H_{\delta}:=A E_{\delta}-A H_{\delta}\)
\(\mathbf{E G}_{\delta}:=\sqrt{\left(\mathbf{E H}_{\delta}\right)^{2}+\left(\mathbf{G H}_{\delta}\right)^{2}} \quad \mathrm{AL}:=\frac{\mathrm{AB}}{2} \quad \mathrm{DL}:=\mathrm{AL}-\mathrm{AD}\)
\[
\begin{aligned}
& \mathrm{CL}:=\sqrt{\frac{\mathrm{AC}^{2}}{2}} \quad \mathrm{HK}_{\delta}:=\frac{{\mathrm{DL} \cdot \mathrm{GH}_{\delta}}_{\mathrm{CL}}^{E K_{\delta}}:=\mathrm{EH}_{\delta}+\mathrm{HK}_{\delta} \quad \mathrm{DJ}_{\delta}:=\frac{\mathrm{HK}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}} \quad \mathrm{FJ}_{\delta}:=\frac{\mathrm{GH}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}}}{\mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{DJ}_{\delta}\right)^{2}+\left(\mathrm{FJ}_{\delta}\right)^{2}} \quad \mathrm{EF}_{\delta}:=\frac{\mathrm{EG}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}} \quad \mathrm{FG}_{\delta}:=\mathrm{EG}_{\delta}-\mathrm{EF}_{\delta} \quad \mathrm{CD}:=\sqrt{\mathrm{CL}^{2}+\mathrm{DL}^{2}}}
\end{aligned}
\]
\[
\left.\begin{array}{ll}
\text { if }\left(\mathbf{F G}_{\delta}, \frac{\mathbf{E G}_{\delta}}{\mathbf{F G}_{\delta}}, 0\right.
\end{array}\right) \quad \text { if }\left[\mathbf{N}_{2}-\delta, \frac{\mathbf{N}_{2}+\delta \cdot\left(\mathbf{N}_{1}-2\right)}{\mathbf{N}_{2}-\delta}, 0\right]
\]
\[
\mathbf{i f}\left(\delta, \frac{\mathrm{CD}}{\mathrm{DF}_{\delta}}, \mathbf{0}\right)
\]
\[
\text { if }\left[\delta, \mathbf{N}_{2} \cdot \frac{\left[\left(\mathbf{N}_{2}+\delta \cdot \mathbf{N}_{1}\right)-2 \cdot \delta\right]}{\left[\delta^{2} \cdot\left(\mathbf{N}_{1}-1\right)\right]}, 0\right]
\]
\begin{tabular}{|c|}
\hline 15 \\
\hline 4.375 \\
\hline 2.222 \\
\hline 1.406 \\
\hline 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 15 \\
\hline 4.375 \\
\hline 2.222 \\
\hline 1.406 \\
\hline 1 \\
\hline
\end{tabular}

\section*{07/25/93 Pyramid of Ratios III}

\section*{Dividing DC by an number provides wht in terms of BE/BF and AF/CF?}


\section*{11/06/93 Gruntwork I on the Delian Solution}


Does \(\left(A B^{2} \times A H\right)^{1 / 3}=A C\) and \(\left(A B \times A H^{2}\right)^{1 / 2}=A E ?\)
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{4} \quad \text { BH : }=\mathbf{1} \\
& \text { BF }:=\frac{B H}{2} \text { BD }:=\frac{B F}{N} \text { DH }:=B H-B D \\
& \text { DK }:=\sqrt{\text { BD } \cdot \text { DH }} \quad \text { BJ }:=\mathrm{DK} \quad \mathrm{BO}:=\mathrm{BH} \\
& \text { JO }:=\text { BJ }+ \text { BO } \quad \text { JK }:=\text { BD } \quad \text { CD }:=\frac{\text { JK DK }}{\text { JO }} \\
& \text { KL }:=\text { DH LP }:=\text { JO } \quad \text { DE }:=\frac{\text { KL } \cdot \text { DK }}{\text { LP }} \\
& \text { BC :=BD - CD CE := CD + DE MN:= BC }
\end{aligned}
\]

GH \(:=\mathbf{M N} \quad \mathbf{C H}:=\mathbf{B H}-\mathbf{B C} \quad\) HN \(:=\sqrt{2 \cdot \mathbf{C H}^{2}} \quad\) GM \(:=\mathbf{H N} \quad\) EH \(:=\mathbf{C H}-\) CE \(\quad\) EG \(:=\mathbf{E H}-\mathbf{G H}\) HQ \(:=\frac{G M \cdot E H}{E G} \quad H O:=\sqrt{2 \cdot B^{2}} \quad\) OQ \(:=H Q-H O \quad O R:=\sqrt{\frac{O Q^{2}}{2}} \quad\) AB \(:=O R \quad A C:=A B+B C\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BD}+\mathrm{DE} \quad \mathrm{AH}:=\mathrm{AB}+\mathrm{BH} \quad\left(\mathrm{AB}^{2} \cdot \mathrm{AH}\right)^{\frac{1}{3}}-\mathrm{AC}=0 \quad\left(\mathrm{AB} \cdot \mathrm{AH}^{2}\right)^{\frac{1}{3}}-\mathrm{AE}=0\)

\section*{11/09/93 Solve For Cube Root Placement}

With straight edge and compass only, solve the given problem. BH is the difference between the segments AH and AB.
CF is the difference between the cube root of \(A B\) squared by \(A H\) and the cube root of \(A H\) squared by \(A B\). Find \(A B\) and place the roots.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{2} \quad \mathbf{B H}:=\mathbf{N} \mathbf{- 1} \\
& B G:=\frac{B H}{2} \quad C F:=N^{\frac{2}{3}}-N^{\frac{1}{3}} \\
& \text { BL }:=\text { CF } \quad \text { GP }:=B G \quad B K:=\frac{B L}{2} \\
& \text { BD := BK NP := BD GN := GP - NP } \\
& \mathbf{E N}:=\mathbf{B L} \quad \text { GE }:=\sqrt{\mathbf{G N}^{2}-\mathbf{E N}^{2}} \\
& \mathbf{C E}:=\mathrm{BD} \quad \mathrm{BC}:=\mathrm{BG}-(\mathbf{G E}+\mathbf{C E})
\end{aligned}
\]
\[
\text { GH }:=\text { BG } \quad \text { EF }:=\text { BD }
\]
\[
\begin{aligned}
& \mathrm{FH}:=\mathrm{GH}+\mathrm{GE}-\mathbf{E F} \quad \mathrm{FQ}:=\mathrm{FH} \quad \mathrm{FO}:=\mathrm{BL} \quad \text { OQ }:=\mathrm{FQ}-\mathrm{FO} \quad \text { MO }:=\mathrm{CF} \quad \mathrm{AF}:=\frac{\mathrm{MO} \cdot \mathrm{FQ}}{\mathrm{OQ}} \\
& \mathrm{AC}:=\mathrm{AF}-\mathrm{CF} \quad \mathrm{AH}:=\mathrm{AF}+\mathrm{FH} \quad \mathrm{AB}:=\mathrm{AH}-\mathrm{BH}
\end{aligned}
\]
\[
\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A F=0 \quad \frac{A H}{A B}=2
\]

The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship.

\section*{11/10/93 Gruntwork II on the Delian Solution}

Given any acute angle in the isosceles, divide the base leg as shown. Do the resultant segments show any particular relationship to one another?
\[
\mathbf{N}:=1.1 \quad \text { AE }:=10
\]

\[
\begin{aligned}
& \text { DE }:=\frac{\mathbf{A E}}{\mathbf{N}} \quad \text { AD }:=\mathbf{A E}-\mathbf{D E} \quad \text { AH }:=\mathrm{AE} \\
& \text { AG }:=\mathbf{A D} \quad \mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A E}} \quad \mathbf{A F}:=\mathbf{A C} \\
& \mathbf{A B}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A D}} \\
& \left.\left(\mathbf{A B}^{\mathbf{2}} \cdot \mathbf{A E}\right)^{\frac{1}{3}}-\mathbf{A C}=\mathbf{0} \quad(\mathbf{A B} \cdot \mathbf{A E})^{2}\right)^{\frac{1}{3}}-\mathbf{A D}=\mathbf{0}
\end{aligned}
\]
\[
\frac{A E}{A B}=1331 \quad \frac{A D}{A B}=121 \quad \frac{A C}{A B}=11
\]

\section*{11/11/93 The Archamedian Paper Trisector}

If one accepts the facts of the original figure, one only need prove that \(B K=A B\).
If one does not accept the facts, examination of the construction should make it apparent. Does \(\mathrm{FK}=\mathrm{BK}=\mathrm{AB}\) ?

\[
\mathbf{N}:=4 \quad \text { AJ }:=1 \quad \text { AE }:=\frac{\mathbf{A J}}{2} \quad \text { EJ }:=\text { AE } \quad \text { EN }:=\text { AE EM }:=\text { AE } \quad \text { AC }:=\frac{\mathbf{A J}}{\mathbf{N}}
\]
\(\mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{C N}:=\sqrt{A C \cdot C J} \quad J N:=\sqrt{\mathbf{C N}^{2}+\mathbf{C J}^{2}} \quad \mathbf{J L}:=\frac{\mathbf{J N}}{2} \quad\) GL \(:=\frac{\mathbf{C N} \cdot \mathbf{J L}}{\mathbf{J N}} \quad\) GJ \(:=\frac{\mathbf{C J} \cdot \mathbf{J L}}{\mathbf{J N}}\)
EG \(:=\) EJ-GJ \(\quad E L:=\sqrt{E G^{2}+G^{2}} \quad\) EH \(:=\frac{E G \cdot E M}{E L} \quad H M:=\frac{G L \cdot E M}{E L} \quad A H:=A E+E H\)
\(\mathrm{CO}:=\frac{\mathrm{AH} \cdot \mathrm{CN}}{\mathrm{HM}} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{EO}:=\mathrm{CO}+\mathrm{CE} \quad \mathrm{EK}:=\frac{\mathrm{EN} \cdot \mathrm{AE}}{\mathrm{EO}} \quad \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{AE}}{\mathrm{EO}} \quad \mathrm{DK}:=\frac{\mathrm{CN} \cdot \mathrm{EK}}{\mathrm{EN}}\)
\(\mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{KN}:=\mathrm{EN}-\mathrm{EK} \quad \mathrm{BK}:=\mathrm{KN} \quad \mathrm{BD}:=\sqrt{\mathrm{BK}^{2}-\mathrm{DK}^{2}} \quad \mathrm{AB}:=\mathrm{AD}-\mathrm{BD}\)
\[
A B-B K=0 \quad A B=0.25 \quad \text { If PK is parallel to AJ, then } \ldots
\]


11/12/93 To Square A Circle Off The Base Of A Right Triangle.

Sometime in 1992, I remembered
 reading that some guy spent some time in prison and learned the process for squaring a circle off the base of a right triangle but then history lost it again, so I set out to find it and did. It took a couple hours so I wonder what he did with the rest of his time?

Using the approximation,\(\pi=\) 22/7, square the circle off the base of a right triangle.
\(\mathrm{BF}:=1 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EF}:=\mathrm{BE} \quad \mathrm{EH}:=\mathrm{BE} \quad \mathrm{BD}:=\frac{3}{4} \cdot \mathrm{BE} \quad \mathrm{AB}:=\mathrm{BD}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FK}:=\frac{\mathrm{EH} \cdot \mathrm{AF}}{\mathrm{AE}} \quad \mathrm{CF}:=\mathrm{FK} \quad \mathrm{BC}:=\mathrm{BF}-\mathrm{CF}\)
\(\mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{FG}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CG}^{2}} \quad \pi_{-} \mathrm{A}:=\frac{\mathrm{FG}^{2}}{\mathrm{BE}^{2}}\)
\[
\begin{aligned}
& \pi=3.14159265359 \\
& \pi \_A=3.142857142857 \\
& \frac{\pi}{\pi \_A}=\mathbf{0 . 9 9 9 5 9 7 6 6 2 5 0 5 8 4 3}
\end{aligned}
\]

\section*{11/18/93 Exploring Cube Roots Plate A}

Using the parallel FO to project to the point of similarity for the square root, point \(L\) is used for the cube root.


N: \(=2\)

BJ \(:=1 \quad\) BH \(:=\frac{B J}{2} \quad\) HL \(:=\) BH \(\quad\) BF \(:=\frac{B H}{\mathrm{~N}}\)
\(\mathrm{FH}:=\mathrm{BH}-\mathrm{BF} \quad \mathrm{HR}:=\mathrm{BJ} \quad \mathrm{FR}:=\sqrt{\mathrm{FH}^{2}+\mathrm{HR}^{2}}\)
\(F P:=\frac{F^{2}}{F R} \quad P H:=\frac{H R \cdot F P}{F H} \quad L P:=\sqrt{H L^{2}-P^{2}}\)
FL \(:=L P-F P \quad\) DF \(:=\frac{\text { FH•FL }}{\text { FR }} \quad\) DL \(:=\frac{\text { HR } \cdot F L}{\text { FR }}\)
FO := BH MO :=FO - DL LM :=DF
\(\mathrm{AF}:=\frac{\mathrm{LM} \cdot \mathrm{FO}}{\mathrm{MO}} \quad \mathrm{AB}:=\mathrm{AF}-\mathrm{BF} \quad \mathrm{BQ}:=\mathrm{BJ}\)

BK := DL BD := BH - (FH + DF \()\)
\(K Q:=B Q+B K \quad K L:=B D \quad B C:=\frac{K L \cdot B Q}{K Q} \quad\) HJ \(:=\) BH \(\quad D J:=H J+F H+D F \quad L N:=D J\) JS \(:=\) BJ JN \(:=\mathbf{D L} \quad\) NS \(:=\mathbf{J S}+\mathbf{J N} \quad\) GJ \(:=\frac{\text { LN } \cdot \mathbf{J S}}{\text { NS }} \quad\) BG \(:=\mathbf{B J}-\mathbf{G J} \quad\) AC \(:=\mathbf{A B}+\mathbf{B C}\)
\(A G:=A B+B G \quad A J:=A B+B J \quad\left(A B^{2} \cdot A J\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A J^{2}\right)^{\frac{1}{3}}-A G=0\)

\section*{11/18/93 Exploring Cube Roots Plate B}

If \(A L=\mathbf{1 / 2}\) of \(C G\), then the circle LM passes through the square root of \(A B \times A K\), being point \(E\).

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{1 . 2} \quad \text { BK :=1 } \\
& \mathbf{B H}:=\frac{B K}{2} \quad \text { BD }:=\frac{\mathbf{B H}}{\mathbf{N}} \quad \text { DK }:=B K-B D \\
& D N:=\sqrt{B D \cdot D K} \quad B Q:=B K \quad K S:=B K \quad H R:=B K \\
& \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B Q}}{\mathbf{B Q}+\mathbf{D N}} \quad \mathbf{G K}:=\frac{\mathrm{DK} \cdot \mathrm{KS}}{K S+\mathbf{D N}} \quad \mathbf{B G}:=\mathbf{B K}-\mathbf{G K} \\
& \mathrm{DH}:=\mathrm{BH}-\mathrm{BD} \quad \mathrm{FH}:=\frac{\mathrm{DH} \cdot \mathbf{H R}}{\mathrm{HR}+\mathrm{DN}} \quad \mathrm{BF}:=\mathrm{BH}-\mathbf{F H} \\
& C F:=B F-B C \quad A L:=C F \quad D F:=B F-B D \\
& \text { NO }:=\mathrm{DF} \quad \text { FP }:=\mathrm{BH} \quad \text { PO }:=\mathrm{FP}-\mathrm{DN} \\
& \mathrm{AD}:=\frac{\mathrm{NO} \cdot \mathbf{D N}}{\mathrm{PO}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{A B}=1.523
\end{aligned}
\]
\(\mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{LM}:=\mathrm{AF} \quad \mathrm{EL}:=\mathrm{AF} \quad \mathrm{AK}:=\mathrm{AD}+\mathrm{DK}\)
\[
A E_{1}:=\sqrt{E L^{2}-\mathbf{A L}^{2}} \quad \quad A E_{2}:=\sqrt{A B \cdot A K} \quad \quad A E_{1}-\mathbf{A E}_{2}=0
\]

\section*{11/18/93 Exploring Cube Roots Plate C}

The circle AO passes through point M.
\[
\begin{aligned}
& \text { N:=1 } \\
& \text { BK :=1 } \\
& \mathbf{A B}:=\frac{\mathbf{B K}}{\mathbf{N}} \quad \mathbf{A K}:=\mathbf{A B}+\mathbf{B K} \\
& A C:=\left(A B^{2} \cdot A K\right)^{\frac{1}{3}} \quad A G:=\left(A B \cdot A K^{2}\right)^{\frac{1}{3}} \quad \frac{A K}{A B}=2 \\
& \mathbf{C G}:=\mathrm{AG}-\mathrm{AC} \quad \mathrm{CF}:=\frac{\mathrm{CG}}{2} \quad \mathrm{BH}:=\frac{\mathrm{BK}}{2} \\
& \mathbf{A H}:=\mathrm{AB}+\mathrm{BH} \quad \mathrm{HP}:=\mathrm{BH} \quad \mathrm{AP}:=\sqrt{\mathrm{AH}^{2}+\mathrm{HP}^{2}} \\
& \text { AO }:=\frac{\mathrm{AP}}{2} \quad \text { DO }:=\frac{\mathrm{HP}}{2} \quad \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \quad \mathrm{AD}:=\frac{\mathrm{AH}}{2} \\
& \text { DF }:=\mathrm{AF}-\mathrm{AD} \quad \text { FM }:=\mathrm{CF} \text { MO }:=\mathrm{AO} \\
& \mathbf{M O}^{2}-\left[\mathrm{DF}^{2}+(\mathbf{D O}+\mathbf{F M})^{2}\right]=0
\end{aligned}
\]


11/22/93 Cube by Iteration

When \(F_{1}\) and \(F_{2}\) are the same point on \(C\), then a sixth root series has been constructed. Use iteration to place \(\overline{5}\) on \(\mathrm{F}_{1}\).
\[
\mathbf{A B}:=\mathbf{1} \quad \mathbf{A E}:=\mathbf{2} \quad \delta:=\mathbf{0} . . \Delta
\]
\[
\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathbf{A E}} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathbf{C G}:=\sqrt{\mathrm{AC} \cdot \mathbf{C E}} \quad \mathrm{AG}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CG}^{2}}
\]

\[
\left[\begin{array}{c}
\mathbf{A D}_{\delta+1} \\
\mathbf{D E}_{\delta+1} \\
\mathbf{D H}_{\delta+1} \\
\mathbf{C F}_{\delta+1} \\
\mathbf{A F}_{\delta+1}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{A F}_{\delta} \\
\mathbf{A E}-\mathbf{A F}_{\delta} \\
\sqrt{\mathbf{A F}_{\delta} \cdot \mathbf{D E}}{ }_{\delta} \\
\frac{\mathbf{D H}_{\delta} \cdot \mathbf{A C}}{\mathbf{A D}_{\delta}} \\
\sqrt{\mathbf{A C}^{2}+\left(\mathbf{C F _ { \delta } ) ^ { 2 }}\right.}
\end{array}\right] \quad \Delta \equiv 166
\]


\section*{11/24/93 POR Series IV}

\section*{Generalize the work of 07/25/93 for dividing the} base AE with K constant.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{A E}:=\mathbf{1} \\
& \alpha:=\mathbf{1} . . \mathbf{N}_{\mathbf{1}}-\mathbf{1} \quad \beta:=\mathbf{1} . . \mathbf{N}_{\mathbf{2}}-\mathbf{1}
\end{aligned}
\]
\[
\mathrm{AB}:=\frac{\mathrm{AE}}{\mathbf{N}_{1}} \quad \text { AD }:=\frac{\mathrm{AE}}{\mathbf{2}} \quad \text { DK }:=\mathrm{AD} \quad \mathrm{DE}:=\mathrm{AD}
\]
\(\mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{BK}:=\sqrt{\mathbf{B D}^{2}+\mathrm{DK}^{2}} \quad \mathrm{BG}:=\frac{\mathrm{BK}}{\mathbf{N}_{2}} \quad \mathrm{BC}:=\frac{\mathrm{BD} \cdot \mathrm{BG}}{\mathrm{BK}}\)
CG \(:=\frac{\text { DK }}{\text { BK }} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{DF}:=\frac{\mathrm{CG} \cdot \mathrm{DE}}{\mathrm{CE}} \quad \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CG}^{2}}\)
EF \(:=\sqrt{\text { DE }^{2}+\text { DF }^{2}}\) AH \(:=\frac{\text { DF AE }}{\text { EF }} \quad\) EH \(:=\frac{\text { DE } \cdot \mathbf{A E}}{\text { EF }} \quad\) GH \(:=\) EH \(-\mathbf{E G} \quad\) FH \(:=\) EH \(-\mathbf{E F}\)
FJ \(:=\frac{\text { DF } \cdot \text { FH }}{\text { EF }} \quad\) HJ \(:=\frac{\text { DE•FH }}{\text { EF }} \quad\) DJ \(:=\) DF + FJ \(\quad\) JK \(:=\) DK - DJ \(\quad\) HK \(:=\sqrt{H^{2}+J^{2}}\)
\(\frac{\mathbf{A H}}{\mathrm{HK}}=0.265 \quad \frac{\sqrt{2} \cdot \mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)}=0.265 \quad \operatorname{SeriesAH}_{\alpha, \beta}:=\frac{\sqrt{2} \cdot \mathbf{N}_{1} \cdot \beta}{2 \cdot\left(\mathbf{N}_{1}-\alpha\right) \cdot\left(\mathbf{N}_{2}-\beta\right)}\)

Series \(A H=\left[\begin{array}{llll}0.265 & 0.707 & 1.591 & 4.243 \\ 0.53 & 1.414 & 3.182 & 8.485\end{array}\right]\)
\(\frac{\mathbf{E H}}{\mathrm{GH}}=2.85 \quad \mathrm{~N}_{1} \cdot \mathrm{~N}_{2} \cdot \frac{2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}+2}{\left(\mathrm{~N}_{2}-1\right) \cdot\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}+\mathrm{N}_{1}{ }^{2}-2 \cdot \mathrm{~N}_{1}+2\right)}=2.85\)
SeriesEH \(_{\alpha, \beta}:=\mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \frac{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{N}_{1} \cdot \beta+2 \cdot \alpha \cdot \beta}{\left(\mathbf{N}_{2}-\beta\right) \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \alpha^{2}+\mathbf{N}_{1} \cdot{ }^{2} \cdot \beta-2 \cdot \mathbf{N}_{1} \cdot \alpha \cdot \beta+2 \cdot \alpha^{2} \cdot \beta\right)}\)

SeriesEH \(=\left[\begin{array}{llll}2.85 & 3 & 3.643 & 6 \\ 1.65 & 2 & 2.786 & 5.25\end{array}\right]\)

\section*{12/04/93 Exponential Series \(\mathrm{M}^{\wedge}\left(1 / \mathbf{2}^{\wedge} \mathrm{N}\right)\)}

Given some number, construct a two prime exponential series from it, such as a Quad Root Series, using the common segment, common

\[
\mathbf{N}:=\mathbf{8}
\]
\[
\mathbf{A F}:=\mathbf{N} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}
\]
\[
\mathbf{B M}:=\sqrt{\mathbf{A B} \cdot \mathbf{B F}} \quad \mathbf{A M}:=\sqrt{\mathbf{A B}^{2}+\mathrm{BM}^{2}}
\]
\[
\mathbf{A N}:=\mathbf{A F} \quad \mathbf{A D}:=\frac{\mathbf{A B} \cdot \mathbf{A N}}{\mathbf{A M}} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D}
\]
\[
\mathbf{D J}:=\sqrt{\mathrm{AD} \cdot \mathrm{DF}} \quad \mathbf{A J}:=\sqrt{\mathrm{AD}^{2}+\mathrm{DJ}^{2}}
\]
\[
\begin{aligned}
& \mathbf{A K}:=\mathbf{A F} \quad \mathbf{A E}:=\frac{\mathbf{A D} \cdot \mathbf{A K}}{\mathbf{A J}} \quad \mathbf{A H}:=\mathbf{A D} \quad \mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A H}}{\mathbf{A J}} \\
& \left(A B^{3} \cdot A F^{1}\right)^{\frac{1}{4}}-A C=0 \quad\left(A B^{2} \cdot A F^{2}\right)^{\frac{1}{4}}-A D=0 \quad\left(A B^{1} \cdot A F^{3}\right)^{\frac{1}{4}}-A E=0 \\
& N^{\frac{1}{4}}-A C=0 \\
& \mathbf{N}^{\frac{2}{4}}-\mathbf{A D}=0 \\
& \mathbf{N}^{\frac{3}{4}}-\mathbf{A E}=0
\end{aligned}
\]

\section*{12/06/93 Alternate Method: Square Root} Common Segment Common Endpoint

\[
\begin{aligned}
& \mathrm{N}:=6 \quad \text { AB }:=1 \quad \mathrm{AE}:=\mathrm{AB} \cdot \mathbf{N} \\
& \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \\
& \mathrm{DF}:=\mathrm{BD} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{AF}:=\sqrt{\mathbf{A D}^{2}-\mathrm{DF}^{2}} \quad \mathrm{AC}:=\mathrm{AF} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]

\section*{12/06/93B Gruntwork IV on the Delian Solution}

Are APQ colinear? Are AKN colinear?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \text { AC }:=1 \quad \text { AJ }:=\mathbf{A C} \cdot \mathbf{N} \\
& \text { AE } \left.:=\left(\mathbf{A C}^{2} \cdot \mathbf{A J}\right)^{\left(\frac{1}{3}\right)} \quad \text { AG }:=(\mathbf{A C} \cdot \mathbf{A J})^{2}\right)^{\left(\frac{1}{3}\right)} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \\
& \text { GJ }:=\mathbf{C J}-\mathbf{C G} \quad \mathbf{G N}:=\sqrt{\mathbf{C G} \cdot \mathbf{G J}} \\
& \text { AB }:=\frac{\mathbf{A E}}{\mathbf{2}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C H}:=\frac{\mathbf{C J}}{2}
\end{aligned}
\]
\(\mathrm{BK}:=\frac{\mathrm{AE}}{2} \quad \mathrm{HK}:=\mathrm{CH} \quad \mathrm{HJ}:=\mathrm{CH} \quad \mathrm{AH}:=\mathrm{AJ}-\mathrm{HJ} \quad \mathrm{BH}:=\mathrm{AH}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BK}^{2}+\mathrm{BH}^{2}-\mathrm{HK}^{2}}{2 \cdot \mathrm{BH}}\) \(\mathrm{DE}:=\mathrm{AE}-(\mathrm{AB}+\mathbf{B D}) \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{DK}:=\sqrt{\mathrm{AD} \cdot \mathrm{DE}} \quad \frac{\mathbf{A G}}{\mathrm{GN}}-\frac{\mathbf{A D}}{\mathrm{DK}}=0\)
\(\mathbf{G Q}:=\sqrt{\mathbf{A G} \cdot \mathbf{G J}} \quad \mathbf{C P}:=\sqrt{\mathbf{A C} \cdot \mathbf{C E}} \quad \frac{\mathbf{A G}}{\mathbf{G Q}}-\frac{\mathbf{A C}}{\mathbf{C P}}=\mathbf{0}\)

\section*{12/11/93}


The structure in red appears to be a constant.
N:=6
AB :=1
AL:=AB \(\cdot \mathbf{N}\)
\(\mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{A E}:=\left(\mathbf{A B}^{\mathbf{2}} \cdot \mathbf{A L}\right)^{\frac{\mathbf{1}}{\mathbf{3}}}\)
\(A J:=\left(A B \cdot A L^{2}\right)^{\frac{1}{3}} B E:=A E-A B \quad B J:=A J-A B\)
\(\mathbf{J L}:=\mathbf{B L}-\mathbf{B J} \quad \mathbf{E J}:=\mathbf{A J}-\mathbf{A E} \quad\) FJ \(:=\frac{\mathbf{J L} \cdot \mathbf{E J}}{\mathbf{J L}+\mathbf{B E}}\)
FL \(:=\mathbf{J L}+\mathbf{F J} \quad\) BF \(:=\mathbf{B L}-\mathrm{FL} \quad\) FP \(:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}}\)

\(\mathrm{AD}:=\frac{\mathrm{AI}}{2} \quad \mathrm{KT}:=\mathrm{BL} \quad \mathrm{FH}:=\frac{\mathrm{FK} \cdot \mathrm{FP}}{\mathrm{KT}+\mathrm{FP}} \quad \mathrm{AF}:=\mathrm{BF}+\mathrm{AB} \quad \mathrm{AH}:=\mathrm{AF}+\mathrm{FH} \quad \mathrm{HI}:=\mathrm{AI}-\mathrm{AH}\) HO \(:=\sqrt{\text { AH•HI }} \quad\) DN \(:=A D \quad K N:=B K \quad D K:=A K-A D \quad C K:=\frac{K^{2}+D K^{2}-D^{2}}{2 \cdot D K}\) \(\mathrm{AC}:=\mathrm{AK}-\mathrm{CK} \quad \mathrm{CI}:=\mathrm{AI}-\mathrm{AC} \quad \mathrm{CN}:=\sqrt{\mathrm{AC} \cdot \mathrm{CI}} \quad \frac{\mathrm{KR}}{\mathrm{IK}}-\frac{\mathrm{HO}}{\mathrm{HI}}=0 \quad \frac{\mathrm{AF}}{\mathrm{FP}}-\frac{\mathrm{AC}}{\mathrm{CN}}=0\)


\section*{The Square Root}

It may be noticed that I use the adjacent figure in my work for doing square roots. I believe that it is the primary figure for doing square roots. Given segment AE and segment BD , segment FG is their square root. It has a major advantage of being able to square larger figures on paper, not to mention makes something of the development of exponential series.

\(\mathrm{AE}:=100 \quad \delta:=1 . . \mathrm{AE} \quad \mathrm{BD}_{\boldsymbol{\delta}}:=\boldsymbol{\delta}\)
\(\mathrm{AC}:=\frac{\mathrm{AE}}{2} \quad \mathrm{BC}_{\delta}:=\frac{\mathrm{BD}_{\delta}}{2} \quad \mathrm{AB}_{\delta}:=\mathrm{AC}-\mathrm{BC}_{\delta}\)
\(\mathrm{AD}_{\delta}:=\mathrm{AC}+\mathrm{BC}_{\delta} \mathrm{AH}_{\delta}:=\frac{\mathrm{AD}_{\delta}}{2}\)
\(\mathrm{GH}_{\delta}:=\mathrm{AH}_{\delta} \quad \mathrm{CH}_{\delta}:=\mathrm{AC}-\mathrm{AH}_{\delta}\)
\(\mathrm{FG}_{\delta}:=2 \cdot \sqrt{\left(\mathrm{GH}_{\delta}\right)^{2}-\left(\mathrm{CH}_{\delta}\right)^{2}}\)
\(\mathrm{ROOT}_{\delta}:=\sqrt{\left(\mathrm{BD}_{\delta}\right) \cdot \mathrm{AE}}\)



12_12_B3.MCD
Completely generalize the square root figure.
\[
\mathrm{AF}:=7 \quad \mathrm{DF}:=\frac{\mathrm{AF}}{\mathrm{BR}} \mathrm{AD}:=\mathrm{AF}-\mathrm{DF}
\]
\(\delta:=1 . . \mathrm{LBR} \mathrm{DE}_{\delta}:=\frac{\mathrm{DF}}{\mathrm{LBR}} \cdot \delta\)
\(\mathrm{CE}_{\delta}:=2 \cdot \mathrm{DE}_{\delta} \mathrm{AE}_{\delta}:=\mathrm{AD}+\mathrm{DE}_{\delta}\)
\(\mathrm{AB}_{\delta}:=\frac{\mathrm{AE}_{\delta}}{2} \quad \mathrm{BD}_{\delta}:=\mathrm{AD}-\mathrm{AB}_{\delta}\)
\(\mathrm{BH}_{\delta}:=\mathrm{AB}_{\delta} \mathrm{GH}_{\delta}:=2 \cdot \sqrt{\left|\left(\mathrm{BH}_{\delta}\right)^{2}-\left(\mathrm{BD}_{\delta}\right)^{2}\right|}\)
Set AF to unity so that it may be eliminated. Setting BR to 2 will yeild the familiar square root. BR may even take fractional values.
Plug in values here. BR=BASE RATIO,
\(\mathrm{BR} \equiv 3 \quad \mathrm{LBR} \equiv 5\) LBR=LITTLE BASE RATIO

The equation below
\[
\left|\frac{(2 \cdot \mathrm{BR})-2}{\mathrm{BR}}\right|=1.333
\]

\(\mathrm{CE}_{\delta} \quad \frac{\mathrm{BR}-(\mathrm{BR}-2)}{\mathrm{BR} \cdot \mathrm{LBR}} \cdot \delta \cdot \mathrm{AF}\)
\begin{tabular}{|c|c|}
\hline 0.933 & 0.933 \\
\hline 1.867 & 1.867 \\
\hline 2.8 & 2.8 \\
\hline 3.733 & 3.733 \\
\hline 4.667 & 4.667 \\
\hline
\end{tabular}


\[
A J_{\delta}:=\sqrt{A B_{\delta} \cdot A R} \quad \mathrm{JR}_{\delta}:=\mathrm{AR}-\mathrm{AJ} \mathrm{~J}_{\delta}
\]
\[
J W_{\delta}:=\sqrt{A J_{\delta} \cdot J R_{\delta}} \quad A W_{\delta}:=\sqrt{\left(A J_{\delta}\right)^{2}+\left(J W_{\delta}\right)^{2}}
\]
\begin{tabular}{|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) \\
\hline 5 & 7.071 \\
\hline 3.333 & 5.774 \\
\hline 2.5 & 5 \\
\hline 2 & 4.472 \\
\hline 1.667 & 4.082 \\
\hline
\end{tabular}

The figure presents me with a progression. What is it's formula? It turns out not only that I can do square roots, but any two-prime root. It took me 48 pages of sieve work to realize what I was looking at.

\section*{Euclidean Exponential Series}

\[
\begin{aligned}
& \mathrm{AT}:=\mathrm{AR} \quad \mathrm{AN}_{\delta}:=\mathrm{AW}_{\delta} \quad \mathrm{AF}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AW}_{\delta}} \\
& \mathrm{NR}_{\delta}:=\mathrm{AR}-\mathrm{AN}_{\delta} \quad \mathrm{NX} X_{\delta}:=\sqrt{\mathrm{AN}_{\delta} \cdot \mathrm{NR}_{\delta}} \\
& \left.\mathrm{AX}_{\delta}:=\sqrt{\left(\mathrm{AN}_{\delta}\right)^{2}+(\mathrm{NX}}{ }_{\delta}\right)^{2}
\end{aligned}
\]
\begin{tabular}{llll}
\multicolumn{1}{l}{\(\mathrm{AB}_{\delta}\)} & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AN}_{\delta}\) \\
\hline \begin{tabular}{|c|}
\hline 5 \\
\hline 3.333 \\
\hline 2.5 \\
\hline 2 \\
\hline 1.667 \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline 5.946 \\
\hline 4.387 \\
\hline 3.536 \\
\hline 2.991 \\
\hline 2.608 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
\hline 7.071 \\
\hline 5.774 \\
\hline 5 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
\hline 8.409 \\
\hline 7.598 \\
\hline 7.071 \\
\hline 6.687 \\
\hline 6.389 \\
\hline
\end{tabular}
\end{tabular}

What I find interesting, foremost, is the implication for number theory-- We learn exponential notation prior to any naturally occurring exponential examples- Here is one example. The figure removes the conception that exponentiation is purely a notational device and raises it's rank to that of a realistic abstraction.

\[
\begin{aligned}
& A U:=A R \quad A P_{\delta}:=A X_{\delta} \quad A L_{\delta}:=\frac{\left(A N_{\delta}\right)^{2}}{A X_{\delta}} \\
& A H_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{A L_{\delta}} \quad A D_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{A H_{\delta}} \\
& P R_{\delta}:=A R-A P_{\delta} \quad P Y_{\delta}:=\sqrt{A P_{\delta} \cdot P R_{\delta}} \\
& A Y_{\delta}:=\sqrt{\left(A P_{\delta}\right)^{2}+\left(P Y_{\delta}\right)^{2}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AB}_{\delta}\) & \(\mathrm{AD}_{\delta}\) & \(\mathrm{AF}_{\delta}\) & \(\mathrm{AH}_{\delta}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AL}_{\delta}\) & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AP}_{\delta}\) \\
\hline 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.711 & 8.409 & 9.17 \\
\hline 3.333 & 3.824 & 4.387 & 5.033 & 5.774 & 6.623 & 7.598 & 8.717 \\
\hline 2.5 & 2.973 & 3.536 & 4.204 & 5 & 5.946 & 7.071 & 8.409 \\
\hline 2 & 2.446 & 2.991 & 3.657 & 4.472 & 5.469 & 6.687 & 8.178 \\
\hline 1.667 & 2.085 & 2.608 & 3.263 & 4.082 & 5.107 & 6.389 & 7.993 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \mathrm{AV}:=\mathrm{AR} \quad A Q_{\delta}:=A Y_{\delta} \quad A O_{\delta}:=\frac{\left(A P_{\delta}\right)^{2}}{A Y_{\delta}} \\
& A M_{\delta}:=\frac{\left(A N_{\delta}\right)^{2}}{A O_{\delta}} \quad A K_{\delta}:=\frac{\left(A L_{\delta}\right)^{2}}{A M_{\delta}} \\
& \mathrm{Al}_{\delta}:=\frac{\left(\mathrm{AJ}_{\delta}\right)^{2}}{\mathrm{AK}_{\delta}} \quad \mathrm{AG}_{\delta}:=\frac{\left.(\mathrm{AH})_{\delta}\right)^{2}}{\mathrm{Al}} \\
& A E_{\delta}:=\frac{\left(\mathrm{AF}_{\delta}\right)^{2}}{A G_{\delta}} \quad A C_{\delta}:=\frac{\left(\mathrm{AD}_{\delta}\right)^{2}}{\mathrm{AE}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AG}_{\delta}\) & \({ }^{\circ}\) & \({ }^{\circ}\) & \(\mathrm{AJ}_{\delta}\) & \(\mathrm{AK}_{\delta}\) & \(\mathrm{AL}_{\delta}\) & & \(\mathrm{AN}_{\delta}\) & \(\mathrm{AO}_{\delta}\) & \({ }^{\circ}\) & \(\mathrm{AQ}_{\delta}\) \\
\hline 6.209 & 6.484 & 6.771 & 7.071 & 7.384 & 7.711 & 8.052 & 8.409 & 8.781 & 9.17 & 9.576 \\
\hline 4.699 & 5.03 & 5.39 & 5.774 & 6. & 6.623 & 7.094 & 7.598 & 8.138 & 8.71 & 9.3 \\
\hline 3.856 & 4. & 4.585 & 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.71 & 8.409 & 9.17 \\
\hline 3.307 & 3.657 & 4. & 4.472 & 4.945 & 5.469 & 6.047 & 6.687 & 7.395 & 8.178 & 9.043 \\
\hline 2.918 & 3.26 & 3.65 & 4.08 & 4.56 & 5.10 & 5.713 & 6.38 & 7.14 & 7.9 & 8.9 \\
\hline
\end{tabular}





\begin{tabular}{l|l|l|l|} 
\\
\(\mathrm{AC}_{\delta}\) & {\(\left[\left(\mathrm{AB}_{\delta}\right)^{15} \cdot \mathrm{AR}\right]^{16}\)} & \(\mathrm{AB}_{\delta}\) & \(\left.\left(\mathrm{AB}_{\delta}\right)^{16} \cdot \mathrm{AR}^{0}\right]^{\frac{1}{16}}\) \\
\begin{tabular}{|c||c||c|}
\hline 5.221 & 5.221 \\
\hline 3.57 & 3.57 \\
\hline 2.726 & 2.726 \\
\hline 2.212 & 2.212 \\
\hline 1.864 & 1.864 \\
\hline
\end{tabular} & \begin{tabular}{|c|c|}
\hline 5 & 5 \\
\hline 3.333 & 3.333 \\
\hline 2.5 & 2.5 \\
\hline & \\
\hline & \\
\hline
\end{tabular} &
\end{tabular}
\(\left(A^{\delta} \cdot B^{\text {DIV }-\delta)^{\frac{1}{\text { DIV }}}}\right.\)
Or
\[
\left(A^{\text {DIV }-\delta} \cdot B^{\delta}\right)^{\frac{1}{\text { DIV }}}
\]

Resultant Equation
depending on direction of transcription.
And the Delian Quest
One Square

By John Clark


\section*{1 \\ 9 \\ }

\section*{Inscribing a Circle in a given Triangle.}

Place the length for the sides of the triangle at the end of the document.

\[
\begin{aligned}
& \mathrm{AB}:=\left(\begin{array}{l}
\text { Side_1 } \\
\text { Side_2 } \\
\text { Side_3 }
\end{array}\right) \text { AC }:=\left(\begin{array}{l}
\text { Side_2 } \\
\text { Side_3 } \\
\text { Side_1 }
\end{array}\right) \\
& \mathrm{BC}:=\left(\begin{array}{l}
\text { Side_3 } \\
\text { Side_1 } \\
\text { Side_2 }
\end{array}\right) \delta:=0 . .2
\end{aligned}
\]

Is_This_A_Triangle \(:=\left(\mathrm{AB}_{0}+\mathrm{AC}_{0} \geq \mathrm{BC}_{0}\right) \cdot\left(\mathrm{AB}_{0}+\mathrm{BC}_{0} \geq \mathrm{AC}_{0}\right) \cdot\left(\mathrm{AC}_{0}+\mathrm{BC}_{0} \geq \mathrm{AB}_{0}\right) \mathrm{AQ}_{\delta}:=\mathrm{AC}_{\delta}\)

\[
\begin{aligned}
& \mathrm{BR}_{\delta}:=\mathrm{BC}_{\delta} \mathrm{AN}_{\delta}:=\frac{\left(\mathrm{AQ}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \\
& \mathrm{BP}_{\delta}:=\frac{\left(\mathrm{BR}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \mathrm{AP}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{BP}_{\delta}
\end{aligned}
\]
\[
\mathrm{NP}_{\delta}:=\mathrm{AP}_{\delta}-\mathrm{AN}_{\delta} \quad \mathrm{NO}_{\delta}:=\frac{\mathrm{NP}_{\delta}}{2}
\]
\[
\mathrm{AO}:=\mathrm{AN}+\mathrm{NO} \mathrm{BO}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AO}_{\delta}
\]
\[
\mathrm{CO}_{\delta}:=\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}-\left(\mathrm{BO}_{\delta}\right)^{2}}
\]

\[
\mathrm{BS}_{\delta}:=\mathrm{BC}_{\delta} \quad \mathrm{SO}_{\delta}:=\mathrm{BS}_{\delta}-\mathrm{BO}_{\delta}
\]
\[
\mathrm{CS}_{\delta}:=\sqrt{\left(\mathrm{SO}_{\delta}\right)^{2}+\left(\mathrm{CO}_{\delta}\right)^{2}} \mathrm{SU}_{\delta}:=\frac{\mathrm{CS}_{\delta}}{2}
\]
\[
\mathrm{BU}_{\delta}:=\sqrt{\left(\mathrm{BS}_{\delta}\right)^{2}-\left(\mathrm{SU}_{\delta}\right)^{2}}
\]
\[
\mathrm{ST}_{\delta}:=\frac{\left(\mathrm{SU}_{\delta}\right)^{2}}{\mathrm{BS}_{\delta}} \mathrm{TU}_{\delta}:=\sqrt{\left(\mathrm{SU}_{\delta}\right)^{2}-\left(\mathrm{ST}_{\delta}\right)^{2}}
\]

\[
\mathrm{AW}_{\delta}:=\mathrm{AC}_{\delta} \mathrm{WO}_{\delta}:=\mathrm{AW}_{\delta}-\mathrm{AO}_{\delta}
\]
\[
\mathrm{CW}_{\delta}:=\sqrt{\left(\mathrm{WO}_{\delta}\right)^{2}+\left(\mathrm{CO}_{\delta}\right)^{2}}
\]
\[
\mathrm{WX}_{\delta}:=\frac{\mathrm{CW}_{\delta}}{2}
\]
\[
\mathrm{AX}_{\delta}:=\sqrt{\left(\mathrm{AW}_{\delta}\right)^{2}-\left(\mathrm{WX}_{\delta}\right)^{2}}
\]

\(\mathrm{WV}_{\delta}:=\frac{\left(\mathrm{WX}_{\delta}\right)^{2}}{\mathrm{AW}_{\delta}}\)
\[
\mathrm{VX}_{\delta}:=\sqrt{\left(\mathrm{WX}_{\delta}\right)^{2}-\left(\mathrm{WV}_{\delta}\right)^{2}}
\]
\[
\mathrm{WV}_{\delta}:=\sqrt{\left(\mathrm{WX}_{\delta}\right)^{2}-\left(\mathrm{VX}_{\delta}\right)^{2}}
\]
\[
\mathrm{AV}_{\delta}:=\mathrm{AW}_{\delta}-\mathrm{WV}_{\delta} \quad \mathrm{BV}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AV}_{\delta} \quad \mathrm{XY}_{\delta}:=\frac{\mathrm{BU}_{\delta} \cdot \mathrm{VX}_{\delta}}{\mathrm{TU}_{\delta}} \quad \mathrm{VY}_{\delta}:=\sqrt{\left(\mathrm{XY}_{\delta}\right)^{2}-\left(\mathrm{VX}_{\delta}\right)^{2}}
\]

\[
\begin{aligned}
& \mathrm{AY}_{\delta}:=\mathrm{AV}_{\delta}+\mathrm{VY}_{\delta} \\
& \mathrm{AD}_{\delta}:=\frac{\mathrm{AV}_{\delta} \cdot \mathrm{AB}_{\delta}}{\mathrm{AY}} \mathrm{AE}_{\delta}:=\frac{\mathrm{AX}_{\delta} \cdot \mathrm{AD}_{\delta}}{\mathrm{AV}_{\delta}} \\
& \mathrm{DE}_{\delta}:=\sqrt{\left(\mathrm{AE}_{\delta}\right)^{2}-\left(\mathrm{AD}_{\delta}\right)^{2}}
\end{aligned}
\]

Plug Side Values In Here \(\quad\) Side \(\_1 \equiv 20 \quad\) Side \(\_2=26 \quad\) Side_3 \(\equiv 21\)
\(A B^{T}=\left(\begin{array}{lll}20 & 26 & 21\end{array}\right) \quad\) Is_This_A_Triangle \(=1\)
Given 3 lengths, no matter what order they are entered, DE should remain a constant.

\[
\mathrm{S}_{1}:=\mathrm{AB} \quad \mathrm{~S}_{2}:=\mathrm{AC} \quad \mathrm{~S}_{3}:=\mathrm{BC}
\]

You will note that the formula derived from the process is more consistent with imaginaries.
\(\operatorname{Radius}_{\delta}:=\frac{\sqrt{-\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}-\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}} \cdot \sqrt{\mathrm{S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}-\mathrm{S}_{3_{\delta}}}}{2 \cdot \sqrt{\mathrm{~S}_{1_{\delta}}+\mathrm{S}_{2_{\delta}}+\mathrm{S}_{3_{\delta}}}}\)
\[
\text { Radius }=\left(\begin{array}{l}
6.147 \\
6.147 \\
6.147
\end{array}\right) \quad \mathrm{DE}=\left(\begin{array}{l}
6.147 \\
6.147 \\
6.147
\end{array}\right)
\]


\section*{The Cradle}

Is EL and EK always collinear?
\(1:=100 \quad \delta:=1 . .1 \quad \mathrm{EF}_{\delta}:=\delta^{5} \cdot 10^{-8}\)
\(\mathrm{FJ}:=10 \quad \mathrm{EJ}_{\delta}:=\mathrm{FJ}+\mathrm{EF}_{\delta}\)
\(\mathrm{EH}_{\delta}:=\sqrt{\mathrm{EF}_{\delta} \cdot \mathrm{EJ}_{\delta}} \quad \mathrm{FH}_{\delta}:=\mathrm{EH}_{\delta}-\mathrm{EF}_{\delta}\)
\(\mathrm{EG}_{\delta}:=\left[\left(\mathrm{EF}_{\delta}\right)^{2} \cdot \mathrm{EJ}_{\delta}\right]^{\frac{1}{3}} \quad \mathrm{FG}_{\delta}:=\mathrm{EG}_{\delta}-\mathrm{EF}_{\delta}\)
\(\mathrm{EI}_{\delta}:=\left[\left(\mathrm{EJ}_{\delta}\right)^{2} \cdot \mathrm{EF}_{\delta}\right]^{\frac{1}{3}} \quad \mathrm{FI}_{\delta}:=\mathrm{EI}_{\delta}-\mathrm{EF}_{\delta}\)


Basically it is demonstrated that the two triangles EKM and ELN are proportional, which is sufficient.
\[
\begin{aligned}
& \mathrm{IJ}_{\delta}:=\mathrm{FJ}-\mathrm{FI}_{\delta} \\
& \mathrm{HJ}_{\delta}:=\mathrm{FJ}-\mathrm{FH}_{\delta} \\
& \mathrm{FN}_{\delta}:=\frac{\mathrm{FH}_{\delta} \cdot \mathrm{FJ}}{\left(\mathrm{FH}_{\delta}+\mathrm{IJ}_{\delta}\right)} \mathrm{EN}_{\delta}:=\mathrm{FN}_{\delta}+\mathrm{EF}_{\delta}
\end{aligned}
\]
\[
\mathrm{FM}_{\delta}:=\frac{\mathrm{FG}_{\delta} \cdot \mathrm{FJ}}{\left(\mathrm{FG}_{\delta}+\mathrm{HJ}_{\delta}\right)} \mathrm{EM}_{\delta}:=\mathrm{FM}_{\delta}+\mathrm{EF}_{\delta}
\]

\[
\begin{aligned}
& \mathrm{JN}_{\delta}:=\mathrm{FJ}-\mathrm{FN}_{\delta} \quad \mathrm{LP}_{\delta}:=\mathrm{JN}_{\delta} \\
& \mathrm{BJ}:=\mathrm{FJ} \quad \mathrm{BP}_{\delta}:=\frac{\mathrm{BJ} \cdot \mathrm{LP}_{\delta}}{\mathrm{IJ}_{\delta}} \\
& \mathrm{JP}_{\delta}:=\mathrm{BP}_{\delta}-\mathrm{BJ} \quad \mathrm{LN}_{\delta}:=\mathrm{JP}_{\delta} \\
& \mathrm{KO}_{\delta}:=\mathrm{FM}_{\delta} \quad \mathrm{AF}:=\mathrm{FJ} \\
& \mathrm{AO}_{\delta}:=\frac{\mathrm{AF}^{2} \mathrm{KO}_{\delta}}{\mathrm{FG}_{\delta}} \mathrm{FO}_{\delta}:=\mathrm{AO}_{\delta}-\mathrm{AF} \\
& \mathrm{KM}_{\delta}:=\mathrm{FO}_{\delta} \quad \sum_{\delta}\left(\frac{\mathrm{LN}_{\delta}}{\mathrm{EN}_{\delta}}-\frac{\mathrm{KM}_{\delta}}{\mathrm{EM}_{\delta}}\right)=1.015 \cdot 100^{-10}
\end{aligned}
\]

They are two lines with identical slopes, terminating at the same point.


\[
\begin{aligned}
& \mathrm{HR}_{\delta}:=\sqrt{\mathrm{FH}_{\delta} \cdot \mathrm{HJ}_{\delta}} \quad \mathrm{HS}_{\delta}:=\frac{\mathrm{LN}_{\delta} \cdot \mathrm{EH}_{\delta}}{\mathrm{EN}_{\delta}} \\
& \mathrm{RATIO}_{\delta}:=\frac{\mathrm{HR}_{\delta}}{\mathrm{HS}_{\delta}} \quad \mathrm{GI}_{\delta}:=\mathrm{EI}_{\delta}-\mathrm{EG}_{\delta}
\end{aligned}
\]
\[
\mathrm{RATIO}_{\delta}:=\frac{\mathrm{GI}_{\delta}}{\mathrm{HS}_{\delta}}
\]


\section*{Tangents and Similarity Points}


O and P are points of origin for the ratio of the two circles that can also have a tangent ray to both circles. Develop formulas that would locate the particular points given using just the radius of the two circles and the difference between them.

O and P are called the similarity points ( sp ) of the two circles. \(O\) is the external similarity point and \(P\) is the internal similarity point.

I will work with point O first.
Given \(\mathrm{R}_{\mathrm{L}}=\) large radius
\(\mathrm{R}_{\mathrm{S}}=\) small radius
\(\mathrm{D}=\) difference between origins.
\(\mathrm{R}_{\mathrm{L}}:=4 \quad \mathrm{R}_{\mathrm{S}}:=1 \quad \mathrm{D}:=8\)
\(\mathrm{AC}:=\mathrm{R}_{\mathrm{L}} \quad \mathrm{BD}:=\mathrm{R}_{\mathrm{S}} \quad \mathrm{AB}:=\mathrm{D}\)
If the difference between the circles is less than \(P_{1}-R_{s}\), than one of course has an imaginary situation for the external similarity point, \(R_{L}+R_{S}\) for the internal. At \(R_{L}-R_{S}\) the smaller is in the larger and they touch at one point, \(R_{L}+R_{S}\) they are external to one another and touching.

\(\mathrm{DE}:=\mathrm{AB} \quad \mathrm{AE}:=\mathrm{BD} \quad \mathrm{CE}:=\mathrm{AC}-\mathrm{AE}\)
\(\mathrm{AO}:=\frac{\mathrm{DE} \cdot \mathrm{AC}}{\mathrm{CE}} \quad \mathrm{AO}=10.667\)
\(\mathrm{EOR}_{\mathrm{L}}\) "External similarity point Origin to center of Radius Large"
\(\operatorname{EOR}_{\mathrm{L}}:=\operatorname{if}\left(\mathrm{R}_{\mathrm{L}} \neq \mathrm{R}_{\mathrm{S}}\right.\), if \(\left.\left(\mathrm{R}_{\mathrm{S}}>\mathrm{R}_{\mathrm{L}}, 0, \frac{\mathrm{D} \cdot \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\right), \infty\right)\)
\(\operatorname{EOR}_{\mathrm{L}}=10.667\)


What is the length of line (OG) tangent to both circles?
\(\mathrm{AG}:=\mathrm{AC} \quad \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}}\)
\(\mathrm{GO}=9.888\)

And what is the formula?
\(\mathrm{EOT}_{\mathrm{LR}}\) " External similarity point Origin to Tangent
(Large Radius)"
EOT \(_{\text {LR }}=\mathrm{R}_{\mathrm{L}} \cdot \frac{\sqrt{\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(-\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\)
EOT \(_{\text {LR }}=9.888\)

What is the length of the line tangent to the least circle (HO)?

\(\mathrm{BH}:=\mathrm{BD} \quad \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \quad \mathrm{BO}=2.667\)
\(\mathrm{HO}:=\sqrt{\mathrm{BO}^{2}}-\mathrm{BH}^{2}\)
\(\mathrm{HO}=2.472\)
And what is the formula?
\(\mathrm{EOT}_{\mathrm{SR}}\) " External similarity point Origin to Tangent (Small Radius)"

EOT \(_{\text {SR }}:=\mathrm{R}_{\mathrm{S}} \cdot \frac{\sqrt{-\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right)}}{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}}\)
\(\mathrm{EOT}_{\mathrm{SR}}=2.472\)


Lastly what is the length of line from tangent to tangent of these circles?

GH := EOT \(L R-\) EOT \(_{\text {SR }}\)
\(\mathrm{GH}=7.416\)

And what is the formula?
ETT "Tangent to Tangent"

ETT \(:=\sqrt{-\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right)}\)
\(\mathrm{ETT}=7.416\)


I will now turn my attention to the point P , the internal similarity point.
\(\mathrm{AP}:=\frac{\mathrm{AB} \cdot \mathrm{AC}}{\mathrm{AC}+\mathrm{BD}} \quad \mathrm{AP}=6.4\)

\(\mathrm{IOR}_{\mathrm{L}}\) "Internal similarity point to center of Radius Large"
\(\operatorname{IOR}_{\mathrm{L}}:=\mathrm{D} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}}\) IOR \(_{\mathrm{L}}=6.4\)
\(\mathrm{BP}:=\mathrm{AB}-\mathrm{AP} \quad \mathrm{BP}=1.6\)
\(\mathrm{IOR}_{\mathrm{s}}\) "Internal similarity point to center of Radius Small"
\(\operatorname{IOR}_{S}:=D \cdot \frac{R_{S}}{R_{L}+R_{S}} \quad \operatorname{IOR}_{S}=1.6\)

\(\mathrm{AJ}:=\mathrm{AC} \quad \mathrm{BK}:=\mathrm{BD} \quad \mathrm{JP}:=\sqrt{\mathrm{AP}^{2}-\mathrm{AJ}^{2}}\)
\(\mathrm{JP}=4.996\)
\(\mathrm{IOT}_{\mathrm{LR}}\) "Internal similarity point Origin to Tangent (Large Radius)"

\(\mathrm{IOT}_{\mathrm{LR}}=4.996\)
\(\mathrm{KP}:=\sqrt{\mathrm{BP}^{2}-\mathrm{BK}^{2}} \quad \mathrm{KP}=1.249\)

\(\mathrm{IOT}_{\mathrm{SR}}\) "Internal similarity point Origin to Tangent (Small Radius)"
IOT \(_{\mathrm{SR}}:=\mathrm{R}_{\mathrm{S}} \frac{\sqrt{\frac{-\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}{}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}}\)
\(\mathrm{IOT}_{\mathrm{SR}}=1.249\)
\(\mathrm{JK}:=\mathrm{JP}+\mathrm{KP} \quad \mathrm{JK}=6.245\)
ITT "Internal similarity point Tangent to Tangent"
ITT \(:=\sqrt{-\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}-\mathrm{D}\right) \cdot\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}+\mathrm{D}\right)}\)
ITT \(=6.245\)

\section*{The Chordal or Power Line of two Circles 04_27_94.MCD}


The solution for finding the chordal as outlined in 100 Great Problems of Elementary Mathematics Their History and Solution by Heinrich Dörrie did not lend itself to this kind of process, so I took a couple of minuets (Bach) and developed my own method.
The figure I work with is a transformation of the one on the left.

Given two circles find their chordal or power line given just their radius and difference between their centers, and reduce the tautological chains to formulas.
\[
\begin{aligned}
& \mathrm{R}_{1}:=3 \quad \mathrm{R}_{2}:=1 \quad \mathrm{D}:=1 \\
& \mathrm{AH}:=\mathrm{R}_{1} \quad \mathrm{GJ}:=\mathrm{R}_{2} \quad \mathrm{AG}:=\mathrm{D} \\
& \mathrm{AB}:=\frac{\mathrm{AH}^{2}}{\mathrm{AG}} \mathrm{FG}:=\frac{\mathrm{GJ}^{2}}{\mathrm{AG}} \\
& \mathrm{BF}:=\mathrm{AG}-\mathrm{AB}-\mathrm{FG} \quad \mathrm{BD}:=\frac{\mathrm{BF}}{2} \\
& \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \quad \mathrm{DF}:=\mathrm{BD} \\
& \mathrm{DG}:=\mathrm{DF}+\mathrm{FG}
\end{aligned}
\]
\[
\begin{array}{lll}
\mathrm{CR}_{1}:=\frac{1}{2} \cdot \frac{\left(\mathrm{R}_{1}^{2}-\mathrm{R}_{2}^{2}+\mathrm{D}^{2}\right)}{\mathrm{D}} & \mathrm{CR}_{1}=4.5 & \mathrm{AD}=4.5 \\
\mathrm{CR}_{2}:=\frac{1}{2} \cdot \frac{\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{1}^{2}+\mathrm{D}^{2}\right)}{\mathrm{D}} \mathrm{CR}_{2}=-3.5 & \mathrm{DG}=-3.5
\end{array}
\]


LT "Length of radial Tangent" LP is the variable chosen for circle center on the power line.
\(\mathrm{LT}:=\frac{1}{2} \cdot\left|\frac{\sqrt{4 \cdot \mathrm{LP}^{2} \cdot \mathrm{D}^{2}+\mathrm{R}_{1}{ }^{4}-2 \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}^{2}-2 \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{2}^{2}+\mathrm{D}^{4}-2 \cdot \mathrm{D}^{2} \cdot \mathrm{R}_{2}^{2}+\mathrm{R}_{2}^{4}}}{\mathrm{D}}\right|\)
\(\mathrm{LT}=6.021 \quad \mathrm{JK}=6.021\)
The process does not seem to recognize any special cases.

\section*{Power Point}

Given three circles find their power point and if it is at all possible, cut all three perpendicularly. Demonstrate the formula for the Power Point and the Length of the resultant Tangent.

The distance between each set of circles is given as \(\mathrm{D}_{1}, \mathrm{D}_{2}\), and \(\mathrm{D}_{3}\). Naturally they must form a triangle.
\(\mathrm{D}_{1}:=4\)
\(\mathrm{D}_{2}:=5\)
\(D_{3}:=2\)
\(\Delta:=\left(\mathrm{D}_{1}+\mathrm{D}_{2} \geq \mathrm{D}_{3}\right) \cdot\left(\mathrm{D}_{2}+\mathrm{D}_{3} \geq \mathrm{D}_{1}\right) \cdot\left(\mathrm{D}_{1}+\mathrm{D}_{3} \geq \mathrm{D}_{2}\right)\)

\(\Delta=1 \quad \Delta\) "Is this a Triangle?
\(\mathrm{R}_{1}:=3 \quad \mathrm{R}_{2}:=2 \quad \mathrm{R}_{3}:=4\)
\[
\mathrm{AE}:=\mathrm{D}_{1} \quad \mathrm{AH}:=\mathrm{D}_{2} \quad \mathrm{EH}:=\mathrm{D}_{3}
\]
\(\mathrm{AF}:=\mathrm{R}_{1} \quad \mathrm{HK}:=\mathrm{R}_{2} \quad \mathrm{EG}:=\mathrm{R}_{3}\)
Af \(:=\) AF \(\mathrm{Hk}:=\mathrm{HK} \quad \mathrm{Eg}:=\mathrm{EG}\)
\(\mathrm{AB}:=\frac{\mathrm{AF}^{2}}{\mathrm{AE}} \mathrm{DE}:=\frac{\mathrm{EG}^{2}}{\mathrm{AE}}\)
\(\mathrm{Ab}:=\frac{\mathrm{Af}^{2}}{\mathrm{AH}} \mathrm{HJ}:=\frac{\mathrm{HK}^{2}}{\mathrm{AH}}\)
\(\mathrm{Hj}:=\frac{\mathrm{Hk}^{2}}{\mathrm{EH}} \quad \mathrm{Ed}:=\frac{\mathrm{Eg}^{2}}{\mathrm{EH}}\)

\(\mathrm{BD}:=\mathrm{AE}-\mathrm{AB}-\mathrm{DE} \quad \mathrm{BX}:=\frac{\mathrm{BD}}{2}\)
\(\mathrm{bJ}:=\mathrm{AH}-\mathrm{Ab}-\mathrm{HJ} \quad \mathrm{bY}:=\frac{\mathrm{bJ}}{2}\)
\(d j:=E H-E d-H j \quad d Z:=\frac{d j}{2}\)
\(\mathrm{AX}:=\mathrm{AB}+\mathrm{BX} \quad \mathrm{AX}=1.125\)
\(A Y:=A b+b Y\)
\(\mathrm{EZ}:=\mathrm{Ed}+\mathrm{dZ} \quad \mathrm{EZ}=4\)

\(\mathrm{Ah}:=\mathrm{AH} \quad \mathrm{Ei}:=\mathrm{EH}\)
\(\mathrm{Am}:=\frac{\mathrm{Ah}^{2}}{\mathrm{AE}}\) En \(:=\frac{\mathrm{Ei}^{2}}{\mathrm{AE}}\)
\(\mathrm{An}:=\mathrm{AE}-\mathrm{En} \mathrm{mn}:=\mathrm{Am}-\mathrm{An}\)
\(n \mathrm{x}:=\frac{\mathrm{mn}}{2} \quad \mathrm{Ax}:=\mathrm{An}+\mathrm{nx}\)
\(H x:=\sqrt{A H^{2}-A x^{2}}\)

\[
\mathrm{WX}:=\frac{\mathrm{Hx} \cdot \mathrm{AX}}{\mathrm{Ax}} \quad \mathrm{WX}=0.462
\]
\[
\mathrm{VY}:=\frac{\mathrm{Hx} \cdot \mathrm{AY}}{\mathrm{Ax}} \quad \mathrm{VY}=1.232
\]
\[
\mathrm{AV}:=\frac{\mathrm{AH} \cdot \mathrm{AY}}{\mathrm{Ax}} \mathrm{AV}=3.243
\]
\[
\mathrm{VX}:=\mathrm{AV}-\mathrm{AX}
\]
\[
\mathrm{OX}:=\frac{\mathrm{AY} \cdot \mathrm{VX}}{\mathrm{VY}} \mathrm{OX}=5.157
\]

PP "Power Point"
\(\mathrm{PP}:=\frac{1}{2} \cdot \frac{\binom{\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{D}_{1}{ }^{4}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{O}}{+\mathrm{R}_{1}{ }^{2}-\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}}}{\left(\mathrm{D}_{1} \cdot \sqrt{\left|-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{4}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{3}{ }^{4}-2 \cdot \mathrm{D}_{2}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{2}^{4}\right|}\right)}\)
\(\mathrm{PP}=5.157\)

\[
\mathrm{EX}:=\mathrm{AE}-\mathrm{AX}
\]
\[
\begin{array}{ll}
\mathrm{AO}:=\sqrt{\mathrm{AX}^{2}+\mathrm{OX}^{2}} & \mathrm{EO}:=\sqrt{\mathrm{EX}^{2}+\mathrm{OX}^{2}} \\
\mathrm{AP}:=\mathrm{AF} & \mathrm{EP}:=\mathrm{EG} \\
\mathrm{OP}_{\mathrm{A}}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AP}^{2}} & \mathrm{OP}_{\mathrm{E}}:=\sqrt{\mathrm{EO}^{2}-\mathrm{EP}^{2}} \\
\mathrm{OP}_{\mathrm{A}}=4.342 & \mathrm{OP}_{\mathrm{E}}=4.342
\end{array}
\]

\section*{LT "Length of Tangent"}
\[
\begin{aligned}
& -\mathrm{R}_{1}^{4} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{1}{ }^{2}-\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{4}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}^{2} \ldots \\
& +\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}-\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{1}^{2} \cdot \mathrm{D}_{2}^{2}-\mathrm{R}_{2}^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{3}^{2} \cdot \mathrm{D}_{2}^{2} \ldots \\
& +\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{4}-\mathrm{R}_{3}{ }^{4} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2} \cdot \mathrm{R}_{2}^{2} \ldots \\
& +\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}-\mathrm{D}_{1}{ }^{2} \cdot \mathrm{R}_{2}{ }^{4} \ldots \\
& +-\mathrm{D}_{1}{ }^{4} \cdot \mathrm{R}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{R}_{1}{ }^{2} \cdot \mathrm{R}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2} \\
& \sqrt{-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{1}{ }^{4}-2 \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{D}_{3}{ }^{2}+\mathrm{D}_{3}{ }^{4}-2 \cdot \mathrm{D}_{3}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}+\mathrm{D}_{2}^{4}}
\end{aligned}
\]
\(\mathrm{LT}=4.342\)


\section*{Division, \(\mathbf{A}^{2}\)}

04_30_94.MCD
One does not work with geometry often, so it may be that one does not keep basics in mind when trying to work a figure. This little paper is about a basic move. I bring this to light, as I have seen a ratio often given as division. In geometry, so far as I know, one cannot divide a line by a line, but can form a series of the nature \(A N: B N\) as a linear figure. Given A and B one can raise them to any whole power simultaneously with a couple of simple moves based on the figure immediately below. See work done in 1995.

Divide \(\mathrm{AC}^{2}\) by AB.
Process Summary
I have noticed that my solutions depend upon this basic move.


In some works I have represent it simply as the figure on the left. One may realize that in my Pythagorean Completion I used the circular form and it is often expressed as a pole and polar arrangement. A terminology that does not seem fit for the processes that they represent, physical and not mathematical.


The jargon is that B is called a Pole and D is on a polar, a segment of which is DE. But it can easily be seen that the figure is a transformation. It is another way of dividing \(A(2\) by \(A B\). The figure now raises a question for me. I had thought that I answered it previously, but I cannot find it in my files. Is BE always collinear with BG? This paper is helping me mediate on poles and polars, which names do not help me understand the true ratio involved.
Mathematicians seem to like a proliferation of names. And, god forbid, B and D are called conjugate in respect to each other. I have a hard enough time remembering my own name, that is why I keep my id. (in the Freudian sense) close at hand.
\[
\mathrm{AC}:=5 \quad \delta:=1 . .1000 \quad \mathrm{BC}_{\delta}:=\delta
\]
\[
\mathrm{CF}:=2 \cdot \mathrm{AC} \quad \mathrm{AG}:=\mathrm{AC} \mathrm{BF}_{\delta}:=\mathrm{CF}+\mathrm{BC}_{\delta}
\]
\[
\mathrm{BH}_{\delta}:=\sqrt{\mathrm{BF}_{\delta} \cdot \mathrm{BC}_{\delta}} \quad \mathrm{GH}:=\mathrm{AC}
\]
\[
\mathrm{BG}_{\delta}:=\sqrt{\left(\mathrm{BH}_{\delta}\right)^{2}+\mathrm{GH}^{2}} \mathrm{AE}:=\mathrm{AC}
\]
\[
\mathrm{AB}_{\delta}:=\mathrm{AC}+\mathrm{BC}_{\delta} \quad \mathrm{AD}_{\delta}:=\frac{\mathrm{AE}^{2}}{\mathrm{AB}_{\delta}}
\]
\[
\mathrm{BE}_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}-\mathrm{AE}^{2}} \mathrm{BD}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AD}_{\delta}
\]
\[
\mathrm{DE}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}-\left(\mathrm{BD}_{\delta}\right)^{2}}
\]


\section*{Two Circles and a Parallel}

What I would like to do is to is drop in a circle that is tangent to the given two circles that are already tangent and tangent to the line from the similarity point and also have this circle tangent to the parallel of the similarity line that lies tangent to the first circle. The formula derived for my process tells me that I will do it the hard way. It willpredict an easier method.


Process Summary

Given the radius of the two circles, what is the radius of the third? Attempt to develop a formula for the resultant radius. And also, of the power line between parallels, what is the ratio of \(\mathrm{AC}: \mathrm{BC}\) in terms of the given radius' ?


Find the Similarity Point.
\[
\begin{aligned}
& \mathrm{AB}:=\mathrm{R}_{1} \mathrm{CF}:=\mathrm{R}_{2} \mathrm{BC}:=\mathrm{CF} \\
& \mathrm{CB}:=\mathrm{CF} \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \\
& \mathrm{PQ}:=\mathrm{AC} \mathrm{AR}:=\mathrm{AB} \\
& \mathrm{CQ}:=\mathrm{CF} \mathrm{AP}:=\mathrm{CQ} \\
& \mathrm{PR}:=\mathrm{AR}-\mathrm{AP} \\
& \mathrm{AO}:=\frac{\mathrm{PQ} \cdot \mathrm{AR}}{\mathrm{PR}}
\end{aligned}
\]

Find the segment of the power line (HN) between parallels.
\[
\begin{aligned}
& \mathrm{AG}:=\mathrm{AB} \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}} \\
& \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \\
& \mathrm{BH}:=\frac{\mathrm{AG} \cdot \mathrm{BO}}{\mathrm{GO}} \mathrm{BN}:=\frac{\mathrm{BH} \cdot \mathrm{AB}}{\mathrm{BC}} \\
& \mathrm{HO}:=\frac{\mathrm{AO} \cdot \mathrm{BH}}{\mathrm{AG}} \mathrm{CO}:=\mathrm{BO}-\mathrm{BC} \\
& \mathrm{JO}:=\frac{\mathrm{GO} \cdot \mathrm{CO}}{\mathrm{AO}} \mathrm{HN}:=\mathrm{BH}+\mathrm{BN}
\end{aligned}
\]

Find JN
\(\mathrm{HJ}:=\mathrm{HO}-\mathrm{JO} \mathrm{KH}:=\frac{\mathrm{AG} \cdot \mathrm{HJ}}{\mathrm{AO}}\)
\(\mathrm{KN}:=\mathrm{HN}-\mathrm{KH}\)

\[
\begin{aligned}
& \mathrm{KJ}:=\sqrt{\mathrm{HJ}^{2}-\mathrm{KH}^{2}} \\
& \mathrm{JN}:=\sqrt{\mathrm{KN}^{2}+\text { Find }} \mathrm{MS} \\
& \mathrm{BD}:=\frac{\mathrm{KJ} \cdot \mathrm{BN}}{\mathrm{KN}} \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \\
& \mathrm{CE}:=\frac{\mathrm{KN} \cdot \mathrm{CD}}{\mathrm{JN}} \mathrm{CJ}:=\mathrm{BC} \\
& \mathrm{EJ}:=\sqrt{\mathrm{CJ}^{2}-\mathbb{C E}^{2}}=2 \cdot \mathrm{EJ} \\
& \mathrm{NS}:=\mathrm{JN}-\mathrm{JS} \quad \mathrm{CS}:=\mathrm{BC} \\
& \mathrm{MS}:=\frac{\mathrm{CS} \cdot \mathrm{NS}}{\mathrm{JS}}
\end{aligned}
\]

\section*{Plug Values in Here}
\[
\mathrm{R}_{1} \equiv 8 \quad \mathrm{R}_{2} \equiv 6
\]

There was too much work here for the symbolic processor to reduce all the equations to one, easily. It took me three days to nurse the processor through it, and this is a short work. The formula does not have the "sour" spot. (Place both \(R_{1}\) and \(R_{2}\) to the same value to see it.) When \(R_{2}\) is \(1 / 4\) of \(R_{1}\), there are six tangents.
\[
\mathrm{R}_{3}:=\frac{\mathrm{R}_{1}^{2}}{4 \cdot \mathrm{R}_{2}} \quad \mathrm{R}_{3}=2.667 \quad \mathrm{MS}=2.667
\]

The formula tells me at least two things, 1) There is a second method to solve the problem, 2) the process is a rather baroque method of dividing a square.
\[
\frac{\mathrm{HN}}{\mathrm{BN}}=1.75 \quad \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}}=1.75 \quad \frac{\mathrm{HN}}{\mathrm{BH}}=2.333 \quad \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}=2.333
\]

The results for the ratios of the power line segment are very nice also.

What is the construction suggested by the found formula of
\[
\frac{\mathrm{R}_{1}^{2}}{4 \cdot \mathrm{R}_{2}} ?
\]
\(\mathrm{AB}:=\mathrm{R}_{1} \quad \mathrm{BC}:=\mathrm{R}_{2}\)
\(\mathrm{AE}:=4 \cdot \mathrm{BC}\)
\(\mathrm{AD}:=\frac{\mathrm{AB}^{2}}{\mathrm{AE}}\)
\(\mathrm{AF}:=\mathrm{AB}+\mathrm{AD}\)
\(C G:=B C+A D\)
\(R_{3}=2.667 \quad \mathrm{AD}=2.667\)

For those who may become confused as to the dashed lines, the segment AD is added to the radius of the both circles their intersection is the center of the circle sought.

\section*{Two Circles, given a tangent on one.}


Given two circles and a point that is on the circumference of one, find a circle tangent to the circle at that point and also tangent to the other circle. The convention for this point will be "from the power line".

Process Summary


Find the power line.

\(\mathrm{AB}:=\mathrm{R}_{1} \quad \mathrm{CD}:=\mathrm{R}_{2} \quad \mathrm{AD}:=\mathrm{D}\)
\(\mathrm{AG}:=\mathrm{AB} \quad \mathrm{DH}:=\mathrm{CD} \quad \mathrm{AE}:=\frac{\mathrm{AG}^{2}}{\mathrm{AD}}\)
\(\mathrm{DF}:=\frac{\mathrm{DH}^{2}}{\mathrm{AD}} \mathrm{EF}:=\mathrm{AD}-\mathrm{AE}-\mathrm{DF}\)
\(\mathrm{EP}:=\frac{\mathrm{EF}}{2} \quad \mathrm{AP}:=\mathrm{AE}+\mathrm{EP} \quad \mathrm{DP}:=\mathrm{DF}+\mathrm{EP}\)
\(\mathrm{BP}:=\mathrm{AP}-\mathrm{AB}\)

\[
\begin{aligned}
& \mathrm{Hj}:=\mathrm{AD} \quad \mathrm{Aj}:=\mathrm{DH} \\
& \mathrm{Gj}:=\mathrm{AG}-\mathrm{DH} \quad \mathrm{AJ}:=\frac{\mathrm{Hj} \cdot \mathrm{AG}}{\mathrm{Gj}}
\end{aligned}
\]
\[
\mathrm{DJ}:=\mathrm{AJ}-\mathrm{AD} \mathrm{HJ}:=\sqrt{\mathrm{DJ}^{2}-\mathrm{DH}^{2}}
\]

\[
\mathrm{GJ}:=\sqrt{\mathrm{AJ}^{2}-\mathrm{AG}^{2}} \mathrm{Aa}:=\frac{\mathrm{AG}^{2}}{\mathrm{AJ}}
\]
\[
\mathrm{Ga}:=\sqrt{\mathrm{AG}^{2}-\mathrm{Aa}^{2}} \mathrm{Db}:=\frac{\mathrm{DH}^{2}}{\mathrm{DJ}}
\]
\[
\mathrm{Hb}:=\sqrt{\mathrm{DH}^{2}-\mathrm{Db}^{2}}
\]
\[
\mathrm{Ba}:=\mathrm{AB}-\mathrm{Aa}
\]
\[
\mathrm{Pb}:=\mathrm{DP}+\mathrm{Db}
\]

\[
\begin{aligned}
& \mathrm{P}:=|\mathrm{if}(\mathrm{P} \leq 2 \cdot \mathrm{AB}, \mathrm{P}, 0)| \\
& \mathrm{Bd}:=\mathrm{P} \\
& \mathrm{AK}:=\mathrm{AB} \quad \mathrm{ad}:=\mathrm{Ba}-\mathrm{Bd} \\
& \mathrm{Ad}:=\mathrm{AB}-\mathrm{Bd} \quad \mathrm{Kd}:=\sqrt{\mathrm{AK}^{2}-\mathrm{Ad}^{2}} \\
& \mathrm{de}:=\frac{\mathrm{ad} \cdot \mathrm{Kd}}{\mathrm{Kd}+\mathrm{Ga}} \mathrm{Pe}:=\mathrm{BP}+\mathrm{Bd}+\mathrm{de} \\
& \mathrm{NP}:=\frac{\mathrm{Kd} \cdot \mathrm{Pe}}{\mathrm{de}} \quad \mathrm{HS}:=\mathrm{Pb} \quad \mathrm{PS}:=\mathrm{Hb}
\end{aligned}
\]
\[
\mathrm{NS}:=\mathrm{NP}+\mathrm{PS} \quad \mathrm{Pg}:=\frac{\mathrm{HS} \cdot \mathrm{NP}}{\mathrm{NS}}
\]
\[
\begin{aligned}
& \mathrm{Dg}:=\mathrm{DP}-\mathrm{Pg} \text { bg }:=\mathrm{Dg}+\mathrm{Db} \\
& \mathrm{Hg}:=\sqrt{\mathrm{bg}^{2}+\mathrm{Hb}^{2}}
\end{aligned}
\]

To save clutter, see 07_18_93.MCD Mod C.

\[
\begin{aligned}
& \mathrm{gk}:=\frac{1}{2} \cdot \frac{\mathrm{Dg}^{2}}{\mathrm{Hg}}+\frac{1}{2} \cdot \mathrm{Hg}-\frac{1}{2} \cdot \frac{\mathrm{DH}^{2}}{\mathrm{Hg}} \\
& \mathrm{Dk}:=\sqrt{\mathrm{Dg}^{2}-\mathrm{gk}^{2}} \mathrm{Hk}:=\sqrt{\mathrm{DH}^{2}-\mathrm{Dk}^{2}} \\
& \mathrm{Rg}:=\mathrm{Hk}-\mathrm{gk} \\
& \mathrm{Df}:=\frac{1}{2} \cdot \frac{\mathrm{CD}^{2}}{\mathrm{Dg}}+\frac{1}{2} \cdot \mathrm{Dg}-\frac{1}{2} \cdot \frac{\mathrm{Rg}^{2}}{\mathrm{Dg}} \\
& \mathrm{DR}:=\mathrm{CD} \quad \mathrm{Rf}:=\sqrt{\mathrm{DR}^{2}-\mathrm{Df}^{2}}
\end{aligned}
\]

\[
\mathrm{dm}:=\frac{\mathrm{Df} \cdot \mathrm{Kd}}{\mathrm{Rf}} \quad \mathrm{Am}:=\mathrm{Ad}+\mathrm{dm}
\]
\[
\mathrm{MT}:=\frac{\mathrm{Kd} \cdot \mathrm{AD}}{\mathrm{Am}} \quad \mathrm{AM}:=\frac{\mathrm{AK} \cdot \mathrm{MT}}{\mathrm{Kd}}
\]
\[
\mathrm{KM}:=\mathrm{AM}-\mathrm{AK}
\]
\[
\mathrm{R}_{3}:=|\mathrm{KM}| \quad \mathrm{P}=19
\]

Plug Values in Here. Results is in \(\mathrm{R}_{3}\).
\[
\mathrm{R}_{1} \equiv 10 \mathrm{R}_{2} \equiv 3 \quad \mathrm{D} \equiv 16 \quad \mathrm{P} \equiv 19 \quad \mathrm{R}_{3}=14.836
\]


Let us say that instead of choosing a point of tangency upon one of the circles, I wish to place a given circle tangent to both. Derive the name of the length of the power line indicated and find th points of tangency.

Work in progress.


Given that \(\mathrm{CP}=\mathrm{CO}\) what is the relationship between AE and CF?

In order to derive a resonable answer, I have constrained the figure to a maximum of \(180^{\circ}\). You will recall that the figure is capable of \(270^{\circ}\).
\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\frac{\frac{1}{2} \cdot \sqrt{2} \cdot \mathrm{CP}}{\delta} \quad \mathrm{FP}_{\delta}:=\sqrt{\mathrm{CP}^{2}-\left(\mathrm{CF}_{\delta}\right)^{2}} \\
& \mathrm{CH}_{\delta}:=\frac{\left(\mathrm{CF}_{\delta}\right)^{2}}{\mathrm{CP}} \quad \mathrm{FH}_{\delta}:=\sqrt{\left(\mathrm{CF}_{\delta}\right)^{2}-\left(\mathrm{CH}_{\delta}\right)^{2}} \\
& \mathrm{OP}_{\delta}:=2 \cdot \mathrm{FP}_{\delta} \mathrm{GO}_{\delta}:=\frac{\mathrm{FH}_{\delta} \cdot \mathrm{OP}_{\delta}}{\mathrm{FP}_{\delta}} \mathrm{CO}:=\mathrm{CP} \\
& \mathrm{CG}_{\delta}:=\sqrt{\mathrm{CO}^{2}-\left(\mathrm{GO}_{\delta}\right)^{2}} \mathrm{AC}_{\delta}:=2 \cdot \mathrm{CG}_{\delta} \\
& \mathrm{AP}_{\delta}:=\mathrm{AC}_{\delta}+\mathrm{CP} \quad \mathrm{AE}_{\delta}:=\frac{\mathrm{CF}_{\delta} \cdot \mathrm{AP}_{\delta}}{\mathrm{CP}}
\end{aligned}
\]

CF is adjusted through D and cannot be less than 1 for the ratio to hold. This constrains the answer to between \(0^{\circ}\) and \(180^{\circ}\).
\[
\begin{aligned}
& \mathrm{CP} \equiv 10 \quad \delta \equiv 1 . .100 \quad 3 \cdot \mathrm{CF}-\frac{4}{\mathrm{CP}^{2}} \cdot \mathrm{CF}^{3}-\mathrm{AE}=0
\end{aligned}
\]

The resultant equation seems to support my earlier statement that the same tool used on the cube root figure could also be used on the trisector. To eliminate the radius, simply set it equal to 1 .


What is the relationship of DE to BC?D := 4
\[
\begin{aligned}
& \mathrm{AB}:=99 \quad \mathrm{BC}:=\frac{\mathrm{AB}}{2} \cdot \mathrm{D} \quad \mathrm{BG}:=\mathrm{AB} \\
& \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{AF}:=\frac{\mathrm{BG} \cdot \mathrm{AC}}{\mathrm{BC}} \quad \mathrm{FJ}:=\mathrm{AB} \\
& \mathrm{AJ}:=\mathrm{AF}-\mathrm{FJ} \quad \mathrm{HJ}:=\frac{\mathrm{AJ}}{2} \quad \mathrm{BJ}:=\mathrm{AB} \\
& \mathrm{BH}:=\sqrt{\mathrm{BJ}^{2}-\mathrm{HJ}^{2}} \mathrm{FH}:=\mathrm{HJ}+\mathrm{FJ} \\
& \mathrm{BF}:=\sqrt{\mathrm{BH}^{2}+\mathrm{FH}^{2}} \quad \mathrm{BD}:=\mathrm{AB} \quad \mathrm{DF}:=\mathrm{BF}+\mathrm{BD} \\
& \mathrm{EF}:=\frac{\mathrm{FH} \cdot \mathrm{AF}}{\mathrm{BF}} \quad \mathrm{DE}:=\mathrm{DF}-\mathrm{EF} \quad \mathrm{DE}=138.133
\end{aligned}
\]
\[
\sqrt{\mathrm{AB}^{2}+\mathrm{AB}^{2} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}}+\mathrm{AB}-\left[\frac{1}{2} \cdot \mathrm{AB} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}+\frac{1}{2} \cdot \mathrm{AB}\right] \cdot \mathrm{AB} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\left[\mathrm{BC} \cdot \sqrt{\left.\mathrm{AB}^{2}+\mathrm{AB}^{2} \cdot \frac{(\mathrm{AB}+\mathrm{BC})}{\mathrm{BC}}\right]}\right.}=138.133
\]
\[
\frac{-1}{2} \cdot \mathrm{AB} \cdot \frac{\left[-\sqrt{2 \cdot \mathrm{BC}+\mathrm{AB}} \cdot \mathrm{BC}-2 \cdot \mathrm{BC}^{\left(\frac{3}{2}\right)}+\mathrm{AB} \cdot \sqrt{2 \cdot \mathrm{BC}+\mathrm{AB}}\right]}{\mathrm{BC}^{\left(\frac{3}{2}\right)}}=138.133
\]


The smaller circle is tangent to the diameter of the larger and also tangent to circumference of the larger. Given the point of tangency on the diameter, what is the radius that will make it tangent to the circumference?

Given a point on the diameter, what is the radius of the inner tangent circle?
\[
\mathrm{AB}:=100 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \mathrm{CB}:=\mathrm{AC}
\]
\[
\Delta:=100 \quad \delta:=1 . . \Delta \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{CB}}{\Delta} \cdot \delta
\]
\[
\mathrm{CH}:=\mathrm{AC} \mathrm{DH}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\mathrm{CH}^{2}}
\]
\[
\mathrm{Ha}_{\delta}:=\frac{\mathrm{CH}^{2}}{\mathrm{DH}_{\delta}} \quad \mathrm{EH}_{\delta}:=2 \cdot \mathrm{Ha}_{\delta} \quad \mathrm{HJ}:=\mathrm{AC}
\]
\[
\mathrm{Eb}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{EH}_{\delta}}{\mathrm{DH}_{\delta}} \quad \mathrm{Hb}_{\delta}:=\sqrt{\left(\mathrm{EH}_{\delta}\right)^{2}-\left(\mathrm{Eb}_{\delta}\right)^{2}}
\]
\[
\mathrm{Cb}_{\delta}:=\mathrm{Hb}_{\delta}-\mathrm{CH} \quad \mathrm{CJ}:=\mathrm{CH}+\mathrm{HJ}
\]
\[
\mathrm{Jb}_{\delta}:=\mathrm{CJ}+\mathrm{Cb}_{\delta} \quad \mathrm{CF}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CJ}}{\mathrm{Jb}_{\delta}}
\]
\[
\mathrm{DF}_{\delta}:=\mathrm{CF}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{DG}_{\delta}:=\frac{\mathrm{CJ} \cdot \mathrm{DF}_{\delta}}{\mathrm{CF}_{\delta}}
\]


Does CG \(+\mathrm{GK}=\mathrm{AC}\) ?
\[
\begin{aligned}
& \mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{DG}_{\delta}\right)^{2}} \mathrm{GK}_{\delta}:=\mathrm{DG}_{\delta} \\
& \mathrm{CK}_{\delta}:=\mathrm{CG}_{\delta}+\mathrm{GK}_{\delta} \sum_{\delta}\left(\mathrm{AC}-\mathrm{CK}_{\delta}\right)=3.908 \cdot 10^{-13}
\end{aligned}
\]



Does \(\mathrm{Cb}=\mathrm{KM}\) ?
\[
\mathrm{KM}_{\delta}:=\frac{\mathrm{DG}_{\delta} \cdot \mathrm{CK}_{\delta}}{\mathrm{CG}_{\delta}} \sum_{\delta}\left(\mathrm{KM}_{\delta}-\mathrm{Cb}_{\delta}\right)=-3.524 \cdot 10^{-13}
\]


What is the formula for DG when given CD?

\[
\begin{aligned}
& \sum_{\delta}\left[\frac{\mathrm{AB}^{2}-4 \cdot\left(\mathrm{CD}_{\delta}\right)^{2}}{4 \cdot \mathrm{AB}}-\mathrm{DG}_{\delta}\right]=2.072 \cdot 10^{-13}
\end{aligned}
\]


Given the point on the radius, find DG.
\(\mathrm{AB}:=4 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \quad \mathrm{CB}:=\mathrm{AC} \quad \mathrm{CM}_{\delta}:=\frac{\mathrm{CB}}{\Delta} \cdot \delta\)
\(\mathrm{AM}_{\delta}:=\mathrm{AC}+\mathrm{CM}_{\delta} \quad \mathrm{BM}_{\delta}:=\mathrm{CB}-\mathrm{CM}_{\delta}\)
\(\mathrm{KM}_{\delta}:=\sqrt{\mathrm{AM}_{\delta} \cdot \mathrm{BM}_{\delta}} \quad \mathrm{Cb}_{\delta}:=\mathrm{KM}_{\delta}\)
\(\mathrm{CH}:=\mathrm{AC} \mathrm{HJ}:=\mathrm{AC} \quad \mathrm{CJ}:=\mathrm{CH}+\mathrm{HJ}\)
\(\mathrm{Jb}_{\boldsymbol{\delta}}:=\mathrm{CJ}+\mathrm{Cb}_{\boldsymbol{\delta}} \quad \mathrm{Hb}_{\boldsymbol{\delta}}:=\mathrm{CH}+\mathrm{Cb}_{\delta}\)

\[
\begin{aligned}
& \mathrm{Eb}_{\delta}:=\mathrm{CM}_{\delta} \quad \mathrm{CD}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CH}}{\mathrm{Hb}_{\delta}} \quad \mathrm{CF}_{\delta}:=\frac{\mathrm{Eb}_{\delta} \cdot \mathrm{CJ}}{\mathrm{Jb}_{\delta}} \\
& \mathrm{DF}_{\delta}:=\mathrm{CF}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{DG}_{\delta}:=\frac{\mathrm{CJ} \cdot \mathrm{DF}_{\delta}}{\mathrm{CF}_{\delta}}
\end{aligned}
\]

Does CK \(=\mathrm{CB}\) ? Make sure there is no typo.
\[
\begin{aligned}
& \mathrm{CG}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{DG}_{\delta}\right)^{2}} \quad \mathrm{GK}_{\delta}:=\mathrm{DG}_{\delta} \\
& \mathrm{CK}_{\delta}:=\mathrm{CG}_{\delta}+\mathrm{GK}_{\delta} \sum_{\delta}\left(\mathrm{CB}-\mathrm{CK}_{\delta}\right)=-3.331 \cdot 10^{-15}
\end{aligned}
\]

What is the formula for DG, given CM, the perpendicular to the point on the circumference?
\(\sum_{\delta}\left[\frac{\mathrm{AB} \cdot \sqrt{\mathrm{AB}+2 \cdot \mathrm{CM}_{\delta}} \cdot \sqrt{\mathrm{AB}-2 \cdot \mathrm{CM}_{\delta}}}{2 \cdot\left(\mathrm{AB}+\sqrt{\mathrm{AB}+2 \cdot \mathrm{CM}_{\delta}} \cdot \sqrt{\mathrm{AB}-2 \cdot \mathrm{CM}_{\delta}}\right)}-\mathrm{DG}_{\delta}\right]=-1.749 \cdot 10^{-15}\)



10_27_94.MCD
Trivial method for doing Square Roots.

If I draw a circle BE , then a line \(\mathrm{AG}, \mathrm{BD}\) is the square root of \(\mathrm{BC} \times \mathrm{BF}\).
\[
\begin{aligned}
& \mathrm{CF}:=1000 \delta:=1 . .1000 \quad \mathrm{BC}_{\delta}:=\delta \\
& \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{BE}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CE} \\
& \mathrm{EG}:=\mathrm{CE} \quad \mathrm{BG}_{\delta}:=\sqrt{\left(\mathrm{BE}_{\delta}\right)^{2}-\mathrm{EG}^{2}} \\
& \mathrm{EH}_{\delta}:=\frac{\mathrm{EG}^{2}}{\mathrm{BE}_{\delta}} \quad \mathrm{GH}_{\delta}:=\sqrt{\mathrm{EG}^{2}-\left(\mathrm{EH}_{\delta}\right)^{2}} \\
& \mathrm{GI}_{\delta}:=\mathrm{EH}_{\delta} \quad \mathrm{EI}_{\delta}:=\mathrm{GH}_{\delta} \mathrm{AE}:=\mathrm{CE} \\
& \mathrm{AI}_{\delta}:=\mathrm{AE}+\mathrm{EI}_{\delta} \quad \mathrm{DE}_{\delta}:=\frac{\mathrm{GI}_{\delta} \cdot \mathrm{AE}}{\mathrm{AI}_{\delta}} \\
& \mathrm{BD}_{\delta}:=\mathrm{BE}_{\delta}-\mathrm{DE}_{\delta} \quad \mathrm{BF}_{\delta}:=\mathrm{BC}_{\delta}+\mathrm{CF}
\end{aligned}
\]



10_28_94.MCD
Trivial method for doing Square Root.
If I drop in a circle CHE, another ABE , and a right triangle, CHE, then AG provides CP which is the square root of \(\mathrm{CD} \times \mathrm{CF}\).
\[
\begin{aligned}
& \mathrm{DF}:=10 \quad \delta:=1 . .100 \quad \mathrm{CD}_{\delta}:=\delta \\
& \mathrm{DE}:=\frac{\mathrm{DF}}{2} \quad \mathrm{AC}:=\mathrm{DE} \quad \mathrm{CE}_{\delta}:=\mathrm{DE}+\mathrm{CD}_{\delta} \\
& \mathrm{EH}:=\mathrm{DE} \quad \mathrm{AE}_{\delta}:=\sqrt{\mathrm{AC}^{2}+\left(\mathrm{CE}_{\delta}\right)^{2}} \\
& \mathrm{CH}_{\delta}:=\sqrt{\left(\mathrm{CE}_{\delta}\right)^{2}-\mathrm{EH}^{2}} \mathrm{EI}_{\delta}:=\frac{\mathrm{EH}^{2}}{\mathrm{CE}_{\delta}} \\
& \mathrm{HI}_{\delta}:=\sqrt{\mathrm{EH}^{2}-\left(\mathrm{EI}_{\delta}\right)^{2}} \mathrm{CJ}_{\delta}:=\mathrm{HI}_{\delta} \\
& \mathrm{CI}_{\delta}:=\mathrm{CE}_{\delta}-\mathrm{EI}_{\delta} \quad \mathrm{HJ}_{\delta}:=\mathrm{CI}_{\delta} \\
& \mathrm{AJ}_{\delta}:=\mathrm{AC}+\mathrm{CJ}_{\delta} \quad \mathrm{AH}_{\delta}:=\sqrt{\left(\mathrm{AJ}_{\delta}\right)^{2}+\left(\mathrm{HJ}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{HG}_{\delta}:=\frac{1}{2} \cdot \frac{\left(\mathrm{AH}_{\delta}\right)^{2}}{\mathrm{EH}}+\frac{1}{2} \cdot \mathrm{EH} \\
& \mathrm{EG}_{\delta}:=\mathrm{EH}-\mathrm{HG}_{\delta} \\
& \mathrm{AG}_{\delta}:=\sqrt{\left(\mathrm{AE}_{\delta}\right)^{2}-\left(\mathrm{EG}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\mathrm{GK}_{\delta}:=\frac{\mathrm{HI}_{\delta} \cdot \mathrm{EG}_{\delta}}{\mathrm{EH}} \quad \mathrm{GP}_{\delta}:=\frac{\mathrm{AG}_{\delta} \cdot \mathrm{GK}_{\delta}}{\mathrm{AC}+\mathrm{GK}_{\delta}}
\]
\[
\mathrm{EP}_{\delta}:=\sqrt{\left(\mathrm{EG}_{\delta}\right)^{2}+\left(\mathrm{GP}_{\delta}\right)^{2}}
\]
\[
\mathrm{CP}_{\delta}:=\mathrm{CE}_{\delta}-\mathrm{EP}_{\delta} \quad \mathrm{CF}_{\delta}:=\mathrm{CD}_{\delta}+\mathrm{DF}
\]


I H


10_31_94.MCD
Given AB \& BE , divide BE such that \(\mathrm{BD}+\) \(\mathrm{DE}=\mathrm{BE}\) and \(\mathrm{BD}=\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\)

The square in a right triangle on the hypotenuse is equal to the square of the remaining two segments (and all three squares taken to the point of similarity form a cubic relationship).
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{2}\)
\(\mathrm{AH}:=\mathrm{AE} \mathrm{EI}:=\mathrm{AE} \quad \mathrm{BH}:=\sqrt{\mathrm{AB}^{2}+\mathrm{AH}^{2}}\)
\(\mathrm{CG}:=\mathrm{AC} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BF}:=\frac{\mathrm{AB} \cdot \mathrm{BC}}{\mathrm{BH}}\)
\(\mathrm{CF}:=\frac{\mathrm{AH} \cdot \mathrm{BC}}{\mathrm{BH}} \quad \mathrm{FG}:=\sqrt{\mathrm{CG}^{2}-\mathrm{CF}^{2}}\)
\(\mathrm{BG}:=\mathrm{BF}+\mathrm{FG} \quad \mathrm{BJ}:=\frac{\mathrm{AB} \cdot \mathrm{BG}}{\mathrm{BH}}\)
\(\mathrm{GJ}:=\frac{\mathrm{AH} \cdot \mathrm{BJ}}{\mathrm{AB}} \quad \mathrm{AJ}:=\mathrm{AB}+\mathrm{BJ}\)
\(\mathrm{EJ}:=\mathrm{AE}-\mathrm{AJ} \quad \mathrm{GK}:=\mathrm{EJ} \quad \mathrm{EK}:=\mathrm{GJ}\)
\(\mathrm{IK}:=\mathrm{EI}+\mathrm{EK} \quad \mathrm{DE}:=\frac{\mathrm{GK} \cdot \mathrm{EI}}{\mathrm{IK}}\)
\(\mathrm{BD}:=\mathrm{BE}-\mathrm{DE}\)
\(\mathrm{BE}-(\mathrm{BD}+\mathrm{DE})=0 \quad \mathrm{BD}-\sqrt{\mathrm{AB} \cdot \mathrm{DE}}=0\)


Reducing the previous tautological chain to single equations for BD and DE .
\(\mathrm{AB} \equiv 20 \quad \mathrm{BE} \equiv 12\)
\(\left.\mathrm{BD}:=\frac{\sqrt{\mathrm{AB}} \cdot\left[\begin{array}{l}-\mathrm{AB} \\ +\mathrm{BE} \cdot \sqrt{\left(\frac{3}{2}\right)}+\mathrm{AB} \cdot \sqrt{\mathrm{AB}}+4 \cdot \mathrm{BE}\end{array} \mathrm{BE}+\sqrt{\mathrm{AB}} \cdot \mathrm{BE} \ldots\right.}{}\right]\)
\(B D=8.439\)
\(\mathrm{DE}:=\frac{\mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BE}-\mathrm{AB}}{} \mathrm{B}^{\left(\frac{3}{2}\right)} \cdot \sqrt{\mathrm{AB}+4 \cdot \mathrm{BE}}+2 \cdot \mathrm{BE}^{2}{ }_{3 \cdot \mathrm{AB}+2 \cdot \mathrm{BE}+\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+4 \cdot \mathrm{BE}}}\)
\(\mathrm{DE}=3.561\)
\(B E-(B D+D E)=0\)
\(\mathrm{BD}-\sqrt{\mathrm{AB} \cdot \mathrm{DE}}=0\)

Given \(\mathrm{AB} \& \mathrm{BE}, \mathrm{BE}\) has been divided such that \(\mathrm{BD}+\mathrm{DE}=\mathrm{BE}\) and \(\mathrm{BD}=\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\)


11_01_94.MCD

Given \(A G-A B=B G\) and \(\left(A B^{2} \cdot A G\right)^{1 / 3}-A B=B C\), find \(A B\), AG , and \(\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{1 / 3}\).
For obvious reasons, \(\mathrm{BG}>3 \mathrm{BC}\).
\(B G:=6 \quad B C:=1.9 \quad B N:=B G\)
\(\mathrm{BF}:=\frac{\mathrm{BG}}{2}\) FL \(:=\mathrm{BF} \mathrm{CF}:=\mathrm{BF}-\mathrm{BC}\)
\(\mathrm{CN}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BN}^{2}} \mathrm{CH}:=\frac{\mathrm{BC} \cdot \mathrm{CF}}{\mathrm{CN}}\)
\(\mathrm{FH}:=\frac{\mathrm{BN} \cdot \mathrm{CF}}{\mathrm{CN}} \mathrm{HL}:=\sqrt{\mathrm{FL}^{2}-\mathrm{FH}^{2}}\)
\(\mathrm{CL}:=\mathrm{CH}+\mathrm{HL} \quad \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathrm{CL}}{\mathrm{CN}} \mathrm{DL}:=\frac{\mathrm{BN} \cdot \mathrm{CL}}{\mathrm{CN}}\)
\(\mathrm{GM}:=\mathrm{DL} \quad \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{DG}:=\mathrm{BG}-\mathrm{BD}\)
\(\mathrm{LM}:=\mathrm{DG}\) GO \(:=\mathrm{BG} \mathrm{MO}:=\mathrm{GO}+\mathrm{GM}\)
\(\mathrm{EG}:=\frac{\mathrm{LM} \cdot \mathrm{GO}}{\mathrm{MO}} \mathrm{CG}:=\mathrm{BG}-\mathrm{BC}\)

CE \(:=\mathrm{CG}-\mathrm{EG} \quad \mathrm{CJ}:=\mathrm{BC} \quad \mathrm{CK}:=\mathrm{CE}\)
A \(\mathrm{IJ}:=\mathrm{BC} \quad \mathrm{JK}:=\mathrm{CK}-\mathrm{CJ} \quad \mathrm{IK}:=\sqrt{\mathrm{IJ}^{2}+\mathrm{JK}^{2}}\)
\(\mathrm{BI}:=\mathrm{BC} \quad \mathrm{AB}:=\frac{\mathrm{IJ} \cdot \mathrm{BI}}{\mathrm{JK}} \quad \mathrm{AG}:=\mathrm{AB}+\mathrm{BG}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BC}+\mathrm{CE}\)
\(\mathrm{AB}=36.723 \quad \mathrm{AG}=42.723 \quad \mathrm{AE}=40.621\)
\(\left(A B \cdot A G^{2}\right)^{\frac{1}{3}}-A E=0\)
Given \(A G-A B=B G\) and \(\left(A B^{2} \cdot A G\right)^{1 / 3}-A B=B C\), found was \(A B, A G\), and \(\left(A B \cdot \mathrm{AG}^{2}\right)^{1 / 3}\).


Given \(\mathrm{AE}-\mathrm{AB}=\mathrm{BE}\) and
\(\frac{\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}}{2}+\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}-A E=B C\), find \(A B\).
\[
\begin{aligned}
& \mathrm{BE}:=70 \quad \mathrm{BC}:=34 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{BI}:=\mathrm{BE} \\
& \mathrm{DJ}:=\mathrm{BE} \quad \mathrm{EK}:=\mathrm{BE} \quad \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \\
& \mathrm{CJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{CD}^{2}} \mathrm{DF}:=\frac{\mathrm{DJ} \cdot \mathrm{CD}}{\mathrm{CJ}}
\end{aligned}
\]
\[
\text { DG }:=\mathrm{BD} \quad \mathrm{FG}:=\sqrt{\mathrm{DG}^{2}-\mathrm{DF}^{2}} \mathrm{CF}:=\frac{\mathrm{CD} \cdot \mathrm{DF}}{\mathrm{DJ}}
\]
\[
\mathrm{CG}:=\mathrm{FG}-\mathrm{CF} \quad \mathrm{CO}:=\frac{\mathrm{CD} \cdot \mathrm{CG}}{\mathrm{CJ}}
\]
\[
\mathrm{DO}:=\mathrm{CD}+\mathrm{CO}
\]
\[
\mathrm{BO}:=\mathrm{BD}-\mathrm{DO} \mathrm{GP}:=\mathrm{BO} \quad \mathrm{GO}:=\frac{\mathrm{DJ} \cdot \mathrm{CG}}{\mathrm{CJ}}
\]
\[
\mathrm{BP}:=\mathrm{GO} \quad \mathrm{IP}:=\mathrm{BI}+\mathrm{BP} \quad \mathrm{BL}:=\frac{\mathrm{GP} \cdot \mathrm{BI}}{\mathrm{IP}}
\]
\[
\mathrm{EH}:=\mathrm{GO} \quad \mathrm{HK}:=\mathrm{EK}+\mathrm{EH} \quad \mathrm{EO}:=\mathrm{BE}-\mathrm{BO}
\]
\[
\mathrm{GH}:=\mathrm{EO} \quad \mathrm{EM}:=\frac{\mathrm{GH} \cdot \mathrm{EK}}{\mathrm{HK}} \mathrm{BM}:=\mathrm{BE}-\mathrm{EM}
\]
\[
\mathrm{BQ}:=\mathrm{BL} \quad \mathrm{LR}:=\mathrm{BL} \quad \mathrm{QR}:=\mathrm{BL}
\]
\[
\mathrm{LM}:=\mathrm{BM}-\mathrm{BL}
\]
\[
\mathrm{LS}:=\mathrm{LM} \quad \mathrm{RS}:=\mathrm{LS}-\mathrm{LR} \quad \mathrm{AB}:=\frac{\mathrm{QR} \cdot \mathrm{BQ}}{\mathrm{RS}}
\]
\[
\mathrm{AE}:=\mathrm{AB}+\mathrm{BE}
\]

\[
\begin{aligned}
& \mathrm{AB}=510.028 \quad \mathrm{AE}=580.028 \quad \mathrm{BC}=34 \\
& \frac{\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}-\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}}{2}+\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AB}=34
\end{aligned}
\]

\(\mathrm{BI}_{\delta}:=\frac{\mathrm{BF}_{\delta} \cdot \mathrm{BE}}{\mathrm{BL}_{\delta}} \mathrm{FI}_{\delta}:=\mathrm{BI}_{\delta}-\mathrm{BF}_{\delta} \quad \mathrm{GI}_{\delta}:=\frac{\mathrm{BE} \cdot \mathrm{FI}_{\delta}}{\mathrm{BF}_{\delta}}\)
\(\mathrm{HJ}_{\delta}:=\frac{\mathrm{GI}_{\delta}}{2} \quad \mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{CD}_{\delta}\right)^{2}+\left(\mathrm{CF}_{\delta}\right)^{2}} \quad \mathrm{FH}_{\delta}:=\frac{\mathrm{DF}_{\delta} \cdot \mathrm{GI}_{\delta}}{\mathrm{BE}}\)

- Is Tangent?

\[
\mathrm{DH}_{\delta}:=\mathrm{DF}_{\delta}+\mathrm{FH}_{\delta} \mathrm{DM}_{\delta}:=\frac{\mathrm{CD}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{DF}_{\delta}} \quad \mathrm{CE}_{\delta}:=\mathrm{DE}+\mathrm{CD}_{\delta}
\]
\[
\mathrm{CM}_{\delta}:=\mathrm{DM}_{\delta}-\mathrm{CD}_{\delta} \quad \mathrm{CN}_{\delta}:=\frac{\mathrm{CE}_{\delta}}{2} \quad \mathrm{MN}_{\delta}:=\mathrm{CN}_{\delta}+\mathrm{CM}_{\delta}
\]
\[
\mathrm{HM}_{\delta}:=\frac{\mathrm{CF}_{\delta} \cdot \mathrm{DH}_{\delta}}{\mathrm{DF}_{\delta}} \quad \mathrm{HN}_{\delta}:=\sqrt{\left(\mathrm{MN}_{\delta}\right)^{2}+\left(\mathrm{HM}_{\delta}\right)^{2}}
\]
- Is Tangent?

\(\mathrm{CO}_{\delta}:=\frac{\mathrm{BC}_{\delta}}{2} \quad \mathrm{MO}_{\delta}:=\mathrm{CO}_{\delta}-\mathrm{CM}_{\delta}\)
\(\mathrm{HO}_{\delta}:=\sqrt{\left(\mathrm{HM}_{\delta}\right)^{2}+\left(\mathrm{MO}_{\delta}\right)^{2}}\)
- Is Tangent?


\section*{Two prime exponential series developed through power line progression.}

I will present a series of plates to explain the process. The process can be infinitly repeated, supposing you had the tools to do it with.


It is clear how OA uses the power line XY to provide a 2 prime exponential series.

Possible Problem: From a similarity point outside of a circle, place some 2 prine sequence of smaller circles on the larger circles diameter, all tangent in sequence.

\[
\mathrm{AB}:=1 \quad \mathrm{BF}:=5 \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF}
\]
\[
\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EO}:=\mathrm{BE}
\]
\[
\mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CF}:=\mathrm{BF}-\mathrm{BC}
\]
\[
\mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{EI}:=\mathrm{CH} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}
\]
\[
\mathrm{HI}:=\mathrm{CE} \quad \mathrm{IO}:=\mathrm{EO}+\mathrm{EI} \quad \mathrm{DE}:=\frac{\mathrm{HI} \cdot \mathrm{EO}}{\mathrm{IO}}
\]

See 12_26_94.MCD for next equation.
\(\mathrm{GK}:=\frac{\mathrm{BF} \cdot(\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BF}})}{(2 \cdot \mathrm{AB}+\mathrm{BF})}\)
\(\mathrm{EG}:=\mathrm{BE} \quad \mathrm{EK}:=\sqrt{\mathrm{EG}^{2}-\mathrm{GK}^{2}}\)
\(\mathrm{DL}:=\frac{\mathrm{GK} \cdot \mathrm{DE}}{\mathrm{EK}}\)
\[
\begin{aligned}
& \mathrm{KN}:=\mathrm{BE}-\mathrm{EK} \quad \mathrm{DM}:=\frac{\mathrm{KN} \cdot \mathrm{DE}}{\mathrm{EK}} \\
& \mathrm{EF}:=\mathrm{BE} \quad \mathrm{FM}:=\mathrm{EF}+\mathrm{DM}+\mathrm{DE} \\
& \mathrm{BN}:=\frac{\mathrm{DM} \cdot \mathrm{BF}}{\mathrm{FM}} \mathrm{NP}:=\frac{\mathrm{DL} \cdot \mathrm{BF}}{\mathrm{FM}}
\end{aligned}
\]

\(\mathrm{KF}:=\mathrm{EK}+\mathrm{EF} \quad \mathrm{DQ}:=\frac{\mathrm{KF} \cdot \mathrm{DL}}{\mathrm{GK}}\)
\(\mathrm{BD}:=\mathrm{BE}-\mathrm{DE} \quad \mathrm{BQ}:=\mathrm{BD}+\mathrm{DQ}\)
\(\mathrm{BR}:=\frac{\mathrm{BD} \cdot \mathrm{BF}}{\mathrm{BQ}} \mathrm{RS}:=\frac{\mathrm{DL} \cdot \mathrm{BR}}{\mathrm{BD}}\)

Are RS and NP equal?
\(R S-N P=0\)
\(\mathrm{TU}:=\mathrm{NP} \quad \mathrm{ET}:=\frac{\mathrm{EK} \cdot \mathrm{TU}}{\mathrm{GK}} \mathrm{NR}:=\mathrm{BR}-\mathrm{BN}\)
\(\mathrm{EN}:=\mathrm{BE}-\mathrm{BN}\) NT \(:=\mathrm{EN}-\mathrm{ET}\)
\(\mathrm{PS}:=\mathrm{NR} \quad \mathrm{PU}:=\mathrm{NT} \quad \mathrm{EU}:=\sqrt{\mathrm{ET}^{2}+\mathrm{TU}^{2}}\)
Is NT half of NR? \(\frac{\mathrm{NR}}{\mathrm{NT}}=2\)
Does GU \(=\mathrm{PU}\) ? GU \(:=\mathrm{EG}-\mathrm{EU}\)
\(\mathrm{GU}-\mathrm{PU}=0\)
\(\mathrm{BT}:=\mathrm{BN}+\mathrm{NT}\) FN \(:=\mathrm{BF}-\mathrm{BN}\) FP \(:=\sqrt{\mathrm{NP}^{2}+\mathrm{FN}^{2}}\) \(\mathrm{FV}:=\frac{\mathrm{FP}^{2}}{\mathrm{FN}} \mathrm{PX}:=\frac{\mathrm{FP} \cdot \mathrm{PS}}{\mathrm{FV}} \quad \mathrm{FX}:=\mathrm{FP}-\mathrm{PX}\)

FW \(:=\frac{\mathrm{FV} \cdot \mathrm{FX}}{\mathrm{FP}} \quad \mathrm{BW}:=\mathrm{BF}-\mathrm{FW}\) AW \(:=\mathrm{AB}+\mathrm{BW}\)
Is AW a quarter root of \(\mathrm{AB}, \mathrm{AF}\) ?
\(\left(A B \cdot A F^{3}\right)^{\frac{1}{4}}-A W=0\)

\(\mathrm{BS}:=\sqrt{\mathrm{BR}^{2}+\mathrm{RS}^{2}} \mathrm{SZ}:=\frac{\mathrm{BR} \cdot \mathrm{PS}}{\mathrm{BS}}\)
\(\mathrm{BZ}:=\mathrm{BS}-\mathrm{SZ} \mathrm{BY}:=\frac{\mathrm{PS} \cdot \mathrm{BZ}}{\mathrm{SZ}}\)
\(A Y:=A B+B Y\)
Is AY a quarter root of \(\mathrm{AB}, \mathrm{AF}\) ?
\(\left(A B^{3} \cdot A F\right)^{\frac{1}{4}}-A Y=0\)


Does H and G have a constant relationship?
\[
\begin{aligned}
& \delta:=1 . .1000 \quad \mathrm{AB}_{\delta}:=\delta^{5} \cdot 10^{-8} \\
& \mathrm{BF}:=6 \quad \mathrm{BD}:=\frac{\mathrm{BF}}{2} \quad \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF} \\
& \mathrm{AC}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AF}_{\delta}} \mathrm{DJ}:=\mathrm{BD} \quad \mathrm{DF}:=\mathrm{BD} \\
& \mathrm{BC}_{\delta}:=\mathrm{AC}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CD}_{\delta}:=\mathrm{BD}-\mathrm{BC}_{\delta} \\
& \mathrm{CH}_{\delta}:=\frac{\mathrm{DJ} \cdot \mathrm{BC}_{\delta}}{\mathrm{BD}} \quad \mathrm{AG}_{\delta}:=\mathrm{AC}_{\delta} \\
& \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BD} \quad \mathrm{AK}_{\delta}:=\frac{\left(\mathrm{AG}_{\delta}\right)^{2}}{\mathrm{AD}_{\delta}} \\
& \mathrm{GK}_{\delta}:=\sqrt{\left(\mathrm{AG}_{\delta}\right)^{2}-\left(\mathrm{AK}_{\delta}\right)^{2}} \\
& \mathrm{BK}_{\delta}:=\mathrm{AK}_{\delta}-\mathrm{AB}_{\delta} \quad \mathrm{CK}_{\delta}:=\mathrm{BC}_{\delta}-\mathrm{BK}_{\delta}
\end{aligned}
\]
\[
\mathrm{KF}_{\delta}:=\mathrm{CK}_{\delta}+\mathrm{CD}_{\delta}+\mathrm{DF}
\]

Does FH and FG have identical slopes?

\[
\begin{aligned}
& \mathrm{CF}_{\delta}:=\mathrm{CD}_{\delta}+\mathrm{DF} \\
& \mathrm{GK}_{\delta}:=\frac{\mathrm{CH}_{\delta} \cdot \mathrm{KF}_{\delta}}{\mathrm{CF}_{\delta}}
\end{aligned}
\]

Therefore G and H are constantly co-linear.



Thus this file can be redone as: "Given \(\mathrm{BC}=\) \(\sqrt{\mathrm{AB}} \cdot \mathrm{AF}\) and BF , find \(\mathrm{AB} . "\)

The Formula for GK vs. GK2 demonstrates that the symbolic processor cannot always resolve to simplest form. GK2 is the processors final attempt. An attempt with Mathcad 6 gives the same result.
\[
\mathrm{A}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{B}:=\mathrm{BF}
\]
\(G K 2_{\delta}:=B \cdot \frac{\left[\left(A_{\delta}\right)^{\left(\frac{3}{2}\right)} \cdot \sqrt{A_{\delta}+B}-\left(A_{\delta}\right)^{2}+B \cdot \sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}-B \cdot A_{\delta}\right]}{\left[\left(2 \cdot A_{\delta}+B\right) \cdot\left(B-\sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}+A_{\delta}\right)\right]} \quad G K_{\delta}:=\frac{B \cdot\left(\sqrt{A_{\delta}} \cdot \sqrt{A_{\delta}+B}\right)}{\left(2 \cdot A_{\delta}+B\right)}\)



\section*{And the Delian Quest}



\section*{Alternate method for Quad Roots}
\(\delta:=1 . .100 \quad \mathrm{AB}_{\delta}:=\delta \quad \mathrm{BG}:=10 \quad \mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG}\)
\(\mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}_{\delta} \cdot \mathrm{AG}_{\delta}} \mathrm{BD}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{AB}_{\delta}\)
\(\mathrm{DG}_{\delta}:=\mathrm{BG}-\mathrm{BD}_{\delta} \quad \mathrm{DI}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DG}_{\delta}}\)
\(\mathrm{HI}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{IJ}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{HJ}_{\delta}:=\mathrm{HI}_{\delta}+\mathrm{IJ}_{\delta}\)
\(\mathrm{DK}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{JK}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{BK}_{\delta}:=\mathrm{BD}_{\delta}+\mathrm{DK}_{\delta}\)
\(\mathrm{BJ}_{\delta}:=\sqrt{\left(\mathrm{BK}_{\delta}\right)^{2}+\left(\mathrm{JK}_{\delta}\right)^{2}} \quad \mathrm{JL}_{\delta}:=\frac{\mathrm{BK}_{\delta} \cdot \mathrm{HJ}_{\delta}}{\mathrm{BJ}_{\delta}}\)
\(\mathrm{BL}_{\delta}:=\mathrm{BJ}_{\delta}-\mathrm{JL}_{\delta} \mathrm{BC}_{\delta}:=\frac{\mathrm{HJ}_{\delta} \cdot \mathrm{BL}_{\delta}}{\mathrm{JL}_{\delta}}\)
\[
\begin{aligned}
& \mathrm{HM}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{DM}_{\delta}:=\mathrm{DI}_{\delta} \quad \mathrm{MG}_{\delta}:=\mathrm{DM}_{\delta}+\mathrm{DG}_{\delta} \\
& \mathrm{GH}_{\delta}:=\sqrt{\left(\mathrm{MG}_{\delta}\right)^{2}+\left(\mathrm{HM}_{\delta}\right)^{2}} \quad \mathrm{HN}_{\delta}:=\frac{\mathrm{MG}_{\delta} \cdot \mathrm{HJ}_{\delta}}{\mathrm{GH}_{\delta}} \\
& \mathrm{GN}_{\delta}:=\mathrm{GH}_{\delta}-\mathrm{HN}_{\delta} \quad \mathrm{FG}_{\delta}:=\frac{\mathrm{HJ}_{\delta} \cdot \mathrm{GN}_{\delta}}{\mathrm{HN}_{\delta}} \\
& \mathrm{BF}_{\delta}:=\mathrm{BG}-\mathrm{FG}_{\delta} \\
& \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}_{\delta} \\
& \mathrm{AC}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BC}_{\delta}
\end{aligned}
\]


The symbolic processor on my computer could not reduce the chain to the final equations.


\section*{Archamedian Trisection Revisited.}

I am curious as to why the Archamedian trisection is still taught the way it was given so long ago and the idea from which it derives is not in any of my books.

I am going to use a circle to demonstrate some principles concerning angles. To help log the results in mathematical terms, I will divide the circle into quadrants and label them either plus or minus. The top is labeled one.

The circle is divided into \(1 / 8\) segments of 90 degrees for each quadrant. I start at the top. Since the angle at the perimeter is \(1 / 2\) of the angle at the center, when I start the figure I use twice the arc segment for the angle I am working with. I have marked some quadrants with plus and minus and have found that for the figure, I would say that I have \(1+1 / 8-1 / 8\). From this I have learned that my starting angle of the smaller circle will be 90 degrees.
\[
\begin{aligned}
& \frac{90}{8}=11.25 \\
& 90+\frac{90}{8}-\frac{90}{8}=90 \quad\left(1+\frac{1}{8}-\frac{1}{8}\right) \cdot 90=90
\end{aligned}
\]


\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1\)
\(\frac{\mathrm{~B} \cdot 4}{4} \cdot 90=90 \quad \frac{\mathrm{~B} \cdot 3}{4} \cdot 90=67.5\)
\(\frac{B \cdot 2}{4} \cdot 90=45 \quad \frac{B}{4} \cdot 90=22.5\)
\(8+1-1=8\)
\(8 \cdot 11.25=90\)
\(8+1-1-2=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1-2-2=4\)
\(4 \cdot 11.25=45\)
\(8+1-1-2-2-2=2\)
\(2 \cdot 11.25=22.5\)

I have added another plus to a quadrant at the bottom of the figure.
\(\mathrm{B}:=1+\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1.125 \quad \frac{9}{8}=1.125\)
\[
\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75
\]
\[
\frac{B \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{B \cdot 1.5}{4.5} \cdot 90=33.75
\]
\(\frac{B \cdot 5}{4.5} \cdot 90=11.25\)
\begin{tabular}{ll}
\(8+1+1-1=9\) & \(9 \cdot 11.25=101.25\) \\
\(8+1+1-1-2=7\) & \(7 \cdot 11.25=78.75\) \\
\(8+1+1-1-2-2=5\) & \(5 \cdot 11.25=56.25\) \\
\(8+1+1-1-2-2-2=3\) & \(3 \cdot 11.25=33.75\) \\
\(8+1+1-1-2-2-2-2=1\) & \(1 \cdot 11.25=11.25\)
\end{tabular}
\(\bmod (8+1+1-1,2)=1\)

\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8}+\frac{1}{8}\)
\(B=1.125 \quad \frac{9}{8}=1.125\)
\(\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75\)
\[
\frac{\mathrm{B} \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{\mathrm{~B} \cdot 1.5}{4.5} \cdot 90=33.75
\]
\(\frac{B \cdot .5}{4.5} \cdot 90=11.25\)
\(8+1=9\) \(9 \cdot 11.25=101.25\)
\(8+1-(1 \cdot 2)=7\)
\(7 \cdot 11.25=78.75\)
\(8+1-(2 \cdot 2)=5\)
\(5 \cdot 11.25=56.25\)
\(8+1-(3 \cdot 2)=3\)
\(3 \cdot 11.25=33.75\)
\(8+1-(4 \cdot 2)=1\)
\(1 \cdot 11.25=11.25\)
\(\bmod (8+1,2)=1\)

\(B:=1+\frac{3}{24}-\frac{8}{24} B=0.7917 \quad \frac{19}{24}=0.7917\)
\(\frac{B \cdot 3.1666}{3.1666} \cdot 90=71.25 \quad \frac{B \cdot 2.1666}{3.1666} \cdot 90=48.7495\)
\(\frac{B \cdot 1.16666}{3.16666} \cdot 90=26.2499 \frac{B \cdot .166666}{3.166666} \cdot 90=3.75\)
\begin{tabular}{ll}
\((24+3)-8=19\) & \(19 \cdot 3.75=71.25\) \\
\((24+3)-8-(1 \cdot 6)=13\) & \(13 \cdot 3.75=48.75\) \\
\((24+3)-8-(2 \cdot 6)=7\) & \(7 \cdot 3.75=26.25\) \\
\((24+3)-8-(3 \cdot 6)=1\) & \(1 \cdot 3.75=3.75\)
\end{tabular}
\(\bmod (24+3-8,2)=1\)
\(B:=1+\frac{1}{8}-\frac{1}{8}+\frac{10}{8} \quad B=2.25 \quad \frac{18}{8}=2.25\)
\(\frac{B \cdot 9}{9} \cdot 90=202.5 \quad \frac{B \cdot 8}{9} \cdot 90=180\)
\(\frac{\mathrm{B} \cdot 7}{9} \cdot 90=157.5 \quad \frac{\mathrm{~B} \cdot .6}{9} \cdot 90=13.5\)
\(8+1-1+10=18\)
\(18 \cdot 11.25=202.5\)
\(8+1-1+10-(2 \cdot 1)=16\)
\(16 \cdot 11.25=180\)
\(8+1-1+10-(2 \cdot 2)=14\)
\(14 \cdot 11.25=157.5\)
\(8+1-1+10-(2 \cdot 3)=12\)
\(12 \cdot 11.25=135\)
\(8+1-1+10-(2 \cdot 4)=10\)
\(10 \cdot 11.25=112.5\)
\(8+1-1+10-(2 \cdot 5)=8\)
\(8 \cdot 11.25=90\)
\(8+1-1+10-(2 \cdot 6)=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1+10-(2 \cdot 7)=4\)
\(4 \cdot 11.25=45\)
\(8+1-1+10-(2 \cdot 8)=2\)
\(2 \cdot 11.25=22.5\)
\(\bmod ((8+1-1)+10,2)=0\)
\(\mathrm{B}:=1+\frac{1}{7}-\frac{2}{7} \quad \mathrm{~B}=0.8571 \quad \frac{6}{7}=0.8571\)
\(\frac{B \cdot 6}{6} \cdot 90=77.1429 \quad \frac{B \cdot 4}{6} \cdot 90=51.4286\)
\(\frac{B \cdot 2}{6} \cdot 90=25.7143\)
c : \(=\frac{90}{7}\)
\(7+1-(1 \cdot 2)=6\)
\(6 \cdot \mathrm{c}=77.1429\)
\(7+1-(2 \cdot 2)=4\)
\(4 \cdot \mathrm{c}=51.4286\)
\(7+1-(3 \cdot 2)=2\)
\(2 \cdot \mathrm{c}=25.7143\)
B:=1+ \(\frac{1}{7}-\frac{1}{7}\)
B \(=1\)
\(\frac{7}{7}=1\)
\(\frac{B \cdot 7}{7} \cdot 90=90\)
\(\frac{B \cdot 5}{7} \cdot 90=64.2857\)
\[
\frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571
\]
\(7+1-1=7\)
\[
7 \cdot \mathrm{c}=90
\]
\(7+1-1-(1 \cdot 2)=5 \quad 5 \cdot \mathrm{c}=64.2857\)
\(7+1-1-(2 \cdot 2)=3 \quad 3 \cdot c=38.5714\)
\(7+1-1-(3 \cdot 2)=1 \quad 1 \cdot \mathrm{c}=12.8571\)
\(\bmod (7+1-1,2)=1\)
\(\mathrm{B}:=1+\frac{8}{56}-\frac{7}{56} \quad \mathrm{~B}=1.0179\)
\(\frac{\mathrm{~B} \cdot 57}{57} \cdot 90=91.6071 \quad \frac{\mathrm{~B} \cdot 41}{57} \cdot 90=65.8929\)
\[
\frac{\mathrm{B} \cdot 25}{57} \cdot 90=40.1786 \quad \mathrm{c}:=\frac{90}{56}
\]
\(56+8-7=57\)
\(57 \cdot \mathrm{c}=91.6071\)
\(56+8-7-(1 \cdot 16)=41\)
\(41 \cdot \mathrm{c}=65.8929\)
\(56+8-7-(2 \cdot 16)=25 \quad 25 \cdot \mathrm{c}=40.1786\)
\(56+8-7-(3 \cdot 16)=9 \quad 9 \cdot c=14.4643\)
\(\bmod (56+8-7,16)=9\)
\[
\begin{aligned}
& B:=1+\frac{1}{7}-\frac{1}{7} \quad B=1 \\
& \frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.2857 \\
& \frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571 \\
& 7+1-1=7 \\
& 7+1-1-(1 \cdot 2)=5 \\
& 7+1-1-(2 \cdot 2)=3 \\
& 7+1-1-2-2-2=1 \\
& \bmod (7+1-1,2)=1
\end{aligned}
\]

Work in progress.



\section*{Exponential}

Progressions. 04_01_95

If I want to multiply any number by any power, this is the a geometric process for doing so.

The given figure is drawn for the third power of 3 .
\[
\mathrm{AH}:=10 \quad \delta:=0 . .10 \quad \mathrm{BS}:=8
\]

The third division between A and F is very hard to see. BS = Base Segments


Making the number of divisions 3, provides 3 cube result. AB divides AF 27 times. Etc. It can be seen that using a normal straight edge and compass one needs a very large piece of paper to work this.

\(\mathrm{BS}^{\boldsymbol{\delta}}\)
\begin{tabular}{|l|}
\hline 1 \\
\hline 8 \\
\hline 64 \\
\hline 512 \\
\hline 4096 \\
\hline 32768 \\
\hline 262144 \\
\hline 2097152 \\
\hline 16777216 \\
\hline 134217728 \\
\hline \(1.07374182 \cdot 10^{9}\) \\
\hline
\end{tabular}

You will notice that I took only one of the possible two divisions from which to project from. The other would be \(2 / 3\). At \(2 / 3\) my unit divisions would still be 27 , but now \(A B\) would take up 2 cube of them, or AB would be 8 units.

For an 8 cube series then, the value for AB would be 1 of 512,8 of 512,27 of 512,64 of 512,125 of 512,216 of 512,343 of 512



\section*{About The Laws of 04_22_95.MCD Exponents and Ratios}
\(\Delta:=22 \quad \delta:=1 . . \Delta \quad \mathrm{AB}:=7\)
Base Segments \(=\) BS BS : \(=99\)
Base Index \(=\mathrm{BI} \quad\) BI \(:=13\)

Root Series \(=\mathrm{RS} \quad \mathrm{RS}_{\delta}:=\left[\left(\frac{\mathrm{BI}}{\mathrm{BS}} \cdot \mathrm{AB}\right)^{\Delta-\delta} \cdot \mathrm{AB}^{\delta}\right]^{\frac{1}{\Delta}}\)

Root Series By Ratio \(=\mathrm{RR} \quad \mathrm{RR}_{\delta}:=\left(\frac{\mathrm{BI}}{\mathrm{BS}}\right)^{\frac{\Delta-\delta}{\Delta}} \cdot \mathrm{AB}\)

Root Series By Inverse Ratio = RI
\[
\mathrm{RI}_{\delta}:=\left(\frac{\mathrm{BS}}{\mathrm{BI}}\right)^{\frac{\delta}{\Delta}} \cdot\left(\frac{\mathrm{BI}}{\mathrm{BS}} \cdot \mathrm{AB}\right)
\]

\(\sum_{\delta}\left(\mathrm{RS}_{\delta}-\mathrm{RR}_{\delta}\right)=0\)

\[
\sum_{\delta}\left(\mathrm{RS}_{\delta}-\mathrm{RI}_{\delta}\right)=0
\]

On the concept of unit and universe of discourse:
Euclidean exponentiation provides a good example with which to demonstrate the distinction between the concepts of unit and the universe of discourse.

Taking 2 for theuniverse of discourse would be represented graphically as:


To represent \(2^{2}\) within this universe of discourse one would draw:


Our original 2 is divided into \(\mathrm{a}^{\text {th }} 4\) segment.
Now if 2 is taken as themit of discourse we may still represent it as;

however to represent 2 now would be drawn as


One will notice that in example 1, the unit changed while the universe remained, in example 2 the unit remained while the universe changed. One could call example 1 an example of deduction and example 2 an example of induction.


The resultant equation in terms of the givens is
\[
\mathrm{EF}:=\frac{\mathrm{AC} \cdot(\mathrm{AM}-\mathrm{AB})}{2 \cdot \mathrm{AC}-\mathrm{AM}} \quad \mathrm{EF}=3.80843
\]


\section*{Segment B.}

\section*{Given AC, AB, DN, find EF.}
\(\mathrm{AN}:=2 \cdot \mathrm{AC} \quad \mathrm{MN}:=\frac{\mathrm{DN}^{2}}{\mathrm{AN}} \quad \mathrm{CN}:=\mathrm{AC} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BN}:=\mathrm{CN}+\mathrm{BC}\)
\(\mathrm{EN}:=\frac{\mathrm{DN} \cdot \mathrm{BN}}{\mathrm{MN}} \quad \mathrm{ED}:=\mathrm{EN}-\mathrm{DN} \quad \mathrm{EF}:=\frac{\mathrm{AC} \cdot \mathrm{ED}}{\mathrm{DN}} \quad \mathrm{EF}=3.80844\)

The equation for this process is
\[
\mathrm{EF}:=\frac{\mathrm{AC} \cdot\left(4 \cdot \mathrm{AC}^{2}-2 \cdot \mathrm{AC} \cdot \mathrm{AB}-\mathrm{DN}^{2}\right)}{\mathrm{DN}^{2}} \quad \mathrm{EF}=3.80844
\]


Segment C.
Given \(\mathrm{AC}, \mathrm{AB}, \mathrm{BE}\), find EF .
\(\mathrm{AN}:=2 \cdot \mathrm{AC} \quad \mathrm{BN}:=\mathrm{AN}-\mathrm{AB} \quad \mathrm{EN}:=\sqrt{\mathrm{BE}^{2}+\mathrm{BN}^{2}} \quad \mathrm{ON}:=\frac{\mathrm{EN}^{2}}{\mathrm{BN}}\)
\(\mathrm{DN}:=\frac{\mathrm{EN} \cdot \mathrm{AN}}{\mathrm{ON}} \quad \mathrm{DE}:=\mathrm{EN}-\mathrm{DN} \quad \mathrm{EF}:=\frac{\mathrm{AC} \cdot \mathrm{DE}}{\mathrm{DN}} \quad \mathrm{EF}=3.80844\)

The equation for this process is \(\quad \mathrm{EF}:=\frac{\mathrm{BE}^{2}-2 \cdot \mathrm{AC} \cdot \mathrm{AB}+\mathrm{AB}^{2}}{2 \cdot(2 \cdot \mathrm{AC}-\mathrm{AB})} \quad \mathrm{EF}=3.80844\)

\section*{10_14_5C.MCD}

Trivial Method: Square Root
Generalize the figure of 10_14_95.MCD


Starting at any point G, between A and J, the square root of \(\mathrm{AB} \cdot \mathrm{AF}\) can always be projected to point C. Such a progression can be used on the cube root figure.
\(\delta:=1 . .1000 \mathrm{AB}:=10 \quad \mathrm{BF}:=10 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2}\)
\[
\begin{aligned}
& \mathrm{AE}:=\mathrm{BE}+\mathrm{AB} \quad \mathrm{AJ}:=\mathrm{BE} \quad \mathrm{AG}_{\delta}:=\frac{\mathrm{AJ}}{\delta} \\
& \mathrm{EI}_{\delta}:=\mathrm{AG}_{\delta} \mathrm{AI}_{\delta}:=\sqrt{(\mathrm{AE})^{2}+\left(\mathrm{EI}_{\delta}\right)^{2}}
\end{aligned}
\]
\(\mathrm{AK}_{\delta}:=\mathrm{AI}_{\delta} \quad \mathrm{DK}:=\mathrm{AJ} \mathrm{AD}_{\delta}:=\sqrt{\left(\mathrm{AK}_{\delta}\right)^{2}-\mathrm{DK}^{2} \mathrm{GH}_{\delta}}:=\mathrm{AD}_{\delta} \quad \mathrm{CG}_{\delta}:=\mathrm{GH}_{\delta}\)
\[
\mathrm{AF}_{\delta}:=\mathrm{BF}+\mathrm{AB} \quad \mathrm{AC}_{\delta}:=\sqrt{\left(\mathrm{CG}_{\delta}\right)^{2}-\left(\mathrm{AG}_{\delta}\right)^{2}}
\]



Given \(A B\) and \(B D\) divide \(B D\) such that \(A B \cdot C D=\) \(\frac{B C^{2}}{4}\). And what is the reltionship of \(A C\) to \(A B\) and BD? Now the date on this file is not exact as I sketched this out on a piece of paper and forgot to date it.

\[
\begin{aligned}
& \mathrm{AB}:=5 \quad \mathrm{BD}:=1 \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BD}} \quad \mathrm{AE}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BF}^{2}} \\
& \mathrm{DE}:=\mathrm{AD}-\mathrm{AE} \quad \mathrm{DG}:=\mathrm{DE} \quad \mathrm{CD}:=\frac{\mathrm{DG}^{2}}{\mathrm{AD}} \\
& \mathrm{CD}=0.046 \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{AB} \cdot \mathrm{CD}-\frac{\mathrm{BC}^{2}}{4}=0
\end{aligned}
\]
\(\mathrm{CE}:=\mathrm{DE}-\mathrm{CD} \quad \mathrm{CH}:=\mathrm{CE} \quad \mathrm{CJ}:=\frac{\mathrm{CH}^{2}}{\mathrm{CD}} \quad \mathrm{AB}-\mathrm{CJ}=0\)
\(\mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{AC}=5.954\)
\(A C-\left[2 \cdot \frac{\mathrm{AB}^{\left(\frac{3}{2}\right)}}{\sqrt{\mathrm{AB}+\mathrm{BD}}}+2 \cdot \frac{\sqrt{\mathrm{AB}}}{\sqrt{\mathrm{AB}+\mathrm{BD}}} \cdot \mathrm{BD}-\mathrm{AB}\right]=0\)

\section*{A Modification of a Square Root Figure. Gemini Roots}

One of the square root figures displays a one to one ratio between what could be called the vertical segment OP and the root of the two horizontal segments AP and BP. With a slight modification however, one can demonstrate a many to one relationship between three base segments.

GL has a ratio to the root of AL•BG.
Developing the arc AIC from it will give a means of keeping that ratio.
\(B S=\) Base Segments, set at end of doc.
\(\mathrm{AB}:=10 \quad \mathrm{AC}:=\frac{\mathrm{AB}}{2} \quad \mathrm{EG}:=\frac{\mathrm{AB}}{\mathrm{BS}}\)
\(\mathrm{BC}:=\mathrm{AC} \quad \mathrm{CD}:=\mathrm{AC} \quad \mathrm{CE}:=\frac{\mathrm{EG}}{2}\)
\(\mathrm{AE}:=\mathrm{AC}-\mathrm{CE} \quad \mathrm{BE}:=\mathrm{BC}+\mathrm{CE}\)
\(\mathrm{EF}:=\sqrt{\mathrm{AE} \cdot \mathrm{BE}} \quad \mathrm{AF}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EF}^{2}}\)
\(\mathrm{AI}:=\mathrm{AF} \quad \mathrm{AM}:=\frac{\mathrm{AI}}{2} \quad \mathrm{CI}:=\sqrt{\mathrm{AI}^{2}-\mathrm{AC}^{2}}\)
\(\mathrm{AL}:=\frac{\mathrm{AI} \cdot \mathrm{AM}}{\mathrm{AC}} \mathrm{CL}:=\mathrm{AC}-\mathrm{AL}\)
\(\mathrm{CK}:=\frac{\mathrm{AC} \cdot \mathrm{CE}}{\mathrm{CI}} \quad \mathrm{IK}:=\mathrm{CI}+\mathrm{CK}\)
\[
\begin{aligned}
& \begin{array}{l}
\delta:=1 . . \Delta \quad \mathrm{AN}_{\delta}:=\frac{\mathrm{AC}}{\Delta} \cdot \delta \\
\mathrm{CN}_{\delta}:=\mathrm{AC}-\mathrm{AN}_{\delta} \quad \mathrm{KO}:=\mathrm{IK} \\
\mathrm{KN}_{\delta}:=\sqrt{\mathrm{CK}^{2}+\left(\mathrm{CN}_{\delta}\right)^{2}} \quad \mathrm{NO}_{\delta}:=\mathrm{KO}-\mathrm{KN}_{\delta} \\
\mathrm{NP}_{\delta}:=\frac{\mathrm{CN}_{\delta} \cdot \mathrm{NO}_{\delta}}{\mathrm{KN}_{\delta}} \quad \mathrm{AP}_{\delta}:=\mathrm{AC}-\mathrm{CN}_{\delta}-\mathrm{NP}_{\delta}
\end{array} \\
& \mathrm{OP}_{\delta}:=\frac{\mathrm{CK} \cdot \mathrm{NO}_{\delta}}{\mathrm{KN}_{\delta}} \quad \mathrm{AO}_{\delta}:=\sqrt{\left(\mathrm{AP}_{\delta}\right)^{2}+\left(\mathrm{OP}_{\delta}\right)^{2}} \\
& \mathrm{AQ}_{\delta}:=\mathrm{AO}_{\delta} \quad \mathrm{AR}_{\delta}:=\frac{\left(\mathrm{AQ}_{\delta}\right)^{2}}{\mathrm{AB}} \\
& \mathrm{BP}_{\delta}:=\mathrm{BC}+\mathrm{CN}_{\delta}+\mathrm{NP}_{\delta} \\
& \mathrm{BO}_{\delta}:=\sqrt{\left(\mathrm{BP}_{\delta}\right)^{2}+\left(\mathrm{OP}_{\delta}\right)^{2}} \quad \mathrm{BS}_{\delta}:=\mathrm{BO}_{\delta} \quad \mathrm{BT}_{\delta}:=\frac{\left(\mathrm{BS}_{\delta}\right)^{2}}{\mathrm{AB}} \quad \mathrm{AT}_{\delta}:=\mathrm{AB}-\mathrm{BT}_{\delta} \quad \mathrm{RT}_{\delta}:=\mathrm{AT}_{\delta}-\mathrm{AR}_{\delta}
\end{aligned}
\]

Set the number of Base Segments here and see if a constant relationship is expressed in the graph.
\(B S \equiv 9\) \(\Delta \equiv 100\)



\section*{Short Method Gemini Roots.}

Given AG, CE, AH, place CE so that
CE:AH as CE:CI. Or more simply that CI
\(=\sqrt{\mathrm{AC}_{\delta} \cdot \mathrm{EG}_{\delta}}=\mathrm{AH}\).
\(\delta:=1 . .100\)
\(\Delta:=8\)
\(\mathrm{AG}:=\Delta \cdot 2+1 \quad \mathrm{CE}_{\delta}:=\frac{1}{\delta} \quad \quad \mathrm{AH}_{\delta}:=\Delta \cdot \mathrm{CE}_{\delta}\)
With the values given is the constuction possible? ( 1 for yes and 0 for no.)

\(\mathrm{DJ}_{\delta}:=\mathrm{AH}_{\delta} \quad \mathrm{AB}_{\boldsymbol{\delta}}:=\frac{\mathrm{CE}_{\delta}}{2} \quad \mathrm{AF}:=\frac{\mathrm{AG}}{2} \quad \mathrm{FG}:=\mathrm{AF} \quad \mathrm{BF}_{\boldsymbol{\delta}}:=\mathrm{AF}-\mathrm{AB}_{\delta} \quad \mathrm{FJ}_{\boldsymbol{\delta}}:=\mathrm{BF}_{\boldsymbol{\delta}}\)
\(\mathrm{FD}_{\delta}:=\sqrt{\left(\mathrm{FJ}_{\delta}\right)^{2}-\left(\mathrm{DJ}_{\delta}\right)^{2}} \quad \mathrm{DC}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{DE}_{\delta}:=\mathrm{AB}_{\delta} \quad \mathrm{AD}_{\delta} i=\mathrm{AF}-\mathrm{FD}_{\delta}\)
\(\mathrm{AC}_{\delta}:=\mathrm{AD}_{\delta}-\mathrm{DC}_{\delta} \quad \mathrm{AE}_{\delta}:=\mathrm{AD}_{\delta}+\mathrm{DE}_{\delta} \quad \mathrm{EF}_{\delta}:=\mathrm{AF}-\mathrm{AE}_{\delta} \quad \mathrm{EG}_{\delta}:=\mathrm{EF}_{\delta}+\mathrm{FG}\)



\section*{Method for Equals.}

At the inner extremities of a great circle I have two equal smaller ones. Find the circle tangent to all three

\[
\begin{aligned}
& \mathrm{AH}:=10 \quad \mathrm{AC}:=3 \quad \mathrm{AO}:=\frac{\mathrm{AH}}{2} \quad \mathrm{AB}:=\frac{\mathrm{AC}}{2} \\
& \mathrm{JO}:=\mathrm{AB} \quad \mathrm{OP}:=\mathrm{JO} \quad \mathrm{HO}:=\mathrm{AO} \\
& \mathrm{JP}:=\sqrt{\mathrm{JO}^{2}+\mathrm{OP}^{2}} \quad \mathrm{HP}:=\mathrm{HO}+\mathrm{OP}
\end{aligned}
\]
\[
\mathrm{AL}:=\frac{\mathrm{JP} \cdot \mathrm{AH}}{\mathrm{HP}} \mathrm{NO}:=\mathrm{AO} \quad \mathrm{AN}:=\sqrt{\mathrm{AO}^{2}+\mathrm{NO}^{2}}
\]
\[
\mathrm{LN}:=\mathrm{AN}-\mathrm{AL} \quad \mathrm{LQ}:=\frac{\mathrm{AO} \cdot \mathrm{LN}}{\mathrm{AN}} \quad \mathrm{LQ}=2.692
\]

Reducing \(L Q\) as an expression of the two givens, \(L_{F}:=\frac{A H \cdot(A H-A C)}{2 \cdot(A H+A C)} \quad L Q_{F}-L Q=0\)

Scholia: 100 Great Problems of Elementary Mathematics H. Dorrie Problem 27 Euler's Line \(\delta:=0 . .2 \quad\) AC \(:=\left(\begin{array}{l}\text { Side_1 } \\ \text { Side_2 } \\ \text { Side_3 }\end{array}\right) \quad \mathrm{BC}:=\left(\begin{array}{l}\text { Side_2 } \\ \text { Side_3 } \\ \text { Side_1 }\end{array}\right) \quad \mathrm{AB}:=\left(\begin{array}{l}\text { Side_3 } \\ \text { Side_1 } \\ \text { Sid.MCD } \\ \text { Side_2 }\end{array}\right) \begin{aligned} & \text { Given three sides of a triangle, } \\ & \text { determine the length of the Euler line } . \\ & \text { Work the drawing from each of the } \\ & \text { sides. }\end{aligned}\)

TRIANGLE \(:=(\) Side_1 + Side_2 \(>\) Side_3 \() \cdot(\) Side_1 + Side_3 \(>\) Side_2 \() \cdot(\) Side_2 + Side_3 \(>\) Side_1 \()\)

\[
\begin{aligned}
& \mathrm{AE}_{\delta}:=\frac{\mathrm{AB}_{\delta}}{2} \mathrm{Ak}_{\delta}:=\mathrm{AC}_{\delta} \quad \mathrm{Bl}_{\delta}:=\mathrm{BC}_{\delta} \\
& \mathrm{Ai}_{\delta}:=\frac{\left(\mathrm{Ak}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \quad \mathrm{Bh}_{\delta}:=\frac{\left(\mathrm{Bl}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \mathrm{Ah}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Bh}_{\delta} \\
& \mathrm{hi}_{\delta}:=\mathrm{Ah}_{\delta}-\mathrm{Ai}_{\delta} \quad \mathrm{Aj}_{\delta}:=\mathrm{Ai}_{\delta}+\frac{\mathrm{hi}_{\delta}}{2} \\
& \mathrm{Cj}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}-\left(\mathrm{Aj}_{\delta}\right)^{2}} \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta} \\
& \mathrm{Bj}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Aj}_{\delta} \mathrm{Bg}_{\delta}:=\frac{\mathrm{BC}_{\delta}}{2} \quad \mathrm{Bf}_{\delta}:=\frac{\mathrm{BC}_{\delta} \cdot \mathrm{BE}_{\delta}}{\mathrm{Bj}_{\delta}} \\
& \mathrm{fg}_{\delta}:=\mathrm{Bf}_{\delta}-\mathrm{Bg}_{\delta} \quad \mathrm{Ug}_{\delta}:=\mathrm{if}\left(\mathrm{Cj}_{\delta}, \frac{\mathrm{Bj}_{\delta} \cdot \mathrm{fg}_{\delta}}{\mathrm{Cj}_{\delta}}, 0\right) \\
& \mathrm{BU}_{\delta}:=\mathrm{if}\left[\mathrm{Ug}_{\delta}, \sqrt{\left.\left(\mathrm{Ug}_{\delta}\right)^{2}+\left(\mathrm{Bg}_{\delta}\right)^{2}, \infty\right]}\right.
\end{aligned}
\]
\(\mathrm{AM}_{\delta}:=\frac{\mathrm{AC}_{\delta}}{2} \quad \mathrm{AGG}_{\delta}:=\frac{\mathrm{Aj}_{\delta} \cdot \mathrm{AM}_{\delta}}{\mathrm{AC}_{\delta}} \quad \mathrm{BGG}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AGG}_{\delta}\)
\(\mathrm{GGM}_{\delta}:=\sqrt{\left(\mathrm{AM}_{\delta}\right)^{2}-\left(\mathrm{AGG}_{\delta}\right)^{2}} \mathrm{BM}_{\delta}:=\sqrt{\left(\mathrm{GGM}_{\delta}\right)^{2}+\left(\mathrm{BGG}_{\delta}\right)^{2}}\)
\(\mathrm{BS}_{\delta}:=\frac{2 \cdot \mathrm{BM}_{\delta}}{3} \mathrm{BG}_{\delta}:=\frac{\mathrm{BGG}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}} \quad \mathrm{GS}_{\delta}:=\frac{\mathrm{GGM}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}}\)
\(A G_{\delta}:=A B_{\delta}-\mathrm{BG}_{\boldsymbol{\delta}} \mathrm{AS}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{AG}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{GS}_{\boldsymbol{\delta}}\right)^{2}}\)

\(\mathrm{MS}_{\delta}:=\mathrm{BM}_{\delta}-\mathrm{BS}_{\delta} \quad \mathrm{AU}_{\delta}:=\mathrm{BU}_{\delta} \quad \mathrm{MU}_{\delta}:=\sqrt{\left(\mathrm{AU}_{\delta}\right)^{2}-\left(\mathrm{AM}_{\delta}\right)^{2}} \quad \mathrm{Ae}_{\delta}:=\frac{1}{2} \cdot \frac{\left(\mathrm{AS}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}}+\frac{1}{2} \cdot \mathrm{AM}_{\delta}-\frac{1}{2} \cdot \frac{\left(\mathrm{MS}_{\delta}\right)^{2}}{\mathrm{AM}}\)

The following sequence is from 06_07_93.MCD. In that paper I treated it as a problem between two triangles, which it is. One can restate it as finding the fourth side of a quadrilateral by pulling up a line.
\(\mathrm{eM}_{\delta}:=\mathrm{Ae}_{\delta}-\mathrm{AM}_{\delta} \mathrm{Sm}_{\delta}:=\mathrm{eM}_{\delta} \quad \mathrm{Se}_{\delta}:=\sqrt{\left(\mathrm{AS}_{\delta}\right)^{2}-\left(\mathrm{Ae}_{\delta}\right)^{2}} \quad \mathrm{Mm}_{\delta}:=\mathrm{Se}_{\delta}\)
\(\mathrm{Um}_{\delta}:=\operatorname{if}\left[\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}, \mathrm{MU}_{\delta}-\mathrm{Mm}_{\delta}, \mathrm{MU}_{\delta}+\mathrm{Mm}_{\delta}\right] \mathrm{SU}_{\delta}:=\sqrt{\left(\mathrm{Um}_{\delta}\right)^{2}+\left(\mathrm{Sm}_{\delta}\right)^{2}} \mathrm{UO}_{\delta}:=3 \cdot \mathrm{SU}_{\delta}\)
Due to the way in which certain lines lay, the above switch was needed.

Is this a TRIANGLE \(=1 \quad ? \quad\) Side_1 \(\equiv 21 \quad\) Side_2 \(\equiv 14.4 \quad\) Side_3 \(\equiv 7.75\)

\(\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}\)

\begin{tabular}{|c|c|c|}
\hline \(\mathrm{SU}_{\delta}\) & \(\mathrm{UO}_{\delta}\) & \(\mathrm{AU}_{\delta}\) \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline
\end{tabular}

Descartes gives a figure for solving \(\mathrm{z}^{2}=\mathrm{az}+\mathrm{b}^{2}\) which should have been stated as \(\mathrm{z}^{2}=2 \mathrm{az}\) \(+b^{2}\), generalize the figure. Descartes' figure was given only when \(n=2\). In this form, it is an equation of two givens and one unknown, generalized it as three givens and solves for three unknowns. Attempt to eliminate two of the unknowns as a function of the three givens.


Z
Z

Given \(\mathrm{a}, \mathrm{n}\) and b for the equation \(\mathrm{z}^{2}=\mathrm{naz}+\mathrm{b}^{2}+\) cd find \(\mathrm{z}, \mathrm{c}\), and d .
\(A D:=n \cdot a \quad B E:=\sqrt{a^{2}+b^{2}} \quad B C:=\frac{a^{2}}{B E}\)
\(C E:=B E-B C \quad C F:=\sqrt{B C \cdot C E}\)
\(F G:=\frac{A D}{2} \quad C G:=\sqrt{F G^{2}-C F^{2}}\)
\(A G:=F G \quad A C:=A G+C G\)
\(B G:=C G-B C \quad D G:=F G\)
\(B D:=D G-B G \quad A B:=A G+B G\)
\(A E:=A B+B E \quad D E:=B E-B D\)
\(D H:=\frac{b^{2}}{D E} \quad D I:=A E \quad H I:=D I-D H\)
\(z:=A E \quad z=12.622\)
\(c:=D E \quad c=0.622\)
\(d:=H I \quad d=6.186\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0\)
Place values here:
\[
n \equiv 3
\]
\[
a \equiv 4
\]
\[
b \equiv 2
\]

Expressing c and d in terms of the givens does not really look esthetically pleasing.
\[
\left.d=2 \cdot a \cdot \frac{b^{2}}{\sqrt{a^{2}+b^{2}}} \cdot \frac{\left(2 \cdot a-\sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right)}{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right.}\right)
\]
\[
c=\frac{-1}{2} \cdot \frac{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\sqrt{a^{2}+b^{2}}}
\]

The symbolic processor could not reduce cd directly so I had to do it in terms of the equation by resolving \(z\).
\(z=\frac{1}{2} \cdot \frac{\left(n \cdot a \cdot \sqrt{a^{2}+b^{2}}+a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}+2 \cdot b^{2}\right)}{\sqrt{a^{2}+b^{2}}}\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0 \quad p=-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\)
\((c \cdot d)-p=0\)
\(z^{2}-\left[n \cdot a \cdot z+b^{2}+\left[-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\right]\right]=0\)
Solve for z below.
\(\left[\begin{array}{l}\frac{1}{2} \cdot n \cdot a+\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}} \\ \frac{1}{2} \cdot n \cdot a-\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}}\end{array}\right]\)


C


Scholia: The Geometry of Rene Descartes with a facsimile of the first edition. Translated by D. Eugene and M. Latham
\(z^{2}:=a z-b^{2}\)
The problem is given for the solution of z when a and b are given. Working the problem backward, \(z^{2}+b^{2}:=a z\) ione can see constants in the figure for solving when only a and b are given.
\[
b:=2.12 \quad z:=1.41
\]

Finding \(a\) is just a matter of expressing \(b\) in terms of cz, and a becomes \(\mathrm{z}+\mathrm{c}\).
\[
c:=\frac{b^{2}}{z} \quad a:=z+c
\]

We find that this c has another relation to z , for it holds a proportion to it in the given equation.
\[
\begin{aligned}
& \left(c^{2}+b^{2}\right)-a \cdot c=0 \\
& \left(c^{2}+b^{2}\right)-((z+c) \cdot c)=0 \\
& \left(c^{2}+b^{2}\right)-(c \cdot z)-c^{2}=0 \\
& \left(z^{2}+b^{2}\right)-(z+c) \cdot z=0 \\
& \left(z^{2}+b^{2}\right)-(c \cdot z)-z^{2}=0
\end{aligned}
\]

Descartes and other mathematicians speak as if we have two different values for z , however, I see quite plainly that we have a \(z\) and a c that was found. The unique name of the symbols in context are thus preserved.

One can also see that working the figure in a straight forward manner, imaginary situations are not possible,

\(b^{2}\)




The primitive form of construction is very suggestive of Descartes process. If however we use Pythagorean division, the figure may not be so apparent. One should note that contrary to his statement on page 4 , one cannot divide a line by a line. In geometry one can divide a square by a line. This is the law of tautology, which holds for all mathematics. It will also be noted that Descartes claims to be working with a quadratic equation, and his solution is indeed for one, however he states it as a quadratic deficient by a rectangle, deficient in fact by az. The authors of the notes make the same mistake.

\section*{Just for fun.}


The ratio of BC to CE is common to another cube root expression, which?


\[
\begin{gathered}
\sqrt{A D}+\sqrt{A B} \\
(\sqrt{A D})^{2}+2 \cdot \sqrt{A B} \cdot \sqrt{A D}+(\sqrt{A B})^{2} \\
(\sqrt{A D})^{3}+3 \cdot A D \cdot \sqrt{A B}+3 \cdot \sqrt{A D} \cdot A B+(\sqrt{A B})^{3}
\end{gathered}
\]

Pascal's triangle with exponential division.
\[
A B:=3 \quad A D:=5
\]
\(B D:=A D-A B \quad A C:=\sqrt{A B \cdot A D}\)
\[
B D:=A D-A B \quad A C:=\sqrt{A B \cdot A D}
\]
\[
C D:=A D-A C \quad B C:=B D-C D
\]
\[
C D:=B D-B C \quad C E:=\sqrt{B C \cdot C D}
\]
\[
B E:=\sqrt{B C^{2}+C E^{2}} \quad D E:=\sqrt{C D^{2}+C E^{2}}
\]
\[
\mathrm{BG}:=\frac{\mathrm{BD} \cdot \mathrm{BE}}{\mathrm{DE}} \quad \mathrm{FG}:=\frac{\mathrm{BC} \cdot \mathrm{BG}}{\mathrm{BD}}
\]
\[
\mathrm{EG}:=\frac{\mathrm{BE} \cdot \mathrm{BG}}{\mathrm{BD}} \quad \mathrm{DG}:=\mathrm{DE}+\mathrm{EG}
\]
\[
\mathrm{GH}:=\frac{\mathrm{BC} \cdot \mathrm{EG}}{\mathrm{BD}} \quad \mathrm{GJ}:=\frac{\mathrm{BC} \cdot \mathrm{GH}}{\mathrm{BD}}
\]
\[
\frac{\mathrm{BD}}{\mathrm{BC}}=2.291 \quad \frac{\mathrm{DG}}{\mathrm{GH}}=5.249 \quad \frac{\mathrm{DG}}{\mathrm{GJ}}=12.025
\]
\[
\begin{aligned}
& N:=1 . .3 \frac{(\sqrt{A D}+\sqrt{A B})^{N}}{\sqrt{A B^{N}}} \\
& \frac{2.291}{5.249} \\
& \hline 12.025 \\
&
\end{aligned}
\]
\[
\frac{A+B}{A}
\]
\[
\frac{A^{2}+2 A B+B^{2}}{A^{2}}
\]
\[
\frac{A^{3}+3 A^{2} \cdot B+3 A \cdot B^{2}+B^{3}}{A^{3}}
\]

Dividing an exponentiated integer by an exponentiated integer of the same power, straight edge and compass construction. Followed by who knows what!

\(C D:=1.5 \quad B C:=.75 \quad B D:=B C+C D\)
\(C E:=\sqrt{B C \cdot C D} \quad B E:=\sqrt{B C^{2}+C E^{2}}\)
\(E F:=B C \quad F G:=\frac{B C \cdot E F}{C E} \quad F G=0.53\)
\(D E:=\sqrt{C D^{2}+C E^{2}} \quad E G:=\frac{B D \cdot E F}{D E}\)
\[
\mathrm{GH}:=\frac{\mathrm{BC} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{DG}:=\mathrm{DE}+\mathrm{EG}
\]
\(J K:=\frac{F G \cdot G H}{E G} \quad G J:=\frac{B C \cdot G H}{B D} \quad F H:=\frac{C E \cdot E G}{B D} \quad \frac{B D}{B C}=3 \quad \frac{D G}{G H}=9 \quad \frac{D G}{G J}=27\)

\[
\mathrm{n}:=1 . .3
\]
\(\begin{array}{ll}\frac{a^{n}}{b^{n}} & \frac{B D^{n}}{B C^{n}} \\
&\)\begin{tabular}{|l|}
\hline 3 \\
\hline 27 \\
\hline
\end{tabular}\end{array}



Given AC and CD find BC when it is equal to \(\frac{\mathrm{AC} \cdot \mathrm{CD}^{2}}{\mathrm{AC}^{2}+\mathrm{CD}^{2}}\).
\[
\begin{aligned}
& \mathrm{AC}:=15 \quad \mathrm{CD}:=5 \quad \mathrm{AO}:=\frac{\mathrm{AC}}{2} \\
& \mathrm{AD}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CD}^{2}} \\
& \mathrm{AG}:=\frac{\mathrm{AC} \cdot \mathrm{AO}}{\mathrm{AD}} \quad \mathrm{AE}:=2 \cdot \mathrm{AG} \\
& \mathrm{AB}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AD}} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BC}=1.5 \\
& \mathrm{BC}:=\frac{\mathrm{AC} \cdot \mathrm{CD}^{2}}{\left(\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)} \quad \mathrm{BC}=1.5
\end{aligned}
\]

A cube divided by the sum of two squares.

\section*{One Square}
One Line

And the Delian Quest

\title{
1996
}

The Euclidean proof of 11_11_93.MCD may be reminiscent of trimming hedges with a jack knife, but the method is for exercise of those methodical parts which comprise it. I can never get too much of those practices. There is however a golden approach to proofing the figure which has almost no regard for the practices of basic moves- a eunuch in regards to teaching, but whose simplicity implants the concepts of the figure with a clarity unrivaled by more energetic methods.

\section*{The Archamedian Paper Trisector- Without the Numbers.}

One of the distinctions that this and the paper of \(11 \_11 \_93 . \mathrm{MCD}\) bring to the subject is that the construction of the figure is not assumed, but done.


Given any circle \(A B\)


Given any circle BC such that \(\mathrm{BC} \leq 2 \mathrm{AB}\).


Construct AE such that \(\mathrm{AE}=\mathrm{AC}\).

Since \(A C=A B+B C\) and \(A D=A B, D E=B C\).


Construct DH parallel to BD. Construct CE. Since \(\mathrm{AB}=\mathrm{AD}\) and \(\mathrm{AC}=\mathrm{AE}, \triangle \mathrm{ABD}\) is proportional to \(\Delta \mathrm{ACE}\), therefore CE is parallel to BD. From here one can take two paths.


Construct GJ parallel to EF. Now Since CE is parallel to \(\mathrm{DH}, \mathrm{DG}=\mathrm{CH}\). Since GJ is parallel to \(\mathrm{EF}, \mathrm{DG}=\mathrm{FJ}\). Since \(\angle \mathrm{HBJ}\) is opposite and equal to \(\angle \mathrm{GBD}, \mathrm{DG}=\mathrm{HJ}\), therefore DG is \(\frac{1}{3}\) CF.
Since CE is parallel to DH and EF is parallel to GJ, EGBD is equilateral.


By construction \(\mathrm{DK}=\mathrm{KM}\). Since DH is parallel to \(\mathrm{CE}, \mathrm{CH}=\mathrm{DG}\). Since DK is equal and opposite \(\mathrm{CH}, \mathrm{MK}+\mathrm{DK}+\mathrm{DG}\) is \(\frac{1}{3} \mathrm{DG}\).
But like I said at the start, there is no real work in this figure.

I have given two constructions for the figure, I cannot understand why sliding paper is still used to demonstrate it. The figure adds a few moves to Euclid's figure for demonstrating that the angle from the circumference is half the angle from the center of the circle.

A rusty Compass construction for the duplication of the cube.

\[
\begin{aligned}
& \mathrm{AD}:=2 \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2} \quad \mathrm{AF}:=\sqrt{2 \cdot \mathrm{AB}^{2}} \quad \mathrm{AE}:=\frac{\mathrm{AF}}{9} \cdot 8 \\
& \mathrm{AC}:=\mathrm{AE} \quad \mathrm{AC}=1.257 \\
& \left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}=1.26 \quad \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AD}\right)^{\frac{1}{3}}}{\mathrm{AC}}=1.002
\end{aligned}
\]

I remember a rusty construction for squaring a circle off the base of a right triangle. Here is one more rust pile construction.



\section*{Alternate Method, Power Line.}

Given \(\mathrm{AB}, \mathrm{EF}, \mathrm{BF}\), find the power line intersection on BF. Looking back to 94 , it seems I never derived a formula for it either.
\[
\begin{aligned}
& \mathrm{AB}:=\mathrm{R} 1 \quad \mathrm{BF}:=\mathrm{D} \quad \mathrm{EF}:=\mathrm{R}_{2} \\
& \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{FG}:=\mathrm{EF} \\
& \mathrm{EG}:=\mathrm{EF}+\mathrm{FG} \quad \mathrm{AG}:=\mathrm{AB}+\mathrm{BF}+\mathrm{FG} \mathrm{AH}:=\mathrm{AG} \\
& \mathrm{GJ}:=\mathrm{AG} \quad \mathrm{AP}:=\frac{\mathrm{AG}}{2} \mathrm{CE}:=\mathrm{BF}-(\mathrm{BC}+\mathrm{EF}) \\
& \mathrm{LR}:=\frac{\mathrm{AH} \cdot \mathrm{CE}}{\mathrm{AC}+\mathrm{EG}} \mathrm{PO}:=\mathrm{AP} \quad \mathrm{AK}:=\mathrm{LR} \\
& \mathrm{KL}:=\frac{\mathrm{AC} \cdot(\mathrm{AH}+\mathrm{AK})}{\mathrm{AH}} \mathrm{AR}:=\mathrm{KL} \\
& \mathrm{PR}:=\mathrm{AP}-\mathrm{AR} \quad \mathrm{OQ}:=\mathrm{PR} \quad \mathrm{QR}:=\mathrm{PO} \\
& \mathrm{LQ}:=\mathrm{QR}+\mathrm{LR} \quad \mathrm{DR}:=\frac{\mathrm{OQ} \cdot \mathrm{LR}}{\mathrm{LQ}} \mathrm{AD}:=\mathrm{AR}+\mathrm{DR}
\end{aligned}
\]
\(\mathrm{AD}=25.333\) Plug values in below.
\(\mathrm{R}_{1} \equiv 9 \quad \mathrm{R}_{2} \equiv 1 \quad \mathrm{D} \equiv 30\)
\(\frac{\left(\mathrm{R}_{1}+\mathrm{D}+\mathrm{R}_{2}\right) \cdot\left(\mathrm{D}-\mathrm{R}_{2}+\mathrm{R}_{1}\right)}{2 \cdot \mathrm{D}}=25.333\)


The figure cuts the base line in quad roots. As such it would be another trivial method for doing quad roots, however I am interested in some of the ratio's of the figure instead.

\[
\begin{aligned}
& \mathrm{N}=5 \quad \mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{~N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \\
& \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AG}} \quad \mathrm{AC}:=\left(\mathrm{AB}^{3} \cdot \mathrm{AG}\right)^{\frac{1}{4}} \\
& \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{4}} \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \mathrm{GK}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DK}^{2}} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]

\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}}=2.415\)
\(\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=8.075\)

\[
\frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]

Plug in AG here. AB will become " 1 ".
\(\mathrm{N} \equiv 5\)
\(\frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}}{\mathrm{~N}^{\frac{3}{4}}}=2.415\)
\[
\frac{\mathrm{BK}}{\text { BJ }}=8.075 \quad \mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=8.075
\]
\[
\mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \mathrm{DF}:=\mathrm{AF}-\mathrm{AD} \quad \mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}}
\]
\[
\mathrm{CN}:=\frac{\mathrm{BD} \cdot \mathrm{CD}}{\mathrm{BG}} \mathrm{DP}:=\frac{\mathrm{BD} \cdot \mathrm{DF}}{\mathrm{BG}} \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{5}{4}}+\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=26.132 \quad \frac{\mathrm{BG}}{\mathrm{BM}}=26.132
\]
\[
\mathrm{N}^{\frac{5}{4}}+\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=26.132
\]
\[
\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}=17.475 \quad \frac{\mathrm{BG}}{\mathrm{CN}}=17.475
\]
\[
\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}=17.475
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}=11.686 \frac{\mathrm{BG}}{\mathrm{DP}}=11.686
\]
\[
\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}=11.686
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{3}{4}}=7.815 \quad \frac{\mathrm{BG}}{\mathrm{FQ}}=7.815
\]
\[
\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}+\frac{1}{\mathrm{~N}^{\frac{3}{4}}}=7.815
\]

\(\frac{\mathrm{AG}^{\frac{6}{4}}+\mathrm{AG}^{\frac{4}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{5}{4}}-\mathrm{AB}^{\frac{6}{4}}}=32.665\)
\(\frac{A G}{B M}=32.665 \quad \frac{\mathrm{~N}^{\frac{3}{2}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=32.665\)
\(\begin{array}{ll}\mathrm{AG}^{\frac{5}{4}}+\mathrm{AG}^{\frac{3}{4}} \cdot \mathrm{AB}^{\frac{2}{4}} \\ \mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{4}{4}}-\mathrm{AB}^{\frac{5}{4}} & =21.844 \\ \mathrm{CN} & =21.844 \\ \frac{\mathrm{~N}^{\frac{5}{4}}+\mathrm{N}^{\frac{3}{4}}}{\frac{1}{4}}=21.844 \\ \mathrm{~N}^{\frac{0}{4}}\end{array}\)
\(\frac{\mathrm{AG}^{\frac{4}{4}}+\mathrm{AG}^{\frac{2}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{3}{4}}-\mathrm{AB}^{\frac{4}{4}}}=14.608\)
\(\frac{A G}{D P}=14.608 \quad \frac{\mathrm{~N}+\mathrm{N}^{\frac{2}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=14.608\)
\(\frac{\mathrm{AG}^{\frac{3}{4}}+\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}-\mathrm{AB}^{\frac{3}{4}}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{1}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=9.769\)


If the figure was drawn differently, XC
would be \(\sqrt{\mathrm{XB} \cdot \mathrm{XE} \text {, irregardless of how XB and XE }}\) were placed, however that would require part of the figure that is not given here.
\(\mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{N}}\)
\(\mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \mathrm{BH}:=\sqrt{\mathrm{AB} \cdot \mathrm{BG}}\)
\(\mathrm{AH}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BH}^{2}} \mathrm{AD}:=\mathrm{AH} \quad \mathrm{DG}:=\mathrm{AG}-\mathrm{AD}\)
\(\mathrm{GK}:=\mathrm{DG} \mathrm{GE}:=\frac{\mathrm{GK}^{2}}{\mathrm{AG}} \mathrm{AE}:=\mathrm{AG}-\mathrm{GE}\)
\(\mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)
\(\mathrm{EG}:=\mathrm{AG}-\mathrm{AE} \quad \mathrm{EK}:=\sqrt{\mathrm{AE} \cdot \mathrm{EG}} \quad \mathrm{BL}:=\frac{\mathrm{BE} \cdot \mathrm{BH}}{\mathrm{EK}}\)
\(\mathrm{EL}:=\mathrm{BE}+\mathrm{BL} \quad \mathrm{BC}:=\frac{\mathrm{BL} \cdot \mathrm{BE}}{\mathrm{EL}} \mathrm{AC}:=\mathrm{AB}+\mathrm{BC}\)
Make N any number and watch the equations, then make it equal to 1 and see what
\[
\mathrm{N} \equiv 4
\] happens. Now this is strange work, for the formula is an identity with AC, so what happens at 1? This is an example of Binary contradiction.
\(\mathrm{AC}=2\)
\[
\left[\begin{array}{l}
\mathrm{AB}^{\left(\frac{5}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}} \ldots} \\
\left.+-\mathrm{AB}{ }^{\left(\frac{7}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}}+2 \cdot \mathrm{AB} \cdot \sqrt{\mathrm{BG} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{2}\right)}} \ldots} \begin{array}{l}
+-\mathrm{AB}^{\left(\frac{5}{2}\right)} \cdot \sqrt{\mathrm{BG}-\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \mathrm{BG}^{\left(\frac{3}{2}\right)}} \\
\mathrm{AB}^{\left(\frac{1}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{5}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}} \ldots} \\
+-\mathrm{AB}^{\left(\frac{3}{4}\right)} \cdot(\mathrm{AB}+\mathrm{BG})^{\left(\frac{3}{4}\right)} \cdot \sqrt{2 \cdot \mathrm{AB}+2 \cdot \mathrm{BG}-\sqrt{\mathrm{AB}} \cdot \sqrt{\mathrm{AB}+\mathrm{BG}}+\mathrm{AB}^{\left(\frac{3}{2}\right)} \cdot \sqrt{\mathrm{BG}}+\sqrt{\mathrm{AB} \cdot \mathrm{BG}^{\left(\frac{3}{2}\right)}}}
\end{array}\right]
\end{array}\right]=2
\]


\section*{Pyramid of Ratios, Moving the Point}
\(B R=\) Base Ratio, BS \(=\) Bisector Segments, BI \(=\) Base Index.
\[
\begin{aligned}
& \mathrm{BR} \equiv 4 \quad \mathrm{BS} \equiv 5 \quad \mathrm{BI}:=2 \quad \mathrm{AC}:=\mathrm{BR} \quad \mathrm{AB}:=\frac{\mathrm{AC}}{\mathrm{BR}} \cdot \mathrm{BI} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BG}:=\sqrt{\mathrm{AB} \cdot \mathrm{BC}} \quad \delta:=1 . . \mathrm{BS}-1 \\
& \mathrm{BD}_{\delta}:=\frac{\mathrm{BG}}{\mathrm{BS}} \cdot \delta \quad \mathrm{BF}_{\delta}:=\frac{\mathrm{BC} \cdot \mathrm{BD}_{\delta}}{\mathrm{BG}} \quad \mathrm{AD}_{\delta}:=\sqrt{\mathrm{AB}^{2}+\left(\mathrm{BD}_{\delta}\right)^{2}}
\end{aligned}
\]
\[
\mathrm{AE}_{\delta}:=\frac{\mathrm{AD}_{\delta} \cdot \mathrm{AC}}{\mathrm{AB}+\mathrm{BF}_{\delta}} \quad \mathrm{DE}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{AD}_{\delta}
\]


What is AD. What is BD to \(\sqrt{\mathrm{AB} \cdot \mathrm{DE}}\) ?

\[
\mathrm{AE}:=5.5 \mathrm{AB}:=1.05 \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}
\]
\(A C:=\left(A B^{2} \cdot A E\right)^{\frac{1}{3}} C E:=A E-A C\)
\(\mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BE}} \quad \mathrm{CO}:=\frac{\mathrm{BF} \cdot \mathrm{CE}}{\mathrm{BE}} \mathrm{AO}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CO}^{2}}\)
\(\mathrm{AP}:=\frac{1}{2} \cdot \frac{\mathrm{AO}^{2}}{\mathrm{AC}} \quad \mathrm{AK}:=2 \cdot \mathrm{AP} \quad \mathrm{AD}:=\frac{\mathrm{AC} \cdot \mathrm{AE}}{\mathrm{AK}}\)
\[
\mathrm{DE}:=\mathrm{AE}-\mathrm{AD} \mathrm{BD}:=\mathrm{AD}-\mathrm{AB}
\]
\(\mathrm{AD}=2.807\)
\[
\frac{\mathrm{AE}^{\frac{3}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{2}{3}}+\mathrm{AE}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{3}{3}}}{2 \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{1}{3}}}=2.807
\]

\[
\frac{\mathrm{AB}^{\frac{1}{6}} \cdot \mathrm{AE} \cdot \frac{1}{6} \cdot \sqrt{\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}-\mathrm{AE}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{2}{3}}-\mathrm{AB} \cdot \sqrt{2 \cdot \mathrm{AB}^{\frac{1}{3}}+\mathrm{AE}^{\frac{1}{3}}}}}{\mathrm{AE}+\mathrm{AE}^{\frac{2}{3}} \cdot \mathrm{AB}^{\frac{1}{3}}-2 \cdot \mathrm{AB}}=0.957
\]

The figure cuts the base in Cube Roots and provides some interesting ratios.
\(\mathrm{N}:=10\)

\(\mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2}\)
\(A C:=\left(A B^{2} \cdot A G\right)^{\frac{1}{3}} B C:=A C-A B\)
\(\mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{3}} \mathrm{BF}:=\mathrm{AF}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{BG}-\mathrm{BF}\)
\(\mathrm{HJ}:=\frac{\mathrm{BC} \cdot \mathrm{BG}}{\mathrm{BC}+\mathrm{FG}} \quad \mathrm{BD}:=\mathrm{HJ} \quad \mathrm{DG}:=\mathrm{BG}-\mathrm{BD}\)
\(\mathrm{DJ}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \quad \mathrm{GJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{DG}^{2}} \quad \mathrm{BJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{BD}^{2}}\)
\(\mathrm{GN}:=\frac{\mathrm{GJ} \cdot \mathrm{FG}}{\mathrm{BG}} \quad \mathrm{BM}:=\frac{\mathrm{BJ} \cdot \mathrm{BC}}{\mathrm{BG}}\)
\(\frac{\mathrm{AG}}{\mathrm{AB}}=10 \quad \frac{\mathrm{GN}}{\mathrm{BM}}=10\)
\(\begin{array}{lll}\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}=1.68 & \frac{\mathrm{GJ}}{\mathrm{GN}}=1.68 & \frac{\mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}}{\mathrm{~N}^{\frac{2}{3}}}=1.68 \\ \left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=7.796 & \frac{\mathrm{BJ}}{\mathrm{BM}}=7.796 & \mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=7.796\end{array}\)

\[
\mathrm{CF}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{BP}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{CD}:=\frac{\mathrm{BD} \cdot \mathrm{CF}}{\mathrm{BG}}
\]
\(F R:=\frac{B D \cdot F G}{B G}\)
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{4}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=43.982 \quad \frac{\mathrm{BG}}{\mathrm{BP}}=43.982
\]
\[
\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=43.982
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}=20.415
\]
\[
\frac{\mathrm{BG}}{\mathrm{CD}}=20.415
\]
\[
\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}=20.415
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}=9.476
\]
\[
\frac{\mathrm{BG}}{\mathrm{FR}}=9.476
\]
\[
\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}+\frac{1}{\mathrm{~N}^{\frac{2}{3}}}=9.476
\]

\(\frac{\mathrm{AG}^{\frac{5}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}}{\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{4}{3}}-\mathrm{AB}^{\frac{5}{3}}}=48.869\)
\(\frac{\mathrm{AG}^{\frac{4}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}}{\frac{1}{4}}=22.683\) \(\frac{\mathrm{AG}}{\mathrm{CD}}=22.683 \quad \frac{\mathrm{~N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(A G^{3} \cdot A B-A B^{3}\)
\(\frac{A G+A B^{\frac{2}{3}} \cdot A G^{\frac{1}{3}}}{A G^{\frac{1}{3}} \cdot A B^{\frac{2}{3}}-A B}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{FR}}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{BP}}=48.869\)
\(\frac{\mathrm{N}^{\frac{5}{3}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=48.869\)
\(\frac{\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(\frac{\mathrm{N}+\mathrm{N}^{\frac{1}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=10.528\)



Given \(A D\) and \(A B\) on \(A D\), place a right triangle on BD as base such that the opposite sides are in the ratio of AB to AD .
\[
\begin{aligned}
& \mathrm{BD}:=8 \quad \mathrm{AB}:=2 \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{BC}:=\frac{\mathrm{BD}}{2} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CF}:=\mathrm{BC} \\
& \mathrm{CI}:=\mathrm{BC} \quad \mathrm{CH}:=\mathrm{BC} \quad \mathrm{AE}:=\mathrm{BC} \\
& \mathrm{CE}:=\sqrt{\mathrm{AC}^{2}+\mathrm{AE}^{2}} \quad \mathrm{CG}:=\frac{\mathrm{CH}^{2}}{\mathrm{CE}} \\
& \mathrm{GH}:=\sqrt{\mathrm{CH}^{2}-\mathrm{CG}^{2}} \quad \mathrm{FH}:=2 \cdot \mathrm{GH} \quad \mathrm{FI}:=\mathrm{CF}+\mathrm{CI} \\
& \mathrm{HI}:=\sqrt{\mathrm{FI}^{2}-\mathrm{FH}^{2}} \quad \mathrm{AI}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CI}} \\
& \mathrm{AH}:=\mathrm{AI}-\mathrm{HI} \quad \mathrm{AO}:=\frac{\mathrm{AC} \cdot \mathrm{AH}}{\mathrm{AI}} \mathrm{HO}:=\frac{\mathrm{CI} \cdot \mathrm{AO}}{\mathrm{AC}} \\
& \mathrm{BO}:=\mathrm{AO}-\mathrm{AB} \quad \mathrm{DO} \\
& \mathrm{AD} \\
& \mathrm{BD}-\mathrm{BO} \\
& \mathrm{DH}:=\sqrt{\mathrm{DO}^{2}+\mathrm{HO}^{2}} \mathrm{BH}:=\sqrt{\mathrm{BO}^{2}+\mathrm{HO}^{2}}
\end{aligned}
\]
\[
\frac{\mathrm{DH}}{\mathrm{BH}}=5 \quad \frac{\mathrm{AD}}{\mathrm{AB}}=5
\]

Given a straight edge and compass, AB and BD find the sum of six cubes divided by the sum of five squares.
\[
\frac{2 \cdot \mathrm{AB}^{3}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{BD}+\mathrm{AB} \cdot \mathrm{BD}^{2}}{2 \cdot \mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BD}+\mathrm{BD}^{2}}=2.308 \quad \mathrm{AO}=2.308
\]


Given AF and AB on AF and a right triangle on BF divide the sides of the triangle such that a section on one side is to the other as AB is to AF .

Now it can be realized that there are stipulations as to possible placements of the given triangle.
\[
\begin{aligned}
& \mathrm{AB}:=3 \quad \mathrm{BF}:=10 \quad \mathrm{BC}:=1 \\
& \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \\
& \text { DOABLE }:=\frac{2 \cdot \mathrm{AB}^{3}+3 \cdot \mathrm{AB}^{2} \cdot \mathrm{BF}+\mathrm{AB} \cdot \mathrm{BF}^{2}}{2 \cdot \mathrm{AB}^{2}+2 \cdot \mathrm{AB} \cdot \mathrm{BF}+\mathrm{BF}^{2}} \leq \mathrm{AC}<\mathrm{AE} \\
& \text { DOABLE }=1 \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \\
& \mathrm{CF}:=\mathrm{BF}-\mathrm{BC} \quad \mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{EJ}:=\mathrm{BE} \\
& \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \quad \mathrm{JH}:=\sqrt{\mathrm{CE}^{2}+(\mathrm{CH}+\mathrm{EJ})^{2}} \\
& \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{EJ}}{\mathrm{EJ}+\mathrm{CH}} \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \\
& \mathrm{JD}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EJ}^{2}} \quad \mathrm{DG}:=\frac{\mathrm{DE} \cdot \mathrm{AD}}{\mathrm{JD}} \\
& \mathrm{AG}:=\sqrt{\mathrm{AD}^{2}-\mathrm{DG}^{2}} \mathrm{GH}:=\mathrm{JH}-(\mathrm{JD}+\mathrm{DG}) \\
& \mathrm{HK}:=\sqrt{2 \cdot \mathrm{GH}^{2}} \quad \mathrm{BH}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CH}^{2}} \quad \mathrm{HL}:=\mathrm{HK} \\
& \mathrm{BK}:=\mathrm{BH}-\mathrm{HK} \mathrm{FH}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CH}^{2}} \\
& \text { FL := FH - HL }
\end{aligned}
\]

\(\left(\frac{\mathrm{AE}}{\mathrm{AB}}\right)^{\frac{1}{2}}=1.2649 \quad \frac{\mathrm{AE}}{\mathrm{AB}}=1.6\)

Projecting from KL or HJ is productive, can I find any other productive points?
\[
\begin{aligned}
& \mathrm{AB}:=5 \quad \mathrm{BE}:=3 \quad \mathrm{BK}:=\mathrm{BE} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \\
& \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}} \mathrm{HI}:=\mathrm{BD} \quad \mathrm{IJ}:=\mathrm{BD} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}
\end{aligned}
\]
\(\Delta:=2 \quad \delta:=1 . . \Delta\)
\[
\begin{aligned}
& \mathrm{BH}_{\delta}:=\frac{\mathrm{BK}}{\Delta} \cdot \delta \quad \mathrm{Ha}_{\delta}:=\frac{\mathrm{BH}_{\delta} \cdot \mathrm{HI}}{\mathrm{BC}} \quad \mathrm{EJ}_{\delta}:=\mathrm{BH}_{\delta} \\
& \mathrm{Ba}_{\delta}:=\mathrm{Ha}_{\delta}+\mathrm{BD} \quad \mathrm{Bb}_{\delta}:=\frac{\left(\mathrm{BH}_{\delta}\right)^{2}}{\mathrm{Ba}_{\delta}} \quad \mathrm{Jc}_{\delta}:=\frac{\mathrm{EJ}_{\delta} \cdot \mathrm{IJ}}{\mathrm{CE}}
\end{aligned}
\]
\[
\mathrm{Ec}_{\delta}:=\mathrm{Jc}_{\delta}+\mathrm{BD} \quad \mathrm{Ed}_{\delta}:=\frac{\left(\mathrm{EJ}_{\delta}\right)^{2}}{\mathrm{Ec}_{\delta}} \quad \mathrm{Ef}_{\delta}:=\mathrm{Bb}_{\delta}
\]
\[
\mathrm{df}_{\delta}:=\mathrm{Ed}_{\delta}-\mathrm{Ef}_{\delta} \quad \mathrm{Ge}_{\delta}:=\mathrm{df}_{\delta} \quad \mathrm{Fb}_{\delta}:=\frac{\mathrm{HI} \cdot \mathrm{BH}_{\delta}}{\mathrm{Ba}_{\delta}}
\]
\[
\mathrm{Gd}_{\delta}:=\frac{\mathrm{IJ} \cdot \mathrm{EJ}_{\delta}}{\mathrm{Ec}_{\delta}} \quad \mathrm{ef}_{\delta}:=\mathrm{Gd}_{\delta} \quad \mathrm{Fe}_{\delta}:=\mathrm{BE}-\left(\mathrm{ef}_{\delta}+\mathrm{Fb}_{\delta}\right)
\]
\[
\mathrm{Gg}_{\delta}:=\mathrm{Ed}_{\delta} \quad \mathrm{Og}_{\delta}:=\frac{\mathrm{Fe}_{\delta} \cdot \mathrm{Gg}_{\delta}}{\mathrm{Ge}_{\delta}} \quad \mathrm{Eg}_{\delta}:=\mathrm{ef}_{\delta}
\]
\[
\mathrm{EO}_{\delta}:=\mathrm{Og}_{\delta}+\mathrm{Eg}_{\delta} \mathrm{BO}_{\delta}:=\mathrm{EO}_{\delta}-\mathrm{BE}
\]

I have not found any.


The power line for cube root abstraction is developed off from a simple curve.
\(\mathrm{AB}:=33 \quad \mathrm{BE}:=11 \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BE}\)
\(\mathrm{R}_{1}:=\frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AB}}{2} \quad \mathrm{R}_{2}:=\frac{\left.\mathrm{AE}-(\mathrm{AB} \cdot \mathrm{AE})^{2}\right)^{\frac{1}{3}}}{2}\)
\(D:=\left[\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-\left(A B^{2} \cdot A E\right)^{\frac{1}{3}}\right]+R_{1}+R_{2}\)
\(\mathrm{BC}:=\frac{\left(\mathrm{R}_{1}+\mathrm{D}+\mathrm{R}_{2}\right) \cdot\left(\mathrm{D}-\mathrm{R}_{2}+\mathrm{R}_{1}\right)}{2 \cdot \mathrm{D}}\)
\(\mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{AC}:=\mathrm{BC}+\mathrm{AB} \quad \mathrm{DM}:=\mathrm{BD}\)
The formula for the power line ( BC ) was given in 01_08_96.MCD
\(\mathrm{DL}:=\mathrm{BD} \quad \mathrm{CM}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DM}^{2} \quad \mathrm{ML}}:=\mathrm{DM}+\mathrm{DL}\)
\(\mathrm{MK}:=\frac{\mathrm{DM} \cdot \mathrm{ML}}{\mathrm{CM}} \mathrm{CK}:=\mathrm{MK}-\mathrm{CM} \quad \mathrm{CJ}:=\frac{\mathrm{CK}}{2}\)

\(\mathrm{JG}:=\mathrm{CJ} \quad \mathrm{JM}:=\mathrm{CM}+\mathrm{CJ} \quad \mathrm{BM}:=\sqrt{2 \cdot \mathrm{~B}}\)
\(\mathrm{GM}:=\mathrm{BM} \quad \mathrm{FJ}:=\frac{\mathrm{JG}^{2}}{\mathrm{JM}} \quad \mathrm{FM}:=\mathrm{JM}-\mathrm{FJ}\)
\(\mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \quad \mathrm{HM}:=\frac{\mathrm{CM} \cdot \mathrm{FM}}{\mathrm{DM}}\)
\(\mathrm{DH}:=\mathrm{HM}-\mathrm{DM} \quad \mathrm{AH}:=\sqrt{\mathrm{DH}^{2}+\mathrm{AD}^{2}}\)
\(\mathrm{CF}:=\mathrm{FM}-\mathrm{CM} \quad \mathrm{FH}:=\frac{\mathrm{CD} \cdot \mathrm{HM}}{\mathrm{CM}}\)
\(\mathrm{AF}_{1}:=\mathrm{AH}-\mathrm{FH} A \mathrm{AF}_{2}:=\sqrt{\mathrm{AC}^{2}-\mathrm{CF}^{2}}\)
\(A F_{1}-A F_{2}=0\)

Trivial Method; Square Root
\(\mathrm{N}:=9003\)
\(\mathrm{AE}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AE}}{\mathrm{N}} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2}\)
\(\mathrm{DG}:=\mathrm{BD} \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \quad \mathrm{AG}:=\sqrt{\mathrm{AD}^{2}+\mathrm{DG}^{2}}\)
\(\mathrm{BG}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DG}^{2}} \quad \mathrm{FG}:=\mathrm{BG} \quad \mathrm{AF}:=\sqrt{\mathrm{AG}^{2}-\mathrm{FG}^{2}}\)
\(\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}}\)
\(\mathrm{AC}-\mathrm{AF}=0\)
\(\mathrm{AF}=94.884\)
\(\mathrm{AC}=94.884\)

\section*{01/24/96 Tangent}

The tangent from any point outside a circle is equal to the square root of the difference to the circle and that difference plus the diameter of the circle.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A E}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathbf{D M}:=\mathbf{B D} \quad \mathbf{D H}:=\mathbf{B D} \quad \mathbf{C D}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{A D}} \\
& \mathbf{B C}:=\mathbf{B D}-\mathbf{C D} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \\
& \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{A J}:=\sqrt{(\mathbf{A B}+\mathbf{B C})^{2}+\mathbf{C J}}
\end{aligned}
\]
\[
\sqrt{(\mathbf{A B}+\mathbf{B C})^{2}+\mathbf{C J}^{2}}-\sqrt{\mathbf{A B} \cdot \mathbf{A E}}=\mathbf{0}
\]

Given a point on BG, project to the point of cubic similarity.

\(\mathrm{BG}:=100 \mathrm{BD}:=49 \quad \mathrm{BE}:=\frac{\mathrm{BG}}{2}\)
\(\mathrm{EG}:=\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD} \quad \mathrm{EP}:=\mathrm{BE}\)
\(\mathrm{EJ}:=\mathrm{BE} \quad \mathrm{DP}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EP}^{2}} \mathrm{JP}:=\mathrm{EP}+\mathrm{EJ}\)
\(\mathrm{HP}:=\frac{\mathrm{EP} \cdot \mathrm{JP}}{\mathrm{DP}}\) DH \(:=\mathrm{HP}-\mathrm{DP} \quad \mathrm{CD}:=\frac{\mathrm{DH}}{2}\)
\(\mathrm{CP}:=\mathrm{DP}+\mathrm{CD} \quad \mathrm{CF}:=\frac{\mathrm{DE} \cdot \mathrm{CP}}{\mathrm{DP}} \quad \mathrm{FP}:=\frac{\mathrm{EP} \cdot \mathrm{CP}}{\mathrm{DP}}\)
\(\mathrm{EF}:=\mathrm{FP}-\mathrm{EP} \quad \mathrm{FJ}:=\mathrm{EJ}-\mathrm{EF} \quad \mathrm{CJ}:=\sqrt{\mathrm{CF}^{2}+\mathrm{FJ}^{2}}\)
\(\mathrm{JM}:=\frac{\mathrm{FJ} \cdot \mathrm{JP}}{\mathrm{CJ}} \mathrm{JN}:=\frac{\mathrm{FJ} \cdot \mathrm{JM}}{\mathrm{CJ}} \mathrm{NP}:=\mathrm{JP}-\mathrm{JN}\)
\(\mathrm{MP}:=\frac{\mathrm{CF} \cdot \mathrm{JP}}{\mathrm{CJ}} \quad \mathrm{AP}:=\frac{\mathrm{MP} \cdot \mathrm{EP}}{\mathrm{NP}} \mathrm{MN}:=\frac{\mathrm{CF} \cdot \mathrm{JM}}{\mathrm{CJ}}\)
\(\frac{\mathrm{BG}^{4}-3 \cdot \mathrm{BG}^{3} \cdot \mathrm{BD}+3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}^{2}-\mathrm{BD}^{3} \cdot \mathrm{BG}}{\mathrm{BG}^{3}-3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}+3 \cdot \mathrm{BG}^{2} \cdot \mathrm{BD}^{2}-2 \cdot \mathrm{BD}^{3}}=884.222 \quad \mathrm{AE}:=\frac{\mathrm{MN} \cdot \mathrm{AP}}{\mathrm{MP}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}\)
\[
\mathrm{AG}=884.222
\]
\[
\frac{\mathrm{BG} \cdot\left[(\mathrm{AG}-\mathrm{BG})^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}+\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{BG}-\mathrm{AG}^{\frac{4}{3}}-\mathrm{BG} \cdot(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}}+(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}} \cdot \mathrm{AG}\right]}{(\mathrm{AG}-\mathrm{BG})^{\frac{1}{3}} \cdot(2 \cdot \mathrm{AG}-\mathrm{BG})}-\mathrm{BD}=0
\]


One may be tempted to state the obvious, \(\frac{A^{N+1}}{A^{N}}:=A\), but what is not so obvious at first blush is that the processes themselves are assigned dimensional values. This has significance when using mathematics to theorize dimensions beyond three. Dimensions are so generally defined that processes are legitimate dimensional differences, but it is also impossible to defend mathematical theory about dimensions as objective. It becomes a point of Philosophical Mystic contemplation to realize that relationships concerning a single dimensional object and several processes adding dimensionally to the whole, is true of a multidimensional object without those processes!

Linear division \(\frac{2 \cdot(\mathrm{~A}+\mathrm{B})}{\mathrm{A}}\)
\(\mathrm{BR}:=\frac{1}{4} \quad \mathrm{BS}:=3\)
\(\mathrm{AD}:=\frac{\mathrm{BR}}{\mathrm{BR}} \quad \mathrm{AG}:=\mathrm{AD} \cdot \mathrm{BR} \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2}\)
\(\mathrm{BF}:=\mathrm{AB} \cdot \mathrm{BS} \quad \mathrm{Ba}:=\frac{\mathrm{AB} \cdot \mathrm{BF}}{\mathrm{AG}} \mathrm{BD}:=\mathrm{AB}\)
\(\mathrm{Da}:=\mathrm{BD}+\mathrm{Ba} \mathrm{Bb}:=\frac{\mathrm{Ba} \cdot \mathrm{BD}}{\mathrm{Da}} \mathrm{Db}:=\mathrm{BD}-\mathrm{Bb}\)
\(\mathrm{Eb}:=\frac{\mathrm{BF} \cdot \mathrm{Db}}{\mathrm{BD}} \quad \mathrm{DH}:=\mathrm{AG}\)
\(\mathrm{DC}:=\frac{\mathrm{Db} \cdot \mathrm{DH}}{\mathrm{DH}+\mathrm{Eb}} \quad \frac{\mathrm{AD}}{\mathrm{DC}}=26\)
\(\frac{2 \cdot(\mathrm{BR}+\mathrm{BS})}{\mathrm{BR}}=26\)

Hitting JG from any BN while maintaining complimentary roots.

\[
\begin{aligned}
& \mathrm{AB}:=2 \quad \mathrm{BD}:=5 \quad \mathrm{BO}:=\frac{\mathrm{BD}}{2} \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD} \\
& \mathrm{DO}:=\mathrm{BO} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AD} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB}} \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CD}} \quad \mathrm{CO}:=\mathrm{BO}-\mathrm{BC} \\
& \mathrm{~N}:=7 \quad \mathrm{OP}:=\mathrm{BO} \cdot \mathrm{~N} \quad \mathrm{BN}:=\mathrm{OP} \quad \mathrm{DM}:=\mathrm{OP} \\
& \mathrm{NP}:=\mathrm{BO} \quad \mathrm{MP}:=\mathrm{BO} \quad \mathrm{EO}:=\frac{\mathrm{CO} \cdot \mathrm{OP}}{\mathrm{OP}+\mathrm{CG}} \\
& \mathrm{CE}:=\mathrm{CO}-\mathrm{EO} \quad \mathrm{EF}:=\frac{\mathrm{OP} \cdot \mathrm{CE}}{\mathrm{CO}} \quad \mathrm{GO}:=\mathrm{BO} \\
& \mathrm{CJ}:=\frac{\mathrm{CG}}{\mathrm{CO}} \quad \mathrm{EJ}:=\mathrm{CJ}+\mathrm{CE} \quad \mathrm{Ca}:=\frac{\mathrm{EJ} \cdot \mathrm{CG}}{\mathrm{EF}} \\
& \mathrm{DJ}:=\mathrm{CD}+\mathrm{CJ} \quad \mathrm{Da}:=\mathrm{CD}+\mathrm{Ca} \quad \mathrm{JY}:=\frac{\mathrm{Ca} \cdot \mathrm{DJ}}{\mathrm{Da}} \\
& \mathrm{KY}:=\frac{\mathrm{EF} \cdot \mathrm{JY}}{\mathrm{EJ}} \mathrm{JK}:=\sqrt{\mathrm{JY}}+\mathrm{KY} \quad \mathrm{JG}:=\sqrt{\mathrm{CJ}}+\mathrm{CG}^{2}
\end{aligned}
\]
\[
\mathrm{GP}:=\sqrt{\mathrm{CO}^{2}+(\mathrm{OP}+\mathrm{CG})^{2}} \mathrm{EP}:=\sqrt{\mathrm{EO}^{2}+\mathrm{OP}^{2}}
\]
\[
\mathrm{ET}:=\frac{\mathrm{EO} \cdot \mathrm{EF}}{\mathrm{OP}} \mathrm{JT}:=\mathrm{EJ}+\mathrm{ET} \quad \mathrm{FT}:=\sqrt{\mathrm{ET}^{2}+\mathrm{EF}^{2}}
\]
\[
\mathrm{EG}:=\mathrm{GP}-\mathrm{EP} \mathrm{EQ}:=\frac{\mathrm{FT} \cdot \mathrm{EJ}}{\mathrm{JT}} \quad \mathrm{GQ}:=\mathrm{EG}-\mathrm{EQ}
\]
\[
\mathrm{KL}:=2 \cdot \mathrm{GQ} \quad \mathrm{JL}:=\mathrm{JK}-\mathrm{KL}
\]
\[
\mathrm{DY}:=\mathrm{DJ}-\mathrm{JY} \quad \mathrm{CS}:=\frac{\mathrm{DY} \cdot \mathrm{CG}}{\mathrm{DM}} \quad \mathrm{JS}:=\mathrm{CS}+\mathrm{CJ}
\]
\[
\mathrm{YR}:=\frac{\mathrm{CS} \cdot \mathrm{JY}}{\mathrm{JS}} \quad \mathrm{JR}:=\mathrm{JY}-\mathrm{YR} \quad \mathrm{HR}:=\frac{\mathrm{CG} \cdot \mathrm{JR}}{\mathrm{CJ}}
\]
\[
\mathrm{AJ}:=\mathrm{CJ}-\mathrm{AC} \quad \mathrm{JX}:=\frac{\mathrm{JY} \cdot \mathrm{JL}}{\mathrm{JK}}
\]
\[
\mathrm{BR}_{1}:=\mathrm{JR}-(\mathrm{AJ}+\mathrm{AB}) \mathrm{BX}:=\mathrm{JX}-(\mathrm{AJ}+\mathrm{AB})
\]
\[
\mathrm{BR}_{2}:=\frac{\mathrm{BX} \cdot(\mathrm{BN}+\mathrm{HR})}{\mathrm{BN}}
\]
\[
\mathrm{BR}_{2}-\mathrm{BR}_{1}=0
\]




Given \(B F\) and \(B C\) such that \(\sqrt{(A B+B F) \cdot A B}=A B+B C\), find \(A B\). It is obvious from the construction that answers are obtainable when \(B C\) is less than \(1 / 2\) of \(B F\).
\[
\begin{aligned}
& \Delta:=5 \quad \delta:=1 . . \Delta-1 \mathrm{BE}:=5 \quad \mathrm{BF}:=\mathrm{BE} \cdot 2 \\
& \mathrm{BC}_{\delta}:=\frac{\mathrm{BE}}{\Delta} \cdot \delta \quad \mathrm{CE}_{\delta}:=\mathrm{BE}-\mathrm{BC}_{\delta} \quad \mathrm{EG}:=\mathrm{BE} \\
& \mathrm{CJ}:=\mathrm{BE}^{2} \mathrm{EJ}_{\delta}:=\sqrt{\left(\mathrm{CE}_{\delta}\right)^{2}+\mathrm{CJ}^{2}} \mathrm{DH}:=\frac{\mathrm{CJ}}{2} \\
& \mathrm{DE}_{\delta}:=\frac{\mathrm{CE}_{\delta}}{2} \mathrm{AD}_{\delta}:=\frac{\mathrm{DH}^{2}}{\mathrm{DE}_{\delta}} \mathrm{AE}_{\delta}:=\mathrm{AD}_{\delta}+\mathrm{DE}_{\delta} \\
& \mathrm{AC}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{CE}_{\delta} \quad \mathrm{AJ}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}+\mathrm{CJ}^{2}} \\
& \mathrm{GJ}_{\delta}:=\sqrt{\left(\mathrm{EJ}_{\delta}\right)^{2}-\mathrm{EG}^{2}} \quad \mathrm{AB}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{BE} \\
& \mathrm{AF}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BF}
\end{aligned}
\]
\[
\begin{array}{lll}
{\left[\frac{1}{2} \cdot \frac{\mathrm{BE}}{\Delta} \cdot \delta \cdot \frac{(-2 \cdot \Delta+\delta)}{(-\Delta+\delta)}\right]-\mathrm{AC}_{\delta}} & \mathrm{GJ}_{\delta}-\mathrm{CE}_{\delta} & \mathrm{AB}_{\delta}+\mathrm{BC}_{\delta}-\sqrt{\mathrm{AB}_{\delta} \cdot(\mathrm{AB}+\mathrm{BF})_{\delta}} \\
\begin{array}{lll}
0 & & 0 \\
\hline 0 \\
\hline 0 & \frac{0}{0} & \frac{0}{0} \\
\hline 0 & \frac{0}{0} & \frac{0}{0} \\
\hline 0 & 0 &
\end{array}
\end{array}
\]
\[
\mathrm{A}:=\frac{\mathrm{BF}}{2} \quad \mathrm{~B}:=\mathrm{BC}_{2} \quad \frac{2 \cdot \mathrm{~A} \cdot \mathrm{~B}-\mathrm{B}^{2}}{2 \cdot \mathrm{~A}-2 \cdot \mathrm{~B}}-\left(\mathrm{AB}_{2}+\mathrm{BC}_{2}\right)=0
\]
\[
\sqrt{\left(\mathrm{AB}_{2}+\mathrm{BF}\right) \cdot \mathrm{AB}_{2}}-\left(\mathrm{AB}_{2}+\mathrm{BC}_{2}\right)=0
\]
\(\underline{\mathrm{BF} \cdot \mathrm{BC}_{2}-\left(\mathrm{BC}_{2}\right)^{2}}-\) \(\mathrm{BF}-2 \cdot \mathrm{BC}_{2}\)


Use iteration to find any root pair for BE.
Remember that when N is set to 2 , we have cube roots.
\[
\begin{aligned}
& \mathrm{CI}:=1 \quad \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{GI}:=\mathrm{CG} \quad \mathrm{BC}:=1 \\
& \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \quad \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EK}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EG}:=\mathrm{CG}-\mathrm{CE} \\
& \mathrm{AE}:=\frac{\mathrm{EK}^{2}}{\mathrm{EG}} \quad \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AG}:=\mathrm{AC}+\mathrm{CG} \\
& \mathrm{~N}:=2 \quad \mathrm{GN}:=\mathrm{CG} \cdot \mathrm{~N} \quad \mathrm{IO}:=\mathrm{GN} \quad \mathrm{CM}:=\mathrm{GN} \\
& \Delta:=40 \quad \delta:=0 . . \Delta
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AK}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EK}^{2}} \mathrm{AL}:=\sqrt{\left(\mathrm{AF}_{\Delta}\right)^{2}+\left(\mathrm{FL}_{\Delta}\right)^{2}} \quad \mathrm{AJ}:=\frac{\mathrm{AK}^{2}}{\mathrm{AL}} \quad \mathrm{AQ}:=\frac{\mathrm{AF}_{\Delta} \cdot \mathrm{AJ}}{\mathrm{AL}} \mathrm{CQ}:=\mathrm{AQ}-\mathrm{AC} \\
& \mathrm{IQ}:=\mathrm{CI}-\mathrm{CQ} \quad \mathrm{JQ}:=\sqrt{\mathrm{CQ} \cdot \mathrm{IQ}} \mathrm{CD}:=\frac{\mathrm{CQ} \cdot \mathrm{CM}}{\mathrm{CM}+\mathrm{JQ}} \quad \mathrm{HI}:=\frac{\mathrm{IQ} \cdot \mathrm{IO}}{\mathrm{IO}+\mathrm{JQ}} \quad \mathrm{DH}:=\mathrm{CI}-(\mathrm{CD}+\mathrm{HI}) \\
& \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{BH}:=\mathrm{BC}+\mathrm{CD}+\mathrm{DH} \frac{\mathrm{DH}}{\sqrt{\mathrm{CD} \cdot \mathrm{HI}}}=1 \quad \mathrm{BE}-\sqrt{\mathrm{BD} \cdot \mathrm{BH}}=0.000000000000000
\end{aligned}
\]

The next two equations are for the Delian Problem only.
\(\left(\mathrm{BC}^{2} \cdot \mathrm{BI}\right)^{\frac{1}{3}}-\mathrm{BD}=0.000000000000000 \quad\left({\left.\mathrm{BC} \cdot \mathrm{BI}^{2}\right)^{\frac{1}{3}}-\mathrm{BH}=0.00000000000000000000}\right.\)
\[
\begin{aligned}
\mathrm{BD} & =1.259921049894873 & 2^{\frac{1}{3}} & =1.259921049894873 \\
\mathrm{BH} & =1.587401051968199 & 4^{\frac{1}{3}} & =1.587401051968199
\end{aligned}
\]




The problem as stated was to duplicate the altar of Apollo. The solution demanded was material and not theoretical, and therefore has been solved by a finite number of steps. The next step is to solve it theoretically. That solution alone will conquer contiguous domains and will satisfy the purist.


Does every \(n^{\text {th }}\) root series have at least one square root pair?
\[
\begin{aligned}
& \mathrm{n}:=5 \quad \delta:=0 \cdot \cdot \frac{n}{2} \\
& \mathrm{~A}:=3 \quad \mathrm{~B}:=10 \\
& \sqrt{\left(\mathrm{~A}^{\mathrm{n}-1} \cdot \mathrm{~B}^{1}\right)^{\frac{1}{n}} \cdot\left(\mathrm{~A}^{1} \cdot \mathrm{~B}^{\mathrm{n}-1}\right)^{\frac{1}{n}}-\sqrt{\mathrm{A} \cdot \mathrm{~B}}=0} \\
& \sqrt{\left(\mathrm{~A}^{\mathrm{n}-\delta} \cdot \mathrm{B}^{\delta}\right)^{\frac{1}{n}} \cdot\left(\mathrm{~A}^{\delta} \cdot \mathrm{B}^{\mathrm{n}-\delta}\right)^{\frac{1}{n}}-\sqrt{\mathrm{A} \cdot \mathrm{~B}}} \\
& \frac{0}{\frac{0}{0}} \\
& \hline 0
\end{aligned}
\]

Because of it's long projection, the last vertices is not drawn. A root series has as many vertices on a circle as it has square root pairs, and it has the greater whole of \(n / 2\) vertices where \(n\) is the root series denominator.


\section*{Method for Unequals}

Given three circles in the said configuration, find the fourth.
I had this sketched out in 95, but if I put it there I would have a lot of document links to redo in "The Quest."

\(\mathrm{AO}:=5 \quad \mathrm{AG}:=1 \quad \mathrm{BH}:=3 \quad \mathrm{AB}:=2 \cdot \mathrm{AO}\)
\(\mathrm{BO}:=\mathrm{AO} \quad \mathrm{CG}:=\mathrm{AG} \mathrm{GI}:=\mathrm{AG} \quad \mathrm{HJ}:=\mathrm{BH}\)
\(\mathrm{DH}:=\mathrm{BH} \quad \mathrm{GH}:=\mathrm{AB}-(\mathrm{AG}+\mathrm{BH}) \quad \mathrm{HK}:=\mathrm{GI}\)
\(\mathrm{JK}:=\mathrm{HJ}-\mathrm{HK}\)

\(\mathrm{HS}:=\frac{\mathrm{GH} \cdot \mathrm{HJ}}{\mathrm{JK}} \mathrm{AH}:=\mathrm{AB}-\mathrm{BH}\) \(\mathrm{AS}:=\mathrm{HS}-\mathrm{AH} \quad \mathrm{OS}:=\mathrm{AO}+\mathrm{AS}\)
\(\mathrm{SL}:=\frac{\mathrm{OS}}{2} \mathrm{MO}:=\mathrm{AO} \mathrm{MS}:=\sqrt{\mathrm{OS}^{2}-\mathrm{MO}^{2}}\)
\(\mathrm{MN}:=\frac{\mathrm{MO} \cdot \mathrm{MS}}{\mathrm{OS}} \mathrm{NS}:=\frac{\mathrm{MS} \cdot \mathrm{MN}}{\mathrm{MO}}\)
AN \(:=\mathrm{NS}-\mathrm{AS} \mathrm{ON}:=\mathrm{AO}-\mathrm{AN}\)
\(\mathrm{BN}:=\mathrm{AB}-\mathrm{AN} \quad \mathrm{AM}:=\sqrt{\mathrm{MN}^{2}+\mathrm{AN}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB} \quad \mathrm{BF}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AG}\)
\(\mathrm{BD}:=2 \cdot \mathrm{BH} \quad \mathrm{CD}:=\mathrm{AB}-(\mathrm{AC}+\mathrm{BD})\)
\(\mathrm{PQ}:=\frac{\mathrm{AE} \cdot \mathrm{CD}}{(\mathrm{AC}+\mathrm{BD})} \quad \mathrm{OU}:=\mathrm{PQ}\)
\(\mathrm{CQ}:=\frac{\mathrm{AC} \cdot \mathrm{PQ}}{\mathrm{AE}} \mathrm{AQ}:=\mathrm{AC}+\mathrm{CQ}\)

\(\mathrm{OQ}:=\mathrm{AO}-\mathrm{AQ}\) OT \(:=\mathrm{AO}\)
\(\mathrm{TU}:=\mathrm{OT}+\mathrm{OU} \quad \mathrm{OR}:=\frac{\mathrm{OQ} \cdot \mathrm{OT}}{\mathrm{TU}}\)
\(\mathrm{RV}:=\frac{\mathrm{MN} \cdot \mathrm{OR}}{\mathrm{ON}} \mathrm{BR}:=\mathrm{BO}+\mathrm{OR}\)
\(\mathrm{RW}:=\frac{\mathrm{MN} \cdot \mathrm{BR}}{\mathrm{BN}} \quad \mathrm{AR}:=\mathrm{AO}-\mathrm{OR}\)
\(\mathrm{Ra}:=\frac{\mathrm{AR} \cdot \mathrm{RW}}{\mathrm{RV}} \mathrm{XY}:=\frac{\mathrm{RW} \cdot \mathrm{AB}}{\mathrm{BR}+\mathrm{Ra}}\)
\(\mathrm{Zb}:=\mathrm{XY} \quad \mathrm{OZ}:=\frac{\mathrm{MO} \cdot \mathrm{Zb}}{\mathrm{MN}}\)
\(\mathrm{MZ}:=\mathrm{MO}-\mathrm{OZ} \quad \mathrm{MZ}=1.818\)

\[
\mathrm{MZ}=1.818
\]
\(\frac{\mathrm{AB}^{3}-2 \cdot \mathrm{AB}^{2} \cdot \mathrm{AG}-2 \cdot \mathrm{AB}^{2} \cdot \mathrm{BH}+4 \cdot \mathrm{AB} \cdot \mathrm{BH} \cdot \mathrm{AG}}{2 \cdot \mathrm{AB}^{2}-8 \cdot \mathrm{BH} \cdot \mathrm{AG}}=1.818\)

Neither in the process, nor in the Algebraic name. is the order of AG and BH recognized. Neither does it matter if they intersect.


\section*{On Gemini Roots}


\(\mathrm{IL}:=\sqrt{\mathrm{DI}^{2}-\mathrm{DL}^{2}} \mathrm{CO}:=\frac{\mathrm{GL} \cdot \mathrm{CH}}{\mathrm{IL}}\)
\(\mathrm{NP}:=\frac{\mathrm{CH} \cdot \mathrm{EG}}{(\mathrm{CO}+\mathrm{CE})} \quad \mathrm{EP}:=\frac{\mathrm{CE} \cdot \mathrm{NP}}{\mathrm{CH}}\) \(\mathrm{CQ}:=\frac{\mathrm{IL} \cdot \mathrm{CG}}{\mathrm{GL}} \quad \mathrm{CR}:=\frac{\mathrm{BC} \cdot \mathrm{CQ}}{\mathrm{CH}}\) GR \(:=\mathrm{CG}-\mathrm{CR} \quad \mathrm{BS}:=\frac{\mathrm{CR} \cdot \mathrm{BG}}{\mathrm{GR}}\)

\(\delta:=1 . .100\)
\(\mathrm{E}_{\delta}:=\frac{\mathrm{BE}}{\delta} \quad \mathrm{BT}_{\delta}:=\mathrm{E}_{\delta} \mathrm{EV}_{\delta}:=\mathrm{E}_{\delta}\)
\[
\mathrm{TW}_{\delta}:=\frac{\mathrm{BT}_{\delta} \cdot \mathrm{BM}}{\mathrm{BS}} \mathrm{VX}_{\delta}:=\frac{\mathrm{EV}_{\delta} \cdot \mathrm{EM}}{\mathrm{EP}}
\]



Given three radii, \(\mathrm{AO}>\mathrm{BG}+\mathrm{EH}\), place them such that two by two they are tangent and find the fourth, AX, such that AX is tangent to EH and AO. This of course means that if the sum of BG and EH is equal to AO , we have no result.
\[
\mathrm{AO}:=5 \quad \mathrm{BG}:=2.5 \mathrm{EH}:=1.5
\]
\(\mathrm{AB}:=2 \cdot \mathrm{AO} \quad \mathrm{BC}:=2 \cdot \mathrm{BG} \quad \mathrm{EF}:=2 \cdot \mathrm{EH}\)
\(\mathrm{GH}:=\mathrm{BG}+\mathrm{EH} \mathrm{OH}:=\mathrm{AO}-\mathrm{EH} \mathrm{GO}:=\mathrm{AO}-\mathrm{BG}\)
\(\mathrm{GI}:=\frac{\mathrm{GH}^{2}+\mathrm{GO}^{2}-\mathrm{OH}^{2}}{2 \cdot \mathrm{GO}} \mathrm{HI}:=\sqrt{\mathrm{GH}^{2}-\mathrm{GI}^{2}}\)
\(\mathrm{AG}:=\mathrm{AB}-\mathrm{BGAI}:=\mathrm{AG}-\mathrm{GI} \mathrm{IJ}:=\mathrm{EH}\)
\(A J:=A I+I J \quad F J:=H I \quad A F:=\sqrt{A J^{2}+\mathrm{FJ}^{2}}\)
\(\mathrm{FK}:=\frac{\mathrm{AJ} \cdot \mathrm{EF}}{\mathrm{AF}} \quad \mathrm{AK}:=\mathrm{AF}-\mathrm{FK} \quad \mathrm{AY}:=\frac{\mathrm{AF} \cdot \mathrm{AK}}{\mathrm{AJ}}\)

AX \(:=\frac{\mathrm{AY}}{2} \quad \mathrm{AX}=2.857\)
\(\frac{\mathrm{AO}^{3}-\mathrm{AO}^{2} \cdot \mathrm{EH}-\mathrm{AO}^{2} \cdot \mathrm{BG}}{\mathrm{AO}^{2}-\mathrm{AO} \cdot \mathrm{BG}-\mathrm{EH} \cdot \mathrm{BG}}=2.857\)


Given a point of tangency, draw a circle in a crescent tangent to the other side. This figure is given for the tangent on the exterior of the crescent, the other will become obvious.

AB := Concave_Radius
CD := Convex_Radius AC:= Center_Difference
\(\mathrm{DE}:=2 \cdot \mathrm{CD} \quad \mathrm{BF}:=2 \cdot \mathrm{AB} \quad \mathrm{CE}:=\mathrm{CD}\)
\(\mathrm{AE}:=\mathrm{AC}+\mathrm{CE} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)
\(\mathrm{CG}:=\frac{\mathrm{CD}^{2}+\mathrm{AC}^{2}-\mathrm{AB}^{2}}{2 \cdot \mathrm{AC}} \mathrm{AG}:=\mathrm{AC}-\mathrm{CG}\)
\(\mathrm{GE}:=\mathrm{AE}-\mathrm{AG}\)

GJ := Power_Line_Tangent•GE
EJ := GE-GJ
DJ \(:=\) DE - EJ \(\quad \mathrm{JK}:=\sqrt{\mathrm{DJ} \cdot \mathrm{EJ}}\)
CJ \(:=\) CG - GJ CK \(:=\) CD KL \(:=\mathrm{GJ}\)
\(\mathrm{LM}:=\frac{\mathrm{CJ} \cdot \mathrm{KL}}{\mathrm{JK}}\) GL \(:=\mathrm{JK}\) GM \(:=\mathrm{GL}-\mathrm{LM}\)
\(A M:=\sqrt{A G^{2}+G M^{2}} \quad A N:=A B\)
\(\mathrm{AS}:=\frac{\mathrm{AM}^{2}}{\mathrm{AN}} \quad \mathrm{MR}:=\frac{\mathrm{AM}^{2}}{\mathrm{GM}}\)
\(\mathrm{MS}:=\sqrt{\mathrm{AS}^{2}-A M^{2}} \mathrm{AR}:=\sqrt{\mathrm{MR}^{2}-A M^{2}}\)
\(\mathrm{ST}:=\frac{\mathrm{MR} \cdot \mathrm{MS}}{\mathrm{AR}} \mathrm{MT}:=\frac{\mathrm{AM} \cdot \mathrm{MS}}{\mathrm{AR}}\)

\(\mathrm{MO}:=\frac{\mathrm{ST} \cdot \mathrm{AM}}{\mathrm{AM}+\mathrm{MT}}\)
GO \(:=\mathrm{GM}-\mathrm{MO}\) GP \(:=\frac{\mathrm{CJ} \cdot \mathrm{GO}}{\mathrm{JK}}\)
\(\mathrm{AP}:=\mathrm{AG}+\mathrm{GP} \quad \mathrm{OP}:=\frac{\mathrm{CK} \cdot \mathrm{GO}}{\mathrm{JK}}\)
\(\mathrm{CQ}:=\frac{\mathrm{OP} \cdot \mathrm{AC}}{\mathrm{AP}} \quad \mathrm{QK}:=\mathrm{CK}-\mathrm{CQ}\)
\(\mathrm{QK}=0.206\)
Concave_Radius \(=2.37\)
Convex_Radius \(\equiv 1.5\)
Center_Difference \(\equiv 1.84\)
Power_Line_Tangent \(\equiv \frac{1}{3}\) Given as Fraction \(<1\).


Process summary

\[
\mathrm{N}_{1}:=\frac{1}{2} \quad \mathrm{~N}_{2}:=\frac{9}{8} \quad \mathrm{~N}_{3}:=3
\]
\(\mathrm{AB}:=108 \quad \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AB} \quad \mathrm{BD}:=\mathrm{AB} \cdot \mathrm{N}_{1}\)
\(\mathrm{CD}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BD}^{2}} \quad \mathrm{EF}:=\frac{\mathrm{CD}-\mathrm{BD}}{\mathrm{N}_{2}}\)
\(\mathrm{DE}:=\mathrm{CD}-\mathrm{EF} \quad \mathrm{BE}:=\sqrt{\mathrm{DE}^{2}-\mathrm{BD}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{GH}:=\frac{\mathrm{AE}-\mathrm{EF}}{\mathrm{N}_{3}}\)
\(\mathrm{EG}:=\mathrm{EF}+\mathrm{GH} \quad \mathrm{DG}:=\mathrm{CD}-\mathrm{GH} \mathrm{Ba}:=\frac{\mathrm{BE} \cdot \mathrm{CD}}{\mathrm{DE}}\)
\(\mathrm{Db}:=\frac{\mathrm{DE}^{2}+\mathrm{DG}^{2}-\mathrm{EG}^{2}}{2 \cdot \mathrm{DG}} \quad \mathrm{Eb}:=\sqrt{\mathrm{DE}^{2}-\mathrm{Db}^{2}}\)

\(\mathrm{Ec}:=\frac{\mathrm{DE}^{2}}{\mathrm{~Eb}} \quad \mathrm{Dc}:=\frac{\mathrm{Db} \cdot \mathrm{DE}}{\mathrm{Eb}} \quad \mathrm{Dd}:=\frac{\mathrm{DE}^{2}}{\mathrm{BD}}\)
\(\mathrm{Ed}:=\frac{\mathrm{BE} \cdot \mathrm{Dd}}{\mathrm{DE}} \quad \mathrm{Ee}:=\frac{\mathrm{DE} \cdot \mathrm{Ed}}{\mathrm{Dc}} \quad \mathrm{Ef}:=\frac{\mathrm{Ee} \cdot \mathrm{DE}}{\mathrm{DE}+\mathrm{Ee}}\)
\(\mathrm{Eg}:=\frac{\mathrm{Ec} \cdot \mathrm{Ef}}{\mathrm{DE}} \quad \mathrm{bg}:=\mathrm{Eb}-\mathrm{Eg} \quad \mathrm{BM}:=\frac{\mathrm{bg} \cdot \mathrm{BD}}{\mathrm{Db}}\)
\(\mathrm{DM}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BM}^{2}} \mathrm{Bk}:=\frac{\mathrm{BM} \cdot \mathrm{CD}}{\mathrm{DM}}\)
\(\mathrm{HM}:=\mathrm{CD}-\mathrm{DM} \quad \mathrm{Hk}:=\frac{\mathrm{BD} \cdot \mathrm{HM}}{\mathrm{DM}}\)
\(\mathrm{Mk}:=\frac{\mathrm{BM} \cdot \mathrm{Hk}}{\mathrm{BD}} \quad \mathrm{Ik}:=\frac{\mathrm{Hk}^{2}}{\mathrm{Mk}} \quad \mathrm{HI}:=\sqrt{\mathrm{Hk}^{2}+\mathrm{Ik}^{2}}\)

\(\mathrm{Ea}:=\frac{\mathrm{BE} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{Ba}:=\mathrm{BE}+\mathrm{Ea} \quad \mathrm{Ia}:=\mathrm{Ik}+\mathrm{Ba}+\mathrm{Bk}\)
\(\mathrm{Fa}:=\frac{\mathrm{BD} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{FI}:=\sqrt{\mathrm{Ia}^{2}+\mathrm{Fa}^{2}} \mathrm{JI}:=\frac{\mathrm{HI}^{2}}{\mathrm{FI}}\)
\(\mathrm{Jm}:=\frac{\mathrm{Fa} \cdot \mathrm{JI}}{\mathrm{FI}} \quad \mathrm{JK}:=\frac{\mathrm{CD} \cdot \mathrm{Jm}}{\mathrm{BD}+\mathrm{Jm}}\)
\(\mathrm{JK}=17.571\)
When GH is small, so that H is on the other side of BD , the similarity point is on the other side of the figure.


I found this little sketch in my notebook and have no idea of when I did it or why.

Does CF always equal EP?
\[
\begin{aligned}
& \Delta:=100 \quad \delta:=1 . . \Delta-1 \quad \mathrm{BG}:=10 \quad \mathrm{GH}:=\mathrm{BG} \\
& \mathrm{GN}:=\mathrm{BG} \quad \mathrm{BD}_{\delta}:=\frac{\mathrm{BG}}{\Delta} \cdot \delta \quad \mathrm{DG}_{\delta}:=\mathrm{BG}-\mathrm{BD}_{\delta}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{DH}_{\delta}:=\mathrm{GH}+\mathrm{DG}_{\delta} \mathrm{DJ}_{\delta}:=\sqrt{\mathrm{BD}_{\delta} \cdot \mathrm{DH}_{\delta}} \\
& \mathrm{EG}_{\delta}:=\frac{\mathrm{DG}_{\delta} \cdot \mathrm{GN}^{\mathrm{GN}+\mathrm{DJ}_{\delta}}}{} \quad \mathrm{BE}_{\delta}:=\mathrm{BG}-\mathrm{EG}_{\delta}
\end{aligned}
\]
\[
\mathrm{EH}_{\delta}:=\mathrm{EG}_{\delta}+\mathrm{GH} \quad \mathrm{EK}_{\delta}:=\sqrt{\mathrm{BE}_{\delta} \cdot \mathrm{EH}_{\delta}}
\]
\[
\mathrm{AE}_{\delta}:=\frac{\left(\mathrm{EK}_{\delta}\right)^{2}}{\mathrm{EG}_{\delta}} \quad \mathrm{AB}_{\delta}:=\mathrm{AE}_{\delta}-\mathrm{BE}_{\delta}
\]
\[
\mathrm{GL}:=\mathrm{BG} \quad \mathrm{AD}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BD}_{\delta}
\]
\[
\mathrm{AG}_{\delta}:=\mathrm{AB}_{\delta}+\mathrm{BG} \quad \mathrm{DJ} 2_{\delta}:=\frac{\mathrm{GL} \cdot \mathrm{AD}_{\delta}}{\mathrm{AG}_{\delta}}
\]
\[
\mathrm{EP}_{\delta}:=\frac{\mathrm{GL}^{2} \cdot \mathrm{AE}_{\delta}}{\mathrm{AG}_{\delta}} \quad \mathrm{GR}_{\delta}:=\mathrm{DJ} \delta_{\delta} \quad \mathrm{NO}:=\mathrm{BG} \quad \mathrm{NR}_{\delta}:=\mathrm{GN}+\mathrm{GR}_{\delta} \quad \mathrm{GQ}_{\delta}:=\frac{\mathrm{NO} \cdot \mathrm{GR}_{\delta}}{\mathrm{NR}_{\delta}} \quad \mathrm{CF}_{\delta}:=2 \cdot \mathrm{GQ}_{\delta}
\]




Reducing both by the symbolic processor leaves a little.
\[
\begin{gathered}
\mathrm{BG}:=10 \quad \mathrm{BD}:=\frac{\mathrm{BG}}{13} \\
\mathrm{CF}:=2 \cdot \mathrm{BG} \cdot \sqrt{\mathrm{BD}} \cdot \frac{\sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}}}{(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}})}
\end{gathered}
\]
\[
\mathrm{EP}:=-2 \cdot \mathrm{BG} \cdot \frac{\left(-\mathrm{BG} \cdot \sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}}-2 \cdot \mathrm{BG} \cdot \mathrm{BD}+\mathrm{BD}^{2}\right)}{(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot \mathrm{BG}-\mathrm{BD}})^{2}}
\]

And if I divide one by the other and reduce; \(\quad \frac{\left[B G \cdot \sqrt{2 \cdot B G-B D}+2 \cdot B G \cdot \sqrt{B D}-\mathrm{BD}^{\left(\frac{3}{2}\right)}\right]}{[(\mathrm{BG}+\sqrt{\mathrm{BD}} \cdot \sqrt{2 \cdot B G-\mathrm{BD}}) \cdot \sqrt{2 \cdot B G-B D}]}=1\)

This is another figure that I had sketched out last year but never got around to writing down.

Given a Circle, place the next on the diameter.
I tried to reduce this series with the symbolic processor, but it is having trouble, at some point it switches AC for EC and I get the other circle.
\(\mathrm{AD}:=\) Radius \(\quad \mathrm{AE}:=2 \cdot \mathrm{AD} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{\mathrm{N}}\)
\(\mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \mathrm{DO}:=\mathrm{AD} \mathrm{CO}:=\sqrt{\mathrm{DO}^{2}+\mathrm{CD}^{2}}\)
\(\mathrm{NO}:=\mathrm{AE} \quad \mathrm{MO}:=\frac{\mathrm{DO} \cdot \mathrm{NO}}{\mathrm{CO}} \mathrm{CM}:=\mathrm{MO}-\mathrm{CO}\)
\(\mathrm{CK}:=\frac{\mathrm{DO} \cdot \mathrm{CM}}{\mathrm{MO}} \mathrm{KO}:=\sqrt{\mathrm{CD}^{2}+(\mathrm{DO}+\mathrm{CK})^{2}}\)
\(\mathrm{JK}:=\mathrm{CK}\)
\(\mathrm{Ke}:=\frac{\mathrm{JK}^{2}}{\mathrm{KO}} \mathrm{Oe}:=\mathrm{KO}-\mathrm{Ke} \quad\) de \(:=\frac{\mathrm{CD} \cdot \mathrm{Oe}}{\mathrm{DO}+\mathrm{CK}}\)
Je \(:=\sqrt{J K^{2}-K^{2}}\)
Jd \(:=\) de + Je \(\quad\) bd \(:=\frac{\mathrm{CD} \cdot \mathrm{Jd}}{\mathrm{KO}}\)
\(\mathrm{Od}:=\frac{\mathrm{KO} \cdot \mathrm{de}}{\mathrm{CD}} \quad \mathrm{Db}:=\mathrm{Od}-\mathrm{DO}-\mathrm{bd}\)

\[
\mathrm{Kh}:=\mathrm{CK}-\mathrm{Db}
\]
\[
\mathrm{Lh}:=\mathrm{CK}+\mathrm{Kh} \quad \mathrm{FJ}:=\frac{\mathrm{JK} \cdot \mathrm{Db}}{\mathrm{Lh}}
\]
\[
\mathrm{N} \equiv \frac{10}{1}
\]
\[
\mathrm{FJ}=3.965
\]
\[
\text { Radius } \equiv 108 \quad C K=19.44
\]

And from the other side;
\[
\mathrm{N} \equiv \frac{10}{9} \quad \mathrm{FJ}=51.53
\]
\[
\text { Radius } \equiv 108 \quad \mathrm{CK}=19.44
\]

This figure might be recognized as the similarity point for Gemini root projection.


Given AC, CF, and that
\(\left.A C=-C F \cdot \frac{(\sqrt{B C} \cdot \sqrt{B C}+C F}{}-B C\right)\) find \(B C\).

N can be any value whatever, except 0 .

\[
\begin{aligned}
& \mathrm{CF}:=216 \quad \mathrm{AC}:=47.29 \quad \mathrm{~N}:=100000 \\
& \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \quad \mathrm{AE}:=\mathrm{AC}+\mathrm{CE}
\end{aligned}
\]
\(\mathrm{FG}:=\mathrm{N} \quad \mathrm{EH}:=\frac{\mathrm{FG} \cdot \mathrm{AE}}{\mathrm{AF}} \mathrm{EF}:=\mathrm{CE}\) \(\mathrm{DF}:=\frac{\mathrm{EF} \cdot \mathrm{FG}}{\mathrm{EH}} \quad \mathrm{CJ}:=\frac{\mathrm{FG} \cdot \mathrm{AC}}{\mathrm{AF}} \quad \mathrm{DP}:=\mathrm{CJ}\)
\(\mathrm{CD}:=\mathrm{CF}-\mathrm{DF} \quad \mathrm{DK}:=\mathrm{FG} \quad \mathrm{KP}:=\mathrm{DK}-\mathrm{DP}\)

\[
\begin{aligned}
& \mathrm{BD}:=\frac{\mathrm{CD} \cdot \mathrm{DK}}{\mathrm{KP}} \quad \mathrm{BD}=40.089 \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{BC}=7.201 \\
& \mathrm{AC}_{\mathrm{f}}:=-\mathrm{CF} \cdot \frac{(\sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-\mathrm{BC})}{(-\mathrm{CF}+2 \cdot \sqrt{\mathrm{BC}} \cdot \sqrt{\mathrm{BC}+\mathrm{CF}}-2 \cdot \mathrm{BC})}
\end{aligned}
\]
\[
\frac{\mathrm{AC}_{\mathrm{f}}}{\mathrm{AC}}=1
\]


\section*{Three Base Theorem.}

Three peaks, three predictable bases that intersect our hypotenuse through the Gemini roots.

\[
\begin{aligned}
& \mathrm{BC}:=7.2 \mathrm{CI}:=216 \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \\
& \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \mathrm{BM}:=61.38 \\
& \mathrm{EM}:=\sqrt{\mathrm{BM}^{2}+\mathrm{BE}^{2}} \mathrm{BD}:=\mathrm{EM}-\mathrm{BM} \\
& \mathrm{BH}:=\mathrm{BM}+\mathrm{EM} \quad \mathrm{GN}:=\mathrm{CG} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EN}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EH}:=\mathrm{BH}-\mathrm{BE} \\
& \mathrm{EG}:=\mathrm{EI}-\mathrm{CG} \quad \mathrm{AE}:=\frac{\mathrm{EN}^{2}}{\mathrm{EG}} \mathrm{HI}:=\mathrm{EI}-\mathrm{EH} \\
& \mathrm{HL}:=\frac{\mathrm{EN} \cdot \mathrm{HI}}{\mathrm{EI}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AH}:=\mathrm{AE}+\mathrm{EH} \quad \mathrm{Ea}:=\frac{\mathrm{AH} \cdot \mathrm{EN}}{\mathrm{HL}} \\
& \mathrm{FG}:=\frac{\mathrm{EG} \cdot \mathrm{AG}}{(\mathrm{Ea}+\mathrm{EG})} \mathrm{CF}:=\mathrm{CG}-\mathrm{FG}
\end{aligned}
\]
\(\mathrm{FI}:=\mathrm{CG}+\mathrm{FG} \quad \mathrm{FP}:=\sqrt{\mathrm{CF} \cdot \mathrm{FI}}\)
\(\mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \quad \mathrm{EO}:=\frac{\mathrm{FP} \cdot \mathrm{AE}}{\mathrm{AF}}\)
\(\mathrm{EF}:=\mathrm{AF}-\mathrm{AE} \quad \mathrm{GU}:=\frac{\mathrm{EO} \cdot \mathrm{FG}}{\mathrm{EF}}\)

\[
\begin{aligned}
& \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AI}:=\mathrm{AC}+\mathrm{CI} \\
& \mathrm{AP}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FP}^{2}} \mathrm{AW}:=\frac{\mathrm{AC} \cdot \mathrm{AI}}{\mathrm{AP}} \\
& \mathrm{AX}:=\frac{\mathrm{AF} \cdot \mathrm{AW}}{\mathrm{AP}} \mathrm{CX}:=\mathrm{AX}-\mathrm{AC} \mathrm{XI}:=\mathrm{CI}-\mathrm{CX} \\
& \mathrm{WX}:=\sqrt{\mathrm{CX} \cdot \mathrm{XI}} \mathrm{XG}:=\mathrm{CG}-\mathrm{CX} \mathrm{YU}:=\mathrm{XG} \\
& \mathrm{UV}:=\mathrm{CG} \mathrm{YV}:=\mathrm{YU}+\mathrm{UV} \mathrm{XH}:=\frac{\mathrm{YV} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \mathrm{CH}:=\mathrm{AH}-\mathrm{AC} \frac{\mathrm{CH}}{\mathrm{XH}+\mathrm{CX}}=1 \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{DX}:=\frac{\mathrm{CX} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \frac{\mathrm{CD}}{\mathrm{CX}-\mathrm{DX}}=1
\end{aligned}
\]


EI•EO
\(\mathrm{IZ}:=\frac{\mathrm{GU} \cdot \mathrm{AI}}{\mathrm{AG}} \mathrm{Ed}:=\mathrm{IZ} \quad \frac{\mathrm{EO}+\mathrm{Ed}}{\mathrm{EH}}=1\)
\[
\mathrm{Ce}:=\frac{\mathrm{GU} \cdot \mathrm{AC}}{\mathrm{AG}} \mathrm{Ef}:=\mathrm{Ce} \frac{\mathrm{CD}}{\frac{\mathrm{CE} \cdot \mathrm{Ce}}{\mathrm{EO}+\mathrm{Ef}}}=1
\]

Ek \(:=\mathrm{GU} \quad \mathrm{Ig}:=\frac{\mathrm{Ek} \cdot \mathrm{BI}}{\mathrm{BE}} \mathrm{Cm}:=\frac{\mathrm{Ek} \cdot \mathrm{BC}}{\mathrm{BE}}\)
Fn \(:=\mathrm{Ig} \quad\) gn \(:=\mathrm{FI} \quad \mathrm{FH}:=\frac{\mathrm{gn} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Fn}}\)
\(\frac{\mathrm{FH}}{\mathrm{AH}-\mathrm{AF}}=1 \quad \mathrm{DF}:=\frac{\mathrm{CF} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Cm}}\)
\(\frac{C D}{C F-D F}=1\)


Given CF and CD such that \(\mathrm{CD}=\sqrt{\mathrm{AF} \cdot \mathrm{AC}}-\mathrm{AC}\) find AC.
\[
\mathrm{CF}:=216 \quad \mathrm{CD}:=32.89 \quad \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{EF}:=\mathrm{CE}
\]

Except for \(0, \mathrm{~N}\) can be any value.
\[
\begin{aligned}
& \mathrm{N}:=108 \quad \mathrm{FG}:=\mathrm{N} \quad \mathrm{DK}:=\mathrm{N} \quad \mathrm{DF}:=\mathrm{CF}-\mathrm{CD} \\
& \mathrm{EH}:=\frac{\mathrm{DK} \cdot \mathrm{EF}}{\mathrm{DF}} \mathrm{EM}:=\mathrm{FG} \quad \mathrm{HM}:=\mathrm{EM}-\mathrm{EH} \\
& \mathrm{CN}:=\mathrm{FG} \quad \mathrm{HM}:=\mathrm{EM}-\mathrm{EH} \quad \mathrm{GN}:=\mathrm{CF} \\
& \mathrm{GM}:=\mathrm{EF} \quad \mathrm{JN}:=\frac{\mathrm{HM} \cdot \mathrm{GN}}{\mathrm{GM}} \quad \mathrm{JC}:=\mathrm{CN}-\mathrm{JN}
\end{aligned}
\]
\[
\mathrm{KP}:=\mathrm{JN} \quad \mathrm{JP}:=\mathrm{CD} \quad \mathrm{AD}:=\frac{\mathrm{JP} \cdot \mathrm{DK}}{\mathrm{KP}}
\]
\[
\mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \quad \mathrm{AC}=7.201
\]
\[
\mathrm{AF}:=\mathrm{AC}+\mathrm{CF}
\]
\[
\frac{\sqrt{\mathrm{AF} \cdot \mathrm{AC}}-\mathrm{AC}}{\mathrm{CD}}=1 \quad \frac{\sqrt{\mathrm{AF} \cdot \mathrm{AC}}}{\mathrm{AD}}=1
\]

I had finally decided to write this up in Oct. of 94, and being punctual, here it is.

Given one root in a prime root series, determine the rest of the series using the straight edge method. The other method uses a compass and is shown at the end of document.

Process Summary will use \(5^{\text {th }}\) root series for example.
\[
\begin{aligned}
& \mathrm{AG}:=3^{5} \quad \mathrm{AB}:=1 \quad \mathrm{AE}:=3^{3} \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{GZ}:=\mathrm{BG} \quad \mathrm{YZ}:=\mathrm{BG} \\
& \mathrm{BY}:=\mathrm{BG} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{EG}:=\mathrm{BG}-\mathrm{BE} \\
& \mathrm{GH}:=\frac{\mathrm{BY} \cdot \mathrm{EG}}{\mathrm{BE}}
\end{aligned}
\]
\(\mathrm{Ga}:=\frac{\mathrm{GZ} \cdot \mathrm{AG}}{\mathrm{EG}} \quad \mathrm{Hb}:=\frac{\mathrm{GH} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Gb}:=\mathrm{GH}-\mathrm{Hb} \quad \mathrm{Ib}:=\frac{\mathrm{AG} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Bd}:=\mathrm{BG}-\mathrm{Ib} \quad \mathrm{BC}:=\frac{\mathrm{Bd} \cdot \mathrm{BY}}{\mathrm{BY}+\mathrm{Gb}}\)
\(A C:=A B+B C\)
\(\mathrm{CG}:=\mathrm{BG}-\mathrm{BC} \quad \mathrm{BJ}:=\frac{\mathrm{GZ} \cdot \mathrm{BC}}{\mathrm{CG}}\)


\[
\begin{aligned}
& \mathrm{GK}:=\frac{\mathrm{BJ} \cdot \mathrm{AG}}{\mathrm{AB}} \mathrm{KZ}:=\mathrm{GZ}+\mathrm{GK} \\
& \mathrm{FG}:=\frac{\mathrm{YZ} \cdot \mathrm{GK}}{\mathrm{KZ}} \quad \mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \\
& \mathrm{Ke}:=\frac{\mathrm{GK} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \mathrm{Me}:=\frac{\mathrm{AG} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \\
& \mathrm{BD}:=\frac{(\mathrm{BG}-\mathrm{Me}) \cdot \mathrm{BY}}{\mathrm{KZ}-\mathrm{Ke}} \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}
\end{aligned}
\]

\[
\begin{array}{ll}
\frac{\left(\mathrm{AB}^{5} \cdot \mathrm{AG}^{0}\right)^{\frac{1}{5}}}{\mathrm{AB}}=1 & \frac{\left(\mathrm{AB}^{4} \cdot \mathrm{AG}^{1}\right)^{\frac{1}{5}}}{\mathrm{AC}}=1 \\
\frac{\left(\mathrm{AB}^{3} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{5}}}{\mathrm{AD}}=1 & \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{5}}}{\mathrm{AE}}=1 \\
\frac{\left(\mathrm{AB}^{1} \cdot \mathrm{AG}^{4}\right)^{\frac{1}{5}}}{\mathrm{AF}}=1 & \frac{\left(\mathrm{AB}^{0} \cdot \mathrm{AG}^{5}\right)^{\frac{1}{5}}}{\mathrm{AG}}=1
\end{array}
\]

Compass method

If any of a prime root series can be given exactly, every root of the series can be determined exactly.


Is CX a constant?
I have had so much back work to catch up on I post dated a couple.
\[
\begin{aligned}
& \mathrm{AB}:=54 \quad \mathrm{AG}:=270 \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BF}:=\frac{\mathrm{BG}}{2} \mathrm{FO}:=\mathrm{BF} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FR}:=\mathrm{BF} \\
& \mathrm{AR}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FR}^{2}} \mathrm{AQ}:=\frac{\mathrm{AB} \cdot \mathrm{AG}}{\mathrm{AR}} \\
& \mathrm{Aa}:=\frac{\mathrm{AF} \cdot \mathrm{AQ}}{\mathrm{AR}} \mathrm{Qa}:=\frac{\mathrm{FR} \cdot \mathrm{AQ}}{\mathrm{AR}}
\end{aligned}
\]
\(\mathrm{Fa}:=\mathrm{AF}-\mathrm{Aa} \quad \mathrm{OQ}:=\sqrt{\mathrm{Fa}^{2}+(\mathrm{FO}+\mathrm{Qa})^{2}}\)
\(\mathrm{CQ}:=\frac{\mathrm{OQ} \cdot \mathrm{Qa}}{\mathrm{FO}+\mathrm{Qa}} \mathrm{OX}:=\sqrt{\mathrm{BF}^{2}+\mathrm{FO}^{2}}\)
\(C O:=O Q-C Q\)
\[
\frac{\frac{\mathrm{OX}^{2}}{\mathrm{OQ}}}{\mathrm{CO}}=1
\]

Both expressions reduce to,
\[
\mathrm{CQ}=49.923 \quad \mathrm{OQ}-\frac{\mathrm{OX}^{2}}{\mathrm{OQ}}=49.923
\]
\[
\frac{\mathrm{AG}-\mathrm{AB}}{\mathrm{AG}+\mathrm{AB}} \cdot \frac{\sqrt{2} \cdot(\mathrm{AG} \cdot \mathrm{AB})}{\sqrt{\mathrm{AB}^{2}+\mathrm{AG}^{2}}}=49.923
\]


\section*{Geometric Exponential Series of the form}

\(\underline{\text { Root - } 1}\)

\(N^{\text {Root }}\)

Generalize some of the ratios found in 01_08_96 and 01_16_96 for the sides of the right triangle.
\[
\begin{aligned}
& \mathrm{N}=4 \quad \mathrm{Root}=4 \quad \mathrm{M}=1 \quad \mathrm{BG}:=\mathrm{N} \mathrm{AB}:=\mathrm{M} \\
& \mathrm{AG}:=\mathrm{AB}+\mathrm{BG} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \\
& \mathrm{AC}:=\left(\mathrm{AB}^{\text {Root }-1} \cdot \mathrm{AG}\right)^{\frac{1}{\text { Root }}} \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{\text {Root }-1}\right)^{\frac{1}{\text { Root }}} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \quad \mathrm{FX}:=\sqrt{\mathrm{AF}^{2}+\mathrm{AG}^{2}} \\
& \mathrm{FY}:=\frac{\mathrm{AF}^{2}}{\mathrm{FX}} \quad \mathrm{BD}:=\frac{\mathrm{FY} \cdot \mathrm{BG}}{\mathrm{FX}} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \quad \mathrm{GK}:=\sqrt{\mathrm{DG}}{ }^{2}+\mathrm{DK}^{2} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]


Plug in BG here as N . AB as M . Plug in root series also.
\(\mathrm{N} \equiv 4 \quad\) Root \(\equiv 4 \quad \delta:=1\).. Root
\(M \equiv 1\)
\[
\mathrm{GL}=1.377 \quad \mathrm{BJ}=0.275 \quad \frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]
\[
\frac{\sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-1}{\text { Root }}}}=2.415 \quad \frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}=8.075 \quad \frac{\mathrm{BK}}{\mathrm{BJ}}=8.075
\]

\[
\mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{BM}}=32.665\)
\begin{tabular}{l}
\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta+2}{\text { Root }}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{\text { Root }}}-\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{\text { Root }}}}\) \\
\hline\(\frac{9.769}{14.608}\) \\
\hline 21.844 \\
\hline 32.665 \\
\hline
\end{tabular}
On the left is the first and last of the series, on the right is the entire series.

\section*{12/20/96 Alternate Method Quad Roots}

If \(F N: F P\) as \(B Q: B S\) then quad roots series can be

\(\mathbf{N}_{1}:=2 \quad \mathbf{N}_{2}:=.2\)
AB :=1 \(A L:=A B \cdot \mathbf{N}_{1}\)

BL : = AL - AB BS := BL LT := BL
\(B H:=\frac{B L}{2} \quad H L:=B H \quad B Q:=B S \cdot N_{2}\)
\(\mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}} \quad \mathbf{F L}:=\mathbf{A L}-\mathbf{A F} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}\)
\(F P:=\sqrt{B F \cdot F L} \quad\) FN \(:=\frac{B Q \cdot F P}{B S} \quad E F:=\frac{B F \cdot F N}{B Q}\)
\(\mathrm{EL}:=\mathrm{EF}+\mathrm{FL} \quad \mathrm{FG}:=\frac{\mathrm{EF} \cdot \mathrm{FL}}{\mathrm{EL}} \mathrm{GO}:=\frac{\mathrm{FN} \cdot \mathrm{FG}}{\mathrm{EF}}\)
GL \(:=\) FL - FG \(\quad\) LR \(:=\) BQ \(\quad\) JL \(:=\frac{\mathbf{G L} \cdot \mathbf{L R}}{\mathbf{L R}+\mathbf{G O}}\)
AJ := AL \(-\mathbf{J L}\)
\(\left(A B \cdot A L^{3}\right)^{\frac{1}{4}}-A J=0\)

\section*{09/11/97 The Ellipse}

Given that the major axis is AD and the minor axis EF, derive the formula for the radius CG, the height BG, and the foci axis MN.

\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \\
& \mathbf{N}_{2}:=1 \\
& \mathrm{~N}_{3}:=\frac{\mathbf{1}}{5} \\
& \text { AD : }=\mathbf{N}_{1} \\
& \mathbf{E F}:=\mathbf{N}_{2} \quad \text { AB }:=A D \cdot \mathbf{N}_{3} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B J}:=\sqrt{\mathbf{A B} \cdot \mathbf{B D}} \\
& A C:=\frac{A D}{2} \quad B C:=A C-A B \quad C H:=\frac{E F}{2} \\
& \mathbf{C J}:=\mathrm{AC} \quad \mathrm{BG}:=\frac{\mathrm{BJ} \cdot \mathrm{CH}}{\mathrm{CJ}} \\
& C G:=\sqrt{{B G^{2}}^{2}+B C^{2}} \quad M N:=2 \cdot \sqrt{\left(\frac{A D}{2}\right)^{2}-C H^{2}}
\end{aligned}
\]
\(C G:=\frac{1}{2} \cdot \sqrt{4 \cdot N_{3} \cdot N_{2}{ }^{2}-4 \cdot N_{3}{ }^{2} \cdot N_{2}{ }^{2}+N_{1}{ }^{2}-4 \cdot N_{1}{ }^{2} \cdot N_{3}+4 \cdot N_{1}{ }^{2} \cdot N_{3}{ }^{2}}\)
\(\mathbf{M N}:=\sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)} \quad\) BG3 \(:=\sqrt{\mathbf{N}_{3}-\mathbf{N}_{3}{ }^{2}} \cdot \mathbf{N}_{2}\)

a two Dimensional Solution to the Delian Problem.

Since the figure only uses proportion, which has been proven any proof of the figure can be left for an exersize.


\section*{07/09/00 Alternate Method Quad Roots}

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{3} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{D M}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \\
& \mathbf{A J}:=\mathbf{A D} \quad \mathbf{A K}:=\mathbf{A D} \quad \mathbf{B M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D M}^{2}} \\
& \mathbf{G M}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D M}^{2}} \quad \mathbf{A F}:=\frac{\mathbf{G M} \cdot \mathbf{A J}}{\mathbf{B M}} \\
& \mathbf{A C}:=\frac{\mathbf{B M} \cdot \mathbf{A K}}{\mathbf{G M}} \\
& (\mathbf{A B} \cdot \mathbf{A G})^{3}-\mathbf{A F}=\mathbf{0} \quad(\mathbf{A B} \cdot \mathbf{A G})^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]

\section*{08/01/00 Alternate Method Quad Roots}


\section*{08/07/00 Proportion Series II}

Two unknowns have the same proportion as two givens and the sum of the unknowns are known. Find the
 two unknowns.
\[
\begin{aligned}
& \mathrm{AB}:=9 \quad \mathrm{CD}:=3 \quad \mathrm{BC}:=5 \\
& \mathrm{BO}:=\frac{\mathrm{AB} \cdot \mathrm{BC}}{\mathrm{AB}+\mathrm{CD}} \quad \mathrm{CO}:=\frac{\mathrm{CD} \cdot \mathrm{BC}}{\mathrm{AB}+\mathrm{CD}} \\
& \mathrm{BO}=3.75 \quad \mathrm{CO}=1.25 \\
& \mathrm{BO}+\mathrm{CO}-\mathrm{BC}=0 \\
& \frac{\mathrm{AB}}{\mathrm{CD}}-\frac{\mathrm{BO}}{\mathrm{CO}}=0
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{4} \quad \mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathbf{B N}:=\frac{\mathbf{B D}}{\mathbf{2}} \quad \mathbf{K N}:=\mathbf{B N} \quad \mathbf{C J}:=\mathbf{B N} \\
& \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}} \quad \mathbf{A K}:=\mathbf{A J} \\
& \mathbf{A N}:=\mathbf{A B}+\mathbf{B N} \quad \mathbf{A P}:=\frac{\mathbf{A K} \mathbf{K}^{2}+\mathbf{A N}^{2}-\mathbf{K N}^{2}}{\mathbf{2} \cdot \mathbf{A N}} \\
& \mathbf{A F}:=\frac{\mathbf{A P} \cdot \mathbf{A N}}{\mathbf{A K}} \quad \mathbf{F K}:=\mathbf{A K}-\mathbf{A F}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{E F}:=\mathbf{F K} \quad \mathbf{A E}:=\mathbf{A K}-\mathbf{2} \cdot(\mathbf{E F}) \quad \mathrm{AR}:=\frac{\mathbf{A P} \cdot \mathbf{A E}}{\mathbf{A K}} \\
& \mathbf{A B} \cdot(\mathbf{A B}+\mathbf{B D}) \cdot \frac{\left(8 \cdot \mathbf{A B}^{2}+\mathbf{8} \cdot \mathbf{A B} \cdot \mathbf{B D}+\mathbf{B D}^{2}\right)}{(2 \cdot \mathbf{A B}+\mathbf{B D})^{3}}-\mathbf{A R}=\mathbf{0} \\
& \mathbf{B P}:=\mathbf{A P}-\mathbf{A B} \quad \mathbf{D P}:=\mathbf{B D}-\mathbf{B P} \quad \mathbf{N P}:=\mathbf{B N}-\mathbf{B P} \quad \mathbf{K S}:=\mathbf{N P} \quad \text { KS }-\mathbf{F K}=\mathbf{0}
\end{aligned}
\]

\section*{The Delian Quest}


\section*{Foreword}

One can deny a convention and thus deny a concurrence afforded by that convention. For example, if one wanted to prove that a house could not be built from a set of plans, simply deny the convention of units from which measure is effected. Does this denial afford a proof of the non-existence of the ability to construct that house from a certain set of plans?

If one denies a convention, one cannot solve for the Name Of The Beast. If one denies a convention, one cannot solve The Delian Problem. Solutions are then only for those who have a certain respect for The Law Of Reciprocity-those who aspire to have but one measure in their purse, those who seek to perceive by a single eye-those that that seek the attainment to a civil human state.

There have been hard drive failures and viruses that have claimed some work-sometimes many months worth. A few plates are still in folders, waiting for attention, they have not made it in this text, perhaps they will in a future revision. A sequel, Three Pieces Of Paper is underway and is on angle trisection. There is so much I want to do, so much I am doing, that revision is inevitable and completions rare.

\section*{The Delian Quest}
"Socrates: And I, Meno, like what I am saying. Some things I have said of which I am not altogether confident. But that we shall be better and braver and less helpless if we think that we ought to inquire, than we should have been if we indulged in the idle fancy that there was no knowing and no use in seeking to know what we do not know;-that is a theme upon which I am ready to fight, in word and deed, to the utmost of my power." Meno, by Plato

\section*{Introduction}

The Delian Quest is a novel written primarily in two languages, Geometry and Algebra. These two languages are commensurate with the definition of a thing.

Definition: A thing is any difference what so ever circumscribed by any form what so ever.

Commensurate with difference in the definition is the Geometric Grammar. Commensurate with the form in the definition is the Algebraic Grammar. The smattering of English is of no great consequence. I take exception to any teaching that does not recognize the geometric figure as the Grammar of Geometry. Much of what is called geometry is apparently stated by those who have no clue. The Geometric Grammar system is a relatiologic and Algebraic Grammar is a tautologic-together they make a proposition-and together and only together can a thing called knowledge be constructedby definition.

By way of definition, so called non-Euclidean Geometries which cannot construct the figures is not knowledge and those that use Euclidean figures but not standard definitions and practices are also not knowledge. Since the Geometric Figure is the Geometric Grammar, there is no such thing as a Grammar without Grammar. And by the principle of well-defined terms, not knowing how to define a thing, or the inability to be consistent in what has been defined, does not constitute literacy.

\section*{The Delian Problem}

From what I remember, the Delian Problem acquired its name from the circumstances of the problem's inception. In order to stop a plague in ancient Greece an oracle at Delos suggested-supposedly by direction of a God-that the altar of Apollo be doubled. The altar of Apollo was a cube. What it boiled down to was the abstraction of the cube root of 2 -the cube root of twice its current volume. Now if, in geometry, one can precisely abstract the square root of 2 , it seemed reasonable that, in geometry, one might abstract the cube root of 2 as well. What this means is that an act of will may be performed for which no Arithmetic name is possible in the case of the square maybe it can be done for the cube as well. The conventions of Arithmetic Grammar cannot provide an Arithmetic name for the square root of 2 . Algebraic grammar overcomes this problem of irrationality in Arithmetic Grammar by incorporating operands as part of the Algebraic name. The problem in Geometric Grammar was, no one knew how to abstract cube roots. No one knew how to assert that act of will. In time, the general response to the Delian Problem was that it is an impossible problem to solve. No name could be provided in Arithmetic Grammar, and none in the Grammar of Geometry, while in Algebraic grammar, a name
could be simply had, but no clue as to how to render the fact.

\section*{A Class Idea}

Those things that are grouped in accordance by a common characteristic all have the same name by that measure. Some people may recognize this notion as Set Theory, some may see it as the founding principle of all Grammars because it is the foundation upon which the concept of words are based. A fact of the craft of measurement itself is derived from \(\boldsymbol{A}=\boldsymbol{A}\) and \(\boldsymbol{A}-\boldsymbol{A}=0\) which is derived from knowing and not knowing, some may realize that it is the Sensor Model of reality. This has a very important application. If there is no difference between two things, then there is no knowledge of 'two-ness' under the class definition-therefore both items are regarded as the same-treated the same, respected the same. By definition, it is not possible to act differently in any case or any instance toward members of the same set. Action is a reaction from cause, but one has stated that all members are the same, no difference or cause can then exist between themunder that class definition. The definition of a set provides Universality circumscribing all members of that set.

In regard to the Delian problem one might apply the idea of definition in this manner; take the straightedge and compass and abstract a common characteristic that would group them into one class (to my knowledge such an application of the foundation of logic has never been proposed to solve the Delian Problem). If one finds that common characteristic then one can use it as a measure to determine that other tools, which have that same characteristic, are included in that class. Perhaps these tools are what is needed to solve the Delian Problem. Perhaps the real intention of the problem was to learn to think in terms of definition-a founding principle of judgment.

The tool one would be looking for would have the class characteristic that would define a Two Dimensional Geometer's Writing Instrument defined by a common characteristic. This is the true custom upon which all language is based, the same notion that determines the meaning of any word in any language that one speaks. Logically, reasonably, factually, one cannot state that Geometry is to be written in only two tools of a class of tools if that class is well defined, for there is no way to distinguish these tools under the class concept, the definition of class membership. Providing of course one can abstract the class concept that the tools reside in. Aristotle quite rightly determined that a definition renders both substance and form-every bit of knowledge is known that way, substance and form. Even in our mind, to think of substance we supply a generic form to it, and to think of form we assert a generic substance for it-otherwisde we could not conceive of either. What is the substance and the form of the Geometric Writing Instruments we are familiar with?

A straight edge provides one with one and only one difference (substance) between two points (form). A compass provides us with one and only one difference (substance) between two points (form). One may comprehend the straightedge however as providing the Unit of discourse, while the compass the Universe. Has anyone ever comprehended the ellipse as a figure that is produced as one and only one difference (substance)-a sumbetween two points (form)? Is it possible that the Gods gave a problem, just like the problem of understanding the Name Of The Beast in the Bible, whereby the only solution is to think by one measure-class concepts-the very foundation of language
itself? Perhaps the only possible path to a solution is when men start to reason by respecting what, as recorded in the Bible, is a Holy understanding-the Law of Reciprocity? \(\boldsymbol{A}=\boldsymbol{A}\). I don't know. I do know that the tool that constructs an ellipse is in the same class as the straightedge and compass in regard to the same definition of substance and form, and also that the ellipse can solve the Delian Problem. I would strongly suspect that the problems given by the Gods all have a common solution which involves a growth in men's understanding. I did not suspect such an understanding when I started my search. I started this search because either no God gave the Delian Problem or , if given, it would seem reasonable that a God would only ask for the possible and, if it were possible, then it was possible for me to find it.

\section*{Proof And Prove}

Proofing and proving are two entirely different concepts. Proofing is the compliance of conventions within a grammar. Proving is the verification of existence-which means attaining to an experience.

The proof of a proposition in a tautologic is then relies on a tautology, name = name. One might have a name, but no meaning of that name, but still attain to proof. Proof in a relatiologic is constructions tendered through a given set of tools used in a prescribed manner. One might have a drawing with no meaning, but still it is proofed.
It is typical even for scholars, whole communities and histories of them, to confuse and make a mess out of the two ideas. To prove a thing, one must supply both logic systems, the tautological and the relatiological. To proof a thing, one needs only demonstrate compliance with the conventions of the grammar. Proving implies proofing, but proofing does not imply proofing-Aristotle said very nearly the same thing.

To prove a thing, is to tender both the experience and the names in compliance with a given set of conventions-however, one cannot say that one has attained to conventionality by listing those conventions in the Particular, avoiding or not knowing the Universal upon which they stand-matter and form must be known and knowable.

\section*{Proposition}

Even the process of group construction (propositional construction) follows the definition of proposition itself. One method is particular (the substance), each member is enumerated, the other method is universal (the form), each member has the same definition. Each method renders a judgment as to inclusion and exclusion of a member into a class. As Plato pointed out, only by comprehending all the details of both methods can one be said to have understanding. The methods themselves follow propositional form in another respect-the particular method is not effected through understanding but the method of forms (definition) is-this Plato pointed out too and is why he championed that method. Using class definition to define Geometric Writing Instruments is an idea that has not been promoted or conceived, and if enacted many mistakes will be made, but nevertheless, we may not be altogether certain as to what we are doing, but we can be certain that life is in that quest for knowing. Perception determines conception, conception determines will.

\section*{Reading}

Since perception determines conception and conception determines will, learning to 'say' what we 'see' can be improved by practice. One must read the figure and the equations together in this work. j.c.
"For the person who deliberates seems to investigate and analyze in the way described as though he were analyzing a geometrical construction" Nicomachean Ethics by Aristotle


This was originally type written and hand drawn figures. I ran copies off to send out into a non receptive world. I did not blush at my own ignorance.

\section*{THE DELIAN SOLUTION}

I do not view the Delian Problem in the traditional sense, that is as the problem of duplicating a cube. I view the problem of duplication as only one application for a Geometric process of general cube root abstraction. Truisms and processes are there to be discovered, if they are at all possible, it is possible to discover them. The Delian Problem is, for the correct Geometric figure, just one application of that figure. But then I am not a Geometer. In fact I dropped out of College to work on some items that I think are of particular importance, and tracing down the solution of the Delian Problem was just an example of some of the researches for that work. I have not even studied much of applied Geometry, I have been working on the theoretical aspects of it. Therefor this is an amateurs presentation and is not anything resembling a "finished" demonstration. The preceding figures are, however, technically correct abstractions.

While doing my first once over of the Elements, I found the propositions in Book 2 relating to the equality of complements. It occurred to me that since this was the correct method in which to manipulate area, an extension of it could be used to manipulate volume. This proved, after much searching, to be true. An extension of the figure can be used to abstract cube roots as well.

To cube a three dimensional rectilineal figure one has to start with the concepts of area manipulation on the two dimensional level. Starting with the rectangle in plate 1, one can see step by step, through plate 4, how to manipulate the figure while retaining the same area. If you study the Elements you will find a more complete set of abstracts to learn from. The method of squaring two sides is an abstract from this method.


Plate 1

Plate 3



Plate 2


Plate 4

The question becomes- "Can the figure be extended to work with three sides and retain the same volume?"

I will take a short side trip. Turn to plate 5 . Given a square and any point on the diagonal ray off the square, that is, extended outside of that square, divide two sides of that square into identical ratios with a ray from the chosen point. Plate 5 demonstrates the solution. If you play with the figure long enough you will find that it is a direct abstract from the figure that yields square roots. Length \(A B=C D, B C=D E\). This is not a trivial matter, for to perform cubic reductions we will have to find a method to divide this square into three such segments that have a special relationship.


Plate 5
\(A B=C D \cdot B C=D E\)

Let us take a "bar" as in P. 6 and put two of its sides back to back as in P.7. Also lay out a 45 degree angle, as that is what our cube will have to end with. In P. 8 we lay out where the cube is suppose to take place and we place in the two rays that will make the respective area manipulations. After several of these figures we will note that the two angles are indeed related because it always takes exactly two divisions to cube the figure, however, in this configuration I cannot gather any hint of another relationship between these two rays, or their angles.

P. 7

\section*{P. 6}

P. 8

P. 9

If I place both rays on the same side of the figure, I not only save paper, I also see a relationship, \(A=D, B=E, C=F\), and by working with these segments find that the square root of \(A C=B\).

P. \(10 A=D, B=E, C=F\)

P. 11

With a little more playing around, I note also that I can put a "hat" on the figure and that rays from the corners of the square under that figure will always converge on that semicircle. The immediate implication is that, not only is the square root related to the right angle, but the cube root as well.


Let us work with the square in a right angle for a moment. In P. 12 we find the answer to the question"How do I find the square in a right triangle?"


Plate 13


Plate 14


Plate 15

In Plates 13 through 16, we find the answer to the question-"Given a length of line, and another that must be one third or less of the first, what is the right angle which contains this segment as one side of a square?" The questions could be stated more technically than this, but-.

Plate 16



In P. 17 We see that "The square in a right triangle is equal to the square of the remaining two segments, and in a duplicate ratio and"

P. 18 "The three triangles on the sides of that square are in a triplicate ratio to those sides of that square."

P. 19 Shows another square that can be formed using the same segments as the square in a right triangle. This square will be used in demonstrating another triplicate ratio, and that is the Pythagorean principle for cube roots.


Plate 20 Demonstrates the triple implication of the Pythagorean theorem in the cubic expression. It will also do well to note that the three squares in continued proportion on the diagonal of the square under the right angle major have the same relationship as the segments on the hypotenuse of that given right angle.

There is one more triple proportion to look at. Plate 21.


All three semicircles intersect the semicircle which we draw our right angle in at the same point (A). From the center of the square under our eventual right angle (E) until they all intersect on that semicircle (A) they will produce a 90 degree angle divided into a 45 in the semicircle that is used for the square root application. I will leave it to the inquisitive reader to find the proper method of using this information to find a the method to find the intersect of the two rays under this figure. One will note that I have written in the progression along the bottom of the plate of the lengths involved.

Let us turn now to a simple but very productive diagram, Plate 22.


How close is the segment \(A B\) to the cube root of the circle given as a sphere? Is it well within pencil tolerances?

What approximate cube root figure is the segment CB a part of? (for abstract see Plate 12.)


Plate 23

On Plate 24 the radius for the circle OP is given by MN.


One of the items that one will find in working with the figure is that it is infinitely recursive, by adding a couple of lines in the right place, one has another cubic relationship.

How do we test for accuracy of our cubic results? It will be noted that on the line that is the cube root of \(B^{2} A\) (if you have missed it, the figure gives both roots, \(A^{2} B\) and \(B^{2} A\) ) there is a series of intersects, (three of them). When these intersects form a line
parallel to the base of the figure then the result is accurate, this should have been abstracted, and used for proof, during one's play with P. 7 and P.8.

A great number of propositions relating to the figure can be generated, of which I shall not here produce any. Doubling of the cube came very early in my search, the difficult part was in learning how to abstract any root. Now I have much work to do, and much learning to do to complete that work and I hope you have fun with the figure.J.C.

I was so happy with myself that I found all this out on my own that I sent it out to see if anyone would publish it. The returns indicate that it was stillborn, however I continue my explorations. Good books on Geometrical constructions are not readily available and I am quite ignorant of what has been done in the way of plane Geometry. I strike out more or less on my own on the Delian Quest. I take only One Cirlce, One Square, and One Line as my travel companions, not to mention Elementary Algebra as a consultant.

\section*{GEOMETRIAE DEDICATA}

ManagingEditors:
K. STRAMBACH

MathematischesInstitut
Bismarckstr. 1 1/2
D-8520 Eriangen
ER. Germany
Telephone: (0)9131-8525(X)
or 852502
F. D. VELDKANW

NblemakchMm4uw
Postbus 80.010
3508 TA Utrecht
The Netherlands
Telephone: (0)30-531519
Utrecht, 15 December 1989

\section*{Dear Mr. Clark,}

From Kluwer academic publishers I received your manuscript The Delian Solution which they presumed you wanted to submit
for Geometriae Dedicata. It is not clear to me what these considerations on elementary Euclidean geometry are aiming at.
Geometriae Dedicata is a journal for research in modern geometry and related fields. I think it is not the place to publish your manuscript, which we cannot accept therefore. I return the three copies under separated cover.

Sincerely,
F.D. Veldkamp

American Mathematical Society
PO. Box 6248, Providence, Rhode Island 02940 USA Telephone (401) 272-9500
Telex 797192, FAX 401-331-3842
Location:
201 Charles Street
Providence, RI
02904
December 8, 1989
Professor Professor John J. Clark
Dear Professor Clark,
I recently received your manuscript entitled "The Delian solution" for consideration in BULLETIN (NEW SERIES) OF THE AMERICAN MATHEMATICAL SOCIETY. Please note that I am forwarding your paper to Professor Roger E. Howe (Department of Mathematics, Yale University, New Haven. CT 06520) and that you should address all your inquiries to the editor.

Sincerely yours,
Christine Vendettuoli
Publications Department

Serving the mathematical community for over 100 years

\section*{American Mathematical Society}

Mathematics

\section*{Roger E.Howe}

Bulletin
Editorial Committee

Department of
Yale University
Box 2155, Yale Station
New Haven, CT 06520

December 14, 1989
Dear Professor Clark:
I regret to inform you that we are unable to accept your paper, "The Delian solution" for publication in the Bulletin. Our reviewers felt that the results are not of sufficient general interest or significance to warrant publication in the Bulletin.

Yours truly, Roger E. Howe Editor
Research Bulletin
REH/med

\section*{JOURNAL OF GEOMETRY}

\author{
Editor's Office
}

Prof. Dr. H.-J. Kroll
Mathematisches Institut
Technische Universitiit Munchen
Arcisstr. 21
D-8000 Munchen 2
January 17, 1990

\section*{Dear Professor Clark,}

Thank you very much for your manuscript on "THE DELIAN SOLUTION".
Date of receipt is January 12, 1990. As soon as we have the referee's report at hand, you will receive further information.

Yours sincerely, H. -J. Kroll

Expert opinion on the article "The Delian Solution" of John J. Clark: You can find some interesting statements in the submitted version of this article but exact constructions are missing. Mostly it's not clear where some points or lines come from. Therefore the proofs also cannot be examined very good. And for the more complicated constructions it's very difficult to follow the ideas of the author. Moreover the relation between the single statements and the opening problem doesn't come out very good.
All together the article in the given version is not understandable.

\section*{JOURNAL OF GEOMETRY \\ Editor's Office}

München, 1 June 1990
Dear Professor Clark, Your paper "The Delian Solution" submitted to the Journal of Geometry is hereby regrettably returned by the decision of the reviewers.
We are very sorry that we could not be of any help to you.
Sincerely yours,

\author{
H. -J. Kroll
}
(This one is a form letter.)

\section*{société mathématique defrance}
paris, le
BULLETIN
n. réf.
a l'attention de
v. réf.

Cher(e) collègue,
Le Comité de Rédacton du Bulletin de la Société Mathématique de France n'a pas pu accepter votre article intitulé


Malgré l'intérêt de votre travail, celui-ci ne correspond pas à l'esprit de notre Revue destinée à un large public de mathématiciens et non à des lecteurs trop spécialisés.

Nous vous prions d'agréer, cher(e) collégue, l'expression de nos sentiments les meilleurs.

\section*{P. SCHAPIRA}

Directeur de la Publication
P.J. : Manuscrit



\section*{A Triplicate Ratio 06/20/92}

Given some point \(O\) place CE on BF such that \(O\) is the point of similarity.
\[
\begin{aligned}
& \mathrm{N}:=1.52 \quad \mathrm{~N}_{2}:=.89 \quad \mathrm{~N}_{3}:=.66 \\
& B F:=N \quad M O:=N_{2} \quad C E:=N_{3} \\
& \text { FM }:=\sqrt{2 \cdot \text { BF }^{2}} \quad \text { AB }:=\frac{B F \cdot M O}{\text { FM }} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{AQ}:=\frac{\mathrm{CE}}{2} \\
& \mathrm{DQ}:=\sqrt{\mathrm{AD}^{2}+\mathrm{AQ}^{2}} \text { QR }:=\mathrm{DQ} \text { QP }:=\mathrm{DQ} \\
& A P:=\mathbf{Q P}-\mathbf{A Q} \quad \mathbf{A R}:=\mathbf{Q R}+A Q \quad \mathbf{A C}:=\mathbf{A P} \\
& \mathrm{AE}:=\mathrm{AR} \text { AO: }:=\mathrm{AF} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \\
& \text { EF :=AF - AE EK := EF BH := EK } \\
& \frac{\mathbf{B C}}{\mathbf{B H}}-\frac{\mathbf{A C}}{\mathbf{A O}}=\mathbf{0}
\end{aligned}
\]

The last ratiocan be tediously proved by reducing each term to the givens.

Edit 062800

\section*{08/12/92 Rusty Cube of a Sphere}

Given AB, how close is BJ to the cube root of \(A B\) taken as a sphere?


\(\mathrm{CD}:=\mathrm{BD}-\mathrm{CG} \quad \mathrm{DG}:=\sqrt{\mathrm{CD}^{2}+\mathrm{CG}^{2}}\)
\[
\mathbf{G J}:=\sqrt{\mathbf{D J}^{2}-\mathrm{DG}^{2}} \quad \mathrm{AC}:=\mathrm{AB}+\mathbf{B C}
\]
\[
A G:=\sqrt{A C^{2}+\mathbf{C G}^{2}}
\]
\[
\mathbf{A} \mathbf{J}:=\mathbf{A} \mathbf{G}+\mathbf{G} \mathbf{J}
\]
\(A E:=\frac{\mathbf{A C} \cdot \mathbf{A J}}{\mathbf{A G}}\)
EJ \(:=\frac{C G \cdot A J}{A G}\)
BE :=AE-AB
\(\mathbf{B J}:=\sqrt{\mathbf{E J}^{2}+\mathbf{B E}^{2}}\)


Given \(A B, B C, A C\), what is \(C D\), \(A D, B D\) and \(C J ?\)

\(S_{1}:=2\)
\(S_{2}:=3\)
\(S_{3}:=4\)
\(A B:=S_{1} \quad B C:=S_{2} \quad A C:=S_{3}\)
\(\mathbf{A G}:=\mathbf{A C} \quad \mathbf{B H}:=\mathbf{B C} \quad \mathrm{AE}:=\frac{\mathbf{A G}^{2}}{\mathbf{A B}} \quad \mathrm{BF}:=\frac{\mathbf{B H}^{2}}{\mathbf{A B}}\)
\(\mathrm{EF}:=\mathrm{AB}-(\mathrm{AE}+\mathrm{BF}) \quad \mathrm{DE}:=\frac{\mathrm{EF}}{2} \quad \mathrm{DF}:=\mathrm{DE}\)
\(\mathrm{AD}:=\mathrm{AE}+\mathrm{DE} \quad \mathrm{AD}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot \mathrm{~S}_{1}} \quad \mathrm{BD}:=\mathrm{BF}+\mathrm{DF} \quad \mathrm{BD}:=\frac{\mathrm{S}_{2}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{2 \cdot \mathrm{~S}_{1}}\)
\(C D:=\sqrt{{A C^{2}}^{2}-A D^{2}} \quad C D:=\frac{\sqrt{\left(-S_{1}+S_{2}-S_{3}\right) \cdot\left(S_{1}+S_{2}+S_{3}\right) \cdot\left(S_{1}-S_{2}-S_{3}\right) \cdot\left(S_{1}+S_{2}-S_{3}\right)}}{2 \cdot S_{1}}\)

\[
\begin{aligned}
& \mathrm{AJ}:=\frac{\mathrm{AB}}{2} \quad J D:=\mathrm{AD}-\mathrm{AJ} \quad \mathrm{CJ}:=\sqrt{\mathrm{JD}^{2}+\mathrm{CD}^{2}} \\
& \mathrm{CJ}:=\frac{1}{2} \cdot \sqrt{2 \cdot \mathrm{~S}_{3}{ }^{2}-\mathrm{S}_{1}{ }^{2}+2 \cdot \mathrm{~S}_{2}{ }^{2}} \\
& \left(\mathbf{A C}^{2}+\mathbf{B C}^{2}\right)-\left(\frac{\mathbf{A B}^{2}}{2}+2 \cdot \mathbf{C J}^{2}\right)=0
\end{aligned}
\]

The sum of the squares on any two sides of any triangle is equal to the sum of half the square on the remaining side plus twice the square on the medial bisector (CJ).

\section*{06/03/93.MCD Exploring The Curve CJ}


Given AG and GF = AG/3 and any \(A C\), is \(B D\) the square root of \(A B x\) DG?
\[
\begin{aligned}
& \mathrm{N}:=\mathbf{2} \quad \mathbf{N}_{2}:=\mathbf{4} \\
& \text { AG }:=\mathbf{N} \quad \text { AC }:=\frac{\mathbf{A G}}{\mathbf{N}_{2}} \quad \text { GF }:=\frac{\mathbf{A G}}{3} \quad \text { AE }:=\frac{\mathbf{A G}}{2} \\
& \text { EG }:=\mathbf{A E} \quad \text { AF }:=\mathbf{A G}-\mathbf{G F} \quad \text { FM }:=\sqrt{\mathbf{A F} \cdot \mathbf{G F}} \\
& \text { GM }:=\sqrt{\mathbf{G F}^{2}+\mathbf{F M}^{2}} \quad \mathbf{G N}:=\mathbf{G M} \quad \text { EN }:=\sqrt{\mathbf{G N}^{2}-\mathbf{E G}^{2}} \\
& \text { NH }:=\mathbf{G M} \quad \text { NS }:=\mathbf{G M} \quad \text { PN }:=\mathbf{A E} \quad \text { PS }:=\mathbf{N S}-\mathbf{P N} \\
& \text { ST }:=\mathbf{2} \cdot \mathbf{G M} \quad \text { SQ }:=\mathbf{A C}+\mathbf{P S} \quad \text { QT }:=\mathbf{S T}-\mathbf{S Q} \\
& \text { QH }:=\sqrt{\text { SQ } \cdot \mathbf{Q T}} \quad \text { CQ }:=\mathbf{E N} \quad \text { CH }:=\mathbf{Q H}-\mathbf{C Q}
\end{aligned}
\]
\[
\mathrm{AH}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CH}^{2}} \quad \mathrm{CG}:=\mathrm{AG}-\mathrm{AC} \quad \mathrm{GH}:=\sqrt{\mathrm{CG}^{2}+\mathrm{CH}^{2}} \quad \mathrm{AJ}:=\mathrm{AH} \quad \mathrm{AB}:=\frac{\mathbf{A J}}{\mathrm{AG}}
\]
\[
\mathbf{G L}:=\mathbf{G H} \quad \mathbf{D G}:=\frac{\mathbf{G L}^{2}}{\mathbf{A G}} \quad \mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G}) \quad \sqrt{\mathbf{A B} \cdot \mathbf{D G}}-\mathbf{B D}=\mathbf{0}
\]
\[
\left(\frac{-\mathbf{N}}{3}+\frac{\mathbf{N}}{3} \cdot \frac{\sqrt{\mathbf{N}_{2}^{2}+12 \cdot \mathbf{N}_{2}-12}}{\mathbf{N}_{2}}\right)-B D=0
\]

06/07/93 For All Triangles Find BD


Given \(A B, B C, A C, C D, A D\), find \(B D\)

To simplify use line names found in 010893
\(\mathbf{C E}:=\frac{\mathbf{C D}^{2}+\mathrm{AC}^{2}-\mathrm{AD}^{2}}{2 \cdot \mathbf{A C}} \quad \mathrm{CF}:=\frac{\mathbf{B C}^{2}+\mathrm{AC}^{2}-\mathrm{AB}^{2}}{2 \cdot \mathbf{A C}} \quad \mathrm{EF}:=\mathrm{CF}-\mathrm{CE}\)
\(\mathrm{DE}:=\sqrt{\mathrm{CD}^{2}-\mathrm{CE}^{2}} \quad \mathrm{BF}:=\sqrt{\mathrm{BC}^{2}-\mathrm{CF}^{2}} \quad \mathrm{GF}:=\mathrm{DE}\)
\[
\mathbf{B G}:=\mathbf{B F}-\mathbf{G F} \quad \text { DG }:=\mathbf{E F} \quad \text { BD }:=\sqrt{\mathbf{D G}^{2}+\mathbf{B G}^{2}} \quad \text { BD }=3.983
\]

\section*{OR}
\[
\mathrm{BG}_{2}:=\mathrm{BF}+\mathrm{GF} \quad \mathrm{DG}_{2}:=\mathrm{EF} \quad \mathrm{BD}_{2}:=\sqrt{\mathrm{DG}^{2}+\mathrm{BG}_{2}^{2}} \quad \mathrm{BD}_{2}=5.757
\]

\section*{06/09/93 Rectangular Roots}


Given AD and DE divide AD into the rectangular roots of \(D E\).
\[
\mathbf{N}:=5 \quad \mathbf{N}_{2}:=\mathbf{2}
\]
\[
\text { AD }:=\mathbf{N} \quad \text { DE }:=\mathbf{N}_{2} \quad \text { CF }:=\mathrm{DE} \quad \text { BF }:=\frac{\mathbf{A D}}{2}
\]
\(\mathrm{AB}:=\mathrm{BF} \quad \mathrm{BC}:=\sqrt{\mathrm{BF}^{2}-\mathrm{CF}^{2}} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \quad \sqrt{\mathrm{CD} \cdot \mathrm{AC}}-\mathrm{DE}=0\)
\[
A C:=\frac{1}{2} \cdot N+\frac{1}{2} \cdot \sqrt{-4 \cdot N_{2}^{2}+N^{2}} \quad C D:=\frac{1}{2} \cdot N-\frac{1}{2} \cdot \sqrt{-4 \cdot N_{2}^{2}+N^{2}}
\]

Divide \(A B\) by \(\mathrm{N}_{1}\) then divide \(C D\) by \(\mathrm{N}_{2}\), what are \(B F / E F\) and \(A C / A F\) ?

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{2}:=5 \quad \delta:=\mathbf{1} . . \mathbf{N}_{2} \\
& \mathbf{A B}:=\mathbf{1} \quad \mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{A L}:=\frac{\mathbf{A B}}{2} \\
& \mathbf{D L}:=\mathbf{A L}-\mathbf{A D} \quad \mathbf{A C}:=\sqrt{\frac{1}{2}} \\
& \mathbf{C L}:=\mathbf{A L} \\
& \hline \frac{\mathbf{A B}}{2} \\
& \hline \frac{4}{5} \\
& \hline
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{D E}_{\delta}:=\frac{\mathbf{C D} \cdot \delta}{\mathbf{N}_{2}} \quad \mathbf{D K}_{\delta}:=\frac{\mathrm{DL}^{2} \cdot \mathbf{D E}_{\delta}}{\mathbf{C D}} \quad \mathrm{AK}_{\delta}:=\mathrm{AD}+\mathrm{DK}_{\delta} \mathbf{B K}_{\delta}:=\mathbf{A B}-\mathrm{AK}_{\delta} \mathbf{E K}_{\delta}:=\frac{\mathbf{C L} \cdot \mathbf{D K}_{\delta}}{\mathrm{DL}} \\
& \mathrm{BE}_{\delta}:=\sqrt{\left(\mathbf{E K}_{\delta}\right)^{2}+\left(\mathrm{BK}_{\delta}\right)^{2}} \quad \mathbf{H K}_{\delta}:=\frac{\mathrm{AL} \cdot \mathrm{DK}_{\delta}}{\mathrm{DL}} \quad \mathbf{B H}_{\delta}:=\mathbf{B K}_{\delta}+\mathbf{H K}_{\delta} \mathbf{E H} \boldsymbol{E}_{\delta}:=\frac{\mathrm{AC} \cdot \mathrm{DK}_{\delta}}{\mathrm{DL}} \\
& \mathrm{AF}_{\delta}:=\frac{\mathbf{E H}_{\delta} \cdot \mathbf{A B}}{\mathrm{BH}_{\delta}} \quad \mathrm{BF}_{\delta}:=\frac{\mathrm{BE}_{\delta} \cdot \mathbf{A B}}{\mathbf{B H}_{\delta}} \quad \mathbf{E F}_{\delta}:=\mathbf{B F}_{\delta}-\mathbf{B E}_{\delta}
\end{aligned}
\]


\section*{06/27/93 Describe A Circle About a Triangle}

Given the difference between three non-collinear points, find the radius of the circle that circumscribes them
\[
\Delta:=(\mathbf{A B}+\mathbf{A C}>\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{B C}>\mathbf{A C}) \cdot(\mathbf{B C}+\mathbf{A C}>\mathbf{A B}) \quad \text { NOT }(X):=\mathrm{X}=\mathbf{0} \quad \delta:=0 . .2
\]

\[
\begin{aligned}
& \mathbf{B K}:=\frac{\mathbf{A B}}{2} \quad \mathbf{A E}:=\mathbf{A C} \quad \mathbf{B F}:=\mathbf{B C} \\
& \mathbf{A G}:=\frac{\mathbf{A E}}{\mathbf{A B}} \quad \mathbf{B J}:=\frac{\mathbf{B F ^ { 2 }}}{\mathbf{A B}} \quad \mathbf{G J}:=\mathbf{A B}-(\mathbf{A G}+\mathbf{B J}) \\
& \mathbf{H J}:=\frac{\mathbf{G J}}{\mathbf{2}} \quad \mathbf{B H}:=\mathbf{B J}+\mathbf{H J} \quad \mathbf{C H}:=\sqrt{\mathbf{B C}^{2}-\mathbf{B H}^{2}} \\
& \mathbf{B N}:=\frac{\mathbf{B C}}{\mathbf{2}} \quad \mathbf{B M}:=\frac{\mathbf{B C} \cdot \mathbf{B K}}{\mathbf{B H}} \quad \mathbf{M N}:=\mathbf{B M}-\mathbf{B N} \\
& \mathbf{D N}:=\frac{\mathbf{B H} \cdot \mathbf{M N}}{\mathbf{C H}} \quad \mathbf{B D}:=\sqrt{\mathbf{B N}^{2}+\mathbf{D N}^{2}}
\end{aligned}
\]
radius := \(\mathbf{i f}(\Delta, \mathbf{B D}, \mathbf{0})\)
imaginary_radius \(:=\mathbf{i f}(\operatorname{NOT}(\Delta), B D, 0)\)
radius \(=\mathbf{3 . 3 7 5}\)
imaginary_radius \(=0\)
\(\Delta=1\)
\[
\mathrm{S}_{1}:=\left[\begin{array}{c}
\mathrm{AB} \\
\mathrm{AC} \\
\mathrm{BC}
\end{array}\right] \quad \mathrm{S}_{2}:=\left[\begin{array}{c}
\mathrm{AC} \\
\mathrm{BC} \\
\mathrm{AB}
\end{array}\right] \quad \mathrm{S}_{3}:=\left[\begin{array}{c}
\mathrm{BC} \\
\mathrm{AB} \\
\mathrm{AC}
\end{array}\right]
\]
\[
A B \equiv 3 \quad A C \equiv 4 \quad B C \equiv 6
\]

The name of the Radius as a proportion of the given names
\[
\begin{gathered}
\mathbf{R}_{\delta}:=\frac{S_{1_{\delta}} \cdot S_{2_{\delta}} \cdot S_{3_{\delta}}}{\sqrt{S_{1_{\delta}}+S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{-S_{1_{\delta}}+S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{S_{1_{\delta}}-S_{2_{\delta}}+S_{3_{\delta}}} \cdot \sqrt{S_{1_{\delta}}+S_{2_{\delta}}-S_{3_{\delta}}}} \\
\mathbf{R}^{T}=\left[\begin{array}{lll}
3.375 & 3.375 & 3.375
\end{array}\right]
\end{gathered}
\]

\section*{07/15/93 Pyramid of Ratios II}
\(A B\) is divided by \(N 1\) and \(A C\) and \(B D\) is divided by \(N 2\), what are EG/FG and CD/DF?

\(\mathbf{N}_{1}:=3 \quad \mathbf{N}_{2}:=5 \quad \delta:=1 . . \mathbf{N}_{2}\)
AB \(:=1 \quad\) AD \(:=\frac{\mathbf{A B}}{\mathbf{N}_{1}} \quad\) AC \(:=\sqrt{\frac{\mathbf{A B}^{2}}{2}} \quad\) BD \(:=\mathrm{AB}-\mathbf{A D}\)
\(\mathrm{DE}_{\delta}:=\frac{\mathrm{BD} \cdot \delta}{\mathbf{N}_{2}} \quad \mathrm{AG}_{\delta}:=\frac{\mathbf{A C} \cdot \delta}{\mathbf{N}_{2}} \quad \mathrm{AE}_{\delta}:=\mathrm{AD}+\mathrm{DE}_{\delta}\)
\(A H_{\delta}:=\sqrt{\frac{\left(A G_{\delta}\right)^{2}}{2}} \quad G H_{\delta}:=A H_{\delta} \quad E H_{\delta}:=A E_{\delta}-A H_{\delta}\)
\(\mathbf{E G}_{\delta}:=\sqrt{\left(\mathbf{E H}_{\delta}\right)^{2}+\left(\mathbf{G H}_{\delta}\right)^{2}} \quad \mathrm{AL}:=\frac{\mathrm{AB}}{2} \quad \mathrm{DL}:=\mathrm{AL}-\mathrm{AD}\)
\[
\begin{aligned}
& \mathrm{CL}:=\sqrt{\frac{\mathrm{AC}^{2}}{2}} \quad \mathrm{HK}_{\delta}:=\frac{{\mathrm{DL} \cdot \mathrm{GH}_{\delta}}_{\mathrm{CL}}^{E K_{\delta}}:=\mathrm{EH}_{\delta}+\mathrm{HK}_{\delta} \quad \mathrm{DJ}_{\delta}:=\frac{\mathrm{HK}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}} \quad \mathrm{FJ}_{\delta}:=\frac{\mathrm{GH}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}}}{\mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{DJ}_{\delta}\right)^{2}+\left(\mathrm{FJ}_{\delta}\right)^{2}} \quad \mathrm{EF}_{\delta}:=\frac{\mathrm{EG}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathrm{EK}_{\delta}} \quad \mathrm{FG}_{\delta}:=\mathrm{EG}_{\delta}-\mathrm{EF}_{\delta} \quad \mathrm{CD}:=\sqrt{\mathrm{CL}^{2}+\mathrm{DL}^{2}}}
\end{aligned}
\]
\[
\left.\begin{array}{ll}
\text { if }\left(\mathbf{F G}_{\delta}, \frac{\mathbf{E G}_{\delta}}{\mathbf{F G}_{\delta}}, 0\right.
\end{array}\right) \quad \text { if }\left[\mathbf{N}_{2}-\delta, \frac{\mathbf{N}_{2}+\delta \cdot\left(\mathbf{N}_{1}-2\right)}{\mathbf{N}_{2}-\delta}, 0\right]
\]
\[
\mathbf{i f}\left(\delta, \frac{\mathrm{CD}}{\mathrm{DF}_{\delta}}, \mathbf{0}\right)
\]
\[
\text { if }\left[\delta, \mathbf{N}_{2} \cdot \frac{\left[\left(\mathbf{N}_{2}+\delta \cdot \mathbf{N}_{1}\right)-2 \cdot \delta\right]}{\left[\delta^{2} \cdot\left(\mathbf{N}_{1}-1\right)\right]}, 0\right]
\]
\begin{tabular}{|c|}
\hline 15 \\
\hline 4.375 \\
\hline 2.222 \\
\hline 1.406 \\
\hline 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 15 \\
\hline 4.375 \\
\hline 2.222 \\
\hline 1.406 \\
\hline 1 \\
\hline
\end{tabular}

\section*{07/25/93 Pyramid of Ratios III}

\section*{Dividing DC by an number provides wht in terms of BE/BF and AF/CF?}


\section*{11/06/93 Gruntwork I on the Delian Solution}


Does \(\left(A B^{2} \times A H\right)^{1 / 3}=A C\) and \(\left(A B \times A H^{2}\right)^{1 / 2}=A E ?\)
\[
\begin{aligned}
& \mathrm{N}:=\mathbf{4} \quad \mathrm{BH}:=\mathbf{1} \\
& \text { BF }:=\frac{B H}{2} \text { BD }:=\frac{B F}{N} \text { DH }:=B H-B D \\
& \text { DK }:=\sqrt{\text { BD } \cdot \text { DH }} \quad \text { BJ }:=\text { DK } \quad \text { BO }:=\mathbf{B H} \\
& \text { JO := BJ + BO JK := BD CD }:=\frac{\text { JK DK }}{\text { JO }} \\
& \text { KL }:=\text { DH LP }:=\text { JO } \quad \text { DE }:=\frac{\text { KL } \cdot \text { DK }}{\text { LP }} \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \quad \mathrm{CE}:=\mathrm{CD}+\mathrm{DE} \quad \mathrm{MN}:=\mathrm{BC}
\end{aligned}
\]

GH :=MN CH:=BH-BC HN := \(\sqrt{2 \cdot \mathbf{C H}^{2}} \quad\) GM \(:=\mathbf{H N} \quad\) EH \(:=\mathbf{C H}-\mathbf{C E} \quad\) EG \(:=\mathbf{E H}-\mathbf{G H}\) \(\mathbf{H Q}:=\frac{G M \cdot E H}{E G} \quad H O:=\sqrt{2 \cdot \mathbf{B H}^{2}} \quad\) OQ \(:=H Q-H O \quad O R:=\sqrt{\frac{O Q Q^{2}}{2}} \quad\) AB \(:=O R \quad A C:=A B+B C\)
\(A E:=A B+B D+D E \quad A H:=A B+B H \quad\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A E=0\)

\section*{11/09/93 Solve For Cube Root Placement}

With straight edge and compass only, solve the given problem. BH is the difference between the segments AH and AB.
CF is the difference between the cube root of \(A B\) squared by \(A H\) and the cube root of \(A H\) squared by \(A B\). Find \(A B\) and place the roots.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{2} \quad \mathbf{B H}:=\mathbf{N} \mathbf{- 1} \\
& B G:=\frac{B H}{2} \quad C F:=N^{\frac{2}{3}}-N^{\frac{1}{3}} \\
& \text { BL }:=\text { CF } \quad \text { GP }:=B G \quad B K:=\frac{B L}{2} \\
& \text { BD := BK NP := BD GN := GP - NP } \\
& \mathbf{E N}:=\mathbf{B L} \quad \text { GE }:=\sqrt{\mathbf{G N}^{2}-\mathbf{E N}^{2}} \\
& \mathbf{C E}:=\mathrm{BD} \quad \mathrm{BC}:=\mathrm{BG}-(\mathbf{G E}+\mathbf{C E})
\end{aligned}
\]
\[
\text { GH }:=\text { BG } \quad \text { EF }:=\text { BD }
\]
\[
\begin{aligned}
& \mathrm{FH}:=\mathrm{GH}+\mathrm{GE}-\mathbf{E F} \quad \mathrm{FQ}:=\mathrm{FH} \quad \mathrm{FO}:=\mathrm{BL} \quad \text { OQ }:=\mathrm{FQ}-\mathrm{FO} \quad \text { MO }:=\mathrm{CF} \quad \mathrm{AF}:=\frac{\mathrm{MO} \cdot \mathrm{FQ}}{\mathrm{OQ}} \\
& \mathrm{AC}:=\mathrm{AF}-\mathrm{CF} \quad \mathrm{AH}:=\mathrm{AF}+\mathrm{FH} \quad \mathrm{AB}:=\mathrm{AH}-\mathrm{BH}
\end{aligned}
\]
\[
\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A F=0 \quad \frac{A H}{A B}=2
\]

The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship.

\section*{11/10/93 Gruntwork II on the Delian Solution}

Given any acute angle in the isosceles, divide the base leg as shown. Do the resultant segments show any particular relationship to one another?


Albebraic Names:
DE \(:=\frac{1}{\mathrm{~N}} \quad \mathrm{AD}:=\mathbf{1}-\frac{1}{\mathrm{~N}} \quad \mathrm{AC}:=\frac{(\mathrm{N}-1)^{2}}{\mathrm{~N}^{2}} \quad \mathrm{AB}:=\frac{(\mathrm{N}-1)^{3}}{\mathrm{~N}^{3}}\)
\[
\left[\left[\frac{(N-1)^{3}}{N^{3}}\right]^{2}\right]^{\frac{1}{3}}-\frac{(N-1)^{2}}{N^{2}}=0 \quad\left[\frac{(N-1)^{3}}{N^{3}}\right]^{\frac{1}{3}}-\left(1-\frac{1}{N}\right)=0
\]

\section*{11/11/93 The Archamedian Paper Trisector}

If one accepts the facts of the original figure, one only need prove that \(\mathrm{BK}=\mathrm{AB}\).
If one does not accept the facts, examination of the construction should make it apparent. Does \(\mathrm{FK}=\mathrm{BK}=\mathrm{AB}\) ?

\[
\mathbf{N}:=4 \quad \text { AJ }:=1 \quad \text { AE }:=\frac{\mathbf{A J}}{2} \quad \text { EJ }:=A E \quad \text { EN }:=A E E M:=A E A C:=\frac{A J}{N}
\]
\(\mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{C N}:=\sqrt{A C \cdot C J} \quad J N:=\sqrt{\mathbf{C N}^{2}+\mathbf{C J}^{2}} \quad \mathbf{J L}:=\frac{\mathrm{JN}}{2} \quad\) GL \(:=\frac{\mathrm{CN}}{2} \quad\) GJ \(:=\frac{\mathrm{CJ}}{2}\)
EG \(:=\mathbf{E J}-\mathbf{G J}\) EL \(:=\sqrt{\mathbf{E G}^{2}+\mathbf{G L}^{2}}\) EH \(:=\frac{\mathbf{E G} \cdot \mathbf{E M}}{\mathbf{E L}} \quad \mathbf{H M}:=\frac{\mathbf{G L} \cdot \mathbf{E M}}{\mathbf{E L}} \mathbf{A H}:=\mathbf{A E}+\mathbf{E H}\)
\(\mathrm{CO}:=\frac{\mathrm{AH} \cdot \mathrm{CN}}{\mathrm{HM}} \mathrm{CE}:=\mathrm{AE}-\mathrm{ACEO}:=\mathrm{CO}+\mathrm{CE} \quad \mathrm{EK}:=\frac{\mathrm{EN} \cdot \mathrm{AE}}{\mathrm{EO}} \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{AE}}{\mathrm{EO}} \mathrm{DK}:=\frac{\mathrm{CN} \cdot \mathrm{EK}}{\mathrm{EN}}\)
AD \(:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{KN}:=\mathrm{EN}-\mathbf{E K}\) BK \(:=\mathrm{KN}\) BD \(:=\sqrt{\mathrm{BK}^{2}-\mathrm{DK}^{2}} \quad \mathrm{AB}:=\mathrm{AD}\) - BD
\(A B-B K=0 \quad A B=0.25 \quad\) If PK is parallel to AJ, then \(\ldots\)

\[
\mathbf{A N}:=2 \cdot \mathbf{E L} \quad \mathbf{A P}:=\mathbf{A B} \quad \mathbf{P Q}:=\frac{\mathbf{C N} \cdot \mathbf{A P}}{\mathbf{A N}} \quad \mathbf{P Q}-\mathbf{D K}=0
\]

11/12/93 To Square A Circle Off The Base Of A Right Triangle.

Sometime in 1992, I remembered
 reading that some guy spent some time in prison and learned the process for squaring a circle off the base of a right triangle but then history lost it again, so I set out to find it and did. It took a couple hours so I wonder what he did with the rest of his time?

Using the approximation,\(\pi=\) 22/7, square the circle off the base of a right triangle.
\(\mathrm{BF}:=1 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EF}:=\mathrm{BE} \quad \mathrm{EH}:=\mathrm{BE} \quad \mathrm{BD}:=\frac{3}{4} \cdot \mathrm{BE} \quad \mathrm{AB}:=\mathrm{BD}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FK}:=\frac{\mathrm{EH} \cdot \mathrm{AF}}{\mathrm{AE}} \quad \mathrm{CF}:=\mathrm{FK} \quad \mathrm{BC}:=\mathrm{BF}-\mathrm{CF}\)
\(\mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \quad \mathrm{FG}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CG}^{2}} \quad \pi_{-} \mathrm{A}:=\frac{\mathrm{FG}^{2}}{\mathrm{BE}^{2}}\)
\[
\begin{aligned}
& \pi=3.14159265359 \\
& \pi \_A=3.142857142857 \\
& \frac{\pi}{\pi \_A}=\mathbf{0 . 9 9 9 5 9 7 6 6 2 5 0 5 8 4 3}
\end{aligned}
\]

11/18/93 Exploring Cube Roots Plate A
Using the parallel FO to project to the point of similarity for the square root, point \(L\) is used for the cube root.

\[
\text { KQ }:=\mathbf{B Q}+\mathbf{B K} K L:=\mathbf{B D} \mathbf{B C}:=\frac{\mathbf{K L} \cdot \mathbf{B Q}}{\mathrm{KQ}} \quad \mathbf{H J}:=\mathbf{B H} \mathbf{D J}:=\mathbf{H J}+\mathbf{F H}+\mathbf{D F} \mathbf{L N}:=\mathbf{D J}
\]
\[
\mathbf{J S}:=\mathbf{B J} \quad \mathbf{J N}:=\mathbf{D L} \quad \mathbf{N S}:=\mathbf{J S}+\mathbf{J N} \quad \text { GJ }:=\frac{\mathbf{L N} \cdot \mathbf{J S}}{\mathbf{N S}} \quad \mathbf{B G}:=\mathbf{B J}-\mathbf{G J} \quad \text { AC }:=\mathbf{A B}+\mathbf{B C}
\]
\[
\mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \quad \mathbf{A J}:=\mathbf{A B}+\mathbf{B J} \quad(\mathbf{A B} \cdot \mathbf{A J})^{\frac{1}{3}}-\mathbf{A C}=\mathbf{0} \quad\left(\mathbf{A B} \cdot \mathbf{A} \mathbf{J}^{2}\right)^{\frac{1}{3}}-\mathbf{A G}=\mathbf{0}
\]
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{2} \\
& \text { BJ }:=1 \quad \text { BH }:=\frac{\text { BJ }}{2} \mathbf{H L}:=\mathbf{B H} \quad \text { BF }:=\frac{\mathbf{B H}}{\mathbf{N}} \\
& \text { FH }:=\mathbf{B H}-\mathbf{B F} \text { HR }:=\text { BJ FR }:=\sqrt{\mathbf{F H}^{2}+\mathbf{H R}^{2}} \\
& F P:=\frac{\mathbf{F H}^{2}}{F R} \quad \mathbf{P H}:=\frac{\mathbf{H R} \cdot \mathbf{F P}}{\mathbf{F H}} \quad L P:=\sqrt{\mathbf{H L}^{2}-\mathbf{P H}^{2}} \\
& \text { FL }:=\mathbf{L P}-\text { FP DF }:=\frac{\text { FH•FL }}{\text { FR }} \text { DL }:=\frac{\text { HR } \cdot F L}{\text { FR }} \\
& \text { FO := BH FM := DL MO := FO - FM } \\
& \text { LM }:=\text { DF AF }:=\frac{\mathbf{L M} \cdot \mathbf{F O}}{\text { MO }} \text { AB }:=\mathrm{AF}-\mathrm{BF} \\
& \text { BQ := BJ BK := DL BD := BF - DF }
\end{aligned}
\]

Using the parallel FO to project to the point of similarity for the square root, point \(L\) is used for the cube root.

\[
\mathbf{N}:=\mathbf{2}
\]
\[
\text { BJ }:=1 \quad \text { BH }:=\frac{\mathbf{B J}}{\mathbf{2}} \mathbf{H L}:=\mathbf{B H} \quad \text { BF }:=\frac{\mathbf{B H}}{\mathbf{N}}
\]
\[
\text { FH }:=\mathbf{B H}-\mathbf{B F} \mathbf{H R}:=\mathbf{B J} \quad \text { FR }:=\sqrt{\mathbf{F H}^{2}+\mathbf{H R}^{2}}
\]
\[
\mathbf{F P}:=\frac{\mathbf{F H}^{2}}{\mathbf{F R}} \quad \mathbf{P H}:=\frac{\mathbf{H R} \cdot \mathbf{F P}}{\mathbf{F H}} \quad \mathbf{L P}:=\sqrt{\mathbf{H L}^{2}-\mathbf{P H}^{2}}
\]
\[
\text { FL }:=\mathbf{L P}-\text { FP } D F:=\frac{\text { FH } \cdot F L}{F R} \text { DL }:=\frac{\text { HR } \cdot F L}{F R}
\]
\[
\text { FO := BH } \quad \text { FM }:=\mathrm{DL} \quad \text { MO }:=\text { FO }- \text { FM }
\]
\[
\mathbf{L M}:=\mathrm{DF} \text { AF }:=\frac{\mathbf{L M} \cdot \mathbf{F O}}{\mathbf{M O}} \mathrm{AB}:=\mathrm{AF}-\mathrm{BF}
\]
\[
\text { BQ := BJ } \quad \text { BK }:=\mathbf{D L} \quad \text { BD }:=\mathbf{B F}-\mathbf{D F}
\]

KQ \(:=\mathrm{BQ}+\mathbf{B K} \quad \mathrm{KL}:=\mathrm{BD}\) BC \(:=\frac{\mathrm{KL} \cdot \mathbf{B Q}}{\mathrm{KQ}} \quad \mathbf{D J}:=\mathbf{B J}-\mathbf{B D} \quad\) LN \(:=\mathrm{DJ} \quad\) JS \(:=\) BJ
JN \(:=\) DL \(\quad\) NS \(:=\mathbf{J S}+\mathbf{J N} \quad\) GJ \(:=\frac{\mathbf{L N} \cdot \mathbf{J S}}{\text { NS }} \quad\) BG \(:=\mathbf{B J}-\mathbf{G J} \quad\) AC \(:=\mathbf{A B}+\mathbf{B C} \quad\) AG \(:=\mathrm{AB}+\mathbf{B G}\)
\(\mathbf{A J}:=\mathbf{A B}+\mathbf{B J}\)
\[
\left(A B^{2} \cdot \mathbf{A J}\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A J^{2}\right)^{\frac{1}{3}}-A G=0
\]

\section*{11/18/93 Exploring Cube Roots Plate B}

If \(A L=\mathbf{1 / 2}\) of \(C G\), then the circle LM passes through the square root of \(A B \times A K\), being point \(E\).

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{1 . 2} \quad \text { BK :=1 } \\
& \mathbf{B H}:=\frac{B K}{2} \quad \text { BD }:=\frac{\mathbf{B H}}{\mathbf{N}} \quad \text { DK }:=B K-B D \\
& D N:=\sqrt{B D \cdot D K} \quad B Q:=B K \quad K S:=B K \quad H R:=B K \\
& \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B Q}}{\mathbf{B Q}+\mathbf{D N}} \quad \mathbf{G K}:=\frac{\mathrm{DK} \cdot \mathrm{KS}}{K S+\mathbf{D N}} \quad \mathbf{B G}:=\mathbf{B K}-\mathbf{G K} \\
& \mathrm{DH}:=\mathrm{BH}-\mathrm{BD} \quad \mathrm{FH}:=\frac{\mathrm{DH} \cdot \mathbf{H R}}{\mathrm{HR}+\mathrm{DN}} \quad \mathrm{BF}:=\mathrm{BH}-\mathbf{F H} \\
& C F:=B F-B C \quad A L:=C F \quad D F:=B F-B D \\
& \text { NO }:=\mathrm{DF} \quad \text { FP }:=\mathrm{BH} \quad \text { PO }:=\mathrm{FP}-\mathrm{DN} \\
& \mathrm{AD}:=\frac{\mathrm{NO} \cdot \mathbf{D N}}{\mathrm{PO}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{A B}=1.523
\end{aligned}
\]
\(\mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{LM}:=\mathrm{AF} \quad \mathrm{EL}:=\mathrm{AF} \quad \mathrm{AK}:=\mathrm{AD}+\mathrm{DK}\)
\[
A E_{1}:=\sqrt{E L^{2}-\mathbf{A L}^{2}} \quad \quad A E_{2}:=\sqrt{A B \cdot A K} \quad \quad A E_{1}-\mathbf{A E}_{2}=0
\]

\section*{11/18/93 Exploring Cube Roots Plate C}

The circle AO passes through point M.

\[
\begin{aligned}
& \mathbf{N}:=2 \\
& \mathbf{A B}:=1 \text { AK := AB } \mathbf{N} \text { BK := AK - AB } \\
& \mathbf{A C}:=\left(\mathbf{A B}^{\mathbf{2}} \cdot \mathbf{A K}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \quad \mathbf{A G}:=(\mathbf{A B} \cdot \mathbf{A K})^{\mathbf{2}}{ }^{\frac{1}{3}} \\
& \text { CG }:=A G-A C \quad C F:=\frac{C G}{2} \text { BH }:=\frac{B K}{2} \\
& \mathrm{AH}:=\mathrm{AB}+\mathrm{BH} \quad \mathbf{H P}:=\mathrm{BH} \quad \mathrm{AP}:=\sqrt{\mathrm{AH}^{2}+\mathbf{H P}^{2}} \\
& \text { AO }:=\frac{\mathrm{AP}}{2} \quad \text { DO }:=\frac{\mathrm{HP}}{2} \quad \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \text { AD }:=\frac{\mathrm{AH}}{2} \\
& \text { DF := AF - AD FM := CF MO := AO } \\
& \mathbf{M O}{ }^{\mathbf{2}}-\left[\mathbf{D F}^{2}+(\mathbf{D O}+\mathbf{F M})^{2}\right]=0
\end{aligned}
\]


11/22/93 Cube by Iteration

When \(F_{1}\) and \(F_{2}\) are the same point on \(C\), then a sixth root series has been constructed. Use iteration to place \(\overline{5}\) on \(\mathrm{F}_{1}\).
\[
\mathbf{A B}:=\mathbf{1} \quad \mathbf{A E}:=\mathbf{2} \quad \delta:=\mathbf{0} . . \Delta
\]
\[
\mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathbf{A E}} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathbf{C G}:=\sqrt{\mathrm{AC} \cdot \mathbf{C E}} \quad \mathrm{AG}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CG}^{2}}
\]

\[
\left[\begin{array}{c}
\mathbf{A D}_{\delta+1} \\
\mathbf{D E}_{\delta+1} \\
\mathbf{D H}_{\delta+1} \\
\mathbf{C F}_{\delta+1} \\
\mathbf{A F}_{\delta+1}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{A F}_{\delta} \\
\mathbf{A E}-\mathbf{A F}_{\delta} \\
\sqrt{\mathbf{A F}_{\delta} \cdot \mathbf{D E}}{ }_{\delta} \\
\frac{\mathbf{D H}_{\delta} \cdot \mathbf{A C}}{\mathbf{A D}_{\delta}} \\
\sqrt{\mathbf{A C}^{2}+\left(\mathbf{C F _ { \delta } ) ^ { 2 }}\right.}
\end{array}\right] \quad \Delta \equiv 166
\]


\section*{11/24/93 POR Series IV}

\section*{Generalize the work of 07/25/93 for dividing the} base AE with K constant.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{A E}:=\mathbf{1} \\
& \alpha:=\mathbf{1} . . \mathbf{N}_{\mathbf{1}}-\mathbf{1} \quad \beta:=\mathbf{1} . . \mathbf{N}_{\mathbf{2}}-\mathbf{1}
\end{aligned}
\]
\[
\mathrm{AB}:=\frac{\mathrm{AE}}{\mathbf{N}_{1}} \quad \text { AD }:=\frac{\mathrm{AE}}{\mathbf{2}} \quad \text { DK }:=\mathrm{AD} \quad \mathrm{DE}:=\mathrm{AD}
\]
\(\mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{BK}:=\sqrt{\mathbf{B D}^{2}+\mathrm{DK}^{2}} \quad \mathrm{BG}:=\frac{\mathrm{BK}}{\mathbf{N}_{2}} \quad \mathrm{BC}:=\frac{\mathrm{BD} \cdot \mathrm{BG}}{\mathrm{BK}}\)
CG \(:=\frac{\text { DK }}{\text { BK }} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{DF}:=\frac{\mathrm{CG} \cdot \mathrm{DE}}{\mathrm{CE}} \quad \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CG}^{2}}\)
EF \(:=\sqrt{\text { DE }^{2}+\text { DF }^{2}}\) AH \(:=\frac{\text { DF AE }}{\text { EF }} \quad\) EH \(:=\frac{\text { DE } \cdot \mathbf{A E}}{\text { EF }} \quad\) GH \(:=\) EH \(-\mathbf{E G} \quad\) FH \(:=\) EH \(-\mathbf{E F}\)
FJ \(:=\frac{\text { DF } \cdot \text { FH }}{\text { EF }} \quad\) HJ \(:=\frac{\text { DE•FH }}{\text { EF }} \quad\) DJ \(:=\) DF + FJ \(\quad\) JK \(:=\) DK - DJ \(\quad\) HK \(:=\sqrt{H^{2}+J^{2}}\)
\(\frac{\mathbf{A H}}{\mathrm{HK}}=0.265 \quad \frac{\sqrt{2} \cdot \mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)}=0.265 \quad \operatorname{SeriesAH}_{\alpha, \beta}:=\frac{\sqrt{2} \cdot \mathbf{N}_{1} \cdot \beta}{2 \cdot\left(\mathbf{N}_{1}-\alpha\right) \cdot\left(\mathbf{N}_{2}-\beta\right)}\)

Series \(A H=\left[\begin{array}{llll}0.265 & 0.707 & 1.591 & 4.243 \\ 0.53 & 1.414 & 3.182 & 8.485\end{array}\right]\)
\(\frac{\mathbf{E H}}{\mathrm{GH}}=2.85 \quad \mathrm{~N}_{1} \cdot \mathrm{~N}_{2} \cdot \frac{2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}+2}{\left(\mathrm{~N}_{2}-1\right) \cdot\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}+\mathrm{N}_{1}{ }^{2}-2 \cdot \mathrm{~N}_{1}+2\right)}=2.85\)
SeriesEH \(_{\alpha, \beta}:=\mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \frac{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{N}_{1} \cdot \beta+2 \cdot \alpha \cdot \beta}{\left(\mathbf{N}_{2}-\beta\right) \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{2} \cdot \mathbf{N}_{2} \cdot \alpha^{2}+\mathbf{N}_{1} \cdot{ }^{2} \cdot \beta-2 \cdot \mathbf{N}_{1} \cdot \alpha \cdot \beta+2 \cdot \alpha^{2} \cdot \beta\right)}\)

SeriesEH \(=\left[\begin{array}{llll}2.85 & 3 & 3.643 & 6 \\ 1.65 & 2 & 2.786 & 5.25\end{array}\right]\)

\section*{12/04/93 Exponential Series \(\mathrm{M}^{\wedge}\left(1 / \mathbf{2}^{\wedge} \mathrm{N}\right)\)}

Given some number, construct a two prime exponential series from it, such as a Quad Root Series, using the common segment, common

\[
\mathbf{M}:=\mathbf{8}
\]
\[
\begin{aligned}
& \mathbf{A F}:=\mathbf{M} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \mathbf{B M}:=\sqrt{\mathbf{A B} \cdot \mathbf{B F}} \quad \mathbf{A M}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B M}^{2}} \\
& \mathbf{A N}:=\mathbf{A F} \quad \mathbf{A D}:=\mathbf{A M} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \\
& \text { DJ }:=\sqrt{\mathbf{A D} \cdot \mathbf{D F}} \quad \text { AJ }:=\sqrt{\mathbf{A D}^{2}+\mathbf{D J}^{2}}
\end{aligned}
\]
\[
\begin{array}{rl}
\mathbf{A K}:=\mathbf{A F} \quad \mathbf{A E}:=\mathbf{A J} & \mathbf{A H}:=\mathbf{A D} \\
\left(\mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A H}}{\mathbf{A J}}\right. \\
\left(\mathbf{A B}^{3} \cdot \mathbf{A F}^{1}\right)^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0} & \left(\mathbf{A B}^{2} \cdot \mathbf{A F}^{2}\right)^{\frac{1}{4}}-\mathbf{A D}=\mathbf{0} \\
\left(\mathbf{A B}^{1} \cdot \mathbf{A F}^{3}\right)^{\frac{1}{4}}-\mathbf{A E}=\mathbf{0} \\
\mathbf{M}^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0} & \mathbf{M}^{\frac{2}{4}}-\mathbf{A D}=\mathbf{0}
\end{array}
\]

\section*{12/06/93 Alternate Method: Square Root} Common Segment Common Endpoint

\[
\begin{aligned}
& \mathrm{N}:=6 \quad \text { AB }:=1 \quad \mathrm{AE}:=\mathrm{AB} \cdot \mathbf{N} \\
& \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \\
& \mathrm{DF}:=\mathrm{BD} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{AF}:=\sqrt{\mathbf{A D}^{2}-\mathrm{DF}^{2}} \quad \mathrm{AC}:=\mathrm{AF} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]

\section*{12/06/93B Gruntwork IV on the Delian Solution}

\section*{Are A,P and \(\mathbf{Q}\) collinear? Are \(\mathrm{A}, \mathrm{K}\) and N collinear?}

\[
\begin{aligned}
& \mathrm{BK}:=\mathrm{AB} \quad \mathrm{HK}:=\mathrm{CH} \quad \mathrm{HJ}:=\mathrm{CH} \mathrm{AH}:=\mathrm{AJ}-\mathrm{HJ} \quad \mathrm{BH}:=\mathrm{AH}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BK}^{2}+\mathrm{BH}^{2}-\mathrm{HK}^{2}}{2 \cdot \mathrm{BH}} \\
& \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathrm{DK}:=\sqrt{\mathbf{A D} \cdot \mathbf{D E}} \quad \mathbf{G Q}:=\sqrt{\mathbf{A G} \cdot \mathbf{G J}} \quad \mathbf{C P}:=\sqrt{\mathbf{A C} \cdot \mathbf{C E}}
\end{aligned}
\]
\[
\frac{A G}{G N}-\frac{A D}{D K}=0 \quad \frac{A G}{G Q}-\frac{A C}{C P}=0
\]

\section*{12/11/93}


The structure in red appears to be a constant.
N:=6
AB :=1
AL:=AB \(\cdot \mathbf{N}\)
\(\mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{A E}:=\left(\mathbf{A B}^{\mathbf{2}} \cdot \mathbf{A L}\right)^{\frac{\mathbf{1}}{\mathbf{3}}}\)
\(A J:=\left(A B \cdot A L^{2}\right)^{\frac{1}{3}} B E:=A E-A B \quad B J:=A J-A B\)
\(\mathbf{J L}:=\mathbf{B L}-\mathbf{B J} \quad \mathbf{E J}:=\mathbf{A J}-\mathbf{A E} \quad\) FJ \(:=\frac{\mathbf{J L} \cdot \mathbf{E J}}{\mathbf{J L}+\mathbf{B E}}\)
FL \(:=\mathbf{J L}+\mathbf{F J} \quad\) BF \(:=\mathbf{B L}-\mathrm{FL} \quad\) FP \(:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}}\)

\(\mathrm{AD}:=\frac{\mathrm{AI}}{2} \quad \mathrm{KT}:=\mathrm{BL} \quad \mathrm{FH}:=\frac{\mathrm{FK} \cdot \mathrm{FP}}{\mathrm{KT}+\mathrm{FP}} \quad \mathrm{AF}:=\mathrm{BF}+\mathrm{AB} \quad \mathrm{AH}:=\mathrm{AF}+\mathrm{FH} \quad \mathrm{HI}:=\mathrm{AI}-\mathrm{AH}\) HO \(:=\sqrt{\text { AH•HI }} \quad\) DN \(:=A D \quad K N:=B K \quad D K:=A K-A D \quad C K:=\frac{K^{2}+D K^{2}-D^{2}}{2 \cdot D K}\) \(\mathrm{AC}:=\mathrm{AK}-\mathrm{CK} \quad \mathrm{CI}:=\mathrm{AI}-\mathrm{AC} \quad \mathrm{CN}:=\sqrt{\mathrm{AC} \cdot \mathrm{CI}} \quad \frac{\mathrm{KR}}{\mathrm{IK}}-\frac{\mathrm{HO}}{\mathrm{HI}}=0 \quad \frac{\mathrm{AF}}{\mathrm{FP}}-\frac{\mathrm{AC}}{\mathrm{CN}}=0\)

\section*{12/12/93 The Square Root}


Square root by common segment common midpoint. Given AFand BE is GH their root?
\(\mathbf{N}:=5 \quad\) BE \(:=1 \quad\) AF \(:=\mathbf{B E} \cdot \mathbf{N}\)
\(\mathrm{AD}:=\frac{\mathrm{AF}}{2} \quad \mathrm{BD}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AB}:=\mathrm{AD}-\mathrm{BD}\)
\(\mathrm{AE}:=\mathrm{BE}+\mathrm{AB} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{2} \quad \mathrm{CG}:=\mathrm{AC}\)

CD :=AD - AC
\(G H:=2 \cdot \sqrt{C G^{2}-C D^{2}}\)
\(\mathbf{G H}-\sqrt{\mathbf{A F} \cdot \mathbf{B E}}=\mathbf{0}\)

\section*{12/12/93 Generalize The Previous Square Root Figure}

\[
\begin{aligned}
& \mathbf{N}_{1}:=1 \quad \mathbf{N}_{2}:=3 \quad \mathbf{N}_{3}:=2 \\
& \mathbf{A F}:=\mathbf{N}_{1} \quad \mathbf{D F}:=\frac{\mathbf{A F}}{\mathbf{N}_{2}} \quad \mathbf{A D}:=\mathbf{A F}-\mathbf{D F} \\
& \mathbf{D E}:=\frac{\mathbf{D F}}{\mathbf{N}_{3}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E} \quad \mathbf{A B}:=\frac{\mathbf{A E}}{2} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{A B} \\
& \mathbf{G H}:=\mathbf{2} \cdot \sqrt{(\mathbf{B H})^{2}-(\mathbf{B D})^{2}} \\
& \mathbf{G H}-\mathbf{2} \cdot \frac{\mathbf{N}_{1} \cdot \sqrt{\mathbf{N}_{2}-\mathbf{1}}}{\mathbf{N}_{2} \cdot \sqrt{\mathbf{N}_{3}}}=\mathbf{0}
\end{aligned}
\]


\section*{04/06/94 Inscribing A Circle In A Given Triangle}

Given three sides of a triangle, what is the length of the inscribed radius?


\section*{04/21/94 The Cradle}

\section*{Are A,M,N colinear?}

\(\mathbf{N}:=\mathbf{5} \quad \mathrm{AB}:=\mathbf{1} \quad \mathrm{AL}:=\mathrm{AB} \cdot \mathbf{N}\)
\(\mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}} \quad \mathbf{A C}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A L}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \quad \mathbf{A J}:=\left(\mathbf{A B} \cdot \mathbf{A L} \mathbf{L}^{\frac{1}{3}}\right.\)

BL :=AL-AB BP :=BL LR := BL
FL : = AL-AF

BC :=AC - AB BJ :=AJ - AB JL :=BL - BJ

BF :=AF - AB FJ := AJ - AF CF := AF - AC
FG \(:=\frac{B F \cdot F J}{B F+J L} \quad G N:=\frac{B P \cdot F G}{B F} \quad C D:=\frac{B C \cdot C F}{B C+F L}\)
\(D M:=\frac{B P \cdot C D}{B C} \quad A D:=A C+C D \quad A G:=A F+F G\)
\(\frac{A G}{G N}-\frac{A D}{D M}=0\)

\section*{04/26/94 Tangents and Similarity Points}


What is the Algebraic names of the similarity points \(O\) and \(P\) in relation to the radius of each circle and the difference between their centers?

I will work with point O first.
Given \(R_{L}=\) large radius
\(\mathbf{R}_{\mathbf{S}}=\) small radius
\(\mathrm{D}=\) difference between origins.
\(\mathbf{R}_{\mathbf{L}}:=\mathbf{4} \quad \mathbf{R}_{\mathrm{S}}:=\mathbf{1} \quad \mathbf{D}:=\mathbf{8}\)
AC := \(\mathbf{R}_{\mathbf{L}} \quad\) BD \(:=\mathbf{R}_{\mathbf{S}} \quad\) AB \(:=\mathbf{D}\)
\(\mathrm{DE}:=\mathrm{AB} \quad \mathrm{AE}:=\mathrm{BD} \quad \mathrm{CE}:=\mathrm{AC}-\mathrm{AE}\)
\(\mathrm{AO}:=\frac{\text { DE•AC }}{\text { CE }} \quad\) AO \(=10.667\)
\(E_{\mathrm{L}}\) "External similarity point Origin to center of Radius Large"

What is the length of line (OG) tangent to both circles?
\(\mathrm{AG}:=\mathrm{AC} \quad \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}} \quad \mathbf{G O}=9.888\)
And what is the formula?
\(E O T_{\text {LR }}\) " External similarity point Origin to Tangent (Large Radius)"
\(\mathbf{E O T}_{\mathbf{L R}}:=\mathbf{R}_{\mathbf{L}} \frac{\sqrt{\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}^{+}} \mathbf{D}\right) \cdot\left(-\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}}\)
\[
\mathrm{EOT}_{\mathrm{LR}}=9.888
\]


What is the length of the line tangent to the least circle (HO)?
\(\mathbf{B H}:=\mathbf{B D} \quad\) BO \(:=\mathbf{A O}-\mathbf{A B} \quad\) BO \(=2.667\)
\(\mathbf{H O}:=\sqrt{\mathrm{BO}^{2}-\mathrm{BH}^{2}}\)
\(\mathrm{HO}=2.472\)
And what is the formula?
\(E_{\text {ER }}\) " External similarity point Origin to Tangent (Small Radius)"

EOT \(_{\mathbf{S R}}:=\mathbf{R}_{\mathbf{S}} \cdot \frac{\sqrt{-\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}} \mathbf{D}^{\mathbf{D}}\right)}}{\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}}\)
EOT \(_{\text {SR }}=2.472\)

Lastly what is the length of line from tangent to tangent of these circles?

\(\mathbf{G H}:=\mathbf{E O T}_{\mathbf{L R}^{-}} \mathbf{E O T}_{\mathbf{S R}}\)
\(\mathbf{G H}=\mathbf{7 . 4 1 6}\)
And what is the formula?
ETT "Tangent to Tangent"
ETT \(:=\sqrt{-\left(\mathbf{R}_{\mathbf{L}^{-}} \mathbf{R}_{\mathbf{S}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}^{-}} \mathbf{R}_{\mathbf{S}^{-}} \mathbf{D}\right)}\)
\(\mathbf{E T T}=7.416\)

I will now turn my attention to the point \(P\), the internal similarity point.
\[
\mathbf{A P}:=\frac{\mathbf{A B} \cdot \mathbf{A C}}{\mathbf{A C}+\mathbf{B D}}
\]
\[
\mathrm{AP}=6.4
\]

IOR \({ }_{\mathrm{L}}\) "Internal similarity point to center of Radius Large"
\(\operatorname{IOR}_{L}:=D \cdot \frac{R_{L}}{R_{L}+R_{S}} \quad \operatorname{IOR}_{L}=6.4\)
\[
\mathbf{B P}:=\mathrm{AB}-\mathbf{A P} \quad \mathbf{B P}=\mathbf{1 . 6}
\]

IOR \(_{s}\) "Internal similarity point to center of Radius

\(10 T_{\mathrm{LR}}\) "Internal similarity point Origin to Tangent (Large Radius)"

\[
\begin{aligned}
& \text { IOT }_{\mathbf{L R}}:=\mathbf{R}_{\mathbf{L}} \frac{\sqrt{-\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}-\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}}{\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}\right)} \\
& \text { IOT }_{\mathbf{L R}}=4.996 \quad \mathbf{K P}:=\sqrt{\mathbf{B P}^{2}-\mathbf{B K}} \quad \mathbf{K P}=\mathbf{1 . 2 4 9}
\end{aligned}
\]
\(10 T_{S R}\) "Internal similarity point Origin to Tangent (Small Radius)"

\[
\begin{aligned}
& \text { IOT }_{\mathbf{S R}}:=\mathbf{R}_{\mathbf{S}} \cdot \frac{\sqrt{-\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}-\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}} \\
& \text { IOT }_{\mathbf{S R}}=\mathbf{1 . 2 4 9} \quad \mathbf{J K}:=\mathbf{J P}+\mathbf{K P} \quad \mathbf{J K}=\mathbf{6 . 2 4 5}
\end{aligned}
\]

ITT "Internal similarity point Tangent to Tangent"
ITT \(:=\sqrt{-\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}^{-}} \mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}\)
\(\mathbf{I T T}=\mathbf{6 . 2 4 5}\)

The solution for finding the chordal as outlined in 100 Great Problems of Elementary Mathematics Their History and Solutionby Heinrich Dörrie did not lend itself to this kind of process, so I took a couple of minuets (Bach) and developed my own method.
One of the attributes of the powerline is that a circle drawn with a center on the powerline which cuts one perpendicularly will cut the other as such.
Given two circles find their chordal or power line given just their radius and difference between their centers.



If these equations look familiar, see 01/08/93 The perpendicular of a Triangle would be on the powerline.

IJ := 1.112
\[
A J:=\sqrt{{A I^{2}+J^{2}}^{2}} \quad A K:=A D
\]
\[
\mathbf{J K}:=\sqrt{\mathbf{A J}^{2}-\mathbf{A K}^{2}} \quad \mathbf{P}:=\mathbf{I J}
\]
\[
J K-\frac{\sqrt{R_{1}{ }^{4}-2 \cdot R_{1}{ }^{2} \cdot D^{2}-2 \cdot R_{1}{ }^{2} \cdot R_{2}{ }^{2}+D^{4}-2 \cdot R_{2}{ }^{2} \cdot D^{2}+R_{2}{ }^{4}+4 \cdot P^{2} \cdot D^{2}}}{2 \cdot D}=0
\]
\[
\begin{aligned}
& \mathrm{AB}:=1.323 \quad \mathrm{AD}:=.771 \quad \mathrm{BC}:=.448 \quad \mathrm{AE}:=\frac{\mathrm{AD}^{2}}{\mathrm{AB}} \quad \mathrm{BF}:=\frac{\mathrm{BC}^{2}}{\mathrm{AB}} \quad \mathrm{GH}:=\mathrm{AB}-(\mathrm{AE}+\mathrm{BF}) \\
& \text { GI }:=\frac{\mathbf{G H}}{2} \quad \mathbf{A I}:=\mathbf{A E}+\mathbf{G I} \quad \text { BI }:=\mathbf{B F}+\mathbf{G I} \\
& \mathbf{D}:=\mathrm{AB} \quad \mathbf{R}_{\mathbf{1}}:=\mathrm{AD} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{B C} \\
& \mathrm{AI}-\frac{\left(\mathbf{R}_{1}{ }^{2}+\mathrm{D}^{2}-\mathrm{R}_{\mathbf{2}}{ }^{2}\right)}{2 \cdot \mathrm{D}}=\mathbf{0} \\
& \mathrm{BI}-\frac{\left(\mathbf{R}_{\mathbf{2}}{ }^{2}+\mathbf{D}^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}\right)}{\mathbf{2 \cdot D}}=\mathbf{0}
\end{aligned}
\]

Given three circles find their power point and if it is at all possible, cut all three perpendicularly. Demonstrate the Algebraic name for the power point and the length of the resultant tangent.

\[
A M:=\frac{\mathbf{D}_{2}{ }^{2}+\mathbf{D}_{1}{ }^{2}-\mathbf{D}_{3}{ }^{2}}{2 \cdot D_{1}} \quad \mathbf{E M}:=\sqrt{\mathrm{AE}^{2}-\mathrm{AM}^{2}} \quad \mathrm{AK}:=\frac{\mathrm{AE} \cdot \mathbf{A H}}{\mathrm{AM}} \quad \text { GK }:=\mathrm{AK}-\mathrm{AG} \quad \text { GJ }:=\frac{\mathrm{AM} \cdot \mathbf{G K}}{\mathrm{EM}}
\]
\[
G J-\frac{1}{2} \cdot \frac{\left[\begin{array}{l}
\left(D_{2}{ }^{2} \cdot D_{1}{ }^{2}-D_{2}{ }^{2} \cdot R_{1}{ }^{2}+D_{2}{ }^{2} \cdot R_{2}{ }^{2}+D_{3}{ }^{2} \cdot R_{1}{ }^{2}-2 \cdot D_{1}{ }^{2} \cdot R_{3}{ }^{2}\right) \ldots \\
+\mathbf{R}_{2}{ }^{2} \cdot D_{1}{ }^{2}-D_{3}{ }^{2} \cdot R_{2}{ }^{2}-D_{1}{ }^{4}+D_{3}{ }^{2} \cdot D_{1}{ }^{2}+D_{1}{ }^{2} \cdot R_{1}{ }^{2}
\end{array}\right]}{-\left(D_{2}+D_{1}-D_{3}\right) \cdot\left(D_{2}+D_{1}+D_{3}\right) \cdot\left(D_{2}-D_{1}-D_{3}\right) \cdot\left(D_{2}-D_{1}+D_{3}\right)}=0
\]

\[
A J:=\sqrt{A G^{2}+G J^{2}} \quad A N:=A B \quad J N:=\sqrt{A J^{2}-A N^{2}}
\]
\[
\mathbf{J N}=0.786
\]
\[
\begin{aligned}
& \text { AB :=. } 438 \quad \text { CD :=. } 354 \quad \text { EF :=. } 471 \\
& A C:=1.667 \quad \text { AE }:=1.559 \quad \text { CE }:=1.357 \\
& \mathbf{R}_{1}:=\mathrm{AB} \quad \mathbf{R}_{2}:=\mathbf{C D} \quad \mathbf{R}_{3}:=\mathbf{E F} \\
& D_{1}:=A C \quad D_{2}:=A E \quad D_{3}:=C E \\
& A G:=\frac{R_{1}{ }^{2}+D_{1}{ }^{2}-R_{2}{ }^{2}}{2 \cdot D_{1}} \\
& \mathrm{AH}:=\frac{\mathrm{R}_{1}{ }^{2}+\mathrm{D}_{2}{ }^{2}-\mathrm{R}_{3}{ }^{2}}{2 \cdot \mathrm{D}_{2}}
\end{aligned}
\]



\section*{04/30/94 Division \({ }^{2}\)}

\[
\mathbf{N}_{1}:=5 \quad \mathbf{N}_{2}:=\mathbf{2}
\]
\[
\mathbf{A B}:=\mathbf{N}_{1} \quad \mathbf{B C}:=\mathbf{N}_{2} \quad \mathbf{A C}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B C}^{2}}
\]
\[
\mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{A C}}{\mathrm{AB}} \quad \mathbf{B D}:=\sqrt{\mathrm{CD}^{2}-\mathrm{BC}^{2}}
\]
\[
\frac{\mathbf{N}_{2}^{2}}{\mathbf{N}_{1}}-\mathrm{BD}=0
\]

\section*{05/01/94 Two Circles And A Parallel}

Given the radius of two tangent circles find the radius of the third that is tangent to the two circles and tangent to the parallel opposite AP which is tangent to the larger circle.
\[
\mathrm{AE}:=\frac{\mathrm{NS} \cdot \mathbf{E Q}}{\mathrm{SQ}} \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{EP}:=\mathrm{DE}
\]
\[
A P:=\sqrt{A E^{2}-\mathbf{E P}^{2}} \quad \text { DO }:=\frac{\mathbf{E P} \cdot \mathbf{A D}}{\mathbf{A P}}
\]
\[
\text { DL }:=\frac{\mathbf{D O} \cdot \mathbf{D E}}{\mathbf{C D}} \quad \mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \quad \mathbf{A M}:=\frac{\mathbf{A P} \cdot \mathbf{A C}}{\mathbf{A E}} \quad \text { AO }:=\frac{\mathbf{A E} \cdot \mathbf{A D}}{\mathbf{A P}} \quad \text { MO }:=\mathrm{AO}-\mathbf{A M}
\]
\[
\text { MR }:=\frac{\mathbf{A D} \cdot \mathbf{M O}}{\mathbf{A O}} \quad \text { RO }:=\frac{\mathrm{DO} \cdot \mathrm{MR}}{\mathrm{AD}} \quad \text { DR }:=\mathrm{DO}-\mathbf{R O}
\]
\(L R:=D R+D L \quad M L:=\sqrt{M R^{2}+L R^{2}}\)
\(\mathrm{DK}:=\frac{\text { MR•DL }}{\mathrm{LR}} \quad \mathrm{CK}:=\mathrm{DK}-\mathrm{CD} \quad \mathrm{CH}:=\frac{\mathrm{LR} \cdot \mathrm{CK}}{\mathrm{ML}}\)
\(C M:=B C \quad M H:=\sqrt{C M^{2}-C H^{2}}\)
MG \(:=2 \cdot\) MH \(\quad\) GL \(:=\) ML - MG GJ \(:=\frac{\text { CM•GL }}{\text { MG }}\)
The Algebraic name for GJ suggests a simpler method of construction.

\[
\begin{aligned}
& R_{3}:=\frac{R_{1}{ }^{2}}{4 \cdot R_{2}} \quad G J-R_{3}=0 \\
& \text { ET }:=4 \cdot \text { BC } \quad \text { EV }:=\text { DE } \quad \text { EU }:=\frac{\text { DE }^{2}}{\text { ET }} \\
& \text { VW :=EU XY :=EU EV := DE CX := BC } \\
& \text { EW :=EV + VW CY:= CX + XY } \\
& \mathbf{G J}_{2}:=\mathbf{E U} \quad \mathbf{G J}-\mathbf{G J} 2=0
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{R}_{1}:=\mathbf{3} \quad \mathbf{R}_{2}:=\mathbf{2} \\
& D E:=\mathbf{R}_{1} \quad B C:=\mathbf{R}_{2} \quad \mathbf{C N}:=\mathrm{BC} \\
& \text { EQ := DE CD }:=\mathrm{BC} \quad \mathrm{CE}:=\mathrm{CD}+\mathrm{DE} \\
& \text { ES }:=\mathbf{C N} \quad \text { NS }:=\text { CE } \quad \text { SQ }:=\mathrm{EQ}-\mathrm{ES}
\end{aligned}
\]

\section*{05/04/94 Two Circles And A Tangent}


Given two circles, the difference between them and a point on one expressed as a ratio of the diameter, find the circle tangent to both at that point.
\[
\begin{aligned}
& \mathbf{R}_{\mathbf{1}}:=\mathbf{1} \quad \mathbf{R}_{\mathbf{2}}:=.5 \quad \mathrm{D}:=\mathbf{2} \quad \mathbf{N}:=\mathbf{2} \\
& \text { FK }:=\mathbf{R}_{\mathbf{1}} \mathbf{B C}:=\mathbf{R}_{\mathbf{2}} \quad \text { CH }:=\mathbf{D} \quad \text { FL }:=\mathbf{2} \cdot \mathbf{F K} \\
& \text { AK }:=\frac{\mathbf{D} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}} \quad \text { EK }:=\frac{\mathbf{R}_{\mathbf{1}}{ }^{2}+\mathbf{D}^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}}{\mathbf{2} \cdot \mathbf{D}} \\
& \mathbf{A Q}:=\mathbf{R}_{\mathbf{1}} \cdot \frac{\sqrt{\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(-\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}}
\end{aligned}
\]

FG \(:=\frac{\text { FL }}{\mathbf{N}} \quad\) GL \(:=\) FL - FG \(\quad\) GM \(:=\sqrt{\text { FG GL }} \mathbf{A J}:=\frac{\mathbf{A Q} \cdot \mathbf{A Q}}{\mathbf{A K}} \quad\) AF \(:=\mathbf{A K}-\) FK \(\quad\) FJ \(:=\mathbf{A J}-\mathbf{A F}\) JL \(:=\mathbf{F L}-\mathbf{F J} \quad \mathbf{J Q}:=\sqrt{\text { FJ } \cdot \mathbf{J L}} \quad\) GJ \(:=\mathbf{F J}-\mathbf{F G} \quad\) QM \(:=\sqrt{(\mathbf{J Q}+\mathbf{G M})^{2}+\mathbf{G J}} \quad\) GH \(:=\frac{\mathbf{G J} \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}}\) HM \(:=\frac{\text { QM } \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}}\) EF \(:=\mathbf{E K}-\mathbf{F K} E H:=\mathbf{E F}+\mathbf{F G}+\mathbf{G H H O}:=\frac{\mathbf{H M} \cdot \mathbf{E H}}{\mathbf{G H}} \quad\) MO \(:=\mathbf{H O}-\mathbf{H M}\) KM \(:=\) FK \(\quad \mathbf{M N}:=\frac{\mathbf{K M} \cdot \mathbf{M O}}{\mathbf{Q M}} \quad \mathbf{M N}-\frac{\left(\mathbf{4} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{D}\right)-\mathbf{N} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right) \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}-\mathbf{D}\right)}{\mathbf{2 \mathbf { N } \cdot ( \mathbf { R } _ { \mathbf { 2 } } + \mathbf { D } - \mathbf { R } _ { \mathbf { 1 } } ) - \mathbf { 4 } \cdot \mathbf { D }}=\mathbf{0} 0 .}\)

\section*{05/06/94 A Ratio In Trisection}
What is \(A J\) to \(C G ?\)

\[
\begin{aligned}
& \text { N }:=2.423 \quad \text { FH }:=1 \quad \text { CE }:=\mathrm{FH} \\
& \text { CG }:=\frac{\mathbf{F H}}{\mathbf{N}} \quad \text { EG }:=\sqrt{\mathbf{C E}^{2}-\mathbf{C G}^{2}} \quad \text { CD }:=\frac{\mathbf{C G}^{2}}{\mathrm{CE}} \\
& \text { DG }:=\sqrt{\mathbf{C G}^{2}-\mathbf{C D}^{2}} \quad \text { EH }:=2 \cdot \mathrm{EGBH}:=\frac{\mathrm{DG} \cdot \mathbf{E H}}{\mathrm{EG}} \quad \mathrm{CH}:=\mathrm{FH}
\end{aligned}
\]
\(B C:=\sqrt{\mathbf{C H}^{2}-B^{2}} \quad A C:=2 \cdot B C \quad A E:=A C+C E \quad A J:=\frac{C G \cdot A E}{C E} \quad 3 \cdot C G-\frac{4 \cdot C G^{3}}{C^{2}}-A J=0\)
\(\mathbf{3} \cdot \mathbf{C G}-4 \cdot \mathbf{C G}^{3}-\mathbf{A J}=\mathbf{0}\)
\[
A J-\frac{\left(3 \cdot N^{2}-4\right)}{N^{3}}=0 \quad A J-\left(\frac{3}{N}-\frac{4}{N^{3}}\right)=0
\]
(3. \(\left.\frac{C G}{F H}-4 \cdot \frac{C G}{F H}^{3}\right)-\frac{A J}{F H}=0.000\)


\section*{05/07/94 A Trisection Ratio}

\section*{In trisection, what is the ratio of \(\mathrm{FG} / \mathrm{EK}\) ?}

\[
\begin{aligned}
& \mathrm{N}:=2 \\
& \mathrm{AE}:=1 \quad \text { EH }:=\frac{\mathrm{AE}}{2} \quad \text { HK }:=\mathrm{AE} \cdot \mathrm{~N} \quad \text { AK }:=\mathrm{AE}+\mathrm{EH}+\mathrm{HK} \\
& \mathrm{EJ}:=\mathrm{AE} \quad \mathrm{EK}:=\mathrm{EH}+\mathrm{HK} \quad \text { AD }:=\frac{\mathrm{EJ} \cdot \mathrm{AK}}{\mathrm{EK}} \quad \mathrm{CD}:=\mathrm{AE} \\
& \mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \quad \mathrm{BC}:=\frac{\mathrm{AC}}{2} \quad \mathrm{CE}:=\mathrm{AE} \quad \mathrm{BE}:=\sqrt{\mathrm{CE}^{2}-\mathrm{BC}^{2}} \\
& \mathrm{BD}:=\mathrm{CD}+\mathrm{BC} \quad \text { DE }:=\sqrt{\mathbf{B D}^{2}+\mathrm{BE}^{2}} \quad \text { DF }:=\frac{\mathrm{BD} \cdot \mathbf{A D}}{\mathrm{DE}}
\end{aligned}
\]
\[
\text { EG }:=\mathbf{A E} \quad \mathbf{D G}:=\mathbf{D E}+\mathbf{E G} \quad \text { FG }:=\mathbf{D G}-\mathbf{D F}
\]

Algebraic Names,
\[
\begin{aligned}
& \mathbf{F G}-\left[1+\frac{(\mathbf{N}+1) \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})}{(2 \mathbf{N}+\mathbf{1}) \cdot \sqrt{(\mathbf{N}+1) \cdot(\mathbf{2} \mathbf{N}+1)}}\right]=0 \quad \quad \mathbf{E K}-\frac{1}{2}-\mathbf{N}=0 \\
& \frac{\mathbf{F G}}{\mathbf{E K}}-2 \cdot \frac{[\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+1) \cdot(\mathbf{2} \cdot \mathbf{N}+\mathbf{1})}+\sqrt{(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{2} \cdot \mathbf{N}+\mathbf{1})}+(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})]}{\left[(\mathbf{2} \cdot \mathbf{N}+\mathbf{1})^{2} \cdot \sqrt{(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{2} \cdot \mathbf{N}+\mathbf{1})}\right]}=0
\end{aligned}
\]

\section*{05/16/94A Tangent Diameter and Circles}

Choose a point along DF and the number of circles tanget to it and to the circumscribing circle and place them in the downright position.

\[
\mathbf{C F}:=1 \quad \mathrm{CE}:=\frac{\mathrm{CF}}{2} \quad \mathrm{~N}_{1}:=2 \quad \mathrm{~N}_{2}:=3
\]
\[
\mathbf{C D}:=\frac{\mathbf{C E}}{\mathbf{N}_{\mathbf{1}}} \quad \text { DE }:=\mathbf{C E}-\mathbf{C D} \quad \mathbf{E J}:=\mathbf{C E} \cdot \mathbf{N}_{\mathbf{2}}
\]
\[
\mathrm{DJ}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EJ}^{2}} \quad \mathrm{JG}:=\frac{\mathbf{E J}^{2}}{\mathbf{D J}} \quad \mathrm{BE}:=\mathbf{C E}
\]
\[
\mathbf{E G}:=\sqrt{\mathbf{E J}^{2}-\mathbf{J G}^{2}} \mathbf{B G}:=\sqrt{\mathbf{B E}^{2}-\mathbf{E G}}{ }^{2} \quad \mathbf{B J}:=\mathbf{B G}+\mathbf{J G}
\]
\[
\text { JK }:=\mathbf{C E} \text { BD }:=\mathbf{B J}-\mathbf{D J} \quad \text { DH }:=\frac{\mathbf{J K} \cdot \mathbf{B D}}{\mathbf{B J}}
\]

\section*{Algebraic Names:}
\[
\mathrm{CD}:=\frac{\mathrm{CE}}{\mathrm{~N}_{1}} \quad \mathrm{DE}:=\mathrm{CE} \cdot \frac{\left(\mathrm{~N}_{1}-1\right)}{\mathrm{N}_{1}} \quad \text { EJ }:=\mathrm{CE} \cdot \mathrm{~N}_{2}
\]
\[
\text { DJ }:=C E \cdot \frac{\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}}}{N_{1}}
\]
\[
\mathrm{JG}:=\mathrm{CE} \cdot \frac{\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}{ }^{2}}{\sqrt{\mathbf{N}_{1}{ }^{2}-2 \cdot N_{1}+1+\mathbf{N}_{2}{ }^{2} \cdot \mathbf{N}_{1}{ }^{2}}} \quad \mathrm{EG}:=\mathrm{CE} \cdot \frac{\left(\mathrm{~N}_{1}-1\right) \cdot \mathbf{N}_{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot \mathbf{N}_{1}{ }^{2}}}
\]


\section*{05/16/94B Tangent Diameter and Circles}

Choose a point along DF and the number of
 circles tanget to it and to the circumscribing circle and place them in the upright position.
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{2} \quad \mathbf{N}_{2}:=\mathbf{2} \quad \text { AF }:=1 \\
& \mathbf{D F}:=\mathbf{A F} \quad \mathbf{D E}:=\frac{\mathbf{D F}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{A J}:=\mathbf{A F} \cdot \mathbf{N}_{2} \\
& \mathbf{H J}:=\mathbf{A F} \quad \mathbf{E F}:=\mathbf{D F}-\mathbf{D E} \mathbf{F J}:=\mathbf{A J}-\mathbf{A F} \\
& \mathbf{E J}:=\sqrt{\mathbf{E F}^{2}+\mathbf{F J}^{2}} \quad \mathbf{E G}:=\frac{\mathbf{E F}^{2}}{\mathbf{E J}} \quad \mathbf{B F}:=\mathbf{A F} \\
& \text { FG }:=\sqrt{\mathbf{E F}^{2}-\mathbf{E G}^{2} \mathbf{B G}}:=\sqrt{\mathbf{B F}^{2}-\mathbf{F G}^{2}} \quad \mathbf{B E}:=\mathbf{B G}-\mathbf{E G}
\end{aligned}
\]
\[
B J:=B E+\mathbf{E J} \quad K E:=\frac{\mathbf{H J} \cdot \mathbf{B E}}{B J} \quad B C:=B F-\sqrt{E F^{2}+\left[\left(\frac{A J-A F}{A F}\right) \cdot K E\right]^{2}} B C-K E=0 \quad K E=0.375
\]
\[
\left.1-\frac{2 \cdot N_{1}^{2}-2 \cdot N_{1}+1+N_{1}^{2} \cdot N_{2}^{2}-2 \cdot N_{1}^{2} \cdot N_{2}}{\mathbf{N}_{1} \cdot\left(\sqrt{\mathbf{N}_{1}^{2}+2 \cdot N_{1} \cdot N_{2}^{2}-4 \cdot N_{1} \cdot N_{2}-N_{2}^{2}+2 \cdot N_{2}}+N_{1}+N_{1} \cdot N_{2}^{2}-2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}\right.}\right)-B C=0
\]

\section*{10/27/94 Trivial Method Square Root}
\(A E\) is the square root of \(A B \times A G\).

\[
\begin{aligned}
& N:=5 \quad A B:=1 \\
& A G:=A B \cdot N \quad B G:=A G-A B \quad B F:=\frac{B G}{2} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FH}:=\mathrm{BF} \quad \mathrm{DF}:=\frac{\mathrm{FH}^{2}}{\mathrm{AF}} \quad \mathrm{AD}:=\mathrm{AF}-\mathrm{DF} \\
& \text { BD :=AD-AB DG := BG-BD FJ := BF } \\
& \text { DH }:=\sqrt{\text { BD } \cdot \text { DG }} \quad \text { DE }:=\frac{\text { DF } \cdot \text { DH }}{\text { DH }+ \text { FJ }} \quad \text { AE }:=\mathrm{AB}+\mathrm{BD}+\mathrm{DE} \\
& \sqrt{\mathrm{AB} \cdot \mathbf{A G}}-\mathbf{A E}=\mathbf{0}
\end{aligned}
\]

\section*{10/28/94 Trivial Method Square Root}
\(A E\) is the square root of \(A B \times A H\).
\(\mathrm{N}:=5 \quad \mathrm{AB}:=1 \quad \mathrm{AH}:=\mathrm{AB} \cdot \mathrm{N} \quad \mathrm{BH}:=\mathrm{AH}-\mathrm{AB}\)

\(B G:=\frac{B H}{2} \quad G K:=B G \quad A G:=A B+B G\) DG \(:=\frac{\mathbf{G K}^{2}}{\mathbf{A G}} \quad\) AD \(:=A G-D G \quad\) AL \(:=\mathbf{B G}\) GL \(:=\sqrt{\mathbf{A L}^{2}+\mathrm{AG}^{2}} \quad \mathrm{BD}:=\mathrm{BG}-\mathrm{DG} \quad \mathrm{DH}:=\mathrm{BH}-\mathbf{B D}\) DK \(:=\sqrt{B D \cdot D H} \quad K L:=\sqrt{A D^{2}+(A L+D K)^{2}}\)
\(\mathbf{S}_{\mathbf{1}}:=\mathbf{G K} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{G L} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{K L}\)
\(G J:=\frac{S_{2}{ }^{2}+S_{1}{ }^{2}-S_{3}{ }^{2}}{2 \cdot S_{1}} \quad J L:=\sqrt{G^{2}-G J^{2}}\)

FG \(:=\frac{\text { DG } \cdot \text { GJ }}{\text { GK }} \quad\) AF \(:=\) AG - FG \(\quad\) FJ \(:=\frac{\text { DK } \cdot G J}{\text { GK }} \quad\) EF \(:=\frac{\text { AF } \cdot \mathbf{F J}}{\text { FJ +AL }} \quad\) AE \(:=A F-E F \quad \sqrt{A B \cdot A H}-A E=0\)

\section*{10/31/94 Square Root of a Segment}

Given a unit divide a segment into N and its square. Let AB be the unit and BF the segment then \(B E\) is \(N\) and \(E F\) its square.

\[
\mathbf{N}:=\mathbf{1 1} \quad \text { AB }:=\mathbf{1}
\]
\[
\mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{2}
\]
\[
\mathbf{A J}:=\mathrm{AF} \quad \mathbf{F K}:=\mathrm{AF} \quad \mathbf{B D}:=\mathrm{AD}-\mathbf{A B} \quad \mathbf{B J}:=\sqrt{\mathrm{AB}^{2}+\mathrm{AJ}^{2}}
\]
\[
\mathbf{B G}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \mathbf{D H}:=\mathbf{A D} \quad \mathbf{D G}:=\frac{\mathbf{A J} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \text { GH }:=\sqrt{\mathbf{D H}^{2}-\mathbf{D G}^{2}}
\]
\[
\mathbf{H J}:=\mathbf{B J}+\mathbf{B G}+\mathbf{G H} \quad \mathbf{B C}:=\frac{\mathbf{A B} \cdot(\mathbf{B G}+\mathbf{G H})}{\mathbf{B J}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}
\]
\[
\mathbf{C F}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{CH}:=\sqrt{\mathrm{AC} \cdot \mathrm{CF}} \quad \mathrm{CE}:=\frac{\mathrm{CF} \cdot \mathbf{C H}}{(\mathrm{CH}+\mathrm{FK})}
\]

EF \(:=\mathbf{C F}-\mathbf{C E} \quad \mathrm{BE}:=\mathrm{BC}+\mathbf{C E} \quad \mathrm{DF}:=\mathrm{BF}-\mathrm{BE} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \quad \mathrm{BE}^{2}-\mathbf{E F}=\mathbf{0}\)
\[
\mathbf{B E}-\frac{\mathbf{N}-2+\mathbf{N} \cdot \sqrt{4 \cdot \mathbf{N}-3}}{2 \cdot \mathbf{N}+1+\sqrt{4 \cdot N-3}}=0 \quad \quad \mathbf{E F}-\left(\mathbf{N}-\frac{\mathbf{N}-2+\mathbf{N} \cdot \sqrt{4 \cdot \mathbf{N}-3}}{2 \cdot \mathbf{N}+1+\sqrt{4 \cdot \mathbf{N}-3}}-1\right)=0
\]

\section*{12/24/94 Power Line At Square Root}

In this square root figure, what is the Algebraic name of the tangent circle OS?

\[
\begin{aligned}
& \mathbf{N}:=5 \quad \text { AB }:=\mathbf{1} \quad \text { AJ }:=A B \cdot \mathbf{N} \\
& \text { AF }:=\sqrt{\mathbf{A B} \cdot \mathbf{A J}} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \text { BG }:=\frac{\mathbf{B J}}{\mathbf{2}} \\
& A G:=A B+B G \quad G S:=B G \quad D G:=\frac{G S^{2}}{A G} \\
& \text { FG :=AG - AF BD := BG - DG DJ := BJ - BD } \\
& \text { DS }:=\sqrt{\text { BD } \cdot D J} \quad \text { FK }:=\frac{\text { DS } \cdot F G}{\text { DG }} \quad \text { BF }:=A F-A B \\
& B K:=\sqrt{B^{2}+F^{2}} \quad F I:=\frac{D J \cdot F K}{D S} \quad B I:=F I+B F
\end{aligned}
\]

BP \(:=\frac{\text { BK BJ }}{\text { BI }} \quad\) KP \(:=\) BP - BK \(\quad\) MP \(:=\frac{\text { BJ } \cdot K P}{\text { BK }} \quad\) OS \(:=\frac{\text { MP }}{2}\)
Algebraic Names

DG \(-\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+\mathbf{1})}=\mathbf{0}\)
\[
O S-\frac{-2 \cdot N^{2}+2 \cdot N-\sqrt{N}+N^{\left(\frac{5}{2}\right)}}{2 \cdot\left[N^{2}-\sqrt{N}-N^{\left(\frac{3}{2}\right)}+1\right]}=0
\]

12/25/95 Two Prime Exponential Series Developed Through The Powerline Progression

\(\Delta:=\mathbf{2}\)
\(\delta:=1 . . \Delta\)
N:=5
AB :=1
\(A O:=A B \cdot N \quad A G:=\sqrt{A B \cdot A O} \quad B O:=A O-A B\)
BJ \(:=\frac{\mathbf{B O}}{2} \quad\) JZ \(:=\) BJ \(\quad\) JV \(:=\) BJ \(\quad\) JO \(:=\) BJ
\(B G_{1}:=A G-A B \quad G O_{1}:=B O-B G_{1} \quad G W_{1}:=\sqrt{B G_{1} \cdot G O_{1}}\)
\(\mathbf{G J}_{1}:=\) BJ \(_{1}-\) BG \(_{1} \quad \mathbf{G H}_{1}:=\frac{\mathbf{G J}_{1} \cdot \mathbf{G W}_{\mathbf{1}}}{\mathbf{J Z}_{1}+\mathbf{G W}_{1}}\)
\[
\begin{aligned}
& \mathbf{H J}:=\mathbf{B J}-\mathbf{B G}_{\Delta} \\
& \text { FJ }:=\frac{(\mathbf{N}-1)^{2}}{\mathbf{2} \cdot(\mathbf{N}+\mathbf{1})}
\end{aligned}
\]

BF \(:=\mathbf{B J}-\mathbf{F J} \quad\) FO \(:=\mathbf{F J}+\mathbf{J O} \quad\) FV \(:=\sqrt{\mathbf{B F} \cdot F O}\)
HR \(:=\frac{\text { FV } \cdot \mathbf{H J}}{\text { FJ }} \quad\) BH \(:=\mathbf{B J}-\mathbf{H J} \quad B R:=\sqrt{\mathbf{H R}^{2}+\mathbf{B H}^{2}}\)
\(\mathbf{H M}:=\frac{\text { FO } \cdot \mathbf{H R}}{\text { FV }} \quad\) BU \(:=\frac{\mathbf{B R} \cdot \mathbf{B O}}{\mathbf{B H}+\mathbf{H M}} \quad\) RU \(:=\mathbf{B U}-\mathbf{B R}\)
\(\mathbf{S U}:=\frac{\mathbf{B O} \cdot \mathbf{R U}}{\mathbf{B R}} \quad\) TV \(:=\frac{\mathbf{S U}}{2} \quad\) PU \(:=\frac{\mathbf{B H} \cdot \mathbf{S U}}{\text { BR }}\)
\(\mathbf{B P}:=\mathbf{B U}-\mathbf{P U} \quad \mathbf{B E}:=\frac{\mathrm{BR} \cdot \mathbf{B P}}{\mathbf{B H}} \quad\) AE \(:=\mathrm{AB}+\mathrm{BE}\)
\[
{N^{\frac{1}{2^{\Delta}}}}^{\frac{1}{2 E}=0}
\]



Is G , the intersection of FH and BK , on DJ?

\[
\mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}
\]
\[
\mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E F}:=\mathbf{B E} \mathbf{E K}:=\mathbf{B E}
\]
\[
\mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{CE}:=\frac{(\mathrm{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)} \quad \mathrm{CF}:=\mathrm{CE}+\mathbf{E F}
\]
\[
\text { DF }:=\mathrm{AF}-\mathrm{AD} \quad \mathrm{BC}:=\mathrm{BF}-\mathbf{C F} \quad \mathbf{C H}:=\sqrt{\mathrm{BC} \cdot \mathbf{C F}}
\]
\[
\text { DG }_{1}:=\frac{\mathrm{CH} \cdot \mathrm{DF}}{\mathrm{CF}}
\]
\[
\mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{DG}_{2}:=\frac{\mathrm{EK} \cdot \mathrm{BD}}{\mathrm{BE}} \quad \mathrm{DG}_{1}-\mathrm{DG}_{2}=0
\]


\section*{01/06/95 Alternate Method Quad Roots}

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \text { AC }:=\mathbf{1} \quad \text { AJ }:=A C \cdot \mathbf{N} \\
& \mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{A E}:=\sqrt{\mathbf{A C} \cdot \mathbf{A J}} \quad \mathbf{C E}:=\mathrm{AE}-\mathrm{AC} \\
& \text { EJ }:=\mathbf{C J}-\mathbf{C E} \quad \text { EN }:=\sqrt{\text { CE•EJ }} \quad \text { BM }:=\text { EN HO }:=\text { EN } \\
& \text { MN:=EN NO :=EN BE:=EN EH:=EN } \\
& B J:=B E+E J \quad \text { MJ }:=\sqrt{B J^{2}+B M^{2}} \quad \text { MO }:=M N+N O
\end{aligned}
\]

ML : \(=\frac{\text { BJ } \cdot \mathbf{M O}}{\text { MJ }}\)
JL :=MJ - ML GJ := \(\frac{\text { MJ JL }}{\text { BJ }} \quad\) AG \(:=A J-G J\) \((\mathbf{A C} \cdot \mathbf{A J})^{\frac{1}{4}}-\mathbf{A G}=0\) \(\mathrm{CH}:=\mathrm{CE}+\mathrm{EH} \mathrm{CO}:=\sqrt{\mathrm{CH}^{2}+\mathrm{HO}^{2}} \quad \mathrm{KO}:=\frac{\mathrm{CH} \cdot \mathrm{MO}}{\mathrm{CO}} \quad \mathrm{CK}:=\mathrm{CO}-\mathrm{KO} \quad \mathrm{CD}:=\frac{\mathrm{CO} \cdot \mathrm{CK}}{\mathrm{CH}} \quad \mathrm{AD}:=\mathrm{AC}+\mathrm{CD}\) \(\left(A C^{3} \cdot A J\right)^{\frac{1}{4}}-\mathbf{A D}=0 \quad \mathbf{N}^{\frac{3}{4}}-\mathbf{A G}=0 \quad \mathbf{N}^{\frac{1}{4}}-\mathbf{A D}=0\)


\section*{Archamedian Trisection Revisited.}

I am curious as to why the Archamedian trisection is still taught the way it was given so long ago and the idea from which it derives is not in any of my books.

I am going to use a circle to demonstrate some principles concerning angles. To help log the results in mathematical terms, I will divide the circle into quadrants and label them either plus or minus. The top is labeled one.

The circle is divided into \(1 / 8\) segments of 90 degrees for each quadrant. I start at the top. Since the angle at the perimeter is \(1 / 2\) of the angle at the center, when I start the figure I use twice the arc segment for the angle I am working with. I have marked some quadrants with plus and minus and have found that for the figure, I would say that I have \(1+1 / 8-1 / 8\). From this I have learned that my starting angle of the smaller circle will be 90 degrees.
\[
\begin{aligned}
& \frac{90}{8}=11.25 \\
& 90+\frac{90}{8}-\frac{90}{8}=90 \quad\left(1+\frac{1}{8}-\frac{1}{8}\right) \cdot 90=90
\end{aligned}
\]


\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1\)
\(\frac{\mathrm{~B} \cdot 4}{4} \cdot 90=90 \quad \frac{\mathrm{~B} \cdot 3}{4} \cdot 90=67.5\)
\(\frac{B \cdot 2}{4} \cdot 90=45 \quad \frac{B}{4} \cdot 90=22.5\)
\(8+1-1=8\)
\(8 \cdot 11.25=90\)
\(8+1-1-2=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1-2-2=4\)
\(4 \cdot 11.25=45\)
\(8+1-1-2-2-2=2\)
\(2 \cdot 11.25=22.5\)

I have added another plus to a quadrant at the bottom of the figure.
\(\mathrm{B}:=1+\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1.125 \quad \frac{9}{8}=1.125\)
\[
\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75
\]
\[
\frac{B \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{B \cdot 1.5}{4.5} \cdot 90=33.75
\]
\(\frac{B \cdot 5}{4.5} \cdot 90=11.25\)
\begin{tabular}{ll}
\(8+1+1-1=9\) & \(9 \cdot 11.25=101.25\) \\
\(8+1+1-1-2=7\) & \(7 \cdot 11.25=78.75\) \\
\(8+1+1-1-2-2=5\) & \(5 \cdot 11.25=56.25\) \\
\(8+1+1-1-2-2-2=3\) & \(3 \cdot 11.25=33.75\) \\
\(8+1+1-1-2-2-2-2=1\) & \(1 \cdot 11.25=11.25\)
\end{tabular}
\(\bmod (8+1+1-1,2)=1\)

\(\mathrm{B}:=1+\frac{1}{8}-\frac{1}{8}+\frac{1}{8}\)
\(B=1.125 \quad \frac{9}{8}=1.125\)
\(\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75\)
\[
\frac{\mathrm{B} \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{\mathrm{~B} \cdot 1.5}{4.5} \cdot 90=33.75
\]
\(\frac{B \cdot .5}{4.5} \cdot 90=11.25\)
\(8+1=9\) \(9 \cdot 11.25=101.25\)
\(8+1-(1 \cdot 2)=7\)
\(7 \cdot 11.25=78.75\)
\(8+1-(2 \cdot 2)=5\)
\(5 \cdot 11.25=56.25\)
\(8+1-(3 \cdot 2)=3\)
\(3 \cdot 11.25=33.75\)
\(8+1-(4 \cdot 2)=1\)
\(1 \cdot 11.25=11.25\)
\(\bmod (8+1,2)=1\)

\(B:=1+\frac{3}{24}-\frac{8}{24} B=0.7917 \quad \frac{19}{24}=0.7917\)
\(\frac{B \cdot 3.1666}{3.1666} \cdot 90=71.25 \quad \frac{B \cdot 2.1666}{3.1666} \cdot 90=48.7495\)
\(\frac{B \cdot 1.16666}{3.16666} \cdot 90=26.2499 \frac{B \cdot .166666}{3.166666} \cdot 90=3.75\)
\begin{tabular}{ll}
\((24+3)-8=19\) & \(19 \cdot 3.75=71.25\) \\
\((24+3)-8-(1 \cdot 6)=13\) & \(13 \cdot 3.75=48.75\) \\
\((24+3)-8-(2 \cdot 6)=7\) & \(7 \cdot 3.75=26.25\) \\
\((24+3)-8-(3 \cdot 6)=1\) & \(1 \cdot 3.75=3.75\)
\end{tabular}
\(\bmod (24+3-8,2)=1\)
\(B:=1+\frac{1}{8}-\frac{1}{8}+\frac{10}{8} \quad B=2.25 \quad \frac{18}{8}=2.25\)
\(\frac{B \cdot 9}{9} \cdot 90=202.5 \quad \frac{B \cdot 8}{9} \cdot 90=180\)
\(\frac{\mathrm{B} \cdot 7}{9} \cdot 90=157.5 \quad \frac{\mathrm{~B} \cdot .6}{9} \cdot 90=13.5\)
\(8+1-1+10=18\)
\(18 \cdot 11.25=202.5\)
\(8+1-1+10-(2 \cdot 1)=16\)
\(16 \cdot 11.25=180\)
\(8+1-1+10-(2 \cdot 2)=14\)
\(14 \cdot 11.25=157.5\)
\(8+1-1+10-(2 \cdot 3)=12\)
\(12 \cdot 11.25=135\)
\(8+1-1+10-(2 \cdot 4)=10\)
\(10 \cdot 11.25=112.5\)
\(8+1-1+10-(2 \cdot 5)=8\)
\(8 \cdot 11.25=90\)
\(8+1-1+10-(2 \cdot 6)=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1+10-(2 \cdot 7)=4\)
\(4 \cdot 11.25=45\)
\(8+1-1+10-(2 \cdot 8)=2\)
\(2 \cdot 11.25=22.5\)
\(\bmod ((8+1-1)+10,2)=0\)
\(\mathrm{B}:=1+\frac{1}{7}-\frac{2}{7} \quad \mathrm{~B}=0.8571 \quad \frac{6}{7}=0.8571\)
\(\frac{B \cdot 6}{6} \cdot 90=77.1429 \quad \frac{B \cdot 4}{6} \cdot 90=51.4286\)
\(\frac{B \cdot 2}{6} \cdot 90=25.7143\)
c : \(=\frac{90}{7}\)
\(7+1-(1 \cdot 2)=6\)
\(6 \cdot \mathrm{c}=77.1429\)
\(7+1-(2 \cdot 2)=4\)
\(4 \cdot \mathrm{c}=51.4286\)
\(7+1-(3 \cdot 2)=2\)
\(2 \cdot \mathrm{c}=25.7143\)
B:=1+ \(\frac{1}{7}-\frac{1}{7}\)
B \(=1\)
\(\frac{7}{7}=1\)
\(\frac{B \cdot 7}{7} \cdot 90=90\)
\(\frac{B \cdot 5}{7} \cdot 90=64.2857\)
\[
\frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571
\]
\(7+1-1=7\)
\[
7 \cdot \mathrm{c}=90
\]
\(7+1-1-(1 \cdot 2)=5 \quad 5 \cdot \mathrm{c}=64.2857\)
\(7+1-1-(2 \cdot 2)=3 \quad 3 \cdot c=38.5714\)
\(7+1-1-(3 \cdot 2)=1 \quad 1 \cdot \mathrm{c}=12.8571\)
\(\bmod (7+1-1,2)=1\)
\(\mathrm{B}:=1+\frac{8}{56}-\frac{7}{56} \quad \mathrm{~B}=1.0179\)
\(\frac{\mathrm{~B} \cdot 57}{57} \cdot 90=91.6071 \quad \frac{\mathrm{~B} \cdot 41}{57} \cdot 90=65.8929\)
\[
\frac{\mathrm{B} \cdot 25}{57} \cdot 90=40.1786 \quad \mathrm{c}:=\frac{90}{56}
\]
\(56+8-7=57\)
\(57 \cdot \mathrm{c}=91.6071\)
\(56+8-7-(1 \cdot 16)=41\)
\(41 \cdot \mathrm{c}=65.8929\)
\(56+8-7-(2 \cdot 16)=25 \quad 25 \cdot \mathrm{c}=40.1786\)
\(56+8-7-(3 \cdot 16)=9 \quad 9 \cdot c=14.4643\)
\(\bmod (56+8-7,16)=9\)
\[
\begin{aligned}
& B:=1+\frac{1}{7}-\frac{1}{7} \quad B=1 \\
& \frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.2857 \\
& \frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571 \\
& 7+1-1=7 \\
& 7+1-1-(1 \cdot 2)=5 \\
& 7+1-1-(2 \cdot 2)=3 \\
& 7+1-1-2-2-2=1 \\
& \bmod (7+1-1,2)=1
\end{aligned}
\]

Work in progress.


\section*{04/01/95 Exponential Series-Roots and Powers}

I remember a dream was it? That exponential notation is not demonstrable in Geometric Grammar, that it is a pure conceptual abstract.

\(\mathbf{N}_{1}:=5 \quad\) AB :=1
\(\delta:=0 . .3\)
\[
\mathbf{N}_{2}:=\mathbf{3} \quad \mathbf{A J}
\]
\[
\mathbf{A} \mathbf{J}_{1}:=\frac{\mathbf{A N ^ { 2 }}}{\mathbf{A F}} \quad \mathbf{A} \mathbf{J}_{\delta+1}:=\frac{\mathbf{A} \mathbf{J}_{\boldsymbol{\delta}} \cdot \mathbf{A N}}{\mathbf{A F}}
\]
\[
\mathrm{AD}_{0}:=\mathrm{AJ}_{0} \quad \mathrm{DF}_{0}:=\mathrm{AF}-\mathrm{AD}_{0} \quad \mathrm{DO}_{0}:=\sqrt{\mathrm{AD}_{0} \cdot \mathrm{DF}_{0}} \quad \mathbf{A O _ { 0 }}:=\sqrt{\left(\mathrm{DO}_{0}\right)^{2}+\left(\mathrm{AD}_{0}\right)^{2}}
\]
\[
\left[\begin{array}{c}
\mathbf{A D}_{\delta+1} \\
\mathbf{D F}_{\delta+1} \\
\mathbf{D O}_{\delta+1} \\
\mathbf{\mathbf { A O } _ { \delta + 1 }}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{A O _ { \delta }} \\
\mathbf{A F}-\mathbf{A O _ { \delta }} \\
\sqrt{\mathbf{A O _ { \delta }} \cdot\left(\mathbf{A F}-\mathbf{A O _ { \delta }}\right)} \\
\sqrt{\mathbf{A O _ { \delta }} \cdot\left(\mathbf{A F}-\mathbf{A O _ { \delta }}\right)+\left(\mathbf{A O _ { \delta } ) ^ { 2 }}\right.}
\end{array}\right]
\]
\[
\sum_{\delta}\left[\frac{\mathbf{A F}}{\mathbf{A J}_{\delta}}-\left(\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}\right)^{\delta+1}\right]=0
\]
\[
\sum_{\delta}\left[\frac{A F}{A D_{\delta}}-\left(\frac{N_{1}}{N_{2}}\right)^{\frac{1}{2^{\delta}}}\right]=0
\]


Given \(A E, A B, A C\) what is \(G H\) ?
\(\mathbf{N}_{1}:=1 \quad \mathbf{N}_{2}:=4 \quad \mathbf{N}_{3}:=1 \quad \mathbf{N}_{4}:=5 \quad\) AE \(:=1\)
\(A D:=\frac{A E}{2} \quad A B:=A E \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}} \quad\) AC \(:=A E \cdot \frac{\mathbf{N}_{3}}{\mathbf{N}_{4}} \quad D F:=A D\)
\(\mathrm{DE}:=\mathrm{AD} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \quad \mathrm{CF}:=\sqrt{\mathrm{DF}^{2}-\mathrm{CD}^{2}}\)
\(\mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{EF}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CF}^{2}} \quad \mathrm{EG}:=\frac{\mathrm{EF} \cdot \mathrm{BE}}{\mathrm{CE}}\)
FG \(:=\mathbf{E G}-\mathbf{E F} \quad \mathbf{G H}:=\left|\frac{\mathbf{A D} \cdot \mathbf{F G}}{\mathbf{E F}}\right| \quad \mathbf{G H}-\left|\frac{\mathrm{N}_{3} \cdot \mathrm{~N}_{2}-\mathrm{N}_{1} \cdot \mathbf{N}_{4}}{2 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{4}-\mathbf{N}_{3}\right)}\right|=0\)

Given \(A E, A B\), \(E F\) what is \(G H\) ?

\(\mathbf{A E}:=1 \quad \mathbf{A D}:=\frac{\mathbf{A E}}{2} \quad \mathbf{A B}:=\mathbf{A E} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}} \quad \mathbf{D E}:=\mathbf{A D}\)
\(\mathrm{EF}:=\mathrm{AE} \cdot \frac{\mathbf{N}_{3}}{\mathbf{N}_{4}} \quad \mathrm{CE}:=\frac{\mathbf{E F}^{2}}{\mathrm{AE}} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB}\)
BE \(:=\mathrm{BD}+\mathrm{DE} \quad\) EG \(:=\frac{\mathrm{EF} \cdot \mathrm{BE}}{\mathrm{CE}} \quad\) FG \(:=\mathrm{EG}-\mathbf{E F}\)
GH \(:=\frac{A D \cdot F G}{E F} \quad G H-\frac{N_{2} \cdot N_{4}{ }^{2}-N_{1} \cdot N_{4}{ }^{2}-N_{3}{ }^{2} \cdot \mathbf{N}_{2}}{2 \cdot N_{2} \cdot N_{3}{ }^{2}}=0\)

Given \(A E, A B, B G\) what is \(G H\) ?

\(A E:=1 \quad A D:=\frac{\mathbf{A E}}{2} \quad A B:=A E \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}} \quad B G:=A E \cdot \frac{\mathbf{N}_{3}}{\mathbf{N}_{4}}\)
\(\mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{EG}:=\sqrt{\mathrm{BE}^{2}+\mathrm{BG}^{2}} \quad \mathrm{EJ}:=\frac{\mathrm{EG}^{2}}{\mathrm{BE}}\)
EF \(:=\frac{\text { EG } \cdot \mathbf{A E}}{\text { EJ }} \quad\) FG \(:=\) EG - EF \(\quad\) GH \(:=\left|\frac{\text { AD•FG }}{\text { EF }}\right|\)
\(\mathbf{G H}_{-}\left|\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{4}{ }^{2} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{4}{ }^{2}-\mathbf{N}_{3}{ }^{2} \cdot \mathbf{N}_{2}{ }^{2}}{2 \cdot \mathbf{N}_{2} \cdot\left[\mathbf{N}_{4}{ }^{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)\right]}\right|=0\)

\section*{10/14/95 Alternate Method Square Root}

\section*{For any \(A K\) is \(A C\) the root of \(A B \times A F ?\)}

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{4} \\
& \mathbf{A B}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{1}} \quad \mathbf{A K}:=\mathbf{A B} \cdot \mathbf{N}_{2} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \mathbf{B O}:=\frac{\mathbf{B F}}{2} \mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \quad \mathbf{K M}:=\mathbf{A O} \quad \mathbf{A M}:=\sqrt{\mathbf{A K}^{2}+\mathbf{K M}^{2}} \\
& \mathbf{G O}:=\mathbf{B O} \mathbf{D J}:=\mathbf{B O} \quad \mathbf{A J}:=\mathbf{A M} \mathbf{A D}:=\sqrt{\mathbf{A J}^{2}-\mathbf{D J}^{2}} \\
& \mathbf{K N}:=\mathbf{A D} \mathbf{C K}:=\mathbf{A D} \mathbf{A C}:=\sqrt{\mathbf{C K}^{2}-\mathbf{A K}^{2}}
\end{aligned}
\]
\[
\sqrt{\mathrm{AB} \cdot \mathrm{AF}}-\mathrm{AC}=\mathbf{0}
\]

\section*{10/20/95 Four Times The Square}

AD := AE - DE \(\quad \mathbf{D G}:=\sqrt{\mathrm{AD} \cdot \mathbf{D E}}\)

Algebraic Names:
\(\frac{1}{\mathbf{N}_{1}}-\mathrm{AB}=0 \quad 1-\frac{1}{\mathrm{~N}_{1}}-\mathrm{BE}=0 \quad \sqrt{\frac{\left(\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{1} \cdot N_{1}\right)}}-\mathbf{B F}=0 \quad \sqrt{\frac{\mathrm{~N}_{1}}{\mathbf{N}_{1}{ }^{2}}}-\mathrm{AF}=0\)
\(1-\sqrt{\frac{\mathbf{N}_{1}}{\mathbf{N}_{1}{ }^{2}}}-\mathbf{C E}=0 \quad 1-2 \cdot \sqrt{\frac{1}{N_{1}}}+\frac{1}{\mathrm{~N}_{1}}-\mathrm{DE}=0 \quad 2 \cdot \sqrt{\frac{1}{\mathbf{N}_{1}}}-\frac{2}{\mathrm{~N}_{1}}-\mathrm{BD}=0\)
\(2 \cdot \sqrt{\frac{1}{N_{1}}}-\frac{1}{N_{1}}-A D=0 \quad \frac{\sqrt{2 \cdot \sqrt{\frac{1}{N_{1}}} \cdot N_{1}{ }^{2}-5 \cdot N_{1}+4 \cdot \sqrt{\frac{1}{N_{1}}} \cdot N_{1}-1}}{N_{1}}-D G=0\)

11/01/95 A Modification Of The Square Root Figure, Gemini Roots On a given segment and from any point on that
 segment construct a square and a segment that will divide that square by ( \(\mathrm{N}-1\) )/2 times.
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{9} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \text { AG }:=1 \\
& \mathbf{A E}:=\frac{\mathbf{A G}}{\mathbf{2}} \quad \mathbf{E G}:=\mathbf{A E} \quad \text { EF }:=\frac{\mathbf{A G}}{2 \cdot \mathbf{N}_{1}} \quad \mathbf{A F}:=\mathbf{A E}+\mathbf{E F} \\
& \text { FG }:=\mathbf{E G}-\mathbf{E I F N}:=\sqrt{\mathbf{A F} \cdot \mathbf{F G}} \quad \mathbf{G N}:=\sqrt{\mathbf{F N}^{2}+\mathbf{F G}^{2}} \quad \mathbf{G K}:=\mathbf{G N}
\end{aligned}
\]
\(\mathrm{EK}:=\sqrt{\mathrm{GK}^{2}-\mathrm{EG}^{2}} \mathrm{EO}:=\frac{\mathrm{EG} \cdot \mathrm{EF}}{\mathrm{EK}}\) OK \(:=\mathrm{EO}+\mathrm{EK} \quad \mathrm{DE}:=\frac{\mathrm{AE}}{\mathrm{N}_{2}} \quad \mathrm{DO}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EO}^{2}}\)
DJ \(:=\) OK - DO \(C D:=\frac{\text { DE } \cdot \text { DJ }}{\text { DO }} \quad C E:=C D+D E C J:=\frac{\text { EO } \cdot D J}{D O} \quad A C:=A E-C E \quad A J:=\sqrt{A C^{2}+C J^{2}}\)
\(A L:=A J \quad A B:=\frac{\mathbf{A L}^{2}}{A G} \quad \mathbf{C G}:=A G-\mathbf{A C} \quad G J:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}^{2}} \quad\) GM \(:=G J \quad D G:=\frac{\mathbf{G M}^{2}}{\mathbf{A G}}\)
\(\mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G}) \quad \frac{\mathbf{N}_{1}-\mathbf{1}}{2}-\frac{\sqrt{\mathbf{A B} \cdot \mathbf{D G}}}{\mathbf{B D}}=\mathbf{0}\)

\section*{11/05/95 Alternate Method Gemini Roots}

\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5}
\]
\[
\text { AG }:=1 \quad \text { AF }:=\frac{\mathbf{A G}}{2} \quad \text { AR }:=\text { AF } F Q:=A F \quad \text { FG }:=A F
\]
\[
\mathbf{A L}:=\frac{\mathbf{A R}}{\mathbf{N}_{1}} \quad \mathbf{I M}:=\frac{\mathbf{A R}}{\mathbf{N}_{2}} \quad \mathbf{A K}:=\frac{\mathbf{A L} \cdot \mathbf{I M}}{\mathbf{A R}}
\]
\[
\text { G FE D CB A I } \quad \mathbf{H} \quad \text { DO }:=\mathrm{IM} \quad \mathrm{AB}:=\mathrm{AK} B F:=A F-A B \text { FO }:=\mathrm{BF}
\]
\[
\mathrm{OQ}:=\mathrm{FQ}-\mathrm{FO} \quad \mathrm{NP}:=\frac{(\mathrm{AG}-2 \cdot \mathrm{AB}) \cdot \mathbf{O Q}}{\mathrm{FO}} \quad \mathrm{NP}-2 \cdot \mathrm{AK}=0 \quad \text { CD }:=\mathrm{AK} \text { DE }:=\mathrm{AK}
\]
\[
\mathrm{DF}:=\sqrt{\mathrm{FO}^{2}-\mathrm{DO}^{2}} \mathrm{AD}:=\mathrm{AF}-\mathrm{DF} \mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \quad \mathrm{EG}:=\mathrm{FG}+\mathrm{DF}-\mathrm{DE}
\]
\[
\mathbf{C E}:=\mathbf{N P} \quad \frac{\mathbf{N}_{1}}{2}-\frac{\sqrt{\mathrm{AC} \cdot \mathbf{E G}}}{\mathrm{CE}}=0
\]

\section*{12/01/95 Method For Equals}

\section*{Given AB find NP.}

\[
\begin{aligned}
& \mathbf{N}_{1}:=3 \\
& \mathbf{A H}:=1 \quad \mathbf{A E}:=\frac{\mathbf{A H}}{2} \quad \mathbf{E H}:=\mathrm{AE} \quad \mathbf{E P}:=\mathrm{AE} \quad \mathrm{AP}:=\sqrt{2 \cdot \mathbf{A E}^{2}} \\
& \mathrm{AB}:=\frac{\mathrm{AE}}{\mathrm{~N}_{1}} \quad \mathrm{CE}:=\mathrm{AB} \quad \mathrm{CH}:=\mathrm{EH}+\mathrm{CE} \quad \mathrm{CL}:=\sqrt{2 \cdot \mathrm{CE}^{2}} \\
& \text { AM }:=\frac{\text { CL } \cdot \mathbf{A H}}{\text { CH }} \text { MP }:=A P-A M \quad \text { NP }:=\frac{\text { EP } \cdot M P}{\text { AP }} \\
& \frac{1}{2} \cdot \frac{\left(N_{1}-1\right)}{\left(N_{1}+1\right)}-N P=0
\end{aligned}
\]

Scholia: 100 Great Problems of Elementary Mathematics H. Dorrie Problem 27 Euler's Line \(\delta:=0 . .2 \quad\) AC \(:=\left(\begin{array}{l}\text { Side_1 } \\ \text { Side_2 } \\ \text { Side_3 }\end{array}\right) \quad \mathrm{BC}:=\left(\begin{array}{l}\text { Side_2 } \\ \text { Side_3 } \\ \text { Side_1 }\end{array}\right) \quad \mathrm{AB}:=\left(\begin{array}{l}\text { Side_3 } \\ \text { Side_1 } \\ \text { Sid.MCD } \\ \text { Side_2 }\end{array}\right) \begin{aligned} & \text { Given three sides of a triangle, } \\ & \text { determine the length of the Euler line } . \\ & \text { Work the drawing from each of the } \\ & \text { sides. }\end{aligned}\)

TRIANGLE \(:=(\) Side_1 + Side_2 \(>\) Side_3 \() \cdot(\) Side_1 + Side_3 \(>\) Side_2 \() \cdot(\) Side_2 + Side_3 \(>\) Side_1 \()\)

\[
\begin{aligned}
& \mathrm{AE}_{\delta}:=\frac{\mathrm{AB}_{\delta}}{2} \mathrm{Ak}_{\delta}:=\mathrm{AC}_{\delta} \quad \mathrm{Bl}_{\delta}:=\mathrm{BC}_{\delta} \\
& \mathrm{Ai}_{\delta}:=\frac{\left(\mathrm{Ak}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \quad \mathrm{Bh}_{\delta}:=\frac{\left(\mathrm{Bl}_{\delta}\right)^{2}}{\mathrm{AB}_{\delta}} \mathrm{Ah}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Bh}_{\delta} \\
& \mathrm{hi}_{\delta}:=\mathrm{Ah}_{\delta}-\mathrm{Ai}_{\delta} \quad \mathrm{Aj}_{\delta}:=\mathrm{Ai}_{\delta}+\frac{\mathrm{hi}_{\delta}}{2} \\
& \mathrm{Cj}_{\delta}:=\sqrt{\left(\mathrm{AC}_{\delta}\right)^{2}-\left(\mathrm{Aj}_{\delta}\right)^{2}} \mathrm{BE}_{\delta}:=\mathrm{AE}_{\delta} \\
& \mathrm{Bj}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{Aj}_{\delta} \mathrm{Bg}_{\delta}:=\frac{\mathrm{BC}_{\delta}}{2} \quad \mathrm{Bf}_{\delta}:=\frac{\mathrm{BC}_{\delta} \cdot \mathrm{BE}_{\delta}}{\mathrm{Bj}_{\delta}} \\
& \mathrm{fg}_{\delta}:=\mathrm{Bf}_{\delta}-\mathrm{Bg}_{\delta} \quad \mathrm{Ug}_{\delta}:=\mathrm{if}\left(\mathrm{Cj}_{\delta}, \frac{\mathrm{Bj}_{\delta} \cdot \mathrm{fg}_{\delta}}{\mathrm{Cj}_{\delta}}, 0\right) \\
& \mathrm{BU}_{\delta}:=\mathrm{if}\left[\mathrm{Ug}_{\delta}, \sqrt{\left.\left(\mathrm{Ug}_{\delta}\right)^{2}+\left(\mathrm{Bg}_{\delta}\right)^{2}, \infty\right]}\right.
\end{aligned}
\]
\(\mathrm{AM}_{\delta}:=\frac{\mathrm{AC}_{\delta}}{2} \quad \mathrm{AGG}_{\delta}:=\frac{\mathrm{Aj}_{\delta} \cdot \mathrm{AM}_{\delta}}{\mathrm{AC}_{\delta}} \quad \mathrm{BGG}_{\delta}:=\mathrm{AB}_{\delta}-\mathrm{AGG}_{\delta}\)
\(\mathrm{GGM}_{\delta}:=\sqrt{\left(\mathrm{AM}_{\delta}\right)^{2}-\left(\mathrm{AGG}_{\delta}\right)^{2}} \mathrm{BM}_{\delta}:=\sqrt{\left(\mathrm{GGM}_{\delta}\right)^{2}+\left(\mathrm{BGG}_{\delta}\right)^{2}}\)
\(\mathrm{BS}_{\delta}:=\frac{2 \cdot \mathrm{BM}_{\delta}}{3} \mathrm{BG}_{\delta}:=\frac{\mathrm{BGG}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}} \quad \mathrm{GS}_{\delta}:=\frac{\mathrm{GGM}_{\delta} \cdot \mathrm{BS}_{\delta}}{\mathrm{BM}_{\delta}}\)
\(A G_{\delta}:=A B_{\delta}-\mathrm{BG}_{\boldsymbol{\delta}} \mathrm{AS}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathrm{AG}_{\boldsymbol{\delta}}\right)^{2}+\left(\mathrm{GS}_{\boldsymbol{\delta}}\right)^{2}}\)

\(\mathrm{MS}_{\delta}:=\mathrm{BM}_{\delta}-\mathrm{BS}_{\delta} \quad \mathrm{AU}_{\delta}:=\mathrm{BU}_{\delta} \quad \mathrm{MU}_{\delta}:=\sqrt{\left(\mathrm{AU}_{\delta}\right)^{2}-\left(\mathrm{AM}_{\delta}\right)^{2}} \quad \mathrm{Ae}_{\delta}:=\frac{1}{2} \cdot \frac{\left(\mathrm{AS}_{\delta}\right)^{2}}{\mathrm{AM}_{\delta}}+\frac{1}{2} \cdot \mathrm{AM}_{\delta}-\frac{1}{2} \cdot \frac{\left(\mathrm{MS}_{\delta}\right)^{2}}{\mathrm{AM}}\)

The following sequence is from 06_07_93.MCD. In that paper I treated it as a problem between two triangles, which it is. One can restate it as finding the fourth side of a quadrilateral by pulling up a line.
\(\mathrm{eM}_{\delta}:=\mathrm{Ae}_{\delta}-\mathrm{AM}_{\delta} \mathrm{Sm}_{\delta}:=\mathrm{eM}_{\delta} \quad \mathrm{Se}_{\delta}:=\sqrt{\left(\mathrm{AS}_{\delta}\right)^{2}-\left(\mathrm{Ae}_{\delta}\right)^{2}} \quad \mathrm{Mm}_{\delta}:=\mathrm{Se}_{\delta}\)
\(\mathrm{Um}_{\delta}:=\operatorname{if}\left[\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}, \mathrm{MU}_{\delta}-\mathrm{Mm}_{\delta}, \mathrm{MU}_{\delta}+\mathrm{Mm}_{\delta}\right] \mathrm{SU}_{\delta}:=\sqrt{\left(\mathrm{Um}_{\delta}\right)^{2}+\left(\mathrm{Sm}_{\delta}\right)^{2}} \mathrm{UO}_{\delta}:=3 \cdot \mathrm{SU}_{\delta}\)
Due to the way in which certain lines lay, the above switch was needed.

Is this a TRIANGLE \(=1 \quad ? \quad\) Side_1 \(\equiv 21 \quad\) Side_2 \(\equiv 14.4 \quad\) Side_3 \(\equiv 7.75\)

\(\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}\)

\begin{tabular}{|c|c|c|}
\hline \(\mathrm{SU}_{\delta}\) & \(\mathrm{UO}_{\delta}\) & \(\mathrm{AU}_{\delta}\) \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline 14.15083 & 42.45249 & 16.70208 \\
\hline
\end{tabular}

Descartes gives a figure for solving \(\mathrm{z}^{2}=\mathrm{az}+\mathrm{b}^{2}\) which should have been stated as \(\mathrm{z}^{2}=2 \mathrm{az}\) \(+b^{2}\), generalize the figure. Descartes' figure was given only when \(n=2\). In this form, it is an equation of two givens and one unknown, generalized it as three givens and solves for three unknowns. Attempt to eliminate two of the unknowns as a function of the three givens.


Z
Z

Given \(\mathrm{a}, \mathrm{n}\) and b for the equation \(\mathrm{z}^{2}=\mathrm{naz}+\mathrm{b}^{2}+\) cd find \(\mathrm{z}, \mathrm{c}\), and d .
\(A D:=n \cdot a \quad B E:=\sqrt{a^{2}+b^{2}} \quad B C:=\frac{a^{2}}{B E}\)
\(C E:=B E-B C \quad C F:=\sqrt{B C \cdot C E}\)
\(F G:=\frac{A D}{2} \quad C G:=\sqrt{F G^{2}-C F^{2}}\)
\(A G:=F G \quad A C:=A G+C G\)
\(B G:=C G-B C \quad D G:=F G\)
\(B D:=D G-B G \quad A B:=A G+B G\)
\(A E:=A B+B E \quad D E:=B E-B D\)
\(D H:=\frac{b^{2}}{D E} \quad D I:=A E \quad H I:=D I-D H\)
\(z:=A E \quad z=12.622\)
\(c:=D E \quad c=0.622\)
\(d:=H I \quad d=6.186\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0\)
Place values here:
\[
n \equiv 3
\]
\[
a \equiv 4
\]
\[
b \equiv 2
\]

Expressing c and d in terms of the givens does not really look esthetically pleasing.
\[
\left.d=2 \cdot a \cdot \frac{b^{2}}{\sqrt{a^{2}+b^{2}}} \cdot \frac{\left(2 \cdot a-\sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right)}{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}\right.}\right)
\]
\[
c=\frac{-1}{2} \cdot \frac{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\sqrt{a^{2}+b^{2}}}
\]

The symbolic processor could not reduce cd directly so I had to do it in terms of the equation by resolving \(z\).
\(z=\frac{1}{2} \cdot \frac{\left(n \cdot a \cdot \sqrt{a^{2}+b^{2}}+a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}+2 \cdot b^{2}\right)}{\sqrt{a^{2}+b^{2}}}\)
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0 \quad p=-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\)
\((c \cdot d)-p=0\)
\(z^{2}-\left[n \cdot a \cdot z+b^{2}+\left[-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\right]\right]=0\)
Solve for z below.
\(\left[\begin{array}{l}\frac{1}{2} \cdot n \cdot a+\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}} \\ \frac{1}{2} \cdot n \cdot a-\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}}\end{array}\right]\)


C


Scholia: The Geometry of Rene Descartes with a facsimile of the first edition. Translated by D. Eugene and M. Latham
\(z^{2}:=a z-b^{2}\)
The problem is given for the solution of z when a and b are given. Working the problem backward, \(z^{2}+b^{2}:=a z\) ione can see constants in the figure for solving when only a and b are given.
\[
b:=2.12 \quad z:=1.41
\]

Finding \(a\) is just a matter of expressing \(b\) in terms of cz, and a becomes \(\mathrm{z}+\mathrm{c}\).
\[
c:=\frac{b^{2}}{z} \quad a:=z+c
\]

We find that this c has another relation to z , for it holds a proportion to it in the given equation.
\[
\begin{aligned}
& \left(c^{2}+b^{2}\right)-a \cdot c=0 \\
& \left(c^{2}+b^{2}\right)-((z+c) \cdot c)=0 \\
& \left(c^{2}+b^{2}\right)-(c \cdot z)-c^{2}=0 \\
& \left(z^{2}+b^{2}\right)-(z+c) \cdot z=0 \\
& \left(z^{2}+b^{2}\right)-(c \cdot z)-z^{2}=0
\end{aligned}
\]

Descartes and other mathematicians speak as if we have two different values for z , however, I see quite plainly that we have a \(z\) and a c that was found. The unique name of the symbols in context are thus preserved.

One can also see that working the figure in a straight forward manner, imaginary situations are not possible,

\(b^{2}\)




The primitive form of construction is very suggestive of Descartes process. If however we use Pythagorean division, the figure may not be so apparent. One should note that contrary to his statement on page 4 , one cannot divide a line by a line. In geometry one can divide a square by a line. This is the law of tautology, which holds for all mathematics. It will also be noted that Descartes claims to be working with a quadratic equation, and his solution is indeed for one, however he states it as a quadratic deficient by a rectangle, deficient in fact by az. The authors of the notes make the same mistake.

\section*{12/20/95 Just For Fun}

\[
\begin{aligned}
& \mathrm{N}:=\mathbf{2} \\
& \mathbf{E F}:=\mathbf{1} \quad \text { EJ }:=\mathbf{E F} \cdot \mathbf{N} \quad \mathbf{A E}:=\frac{\mathbf{E J}}{\mathbf{E F}} \quad \mathbf{A F}:=\mathbf{A E}+\mathbf{E F} \\
& \mathbf{A B}:=\frac{\mathbf{A F}}{2} \quad \mathbf{B F}:=\mathbf{A B} \quad \mathbf{B E}:=\mathbf{B F}-\mathbf{E F} \quad \mathbf{B H}:=\mathbf{B E} \\
& \mathbf{A} \quad \mathbf{B J}:=\sqrt{\mathbf{E J}^{2}+\mathbf{B E}^{2}} \quad \text { BD }:=\frac{\mathbf{B E} \cdot \mathbf{B H}}{\mathbf{B J}} \quad \text { BG }:=\mathbf{B D}
\end{aligned}
\]
\[
\mathbf{E G}_{2}:=\sqrt{\mathbf{E J ^ { 2 }}-\mathbf{G J}^{2}} \quad \frac{\mathbf{G H}}{\mathbf{H O}}=1 \quad \frac{\mathbf{E G}_{1}}{\mathbf{E G}_{2}}=1 \quad(\mathbf{B C} \cdot \mathbf{B F})^{\frac{1}{3}}-\mathbf{B D}=0 \quad\left(\mathbf{B C} \cdot \mathbf{B F}^{2}\right)^{\frac{1}{3}}-\mathbf{B E}=0
\]
\[
B C-\frac{(\mathbf{N}+1)^{3} \cdot(\mathbf{N}-1)^{3}}{2 \cdot\left(\mathbf{N}^{2}+1\right)^{2}}=0
\]

\section*{12/21/95 Pascal's Triangle With Exponential Division}

\[
\mathbf{N}:=7
\]
\[
\mathbf{A B}:=\mathbf{1} \quad \mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}}
\]
\[
\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{B C}:=\mathbf{B D}-\mathbf{C D}
\]
\[
\mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CD}} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CD}} \quad \mathrm{DF}:=\sqrt{\mathrm{CF}^{2}+\mathrm{CD}^{2}}
\]
\[
\text { DK }:=\frac{\text { DF } \cdot \text { BD }}{\text { CD }} \quad \text { FK }:=\frac{\text { DK } \cdot \text { BC }}{\text { BD }} \quad \text { HK }:=\frac{\text { FK } \cdot F K}{\text { DK }} \quad \text { JK }:=\frac{\text { HK } \cdot \mathrm{HK}}{\text { FK }}
\]
\[
\frac{D K}{F K}-\frac{(N-1)}{(\sqrt{N}-1)}=0 \quad \frac{D K}{H K}-\frac{N^{2}-2 \cdot N+1}{N-2 \cdot \sqrt{N}+1}=0 \quad \frac{D K}{J K}-\frac{N^{3}-3 \cdot N^{2}+3 \cdot N-1}{\frac{3}{N^{2}}-3 \cdot N+3 \cdot \sqrt{N}-1}=0
\]

\section*{A more civil figure.}

\[
\mathbf{A B}:=1 \quad \mathbf{A F}:=\mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A E}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}}
\]
\[
\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{B E} \quad \mathbf{B D}:=\frac{\mathbf{B E} \cdot \mathbf{B H}}{\mathbf{B F}} \quad \mathrm{BG}:=\mathbf{B D}
\]
\[
\mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B G}}{\mathbf{B E}}
\]
\[
\frac{B F}{B E}-\frac{(N-1)}{(\sqrt{N}-1)}=0 \quad \frac{B F}{B D}-\frac{N^{2}-2 \cdot \mathbf{N}+1}{N-2 \cdot \sqrt{N}+1}=0 \quad \frac{B F}{B C}-\frac{\mathbf{N}^{3}-3 \cdot N^{2}+3 \cdot N-1}{\frac{3}{N^{2}}-3 \cdot N+3 \cdot \sqrt{N}-1}=0
\]

\[
\begin{aligned}
& \text { AB }:=1 \quad \text { AG }:=\mathbf{N} \quad \text { BG }:=A G-A B \quad \text { AF }:=\left(A B \cdot A G^{3}\right)^{\frac{1}{4}} \\
& B F:=A F-A B \quad \text { BJ }:=\mathbf{B F} \quad \text { BE }:=\frac{B J \cdot B F}{\text { BG }} \quad \text { BH }:=B E \\
& \text { BC }:=\frac{B H \cdot B E}{\text { BF }}
\end{aligned}
\]
\[
\frac{B G}{B F}-\frac{N-1}{N^{\frac{3}{4}}-1}=0 \quad \frac{B G}{B E}-\frac{N^{2}-2 \cdot N+1}{N^{\left(\frac{3}{2}\right)}-2 \cdot N^{\left(\frac{3}{4}\right)}+1}=0 \quad \frac{B G}{B C}-\frac{\mathbf{N}^{3}-3 \cdot N^{2}+3 \cdot N-1}{N^{\left(\frac{9}{4}\right)}-3 \cdot N^{\left(\frac{3}{2}\right)}+3 \cdot N^{\left(\frac{3}{4}\right)}-1}=0
\]

\section*{12/29/95}

Given AC and CE find BC when it is equal to

\[
\begin{aligned}
& \frac{\mathrm{AC} \cdot \mathrm{CE}^{2}}{\mathrm{AC}^{2}+\mathrm{CE}^{2}} \text {. } \\
& \mathrm{N}_{1}:=1.854 \quad \mathrm{~N}_{\mathbf{2}}:=1.313 \\
& \mathbf{A C}:=\mathbf{N}_{1} \quad \mathbf{C E}:=\mathbf{N}_{2} \quad \mathrm{AE}:=\sqrt{\mathrm{AC}^{2}+\mathbf{C E}^{2}} \quad \mathrm{AD}:=\frac{\mathrm{AC} \cdot \mathrm{AC}}{\mathrm{AE}} \\
& \mathbf{A B}:=\frac{\mathbf{A D}^{2}}{\mathbf{A C}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}} \\
& \mathbf{C D}:=\sqrt{\mathbf{B C}^{2}+\mathbf{B D}^{2}} \quad \mathrm{DE}:=\mathrm{AE}-\mathrm{AD}
\end{aligned}
\]
\(B C-\frac{N_{1} \cdot N_{2}{ }^{2}}{\mathbf{N}_{1}{ }^{2}+N_{2}{ }^{2}}=0 \quad B D-\frac{N_{1}{ }^{2} \cdot N_{2}}{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}}=0 \quad \mathrm{AB}-\left(\mathrm{N}_{1}-\frac{\mathrm{N}_{1} \cdot \mathbf{N}_{2}{ }^{2}}{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}}\right)=0\)
\[
\mathrm{AD}-\frac{\mathrm{N}_{1}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}^{2}}}=0 \quad \mathrm{DE}-\frac{\mathrm{N}_{2}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{2}^{2}}}=0
\]


The Euclidean proof of 11_11_93.MCD may be reminiscent of trimming hedges with a jack knife, but the method is for exercise of those methodical parts which comprise it. I can never get too much of those practices. There is however a golden approach to proofing the figure which has almost no regard for the practices of basic moves- a eunuch in regards to teaching, but whose simplicity implants the concepts of the figure with a clarity unrivaled by more energetic methods.

\section*{The Archamedian Paper Trisector- Without the Numbers.}

One of the distinctions that this and the paper of \(11 \_11 \_93 . \mathrm{MCD}\) bring to the subject is that the construction of the figure is not assumed, but done.


Given any circle \(A B\)


Given any circle BC such that \(\mathrm{BC} \leq 2 \mathrm{AB}\).


Construct AE such that \(\mathrm{AE}=\mathrm{AC}\).

Since \(A C=A B+B C\) and \(A D=A B, D E=B C\).


Construct DH parallel to BD. Construct CE. Since \(\mathrm{AB}=\mathrm{AD}\) and \(\mathrm{AC}=\mathrm{AE}, \triangle \mathrm{ABD}\) is proportional to \(\Delta \mathrm{ACE}\), therefore CE is parallel to BD. From here one can take two paths.


Construct GJ parallel to EF. Now Since CE is parallel to \(\mathrm{DH}, \mathrm{DG}=\mathrm{CH}\). Since GJ is parallel to \(\mathrm{EF}, \mathrm{DG}=\mathrm{FJ}\). Since \(\angle \mathrm{HBJ}\) is opposite and equal to \(\angle \mathrm{GBD}, \mathrm{DG}=\mathrm{HJ}\), therefore DG is \(\frac{1}{3}\) CF.
Since CE is parallel to DH and EF is parallel to GJ, EGBD is equilateral.


By construction \(\mathrm{DK}=\mathrm{KM}\). Since DH is parallel to \(\mathrm{CE}, \mathrm{CH}=\mathrm{DG}\). Since DK is equal and opposite \(\mathrm{CH}, \mathrm{MK}+\mathrm{DK}+\mathrm{DG}\) is \(\frac{1}{3} \mathrm{DG}\).
But like I said at the start, there is no real work in this figure.

I have given two constructions for the figure, I cannot understand why sliding paper is still used to demonstrate it. The figure adds a few moves to Euclid's figure for demonstrating that the angle from the circumference is half the angle from the center of the circle.

\section*{01/07/96 Rusty Cubes}


A rusty Compass construction for the duplication of the cube.
\[
\begin{array}{ll}
\text { AD }:=2 & \mathrm{AB}:=\frac{\mathbf{A D}}{2} \quad \mathrm{AG}:=\sqrt{2 \cdot \mathrm{AB}^{2}} \quad \mathrm{AF}:=\frac{\mathrm{AG}}{9} \cdot 8 \\
\mathrm{AC}:=\mathrm{AF} \quad \mathrm{AC}=1.257 & \\
\left(\mathbf{A B}^{2} \cdot \mathbf{A D}\right)^{\frac{1}{3}}=1.26 \quad & \frac{\left(\mathrm{AB}^{2} \cdot \mathbf{A D}\right)^{\frac{1}{3}}}{\mathbf{A C}}=1.002
\end{array}
\]

I remember a rusty construction for squaring a circle off the base of a right triangle. Here is one more rust pile construction.

\section*{01/08/96 Alternate Method Power Line}

\[
\begin{aligned}
& \mathbf{R}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{5} \quad \mathrm{D}:=\mathbf{4} \\
& \text { DE := } \mathbf{R}_{1} \quad \text { KM }:=\mathbf{R}_{2} \quad \text { EK }:=\mathbf{D} \quad \mathbf{D M}:=\mathbf{D E}+\mathbf{E K}+\mathbf{K M} \\
& \text { EF := DE JK := KM FJ :=EK-(EF + JK }) \quad \text { AD }:=\mathbf{D M} \\
& \text { BM := DM DF := DE + EF JM := JK + KM } \\
& \text { FG }:=\frac{\text { DF } \cdot \text { FJ }}{\text { DF }+ \text { JM }} \quad \text { GJ }:=\text { FJ }- \text { FG } \quad \text { DI }:=\frac{\text { DM }}{2} \\
& \text { DG }:=\text { DF }+ \text { FG GI }:=\text { DI }- \text { DG } \quad \text { CI }:=\text { DI GN }:=\frac{\text { AD•FG }}{\text { DF }} \\
& \text { GH }:=\frac{\text { GI•GN }}{\text { CI }+\mathbf{G N}} \text { DH }:=\text { DF }+ \text { FG }+ \text { GH } \quad \text { DH }=1.375 \\
& \text { HM := DM - DH } \\
& \mathbf{D H}-\frac{\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}{\mathbf{2 \cdot D}}=\mathbf{0} \\
& \mathbf{H M}-\frac{\left(\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{1}}+\mathbf{D}\right)}{2 \cdot \mathrm{D}}=\mathbf{0}
\end{aligned}
\]


The figure cuts the base line in quad roots. As such it would be another trivial method for doing quad roots, however I am interested in some of the ratio's of the figure instead.

\[
\begin{aligned}
& \mathrm{N}=5 \quad \mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{~N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \\
& \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AG}} \quad \mathrm{AC}:=\left(\mathrm{AB}^{3} \cdot \mathrm{AG}\right)^{\frac{1}{4}} \\
& \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{4}} \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \mathrm{GK}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DK}^{2}} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]

\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}}=2.415\)
\(\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=8.075\)

\[
\frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]

Plug in AG here. AB will become " 1 ".
\(\mathrm{N} \equiv 5\)
\(\frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}}{\mathrm{~N}^{\frac{3}{4}}}=2.415\)
\[
\frac{\mathrm{BK}}{\text { BJ }}=8.075 \quad \mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=8.075
\]
\[
\mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \mathrm{DF}:=\mathrm{AF}-\mathrm{AD} \quad \mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}}
\]
\[
\mathrm{CN}:=\frac{\mathrm{BD} \cdot \mathrm{CD}}{\mathrm{BG}} \mathrm{DP}:=\frac{\mathrm{BD} \cdot \mathrm{DF}}{\mathrm{BG}} \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{5}{4}}+\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}=26.132 \quad \frac{\mathrm{BG}}{\mathrm{BM}}=26.132
\]
\[
\mathrm{N}^{\frac{5}{4}}+\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}=26.132
\]
\[
\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}=17.475 \quad \frac{\mathrm{BG}}{\mathrm{CN}}=17.475
\]
\[
\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}=17.475
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}=11.686 \frac{\mathrm{BG}}{\mathrm{DP}}=11.686
\]
\[
\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}=11.686
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{3}{4}}=7.815 \quad \frac{\mathrm{BG}}{\mathrm{FQ}}=7.815
\]
\[
\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{0}{4}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{1}{4}}}+\frac{1}{\mathrm{~N}^{\frac{2}{4}}}+\frac{1}{\mathrm{~N}^{\frac{3}{4}}}=7.815
\]

\(\frac{\mathrm{AG}^{\frac{6}{4}}+\mathrm{AG}^{\frac{4}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{5}{4}}-\mathrm{AB}^{\frac{6}{4}}}=32.665\)
\(\frac{A G}{B M}=32.665 \quad \frac{\mathrm{~N}^{\frac{3}{2}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=32.665\)
\(\begin{array}{ll}\mathrm{AG}^{\frac{5}{4}}+\mathrm{AG}^{\frac{3}{4}} \cdot \mathrm{AB}^{\frac{2}{4}} \\ \mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{4}{4}}-\mathrm{AB}^{\frac{5}{4}} & =21.844 \\ \mathrm{CN} & =21.844 \\ \frac{\mathrm{~N}^{\frac{5}{4}}+\mathrm{N}^{\frac{3}{4}}}{\frac{1}{4}}=21.844 \\ \mathrm{~N}^{\frac{0}{4}}\end{array}\)
\(\frac{\mathrm{AG}^{\frac{4}{4}}+\mathrm{AG}^{\frac{2}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{3}{4}}-\mathrm{AB}^{\frac{4}{4}}}=14.608\)
\(\frac{A G}{D P}=14.608 \quad \frac{\mathrm{~N}+\mathrm{N}^{\frac{2}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=14.608\)
\(\frac{\mathrm{AG}^{\frac{3}{4}}+\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}}{\mathrm{AG}^{\frac{1}{4}} \cdot \mathrm{AB}^{\frac{2}{4}}-\mathrm{AB}^{\frac{3}{4}}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769 \quad \frac{\mathrm{~N}^{\frac{3}{4}}+\mathrm{N}^{\frac{1}{4}}}{\mathrm{~N}^{\frac{1}{4}}-\mathrm{N}^{\frac{0}{4}}}=9.769\)

\section*{01/13/96 Pyramid of Ratios VI, Moving the Point}

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{5} \quad \mathbf{N}_{2}:=7 \quad \mathbf{N}_{1}:=\mathbf{N}_{1} \quad \mathbf{N}_{2}:=\mathbf{N}_{2} \\
& \mathbf{A D}:=\mathbf{1} \quad \mathbf{A B}:=\frac{\mathbf{A D}}{\mathbf{N}_{1}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathbf{B G}:=\sqrt{\mathbf{A B} \cdot \mathbf{B D}} \quad \mathbf{B E}:=\frac{\mathbf{B G}}{\mathbf{N}_{2}} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B E}}{\mathbf{B G}} \\
& \mathbf{A E}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B E}^{2}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A F}:=\frac{\mathbf{A E} \cdot \mathbf{A D}}{\mathbf{A C}} \\
& \mathbf{E F}:=\mathbf{A F}-\mathbf{A E} \quad \frac{\mathbf{A F}}{\mathbf{E F}}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)}=\mathbf{0}
\end{aligned}
\]
\(\Delta:=\mathbf{2} . . \mathbf{N}_{\mathbf{1}} \quad \delta:=\mathbf{2} . . \mathbf{N}_{\mathbf{2}}\)
\[
\text { SeriesAF }=\left[\begin{array}{llllll}
4 & 3 & 2.667 & 2.5 & 2.4 & 2.333 \\
3 & 2.25 & 2 & 1.875 & 1.8 & 1.75 \\
2.667 & 2 & 1.778 & 1.667 & 1.6 & 1.556 \\
2.5 & 1.875 & 1.667 & 1.563 & 1.5 & 1.458
\end{array}\right]
\]

DG \(:=\sqrt{\mathbf{B D}^{2}+\mathrm{BG}^{2}}\) CE \(:=\sqrt{\mathrm{BC}^{2}+\mathrm{BE}^{2}}\) DF \(:=\frac{\mathrm{CE} \cdot \mathrm{AD}}{\mathrm{AC}} \mathrm{GF}:=\mathrm{DG}-\mathrm{DF}\)
\(\frac{\mathbf{D G}}{\mathbf{G F}}-\frac{\left(\mathbf{N}_{2}+\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{2}-1\right)}=0\)

SeriesDG \(_{\Delta, \delta}:=\frac{(\delta+\Delta-1)}{(\delta-1)}\)
\[
\text { SeriesDG }=\left[\begin{array}{llllll}
3 & 2 & 1.667 & 1.5 & 1.4 & 1.333 \\
4 & 2.5 & 2 & 1.75 & 1.6 & 1.5 \\
5 & 3 & 2.333 & 2 & 1.8 & 1.667 \\
6 & 3.5 & 2.667 & 2.25 & 2 & 1.833
\end{array}\right]
\]

The figure cuts the base in Cube Roots and provides some interesting ratios.
\(\mathrm{N}:=10\)

\(\mathrm{AG}:=\mathrm{N} \quad \mathrm{AB}:=\frac{\mathrm{AG}}{\mathrm{N}} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2}\)
\(A C:=\left(A B^{2} \cdot A G\right)^{\frac{1}{3}} B C:=A C-A B\)
\(\mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{3}} \mathrm{BF}:=\mathrm{AF}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{BG}-\mathrm{BF}\)
\(\mathrm{HJ}:=\frac{\mathrm{BC} \cdot \mathrm{BG}}{\mathrm{BC}+\mathrm{FG}} \quad \mathrm{BD}:=\mathrm{HJ} \quad \mathrm{DG}:=\mathrm{BG}-\mathrm{BD}\)
\(\mathrm{DJ}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \quad \mathrm{GJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{DG}^{2}} \quad \mathrm{BJ}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{BD}^{2}}\)
\(\mathrm{GN}:=\frac{\mathrm{GJ} \cdot \mathrm{FG}}{\mathrm{BG}} \quad \mathrm{BM}:=\frac{\mathrm{BJ} \cdot \mathrm{BC}}{\mathrm{BG}}\)
\(\frac{\mathrm{AG}}{\mathrm{AB}}=10 \quad \frac{\mathrm{GN}}{\mathrm{BM}}=10\)
\(\begin{array}{lll}\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}=1.68 & \frac{\mathrm{GJ}}{\mathrm{GN}}=1.68 & \frac{\mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}}{\mathrm{~N}^{\frac{2}{3}}}=1.68 \\ \left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=7.796 & \frac{\mathrm{BJ}}{\mathrm{BM}}=7.796 & \mathrm{~N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=7.796\end{array}\)

\[
\mathrm{CF}:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{BP}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{CD}:=\frac{\mathrm{BD} \cdot \mathrm{CF}}{\mathrm{BG}}
\]
\(F R:=\frac{B D \cdot F G}{B G}\)
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{4}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=43.982 \quad \frac{\mathrm{BG}}{\mathrm{BP}}=43.982
\]
\[
\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}=43.982
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}=20.415
\]
\[
\frac{\mathrm{BG}}{\mathrm{CD}}=20.415
\]
\[
\mathrm{N}^{\frac{3}{3}}+\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}=20.415
\]
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}=9.476
\]
\[
\frac{\mathrm{BG}}{\mathrm{FR}}=9.476
\]
\[
\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}+\frac{1}{\mathrm{~N}^{\frac{2}{3}}}=9.476
\]

\(\frac{\mathrm{AG}^{\frac{5}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}}{\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{AB}^{\frac{4}{3}}-\mathrm{AB}^{\frac{5}{3}}}=48.869\)
\(\frac{\mathrm{AG}^{\frac{4}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}}{\frac{1}{4}}=22.683\) \(\frac{\mathrm{AG}}{\mathrm{CD}}=22.683 \quad \frac{\mathrm{~N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(A G^{3} \cdot A B-A B^{3}\)
\(\frac{A G+A B^{\frac{2}{3}} \cdot A G^{\frac{1}{3}}}{A G^{\frac{1}{3}} \cdot A B^{\frac{2}{3}}-A B}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{FR}}=10.528\)
\(\frac{\mathrm{AG}}{\mathrm{BP}}=48.869\)
\(\frac{\mathrm{N}^{\frac{5}{3}}+\mathrm{N}}{\mathrm{N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=48.869\)
\(\frac{\mathrm{N}^{\frac{4}{3}}+\mathrm{N}^{\frac{2}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=22.683\)
\(\frac{\mathrm{N}+\mathrm{N}^{\frac{1}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=10.528\)

\section*{01/17/96 A Right Triangle In A Given Ratio}

Given \(A E\) and \(A B\) on \(A E\), place a right triangle on \(B E\) as base such that the opposite sides are in the ratio of \(A B\) to AE.
\[
\mathbf{N}:=\mathbf{3}
\]

\[
\mathbf{A B}:=1 \quad \mathbf{A E}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B}
\]
\[
\text { BD }:=\frac{\mathbf{B E}}{2} \quad \text { DF }:=\mathbf{B D} \quad \text { DE }:=\mathbf{B D} \quad \text { AD }:=\mathrm{AB}+\mathbf{B D}
\]
\[
\text { DH }:=\text { BD } \quad \text { AH }:=\sqrt{\mathrm{AD}^{2}+\mathrm{DH}^{2}} \quad \text { AG }:=\frac{\mathrm{AD} \cdot \mathrm{AD}}{\mathrm{AH}}
\]
\[
\mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \quad \mathbf{F G}:=\mathbf{G H} \quad \mathbf{A F}:=\mathbf{A H}-(\mathbf{F G}+\mathbf{G H})
\]
\[
\mathbf{S}_{1}:=\mathbf{A D} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{A F} \quad \mathbf{S}_{3}:=\mathbf{D F}
\]
\[
\mathrm{CD}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}^{2}}{2 \cdot \mathrm{~S}_{1}} \quad \mathrm{BC}:=\mathrm{BD}-\mathrm{CD}
\]
\[
\mathrm{CE}:=\mathrm{CD}+\mathrm{DE} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}} \quad \mathrm{BF}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CF}^{2}} \quad \mathrm{EF}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CF}^{2}} \quad \mathrm{AC}:=\mathrm{AD}-\mathrm{CD}
\]
\[
\frac{A E}{A B}-\frac{E F}{B F}=0 \quad A C-\frac{N^{2}+N}{N^{2}+1}=0 \quad B F-\frac{N-1}{\sqrt{N^{2}+1}}=0 \quad E F-\frac{N^{2}-N}{\sqrt{N^{2}+1}}=0
\]

\section*{01/17/96B Divide The Sides Of A Triangle In A Given Ratio}

Given \(A G\) and \(A B\) on \(A G\) and a right triangle on \(B G\) divide the sides of the triangle such that a section on one side is to the other as \(A B\) is to \(A G\).

\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \quad \mathbf{N}_{2}:=9 \\
& \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{1}} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \\
& \mathbf{A C}:=\frac{\mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{1}} \quad \mathbf{A F}:=\mathrm{AB}+\mathbf{B F} \quad \mathbf{C F}:=\mathrm{AF}-\mathbf{A C} \\
& \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{C F}}{\mathbf{N}_{2}}+\mathbf{B C} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D}
\end{aligned}
\]
\[
\text { DG }:=\mathrm{BG}-\mathrm{BD} \quad \mathrm{DM}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \quad \text { FO }:=\mathrm{BF} \quad \mathrm{EF}:=\frac{\mathrm{DF} \cdot \mathrm{FO}}{\mathrm{FO}+\mathrm{DM}} \quad \mathrm{AE}:=\mathrm{AF}-\mathrm{EF} \text { EO }:=\sqrt{\mathrm{EF}^{2}+\mathrm{FO}^{2}}
\]
\[
\text { MO }:=\frac{E O \cdot(D M+F O)}{F O} \quad \text { EK }:=\frac{E F \cdot A E}{E O} \text { KM }:=M O-(E K+E O) H K:=K M \quad H M:=\sqrt{2 \cdot K^{2}}
\]
\[
\mathbf{B M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D M}^{2}} \quad \mathbf{B H}:=\mathbf{B M}-\mathbf{H M} \mathbf{G M}:=\sqrt{D G G^{2}+\mathrm{DM}^{2}} \quad \text { LM }:=\mathbf{H M} \quad \text { GL }:=\mathbf{G M}-\mathbf{L M}
\]
\[
\frac{\mathbf{A G}}{\mathbf{A B}}-\frac{\mathbf{G L}}{B H}=0
\]

\section*{01/21/96 More On Cube Roots}

\[
\mathbf{N}:=\mathbf{5} \quad \text { BH }:=\mathbf{1}
\]
\[
\begin{aligned}
& \text { BP := BH HQ := BH } \\
& \text { BG }:=\frac{\mathbf{B H}}{2} \quad \text { GO }:=\text { BG } \quad \text { GN }:=\text { BG NO }:=\text { BH } \quad \text { GH }:=\text { BG } \\
& B E:=\frac{B G}{N} \quad E G:=B G-B E E O:=\sqrt{E G G^{2}+\text { GO }^{2}} \\
& \text { MO }:=\frac{\text { GO }}{\text { EOO }} \text { EM }:=\text { MO }- \text { EO EL }:=\frac{\text { EM }}{2} \text { LK }:=\text { EL } \\
& \text { LO }:=\mathbf{E O}+\mathbf{E L} \mathbf{L J}:=\frac{\mathbf{L K}^{2}}{\mathbf{L O}} \quad \text { EJ }:=\mathbf{E L}-\mathbf{L J} \\
& A E:=\frac{\mathbf{E O} \cdot \mathbf{E J}}{\text { EG }} \mathrm{AH}:=\mathrm{AE}+\mathbf{E G}+\mathbf{G H} \mathrm{AB}:=\mathbf{A H}-\mathbf{B H} \\
& \mathbf{D E}:=\frac{\mathbf{E G} \cdot \mathbf{E M}}{\mathbf{E O}} \mathbf{D M}:=\frac{\mathbf{G O} \cdot \mathbf{E M}}{\mathbf{E O}} \mathbf{B D}:=\mathbf{B G}-(\mathbf{E G}+\mathbf{D E})
\end{aligned}
\]
\(\mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B P}}{\mathbf{B P}+\mathbf{D M}} \mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \mathrm{DF}:=\frac{\mathrm{DH} \cdot \mathbf{D M}}{\mathrm{DM}+\mathbf{H Q}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A F}:=\mathrm{AB}+\mathbf{B D}+\mathrm{DF}\)
\(\left(A B^{2} \cdot \mathbf{A H}\right)^{\frac{1}{3}}-\mathbf{A C}=0 \quad\left(\mathbf{A B} \cdot \mathbf{A H} \mathbf{H}^{2}\right)^{\frac{1}{3}}-\mathbf{A F}=0\)

\section*{01/22/96 Trivial Method Square Root}

For any \(E\) between \(M\) and \(L\), \(A M\) is the square root of AB x AE.

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{6} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \\
& A F:=1 \quad \text { AL }:=A F \cdot \mathbf{N}_{1} \quad \text { FL }:=A L-A F \quad \text { FJ }:=\frac{\text { FL }}{2} \\
& \mathbf{A M}:=\sqrt{\mathbf{A F} \cdot \mathbf{A L}} \quad \mathbf{A J}:=\mathbf{A F}+\mathbf{F J} \quad \mathbf{A G}:=\frac{\mathbf{A M}^{2}}{\mathbf{A J}} \\
& \mathbf{G L}:=\mathbf{A L}-\mathbf{A G} \quad \mathbf{G K}:=\frac{\mathbf{G L}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{F G}:=\mathbf{A G}-\mathbf{A F} \\
& \text { FK := GK + FG KL }:=\text { FL }- \text { FK EK }:=\sqrt{\text { FK•KL }} \\
& \mathbf{A K}:=\mathbf{F K}+\mathbf{A F} \mathbf{A E}:=\sqrt{\mathbf{A K}^{2}+\mathbf{E K}^{2}} \quad \mathbf{A D}:=\frac{\mathbf{A K} \cdot \mathbf{A J}}{\mathbf{A E}} \\
& \text { DE := AE - AD BD := DE AB := AE-2 } \mathbf{~ B D} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A M}=\mathbf{0}
\end{aligned}
\]

\section*{01/24/96 Tangent}

The tangent from any point outside a circle is equal to the square root of the difference to the circle and that difference plus the diameter of the circle.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=1 \quad \mathrm{AE}:=\mathrm{AB} \cdot \mathbf{N} \\
& \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathbf{D M}:=\mathbf{B D} \quad \mathbf{D H}:=\mathbf{B D} \quad \mathbf{C D}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{A D}} \\
& \mathbf{B C}:=\mathbf{B D}-\mathbf{C D} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \\
& \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{A J}:=\sqrt{(\mathbf{A B}+\mathbf{B C})^{2}+\mathbf{C J}}
\end{aligned}
\]
\[
\mathbf{A J}-\sqrt{\mathbf{N}}=\mathbf{0}
\]
\(\mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{2} \cdot \mathbf{A B} \cdot \frac{\mathbf{N}}{(\mathbf{1}+\mathbf{N})}-\mathbf{A C}=\mathbf{0}\)

01/25/96 On Cubes


Given a point on BD (a point on the cubes powerline), project to the point of cubic similarity.
\[
\begin{aligned}
& \mathrm{N}:=9 \quad \mathrm{BE}:=1 \\
& \mathbf{B D}:=\frac{\mathbf{B E}}{2} \text { DK }:=\text { BD DJ }:=\mathrm{BD} \quad \mathrm{JK}:=\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BD} \\
& \mathbf{B C}:=\frac{\mathbf{B D}}{\mathbf{N}} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{C K}:=\sqrt{\mathbf{C D}^{2}+\mathbf{D K}^{2}}
\end{aligned}
\]
\[
\text { HK }:=\frac{\text { DK JK }}{\text { CK }} \quad \text { CH }:=\text { HK }- \text { CK CF }:=\frac{\text { CH }}{2}
\]
\[
\text { FK }:=\text { CK }+ \text { CF GK }:=\frac{\text { DK } \cdot \text { FK }}{\text { CK }} \quad \text { FG }:=\frac{\text { CD } \cdot \text { FK }}{\text { CK }}
\]
\[
\text { GJ }:=\mathbf{J K}-\mathbf{G K} \text { AD }:=\frac{\mathbf{G J} \cdot \mathbf{D K}}{\text { FG }} \quad \text { AE }:=\mathbf{A D}+\mathbf{D E}
\]
\[
\mathbf{A B}:=\mathbf{A E}-\mathbf{B E}
\]
\(A E-\frac{(2 \cdot N-1)^{3}}{2 \cdot(N-1) \cdot\left(4 \cdot N^{2}-2 \cdot N+1\right)}=0\)
\[
A B-\frac{1}{2 \cdot(N-1) \cdot\left(4 \cdot N^{2}-2 \cdot N+1\right)}=0
\]

01/29/96 Linear division \(\frac{N_{1}+2 \cdot N_{2}}{2 \cdot\left(N_{1}+N_{2}\right)}\)

\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{9} \quad \text { AE }:=\mathbf{1}
\]
\[
\mathbf{A H}:=\mathbf{A E} \cdot \mathbf{N}_{1} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{C F}:=\mathbf{A E} \cdot \mathbf{N}_{2} \quad \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{C F}}{\mathbf{A H}}
\]
\[
\mathbf{C E}:=\mathrm{AC} \mathbf{B E}:=\mathbf{C E}+\mathbf{B C} \quad \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{C E}}{\mathbf{B E}} \quad \mathrm{DE}:=\mathbf{C E}-\mathbf{C D}
\]
\[
\mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{D G}:=\frac{\mathbf{A H} \cdot \mathbf{C D}}{\mathbf{A C}}
\]
\(D E-\frac{\mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0\)
\[
A D-\frac{\mathbf{N}_{1}+2 \cdot \mathbf{N}_{2}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad C D-\frac{\mathbf{N}_{2}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0
\]
\[
\mathrm{DG}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0
\]

Linear division \(\frac{N_{1} \cdot N_{2}-N_{1}+N_{3} \cdot N_{2}}{N_{2} \cdot\left(N_{1} \cdot N_{2}-N_{1}+N_{3}\right)}\)

\(\mathbf{N}_{1}:=\mathbf{4} \quad \mathbf{N}_{2}:=\mathbf{4} \quad \mathbf{N}_{3}:=\mathbf{2} \quad\) AE \(:=\mathbf{1}\)
\(\mathrm{AH}:=\mathrm{AE} \cdot \mathbf{N}_{1} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{\mathbf{N}_{2}} \quad \mathrm{CF}:=\mathrm{AE} \cdot \mathbf{N}_{3} \quad \mathrm{BC}:=\frac{\mathrm{AC} \cdot \mathrm{CF}}{\mathrm{AH}}\)
\(\mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \mathrm{BE}:=\mathrm{CE}+\mathrm{BC} \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathrm{CE}}{\mathrm{BE}} \mathrm{DE}:=\mathrm{CE}-\mathrm{CD}\)
\(\mathrm{AD}:=\mathrm{AC}+\mathbf{C D} \quad \mathrm{DG}:=\frac{\mathrm{CF} \cdot \mathbf{C E}}{\mathrm{BE}}\)
\(D E-A E \cdot \frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right)^{2}}{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}\right)}=0 \quad A D-A E \cdot \frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3} \cdot \mathbf{N}_{2}}{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}\right)}=0\)
\(D G-A E \cdot \frac{N_{1} \cdot N_{3} \cdot\left(\mathbf{N}_{2}-1\right)}{\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}}=0\)
\[
\mathrm{CD}-\mathrm{AE} \cdot \frac{\mathbf{N}_{3} \cdot\left(\mathbf{N}_{2}-1\right)}{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}\right)}=0
\]

\section*{01/31/96 On Gemini Roots}


Hitting AO from any RT while maintaining Gemini Roots.
\[
\text { OS }:=\sqrt{(\mathbf{H S}+\mathbf{F O})^{2}+\mathrm{FI}^{2}} \quad \mathbf{G O}:=\frac{\mathbf{O S} \cdot \mathbf{F O}}{\mathbf{H S}+\mathrm{FO}} \quad \text { AJ }:=\mathrm{AF}+\mathrm{FJ} \quad \text { GL }:=\frac{\mathbf{H S} \cdot \mathbf{G O}}{\mathrm{OS}} \quad \text { FU }:=\frac{\mathbf{A G} \cdot \mathbf{F O}}{\mathbf{G L}}
\]
\[
\mathrm{AH}:=\frac{\mathrm{FU} \cdot \mathbf{A J}}{\mathrm{FU}+\mathbf{F J}} \quad \mathrm{DK}:=\frac{\mathrm{FO} \cdot(\mathbf{A F}-\mathbf{C F})}{\mathrm{FU}-\mathbf{C F}} \quad \text { AD }:=\frac{\mathbf{A G} \cdot \mathbf{D K}}{\mathbf{G L}} \quad \mathrm{AC}:=\mathrm{AF}-\mathbf{C F} \quad \mathbf{C D}:=\mathrm{AD}-\mathrm{AC}
\]
\[
\mathbf{C H}:=\mathbf{A H}-\mathbf{A C} \quad \mathbf{D H}:=\mathbf{C H}-\mathbf{C D} \quad \mathbf{H J}:=\mathbf{C J}-\mathbf{C H} \mathbf{E N}:=\frac{\mathbf{C R} \cdot \mathbf{D H}}{\mathbf{C D}+\mathbf{H J}} \quad \mathbf{C E}:=\frac{\mathbf{C D} \cdot(\mathbf{C R}+\mathbf{E N})}{\mathbf{C R}}
\]
\(\mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \quad \frac{\mathbf{A F}}{\mathbf{F O}}-\frac{\mathbf{A E}}{\mathbf{E N}}=\mathbf{0} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \quad \mathbf{B H}:=\mathbf{B C}+\mathbf{C H} \sqrt{\mathbf{B C} \cdot \mathbf{B J}}-\sqrt{\mathbf{B D} \cdot \mathbf{B H}}=\mathbf{0}\)
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{5} \quad \mathbf{N}_{2}:=\mathbf{3} \quad \text { BC }:=1 \\
& B J:=B C \cdot \mathbf{N}_{1} \quad \text { CJ }:=B J-B C \quad C I:=\frac{C J}{2} \\
& \text { IJ }:=\mathbf{C I} \quad \mathbf{B F}:=\sqrt{\mathbf{B C} \cdot \mathbf{B J}} \quad \mathbf{A B}:=\mathbf{B F} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{CF}:=\mathrm{BF}-\mathrm{BC} \text { FJ := CJ - CF } \\
& \text { FO }:=\sqrt{\text { CF } \cdot \mathbf{F J}} \quad \text { CR }:=\mathbf{C J} \cdot \mathbf{N}_{2} \quad \text { HS }:=\mathbf{C R} \\
& \text { FI }:=\text { FJ - IJ FG }:=\frac{\text { FI FO }}{\text { FO + HS }} \quad \text { AG }:=\mathrm{AB}+\mathbf{B F}+\text { FG }
\end{aligned}
\]

\section*{02/02/96 Find A Segment}

\section*{Given \(B E\) and \(B C\) such that}
\(\sqrt{(A B+B E) \cdot A B}=A B+B C\), find \(A B\).

\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \quad \mathbf{N}_{1}>2=1 \\
& \mathbf{B C}:=1 \quad \text { BE }:=\mathbf{B C} \cdot \mathbf{N}_{1} \quad \text { BD }:=\frac{B E}{2} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C}
\end{aligned}
\]
\[
\mathrm{CH}:=\mathrm{BD} \quad \mathrm{DH}:=\sqrt{\mathrm{CD}^{2}+\mathrm{CH}^{2}} \quad \mathrm{DF}:=\frac{\mathrm{DH}}{2}
\]
\[
\mathbf{A D}:=\frac{\mathbf{D H} \cdot \mathbf{D F}}{\mathbf{C D}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{A B}-\frac{1}{\left(\mathbf{N}_{1}-2\right)}=0 \quad \sqrt{(\mathbf{A B}+\mathbf{B E}) \cdot \mathbf{A B}}-(\mathbf{A B}+\mathbf{B C})=\mathbf{0}
\]


Use iteration to find any root pair for BE.
Remember that when N is set to 2 , we have cube roots.
\[
\begin{aligned}
& \mathrm{CI}:=1 \quad \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{GI}:=\mathrm{CG} \quad \mathrm{BC}:=1 \\
& \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \quad \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EK}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EG}:=\mathrm{CG}-\mathrm{CE} \\
& \mathrm{AE}:=\frac{\mathrm{EK}^{2}}{\mathrm{EG}} \quad \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AG}:=\mathrm{AC}+\mathrm{CG} \\
& \mathrm{~N}:=2 \quad \mathrm{GN}:=\mathrm{CG} \cdot \mathrm{~N} \quad \mathrm{IO}:=\mathrm{GN} \quad \mathrm{CM}:=\mathrm{GN} \\
& \Delta:=40 \quad \delta:=0 . . \Delta
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AK}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EK}^{2}} \mathrm{AL}:=\sqrt{\left(\mathrm{AF}_{\Delta}\right)^{2}+\left(\mathrm{FL}_{\Delta}\right)^{2}} \quad \mathrm{AJ}:=\frac{\mathrm{AK}^{2}}{\mathrm{AL}} \quad \mathrm{AQ}:=\frac{\mathrm{AF}_{\Delta} \cdot \mathrm{AJ}}{\mathrm{AL}} \mathrm{CQ}:=\mathrm{AQ}-\mathrm{AC} \\
& \mathrm{IQ}:=\mathrm{CI}-\mathrm{CQ} \quad \mathrm{JQ}:=\sqrt{\mathrm{CQ} \cdot \mathrm{IQ}} \mathrm{CD}:=\frac{\mathrm{CQ} \cdot \mathrm{CM}}{\mathrm{CM}+\mathrm{JQ}} \quad \mathrm{HI}:=\frac{\mathrm{IQ} \cdot \mathrm{IO}}{\mathrm{IO}+\mathrm{JQ}} \quad \mathrm{DH}:=\mathrm{CI}-(\mathrm{CD}+\mathrm{HI}) \\
& \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{BH}:=\mathrm{BC}+\mathrm{CD}+\mathrm{DH} \frac{\mathrm{DH}}{\sqrt{\mathrm{CD} \cdot \mathrm{HI}}}=1 \quad \mathrm{BE}-\sqrt{\mathrm{BD} \cdot \mathrm{BH}}=0.000000000000000
\end{aligned}
\]

The next two equations are for the Delian Problem only.
\(\left(\mathrm{BC}^{2} \cdot \mathrm{BI}\right)^{\frac{1}{3}}-\mathrm{BD}=0.000000000000000 \quad\left({\left.\mathrm{BC} \cdot \mathrm{BI}^{2}\right)^{\frac{1}{3}}-\mathrm{BH}=0.00000000000000000000}\right.\)
\[
\begin{aligned}
\mathrm{BD} & =1.259921049894873 & 2^{\frac{1}{3}} & =1.259921049894873 \\
\mathrm{BH} & =1.587401051968199 & 4^{\frac{1}{3}} & =1.587401051968199
\end{aligned}
\]




The problem as stated was to duplicate the altar of Apollo. The solution demanded was material and not theoretical, and therefore has been solved by a finite number of steps. The next step is to solve it theoretically. That solution alone will conquer contiguous domains and will satisfy the purist.

Given three circles in the said configuration, find the fourth. I had this sketched out in 95, but if I put it there I would have a lot of document links to redo in "The Quest."

\[
\begin{aligned}
& \mathbf{N}_{1}:=7 \\
& \mathrm{CM}:=1 \quad \mathbf{N}_{2}:=3 \\
& \mathrm{LM}:=\frac{\mathrm{CK}}{\mathbf{N}_{2}} \quad \text { EL }:=\frac{\mathrm{CM}}{2} \quad \mathrm{CE}:=\frac{\mathrm{CM}}{\mathrm{~N}_{1}}
\end{aligned}
\]
\(\mathbf{B L}:=\frac{\mathbf{E L} \cdot \mathbf{L M}}{\mathbf{L M}-\mathbf{C E}} \quad \mathbf{B M}:=\mathbf{B L}+\mathbf{L M} \quad \mathbf{B C}:=\mathbf{B M}-\mathbf{C M} \quad \mathbf{B K}:=\frac{\mathbf{C M}}{2}+\mathbf{B C}\)
\(R_{1}:=\mathbf{L M} \quad R_{2}:=C E \quad D:=E L \quad K S:=C K \quad E H:=\frac{\left(\mathbf{R}_{\mathbf{2}}{ }^{2}+D^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}\right)}{\mathbf{2} \cdot \mathrm{D}}\)

FK \(:=\frac{\mathbf{K S}^{2}}{B K} \quad\) CF \(:=\mathbf{C K}-\) FK \(\quad\) FM \(:=\mathbf{C M}-\mathbf{C F} \quad\) FS \(:=\sqrt{\text { CF } \cdot \mathrm{FM}}\)
\(\mathrm{HK}:=\mathrm{CK}-(\mathrm{CE}+\mathrm{EH}) \quad \mathrm{CH}:=\mathrm{CK}-\mathrm{HK} \mathrm{HN}:=\frac{\mathrm{FS} \cdot \mathrm{HK}}{\text { FK }} \quad\) AF \(:=\frac{\mathrm{CH} \cdot \mathrm{FS}}{\mathrm{HN}} \quad \mathrm{JR}:=\frac{\text { FS } \cdot \mathrm{CM}}{\text { AF }+ \text { FM }}\)
RO \(:=\frac{\mathbf{C M} \cdot(\mathbf{F S}-\mathbf{J R})}{\text { FS }} \quad\) PS \(:=\frac{\mathbf{R O}}{2} \quad\) PS \(-\frac{\left(\mathbf{N}_{2}-2\right) \cdot\left(\mathbf{N}_{1}-2\right)}{2 \cdot\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}-4\right)}=0\)


\section*{On Gemini Roots}


\(\mathrm{IL}:=\sqrt{\mathrm{DI}^{2}-\mathrm{DL}^{2}} \mathrm{CO}:=\frac{\mathrm{GL} \cdot \mathrm{CH}}{\mathrm{IL}}\)
\(\mathrm{NP}:=\frac{\mathrm{CH} \cdot \mathrm{EG}}{(\mathrm{CO}+\mathrm{CE})} \quad \mathrm{EP}:=\frac{\mathrm{CE} \cdot \mathrm{NP}}{\mathrm{CH}}\) \(\mathrm{CQ}:=\frac{\mathrm{IL} \cdot \mathrm{CG}}{\mathrm{GL}} \quad \mathrm{CR}:=\frac{\mathrm{BC} \cdot \mathrm{CQ}}{\mathrm{CH}}\) GR \(:=\mathrm{CG}-\mathrm{CR} \quad \mathrm{BS}:=\frac{\mathrm{CR} \cdot \mathrm{BG}}{\mathrm{GR}}\)

\(\delta:=1 . .100\)
\(\mathrm{E}_{\delta}:=\frac{\mathrm{BE}}{\delta} \quad \mathrm{BT}_{\delta}:=\mathrm{E}_{\delta} \mathrm{EV}_{\delta}:=\mathrm{E}_{\delta}\)
\[
\mathrm{TW}_{\delta}:=\frac{\mathrm{BT}_{\delta} \cdot \mathrm{BM}}{\mathrm{BS}} \mathrm{VX}_{\delta}:=\frac{\mathrm{EV}_{\delta} \cdot \mathrm{EM}}{\mathrm{EP}}
\]



Given \(A J, H J\) and \(N O\) find \(A B\) such that \(A B\) is collinear with AJ and HJ .
\[
S_{1}:=\mathrm{FH}_{2}:=\mathrm{FO} \mathrm{~S}_{3}:=\mathrm{HO} \quad \mathrm{EH}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot \mathrm{~S}_{1}} \quad \mathrm{EO}:=\sqrt{\mathrm{HO}^{2}-\mathrm{EH}^{2}} \mathrm{OP}:=\mathrm{NO}
\]
\[
\mathbf{E G}:=\mathbf{O P} \quad \mathbf{A E}:=\mathbf{A H}-\mathbf{E H} \mathbf{A G}:=\mathbf{A E}+\mathbf{E G} \quad \mathbf{G P}:=\mathbf{E O} \quad \mathbf{A P}:=\sqrt{\mathbf{A G}^{2}+\mathbf{G P}^{2}} \quad \mathbf{P L}:=\frac{\mathbf{A G} \cdot(\mathbf{N O}+\mathbf{O P})}{\mathbf{A P}}
\]
\[
\mathbf{A L}:=\mathbf{A P}-\mathbf{P L} \quad \mathbf{A B}:=\frac{\mathbf{A P} \cdot \mathbf{A L}}{\mathbf{2} \cdot \mathbf{A G}} \quad \mathbf{A B}-\frac{\mathbf{N}_{2} \cdot \mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}-2 \cdot \mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{2} \cdot \mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}-4\right)}=\mathbf{0}
\]
\[
\begin{aligned}
& N_{1}:=4 \quad N_{2}:=16 \\
& \mathrm{AJ}:=1 \quad \mathrm{AF}:=\frac{\mathrm{AJ}}{2} \quad \mathrm{HJ}:=\frac{\mathrm{AJ}}{\mathrm{~N}_{1}} \quad \mathrm{NO}:=\frac{\mathrm{AJ}}{\mathrm{~N}_{2}} \\
& \text { HM := HJ MO := NO HO := HM + MO } \\
& \text { FO := AF - NO AH := AJ - HJ FH := AH - AF }
\end{aligned}
\]

\section*{04/17/96 A Circle In A Crescent}

\(\mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B H}:=\frac{\mathbf{B J}}{\mathbf{N}_{3}} \quad \mathbf{A H}:=\mathbf{B H}+\mathbf{A B} \quad \mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \quad \mathbf{H R}:=\sqrt{\mathrm{FR}^{2}-\mathbf{G H}^{2}}\)
\(\mathrm{AP}:=\mathbf{H R} \quad \mathbf{P R}:=\mathbf{B H} \quad \mathbf{P S}:=\frac{\mathbf{G H} \cdot \mathbf{P R}}{\mathbf{H R}} \quad \mathbf{B S}:=\mathbf{A P}+\mathbf{P S} \quad \mathbf{R S}:=\sqrt{\mathbf{P R}^{2}+\mathbf{P S}^{2}} \quad\) NS \(:=\mathbf{R S}\) \(\mathbf{C N}:=\mathrm{CF} \quad \mathbf{C S}:=\sqrt{\mathrm{NS}^{2}+\mathrm{CN}^{2}} \quad \mathrm{CK}:=\frac{\mathrm{CN}^{2}}{\mathrm{CS}} \quad \mathrm{SK}:=\mathbf{C S}-\mathbf{C K} \quad \mathrm{KN}:=\sqrt{\mathrm{CN}^{2}-\mathrm{CK}^{2}} \quad \mathrm{KM}:=\frac{\mathrm{BC} \cdot \mathrm{KN}}{\mathrm{BS}}\) SM \(:=\mathrm{SK}+\mathrm{KM} \mathrm{SL}:=\frac{\mathrm{BS} \cdot \mathbf{S M}}{\mathrm{CS}} \quad \mathrm{BL}:=\mathrm{BS}-\mathrm{SL} \quad \mathrm{EN}:=\mathrm{BL} \quad \mathrm{CE}:=\sqrt{\mathrm{CN}^{2}-\mathbf{E N}^{2}}\)
HT \(:=\frac{\text { CE•HR }}{\text { EN }} \quad\) GT \(:=\) HT - GH GO \(:=\frac{\text { FR•CG }}{\text { GT }} \quad\) OR \(:=\) FR - GO \(\quad\) OR \(=0.125\)


Given BF as a ratio to \(B M\) and \(E G\) as a ratio to EI, what is CE?
Edit In progress for three circles.
\[
\begin{aligned}
& \mathbf{N}_{1}:=2.5 \quad \mathbf{N}_{2}:=1.5 \quad \text { AC }:=1 \\
& \mathbf{A B}:=\frac{\mathbf{A C}}{2} \quad \text { BM }:=\mathrm{AB} \quad \mathbf{B E}:=\mathrm{AB} \\
& \text { BL }:=\mathrm{AB} \quad \mathrm{BF}:=\frac{\mathbf{B M}}{\mathbf{N}_{1}} \\
& \text { EF }:=\sqrt{\mathbf{B E}^{2}-\mathbf{B F}^{2}} \quad \text { EI }:=\mathbf{2} \cdot \mathbf{E F} \\
& \text { EG }:=\frac{\mathbf{E I}}{\mathbf{N}_{2}} \quad \text { FG }:=\mathbf{E G}-\mathbf{E F}
\end{aligned}
\]
\(B G:=\sqrt{\mathbf{B F}^{2}+\mathbf{F G}^{2}} \quad \mathbf{G L}:=\mathbf{B L}-\mathbf{B G} \quad \mathbf{D G}:=\mathbf{G L} \quad \mathbf{G H}:=\frac{\mathbf{F G} \cdot \mathbf{G L}}{\mathbf{B G}} \quad \mathbf{H L}:=\sqrt{\mathbf{G L}^{2}-\mathbf{G H}^{2}} \quad \mathbf{E H}:=\mathbf{E G}+\mathbf{G H}\) EL \(:=\sqrt{\mathbf{E H}^{2}+\mathbf{H I J L}}:=\frac{E L}{2} \quad B J:=\sqrt{\mathbf{B L}^{2}-\mathrm{JL}^{2}} \quad \mathbf{L N}:=\frac{\mathbf{B L} \cdot \mathbf{J L}}{\mathbf{B J}} \quad \mathrm{GN}:=\sqrt{\mathbf{L N}^{2}+\mathbf{G L}^{2}} \quad \mathrm{JN}:=\sqrt{\mathbf{L N}^{2}-\mathrm{JL}^{2}}\)
EJ \(:=\mathbf{J L} \mathbf{E N}:=\sqrt{\mathbf{J N}^{2}+\mathbf{E J}^{2}} \quad \mathrm{~S}_{1}:=\) EG \(\mathrm{S}_{2}:=\mathrm{EN} \mathrm{S}_{3}:=\mathrm{GN} \quad\) GO \(:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot \mathrm{~S}_{1}}\)
NO \(:=\sqrt{\mathbf{G N}^{2}-\mathbf{G O}^{2}} \quad\) NR \(:=\frac{\mathbf{N O}^{2}}{\mathbf{G N}}\) GS \(:=\frac{\mathbf{D G}^{2}}{\mathbf{G N}}\) RS \(:=\mathbf{G N}-(\mathbf{N R}+\mathbf{G S}) \quad\) DT \(:=\mathbf{R S} \quad \mathbf{D S}:=\sqrt{\mathbf{D G}^{2}-\mathbf{G S}^{2}}\)
RT \(:=\) DS OR \(:=\sqrt{\mathbf{N O}^{2}-\mathbf{N R}^{2}}\) OT \(:=\mathbf{O R}-\mathbf{R T} \quad \mathbf{D O}:=\sqrt{\mathbf{D T}^{2}+\mathbf{O T}^{2}}\)
\(S_{1}:=\mathrm{GO} \quad \mathrm{S}_{2}:=\mathrm{DG} \mathrm{S}_{3}:=\mathrm{DO} \quad \mathrm{OQ}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot S_{1}} \quad \mathrm{GQ}:=\mathrm{GO}-\mathrm{OQ} \quad \mathrm{DQ}:=\sqrt{\mathrm{DO}^{2}-\mathrm{OQ}^{2}}\)
FU \(:=\frac{\mathbf{G Q} \cdot \mathbf{B F}}{\mathrm{DQ}} \quad \mathbf{C E}:=\frac{\mathbf{B E} \cdot \mathbf{E G}}{\mathrm{FU}+\mathbf{E F}}\)
\(\mathrm{CE}=0.193\)



Process summary

\(\mathrm{N}_{1}:=\frac{1}{2} \quad \mathrm{~N}_{2}:=\frac{9}{8} \quad \mathrm{~N}_{3}:=3\)
\(\mathrm{AB}:=108 \quad \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AB} \quad \mathrm{BD}:=\mathrm{AB} \cdot \mathrm{N}_{1}\)
\(\mathrm{CD}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BD}^{2}} \quad \mathrm{EF}:=\frac{\mathrm{CD}-\mathrm{BD}}{\mathrm{N}_{2}}\)
\(\mathrm{DE}:=\mathrm{CD}-\mathrm{EF} \quad \mathrm{BE}:=\sqrt{\mathrm{DE}^{2}-\mathrm{BD}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{GH}:=\frac{\mathrm{AE}-\mathrm{EF}}{\mathrm{N}_{3}}\)
\(\mathrm{EG}:=\mathrm{EF}+\mathrm{GH} \quad \mathrm{DG}:=\mathrm{CD}-\mathrm{GH} \quad \mathrm{Ba}:=\frac{\mathrm{BE} \cdot \mathrm{CD}}{\mathrm{DE}}\)
\(\mathrm{Db}:=\frac{\mathrm{DE}^{2}+\mathrm{DG}^{2}-\mathrm{EG}^{2}}{2 \cdot \mathrm{DG}} \quad \mathrm{Eb}:=\sqrt{\mathrm{DE}^{2}-\mathrm{Db}^{2}}\)

\(\mathrm{Ec}:=\frac{\mathrm{DE}^{2}}{\mathrm{~Eb}} \quad \mathrm{Dc}:=\frac{\mathrm{Db} \cdot \mathrm{DE}}{\mathrm{Eb}} \quad \mathrm{Dd}:=\frac{\mathrm{DE}^{2}}{\mathrm{BD}}\)
\(\mathrm{Ed}:=\frac{\mathrm{BE} \cdot \mathrm{Dd}}{\mathrm{DE}} \quad \mathrm{Ee}:=\frac{\mathrm{DE} \cdot \mathrm{Ed}}{\mathrm{Dc}} \quad \mathrm{Ef}:=\frac{\mathrm{Ee} \cdot \mathrm{DE}}{\mathrm{DE}+\mathrm{Ee}}\)
\(\mathrm{Eg}:=\frac{\mathrm{Ec} \cdot \mathrm{Ef}}{\mathrm{DE}} \quad \mathrm{bg}:=\mathrm{Eb}-\mathrm{Eg} \quad \mathrm{BM}:=\frac{\mathrm{bg} \cdot \mathrm{BD}}{\mathrm{Db}}\)
\(D M:=\sqrt{\mathrm{BD}^{2}+\mathrm{BM}^{2}} \mathrm{Bk}:=\frac{\mathrm{BM} \cdot \mathrm{CD}}{\mathrm{DM}}\)
\(\mathrm{HM}:=\mathrm{CD}-\mathrm{DM} \quad \mathrm{Hk}:=\frac{\mathrm{BD} \cdot \mathrm{HM}}{\mathrm{DM}}\)
\(\mathrm{Mk}:=\frac{\mathrm{BM} \cdot \mathrm{Hk}}{\mathrm{BD}} \quad \mathrm{Ik}:=\frac{\mathrm{Hk}^{2}}{\mathrm{Mk}} \quad \mathrm{HI}:=\sqrt{\mathrm{Hk}^{2}+\mathrm{Ik}^{2}}\)

\(\mathrm{Ea}:=\frac{\mathrm{BE} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{Ba}:=\mathrm{BE}+\mathrm{Ea} \quad \mathrm{Ia}:=\mathrm{Ik}+\mathrm{Ba}+\mathrm{Bk}\)
\(\mathrm{Fa}:=\frac{\mathrm{BD} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{FI}:=\sqrt{\mathrm{Ia}^{2}+\mathrm{Fa}^{2}} \quad \mathrm{JI}:=\frac{\mathrm{HI}^{2}}{\mathrm{FI}}\)
\(\mathrm{Jm}:=\frac{\mathrm{Fa} \cdot \mathrm{JI}}{\mathrm{FI}} \quad \mathrm{JK}:=\frac{\mathrm{CD} \cdot \mathrm{Jm}}{\mathrm{BD}+\mathrm{Jm}}\)
\(\mathrm{JK}=17.571\)
When GH is small, so that H is on the other side of
BD , the similarity point is on the other side of the figure.

\section*{04/23/96 Plate I}


\section*{Is CF always equal to EK?}
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{A B}:=\mathbf{1} \\
& \mathbf{A H}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{1}} \quad \mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \\
& \mathbf{B G}:=\frac{\mathbf{B H}}{2} \quad \mathbf{B N}:=\mathbf{B G} \mathbf{G O}:=\mathbf{B G} \quad \mathbf{H P}:=\mathbf{B G} \\
& \mathbf{G M}:=\mathbf{B G} \quad \mathbf{G H}:=\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A H}-\mathbf{G H} \\
& \mathbf{A M}:=\sqrt{\mathbf{G M}^{2}+\mathbf{A G}} \quad \mathbf{A L}:=\frac{\mathbf{A G}}{\mathbf{A M}}
\end{aligned}
\]
\(\mathbf{L M}:=\mathbf{A M}-\mathbf{A L} \mathbf{J L}:=\mathbf{L M} \quad \mathbf{A J}:=\mathbf{A M}-(\mathbf{J L}+\mathbf{L M}) \quad \mathbf{A D}:=\frac{\mathbf{A G} \cdot \mathbf{A J}}{\mathbf{A M}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B}\)
\(\mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B N}}{\mathbf{B N}+\mathbf{D J}} \quad \mathbf{D F}:=\frac{\mathbf{D H} \cdot \mathbf{D J}}{\mathbf{B N}+\mathbf{D J}} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{C F}:=\mathbf{C D}+\mathrm{DF}\)
\(\mathrm{CE}:=\frac{\mathrm{CF}}{2} \mathrm{BE}:=\mathrm{BC}+\mathrm{CE} \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \mathbf{E K}:=\frac{\mathrm{GM} \cdot \mathbf{A E}}{\mathrm{AG}} \mathbf{E K}-\mathrm{CF}=\mathbf{0} \quad\) EK \(=0.75\)


Proof of equality in a tautologic is simply the demonstration that two names are synonyms. Is CF always equal to \(E K\) ?
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{3} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A H}:=\mathbf{N} \\
& \mathbf{B H}:=\mathbf{N}-\mathbf{1} \quad \mathbf{B G}:=\frac{\mathbf{N}-\mathbf{1}}{2} \\
& \mathbf{A G}:=\frac{\mathbf{1}}{2} \cdot \mathbf{N}+\frac{\mathbf{1}}{2} \quad \text { AM }:=\frac{\mathbf{1}}{2} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}^{2}+\mathbf{2}}
\end{aligned}
\]
\(A L:=\frac{1}{2} \cdot \frac{(N+1)^{2}}{\sqrt{2 \cdot N^{2}+2}}\)
\(L M:=\frac{1}{2} \cdot \frac{(N-1)^{2}}{\sqrt{2 \cdot N^{2}+2}}\)
\(A J:=\frac{2}{\sqrt{2 \cdot \mathbf{N}^{2}+2}} \cdot \mathbf{N}\)
\(\mathbf{A D}:=(\mathbf{N}+\mathbf{1}) \cdot \frac{\mathbf{N}}{\left(\mathbf{N}^{2}+\mathbf{1}\right)}\)
\(\mathbf{B D}:=\frac{(\mathbf{N}-1)}{\left(\mathbf{N}^{2}+\mathbf{1}\right)} \quad \mathbf{D H}:=\mathbf{N}^{2} \cdot \frac{(\mathbf{N}-\mathbf{1})}{\left(\mathbf{N}^{2}+\mathbf{1}\right)}\)
DJ \(:=\frac{(\mathbf{N}-1)}{\left(\mathbf{N}^{2}+1\right)} \cdot \mathbf{N}\)
\(\mathbf{B C}:=\frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+\mathbf{1})^{2}}\)

DF \(:=\mathbf{2} \cdot \mathbf{N}^{\mathbf{3}} \cdot \frac{(\mathbf{N}-\mathbf{1})}{\left[(\mathbf{N}+\mathbf{1})^{2} \cdot\left(\mathbf{N}^{2}+\mathbf{1}\right)\right]}\)
\(\mathbf{C D}:=\mathbf{2} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{\mathbf{N}}{\left[\left(\mathbf{N}^{2}+\mathbf{1}\right) \cdot(\mathbf{N}+\mathbf{1})^{\mathbf{2}}\right]}\)
\(C F:=2 \cdot N \cdot \frac{(N-1)}{(N+1)^{2}}\)
\(\mathbf{C E}:=\mathbf{N} \cdot \frac{(\mathbf{N}-1)}{(\mathbf{N}+1)^{2}}\)
\(\mathbf{B E}:=\frac{(\mathbf{N}-1)}{(\mathbf{N}+1)}\)
\(A E:=2 \cdot \frac{\mathbf{N}}{(\mathbf{N}+\mathbf{1})}\)
\(\mathbf{E K}:=\mathbf{2} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{\mathbf{N}}{(\mathbf{N}+\mathbf{1})^{2}}\)
\(\mathrm{EK}-\mathrm{CF}=\mathbf{0}\)
\(\mathbf{E K}=\mathbf{0 . 7 5}\)

Meditation : Do these equations satisfy the requirement that a definition must contain both form and matter?

\section*{Three Circles 04/24/96}


\section*{Given AC, find CK and BH.}
\[
\begin{aligned}
& \mathrm{N}:=1.5 \quad \text { AF }:=1 \quad \text { AD }:=\frac{\mathrm{AF}}{2} \\
& \text { AC }:=\frac{\mathrm{AF}}{\mathrm{~N}} \quad \text { DO }:=\mathrm{AD} \quad \text { OR }:=\mathrm{AF} \\
& \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \quad \mathrm{CO}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DO}^{2}} \\
& \text { PO }:=\frac{\mathrm{DO} \cdot \mathrm{OR}}{\mathrm{CO}} \quad \mathrm{CP}:=\mathrm{PO}-\mathrm{CO} \quad \mathrm{CK}:=\frac{\mathrm{DO} \cdot \mathrm{CP}}{\mathrm{PO}} \\
& \mathrm{JK}:=\mathrm{CK} \text { KO }:=\sqrt{\mathrm{CD}^{2}+(\mathrm{DO}+\mathrm{CK})^{2}}
\end{aligned}
\]

JO \(:=\sqrt{\mathrm{KO}^{2}-\mathrm{JK}^{2}} \quad\) KS \(:=\frac{\mathbf{J K}^{2}}{\mathrm{KO}} \quad\) SO \(:=\mathrm{KO}-\mathrm{KS} \quad \mathrm{JS}:=\frac{\mathrm{JK} \cdot \mathbf{S O}}{\mathrm{JO}} \quad \mathrm{ST}:=\frac{\mathrm{CD} \cdot \mathrm{SO}}{\mathrm{DO}+\mathbf{C K}} \quad \mathrm{JT}:=\mathrm{JS}+\mathrm{ST}\) TO \(:=\frac{\mathrm{KO} \cdot \mathbf{S T}}{\mathrm{CD}} \quad \mathbf{T U}:=\frac{\mathbf{C D} \cdot \mathbf{J T}}{\mathrm{KO}} \quad \mathrm{DU}:=\mathbf{T O}-(\mathrm{DO}+\mathbf{T U}) \quad \mathrm{CV}:=\mathrm{DU} \quad \mathbf{C Q}:=\mathbf{2} \cdot \mathbf{C K} \quad \mathbf{Q V}:=\mathbf{C Q}-\mathbf{C V}\)
\[
\mathbf{B H}:=\frac{\mathbf{C K} \cdot \mathrm{CV}}{\mathrm{QV}} \quad \mathbf{B H}=0.19
\]

\section*{Some Algebraic Names}
\[
\begin{aligned}
& A C:=\frac{1}{N} \quad C D:=\frac{1}{2}-\frac{1}{N} \quad C O:=\frac{1}{2} \cdot \sqrt{2} \cdot \frac{\sqrt{N^{2}-2 \cdot N+2}}{N} \quad \text { PO }:=\frac{1}{2} \cdot \frac{\sqrt{2}}{\sqrt{N^{2}-2 \cdot N+2}} \cdot \mathbf{N} \\
& \left.C P:=\sqrt{2} \cdot \frac{(N-1)}{\left(\sqrt{N^{2}-2 \cdot N+2} \cdot N\right.}\right) \quad C K:=\frac{(N-1)}{N^{2}} \quad K O:=\frac{1}{2} \cdot \sqrt{2} \cdot \frac{\sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}}{N^{2}} \\
& J O:=\frac{1}{2} \cdot \sqrt{2} \quad K S:=\frac{(N-1)^{2}}{N^{2}} \cdot \frac{\sqrt{2}}{\sqrt{\mathbf{N}^{4}+2 \cdot N^{2}-4 \cdot N+2}} \quad \text { SO }:=\frac{1}{2} \cdot \sqrt{2} \cdot \frac{N^{2}}{\sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}} \\
& J S:=\frac{(N-1)}{\sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}} \\
& \text { ST }:=\frac{1}{2} \cdot(\mathbf{N}-2) \cdot \sqrt{2} \cdot \frac{\mathbf{N}^{3}}{\left[\sqrt{\mathbf{N}^{4}+2 \cdot \mathbf{N}^{2}-4 \cdot N+2} \cdot\left(\mathbf{N}^{2}+2 \cdot \mathbf{N}-2\right)\right]}
\end{aligned}
\]

\[
\begin{aligned}
& \text { JT }:=\frac{1}{\left(2 \cdot \sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}\right)} \cdot \frac{\left(2 \cdot N^{3}+2 \cdot N^{2}-8 \cdot N+4+\sqrt{2} \cdot N^{4}-2 \cdot \sqrt{2} \cdot N^{3}\right)}{\left(N^{2}+2 \cdot N-2\right)} \text { TO }:=\frac{\mathbf{N}^{2}}{\left(N^{2}+2 \cdot N-2\right)} \\
& \text { TU }:=\frac{1}{2} \cdot(N-\sqrt{2}) \cdot(N-2) \cdot(N-2+\sqrt{2}) \cdot \frac{N}{\left[\left(N^{2}+2 \cdot N-2\right) \cdot\left(N^{2}-\sqrt{2} \cdot N+2-\sqrt{2}\right)\right]}
\end{aligned}
\]
\[
\mathbf{D U}:=\frac{-1}{2} \cdot(\sqrt{2}-2) \cdot \frac{(\mathbf{N}-1)}{\left(\mathbf{N}^{2}-\sqrt{2} \cdot \mathbf{N}+2-\sqrt{2}\right)} \quad \mathbf{C Q}:=2 \cdot \frac{(\mathbf{N}-1)}{\mathbf{N}^{2}}
\]
\[
\text { QV }:=\frac{1}{2} \cdot(\sqrt{2}+2) \cdot(\mathbf{N}-1) \cdot \frac{(\mathbf{N}+2-2 \cdot \sqrt{2})^{2}}{\left[\left(N^{2}-\sqrt{2} \cdot N+2-\sqrt{2}\right) \cdot \mathbf{N}^{2}\right]} \quad \mathbf{B H}:=\frac{(\mathbf{N}-1) \cdot(3-2 \cdot \sqrt{2})}{[(N+2)-2 \cdot \sqrt{2}]^{2}}
\]


\section*{Working on Moving D.}

\section*{One Over N + One 04/25/96}

\section*{Construct \(1 /(\mathrm{N}+1)\)}

\[
\begin{array}{ll}
\mathbf{N}_{1}:=2.817 & \mathbf{N}_{2}:=3 \quad A C:=1 \\
\mathbf{A F}:=A C \cdot \mathbf{N}_{1} & \text { CF }:=\mathrm{AF}-\mathrm{AC} \quad \mathrm{CE}:=\frac{\mathrm{CF}}{2}
\end{array}
\]

F E D C B A AE:=AC+CE FK:=AC \(\mathbf{N}_{2} \quad\) EJ \(:=\frac{\text { FK AE }}{A F}\)
DL \(:=\) FK EF \(:=\) CE \(\quad \mathrm{DF}:=\frac{\mathrm{EF} \cdot \mathrm{DL}}{\mathrm{EJ}} \quad \mathrm{CG}:=\frac{\mathrm{FK} \cdot \mathrm{AC}}{\mathrm{AF}}\) CD \(:=\mathrm{CF}-\mathrm{DF} \quad\) DH \(:=\mathrm{CG}\) HL \(:=\mathrm{DL}-\mathrm{DH}\)
\(\mathrm{BC}:=\frac{\mathrm{CD} \cdot \mathrm{CG}}{\mathrm{HL}}\)
\(C F:=N_{1-1} \quad C E:=\frac{1}{2} \cdot\left(N_{1}-1\right) \quad A E:=\frac{1}{2} \cdot\left(1+N_{1}\right) \quad\) FK \(:=N_{2} \quad E J:=\frac{1}{2} \cdot N_{2} \cdot \frac{\left(1+N_{1}\right)}{N_{1}}\)
\(D F:=\frac{\left(\mathbf{N}_{1}-1\right)}{\left(1+\mathbf{N}_{1}\right)} \cdot \mathbf{N}_{1} \quad \mathrm{CG}:=\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}} \quad C D:=\frac{\left(\mathbf{N}_{1}-1\right)}{\left(1+\mathbf{N}_{1}\right)} \quad H L:=N_{2} \cdot \frac{\left(\mathbf{N}_{1}-1\right)}{\mathbf{N}_{1}} \quad \frac{1}{\mathbf{N}_{1}+1}-B C=0\)


\section*{Three Base Theorem.}

Three peaks, three predictable bases that intersect our hypotenuse through the Gemini roots.

\[
\begin{aligned}
& \mathrm{BC}:=7.2 \mathrm{CI}:=216 \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \\
& \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \mathrm{BM}:=61.38 \\
& \mathrm{EM}:=\sqrt{\mathrm{BM}^{2}+\mathrm{BE}^{2}} \mathrm{BD}:=\mathrm{EM}-\mathrm{BM} \\
& \mathrm{BH}:=\mathrm{BM}+\mathrm{EM} \quad \mathrm{GN}:=\mathrm{CG} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EN}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EH}:=\mathrm{BH}-\mathrm{BE} \\
& \mathrm{EG}:=\mathrm{EI}-\mathrm{CG} \quad \mathrm{AE}:=\frac{\mathrm{EN}^{2}}{\mathrm{EG}} \mathrm{HI}:=\mathrm{EI}-\mathrm{EH} \\
& \mathrm{HL}:=\frac{\mathrm{EN} \cdot \mathrm{HI}}{\mathrm{EI}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AH}:=\mathrm{AE}+\mathrm{EH} \quad \mathrm{Ea}:=\frac{\mathrm{AH} \cdot \mathrm{EN}}{\mathrm{HL}} \\
& \mathrm{FG}:=\frac{\mathrm{EG} \cdot \mathrm{AG}}{(\mathrm{Ea}+\mathrm{EG})} \mathrm{CF}:=\mathrm{CG}-\mathrm{FG}
\end{aligned}
\]
\(\mathrm{FI}:=\mathrm{CG}+\mathrm{FG} \quad \mathrm{FP}:=\sqrt{\mathrm{CF} \cdot \mathrm{FI}}\)
\(\mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \quad \mathrm{EO}:=\frac{\mathrm{FP} \cdot \mathrm{AE}}{\mathrm{AF}}\)
\(\mathrm{EF}:=\mathrm{AF}-\mathrm{AE} \quad \mathrm{GU}:=\frac{\mathrm{EO} \cdot \mathrm{FG}}{\mathrm{EF}}\)

\[
\begin{aligned}
& \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AI}:=\mathrm{AC}+\mathrm{CI} \\
& \mathrm{AP}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FP}^{2}} \mathrm{AW}:=\frac{\mathrm{AC} \cdot \mathrm{AI}}{\mathrm{AP}} \\
& \mathrm{AX}:=\frac{\mathrm{AF} \cdot \mathrm{AW}}{\mathrm{AP}} \mathrm{CX}:=\mathrm{AX}-\mathrm{AC} \mathrm{XI}:=\mathrm{CI}-\mathrm{CX} \\
& \mathrm{WX}:=\sqrt{\mathrm{CX} \cdot \mathrm{XI}} \mathrm{XG}:=\mathrm{CG}-\mathrm{CX} \mathrm{YU}:=\mathrm{XG} \\
& \mathrm{UV}:=\mathrm{CG} \mathrm{YV}:=\mathrm{YU}+\mathrm{UV} \mathrm{XH}:=\frac{\mathrm{YV} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \mathrm{CH}:=\mathrm{AH}-\mathrm{AC} \frac{\mathrm{CH}}{\mathrm{XH}+\mathrm{CX}}=1 \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{DX}:=\frac{\mathrm{CX} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}} \\
& \frac{\mathrm{CD}}{\mathrm{CX}-\mathrm{DX}}=1
\end{aligned}
\]


EI•EO
\(\mathrm{IZ}:=\frac{\mathrm{GU} \cdot \mathrm{AI}}{\mathrm{AG}} \mathrm{Ed}:=\mathrm{IZ} \quad \frac{\mathrm{EO}+\mathrm{Ed}}{\mathrm{EH}}=1\)
\[
\mathrm{Ce}:=\frac{\mathrm{GU} \cdot \mathrm{AC}}{\mathrm{AG}} \mathrm{Ef}:=\mathrm{Ce} \frac{\mathrm{CD}}{\frac{\mathrm{CE} \cdot \mathrm{Ce}}{\mathrm{EO}+\mathrm{Ef}}}=1
\]

Ek \(:=\mathrm{GU} \quad \mathrm{Ig}:=\frac{\mathrm{Ek} \cdot \mathrm{BI}}{\mathrm{BE}} \mathrm{Cm}:=\frac{\mathrm{Ek} \cdot \mathrm{BC}}{\mathrm{BE}}\)
Fn \(:=\mathrm{Ig} \quad\) gn \(:=\mathrm{FI} \quad \mathrm{FH}:=\frac{\mathrm{gn} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Fn}}\)
\(\frac{\mathrm{FH}}{\mathrm{AH}-\mathrm{AF}}=1 \quad \mathrm{DF}:=\frac{\mathrm{CF} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Cm}}\)
\(\frac{C D}{C F-D F}=1\)

\section*{A Root FIgure 04/27/96}

Given \(C D, C E\), and \(E F=C E\), and that \(C D\) is the square root of \(B C x B F\), find \(B C\).

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{5} \quad \mathbf{N}_{2}:=\mathbf{3} \quad \text { CD }:=1 \\
& \text { CE }:=\text { CD } \cdot \mathbf{N}_{1} \quad \text { CF }:=\mathbf{2} \cdot \mathbf{C E} \quad \text { FK }:=\mathrm{CD} \cdot \mathbf{N}_{2} \\
& \text { DM }:=\text { FK } \quad \text { EL }:=\text { FK } \quad \text { DF }:=\text { CF }- \text { CD } \\
& \text { EF }:=\frac{\text { CF }}{\mathbf{2}} \quad \text { EJ }:=\frac{\text { DM } \cdot \text { EF }}{\text { DF }} \quad \text { JL }:=\text { EL }- \text { EJ }
\end{aligned}
\]

KL \(:=\) EF \(\quad\) AF \(:=\frac{\text { KL•FK }}{\text { JL }} \quad\) AC \(:=\mathrm{AF}-\) CF \(\quad\) CG \(:=\frac{\text { FK AC }}{\mathrm{AF}}\) DH \(:=\) CG HM \(:=\mathrm{DM}-\mathrm{DH} \quad \mathrm{BC}:=\frac{\mathrm{CD} \cdot \mathrm{DH}}{\mathrm{HM}}\) \(\mathbf{B F}:=\mathbf{B C}+\mathbf{C F} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \quad \sqrt{\mathbf{B C} \cdot \mathbf{B F}}-\mathbf{B D}=\mathbf{0}\)
\(C F:=2 \cdot \mathbf{N}_{1} \quad\) FK \(:=\mathbf{N}_{2} \quad\) DF \(:=\left(2 \cdot \mathbf{N}_{1}-1\right) \quad\) EF \(:=\mathbf{N}_{1} \quad\) EJ \(:=\frac{N_{1} \cdot N_{2}}{2 \cdot N_{1}-1}\)
\(\mathbf{J L}:=\mathbf{N}_{2} \cdot \frac{\left(\mathbf{N}_{1}-\mathbf{1}\right)}{\left(2 \cdot \mathbf{N}_{1}-\mathbf{1}\right)}\)
\(A F:=\frac{\mathbf{N}_{1} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}-\mathbf{1}\right)}{\mathbf{N}_{1}-\mathbf{1}}\)
\(A C:=\frac{\mathbf{N}_{1}}{\left(\mathbf{N}_{1}-\mathbf{1}\right)}\)
\(\mathbf{C G}:=\frac{\mathrm{N}_{2}}{\left(2 \cdot \mathbf{N}_{1}-1\right)}\)
\(H M:=2 \cdot N_{2} \cdot \frac{\left(N_{1}-1\right)}{\left(2 \cdot N_{1}-1\right)}\)
\(\mathbf{B C}:=\frac{1}{2 \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right)}\)
\(B F:=\frac{1}{2} \cdot \frac{\left(2 \cdot N_{1}-1\right)^{2}}{\left(N_{1}-1\right)}\)
\(B D:=\frac{1}{2} \cdot \frac{\left(2 \cdot N_{1}-1\right)}{\left(N_{1}-1\right)}\)

I had finally decided to write this up in Oct. of 94, and being punctual, here it is.

Given one root in a prime root series, determine the rest of the series using the straight edge method. The other method uses a compass and is shown at the end of document.

Process Summary will use \(5^{\text {th }}\) root series for example.
\[
\begin{aligned}
& \mathrm{AG}:=3^{5} \quad \mathrm{AB}:=1 \quad \mathrm{AE}:=3^{3} \\
& \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{GZ}:=\mathrm{BG} \quad \mathrm{YZ}:=\mathrm{BG} \\
& \mathrm{BY}:=\mathrm{BG} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{EG}:=\mathrm{BG}-\mathrm{BE} \\
& \mathrm{GH}:=\frac{\mathrm{BY} \cdot \mathrm{EG}}{\mathrm{BE}}
\end{aligned}
\]
\(\mathrm{Ga}:=\frac{\mathrm{GZ} \cdot \mathrm{AG}}{\mathrm{EG}} \quad \mathrm{Hb}:=\frac{\mathrm{GH} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Gb}:=\mathrm{GH}-\mathrm{Hb} \quad \mathrm{Ib}:=\frac{\mathrm{AG} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Bd}:=\mathrm{BG}-\mathrm{Ib} \quad \mathrm{BC}:=\frac{\mathrm{Bd} \cdot \mathrm{BY}}{\mathrm{BY}+\mathrm{Gb}}\)
\(A C:=A B+B C\)
\(\mathrm{CG}:=\mathrm{BG}-\mathrm{BC} \quad \mathrm{BJ}:=\frac{\mathrm{GZ} \cdot \mathrm{BC}}{\mathrm{CG}}\)


\[
\begin{aligned}
& \mathrm{GK}:=\frac{\mathrm{BJ} \cdot \mathrm{AG}}{\mathrm{AB}} \mathrm{KZ}:=\mathrm{GZ}+\mathrm{GK} \\
& \mathrm{FG}:=\frac{\mathrm{YZ} \cdot \mathrm{GK}}{\mathrm{KZ}} \quad \mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \\
& \mathrm{Ke}:=\frac{\mathrm{GK} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \mathrm{Me}:=\frac{\mathrm{AG} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \\
& \mathrm{BD}:=\frac{(\mathrm{BG}-\mathrm{Me}) \cdot \mathrm{BY}}{\mathrm{KZ}-\mathrm{Ke}} \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}
\end{aligned}
\]

\[
\begin{array}{ll}
\frac{\left(\mathrm{AB}^{5} \cdot \mathrm{AG}^{0}\right)^{\frac{1}{5}}}{\mathrm{AB}}=1 & \frac{\left(\mathrm{AB}^{4} \cdot \mathrm{AG}^{1}\right)^{\frac{1}{5}}}{\mathrm{AC}}=1 \\
\frac{\left(\mathrm{AB}^{3} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{5}}}{\mathrm{AD}}=1 & \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{5}}}{\mathrm{AE}}=1 \\
\frac{\left(\mathrm{AB}^{1} \cdot \mathrm{AG}^{4}\right)^{\frac{1}{5}}}{\mathrm{AF}}=1 & \frac{\left(\mathrm{AB}^{0} \cdot \mathrm{AG}^{5}\right)^{\frac{1}{5}}}{\mathrm{AG}}=1
\end{array}
\]

Compass method

If any of a prime root series can be given exactly, every root of the series can be determined exactly.

DJ is the Geometric name, what is its Algebraic name?

\[
\begin{aligned}
& \mathrm{N}:=\mathbf{5} \quad \mathrm{AB}:=\mathbf{1} \quad \mathrm{AG}:=\mathrm{AB} \cdot \mathbf{N} \quad \mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \\
& \text { BF : }=\frac{\mathbf{B G}}{\mathbf{2}} \\
& \text { FK := BF FO :=BF AF :=BF+AB } \\
& \text { DF }:=\frac{\text { FK } \cdot F O}{\mathrm{AF}} \quad \mathrm{AK}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FK}^{2}} \quad \text { KO }:=\mathrm{BG} \\
& \text { HO }:=\frac{\text { AF } \cdot \text { KO }}{\text { AK }} \quad \text { DO }:=\frac{\text { AK•FO }}{\text { AF }} \quad \text { DH }:=\mathbf{H O}-\text { DO } \\
& \text { DJ : }=\sqrt{\text { DH•DO }}
\end{aligned}
\]
\[
A G:=N \quad B G:=N-1 \quad B F:=\frac{N-1}{2} \quad A F:=\frac{1}{2} \cdot N+\frac{1}{2} \quad D F:=\frac{1}{2} \cdot \frac{(N-1)^{2}}{(N+1)} \quad A K:=\frac{1}{2} \cdot \sqrt{2 \cdot N^{2}+2}
\]
\[
\text { HO :=(N+1) } \frac{(\mathbf{N}-1)}{\sqrt{2 \cdot N^{2}+2}} \quad \text { DO }:=\frac{1}{2} \cdot \sqrt{2 \cdot N^{2}+2} \cdot \frac{(N-1)}{(N+1)} \quad \text { DH }:=2 \cdot N \cdot \frac{(N-1)}{\left[\sqrt{2 \cdot N^{2}+2} \cdot(N+1)\right]}
\]
\[
\mathbf{D J}:=\sqrt{\mathbf{N}} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+\mathbf{1})}
\]


\section*{Geometric Exponential Series of the form}

\(\underline{\text { Root - } 1}\)

\(N^{\text {Root }}\)

Generalize some of the ratios found in 01_08_96 and 01_16_96 for the sides of the right triangle.
\[
\begin{aligned}
& \mathrm{N}=4 \quad \mathrm{Root}=4 \quad \mathrm{M}=1 \quad \mathrm{BG}:=\mathrm{N} \mathrm{AB}:=\mathrm{M} \\
& \mathrm{AG}:=\mathrm{AB}+\mathrm{BG} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \\
& \mathrm{AC}:=\left(\mathrm{AB}^{\text {Root }-1} \cdot \mathrm{AG}\right)^{\frac{1}{\text { Root }}} \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{\text {Root }-1}\right)^{\frac{1}{\text { Root }}} \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \quad \mathrm{FX}:=\sqrt{\mathrm{AF}^{2}+\mathrm{AG}^{2}} \\
& \mathrm{FY}:=\frac{\mathrm{AF}^{2}}{\mathrm{FX}} \quad \mathrm{BD}:=\frac{\mathrm{FY} \cdot \mathrm{BG}}{\mathrm{FX}} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \quad \mathrm{GK}:=\sqrt{\mathrm{DG}}{ }^{2}+\mathrm{DK}^{2} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]


Plug in BG here as N . AB as M . Plug in root series also.
\(\mathrm{N} \equiv 4 \quad\) Root \(\equiv 4 \quad \delta:=1\).. Root
\(M \equiv 1\)
\[
\mathrm{GL}=1.377 \quad \mathrm{BJ}=0.275 \quad \frac{\mathrm{GL}}{\mathrm{BJ}}=5 \quad \frac{\mathrm{AG}}{\mathrm{AB}}=5
\]
\[
\frac{\sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-1}{\text { Root }}}}=2.415 \quad \frac{\mathrm{GK}}{\mathrm{GL}}=2.415 \quad \sum_{\delta}\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\text { Root }-\delta}{\text { Root }}}=8.075 \quad \frac{\mathrm{BK}}{\mathrm{BJ}}=8.075
\]

\[
\mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]
\(\frac{\mathrm{AG}}{\mathrm{FQ}}=9.769\)
\(\frac{\mathrm{AG}}{\mathrm{BM}}=32.665\)
\begin{tabular}{l}
\(\frac{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta+2}{\text { Root }}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{\delta}{\text { Root }}}}{\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{\text { Root }}}-\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{\text { Root }}}}\) \\
\hline\(\frac{9.769}{14.608}\) \\
\hline 21.844 \\
\hline 32.665 \\
\hline
\end{tabular}
On the left is the first and last of the series, on the right is the entire series.

\section*{12/20/96 Alternate Method Quad Roots}

If \(F N: F P\) as \(B Q: B S\) then quad roots series can be divided off in the figure.

\(\mathbf{N}_{1}:=2 \quad \mathbf{N}_{2}:=.2\)
\(\mathrm{AB}:=\mathbf{1} \quad\) AL \(:=\mathbf{A B} \cdot \mathbf{N}_{1}\)

BL := AL - AB BS := BL LT := BL

BH := \(\frac{B L}{2} \quad\) HL \(:=\) BH \(\quad\) BQ \(:=B S \cdot \mathbf{N}_{2}\)
\(A F:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}} \quad\) FL \(:=\mathbf{A L}-\mathbf{A F} \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}\)
FP \(:=\sqrt{\mathbf{B F} \cdot F L} \quad\) FN \(:=\frac{\mathbf{B Q} \cdot \mathbf{F P}}{\mathbf{B S}} \quad \mathbf{E F}:=\frac{\mathbf{B F} \cdot \mathbf{F N}}{\mathbf{B Q}}\)
EL \(:=E F+\) FL \(F G:=\frac{E F \cdot F L}{E L} G O:=\frac{F N \cdot F G}{E F}\)
GL \(:=\) FL - FG LR \(:=\) BQ JL \(:=\frac{\mathbf{G L} \cdot \mathbf{L R}}{\mathbf{L R}+\mathbf{G O}}\)
\(\mathbf{A J}:=\mathbf{A L}-\mathbf{J L}\)
\(\left(A B \cdot A L^{3}\right)^{\frac{1}{4}}-\mathbf{A J}=\mathbf{0}\)


\section*{04/04/97 Triangles}

Given the base, one side and the height of a triangle, find both possible lengths of the remaining side.

\[
A B:=5 \quad \text { AC }:=4 \quad \text { CD }:=3
\]
\(\mathrm{AD}:=\sqrt{\mathrm{AC}^{2}-\mathrm{CD}^{2}} \quad \mathrm{BD}_{1}:=\mathrm{AB}+\mathrm{AD} \quad \mathrm{BD}_{2}:=\mathrm{AB}-\mathrm{AD}\)
\(\mathrm{BC}_{1}:=\sqrt{\mathrm{CD}^{2}+\mathrm{BD}_{1}{ }^{2}}\)
\(\mathrm{BC}_{2}:=\sqrt{\mathrm{CD}^{2}+\mathrm{BD}_{2}{ }^{2}}\)
\(\mathrm{BC}_{1}=8.213 \quad \mathrm{BC}_{2}=\mathbf{3 . 8 1 3}\)
\(S_{1}:=A B \quad S_{2}:=A C \quad S_{3}:=\mathbf{B C}_{1}\)
\(\frac{\sqrt{S_{1}+S_{2}+S_{3}} \cdot \sqrt{-S_{1}+S_{2}+S_{3}} \cdot \sqrt{S_{1}-S_{2}+S_{3}} \cdot \sqrt{S_{1}+S_{2}-S_{3}}}{2 \cdot S_{1}}-C D=0\)
\(S_{1}:=A B \quad S_{2}:=A C \quad S_{3}:=\mathbf{B C}_{2}\)
\(\frac{\sqrt{S_{1}+S_{2}+S_{3}} \cdot \sqrt{-S_{1}+S_{2}+S_{3}} \cdot \sqrt{S_{1}-S_{2}+S_{3}} \cdot \sqrt{S_{1}+S_{2}-S_{3}}}{2 \cdot S_{1}}-C D=0\)


\title{
page 138, special case. \\ Find this book.
}

08/21/9
7

\section*{09/11/97 The Ellipse}

Given that the major axis is AD and the minor axis EF, derive the formula for the radius \(C G\), the height \(B G\), and the foci axis MN.

\(\frac{\sqrt{4 \cdot N_{2}-4+N_{2}{ }^{2} \cdot N_{1}{ }^{2}-4 \cdot N_{2} \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{2}}}{2 \cdot N_{1} \cdot N_{2}}-C G=0 \quad \frac{\sqrt{N_{2}-1}}{\left(N_{2} \cdot N_{1}\right)}-B G=0\)
\[
\frac{\sqrt{\left(N_{1}^{2}-1\right)}}{\mathbf{N}_{1}}-\mathbf{M N}=0
\]


A Square In A Triangle 02/10/98

What is the Algebraic Name for the square as given in a right triangle? What is the

\[
\begin{aligned}
& \mathbf{N}:=4 \quad \text { AE }:=1 \quad \text { EG }:=\mathbf{N} \\
& \mathrm{AB}:=\frac{\mathrm{AE}}{2} \quad \text { BJ }:=\frac{\mathrm{EG}}{2} \quad \mathrm{BD}:=\mathrm{BJ} \\
& \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \quad \mathbf{C E}:=\mathbf{B D} \cdot \frac{\mathbf{A E}}{\mathbf{A D}} \\
& \text { AC:= AE - CE FG := EG - CE }
\end{aligned}
\]
\(\frac{\mathrm{AE}}{\mathrm{AC}}-(\mathrm{N}+1)=0 \quad \mathrm{AC}-\frac{1}{\mathrm{~N}+1}=0 \quad \mathrm{CE}-\frac{\mathrm{N}}{\mathrm{N}+1}=0 \quad \mathrm{FG}-\frac{\mathrm{N}^{2}}{\mathrm{~N}+1}=0\)

\section*{Alternate Method Root Series 02/25/98}


Given a length and a unit, raise that length to any whole power.

Given for the third power.
\(\mathrm{N}:=1.3 \quad\) AH \(:=1 \quad \mathrm{HN}:=\mathrm{AH} \cdot \mathrm{N}\)
\(\mathrm{HJ}:=\mathrm{HN}-\mathrm{AH} \quad \mathbf{F H}:=\frac{\mathrm{AH} \cdot \mathbf{H J}}{\mathrm{AH}+\mathbf{H J}} \quad\) AF \(:=\mathrm{AH}-\mathrm{FH}\)
FG \(:=\mathrm{FH}\) DF \(:=\frac{\mathrm{AF} \cdot \mathbf{F G}}{\mathrm{AF}+\mathrm{FG}}\) AD \(:=\mathrm{AF}-\mathrm{DF}\)
DE \(:=\mathbf{D F}\) BD \(:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}}\) AB \(:=\mathrm{AD}-\mathbf{B D}\)
\(\frac{A H}{A F}-N^{1}=0 \quad \frac{A H}{A D}-N^{2}=0 \quad \frac{A H}{A B}-N^{3}=0\)

\section*{Sum Dlvided by One Powered 02/25/98B}

\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \quad \mathbf{N}_{2}:=6 \quad \text { AH }:=1 \quad H M:=A H \cdot \mathbf{N}_{1} A N:=A H \cdot \mathbf{N}_{2} \\
& \text { HO }:=\frac{\mathbf{A H} \cdot \mathbf{H M}}{\mathrm{AN}} \text { AO }:=\mathbf{A H}+\mathbf{H O} \quad \mathrm{AF}:=\frac{\mathrm{AH}^{2}}{\mathrm{AO}} \\
& \text { FH }:=\mathrm{AH}-\mathrm{AF} \text { FG }:=\mathrm{FH} \text { DF }:=\frac{\mathrm{AF} \cdot \mathrm{FG}}{\mathrm{AF}+\mathrm{FG}} \mathrm{AD}:=\mathrm{AF}-\mathrm{DF} \\
& \text { DE }:=\mathbf{D F} \quad \mathbf{B D}:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}} \quad \mathrm{AB}:=\mathbf{A D}-\mathbf{B D} \\
& \frac{A H}{A B}-\left(\frac{\mathbf{N}_{1}+\mathbf{N}_{2}}{\mathbf{N}_{2}}\right)^{3}=0
\end{aligned}
\]
\begin{tabular}{|l|}
\hline\(\rightarrow 4\) \\
\hline\(\rightarrow 3+4 / 5\) \\
\hline\(\rightarrow 3+3 / 5\) \\
\hline\(\rightarrow 3+2 / 5\) \\
\hline\(\rightarrow\) 3+1/5 \\
\hline\(\rightarrow 3\) \\
\hline\(\rightarrow 2+4 / 5\) \\
\hline\(\rightarrow 2+3 / 5\) \\
\hline\(\rightarrow 2+2 / 5\) \\
\hline\(\rightarrow 2+1 / 5\) \\
\hline\(\rightarrow 2\) \\
\hline\(\rightarrow 1+4 / 5\) \\
\hline\(\rightarrow\) 1+3/5 \\
\hline\(\rightarrow\) 1+2/5 \\
\hline\(\rightarrow\) 1+1/5 \\
\hline \hline\(\triangle\) Show \\
\hline \hline\(\triangle\) Hide \\
\hline
\end{tabular}


\(042398\)



\section*{On Gemini Roots 07/24/99}

\section*{CE is to EF as CY is to CW}


EG \(:=\mathbf{E F}+\) FG GI \(:=\) FI - FG GM \(:=\frac{\text { FV } \cdot \mathbf{G I}}{\text { FI }} \quad\) Ia \(:=\frac{\text { EG } \cdot \mathbf{I R}}{\text { GM }}\) EL \(:=\frac{\mathbf{I a} \cdot \mathbf{E D}}{\mathbf{I a}+\mathbf{D I}}\) BR \(:=\sqrt{\mathbf{B I}^{2}+\mathbf{I R}^{2}}\)
\(\mathrm{Ba}:=\mathrm{Ia}-\mathrm{BI} \quad \mathrm{BH}:=\frac{\mathrm{BI} \cdot \mathrm{BE}}{\mathrm{Ba}} \quad \mathrm{EH}:=\mathrm{BE}+\mathrm{BH} \quad \mathrm{CI}:=\mathrm{AC}-\mathrm{AI} \mathrm{JO}:=\frac{\mathrm{IR} \cdot \mathrm{CE}}{\mathrm{CI}+\mathrm{Ia}} \quad \mathrm{CJ}:=\frac{\mathrm{CI} \cdot \mathrm{JO}}{\mathrm{IR}}\)
JI \(:=\mathbf{C I}-\mathbf{C J} \quad \mathbf{C Y}:=\frac{\mathbf{I R} \cdot \mathbf{C J}}{\mathbf{J I}} \quad \frac{\mathbf{C Y}}{\mathbf{C W}}-\frac{\mathbf{C E}}{\mathrm{EF}}=0\)

\section*{A Delian Solution 08/11/99}


What are the minor and major axis for the ellipse that will give point \(Z\) for the cube root?
\[
\begin{aligned}
& \mathbf{A B}:=\mathbf{1} \quad \mathrm{N}:=16 \quad \mathbf{A G}:=\mathrm{AB} \cdot \mathrm{~N} \\
& \mathbf{B G}:=\mathrm{AG}-\mathbf{A B} \quad \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathbf{A G}} \\
& \mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \text { FG }:=\mathbf{B F} \quad \mathbf{A F}:=\mathrm{AB}+\mathbf{B F} \\
& \mathbf{F X}:=\mathbf{B F} \quad \text { Mf }:=\frac{\sqrt{\mathbf{A F}^{2}+\mathbf{F X}^{2}}}{2} \quad \text { Lf }:=\frac{\mathbf{F X}}{2}
\end{aligned}
\]
\[
\text { ML }:=\text { Mf - Lf } \quad \text { FL }:=\frac{\mathbf{A F}}{\mathbf{2}} \quad \text { Xd }:=\mathrm{FL} \quad \text { df }:=\mathrm{Lf}
\]
\[
\mathbf{I X}:=\text { FX } \quad \text { Md }:=\mathbf{M f}+\mathbf{d f} \quad \mathbf{M X}:=\sqrt{\mathbf{X d}^{2}+\mathbf{M d}^{2}}
\]
\[
\mathbf{S X}:=\frac{\mathbf{M X} \cdot \mathbf{I X}}{\mathbf{I X}-\mathbf{M L}} \quad \mathbf{L g}:=\frac{\mathbf{F L} \cdot \mathbf{M L}}{\mathbf{M L}+\mathbf{F X}} \quad \mathbf{Q X}:=\frac{\mathbf{S X}}{2}
\]
\[
F g:=F L-L g \quad X g:=\frac{M X \cdot F g}{X d} \quad Q g:=Q X-X g
\]
\[
\mathbf{K g}:=\frac{\mathbf{X g} \cdot \mathbf{Q g}}{\mathbf{F g}} \quad \mathbf{G K}:=\mathbf{F G}+\mathbf{F g}+\mathbf{K g} \quad \mathbf{G J}:=\mathbf{B G}
\]
\[
\text { GT }:=\frac{\text { Fg.GK }}{\text { FX }} \quad \mathbf{J T}:=\mathbf{G J}+\mathbf{G T} \quad \text { IJ }:=\mathbf{B F}
\]
\[
\mathbf{F P}:=\frac{\mathbf{I J} \cdot \mathbf{G J}}{\mathbf{J T}} \quad \mathbf{O P}:=\frac{\mathbf{I X} \cdot \mathbf{G T}}{\mathbf{J T}}
\]
\(K P:=F g+K g+F P \quad P i:=L f \quad O i:=O P+P i \quad\) hi \(:=\frac{K P \cdot O i}{O P} \quad\) fi \(:=F P+F L \quad\) fh \(:=h i-f i \quad K O:=\sqrt{K P^{2}+O P^{2}}\) \(h k:=\frac{\text { KP fh }}{\text { KO }} \quad f k:=\frac{\text { OP•fh }}{\text { KO }} \quad\) Nf \(:=M f \quad N k:=\sqrt{N^{2}-f^{2}} \quad\) Nh \(:=h k+N k \quad\) Oh \(:=\frac{K O \cdot O i}{O P} \quad\) NO \(:=O h-N h \quad\) KN \(:=\) KO - NO
\(\mathrm{Nl}:=\frac{\mathrm{OP} \cdot \mathrm{KN}}{\mathrm{KO}} \quad \mathrm{Kl}:=\frac{\mathrm{KP} \cdot \mathrm{KN}}{\mathrm{KO}} \quad \mathbf{F K}:=\mathrm{KP}-\mathrm{FP} \quad \mathrm{Fl}:=\mathbf{F K}-\mathrm{Kl} \quad \mathrm{NX}:=\sqrt{(\mathbf{F X}+\mathbf{N l})^{2}+\mathrm{Fl}^{2}} \quad \mathrm{XY}:=\frac{\mathbf{N X} \cdot \mathbf{I X}}{\mathrm{IX}-\mathrm{Nl}} \quad \mathrm{Fm}:=\frac{\mathrm{Fl} \cdot \mathrm{XY}}{\mathrm{NX}}\)


\[
\begin{aligned}
& \text { IS }:=\frac{\mathrm{IL} \cdot \mathbf{I X}}{\mathrm{IX}-\mathrm{ML}} \quad \mathrm{In}:=\frac{\mathrm{IS}^{\mathbf{2}}-\mathrm{SX}^{2}+\mathrm{IX}^{2}}{2 \cdot \mathrm{IS}} \\
& \mathbf{X n}:=\sqrt{\mathbf{I X}^{\mathbf{2}}-\mathbf{I n}^{\mathbf{2}}} \quad \text { QR }:=\frac{\mathbf{X n} \cdot \mathbf{Q X}}{\mathbf{I S}-\mathbf{I n}} \\
& K G:=F K+F G \quad K T:=\sqrt{K G^{2}+G T^{2}} \\
& K Y:=\frac{\text { KT } \cdot Y m}{\text { GT }} \mathrm{KQ}:=\frac{\mathrm{KG} \cdot \mathbf{Q g}}{\text { GT }} \\
& R Y:=K Y-K Q+Q R \quad R Y=4.119 \\
& \text { Xd }:=\text { FL } \quad \text { dp }:=\frac{\text { GK } \cdot X d}{K T} \text { pq }:=\text { QR } \quad d q:=d p-p q \\
& \mathbf{X p}:=\frac{\mathbf{G T} \cdot \mathbf{X d}}{\mathbf{K T}} \quad \mathbf{Q p}:=\mathbf{Q X}-\mathbf{X p} \quad \text { Rq }:=\mathbf{Q p} \\
& \text { er }:=d q \quad \operatorname{Re}:=R Y \quad \operatorname{Rr}:=\sqrt{\operatorname{Re}^{2}-\mathrm{er}^{2}} \\
& \mathbf{R s}:=\frac{\mathbf{R e} \cdot \mathbf{R q}}{\mathbf{R r}} \quad \mathbf{R s}=7.171
\end{aligned}
\]

Is the segment Zv equal to the perpendicular for the ellipse?

\[
A C:=\left(A B^{2} \cdot \mathbf{A G}\right)^{\frac{1}{3}} \quad A E:=\left(A B \cdot A G^{2}\right)^{\frac{1}{3}}
\]
\[
\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B}
\]
\[
\mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{E G}:=\mathbf{B G}-\mathbf{B E}
\]
\[
\mathbf{C U}:=\frac{\mathrm{BC} \cdot \mathbf{C E}}{\mathbf{B C}+\mathbf{E G}} \quad \mathrm{BU}:=\mathrm{BC}+\mathbf{C U}
\]
\[
\mathbf{G U}:=\mathbf{B G}-\mathbf{B U} \quad \mathbf{U Z}:=\sqrt{\mathbf{B U} \cdot \mathbf{G U}}
\]
\[
\mathbf{U W}:=\frac{\mathbf{K G} \cdot \mathbf{U Z}}{\mathbf{G T}} \quad \mathbf{G g}:=\mathbf{G K}-\mathbf{K g}
\]
\[
\mathbf{t u}:=\mathbf{Q R} \quad \text { gt }:=\frac{\text { KT } \cdot \mathbf{t u}}{\mathbf{G K}} \quad \text { Gt }:=\mathbf{G g}+\mathbf{g t}
\]
\[
\mathbf{G W}:=\mathbf{G U}+\mathbf{U W} \quad \mathbf{W t}:=\mathbf{G W}-\mathbf{G t}
\]
\[
\mathbf{t v}:=\frac{\mathbf{G T} \cdot \mathbf{W t}}{\mathrm{KT}} \quad \mathrm{Kt}:=\mathbf{G K}-\mathbf{G t} \quad \text { Rt }:=\frac{\mathbf{G T} \cdot \mathrm{Kt}}{\mathrm{KT}}
\]
\[
\mathbf{R v}:=\mathbf{t v}-\mathbf{R t} \quad \mathbf{b c}:=\mathbf{2} \cdot \mathbf{R s} \quad \mathbf{R c}:=\mathbf{R s}
\]
\[
\mathbf{c v}:=\text { Re }+ \text { Rv } \quad \text { Yw }:=\mathbf{2} \cdot \mathbf{R Y} \quad \text { WZ }:=\frac{\text { KT } \cdot \mathbf{U Z}}{\text { GT }}
\]

L
\[
\mathbf{W v}:=\frac{\mathbf{G K} \cdot \mathbf{t v}}{\mathbf{G T}} \quad \mathbf{Z v}:=|\mathbf{W Z}-\mathbf{W v}|
\]
\(\mathbf{N}_{1}:=\mathrm{Yw} \quad \mathbf{N}_{2}:=\mathrm{bc} \quad \mathrm{N}_{3}:=\mathrm{cv} \quad \mathrm{N}_{4}:=\mathrm{bc} \quad \sqrt{\mathbf{N}_{3} \cdot\left(\mathbf{N}_{4}-\mathbf{N}_{3}\right)} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}-\mathrm{Zv}=0 \quad \frac{\mathrm{AC}}{2 \cdot \mathrm{AB}}-2^{\frac{1}{3}}=0\)
\(\sqrt{N_{3} \cdot\left(N_{4}-N_{3}\right)} \cdot \frac{N_{1}}{\mathbf{N}_{2}}\) is from 09/11/97 The Ellipse for the segment Zv (BG), units divided out.
\(P D=0.601\) inches
\(P C=5.299\) inches



Since the figure only uses proportion, which has been proven any proof of the figure can be left for an exersize.



\section*{Appendix A}

Step by Step


As this method of construction does not quite make it to two, sixteen will do as well.

\section*{Plate 1}


\section*{Plate 2}
\(\mathrm{BF}=\frac{\mathrm{BG}}{2}, \mathrm{FG}=\mathrm{BF}, \mathrm{AF}=\mathrm{AB}+\mathrm{BF}\)
\(\mathbf{F X}=\mathrm{BF}, \mathrm{Mf}=\frac{\sqrt{\mathrm{AF}^{2}+\mathrm{FX}^{2}}}{2}, \mathrm{LF}=\frac{\mathrm{FX}}{2}\)


\section*{Plate 3}


\section*{Plate 4}
\(\mathbf{S X}=\frac{\mathbf{M X} \times I X}{I X-M L}, L g=\frac{F L \times M L}{M L+F X}, \mathbf{Q X}=\frac{\mathbf{S X}}{2}\)
\(\mathbf{F g}=\mathbf{F L}-\mathbf{L g}, \mathbf{X g}=\frac{\mathbf{M X} \times \mathbf{F g}}{\mathbf{X d}}, \mathbf{Q g}=\mathbf{Q X}-\mathbf{X g}\)


\section*{Plate 5}


Plate 6
\(\mathbf{F P}=\frac{\mathbf{I J} \times \mathbf{G J}}{\mathbf{J T}}\)
\(\mathrm{OP}=\frac{\mathbf{I X} \times \mathbf{G T}}{\mathrm{JT}}\)
\(\mathbf{K P}=\mathbf{F g}+\)
\(\mathbf{K g}+\mathbf{F P}\)
\(\mathbf{P i}=\mathbf{L f}\)
\(\mathbf{O i}=\mathbf{O P}+\mathbf{P i}\)
\(\mathbf{h i}=\frac{\mathbf{K P} \times \mathbf{O}}{\mathbf{O P}}\)


\section*{Plate 7}


Plate 8


\section*{Plate 9}


\section*{Plate 10}
\(\mathrm{Fo}=\frac{\mathrm{Fl} \times \mathrm{FX}}{\mathrm{FX}+\mathrm{Nl}}, \mathrm{Xo}=\frac{\mathrm{NX} \times \mathrm{Fo}}{\mathrm{Fl}}, \mathrm{mo}=\mathrm{Fm}-\mathrm{Fo}\) \(\mathrm{Ym}=\frac{\mathrm{FX} \times \mathrm{mo}}{\mathrm{Fo}}, \mathrm{FI}=2 \times \mathrm{BF}, \mathrm{IL}=\sqrt{\mathrm{FL}^{2}+\mathrm{FI}^{2}}\)


Plate 11 The Minor Axis


Plate 12
\[
\begin{aligned}
& \mathrm{Xd}=\mathrm{FL}, \mathrm{dp}=\frac{\mathrm{GK} \times \mathrm{Xd}}{\mathrm{KT}}, \mathrm{pq}=\mathrm{QR} \\
& \mathrm{dq}=\mathrm{dp}-\mathrm{pq}, \mathrm{Xp}=\frac{\mathrm{GT} \times \mathrm{Xd}}{\mathrm{KT}}, \mathrm{Op}=\mathrm{QX}-\mathrm{Xp}
\end{aligned}
\]


\section*{Plate 13 The Major Axis}


Plate 14
\(\mathrm{AC}=(\mathrm{AB} \times \mathrm{AG})^{1 / 3}, \mathrm{AE}=\left(\mathrm{AB} \times \mathrm{AG}^{2}\right)^{1 / 3}\)
\(\mathrm{BC}=\mathrm{AC}-\mathrm{AB}, \mathrm{BE}=\mathrm{AE}-\mathrm{AB}, \mathrm{CE}=\mathrm{BE}-\mathrm{BC}\)
\(E G=B G-B E\)


Plate 15


Plate 16
\(\mathrm{tu}=\mathrm{QR}, \mathrm{gt}=\frac{\mathrm{KT} \times \mathrm{tu}}{\mathrm{GK}}, \mathrm{Gt}=\mathrm{Gg}+\mathrm{gt}\) \(\mathrm{GW}=\mathrm{GU}+\mathrm{UW}, \mathrm{Wt}=\mathrm{GW}-\mathrm{Gt}\) \(\mathrm{tv}=\frac{\mathrm{GT} \times \mathrm{Wt}}{\mathrm{KT}}, \mathrm{Kt}=\mathrm{GK}-\mathrm{Gt}\)


Plate 17


Plate 18
\(W Z=\frac{\mathrm{KT} \times \mathrm{UZ}}{\mathrm{GT}}, \mathrm{Wv}=\frac{\mathrm{GK} \times \mathrm{tv}}{\mathrm{GT}}\)
\(\mathrm{Zv}=|\mathrm{WZ}-\mathrm{Wv}|\)
\(\mathrm{N}_{1}=\mathrm{Yw}, \mathrm{N}_{2}=\mathrm{bc}, \mathrm{N}_{3}=\mathrm{cv}, \mathrm{N}_{4}=\mathrm{bc}\)
\(\sqrt{\mathrm{N}_{3} \times\left(\mathrm{N}_{4}-\mathrm{N}_{3}\right)} \times \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}-\mathrm{Zv}=0\)


\title{
First Philosophy: \\ The Body Prophet And
}

\section*{The Path To Enlightenment Through \\ The Theory Of Forms}

Number of Words: 86629
Number Of Pages: 192

\title{
First Philosophy: The Body Prophet And The Path To Enlightenment Through The Theory Of Forms
}
as presented by Plato and Aristotle with attempted explanations by John Clark
Dedicated to those individuals in history who envisioned a humanity embracing Judgment Day as the day that men have come to learn judgment-to have learned how to reason-for it is reason that is the enlightenment of the soul:
"Thus that in the soul which is called mind (by mind I mean that whereby the soul thinks and judges) is, before it thinks, not actually any real thing." On The Soul by Aristotle

How can we ask our fellow man to be reasonable when we ourselves know not what reason is?

\section*{Forewarning-Worth!}

\begin{abstract}
I set out on a journey to find me a wise man that took me to the highest reaches of the earth. Upon arriving atop the tallest mountain, upon which the wisest of men sat, I discovered, much to my dismay, that he had but half a brain. And so I set out again to find me a wise man that took me to the deepest reaches of the sea. Upon arriving beneath the deepest ravine, within which sat the wisest of men, I discovered, much to my dismay, that she had but half a brain. And so I set off to find me two asses, one to carry the wisest man of the tallest mountain and the wisest man of the deepest watery ravine and carried them both, upon their respective ass, to a marshy plain. There I set them upon the damp ground, between heaven and hell, before each other but each other they did not see. Upon realizing the meaning of all my vain labor, I sat beneath a Dumnudumn tree and began to cry. Janus by Devoid Void
\end{abstract}

\section*{What is Your Value?}

Answer these questions.
\(1)\). What are you worth or what is your value?
2). What is the value of any thing?

When does a toaster quâ toaster have value, when it cannot make toast or when it can?
When does a car quâ car have value, when it can not function or when it provides safe and dependable transportation?

When does an ink-pen quâ ink-pen have value, when it can no longer write or when it can write?

When does a toaster quâ toaster have the higher value, when it makes toast erratically or when it makes consistently fine toast?

When does a car quâ car attain to the highest value, when it performs erratically or when it performs dependably?

When does an ink-pen quâ ink-pen have the highest value? Etc., etc., etc.
From these examples and many more one may come to believe that the greatest value of a thing is attained in the perfection of the function of that thing-especially if they have but one definition for value-one measure in their purse-see through a single eye. It may follow that in order to know what our own value is, we must know what our function is. In order to attain to our greatest value, our greatest worth as human beings, we will have to find a perfection of that function.

Do you know what your function is? Do you care to know what your function is?
When is a worker ready to work, when he has excused himself from all labor or when he seeks out his job?

Why do you cry? asked the Dumnundumn tree, whereupon, I told the tree the tale of the two wise men. Most unfortunate. quipped the tree, but perhaps you should try beating the dog out of the frequency. Of course I recalled that when two frequencies are added together the resulting frequencies were the sum, the difference and the original two frequencies but I did not understand the meaning of the tree. A Dumnundumn tree can be most annoying with its crypticism. Give me kudos or give me criticism but please spare me the crypticism! A fact of reality, I know, is that crypticism is the spice of the Dumnundumn tree. So, in resolve, I sat the afternoon, after drying my tears, in meditations. How could I add the two wise men together to get the
dog of wisdom? Should I find me a surgeon? No, who could perform such a thing, besides that would not leave the original two. Perhaps they could have children!

The man of the mountain and the woman of the sea had children. It was not easy getting them to marry and have a family-she would cry, you have no feelings, and he would yell, you know not reason!-but over the years they had four children. One child had no brains at all; one was like its mother destined to live in a sea of tears; one like its father never aware of the warmth of a sun; and one had a whole brain. Janus by Devoid Void

\section*{Heart andor Head?}

Commonly one will hear people speak of ignoring reason because it cannot be trusted-to follow one's heart or feelings, meaning emotion, while others speak of following reason-to ignore feelings because they cannot be trusted. Who is right? Should we rise above sensory experience or drown in a sea of tears? Perhaps neither or perhaps both.

Is it possible to learn what our function is if we à priori demand that our function is not really our function? If the emotional deny reason or the reasonable deny emotion can we attain to any kind of value? Maybe the human brain is divided into two based on something real and necessary, say the definition of \(\boldsymbol{a}\) thing itself? Maybe the human brain is divided the same way our senses are divided, between those that abstract matter and those that abstract form-and perhaps form is to reason as matter is to emotion? Perhaps it is not possible to attain to the perfection of our function until emotion becomes circumscribed by reason-emotion enrobed by reason.

Definition of Thing: A definition provides that name of both a thing's form and a thing's matter.

Form is absolute and is never difference, matter is relative and is always difference.
By analogy then,

\section*{Definition of Motive: Motive is emotion (matter) circumscribed by reason (form).}

There once was a child with a whole brain who set out on a journey to find a wise man that took him to the highest reaches of the earth. Upon arriving atop the tallest mountain, upon which the wisest of men sat, he discovered, much to his dismay, that the man had but half a brain. And so the child with a whole brain set out again to find a wise man, a journey that took him to the deepest reaches of the sea. Upon arriving beneath the deepest ravine, within which sat the wisest of men, the child with a whole brain discovered, much to his dismay, that the woman had but half a brain. And so he set off to find him two asses, one to carry the wisest man of the tallest mountain and the wisest man of the deepest watery ravine and carried them both, upon their respective ass, to a marshy plain. There he set them upon the damp ground, between heaven and hell, before each other but each other they did not see. The child with a whole brain bid each wise man to speakin his own tongue, both about the same thing and at the same time. One of the wise men, the woman of the sea, spoke with matter-crafts-and the other wise man, the man of the mountain, spoke with form-words. The devoid (matter) and the void (form) came together to create a thing called knowledge. Thus the child achieved a formal education through his parents and became truly wise. Janus by Devoid Void

At this point, the reader may not understand, perhaps Plato and Aristotle can help explain.

\section*{NOTE}

There are sections in this book with extra wide margins within which to take notes, wisdom, however, prefers something erasable.

In order to acclimatize the reader into the use of synonyms by Plato and Aristotle, I have compiled a table. The table is not exhaustive. How the reader may use a word to mean something must be set aside and they must make an attempt to understand the use of words as the authors used them.

Every body sense acquires and manipulates things, even the human mind. In order to start one on the way to comprehension, let me render a definition;

Thing: A thing is any differences what so ever circumscribed by any form what so ever.

\section*{Context of Synonyms}
\begin{tabular}{|l|l|}
\hline Actuality: & \begin{tabular}{l} 
"the actuality or shape is smoothness. It is obvious then, from what has been said, what sensible \\
substance is and how it exists-one kind of it as matter, another as form or actuality" \\
"for the essence certainly attaches to the form and the actuality." \("\) \\
"in a formula there is always an element of matter as well as one of actuality; e.g. the circle is 'a \\
plane figure'."" \\
"But, as has been said, the proximate matter and the form are one and the same thing, the one \\
potentially, and the other actually."" \\
"Obviously, therefore, the substance or form is actuality."
\end{tabular} \\
\hline & \begin{tabular}{l} 
"Further, then, these substances must be without matter; for they must be eternal, if anything is \\
eternal. Therefore they must be actuality." \\
"Now matter is potentiality, form actuality;"
\end{tabular} \\
\hline "For, as we said, the word substance has three meanings form, matter, and the complex of both \\
and of these three what is called matter is potentiality, what is called form actuality."
\end{tabular}\(\left|\begin{array}{l}\text { "In another sense (2) the form or the archetype, i.e. the statement of the essence, and its genuses, } \\
\text { are called 'causes' (e.g. of the octave the relation of 2:, and generally number), and the parts in the } \\
\text { definition." }\end{array}\right|\)\begin{tabular}{l} 
"the contraries as differentiae, i.e. Forms)"
\end{tabular}

\footnotetext{
\({ }^{1}\) Notice that after defining actuality to mean form he uses the two words as if they are now different.
\({ }^{2}\) By substitution 'in a formula there is always an element of matter as well as one of form; e.g. the circle is 'a plane figure'.'
\({ }^{3}\) Is this a translator's error? Should be, 'But, as has been said, the proximate matter and the form are of one and the same thing, the one potentially, and the other actually.'
}
\(\left.\begin{array}{|l|l|}\hline & \text { "And since the essence is substance" } \\ \hline \text { Genus: } & \begin{array}{l}\text { "Moreover, primary substances are most properly called substances in virtue of the fact that they } \\ \text { are the entities which underlie everything else, and that everything else is either predicated of } \\ \text { them or present in them. Now the same relation which subsists between primary substance and } \\ \text { everything else subsists also between the species and the genus: for the species is to the genus as } \\ \text { subject is to predicate, since the genus is predicated of the species, whereas the species cannot } \\ \text { be predicated of the genus. Thus we have a second ground for asserting that the species is more } \\ \text { truly substance than the genus." } \\ \text { "the genus is the pattern of the various forms-of-a-genus; therefore the same thing will be } \\ \text { pattern and copy." } \\ \text { "As the genus is 'in' the species and generally the part of the specific form 'in' the definition of } \\ \text { the specific form." }\end{array} \\ \hline \text { Nature: } & \begin{array}{l}\text { "and not only is the first matter nature (and this in two senses, either the first, counting from the } \\ \text { thing, or the first in general; e.g. in the case of works in bronze, bronze is first with reference to } \\ \text { them, but in general perhaps water is first, if all things that can be melted are water), but also the } \\ \text { form or essence, which is the end of the process of becoming.-(6) By an extension of meaning } \\ \text { from this sense of 'nature' every essence in general has come to be called a 'nature', because the } \\ \text { nature of a thing is one kind of essence." } \\ \text { "For when we state the essential nature of the sphere or circle we do not include in the formula } \\ \text { gold or bronze, because they do not belong to the essence, but if we are speaking of the copper or } \\ \text { gold sphere we do include them." } \\ \text { "Whether the form or the substratum is the essential nature of a physical object is not yet } \\ \text { clear." }\end{array} \\ \hline \text { Pretentiality: } & \begin{array}{l}\text { "Another account is that 'nature' is the shape or form which is specified in the definition of the } \\ \text { Now matter is potentiality, form actuality; } \\ \text { For, as we said, the word substance has three meanings form, matter, and the complex of both } \\ \text { and of these three what is called matter is potentiality, what is called form actuality. }\end{array} \\ \text { it is evident what the underlying matter is, of which the forms are predicated in the case of }\end{array}\right\}\)

\footnotetext{
\({ }^{4}\) The phrase, not separable except in statement meaning that the perception is always of things, has a great deal of significance and number of implications.
}
\(\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { sensible things } \\ \text { a thing must share in its form as in something not predicated of a subject } \\ \text { the predicate is a form and a 'this', the ultimate subject is matter and material substance } \\ \text { In the case of predicates constituting the essential nature of a thing, it clearly terminates, seeing }\end{array} \\ \text { that if definition is possible, or in other words, if essential form is knowable, and an infinite series } \\ \text { cannot be traversed, predicates constituting a thing's essential nature must be finite in number. } \\ \text { And the positive form is one-the order, the acquired art of music, or any similar predicate. }\end{array}\right\}\)

One might see that Socrates, Plato and Aristotle were trying to abstract the definition of thing and elucidate the implications of this definition as the paradigm upon which all of reasoning is derived. The senses of the human body start with things and all manipulation follows from \(\boldsymbol{a}\) thing. The first task of processing a thing is the abstraction of either form or matter.

\section*{Paradigm of A Thing}

As one asserts a point (form) of linearity (matter), or elucidates the linearity (matter) between two points (form) to create a thing called a line, so too can one only assert or deny form or matter of \(\boldsymbol{a}\) thing in the unit sentence. How these unit sentences are added and subtracted to form more complex sentences is a topic for another time. Suffice it to say, that without understanding the paradigm upon which a sentence is founded, it is not possible to write a grammar, consequently what has come down to us as grammar may have been overly embellished by miscomprehension-much like Bertrand Russell's Theory Of Types. As a thing has one and only one definition, the founding paradigm for all logics is the same, be that the logic of a Geometric Figure (Grammar) or of English Grammar.

\section*{Contents}
Forewarning-Worth! ..... i
What is Your Value? ..... i
Heart andor Head? ..... ii
NOTE ..... iii
Paradigm of A Thing ..... v
Introduction .....  1
What Is This Text About? ..... 1
What Are My Qualifications? ..... 
Where Am I Going? ..... 2
The Number of His Name .....  3
Sense ..... 6
Definitions ..... 7
Forms Of Enlightenment ..... 9
In Short ..... 9
Methods ..... 11
Definition ..... 12
Plato on Definition ..... 12
Aristotle On Definition ..... 14
The Theory of Forms ..... 25
Plato on Form ..... 25
Plato on Participation in the Form (Matter) ..... 27
Synonym Toast: Aristotle And The Theory of Forms ..... 30
Categories by Aristotle ..... 73
Substance ..... 76
Quantity ..... 82
Quality ..... 93
Relative, Action, Affection ..... 99
Time, Place, State ..... 100
Opposition ..... 100
Prior ..... 107
Simultaneity. ..... 108
Motion ..... 110
Possessives ..... 111
Conclusion of Categories ..... 111
Leaving the Cave; Human Enlightenment ..... 113
Plato on Definition; Parmenides ..... 114
Conclusion ..... 184

\section*{Introduction}

\begin{abstract}
A man must be gifted with very considerable ability before he can learn that everything has a class and an absolute essence; and still more remarkable will he be who discovers all these things for himself, and having thoroughly investigated them is able to teach them to others. Parmenides by Plato
\end{abstract}

\section*{What Is This Text About?}

Tsze-lu said, "The ruler of Wei has been waiting for you, in order with you to administer the government. What will you consider the first thing to be done?"

The Master replied, "What is necessary is to rectify names."
"So! indeed!" said Tsze-lu. "You are wide of the mark! Why must there be such rectification?"
The Master said, "How uncultivated you are, Yu! A superior man, in regard to what he does not know, shows a cautious reserve.
"If names be not correct, language is not in accordance with the truth of things. If language be not in accordance with the truth of things, affairs cannot be carried on to success. Analects by Confucius

The quest for reason seems to be indigenous to a very few individuals in every culture. This paper is about The Theory Of Forms found in the early Greek works of Plato and Aristotle. The importance of The Theory Of Forms cannot be overestimated. I am familiar with no work by any author who, in my estimation, understood what the theory is or its importance in the psychological foundation of the human mind \({ }^{5}\). How I became interested in the study this theory and its importance to me is outlined in this introduction-but in a nutshell, The Theory Of Forms is an examination of the definition of the word thing and what the definition implies for all of reasoning. The paradigm upon which all reasoning is and must be based is the definition of \(\boldsymbol{a}\) thing-the consequences of that definition is The Theory Of Forms. A thing is any difference what so ever circumscribed by any form what so ever. A thing-being-in the application of primary predication-is the foundation of reason and the foundation of the subject matter of First Philosophy.

The definition of \(\boldsymbol{a}\) thing not only divides all of logic into two major categories, one of which has not yet been understood as a logic, but also determines what the simple sentence is, what predication is, and how language itself must be conceived. The definition of \(\boldsymbol{a}\) thing determines even what a Formal Presentation is. A Formal Presentation is two logic systems, one a relatiologic and one a tautologic, side by side saying the same thing, an idea that is based on the very definition of the word thing. This idea has been so misunderstood that almost all of what has been called Formal Systems are no more than waste paper-equivalent to mental masturbation. Plato stated (Seventh Letter) that the foundation of philosophy (First Philosophy) was very simple and could not be forgotten once understood (Elementary Predication), but he also said that he would never set it out in expository manner-Aristotle's method. Neither method, the pull method of Plato or the push method of Aristotle, seems to have been effective in teaching basic logic-grammar-historically Buridan's ass just wont move toward reason.

\section*{What Are My Qualifications?}

I am a factory worker-a pseudo-intellectual. After winning a couple of writing awards, I

\footnotetext{
5 This does not mean that I am familiar with much that has been written on the subject.
}
dropped out of college to pursue my own path-there was and is to my mind something horribly wrong with man's ability, my ability, to think. I don't live in an age where the examination, the exercise, of our ability to think is a manly pursuit, I live in an age where even the smallest courtesy in examining reasoning can get one thrown in jail \({ }^{6}\). Trying to entice people into an examination of how we think is met with reactions from people who are actually pained at the prospect of self-examination. Public entertainment has about reached the pits of common denomination-personal and social masturbation. How easily amused is the mass man-and how proud he is of such a vulgar achievement. This is a very strange world I live in. And so I dropped out. I set my own studies and do the best I can, alone, to answer some very fundamental questions that I don't believe I have ever seen rightly answered. I work on the Yoga Sutras, a translation is hinted at the likes of which I have never seen-a translation commensurate with the literary master Patanjali, not the Patanjali of mythology. I work in geometry and have developed a figure that leads one to all the information needed to solve the Delian Problem-the abstraction of cube roots. This work is written in Algebraic and Geometric Grammar. All of the things I work on are to improve my understanding. But perhaps I am just another non-entity, just another lost and meaningless soul. All the same I am just a factory worker-a pseudo-intellectual.

\section*{Where Am I Going?}

What is my purpose in life? Why do I live? What does it mean to be a better or worse person? What is the path to personal self-improvement? I believe that there is a right way to be, therefore I believe that these questions can be answered unequivocally. If one were to want a toaster that was the best that a toaster could be-a toaster that would make reliable breakfast toast every morning, not too light, not too dark, not an uneven baked surface, one that would not take all day to make the toast-then one would outline what the function of a toaster was and use these certain parameters as criteria for the accomplishments of that toaster. I must know what a toaster is suppose to do-what its designed function is-before I could even offer a suggestion in regard to perfecting that toaster. The same holds true for mankind-one must know what a man is for, what is his function, because the recognition of function precedes any means of objective determination of improvement by that measure.

Does man have a function? Many claim that he does not by using a misdefined concept of free will or even by denying obvious and simple causality. Does man have a purpose? One must know what a man is before that question can be answered. There can be no criteria for ethics, law, or any other form of individual or social behavior until someone/something somewhere can give us, mankind, a hint as to what a man is! Although Plato and The Theory Of Forms is the intention of this paper, getting to Plato is going to take a seemingly very strange path. Maybe someone has given us a hint, but that hint cannot be seen until a certain goal is reached-the same as any other marker. Is there a class concept by which a man can be measured?

\footnotetext{
\({ }^{6}\) I was trying to defend myself in court, when the judge ask if anyone had any questions. I had not spoken a word for the entire proceedings, the judge acted as if I were not there. I raised my hand and asked for the states definition of marriage. The judge went into an immediate rage and threatened to have me thrown in jail for daring to ask that question. Today I am an American Slave. I am being forcibly dispossessed of my earnings and have been dispossessed of all my property.
}

\section*{The Number of His Name}
"there will be no cessation of evils for the sons of men, till either those who are pursuing a right and true philosophy receive sovereign power in the States, or those in power in the States by some dispensation of providence become true philosophers." The Seventh Letter by Plato.
"The wise man should go through life with the same attitude of mind towards his country. If she should appear to him to be following a policy which is not a good one, he should say so, provided that his words are not likely either to fall on deaf ears or to lead to the loss of his own life. But force against his native land he should not use in order to bring about a change of constitution, when it is not possible for the best constitution to be introduced without driving men into exile or putting them to death; he should keep quiet and offer up prayers for his own welfare and for that of his country." The Seventh Letter by Plato.

Ever had someone tell you, "It can't be done." but those words sound so absurd that you yearn to prove them wrong? Sometimes that very word impossible grates on the very fabric of one's soul. Sometimes the problem seems to be trivial, but once solved is so much more than trivial, for example, Number Theory and Its History by O. Ore © 1948 contains;

> "The names of the Bible have been a favorite field for gematry \({ }^{7}\). Most famous is the Number of the Beast, given in the Revelation of St. John (13:18) "Here is wisdom. Let him that hath understanding count the number of the beast; for it is the number of a man and his number is six hundred three score and six." In spite of the innumerable researches on this question through the centuries it seems impossible to arrive at any definite solution. Clearly many names will have the same number. In the violent theological feuds of the Reformation it was a vicious stroke to write the opponent's name in such a way that his number became the fatal 666 of the beast."

Why a number problem? What are numbers? I have always been amazed at man's conception as to what arithmetic and numbers were. They are just names in an order naming convention. Here, in the very fact of numbers is a hint as to why the problem was given in numbers-an ordered naming convention. There are unordered naming conventions, and there are ordered naming conventions-but traditionally, historically, currently Arithmetic is not seen simply as another grammar-another logic system and the myths about it are promoted by those who have been better paper trained than the average dog. At any rate I had come to wonder if I could figure out this bad boy's name. I went to a Hebrew bookstore and purchased a dictionary set.

First of all, if how a number is translated into letters were discretional and not conventional, then there is no answer. Trying to push out an answer discretionally and not conventionally is simply a waste of time, motivated by some lack of reason. I remember being bidden in the text of the scripture to have but one measure in my purse-to see with a single eye-therefore I would suspect that this problem could only be solved by such an ideal. I reject cabalism and resort to the social convention of the Hebrew numbering system itself. Cabalism, by its very methods, violates the very tenets promoted by the Bible-and is thus a methodology based on contradiction. The fact that the answer depends on convention is no trivial statement. Reason is not possible, judgment is not possible, judgment day is not possible, until the human mind recognizes and uses standard conventions. The first stipulation then is that there is one and only one method of translating from number to letter and letter to number, and that is the established convention of the Hebrew number system. The number of his name is \(\boldsymbol{a}\) name-not some name.

\footnotetext{
\({ }^{7}\) Gematria: a cabalistic method of interpretation of the Hebrew scripture based upon the numerical value of the letters of the word.
}
"or the number of his name ... for it is the number of a man, and his number is Six Hundred Threescore and Six."
A numerology chart found in From One to Zero by George Ifrah provided me with,
\begin{tabular}{|c|c|c|c|c|c|}
\hline Letter Name & Sound & Number value & Letter Name & Sound & Number value \\
\hline Aleph & A & 1 & Lamed & L & 30 \\
\hline Beth & B & 2 & Mem & \[
\mathrm{M}
\] & 40 \\
\hline Gimel & G & 3 & Nun & N & 50 \\
\hline Daleth & D & 4 & Samekh & \[
S
\] & 60 \\
\hline He & H & 5 & Ayin & ، & 70 \\
\hline Vav & V & 6 & Pe & P & 80 \\
\hline Zayin & Z & 7 & Tsade & Ts & 90 \\
\hline Heth & H & 8 & Qoph & Q & 100 \\
\hline Teth & T & 9 & Resh & R & 200 \\
\hline Yod & Y & 10 & Shin & Sh & 300 \\
\hline Kaph & K & 20 & Tav & T & 400 \\
\hline
\end{tabular}
\(666=400+200+60+6\) by the convention of Hebrew numbering.
\begin{tabular}{|l|c|l|}
\hline Tav & T & 400 \\
\hline Resh & R & 200 \\
\hline Samekh & S & 60 \\
\hline Vav & V & 6 \\
\hline
\end{tabular}

I do not know Hebrew, in fact the only language that I do know is a portion of my native tongue. Taking the four letters, I searched the dictionary for 400, 200, 60, 6. TRSV. There is no word listed in Hebrew Dictionary. Curious, the starting letter, according to the dictionary, is \(a\) letter that ends words-this implies that the numbers are backwards.

Why would anyone, construct a meaningless puzzle? Certainly it cannot be meaninglessunless it was written by a moron. Perhaps there are hints in the text itself as to what to do with the four letters.

Re:13;2 And the beast which I saw was like unto a leopard, and his feet were as the feet of a bear, and his mouth as the mouth of a lion: and the dragon gave him his power, and his seat, and great authority.
Who described themselves in the Bible using all three images?
Ho:13;7 Therefore I will be unto them as a lion; as a leopard by the way will I observe them:
Ho:12;8 I will meet them as a bear that is bereaved of he whelps, and will rend the caul of their heart, and there will I devour them like a lion; the wild beast shall tear them.

The image is God but it is not God because,
\(\mathrm{Re}: 12 ; 18\) Here is wisdom. Let him that hath understanding count the number of the beast: for it is the number of a man; and his number is Six Hundred Threescore and six.

It is a man. What is the relationship of God to man given in the scripture?
Ge:1;27 So God created man in his own image, in the image of God created he him; male and female created he them.

The image, perception is by image. When I look in the mirror I see an image; an image is backwards.

Re:13;14 ... "that they should make an image to the beast..." (Quote from Moses here) Turn it around, \(6,60,200,400\), or VSRT.

Now I must bid the reader, in to understand the number of his name, once again, make an image of the beast. Now what Hebrew word does this image make? "to shutter" and the conversive (turning the past into the future and the future into the past.) Found in the dictionary written by R. Alcalay. The shutter that turns the past into the future and the future into the past. I recalled to mind the Law, the answer must be repeated two or three times in the text.

Re:12;18 Here is wisdom. Let him that has understanding count the number of the beast: for it is the number of a man; and his number is Six Hundred Threescore and six.

Putting the numbers in counting sequence is the same as taking their image-for at least the third time, make an image of the beast. And so there are at least three ways the text tells one to turn the letters around-to take their image. What is the significance of the shutter that turns the past into the future and the future into the past?

\section*{Shutters}
"And these words, which I command thee this day, shall be in thine heart; And thou shalt teach them diligently unto thy children, and shalt talk of them when thou walkest by the way, and when thou liest down, and when thou riset up. And thou shalt bind them for a sign upon thine hand, and they shall be as frontlets between thine eyes. And thou shalt write them upon the posts of thy house, and on thy gates.
De:27;2 "And it shall be on the day when ye shall pass over Jordan unto the land which the Lord thy God giveth thee, that thou shalt set thee up great stones, and plaister them with plaister: And thou shalt write upon them all the words of the law, when thou art passed over, that thou mayest go in unto the land which the Lord thy God giveth thee, a land that floweth with milk and honey; as the Lord God of thy fathers hath promised thee. Therefore it shall be when ye be gone over Jordan, that ye shall set up these stones, which I command you this day, in mount Ebal, and thou shalt plaister them with plaister."

\section*{Seals}

Is:29;11 And the vision of all is become unto you as the words of a book that is sealed.
Re:5;1 And I say in the right hand of him that sat on the throne a book written within and on the backside, sealed with seven seals.
\(\operatorname{Re}: 7 ; 3\) "...till we have sealed the servants of our God in their foreheads."
Ez:9:4 "And the Lord said unto him, Go through the midst of the city, through the midst of Jerusalem, and set a mark upon the foreheads of the men that sigh and that cry for all the abominations that be done in the midst thereof."
7 But in the days of the voice of the seventh angel, when he shall begin to sound, the mystery of God should be finished, as he hath declared to his servants the prophets.
6 ...having seven horns and seven eyes which are the seven Spirits of God sent forth into all the earth.

Seven horns are seven ways to protect our life and seven eyes are seven ways to perceive-if one can think in terms of one and only one measure, man has seven senses. What is the sense that turns the past into the future and the future into the past? How is prophecy and judgment the same? Is not the goal of reason to infer consequences? Do we not learn by past experience to predict the results of our behavior? Hello World! How simple does a puzzle have to be? And lastly, a solution is effected yet another way. I am not my stomach, nor my eyes, I am mind-a man is named, is addressed through his mind.

Re:12;18 Here is wisdom. Let him that has understanding count the number of the beast: for it is the number of a man; and his number is Six Hundred Threescore and six.

Apparently only one man in history was suppose to solve for the name of the beast. This man is supposed to have understanding, but I have no understanding. Now this is strange. At any rate one can consider a man as a collection of, seven-as a matter of biological fact-senses. The beast itself is a metaphor for a human body sense of mind responsible for judgment. The beast is man come unto judgment day-a day he has learned to distinguish right from wrong.

What is the defining characteristic that allows one to classify all the body senses into one group such that he becomes the lamp of seven lights or a beast of seven eyes and seven horns or again as a Jew with seven wives hiding his nakedness? What is the simile in multis involved?

\section*{Sense}

A definition, rightly described by Aristotle, states both the form and the substance of a thing. The definition of this thing called a sense is used like any other unit by which we can determine if another thing is a member of a class or not. It is a convention by which judgment is rendered. Definition determines how things are ordered.

Body Sense: A body sense system is that which acquires something from the environment, processes that which it has acquired and the product is used to sustain and promote that human life.
1) Gastro-intestinal system is a sense.

Acquires food.
2) Cardio-vascular system is a sense.

Acquires oxygen.
3) Visual system is a sense.

Acquires perspective.
4) The auditory system for gravitational orientation is a sense.

Acquires balance.
5) Tactile system for manipulation for crafts is a sense.

Acquires the raw material for crafts.
6) Reproductive system is a sense.

Acquires D. N. A. for parenting.
7) The human mind is a sense.

Acquires experience and process it so that we can predict the results of human behavior in order to sustain and promote our life.

The Human Mind: That body system which acquires experiences, processes those experiences in order to predict the results of human behavior for the purpose of sustaining and promoting human life.

Of course, I don't have it exactly right, what can be expected of a factory worker? But still, the beast is the sense of judgment performed by the human mind. The name of the beast is acquired from the very biological construction of man himself-objective reality as convention.

Perception determines conception and conception determines will is the causal chain reflected by the definition of every human body sense. The definition of body sense demands that life is initiated through reconnaissance-acts of perception-experience and ultimately terminates in expression-what we do. By accomplishing through the function of each and every body sense those things that sustain and promote the life of the individual-through those things that are peculiar to each and every body sense-we attain to life and a life of reason-judgment. It is this individual concern that sums to the concerns of any social enterprise. This does not vary from individual to individual-or from society to society for there is one and only one definition of man. How we, as individuals and as a collective, attain to those ends which correlate to judgment vary as functions of environment and personal intelligence-like any other craft. Thought is a craft that initiates expression-action-enterprise-that is measured in longevity and quality of life. Grammar, logic, reasoning, judgment serve the purpose to have life and have it more abundantly.

By definition the human mind is a body sense and it acquires something from the environment, like all senses, and processes those things. The processing of things by the body's senses entails the abstraction of either form from thing or matter from a thing. The human body senses are then divided into two groups, those that abstract matter (breathing, eating, and craft) from a thing, and those which abstract form from a thing (sight, sex, reason). This is why those who have stated that we never know the thing in itself were entirely right, as a body sense abstracts either matter or form-otherwise the sense would not process a thing and not be a sense at all. This fact about abstraction leads us to The Theory Of Forms expounded in the works of Plato and Aristotle.

The human mind processes a thing called experience. Experience is gathered during time and it is our experiences that feed the mind so that it can make a product that sustains and promotes our life. That product, as was pointed out by the grammarian Patanjali in a proper translation of the Yoga Sutras, is human behavior mitigated by judgment-predication-prediction-reason. We are the Body Prophets and it is our experiences that lead us to prophesy. Prophecy is the prediction of the results of human behavior or more generally predicting the results of propositional manipulations-propositional calculus, if you will. Or one might say we are to become philosophers by experiences leading us to judgment. The puzzle about the name of the beast is a children's story for minds just learning to reason. Was it not written that by eating (consuming) of the tree of life (experience) one might learn judgment (reason) and come to judgment day-a day when man can reason in truth-truely reason that is? Reason starts by understanding the definition of a word.

\section*{Definitions}

As Aristotle pointed out,

\begin{abstract}
It is also clear that the loss of any one of the senses entails the loss of a corresponding portion of knowledge, and that, since we learn either by induction or by demonstration, this knowledge cannot be acquired. Posterior Analytics by Aristotle
\end{abstract}
the deprivation of experience (induction) is equitable to the loss of sense for without the acquisition of experience there is nothing for the mind to process (demonstration)-words are only form, they must be endowed with matter-experience. What kinds of experiences teach us how things are manipulated? Crafts. Our own psychology demands that we invest in crafts on a personal level. As words are the form, objects of sense the matter so too knowledge is the thing. It is these experiences that provide our mind with the material whereby we make abstractions needed to construct and understand definitions that are used to fulfill our function guided by right judgment. Learning how words are associated by rote is not the learning of reason.
If things are defined in terms of matter and form, how are matter and form defined?

> But none of these primeval elements can be defined; they can only be named, for they have nothing but a name, and the things which are compounded of them, as they are complex, are expressed by a combination of names, for the combination of names is the essence of a definition. Theaetetus by Plato

The definition of the phrase a thing not only divides logic into two branches \({ }^{8}\) but also provides one with a standard to divide words into three groups-those that stand for \(\boldsymbol{a}\) thing, those that stand for forms, and those that stand for matter. It has been errantly believed that one can define any word in any group. This may have been a matter of contention between Aristotle and Plato. Plato rightly asserted that form and matter could only be named and must be learned by direct experience. Aristotle however called descriptions for constructing those experiences definitions also-thus making it appear that form and matter could be defined. As explained by Plato-demonstratred in Parmenides, this is not true, only things are defined-form and matter must be abstracted, or as Aristotle pointed out, inducted. Definition is the denotation of a things form and matter. Neither form nor matter can be defined because they are not things. As only things exist, one cannot say that either form or matter exists without contradicting the definition of \(\boldsymbol{a}\) thing. In Parmenides Plato will also point out that one can neither deny form and matter existence.

The meaning of words that denote things can be transmitted though a definition, how is the meaning of forms and matter transmitted? By abstraction-the so-called definition of a circle is not a definition at all, but it is a description for producing a circle from which experience may be acquired. Knowledge of matter is acquired also by direct experience. Again, forms and matter, as Plato pointed out, are simply named. One can indicate an abstraction-but that is not a definition. What is plainly indicated is that since a social structure relies on common elements-individuals-a common set of crafts allied with a common set of texts, situated in a formal system, that is taught through an educational system is the only means by which to perpetuate a common set of social values needed to maintain said structure. The survival of a social structure depends on shared meaning.

\footnotetext{
\({ }^{8}\) Tautological and relatiological.
}

\section*{Forms Of Enlightenment}

Plato outlined a path to enlightenment by describing what the human mind must accomplish to attain it.
"But take the case of the other, who recognizes the existence of absolute beauty and is able to distinguish the idea from the objects which participate in the idea, neither putting the objects in the place of the idea nor the idea in the place of the objects-is he a dreamer, or is he awake?" The Republic by Plato

This statement is one key to understanding the dialog called Parmenides. Plato will run through all the ways, and consequences of confusing form, matter and a thing. Putting this statement in general terms of The Theory Of Forms yields,

But take the case of one who recognizes the existence of definitions and is able to distinguish the form from the matter which is contained by the form, neither putting the matter in the place of the form nor the form in the place of the matter-his mind is enlightened.
Grammar only becomes operative when it is clear in the mind that a name is a form and that which is designated-contained-by that name is matter. The concept of definition means that the human mind is manipulating real abstract things comprised of names as form and what those names stand for as matter when it becomes grammatically functional. We must, as a result of this realization, first learn simple predication. What are the mistakes in thinking that the mind must learn to overcome? What does he mean by form and matter? This brings us to The Theory Of Forms.

\section*{In Short}

\begin{abstract}
On The Soul: Since according to common agreement there is nothing outside and separate in existence from sensible spatial magnitudes, the objects of thought are in the sensible forms, viz. both the abstract objects and all the states and affections of sensible things. Hence (1) no one can learn or understand anything in the absence of sense, and (when the mind is actively aware of anything it is necessarily aware of it along with an image; for images are like sensuous contents except in that they contain no matter. Aristotle.
\end{abstract}

Thought is form without matter, thought is possible through the abstraction of form from things. The early Greek writers were on the brink of comprehending man as a group of senses where reason is divided in the same way form and matter are abstracted from the very experiences of things themselves which are the resources of those senses.

Plato, probably initiated by Parmenides, realized that the definition of \(\boldsymbol{a}\) thing provided the paradigm from which all reasoning is developed-it is the great paradigm of logic. This means that grammar, all grammars, are derived from that paradigm. The definition of a thing is really quite simple, any difference what so ever circumscribed by any form what so ever, is a thing. If one is not aware of which words stand for things, which for forms, and which for matter, one cannot help but think non-sense and express non-sense-one is in reality mentally dysfunctional. In that regard the following two quotes are equivalent.
"But take the case of the other, who recognizes the existence of absolute beauty and is able to distinguish the idea from the objects which participate in the idea, neither putting the objects in the place of the idea nor the idea in the place of the objects-is he a dreamer, or is he awake?" The Republic by Plato
"Thus that in the soul which is called mind (by mind I mean that whereby the soul thinks and judges) is, before it thinks, not actually any real thing." On The Soul by Aristotle

This is what is meant in the Judeo-Christian Scripture that we are dead. This is why the
resurrection of the dead is on judgment day. Judgment Day is the day that man learns to reason, learns judgment, he comes to life. Not a mystical event at all-it is a simple biological fact. Certain wise men preached the resurrection of the dead through the only means, by definition, possible-the exercise of reason. These were and are the true preachers of truth in history.

Every body sense processes things that it gathers from the environment-fundamentally the process abstracts and uses either the matter or the form from a thing. Only when the human mind functions by abstraction derived from direct experience can it be said to live. If it cannot perform its function, it is dead-that man's name will not be written in the Book Of Life. The denial of objective epistemology is the death of mankind. For example, digestion abstracts the matter and discards the form of the things we eat-it does not fabricate its own food. Breathing is the same. Tactile manipulation in crafts the same. Sex, hearing, seeing however all abstract form in a different way-leaving the matter. Reasoning uses forms abstracted from things called experience-it is for this reason that the paradigm is called The Theory Of Forms-if our concern was eating, breathing or crafts, we would call it The Theory Of Matter \({ }^{9}\). Plato demonstrated that if we removed the crafts from the definition of wisdom, then wisdom cannot be found.

Another way of saying a thing is that it is matter that participates in a form and another way of saying a form contains matter is simile in multis. Plato stressed the simile in multis-the similar idea in the many examples-the one form (set) comprised of many examples (members). This fact is universal in propositional (a thing) manipulation and is a fundamental to the naming convention of any grammar \logic system. For example, in Euclidean Geometry there is a point (form), linear difference (matter) and a line (a thing). Form and matter are always inseparable from a thing. In common grammar one asserts a name of experience. Imagine that someone were to say to you, given any of two of the three elements of Geometry, one may be asserted of the other or not. We can assert (predicate) a point of linear difference or the linear difference of a line but we cannot assert (predicate) a point of a point. These elemental assertions and denials are the procedures for constructing any Geometric figure-it is a relatiologic-a grammar. Imagine that someone were to say to you, given any two words in English Grammar one word may be asserted of the other or not. Have you, the reader, ever been taught in school the fundamentals of assertion and denial-a basic to understanding grammar? I, for myself, cannot recall such teachings-but then, I may have slept through it.
\[
\begin{array}{ll}
\text { Potatoes are food. } & \mathrm{A}=\mathrm{B} . \\
\text { Tomatoes are not weapons! } & \mathrm{D} \neq \mathrm{E} .
\end{array}
\]

Elemental assertions and denials are what is used to construct all sentences-these Aristotle called premises. Two premises construct a definition when the assertion is of \(\boldsymbol{a}\) thing's form and a things matter.

There is one set of ideas that underlies all grammar systems, one set of ideas that underlies all the manipulations we engage in with the environment-each system may be called a craft or a grammar or a logic if one recognize the simile in multis underlying them all. How do we know in any logic system which element may be asserted of which especially in a grammar system, like common grammars, where all words are composed from the same alphabet? Just as there are
\({ }^{9}\) The Ethics by Spinoza was an attempt at The Theory Of Substance that he had offered as a counter to The Theory Of Forms, however Spinoza was not particularly bright, having no understanding of the abstraction, and botched the whole affair from the start.
causal relationships for constructing a Geometric figure, there are causal relationships for constructing the English figure called a sentence. Because the abstraction is The Common Universal Of Sense, common sense for short, if one cannot comprehend, for example, the principles of Euclidean Geometry, that they be denied, then one has no hope of ever being literate in any grammar. There is one and only one founding paradigm upon which all reasoning is based, be it expressed in common grammar, geometry, arithmetic, algebra-or even frying an egg. One of the goals one must achieve to become enlightened is the real and objective process of abstracting the simile in multis and it in all the grammars we speak.

\section*{Methods}

We cannot command the eyes to see, nor can sanity be legislated, but we can discover and engage in the exercise of the eyes and mind we do have. Short of a formal system exampled by Euclid, there are two general methods of writing to try and teach a subject-one is covert and one is overt. Both of these methods rely upon the memory of the individual readers. Plato tried covertly to educate men in the ways of reason through entertaining dialogs and was opposed (Seventh Letter) to the overt Aristotelian method of exposition. Examining Plato's prohibition against writing, perhaps acquired from Socrates, the dialogs, modeled after Aesop's fables, appears to be a compromise with his natural abhorrence for the mass man.

\section*{Definition}

\begin{abstract}
Stranger. We ought always to come to an understanding about the thing itself in terms of a definition, and not merely about the name minus the definition. The Sophist by Plato
\end{abstract}

How does a word get its meaning? What does definition mean? How is a word defined? Where does the definition of a word come from? Does definition supply the meaning of a word? What is the difference between definition and description?

\section*{Plato on Definition}

The Seventh Letter: For everything that exists there are three instruments by which the knowledge of it is necessarily imparted; fourth, there is the knowledge itself, and, as fifth, we must count the thing itself which is known and truly exists. The first is the name, the, second the definition, the third the image, and the fourth the knowledge. If you wish to learn what I mean, take these in the case of one instance, and so understand them in the case of all.
1). A circle is a thing spoken of, and its name is that very word which we have just uttered.
2). The second thing belonging to it is its definition, made up names and verbal forms. For that which has the name "round," "annular," or, "circle," might be defined as that which has the distance from its circumference to its center everywhere equal.
3). Third (image), comes that which is drawn and rubbed out again, or turned on a lathe and broken up-none of which things can happen to the circle itself-to which the other things, mentioned have reference; for it is something of a different order from them.
4). Fourth, comes knowledge, intelligence and right opinion about these things. Under this one head we must group everything which has its existence, not in words nor in bodily shapes, but in souls-from which it is clear that it is something different from the nature of the circle itself and from the three things mentioned before. Of these things intelligence comes closest in kinship and likeness to the fifth, and the others are farther distant \({ }^{10}\).

The Seventh Letter: Again you must learn the point which comes next. Every circle, of those which are by the act of man drawn or even turned on a lathe, is full of that which is opposite to the fifth thing. For everywhere it has contact with the straight. But the circle itself, we say, has nothing in either smaller or greater, of that which is its opposite. We say also that the name is not a thing of permanence for any of them, and that nothing prevents the things now called round from being called straight, and the straight things round; for those who make changes and call things by opposite names, nothing will be less permanent (than a name). Again with regard to the definition, if it is made up of names and verbal forms, the same remark holds that there is no sufficiently durable permanence in it. And there is no end to the instances of the ambiguity from which each of the four suffers; but the greatest of them is that which we mentioned a little earlier, that, whereas there are two things, that which has real being, and that which is only a quality, when the soul is seeking to know, not the quality, but the essence, each of the four, presenting to the soul \({ }^{11}\) by word and in act that which it is not seeking (i.e., the quality), a thing

\footnotetext{
\({ }^{10}\) Notice that Plato's five actually reduce to three-the paradigm of a thing. 1). Names and the ability to manipulate names. (forms) 2). Experience and the ability to manipulate experience. (matter) 3). The thing itself.
\({ }^{11}\) In his use of soul mind should have been used by the translator.
}
open to refutation by the senses, being merely the thing presented to the soul in each particular case whether by statement or the act of showing, fills, one may say, every man with puzzlement and perplexity.

Here Plato is well on his way, but he is not there yet.
The Seventh Letter: In one word, the man who has no natural kinship with this matter cannot be made akin to it by quickness of learning or memory; for it cannot be engendered at all in natures which are foreign to it. Therefore, if men are not by nature kinship allied to justice and all other things that are honorable, though they may be good at learning and remembering other knowledge of various kinds-or if they have the kinship but are slow learners and have no memory-none of all these will ever learn to the full the truth about virtue and vice. For both must be learnt together; and together also must be learnt, by complete and long continued study, as I said at the beginning, the true and the false about all that has real being. After much effort, as names, definitions, sights, and other data of sense, are brought into contact and friction one with another, in the course of scrutiny and kindly testing by men who proceed by question and answer without ill will, with a sudden flash there shines forth understanding about every problem, and an intelligence whose efforts reach the furthest limits of human powers. Therefore every man of worth, when dealing with matters of worth, will be far from exposing them to ill feeling and misunderstanding among men by committing them to writing. In one word, then, it may be known from this that, if one sees written treatises composed by anyone, either the laws of a lawgiver, or in any other form whatever, these are not for that man the things of most worth, if he is a man of worth, but that his treasures are laid up in the fairest spot that he possesses. But if these things were worked at by him as things of real worth, and committed to writing, then surely, not gods, but men "have themselves bereft him of his wits \({ }^{12}\)."
scrutiny and kindly testing by men who proceed by question and answer without ill will, here is the form by which the Platonic dialogs are based. This was a pastime of early Greek Philosophers. In the Seventh Letter one learns what topics Plato will be exampling and by what method he will produce them. There is a dialog, Phaedrus, which also gives a very valuable clue as to what the outline of a piece will be based on-a principle. Where Aesop used moral principles, Plato used principles of reason-when the reader grasps the principle of reason, they will then grasp the outline of a piece.

Phaedrus: Socrates. First, the comprehension of scattered particulars in one idea; as in our definition of love, which whether true or false certainly gave clearness and consistency to the discourse, the speaker should define his several notions and so make his meaning clear.

One of the foundations of reasoning.
The Sophist: Stranger. We ought always to come to an understanding about the thing itself in terms of a definition, and not merely about the name minus the definition.

Today it is common for a highly educated individual to not even notice the error in a statement such as 'Plato discussed knowledge of the absolute, but failed to discuss absolute knowledge.' which is so much like the mystics who translate life's future into future lives.
Theaetetus: Socrates. Come, you made a good beginning just now; let your own answer about roots be your model, and as you comprehended them all in one class, try and bring the many sorts of knowledge under one definition.

\footnotetext{
12 Plato did not write in the expository manner, like Aristotle, instead he wrote in a way meant to stimulate thinking-unfortunately those who are not so quick witted still try to claim that Plato had expository meaning when he often had quite the opposite intention.
}

A founding principle of the name is the simple expression of an identity, name = name. By a name a class/set of objects is denoted. A definition is a standard of convention by which judgement of class membership, class inclusion or class exclusion, is determined-thus how names are deployed-part of a naming convention. Definition is a naming convention by which association of experiences, provided by the bodies senses, with names for a thing, a thing's form and a thing's matter is effected. If \(\boldsymbol{A}\) is a thing, \(\boldsymbol{B}\) its form and \(\boldsymbol{C}\) its matter then \(\boldsymbol{A}=\boldsymbol{B}+\boldsymbol{C}, \boldsymbol{B}=\boldsymbol{A}-\boldsymbol{C}\), and \(\boldsymbol{C}=\boldsymbol{A}\) \(-\boldsymbol{B}\). The first equation is definitive, the second and third are abstractive.
Theaetetus: Socrates. Let me give you, then, a dream in return for a dream:-I thought that I too had a dream, and I heard in my dream that the primeval letters or elements out of which you and I and all other things are compounded, have no reason or explanation; you can only name them, but no predicate can be either affirmed or denied of them, for in the one case existence, in the other non-existence is already implied, neither of which must be added, if you mean to speak of this or that thing by itself alone. It should not be called itself, or that, or each, or alone, or this, or the like; for these go about everywhere and are applied to all things, but are distinct from them; whereas, if the first elements could be described, and had a definition of their own, they would be spoken of apart from all else. But none of these primeval elements can be defined; they can only be named, for they have nothing but a name, and the things which are compounded of them, as they are complex, are expressed by a combination of names, for the combination of names is the essence of a definition. Thus, then, the elements or letters are only objects of perception, and cannot be defined or known; but the syllables or combinations of them are known and expressed, and are apprehended by true opinion. When, therefore, any one forms the true opinion of anything without rational explanation, you may say that his mind is truly exercised, but has no knowledge; for he who cannot give and receive a reason for a thing, has no knowledge of that thing; but when he adds rational explanation, then, he is perfected in knowledge and may be all that I have been denying of him. Was that the form in which the dream appeared to you?

This, that nothing can be predicated of form or matter (elements of a thing), is what Plato will demonstrate in Parmenides.

Theaetetus: Socrates. Understand why:-the reason is, as I was just now saying, that if you get at the difference and distinguishing characteristic of each thing, then, as many persons affirm, you will get at the definition or explanation of it; but while you lay hold only of the common and not of the characteristic notion, you will only have the definition of those things to which this common quality belongs.

Difference is matter and distinguishing characteristic is form. Here, Plato states that definition is composed by denoting a thing's matter and its form.

\section*{Aristotle On Definition}

Posterior Analytics: But induction is impossible for those who have not sense perception. For it is sense perception alone which is adequate for grasping the particulars: they cannot be objects of scientific knowledge, because neither can universals give us knowledge of them without induction, nor can we get it through induction without sense-perception.~

Induction too will sufficiently convince us of this difference; for never yet by defining anythingessential attribute or accident-did we get knowledge of it \({ }^{13}\).

\footnotetext{
13 Aristotle along with Plato affirms that knowledge is not imparted through definition but only through direct experience with things.
}

Posterior Analytics: If a thesis assumes one part or the other of an enunciation, i.e. asserts either the existence or the non-existence of a subject, it is a hypothesis; if it does not so assert, it is a definition. Definition is a 'thesis' or a 'laying something down', since the arithmetician lays it down that to be a unit is to be quantitatively indivisible; but it is not a hypothesis, for to define what a unit is is not the same as to affirm its existence.

Posterior Analytics: Our own doctrine is that not all knowledge is demonstrative: on the contrary, knowledge of the immediate premises is independent of demonstration. (The necessity of this is obvious; for since we must know the prior premises from which the demonstration is drawn, and since the regress must end in immediate truths, those truths must be indemonstrable.) Such, then, is our doctrine, and in addition we maintain that besides scientific knowledge there is its originative source which enables us to recognize the definitions.

Another affirmation that knowledge starts by direct experience.
Posterior Analytics: In the case of predicates constituting the essential nature of a thing, it clearly terminates, seeing that if definition is possible, or in other words, if essential form is knowable, and an infinite series cannot be traversed, predicates constituting a thing's essential nature must be finite in number.

Reduction to experience.
Posterior Analytics: (2) The universal has not a separate being over against groups of singulars.

As the form of a thing does not separately exist apart from the matter of the thing so too the Universal (the Absolute) does not exist separable from the many particulars-thus the abstract thing is real, by definition, as Plato asserted.
Posterior Analytics: (2) If there is a single identical definition i.e. if the commensurate universal is unequivocal-then the universal will possess being not less but more than some of the particulars, inasmuch as it is universals which comprise the imperishable, particulars that tend to perish.

This was Plato's doctrine-since there is one and only one definition for a thing, a class of objects is a thing. By class definition, the member is not individually distinguishable. Keep this in mind when trying to figure out Plato's Parmenides.
Posterior Analytics: The truth perhaps is that if a man grasp truths that cannot be other than they are, in the way in which he grasps the definitions through which demonstrations take place, he will have not opinion but knowledge: if on the other hand he apprehends these attributes as inhering in their subjects, but not in virtue of the subjects' substance and essential nature possesses opinion and not genuine knowledge; and his opinion, if obtained through immediate premises, will be both of the fact and of the reasoned fact; if not so obtained, of the fact alone.

Since demonstration takes place through definitions and definitions are a complex of names for a thing's form and matter and since the names of form and matter are learned by direct experience, without experience reason is not possible. Therefor, the production of a social class of individuals demonstrating a lack of reasoning ability may be directly related to sensory deprivation imposed by a sterile classroom environment. These confused and pointless individuals may be destined to a confused and pointless life. Perception determines conception and conception determines will is a causal chain originating in direct experience, a fact that makes those of us who would be parents wonder if there is not a standard set of experiences by which standards of civil society may be achieved. One set of experiences needed to come to understanding was located and formalized as The Elements by Euclid, it is Euclidean Geometry. Straightedge, compass and paper make it very
portable. Music and Gymnastics were other such sets of experiences.
Posterior Analytics: Moreover, the basic premises of demonstrations are definitions, and it has already been shown that these will be found indemonstrable; either the basic premises will be demonstrable and will depend on prior premises, and the regress will be endless; or the primary truths will be indemonstrable definitions.

In other words the limit of knowledge starts at the beginning with direct experience. I once asked a group of people, 'How does a word get its meaning?' All different walks of life and educational levels, no one knew and so I said, 'Don't you remember? Mama, what is that? asks a child pointing to something, That is a chair.'

Posterior Analytics: Moreover it is clear, if we consider the methods of defining actually in use, that definition does not prove that the thing defined exists: since even if there does actually exist something which is equidistant from a center, yet why should the thing named in the definition exist? Why, in other words, should this be the formula defining circle? One might equally well call it the definition of mountain copper. For definitions do not carry a further guarantee that the thing defined can exist or that it is what they claim to define: one can always ask why.

And yet still today most so-called formalist actually think that they can demand existence through words, "there exists" . . . non-sense.

Posterior Analytics: Thus it follows that the degree of our knowledge of a thing's essential nature is determined by the sense in which we are aware that it exists.

The degree of knowledge is determined not only by the sense, but also by which ones and how many of them, also by duration and intimacy of sensual examination of the thing, experience with it. It follows then that a curriculum based on books alone does not produce knowledgeable students, but stupid ones. It is not the wise who challenges conventions nor is it the wise that cherishes a conventionless tradition or culture.

Posterior Analytics: Since definition is said to be the statement of a thing's nature, obviously one kind of definition will be a statement of the meaning of the name, or of an equivalent nominal formula. A definition in this sense tells you, e.g. the meaning of the phrase 'triangular character'. When we are aware that triangle exists, we inquire the reason why it exists. But it is difficult thus to learn the definition of things the existence of which we do not genuinely knowthe cause of this difficulty being, as we said before, that we only know accidentally whether or not the thing exists. Moreover, a statement may be a unity in either of two ways, by conjunction, like the Iliad, or because it exhibits a single predicate as inhering not accidentally in a single subject.

A premise asserts either form or substance of a thing, not both so a definition is not accomplished by a premise. A definition is a sentence constructed from two premises, one denoting a thing's substance and the other its form.
Posterior Analytics: Another kind of definition is a formula exhibiting the cause of a thing's existence. Thus the former signifies without proving, but the latter will clearly be a quasidemonstration of essential nature, differing from demonstration in the arrangement of its terms. For there is a difference between stating why it thunders, and stating what is the essential nature of thunder; since the first statement will be 'Because fire is quenched in the clouds', while the statement of what the nature of thunder is will be 'The noise of fire being quenched in the clouds'. Thus the same statement takes a different form: in one form it is continuous demonstration, in the other definition. Again, thunder can be defined as noise in the clouds,
which is the conclusion of the demonstration embodying essential nature. On the other hand the definition of immediates is an indemonstrable positing of essential nature.

Immediates, direct experience with a thing and learning its form and its matter.
Posterior Analytics: We conclude then that definition is (a) an indemonstrable statement of essential nature, or (b) a syllogism of essential nature differing from demonstration in grammatical form, or (c) the conclusion of a demonstration giving essential nature.

Posterior Analytics: In establishing a definition by division one should keep three objects in view: (1) the admission only of elements in the definable form, (2) the arrangement of these in the right order, (3) the omission of no such elements. The first is feasible because one can establish genus and differentia through the topic of the genus, just as one can conclude the inherence of an accident through the topic of the accident. The right order will be achieved if the right term is assumed as primary, and this will be ensured if the term selected is predicable of all the others but not all they of it; since there must be one such term. Having assumed this we at once proceed in the same way with the lower terms; for our second term will be the first of the remainder, our third the first of those which follow the second in a 'contiguous' series, since when the higher term is excluded, that term of the remainder which is 'contiguous' to it will be primary, and so on. Our procedure makes it clear that no elements in the definable form have been omitted: we have taken the differentia that comes first in the order of division, pointing out that animal, e.g. is divisible exhaustively into A and B , and that the subject accepts one of the two as its predicate. Next we have taken the differentia of the whole thus reached, and shown that the whole we finally reach is not further divisible-i.e. that as soon as we have taken the last differentia to form the concrete totality, this totality admits of no division into species. For it is clear that there is no superfluous addition, since all these terms we have selected are elements in the definable form; and nothing lacking, since any omission would have to be a genus or a differentia. Now the primary term is a genus, and this term taken in conjunction with its differentiae is a genus: moreover the differentiae are all included, because there is now no further differentia; if there were, the final concrete would admit of division into species, which, we said, is not the case.

\section*{For an example of definition by division see Plato's Sophist and Statesman.}

Posterior Analytics: We may add that if dialectical disputation must not employ metaphors, clearly metaphors and metaphorical expressions are precluded in definition: otherwise dialectic would involve metaphors.

Categories: It is plain from what has been said that both the name and the definition of the predicate must be predicable of the subject. For instance, 'man' is predicted of the individual man. Now in this case the name of the species man' is applied to the individual, for we use the term 'man' in describing the individual; and the definition of 'man' will also be predicated of the individual man, for the individual man is both man and animal. Thus, both the name and the definition of the species are predicable of the individual.

Categories: With regard, on the other hand, to those things which are present in a subject, it is generally the case that neither their name nor their definition is predicable of that in which they are present. Though, however, the definition is never predicable, there is nothing in certain cases to prevent the name being used. For instance, 'white' being present in a body is predicated of that in which it is present, for a body is called white: the definition, however, of the color white' is never predicable of the body.

Categories: Of species themselves, except in the case of such as are genera, no one is more truly substance than another. We should not give a more appropriate account of the individual man by stating the species to which he belonged, than we should of an individual horse by adopting the same method of definition. In the same way, of primary substances, no one is more truly substance than another, an individual man is not more truly substance than an individual ox.

Categories: It is, then, with good reason that of all that remains, when we exclude primary substances, we concede to species and genera alone the name 'secondary substance', for these alone of all the predicates convey a knowledge of primary substance. For it is by stating the species or the genus that we appropriately define any individual man; and we shall make our definition more exact by stating the former than by stating the latter. All other things that we state, such as that he is white, that he runs, and so on, are irrelevant to the definition. Thus it is just that these alone, apart from primary substances, should be called substances.

Categories: It is a common characteristic of all substance that it is never present in a subject. For primary substance is neither present in a subject nor predicated of a subject; while, with regard to secondary substances, it is clear from the following arguments (apart from others) that they are not present in a subject. For 'man' is predicated of the individual man, but is not present in any subject: for manhood is not present in the individual man. In the same way, 'animal' is also predicated of the individual man, but is not present in him. Again, when a thing is present in a subject, though the name may quite well be applied to that in which it is present, the definition cannot be applied. Yet of secondary substances, not only the name, but also the definition, applies to the subject: we should use both the definition of the species and that of the genus with reference to the individual man. Thus substance cannot be present in a subject.

The form is not in the matter. The class is not in a member. Aristotle calls matter the subject (subjected to form) and form the predicate therefore the subject is in the predicate, not the predicate in the subject.

Categories: Yet this is not peculiar to substance, for it is also the case that differentiae cannot be present in subjects. The characteristics 'terrestrial' and 'two-footed' are predicated of the species 'man', but not present in it. For they are not in man. Moreover, the definition of the differentia may be predicated of that of which the differentia itself is predicated. For instance, if the characteristic 'terrestrial' is predicated of the species 'man', the definition also of that characteristic may be used to form the predicate of the species 'man': for 'man' is terrestrial.

Differentia (form) cannot be present in subjects (matter).
On Generation And Corruption: It is therefore better to suppose that in all instances of coming-to-be the matter is inseparable, being numerically identical and one with the 'containing' body, though isolable from it by definition. But the same reasons also forbid us to regard the matter, out of which the body comes-to-be, as points or lines. The matter is that of which points and lines are limits, and it is something that can never exist without quality and without form.

Here is a very plain statement. In one dimension, points are form, linearity is matter and line is a thing. In two dimensions, planarity is matter, lines form and plane figure a thing. etc. The boundary of n -dimension is \(\mathrm{n}-1\) and when the subject is n dimensions, \(\mathrm{n}-1\) dimensions can never be considered as matter, only form. In this model, one sees definition by division in its most perfectly plain state. If getting just the definition of a thing has been so very difficult in history, really coming to understand dimensional progression may be much harder.

Metaphysics: Parmenides seems to fasten on that which is one in definition, Melissus on that
which is one in matter, for which reason the former says that it is limited, the latter that it is unlimited;

Metaphysics: 'Cause' means (1) that from which, as immanent material, a thing comes into being, e.g. the bronze is the cause of the statue and the silver of the saucer, and so are the classes which include these. (2) The form or pattern, i.e. the definition of the essence, and the classes which include this (e.g. the ratio \(2: 1\) and number in general are causes of the octave), and the parts included in the definition. (3) That from which the change or the resting from change first begins; e.g. the adviser is a cause of the action, and the father a cause of the child, and in general the maker a cause of the thing made and the change-producing of the changing. (4) The end, i.e. that for the sake of which a thing is; e.g. health is the cause of walking. For 'Why does one walk?' we say; 'that one may be healthy'; and in speaking thus we think we have given the cause. The same is true of all the means that intervene before the end, when something else has put the process in motion, as e.g. thinning or purging or drugs or instruments intervene before health is reached; for all these are for the sake of the end, though they differ from one another in that some are instruments and others are actions.

Metaphysics:-(4) The essence, the formula of which is a definition, is also called the substance of each thing.

> Here is where Aristotle is most confusing, I for one would never call a form-substance. Aristotle will use the word substance to indicate either or both form and matter and sometimes he will use it to indicate one or the other contrasting it against the other, as in the following.

Metaphysics: Or has 'definition', like 'what a thing is', several meanings? 'What a thing is' in one sense means substance and the 'this', in another one or other of the predicates, quantity, quality, and the like. For as 'is' belongs to all things, not however in the same sense, but to one sort of thing primarily and to others in a secondary way, so too 'what a thing is' belongs in the simple sense to substance, but in a limited sense to the other categories. For even of a quality we might ask what it is, so that quality also is a 'what a thing is',-not in the simple sense, however, but just as, in the case of that which is not, some say, emphasizing the linguistic form, that that is which is not is-not is simply, but is non-existent; so too with quality.

\section*{See Aristotle's Categories.}

Metaphysics: Since a definition is a formula, and every formula has parts, and as the formula is to the thing, so is the part of the formula to the part of the thing, the question is already being asked whether the formula of the parts must be present in the formula of the whole or not. For in some cases the formulae of the parts are seen to be present, and in some not. The formula of the circle does not include that of the segments, but that of the syllable includes that of the letters; yet the circle is divided into segments as the syllable is into letters.-And further if the parts are prior to the whole, and the acute angle is a part of the right angle and the finger a part of the animal, the acute angle will be prior to the right angle and finger to the man. But the latter are thought to be prior; for in formula the parts are explained by reference to them, and in respect also of the power of existing apart from each other the wholes are prior to the parts.

\footnotetext{
Would Aristotle be chasing his own tail if he distinguished between definition and description? A definition of ball would be, "A ball is a sphere of rubber." A deductive description of sphere would be, "A sphere is a ball without rubber." and a deductive description of rubber would be, "Rubber is a ball without its form." \(A=B+C, B=A-C, C=A-B\). If one knew what a sphere was and what rubber was, they could construct a ball. If one had a ball, then one could abstract meanings for both rubber and sphere.
}

Metaphysics: But when we come to the concrete thing, e.g. this circle, i.e. one of the individual circles, whether perceptible or intelligible (I mean by intelligible circles the mathematical, and by perceptible circles those of bronze and of wood),-of these there is no definition, but they are known by the aid of intuitive thinking or of perception; and when they pass out of this complete realization it is not clear whether they exist or not; but they are always stated and recognized by means of the universal formula. But matter is unknowable in itself. And some matter is perceptible and some intelligible, perceptible matter being for instance bronze and wood and all matter that is changeable, and intelligible matter being that which is present in perceptible things not quâ perceptible, i.e. the objects of mathematics.

> Some matter is perceptible, like wood or metal, and some intelligible like linearity. We have several senses, many of which abstract matter by which we abstract the notion that all differences, even apparently the nothingness of space is matter. Linearity, planarity, spatiality or even time, are not perceptible matter, but they are, at least to some, intelligible matter.

Metaphysics: Another question is naturally raised, viz. what sort of parts belong to the form and what sort not to the form, but to the concrete thing. Yet if this is not plain it is not possible to define any thing; for definition is of the universal and of the form. If then it is not evident what sort of parts are of the nature of matter and what sort are not, neither will the formula of the thing be evident. In the case of things which are found to occur in specifically different materials, as a circle may exist in bronze or stone or wood, it seems plain that these, the bronze or the stone, are no part of the essence of the circle, since it is found apart from them. Of things which are not seen to exist apart, there is no reason why the same may not be true, just as if all circles that had ever been seen were of bronze; for none the less the bronze would be no part of the form; but it is hard to eliminate it in thought. E.g. the form of man is always found in flesh and bones and parts of this kind; are these then also parts of the form and the formula? No, they are matter; but because man is not found also in other matters we are unable to perform the abstraction.

And the same applies to matter, iron makes many things, etc.
Metaphysics: We have pointed out, then, that the question of definitions contains some difficulty, and why this is so. And so to reduce all things thus to forms and to eliminate the matter is useless labor; for some things surely are a particular form in a particular matter, or particular things in a particular state. And the comparison which Socrates the younger used to make in the case of 'animal' is not sound; for it leads away from the truth, and makes one suppose that man can possibly exist without his parts, as the circle can without the bronze. But the case is not similar; for an animal is something perceptible, and it is not possible to define it without reference to movement-nor, therefore, without reference to the parts' being in a certain state. For it is not a hand in any and every state that is a part of man, but only when it can fulfil its work, and therefore only when it is alive; if it is not alive it is not a part.

Metaphysics: Obviously, then, the actuality or the formula is different when the matter is different; for in some cases it is the composition, in others the mixing, and in others some other of the attributes we have named. And so, of the people who go in for defining, those who define a house as stones, bricks, and timbers are speaking of the potential house, for these are the matter; but those who propose 'a receptacle to shelter chattels and living beings', or something of the sort, speak of the actuality. Those who combine both of these speak of the third kind of substance, which is composed of matter and form (for the formula that gives the differentiae seems to be an account of the form or actuality, while that which gives the components is rather
an account of the matter); and the same is true of the kind of definitions which Archytas used to accept; they are accounts of the combined form and matter. E.g. what is still weather? Absence of motion in a large expanse of air; air is the matter, and absence of motion is the actuality and substance. What is a calm? Smoothness of sea; the material substratum is the sea, and the actuality or shape is smoothness. It is obvious then, from what has been said, what sensible substance is and how it exists-one kind of it as matter, another as form or actuality, while the third kind is that which is composed of these two.

The third kind is a thing. Aristotle and Plato were on the verge, the very precipice of understanding that there are two main branches in logic, tautologics, based on form and relatiologics based on matter. In one, the form is given and the matter asserted, in the other the matter is given and the form asserted. Thus English grammar is a tautologic, but Geometric grammar (the figures) is a relatiologic-when given side by side, both saying the same thing, we have a Formal Presentation, the presentation is a thing called teaching. This fact will distress those theorists who claim that a circle-jerk of words is a Formal System.

Metaphysics: Therefore the difficulty which used to be raised by the school of Antisthenes and other such uneducated people has a certain timeliness. They said that the 'what' cannot be defined (for the definition so called is a 'long rigmarole') but of what sort a thing, e.g. silver, is, they thought it possible actually to explain, not saying what it is, but that it is like tin. Therefore one kind of substance can be defined and formulated, i.e. the composite kind, whether it be perceptible or intelligible; but the primary parts of which this consists cannot be defined, since a definitory formula predicates something of something, and one part of the definition must play the part of matter and the other that of form.

Then it is to Antisthenes that one would owe the idea of description when definition is not possible?

Metaphysics: To return to the difficulty which has been stated with respect both to definitions and to numbers, what is the cause of their unity? In the case of all things which have several parts and in which the totality is not, as it were, a mere heap, but the whole is something beside the parts, there is a cause; for even in bodies contact is the cause of unity in some cases, and in others viscosity or some other such quality. And a definition is a set of words which is one not by being connected together, like the Iliad, but by dealing with one object.-What then, is it that makes man one; why is he one and not many, e.g. animal biped, especially if there are, as some say, an animal-itself and a biped-itself? Why are not those forms themselves the man, so that men would exist by participation not in man, nor in-one form, but in two, animal and biped, and in general man would be not one but more than one thing, animal and biped?

There are many think that the concept of addition is just that, putting things in a heap, however, the idea of concatenation is itself a simile in multis derived from many different processes of propositional construction. This is one of the points that Plato was driving at in Philebus.

Socrates. Were we not saying that God revealed a finite element of existence, and also an infinite?

Protarchus. Certainly.
Socrates. Let us assume these two principles, and also a third, which is compounded out of them; but I fear that am ridiculously clumsy at these processes of division and enumeration.

Protarchus. What do you mean, my good friend?
Socrates. I say that a fourth class is still wanted.
Protarchus. What will that be?

Socrates. Find the cause of the third or compound, and add this as a fourth class to the three others.

In the text finite is referring to form, infinite to matter, the compound to a thing, and causality the processes by which form is added to matter to produce a thing.
Metaphysics: Clearly, then, if people proceed thus in their usual manner of definition and speech, they cannot explain and solve the difficulty. But if, as we say, one element is matter and another is form, and one is potentially and the other actually, the question will no longer be thought a difficulty. For this difficulty is the same as would arise if 'round bronze' were the definition of 'cloak'; for this word would be a sign of the definitory formula, so that the question is, what is the cause of the unity of 'round' and 'bronze'? The difficulty disappears, because the one is matter, the other form. What, then, causes this-that which was potentially to be actuallyexcept, in the case of things which are generated, the agent? For there is no other cause of the potential sphere's becoming actually a sphere, but this was the essence of either. Of matter some is intelligible, some perceptible, and in a formula there is always an element of matter as well as one of actuality; e.g. the circle is 'a plane figure'. But of the things which have no matter, either intelligible or perceptible, each is by its nature essentially a kind of unity, as it is essentially a kind of being-individual substance, quality, or quantity (and so neither 'existent' nor 'one' is present in their definitions), and the essence of each of them is by its very nature a kind of unity as it is a kind of being-and so none of these has any reason outside itself, for being one, nor for being a kind of being; for each is by its nature a kind of being and a kind of unity, not as being in the genus 'being' or 'one' nor in the sense that being and unity can exist apart from particulars.

> If a thing, errantly called a thing, is lacking either form (a) or matter (thing), then existence and unity cannot be asserted of it. Things exist. Here is a key to understanding the errors in Parmenides that causes the intentional antinomies. Aristotle tries to convey the difficulty in the idea-a kind of being but not being.

Physics: If 'bounded by a surface' is the definition of body there cannot be an infinite body either intelligible or sensible.

Since a thing is defined as finite (formed), to state that a thing is infinite (without (a) form) is a contradiction in definition and of obvious grammar.
Physics: (4) As the genus is 'in' the species and generally the part of the specific form 'in' the definition of the specific form.

Physics: Time, then, also is both made continuous by the 'now' and divided at it. For here too there is a correspondence with the locomotion and the moving body. For the motion or locomotion is made one by the thing which is moved, because it is one-not because it is one in its own nature (for there might be pauses in the movement of such a thing)-but because it is one in definition: for this determines the movement as 'before' and 'after'. Here, too there is a correspondence with the point; for the point also both connects and terminates the length-it is the beginning of one and the end of another. But when you take it in this way, using the one point as two, a pause is necessary, if the same point is to be the beginning and the end. The 'now' on the other hand, since the body carried is moving, is always different.

Aristotle is trying to convey how it is that motion and time are things, for they too are matter of which form is asserted. Matter is always continuous, any boundary is not matter, it is form.
On The Soul: It seems not only useful for the discovery of the causes of the derived properties of substances to be acquainted with the essential nature of those substances (as in mathematics it is useful for the understanding of the property of the equality of the interior
angles of a triangle to two right angles to know the essential nature of the straight and the curved or of the line and the plane) but also conversely, for the knowledge of the essential nature of a substance is largely promoted by an acquaintance with its properties: for, when we are able to give an account conformable to experience of all or most of the properties of a substance, we shall be in the most favorable position to say something worth saying about the essential nature of that subject; in all demonstration a definition of the essence is required as a starting-point, so that definitions which do not enable us to discover the derived properties, or which fail to facilitate even a conjecture about them, must obviously, one and all, be dialectical and futile.

What does this say about an educational system that denies experience and replaces that experience with books?

On The Soul: If the circular movement is eternal, there must be something which mind is always thinking-what can this be? For all practical processes of thinking have limits-they all go on for the sake of something outside the process, and all theoretical processes come to a close in the same way as the phrases in speech which express processes and results of thinking. Every such linguistic phrase is either definitory or demonstrative. Demonstration has both a startingpoint and may be said to end in a conclusion or inferred result; even if the process never reaches final completion, at any rate it never returns upon itself again to its starting-point, it goes on assuming a fresh middle term or a fresh extreme, and moves straight forward, but circular movement returns to its starting-point. Definitions, too, are closed groups of terms.

One can say that a thing exhibits closure. Since a thing is defined as finite, one cannot possible say or think infinite things, without using words empty of meaning.
On The Soul: Since what is clear or logically more evident emerges from what in itself is confused but more observable by us, we must reconsider our results from this point of view. For it is not enough for a definitive formula to express as most now do the mere fact; it must include and exhibit the ground also. At present definitions are given in a form analogous to the conclusion of a syllogism; e.g. What is squaring? The construction of an equilateral rectangle equal to a given oblong rectangle. Such a definition is in form equivalent to a conclusion. One that tells us that squaring is the discovery of a line which is a mean proportional between the two unequal sides of the given rectangle discloses the ground of what is defined.

There is a hint here, I think, that a demonstration would be Plato's fourth class, how matter and form are combined to produce a thing.

On The Soul: Assertion is the saying of something concerning something, e.g. affirmation, and is in every case either true or false: this is not always the case with mind: the thinking of the definition in the sense of the constitutive essence is never in error nor is it the assertion of something concerning something, but, just as while the seeing of the special object of sight can never be in error, the belief that the white object seen is a man may be mistaken, so too in the case of objects which are without matter.

There are those who make erroneous statements denouncing perception because they make an erroneous assumption that perception quâ perception leads to error, that the senses deceive us, as if they were capable of deception-the fact of the matter is, it is always the interpretation of the perception that is in error, i.e., the reasoner. Transference of blame even extends to one's own senses. Here Aristotle uses abstraction, \(\mathrm{B}=\mathrm{A}-\mathrm{C}\). Form is object without matter.

Topics: We must now say what are 'definition', 'property', 'genus', and 'accident'. A 'definition' is a phrase signifying a thing's essence. It is rendered in the form either of a phrase in lieu of a term, or of a phrase in lieu of another phrase; for it is sometimes possible to define
the meaning of a phrase as well. People whose rendering consists of a term only, try it as they may, clearly do not render the definition of the thing in question, because a definition is always a phrase of a certain kind. One may, however, use the word 'definitory' also of such a remark as 'The "becoming" is "beautiful", and likewise also of the question, 'Are sensation and knowledge the same or different?', for argument about definitions is mostly concerned with questions of sameness and difference. In a word we may call 'definitory' everything that falls under the same branch of inquiry as definitions; and that all the above-mentioned examples are of this character is clear on the face of them. For if we are able to argue that two things are the same or are different, we shall be well supplied by the same turn of argument with lines of attack upon their definitions as well: for when we have shown that they are not the same we shall have demolished the definition. Observe, please, that the converse of this last statement does not hold: for to show that they are the same is not enough to establish a definition. To show, however, that they are not the same is enough of itself to overthrow it.

Topics: To detect errors of this sort, exchange the word for its definition, e.g. the definition of 'day' as the 'passage of the sun over the earth'. Clearly, whoever has said 'the passage of the sun over the earth' has said 'the sun', so that in bringing in the 'day' he has brought in the sun.

The substitution of a definition in place of a name works for examining many sentences and often very nicely when examining the validity of adjectival usage. Plato, in Parmenides, will, in demonstrating our inability to reason, use adjectives that are erroneous, for example, the construction absolute knowledge. Are there two kinds of knowledge, absolute and relative? And when given any knowledge about a thing, how do I tell if it is absolute or relative knowledge? I mean, that the same knowledge is either permanent (absolute) or that it is changing (relative). I would suspect that adjectival rules are the same between names from the one name naming convention than from the two name naming convention-meaning of course that what can be an adjective in one of them is not an adjective in the other. So much I do not understand.

\section*{The Theory of Forms}

\section*{Plato on Form}

Cratylus: Socrates. And suppose the shuttle to be broken in making, will he make another, looking to the broken one? or will he look to the form according to which he made the other?

Tactile manipulation abstracts matter and discards form before imposing a new form on the matter.

Cratylus: Socrates. And whatever shuttles are wanted, for the manufacture of garments, thin or thick, of flaxen, woolen, or other material, ought all of them to have the true form of the shuttle; and whatever is the shuttle best adapted to each kind of work, that ought to be the form which the maker produces in each case.

A universal form and a particular form.
Cratylus: Socrates. And the same holds of other instruments: when a man has discovered the instrument which is naturally adapted to each work, he must express this natural form, and not others which he fancies, in the material, whatever it may be, which he employs; for example, he ought to know how to put into iron the forms of awls adapted by nature to their several uses?

An awl is matter (iron) circumscribed by form. A definition states both form and matter of a thing.

Cratylus: Socrates. And how to put into wood forms of shuttles adapted by nature to their uses?

A shuttle is matter (wood) circumscribed by form. A thing is matter with a form. As one would not say a wood neither would one say a form (form form).

Cratylus: Socrates. For the several forms of shuttles naturally answer to the several kinds of webs; and this is true of instruments in general.

Cratylus: Socrates. Then, as to names: ought not our legislator also to know how to put the true natural names of each thing into sounds and syllables and to make and give all names with a view to the ideal name, if he is to be a namer in any true sense? And we must remember that different legislators will not use the same syllables. For neither does every smith, although he may be making the same instrument for the same purpose, make them all of the same iron. The form must be the same, but the material may vary, and still the instrument may be equally good of whatever iron made, whether in Hellas or in a foreign country;-there is no difference .

Here Plato asserts that the material of a word are the syllables and the resultant word has a certain form. One will get around to the idea that a name is a form and all the things that are given that name are the matter in a thing called knowledge. In this dialog, Plato is describing grammatical construction principles that remind me of Sanskrit.

Cratylus: Socrates. And the legislator, whether he be Hellene or barbarian, is not therefore to be deemed by you a worse legislator, provided he gives the true and proper form of the name in whatever syllables; this or that country makes no matter.

Cratylus: Socrates. But who then is to determine whether the proper form is given to the shuttle, whatever sort of wood may be used? the carpenter who makes, or the weaver who is to use them?

Cratylus: Socrates. Then, Hermogenes, I should say that this giving of names can be no such light matter as you fancy, or the work of light or chance persons; and Cratylus is right in saying that things have names by nature, and that not every man is an artificer of names, but he only who looks to the name which each thing by nature has, and is able to express the true forms of things in letters and syllables.

Names are of no light matter, for as we see they can be grouped into three categories, those which designate things, those which designate forms and those which designates mater. It might be found that there is also, like mathematics a fourth group, causal-operands-which of course, denote the form of operation.

Meno: Socrates. And now, as Pindar says, "read my meaning" color is an effluence of form, commensurate with sight, and palpable to sense.

Aristotle will repeat this, that color is a form-those senses that do not abstract matter abstract form. Logic systems are divided between the tautological and the relatiological.

Phaedo: Then now let us return to the previous discussion. Is that idea or essence, which in the dialectical process we define as essence of true existence-whether essence of equality, beauty, or anything else: are these essences, I say, liable at times to some degree of change? or are they each of them always what they are, having the same simple, self-existent and unchanging forms, and not admitting of variation at all, or in any way, or at any time?

> If matter is difference of a thing and form is non-difference of a thing-which is eternal and never changing? non-difference or difference? By definition, form is not difference or again not change and never changing.

The Republic: Well then, shall we begin the inquiry in our usual manner: Whenever a number of individuals have a common name, we assume them to have also a corresponding idea or form. Do you understand me?

At the very foundation of spoken grammars, logic, is what has become called Set Theory-a name (word) designates a group of objects each of which has a common definition denoted by that name. All men are equal, by law, not a social law, not a political law, but a law of grammar. One might say that the first social laws are abstractions from the environment and are above, or in spite, of man. The claim that men give up their individual rights, their own sovereign rights to join a community is denied by the very grammar common to all reason.

The Republic: But there are only two ideas or forms of them, one the idea of a bed-the other of a table.

Theaetetus: Socrates. Quite true, Theaetetus, and therefore, according to our present view, a syllable must surely be some indivisible form?

The divisor (form) cannot be divided, this is not a stipulation, but a physical fact-for example, a surface is not the surface of a surface but the surface of some thing. To say that 'the point is that which has no part.' is the same as saying that the point is a form-boundary-limit-divisor-cut-etc. No one can cut a cut or divide a form. To claim that a line is composed of an infinite number of points is the same as saying that a tomato can be made by waving a knife through the air and ungodly number of times.

Theaetetus: Socrates. Then is not the syllable in the same case as the elements or letters, if it has no parts and is one form?

If it has no parts, that is if it cannot be parted it must be form, for there is only form and matter that is predicable of a thing,-form parts matter as the definition of a thing. If a point is that which has no part, then a point is that which is the part (form, cut, boundary, limit, etc.).

\section*{Plato on Participation in the Form (Matter)}

To participate in a form can also be said as to be a member of a class, is the same as to be the matter of a thing.
In this section, I will not place any of the quotations from the work Parmenides as that work is a demonstration on the impossibility of reason when the names for form, matter and a thing are not used in accordance with their meaning.

Euthydemus: Socrates. Yes, Crito, there is more speciousness than truth; they cannot be made to understand the nature of intermediates. For all persons or things, which are intermediate between two other things, and participate in both of them-if one of these two things is good and the other evil, are better than the one and worse than the other; but if they are in a mean between two good things which do not tend to the same end, they fall short of either of their component elements in the attainment of their ends. Only in the case when the two component elements which do not tend to the same end are evil is the participant better than either. Now, if philosophy and political action are both good, but tend to different ends, and they participate in both, and are in a mean between them, then they are talking nonsense, for they are worse than either; or, if the one be good and the other evil, they are better than the one and worse than the other; only on the supposition that they are both evil could there be any truth in what they say. I do not think that they will admit that their two pursuits are either wholly or partly evil; but the truth is, that these philosopher-politicians who aim at both fall short of both in the attainment of their respective ends, and are really third, although they would like to stand first. There is no need, however, to be angry at this ambition of theirs-which may be forgiven; for every man ought to be loved who says and manfully pursues and works out anything which is at all like wisdom: at the same time we shall do well to see them as they really are.

Meno: Socrates. Then all men are good in the same way, and by participation in the same virtues?

Virtue is a form of behavior.
Phaedo: He proceeded: I know nothing and can understand nothing of any other of those wise causes which are alleged; and if a person says to me that the bloom of color, or form, or anything else of that sort is a source of beauty, I leave all that, which is only confusing to me, and simply and singly, and perhaps foolishly, hold and am assured in my own mind that nothing makes a thing beautiful but the presence and participation of beauty in whatever way or manner obtained; for as to the manner I am uncertain, but I stoutly contend that by beauty all beautiful things become beautiful. That appears to me to be the only safe answer that I can give, either to myself or to any other, and to that I cling, in the persuasion that I shall never be overthrown, and that I may safely answer to myself or any other that by beauty beautiful things become beautiful. Do you not agree to that?

Plato reduces all causality of being to form and matter i.e., a things definition. The cause of anything being what it is-is because it is a certain matter in a certain form.
Phaedo: Again, would you not be cautious of affirming that the addition of one to one, or the division of one, is the cause of two? And you would loudly asseverate that you know of no way in which anything comes into existence except by participation in its own proper essence, and consequently, as far as you know, the only cause of two is the participation in duality; that is the way to make two, and the participation in one is the way to make one. You would say: I will let
alone puzzles of division and addition-wiser heads than mine may answer them; inexperienced as I am, and ready to start, as the proverb says, at my own shadow, I cannot afford to give up the sure ground of a principle. And if anyone assails you there, you would not mind him, or answer him until you had seen whether the consequences which follow agree with one another or not, and when you are further required to give an explanation of this principle, you would go on to assume a higher principle, and the best of the higher ones, until you found a resting-place; but you would not refuse the principle and the consequences in your reasoning like the Eristics-at least if you wanted to discover real existence. Not that this confusion signifies to them who never care or think about the matter at all, for they have the wit to be well pleased with themselves, however great may be the turmoil of their ideas. But you, if you are a philosopher, will, I believe, do as I say.

The principle of causality, form and matter, is not to be given up for the sake of demonstration, but demonstration must always affirm and rest in the definition. The recipes in a cookbook are demonstrations-they lead one to the thing defined. All directions that lead one to construct a thing are demonstrations. The Greek demand for constructability was not confined to geometry. Demonstration, if it is demonstration (scientific knowledge) leads to the thing defined. When so called scholars tossed out the criteria of constructability, all meaning was left behind.

Phaedo: Phaedo. After all this was admitted, and they had agreed about the existence of ideas and the participation in them of the other things which derive their names from them, Socrates, if I remember rightly, said:-

This is your way of speaking; and yet when you say that Simmias is greater than Socrates and less than Phaedo, do you not predicate of Simmias both greatness and smallness?

Philebus: Socrates. Does not the right participation in the finite give health-in disease, for instance?

Protagoras: And you would call pleasant, I said, the things which participate in pleasure or create pleasure?

The Republic: But take the case of the other, who recognizes the existence of absolute beauty and is able to distinguish the idea from the objects which participate in the idea, neither putting the objects in the place of the idea nor the idea in the place of the objects-is he a dreamer, or is he awake?

But take the case of those who recognize forms and is able to distinguish the form of a thing from the substance of a thing, neither putting the substance in place of the form nor the form in place of the substance, his mind is awake.

The Republic: Well, and do not all these qualities, which we have been enumerating, go together, and are they not, in a manner, necessary to a soul, which is to have a full and perfect participation of being?

The Republic: And if there be a pleasure in being filled with that which is according to nature, that which is more really filled with more real being will more really and truly enjoy true pleasure; whereas that which participates in less real being will be less truly and surely satisfied, and will participate in an illusory and less real pleasure?

The Sophist: Stranger. And you would allow that we participate in generation, with the body, and through perception, but we participate with the soul through thought in true essence; and essence you would affirm to be always the same and immutable, whereas generation or becoming varies?

The Sophist: Stranger. Well, fair sirs, we say to them, what is this participation, which you assert of both? Do you agree with our recent definition?

The Sophist: Stranger. Then you conceive of being as some third and distinct nature, under which rest and motion are alike included; and, observing that they both participate in being, you declare that they are.

The Sophist: Stranger. Shall we refuse to attribute being to motion and rest, or anything to anything, and assume that they do not mingle, and are incapable of participating in one another? Or shall we gather all into one class of things communicable with one another? Or are some things communicable and others not?-Which of these alternatives, Theaetetus, will they prefer?

The Sophist: Stranger. Very good, and first let us assume them to say that nothing is capable of participating in anything else in any respect; in that case rest and motion cannot participate in being at all.

\section*{The Sophist: Stranger. But would either of them be if not participating in being?}

The Sophist: Stranger. Most ridiculous of all will the men themselves be who want to carry out the argument and yet forbid us to call anything, because participating in some affection from another, by the name of that other.

The Sophist: Stranger. Let not any one say, then, that while affirming the opposition of notbeing to being, we still assert the being of not-being; for as to whether there is an opposite of being, to that inquiry we have long said good-bye-it may or may not be, and may or may not be capable of definition. But as touching our present account of not-being, let a man either convince us of error, or, so long as he cannot, he too must say, as we are saying, that there is a communion of classes, and that being, and difference or other, traverse all things and mutually interpenetrate, so that the other partakes of being, and by reason of this participation is, and yet is not that of which it partakes, but other, and being other than being, it is clearly a necessity that not-being should be. And again, being, through partaking of the other, becomes a class other than the remaining classes, and being other than all of them, is not each one of them, and is not all the rest, so that undoubtedly there are thousands upon thousands of cases in which being is not, and all other things, whether regarded individually or collectively, in many respects are, and in many respects are not.

A member of a class cannot be said to exist independently from the class. The upshot of this is that if 'existence' is said to be a class, all the members that make up existence cannot be said to exist for they are other than existence. The reason being is that neither member nor form of a class is separable from the class. A part of a car is a thing.
The Sophist: Stranger. And now, not-being has been shown to partake of being, and therefore he will not continue fighting in this direction, but he will probably say that some ideas partake of not-being, and some not, and that language and opinion are of the non-partaking class; and he will still fight to the death against the existence of the image-making and fantastic art, in which we have placed him, because, as he will say, opinion and language do not partake of not-being, and unless this participation exists, there can be no such thing as falsehood. And, with the view of meeting this evasion, we must begin by inquiring into the nature of language, opinion, and imagination, in order that when we find them we may find also that they have communion with not-being, and, having made out the connection of them, may thus prove that falsehood exists; and therein we will imprison the Sophist, if he deserves it, or, if not, we will let him go again and look for him in another class.

\section*{Synonym Toast: Aristotle And The Theory of Forms}

Some of Aristotle's text indicates, to the point of hostility, that he did not grasp the Theory \(\boldsymbol{O f}\) Forms, but a majority of the other text indicates that he understood it reasonably well and knew it was fundamental to reasoning. Since his writings were collected long after his death, it should be assumed that he was no different from any writer or any man, his understanding improved with age.

Aristotle liked his synonyms but I, for one, find it difficult to keep several names for the same thing in my head without confusing them.

Aristotle did not realize that he was working with a two name naming convention, and so his theory of predication suffered-his theory of the syllogism suffered.

Synonyms: shape, form, pattern, essence, substance, quality, differentiae, order, ratio, nature, archetype, genus, actuality, idea, predicate.

Synonyms: matter, substance, material, quantity, substratum, potentiality, participation, nature, subject.
Works Mentioned: On Philosophy, Aristotle. Phaedo, Timaeus, Lectures On Philosophy, Plato.

Metaphysics: After the systems we have named came the philosophy of Plato, which in most respects followed these thinkers, but had peculiarities that distinguished it from the philosophy of the Italians. For, having in his youth first become familiar with Cratylus and with the Heraclitean doctrines (that all sensible things are ever in a state of flux and there is no knowledge about them \({ }^{14}\) ), these views he held even in later years. Socrates, however, was busying himself about ethical matters and neglecting the world of nature as a whole but seeking the universal in these ethical matters, and fixed thought for the first time on definitions; Plato accepted his teaching, but held that the problem applied not to sensible things but to entities of another kind-for this reason, that the common definition could not be a definition of any sensible thing, as they were always changing. Things of this other sort, then, he called Ideas, and sensible things, he said, were all named after these, and in virtue of a relation to these; for the many existed by participation in the Ideas that have the same name as they. Only the name 'participation' was new; for the Pythagoreans say that things exist by 'imitation' of numbers, and Plato says they exist by participation, changing the name. But what the participation or the imitation of the forms could be they left an open question.

Since all knowledge is of things-matter circumscribed by form-it must represent the most primitive paradigm upon which all reasoning is based. It's importance to the metaphysics is inestimable.

Actually there is a very big difference between the Pythagorean conception and the Platonic-that which participates in a form is the matter-that which imitates is form. One starts to see two psychological foundations in thought-matter based and form based-lack of difference (form, equality, same) and difference (matter, inequality). The idea is not only the founding paradigm of reason, but also the foundation of psychology.

Metaphysics: Further, besides sensible things and forms he says there are the objects of

\footnotetext{
\({ }^{14}\) Can one then say anything determinate about that which they have no knowledge? If not, then how can they even make this statement? The Liars Paradox.
}
mathematics, which occupy an intermediate position, differing from sensible things in being eternal and unchangeable, from forms in that there are many alike, while the form itself is in each case unique.

It is strange that numbers are generally not understood to be just a naming convention in a grammar system. Neither the name nor the naming convention changes that which it names. Here Aristotle indicates that Plato fell short on his concepts.

Metaphysics: Since the forms were the causes of all other things, he thought their elements were the elements of all things. As matter, the great and the small were principles; as essential reality, the One; for from the great and the small, by participation in the One, come the Numbers.

Why would the form of a thing be a cause any more than the matter?
Metaphysics: But he agreed with the Pythagoreans in saying that the One is substance and not a predicate of something else; and in saying that the Numbers are the causes of the reality of other things he agreed with them; but positing a dyad and constructing the infinite out of great and small, instead of treating the infinite as one, is peculiar to him; and so is his view that the Numbers exist apart from sensible things, while they say that the things themselves are Numbers, and do not place the objects of mathematics between forms and sensible things. His divergence from the Pythagoreans in making the One and the Numbers separate from things, and his introduction of the forms, were due to his inquiries in the region of definitions (for the earlier thinkers had no tincture of dialectic), and his making the other entity besides the One a dyad was due to the belief that the numbers, except those which were prime, could be neatly produced out of the dyad as out of some plastic material. Yet what happens is the contrary; the theory is not a reasonable one. For they make many things out of the matter, and the form generates only once, but what we observe is that one table is made from one matter, while the man who applies the form, though he is one, makes many tables. And the relation of the male to the female is similar; for the latter is impregnated by one copulation, but the male impregnates many females; yet these are analogues of those first principles.

Since Arithmetic is a younger grammar than conversational grammars, one will find mythology about numbers that were once held about language in general. Numbers are names in an ordered naming convention-so far, I am the only one I know that states this.

What about Aristotle's counter-point-the one matter and the many forms? Are there not some very simple arguments against it? For example, is the divisor divisible? What is countable, forms, substances, or things?

In the following, Aristotle will expand upon his objection to the one idea in the many examplesPlato's simile in multis. Look at the word table, by what criteria can we call a great number of things table-there are a great number of individual forms and a great number of individual matters, but they all have the same name table-the word table is a form, all those things that can be called a table is the matter that fills that form. Together the word and all the matter the word circumscribes is a thing-an abstract thing-that is more real, than any particular table-particular as matter and particular in individual form. It is more real because the individual tables we sense with our body, the ideal table we have learned to sense with our mind, and we, as mind only truly sense as mind. It is a subtle idea, but it follows by strict definition of a thing.

A particular table can exist as a thing but when one understands particular tables as the matter in the form provided by the word table then one has, by definition, a real abstract table which is never really in front of our face or felt with our hands. In this manner one can understand the table ideal as a real entity-a reality brought about by the very concept and function of reason, of grammar. When this becomes part of one's psychology, then one will see the only true, only real table-the real
meaning of ideal-functioning on the grammatical level of the human mind. This realization is reasonthe Ideal Table is the only real table-itis the single measure and we have developed a singularity of perception. This also infers that the ideal table can never be accomplished in mind without objective experience with the matter, physical tables that complete the definition and meaning of the ideal. These are ideas Plato tried to stress because they are true. *******

Metaphysics: Plato, then, declared himself thus on the points in question; it is evident from what has been said that he has used only two causes, that of the essence and the material cause (for the forms are the causes of the essence of all other things, and the One is the cause of the essence of the forms); and it is evident what the underlying matter is, of which the forms are predicated in the case of sensible things, and the One in the case of forms, viz. that this is a dyad, the great and the small. Further, he has assigned the cause of good and that of evil to the elements, one to each of the two, as we say some of his predecessors sought to do, e.g. Empedocles and Anaxagoras.

> Essence is a synonym for form, and material cause or caused by matter. In other words, Plato only recognized form and matter as cause-compare this with Geometry, point and linearity-from these two causes all else follows. Since every bit of knowledge and knowing involves only these two, Plato was correct.

Notice that here Aristotle is stating the idea of what is predicated of what in the case of sensible things, form is predicated of matter, point is asserted of linearity. Thus to assert a point to a line, one can say that one is predicating a point of linearity.
Metaphysics: The essence, i.e. the substantial reality, no one has expressed distinctly. It is hinted at chiefly by those who believe in the forms; for they do not suppose either that the forms are the matter of sensible things, and the One the matter of the forms, or that they are the source of movement (for they say these are causes rather of immobility and of being at rest), but they furnish the forms as the essence of every other thing, and the One as the essence of the forms.

Form is not matter and matter is not form-in the words of Euclid 'The point (form) is that which has no part (matter) i.e. we do not assume that a line is composed of an infinite number of points because that would be a contradiction.

Metaphysics: Let us leave the Pythagoreans for the present; for it is enough to have touched on them as much as we have done. But as for those who posit the Ideas as causes, firstly, in seeking to grasp the causes of the things around us, they introduced others equal in number to these, as if a man who wanted to count things thought he would not be able to do it while they were few, but tried to count them when he had added to their number. For the forms are practically equal to-or not fewer than-the things, in trying to explain which these thinkers proceeded from them to the forms. For to each thing there answers an entity which has the same name and exists apart from the substances, and so also in the case of all other groups there is a one over many, whether the many are in this world or are eternal.

If form is not separable from a thing, just like matter is not separable from a thing, can one number forms as something distinct from a thing? or matter for that matter? This is one of the paradoxes examined in Parmenides-can one use the same name for form, a thing, and matter without contradicting themselves?
Metaphysics: Further, of the ways in which we prove that the forms exist, none is convincing; for from some no inference necessarily follows, and from some arise forms even of things of which we think there are no forms. For according to the arguments from the existence of the sciences there will be forms of all things of which there are sciences and according to the 'one
over many' argument there will be forms even of negations, and according to the argument that there is an object for thought even when the thing has perished, there will be forms of perishable things; for we have an image of these. Further, of the more accurate arguments, some lead to Ideas of relations, of which we say there is no independent class, and others introduce the 'third man'.

If a thing defines existence, then neither form nor matter, independent of the other can. The same is true for the idea of definition. A definition indicates both form and matter, therefore an indication of either form or matter independent of the other is not a definition. If \(\boldsymbol{A}\) stands for a thing, \(\boldsymbol{b}\) for form and \(\boldsymbol{c}\) for matter then definition may be expressed as \(\boldsymbol{A}=\boldsymbol{b}+\boldsymbol{c}\). A description might be either \(\boldsymbol{b}=\boldsymbol{A}-\boldsymbol{c}\) or \(\boldsymbol{c}=\boldsymbol{A}-\boldsymbol{b}\).

Metaphysics: And in general the arguments for the forms destroy the things for whose existence we are more zealous than for the existence of the Ideas; for it follows that not the dyad but number is first, i.e. that the relative is prior to the absolute,--besides all the other points on which certain people by following out the opinions held about the Ideas have come into conflict with the principles of the theory.

\section*{Aristotle recognizes that matter (relative) comes before a boundary (absolute) to that matter.}

Metaphysics: Further, according to the assumption on which our belief in the Ideas rests, there will be forms not only of substances but also of many other things (for the concept is single not only in the case of substances but also in the other cases, and there are sciences not only of substance but also of other things, and a thousand other such difficulties confront them). But according to the necessities of the case and the opinions held about the forms, if forms can be shared in there must be Ideas of substances only. For they are not shared in incidentally, but a thing must share in its form as in something not predicated of a subject (by 'being shared in incidentally' I mean that e.g. if a thing shares in 'double itself', it shares also in 'eternal', but incidentally; for 'eternal' happens to be predicable of the 'double'). Therefore the forms will be substance; but the same terms indicate substance in this and in the ideal world (or what will be the meaning of saying that there is something apart from the particulars-the one over many?). And if the Ideas and the particulars that share in them have the same form, there will be something common to these; for why should ' 2 ' be one and the same in the perishable 2 's or in those which are many but eternal, and not the same in the ' 2 ' itself' as in the particular 2? But if they have not the same form, they must have only the name in common, and it is as if one were to call both Callias and a wooden image a 'man', without observing any community between them.

Therefore in starting to understand the idea of 'form' one must observe a community between things, i.e. the simile in multis that Plato had understood.

Metaphysics: Above all one might discuss the question what on earth the forms contribute to sensible things, either to those that are eternal or to those that come into being and cease to be. For they cause neither movement nor any change in them. But again they help in no wise either towards the knowledge of the other things (for they are not even the substance of these, else they would have been in them), or towards their being, if they are not in the particulars which share in them; though if they were, they might be thought to be causes, as white causes whiteness in a white object by entering into its composition. But this argument, which first Anaxagoras and later Eudoxus and certain others used, is very easily upset; for it is not difficult to collect many insuperable objections to such a view.

Metaphysics: But, further, all other things cannot come from the forms in any of the usual
senses of 'from'. And to say that they are patterns and the other things share in them is to use empty words and poetical metaphors. For what is it that works, looking to the Ideas? And anything can either be, or become, like another without being copied from it, so that whether Socrates or not a man Socrates like might come to be; and evidently this might be so even if Socrates were eternal. And there will be several patterns of the same thing, and therefore several forms; e.g. 'animal' and 'two-footed' and also 'man himself' will be forms of man. Again, the forms are patterns not only sensible things, but of forms themselves also; i.e. the genus, as genus of various species, will be so; therefore the same thing will be pattern and copy.

In these lines Aristotle is demonstrating that he understood one of Plato's points in Parmenides. A form of a form is self-referential-they cannot be different (matter) yet the same (form). In the abstraction of form from thing, one cannot say that the abstracted form is different than the form abstracted. Our grammar can quickly trip us up.

Metaphysics: Again, it would seem impossible that the substance and that of which it is the substance should exist apart; how, therefore, could the Ideas, being the substances of things, exist apart? In the Phaedo the case is stated in this way-that the forms are causes both of being and of becoming; yet when the forms exist, still the things that share in them do not come into being, unless there is something to originate movement; and many other things come into being (e.g. a house or a ring) of which we say there are no forms. Clearly, therefore, even the other things can both be and come into being owing to such causes as produce the things just mentioned.

\begin{abstract}
If one does not accept that the individuals are the matter that are circumscribed by the idea as form, then one violates the definition and fact that matter and form cannot exist apart. Or matter for the form provided by the word might be called the matter gray. Aristotle seems to be grasping for this. At any rate, the experience, as matter must accompany the word as form.
\end{abstract}

Metaphysics: Again, if the forms are numbers, how can they be causes? Is it because existing things are other numbers, e.g. one number is man, another is Socrates, another Callias? Why then are the one set of numbers causes of the other set? It will not make any difference even if the former are eternal and the latter are not. But if it is because things in this sensible world (e.g. harmony) are ratios of numbers, evidently the things between which they are ratios are some one class of things. If, then, this-the matter-is some definite thing, evidently the numbers themselves too will be ratios of something to something else. E.g. if Callias is a numerical ratio between fire and earth and water and air, his Idea also will be a number of certain other underlying things; and man himself, whether it is a number in a sense or not, will still be a numerical ratio of certain things and not a number proper, nor will it be a of number merely because it is a numerical ratio.

Numbers are Arithmetic names and names are forms. In "the matter-is some definite thing" Aristotle is on the verge that things (as experience) are the matter and the name the form.

Metaphysics: Again, from many numbers one number is produced, but how can one form come from many forms? And if the number comes not from the many numbers themselves but from the units in them, e.g. in 10,000 , how is it with the units? If they are specifically alike, numerous absurdities will follow, and also if they are not alike (neither the units in one number being themselves like one another nor those in other numbers being all like to all); for in what will they differ, as they are without quality? This is not a plausible view, nor is it consistent with our thought on the matter.

In his own way, Aristotle is reflecting on some of the paradox's exampled in Parmenides.
Metaphysics: Nor have the forms any connection with what we see to be the cause in the case of the arts, that for whose sake both all mind and the whole of nature are operative,-with this cause which we assert to be one of the first principles; but mathematics has come to be identical with philosophy for modern thinkers, though they say that it should be studied for the sake of other things. Further, one might suppose that the substance which according to them underlies as matter is too mathematical, and is a predicate and differentia of the substance, i.e. of the matter, rather than matter itself; i.e. the great and the small are like the rare and the dense which the physical philosophers speak of, calling these the primary differentiae of the substratum; for these are a kind of excess and defect. And regarding movement, if the great and the small are to be movement, evidently the forms will be moved; but if they are not to be movement, whence did movement come? The whole study of nature has been annihilated.

\section*{Can one say that form quâ form or matter quâ matter can move or be moved?}

Metaphysics: Nor can it be explained either how the lines and planes and solids that come after the numbers exist or can exist, or what significance they have; for these can neither be forms (for they are not numbers), nor the intermediates (for those are the objects of mathematics), nor the perishable things. This is evidently a distinct fourth class.

Metaphysics: (4) Further, must we say that sensible substances alone exist, or that there are others besides these? And are substances of one kind or are there in fact several kinds of substances, as those say who assert the existence both of the forms and of the intermediates, with which they say the mathematical sciences deal?-The sense in which we say the forms are both causes and self-dependent substances has been explained in our first remarks about them; while the theory presents difficulties in many ways, the most paradoxical thing of all is the statement that there are certain things besides those in the material universe, and that these are the same as sensible things except that they are eternal while the latter are perishable. For they say there is a man-himself and a horse-itself and health-itself, with no further qualification,-a procedure like that of the people who said there are gods, but in human form. For they were positing nothing but eternal men, nor are the Platonists making the forms anything other than eternal sensible things.

Metaphysics: Further, if we are to posit besides the forms and the sensibles the intermediates between them, we shall have many difficulties. For clearly on the same principle there will be lines besides the lines-themselves and the sensible lines, and so with each of the other classes of things; so that since astronomy is one of these mathematical sciences there will also be a heaven besides the sensible heaven, and a sun and a moon (and so with the other heavenly bodies) besides the sensible. Yet how are we to believe in these things? It is not reasonable even to suppose such a body immovable, but to suppose it moving is quite impossible.-And similarly with the things of which optics and mathematical harmonics treat; for these also cannot exist apart from the sensible things, for the same reasons. For if there are sensible things and sensations intermediate between form and individual, evidently there will also be animals intermediate between animals-themselves and the perishable animals.-We might also raise the question, with reference to which kind of existing things we must look for these sciences of intermediates. If geometry is to differ from mensuration only in this, that the latter deals with things that we perceive, and the former with things that are not perceptible, evidently there will also be a science other than medicine, intermediate between medical-science-itself and this individual medical science, and so with each of the other sciences. Yet how is this possible?

There would have to be also healthy things besides the perceptible healthy things and the healthy-itself.-And at the same time not even this is true, that mensuration deals with perceptible and perishable magnitudes; for then it would have perished when they perished.

> Aristotle poses questions that should be asked, 'What are the paradoxes involved when one posits existence of something other than things? this does not mean he has no answer, or that he believes some hasty answer he gives to the question.

Metaphysics: But on the other hand astronomy cannot be dealing with perceptible magnitudes nor with this heaven above us. For neither are perceptible lines such lines as the geometer speaks of (for no perceptible thing is straight or round in the way in which he defines 'straight' and 'round'; for a hoop touches a straight edge not at a point, but as Protagoras used to say it did, in his refutation of the geometers), nor are the movements and spiral orbits in the heavens like those of which astronomy treats, nor have geometrical points the same nature as the actual stars.-Now there are some who say that these so-called intermediates between the forms and the perceptible things exist, not apart from the perceptible things, however, but in these; the impossible results of this view would take too long to enumerate, but it is enough to consider even such points as the following:-It is not reasonable that this should be so only in the case of these intermediates, but clearly the forms also might be in the perceptible things; for both statements are parts of the same theory. Further, it follows from this theory that there are two solids in the same place, and that the intermediates are not immovable, since they are in the moving perceptible things. And in general to what purpose would one suppose them to exist indeed, but to exist in perceptible things? For the same paradoxical results will follow which we have already mentioned; there will be a heaven besides the heaven, only it will be not apart but in the same place; which is still more impossible.

If one were to assert existence of either form quâ form or matter quâ matter, paradoxes result.
Metaphysics: Further, if we admit in the fullest sense that something exists apart from the concrete thing, whenever something is predicated of the matter, must there, if there is something apart, be something apart from each set of individuals, or from some and not from others, or from none? (A) If there is nothing apart from individuals, there will be no object of thought, but all things will be objects of sense, and there will not be knowledge of anything, unless we say that sensation is knowledge. Further, nothing will be eternal or unmovable; for all perceptible things perish and are in movement. But if there is nothing eternal, neither can there be a process of coming to be; for there must be something that comes to be, i.e. from which something comes to be, and the ultimate term in this series cannot have come to be, since the series has a limit and since nothing can come to be out of that which is not. Further, if generation and movement exist there must also be a limit; for no movement is infinite, but every movement has an end, and that which is incapable of completing its coming to be cannot be in process of coming to be; and that which has completed its coming to be must be as soon as it has come to \(b e\). Further, since the matter exists, because it is ungenerated, it is a fortiori reasonable that the substance or essence, that which the matter is at any time coming to be, should exist; for if neither essence nor matter is to be, nothing will be at all, and since this is impossible there must be something besides the concrete thing, viz. the shape or form.

This amounts to Aristotle's proof of the existence of forms. One will notice, he really has not made a direct abstraction-he reasoned his way to it. He knows that to assert the existence of forms produces paradoxes, but if they do not exist then thought-as he defined it-would be impossible. Instead of the paradoxes turning him back to his definition of thought, he accepts the paradoxes as undefeatable-whereupon his mind cannot see the simple tense errors in his statements. Sometimes
our habit of thought is overpowering and we cannot learn. Never actually making the abstraction, he will be clumsy and contradictory in his expressions of The Theory Of Forms.

Without form (essence) nor matter, nothing could exist-as everything is defined in terms of difference (a Universal term) circumscribed by form. . . . stated sometimes as a proposition (thing) is a relation (matter) between terms (form). If he could have realized that his body is a number of sense systems, each sense either abstracting form or matter from things, he may have then seen that his mind is constrained to reason as branches from this physical fact of abstraction.
Metaphysics: In general one might raise the question why after all, besides perceptible things and the intermediates, we have to look for another class of things, i.e. the forms which we posit. If it is for this reason, because the objects of mathematics, while they differ from the things in this world in some other respect, differ not at all in that there are many of the same kind, so that their first principles cannot be limited in number (just as the elements of all the language in this sensible world are not limited in number, but in kind, unless one takes the elements of this individual syllable or of this individual articulate sound-whose elements will be limited even in number; so is it also in the case of the intermediates; for there also the members of the same kind are infinite in number), so that if there are not-besides perceptible and mathematical objectsothers such as some maintain the forms to be, there will be no substance which is one in number, but only in kind, nor will the first principles of things be determinate in number, but only in kind:-if then this must be so, the forms also must therefore be held to exist. Even if those who support this view do not express it articulately, still this is what they mean, and they must be maintaining the forms just because each of the forms is a substance and none is by accident.

Metaphysics: But if we are to suppose both that the forms exist and that the principles are one in number, not in kind, we have mentioned the impossible results that necessarily follow.

Metaphysics: But we shall say in answer to this argument also that while there is some justification for their thinking that the changing, when it is changing, does not exist, yet it is after all disputable; for that which is losing a quality has something of that which is being lost, and of that which is coming to be, something must already be. And in general if a thing is perishing, will be present something that exists; and if a thing is coming to be, there must be something from which it comes to be and something by which it is generated, and this process cannot go on ad infinitum.-But, leaving these arguments, let us insist on this, that it is not the same thing to change in quantity and in quality. Grant that in quantity a thing is not constant; still it is in respect of its form that we know each thing.-And again, it would be fair to criticize those who hold this view for asserting about the whole material universe what they saw only in a minority even of sensible things. For only that region of the sensible world which immediately surrounds us is always in process of destruction and generation; but this is-so to speak-not even a fraction of the whole, so that it would have been juster to acquit this part of the world because of the other part, than to condemn the other because of this.-And again, obviously we shall make to them also the same reply that we made long ago; we must show them and persuade them that there is something whose nature is changeless. Indeed, those who say that things at the same time are and are not, should in consequence say that all things are at rest rather than that they are in movement; for there is nothing into which they can change, since all attributes belong already to all subjects.

Metaphysics: 'Cause' means (1) that from which, as immanent material, a thing comes into being, e.g. the bronze is the cause of the statue and the silver of the saucer, and so are the classes which include these. (2) The form or pattern, i.e. the definition of the essence, and the classes
which include this (e.g. the ratio 2: and number in general are causes of the octave), and the parts included in the definition. (3) That from which the change or the resting from change first begins; e.g. the adviser is a cause of the action, and the father a cause of the child, and in general the maker a cause of the thing made and the change-producing of the changing. (4) The end, i.e. that for the sake of which a thing is; e.g. health is the cause of walking. For 'Why does one walk?' we say; 'that one may be healthy'; and in speaking thus we think we have given the cause. The same is true of all the means that intervene before the end, when something else has put the process in motion, as e.g. thinning or purging or drugs or instruments intervene before health is reached; for all these are for the sake of the end, though they differ from one another in that some are instruments and others are actions.

Metaphysics: Hence as regards the things that are or come to be by nature, though that from which they naturally come to be or are is already present, we say they have not their nature yet, unless they have their form or shape. That which comprises both of these exists by nature, e.g. the animals and their parts; and not only is the first matter nature (and this in two senses, either the first, counting from the thing, or the first in general; e.g. in the case of works in bronze, bronze is first with reference to them, but in general perhaps water is first, if all things that can be melted are water), but also the form or essence, which is the end of the process of becoming.(6) By an extension of meaning from this sense of 'nature' every essence in general has come to be called a 'nature', because the nature of a thing is one kind of essence.

Metaphysics: (c) Two things are called one, when the definition which states the essence of one is indivisible from another definition which shows us the other (though in itself every definition is divisible). Thus even that which has increased or is diminishing is one, because its definition is one, as, in the case of plane figures, is the definition of their form. In general those things the thought of whose essence is indivisible, and cannot separate them either in time or in place or in definition, are most of all one, and of these especially those which are substances. For in general those things that do not admit of division are called one in so far as they do not admit of it; e.g. if two things are indistinguishable quâ man, they are one kind of man; if quâ animal, one kind of animal; if quâ magnitude, one kind of magnitude.-Now most things are called one because they either do or have or suffer or are related to something else that is one, but the things that are primarily called one are those whose substance is one,-and one either in continuity or in form or in definition; for we count as more than one either things that are not continuous, or those whose form is not one, or those whose definition is not one.

Metaphysics: It follows, then, that 'substance' has two senses, (A) ultimate substratum, which is no longer predicated of anything else, and (B) that which, being a 'this', is also separable and of this nature is the shape or form of each thing.

Metaphysics: 'Limit' means (1) the last point of each thing, i.e. the first point beyond which it is not possible to find any part, and the first point within which every part is; (2) the form, whatever it may be, of a spatial magnitude or of a thing that has magnitude; (3) the end of each thing (and of this nature is that towards which the movement and the action are, not that from which they are-though sometimes it is both, that from which and that to which the movement is, i.e. the final cause); (4) the substance of each thing, and the essence of each; for this is the limit of knowledge; and if of knowledge, of the object also. Evidently, therefore, 'limit' has as many senses as 'beginning', and yet more; for the beginning is a limit, but not every limit is a beginning.

Aristotle often has a difficult time with things because he cannot complete an abstraction.
Metaphysics: 'That in virtue of which' has several meanings:-(1) the form or substance of each thing, e.g. that in virtue of which a man is good is the good itself, (2) the proximate subject in which it is the nature of an attribute to be found, e.g. color in a surface. 'That in virtue of which', then, in the primary sense is the form, and in a secondary sense the matter of each thing and the proximate substratum of each.-In general 'that in virtue of which' will found in the same number of senses as 'cause'; for we say indifferently (3) in virtue of what has he come?' or 'for what end has he come?'; and (4) in virtue of what has he inferred wrongly, or inferred?' or 'what is the cause of the inference, or of the wrong inference?'-Further (5) Kath' d is used in reference to position, e.g. 'at which he stands' or 'along which he walks; for all such phrases indicate place and position.

Metaphysics: 'To come from something' means (1) to come from something as from matter, and this in two senses, either in respect of the highest genus or in respect of the lowest species; e.g. in a sense all things that can be melted come from water, but in a sense the statue comes from bronze.-(2) As from the first moving principle; e.g. 'what did the fight come from?' from abusive language, because this was the origin of the fight.-(3) from the compound of matter and shape, as the parts come from the whole, and the verse from the Iliad, and the stones from the house; (in every such case the whole is a compound of matter and shape,) for the shape is the end, and only that which attains an end is complete.-(4) As the form from its part, e.g. man from 'two-footed' and syllable from 'letter'; for this is a different sense from that in which the statue comes from bronze; for the composite substance comes from the sensible matter, but the form also comes from the matter of the form.-Some things, then, are said to come from something else in these senses; but (5) others are so described if one of these senses is applicable to a part of that other thing; e.g. the child comes from its father and mother, and plants come from the earth, because they come from a part of those things.-(6) It means coming after a thing in time, e.g. night comes from day and storm from fine weather, because the one comes after the other. Of these things some are so described because they admit of change into one another, as in the cases now mentioned; some merely because they are successive in time, e.g. the voyage took place 'from' the equinox, because it took place after the equinox, and the festival of the Thargelia comes 'from' the Dionysia, because after the Dionysia.

Metaphysics: 'Part' means (1) (a) that into which a quantum can in any way be divided; for that which is taken from a quantum quâ quantum is always called a part of it, e.g. two is called in a sense a part of three. It means (b), of the parts in the first sense, only those which measure the whole; this is why two, though in one sense it is, in another is not, called a part of three.-(2) The elements into which a kind might be divided apart from the quantity are also called parts of it; for which reason we say the species are parts of the genus.-(3) The elements into which a whole is divided, or of which it consists-the 'whole' meaning either the form or that which has the form; e.g. of the bronze sphere or of the bronze cube both the bronze-i.e. the matter in which the form is-and the characteristic angle are parts.-(4) The elements in the definition which explains a thing are also parts of the whole; this is why the genus is called a part of the species, though in another sense the species is part of the genus.

Metaphysics: Further, some do not think there is anything substantial besides sensible things, but others think there are eternal substances which are more in number and more real; e.g. Plato posited two kinds of substance-the forms and objects of mathematics-as well as a third kind, viz. the substance of sensible bodies. And Speusippus made still more kinds of substance,
beginning with the One, and assuming principles for each kind of substance, one for numbers, another for spatial magnitudes, and then another for the soul; and by going on in this way he multiplies the kinds of substance. And some say forms and numbers have the same nature, and the other things come after them-lines and planes-until we come to the substance of the material universe and to sensible bodies.

Metaphysics: The word 'substance' is applied, if not in more senses, still at least to four main objects; for both the essence and the universal and the genus, are thought to be the substance of each thing, and fourthly the substratum. Now the substratum is that of which everything else is predicated, while it is itself not predicated of anything else. And so we must first determine the nature of this; for that which underlies a thing primarily is thought to be in the truest sense its substance. And in one sense matter is said to be of the nature of substratum, in another, shape, and in a third, the compound of these. (By the matter I mean, for instance, the bronze, by the shape the pattern of its form, and by the compound of these the statue, the concrete whole.) Therefore if the form is prior to the matter and more real, it will be prior also to the compound of both, for the same reason.

Metaphysics: If we adopt this point of view, then, it follows that matter is substance. But this is impossible; for both separability and 'this-ness' are thought to belong chiefly to substance. And so form and the compound of form and matter would be thought to be substance, rather than matter. The substance compounded of both, i.e. of matter and shape, may be dismissed; for it is posterior and its nature is obvious. And matter also is in a sense manifest. But we must inquire into the third kind of substance; for this is the most perplexing.

Metaphysics: Thus, then, are natural products produced; all other productions are called 'makings'. And all makings proceed either from art or from a faculty or from thought. Some of them happen also spontaneously or by luck just as natural products sometimes do; for there also the same things sometimes are produced without seed as well as from seed. Concerning these cases, then, we must inquire later, but from art proceed the things of which the form is in the soul of the artist. (By form I mean the essence of each thing and its primary substance.) for even contraries have in a sense the same form; for the substance of a privation is the opposite substance, e.g. health is the substance of disease (for disease is the absence of health); and health is the formula in the soul or the knowledge of it. The healthy subject is produced as the result of the following train of thought:-since this is health, if the subject is to be healthy this must first be present, e.g. a uniform state of body, and if this is to be present, there must be heat; and the physician goes on thinking thus until he reduces the matter to a final something which he himself can produce. Then the process from this point onward, i.e. the process towards health, is called a 'making'. Therefore it follows that in a sense health comes from health and house from house, that with matter from that without matter; for the medical art and the building art are the form of health and of the house, and when I speak of substance without matter I mean the essence.

Metaphysics: Since anything which is produced is produced by something (and this I call the starting-point of the production), and from something (and let this be taken to be not the privation but the matter; for the meaning we attach to this has already been explained), and since something is produced (and this is either a sphere or a circle or whatever else it may chance to be), just as we do not make the substratum (the brass), so we do not make the sphere, except incidentally, because the brazen sphere is a sphere and we make the form. For to make a 'this' is to make a 'this' out of the substratum in the full sense of the word. (I mean that to make the
brass round is not to make the round or the sphere, but something else, i.e. to produce this form in something different from itself. For if we make the form, we must make it out of something else; for this was assumed. E.g. we make a brazen sphere; and that in the sense that out of this, which is brass, we make this other, which is a sphere.) If, then, we also make the substratum itself, clearly we shall make it in the same way, and the processes of making will regress to infinity. Obviously then the form also, or whatever we ought to call the shape present in the sensible thing, is not produced, nor is there any production of it, nor is the essence produced; for this is that which is made to be in something else either by art or by nature or by some faculty. But that there is a brazen sphere, this we make. For we make it out of brass and the sphere; we bring the form into this particular matter, and the result is a brazen sphere. But if the essence of sphere in general is to be produced, something must be produced out of something. For the product will always have to be divisible, and one part must be this and another that; I mean the one must be matter and the other form. If, then, a sphere is 'the figure whose circumference is at all points equidistant from the center', part of this will be the medium in which the thing made will be, and part will be in that medium, and the whole will be the thing produced, which corresponds to the brazen sphere. It is obvious, then, from what has been said, that that which is spoken of as form or substance is not produced, but the concrete thing which gets its name from this is produced, and that in everything which is generated matter is present, and one part of the thing is matter and the other form.

Metaphysics: Is there, then, a sphere apart from the individual spheres or a house apart from the bricks? Rather we may say that no 'this' would ever have been coming to be, if this had been so, but that the 'form' means the 'such', and is not a 'this'-a definite thing; but the artist makes, or the father begets, a 'such' out of a 'this'; and when it has been begotten, it is a 'this such'. And the whole 'this', Callias or Socrates, is analogous to 'this brazen sphere', but man and animal to 'brazen sphere' in general. Obviously, then, the cause which consists of the forms (taken in the sense in which some maintain the existence of the forms, i.e. if they are something apart from the individuals) is useless, at least with regard to comings-to-be and to substances; and the forms need not, for this reason at least, be self-subsistent substances. In some cases indeed it is even obvious that the begetter is of the same kind as the begotten (not, however, the same nor one in number, but in form), i.e. in the case of natural products (for man begets man), unless something happens contrary to nature, e.g. the production of a mule by a horse. (And even these cases are similar; for that which would be found to be common to horse and ass, the genus next above them, has not received a name, but it would doubtless be both in fact something like a mule.) Obviously, therefore, it is quite unnecessary to set up a form as a pattern (for we should have looked for forms in these cases if in any; for these are substances if anything is so); the begetter is adequate to the making of the product and to the causing of the form in the matter. And when we have the whole, such and such a form in this flesh and in these bones, this is Callias or Socrates; and they are different in virtue of their matter (for that is different), but the same in form; for their form is indivisible.

Metaphysics: And it is clear also from what has been said that in a sense every product of art is produced from a thing which shares its name (as natural products are produced), or from a part of itself which shares its name (e.g. the house is produced from a house, quâ produced by reason; for the art of building is the form of the house), or from something which contains an art of it,-if we exclude things produced by accident; for the cause of the thing's producing the product directly per se is a part of the product. The heat in the movement caused heat in the body, and this is either health, or a part of health, or is followed by a part of health or by health itself. And
so it is said to cause health, because it causes that to which health attaches as a consequence.
Metaphysics: But not only regarding substance does our argument prove that its form does not come to be, but the argument applies to all the primary classes alike, i.e. quantity, quality, and the other categories. For as the brazen sphere comes to be, but not the sphere nor the brass, and so too in the case of brass itself, if it comes to be, it is its concrete unity that comes to be (for the matter and the form must always exist before), so is it both in the case of substance and in that of quality and quantity and the other categories likewise; for the quality does not come to be, but the wood of that quality, and the quantity does not come to be, but the wood or the animal of that size. But we may learn from these instances a peculiarity of substance, that there must exist beforehand in complete reality another substance which produces it, e.g. an animal if an animal is produced; but it is not necessary that a quality or quantity should pre-exist otherwise than potentially.

Metaphysics: Perhaps we should rather say that 'part' is used in several senses. One of these is 'that which measures another thing in respect of quantity'. But let this sense be set aside; let us inquire about the parts of which substance consists. If then matter is one thing, form another, the compound of these a third, and both the matter and the form and the compound are substance even the matter is in a sense called part of a thing, while in a sense it is not, but only the elements of which the formula of the form consists. E.g. of concavity flesh (for this is the matter in which it is produced) is not a part, but of snubness it is a part; and the bronze is a part of the concrete statue, but not of the statue when this is spoken of in the sense of the form. (for the form, or the thing as having form, should be said to be the thing, but the material element by itself must never be said to be so.) And so the formula of the circle does not include that of the segments, but the formula of the syllable includes that of the letters; for the letters are parts of the formula of the form, and not matter, but the segments are parts in the sense of matter on which the form supervenes; yet they are nearer the form than the bronze is when roundness is produced in bronze. But in a sense not even every kind of letter will be present in the formula of the syllable, e.g. particular waxen letters or the letters as movements in the air; for in these also we have already something that is part of the syllable only in the sense that it is its perceptible matter. For even if the line when divided passes away into its halves, or the man into bones and muscles and flesh, it does not follow that they are composed of these as parts of their essence, but rather as matter; and these are parts of the concrete thing, but not also of the form, i.e. of that to which the formula refers; wherefore also they are not present in the formulae. In one kind of formula, then, the formula of such parts will be present, but in another it must not be present, where the formula does not refer to the concrete object. For it is for this reason that some things have as their constituent principles parts into which they pass away, while some have not. Those things which are the form and the matter taken together, e.g. the snub, or the bronze circle, pass away into these materials, and the matter is a part of them; but those things which do not involve matter but are without matter, and whose formulae are formulae of the form only, do not pass away,-either not at all or at any rate not in this way. Therefore these materials are principles and parts of the concrete things, while of the form they are neither parts nor principles. And therefore the clay statue is resolved into clay and the ball into bronze and Callias into flesh and bones, and again the circle into its segments; for there is a sense of 'circle' in which involves matter. For 'circle' is used ambiguously, meaning both the circle, unqualified, and the individual circle, because there is no name peculiar to the individuals.

Metaphysics: The truth has indeed now been stated, but still let us state it yet more clearly,
taking up the question again. The parts of the formula, into which the formula is divided, are prior to it, either all or some of them. The formula of the right angle, however, does not include the formula of the acute, but the formula of the acute includes that of the right angle; for he who defines the acute uses the right angle; for the acute is 'less than a right angle'. The circle and the semicircle also are in a like relation; for the semicircle is defined by the circle; and so is the finger by the whole body, for a finger is 'such and such a part of a man'. Therefore the parts which are of the nature of matter, and into which as its matter a thing is divided, are posterior; but those which are of the nature of parts of the formula, and of the substance according to its formula, are prior, either all or some of them. And since the soul of animals (for this is the substance of a living being) is their substance according to the formula, i.e. the form and the essence of a body of a certain kind (at least we shall define each part, if we define it well, not without reference to its function, and this cannot belong to it without perception), so that the parts of soul are prior, either all or some of them, to the concrete 'animal', and so too with each individual animal; and the body and parts are posterior to this, the essential substance, and it is not the substance but the concrete thing that is divided into these parts as its matter:-this being so, to the concrete thing these are in a sense prior, but in a sense they are not. For they cannot even exist if severed from the whole; for it is not a finger in any and every state that is the finger of a living thing, but a dead finger is a finger only in name. Some parts are neither prior nor posterior to the whole, i.e. those which are dominant and in which the formula, i.e. the essential substance, is immediately present, e.g. perhaps the heart or the brain; for it does not matter in the least which of the two has this quality. But man and horse and terms which are thus applied to individuals, but universally, are not substance but something composed of this particular formula and this particular matter treated as universal; and as regards the individual, Socrates already includes in him ultimate individual matter; and similarly in all other cases. 'A part' may be a part either of the form (i.e. of the essence), or of the compound of the form and the matter, or of the matter itself. But only the parts of the form are parts of the formula, and the formula is of the universal; for 'being a circle' is the same as the circle, and 'being a soul' the same as the soul. But when we come to the concrete thing, e.g. this circle, i.e. one of the individual circles, whether perceptible or intelligible (I mean by intelligible circles the mathematical, and by perceptible circles those of bronze and of wood),-of these there is no definition, but they are known by the aid of intuitive thinking or of perception; and when they pass out of this complete realization it is not clear whether they exist or not; but they are always stated and recognized by means of the universal formula. But matter is unknowable in itself. And some matter is perceptible and some intelligible, perceptible matter being for instance bronze and wood and all matter that is changeable, and intelligible matter being that which is present in perceptible things not quâ perceptible, i.e. the objects of mathematics.

Metaphysics: Another question is naturally raised, viz. what sort of parts belong to the form and what sort not to the form, but to the concrete thing. Yet if this is not plain it is not possible to define any thing; for definition is of the universal and of the form. If then it is not evident what sort of parts are of the nature of matter and what sort are not, neither will the formula of the thing be evident. In the case of things which are found to occur in specifically different materials, as a circle may exist in bronze or stone or wood, it seems plain that these, the bronze or the stone, are no part of the essence of the circle, since it is found apart from them. Of things which are not seen to exist apart, there is no reason why the same may not be true, just as if all circles that had ever been seen were of bronze; for none the less the bronze would be no part of the form; but it is hard to eliminate it in thought. E.g. the form of man is always found in flesh
and bones and parts of this kind; are these then also parts of the form and the formula? No, they are matter; but because man is not found also in other matters we are unable to perform the abstraction.

Metaphysics: Since this is thought to be possible, but it is not clear when it is the case, some people already raise the question even in the case of the circle and the triangle, thinking that it is not right to define these by reference to lines and to the continuous, but that all these are to the circle or the triangle as flesh and bones are to man, and bronze or stone to the statue; and they reduce all things to numbers, and they say the formula of 'line' is that of 'two'. And of those who assert the Ideas some make 'two' the line-itself, and others make it the form of the line; for in some cases they say the form and that of which it is the form are the same, e.g. 'two' and the form of two; but in the case of 'line' they say this is no longer so.

Metaphysics: It follows then that there is one form for many things whose form is evidently different (a conclusion which confronted the Pythagoreans also); and it is possible to make one thing the form-itself of all, and to hold that the others are not forms; but thus all things will be one.

Metaphysics: We have pointed out, then, that the question of definitions contains some difficulty, and why this is so. And so to reduce all things thus to forms and to eliminate the matter is useless labor; for some things surely are a particular form in a particular matter, or particular things in a particular state. And the comparison which Socrates the younger used to make in the case of 'animal' is not sound; for it leads away from the truth, and makes one suppose that man can possibly exist without his parts, as the circle can without the bronze. But the case is not similar; for an animal is something perceptible, and it is not possible to define it without reference to movement-nor, therefore, without reference to the parts' being in a certain state. For it is not a hand in any and every state that is a part of man, but only when it can fulfil its work, and therefore only when it is alive; if it is not alive it is not a part.

Metaphysics: Regarding the objects of mathematics, why are the formulae of the parts not parts of the formulae of the wholes; e.g. why are not the semicircles included in the formula of the circle? It cannot be said, 'because these parts are perceptible things'; for they are not. But perhaps this makes no difference; for even some things which are not perceptible must have matter; indeed there is some matter in everything which is not an essence and a bare form but a 'this'. The semicircles, then, will not be parts of the universal circle, but will be parts of the individual circles, as has been said before; for while one kind of matter is perceptible, there is another which is intelligible.

Metaphysics: If then a differentia of a differentia be taken at each step, one differentia-the last-will be the form and the substance; but if we divide according to accidental qualities, e.g. if we were to divide that which is endowed with feet into the white and the black, there will be as many differentiae as there are cuts. Therefore it is plain that the definition is the formula which contains the differentiae, or, according to the right method, the last of these. This would be evident, if we were to change the order of such definitions, e.g. of that of man, saying 'animal which is two-footed and endowed with feet'; for 'endowed with feet' is superfluous when 'twofooted' has been said. But there is no order in the substance; for how are we to think the one element posterior and the other prior? Regarding the definitions, then, which are reached by the method of divisions, let this suffice as our first attempt at stating their nature.

Metaphysics: It is clear also from these very facts what consequence confronts those who say
the Ideas are substances capable of separate existence, and at the same time make the form consist of the genus and the differentiae. For if the forms exist and 'animal' is present in 'man' and 'horse', it is either one and the same in number, or different. (In formula it is clearly one; for he who states the formula will go through the formula in either case.) If then there is a 'man-inhimself' who is a 'this' and exists apart, the parts also of which he consists, e.g. 'animal' and 'two-footed', must indicate 'this'es', and be capable of separate existence, and substances; therefore 'animal', as well as 'man', must be of this sort.

Metaphysics: Further, (3) in the case of sensible things both these consequences and others still more absurd follow. If, then, these consequences are impossible, clearly there are not forms of sensible things in the sense in which some maintain their existence.

Metaphysics: But those who say the forms exist, in one respect are right, in giving the forms separate existence, if they are substances; but in another respect they are not right, because they say the one over many is a form. The reason for their doing this is that they cannot declare what are the substances of this sort, the imperishable substances which exist apart from the individual and sensible substances. They make them, then, the same in kind as the perishable things (for this kind of substance we know)-'man-himself' and 'horse-itself', adding to the sensible things the word 'itself'. Yet even if we had not seen the stars, none the less, I suppose, would they have been eternal substances apart from those which we knew; so that now also if we do not know what non-sensible substances there are, yet it is doubtless necessary that there should be some.-Clearly, then, no universal term is the name of a substance, and no substance is composed of substances.

Metaphysics: The object of the inquiry is most easily overlooked where one term is not expressly predicated of another (e.g. when we inquire 'what man is'), because we do not distinguish and do not say definitely that certain elements make up a certain whole. But we must articulate our meaning before we begin to inquire; if not, the inquiry is on the border-line between being a search for something and a search for nothing. Since we must have the existence of the thing as something given, clearly the question is why the matter is some definite thing; e.g. why are these materials a house? Because that which was the essence of a house is present. And why is this individual thing, or this body having this form, a man? Therefore what we seek is the cause, i.e. the form, by reason of which the matter is some definite thing; and this is the substance of the thing. Evidently, then, in the case of simple terms no inquiry nor teaching is possible; our attitude towards such things is other than that of inquiry.

Metaphysics: WE must reckon up the results arising from what has been said, and compute the sum of them, and put the finishing touch to our inquiry. We have said that the causes, principles, and elements of substances are the object of our search. And some substances are recognized by every one, but some have been advocated by particular schools. Those generally recognized are the natural substances, i.e. Fire, earth, water, air, \&c., the simple bodies; second plants and their parts, and animals and the parts of animals; and finally the physical universe and its parts; while some particular schools say that forms and the objects of mathematics are substances. But there are arguments which lead to the conclusion that there are other substances, the essence and the substratum. Again, in another way the genus seems more substantial than the various species, and the universal than the particulars. And with the universal and the genus the Ideas are connected; it is in virtue of the same argument that they are thought to be substances. And since the essence is substance, and the definition is a formula of the essence, for this reason we have discussed definition and essential predication. Since the
definition is a formula, and a formula has parts, we had to consider also with respect to the notion of 'part', what are parts of the substance and what are not, and whether the parts of the substance are also parts of the definition. Further, too, neither the universal nor the genus is a substance; we must inquire later into the Ideas and the objects of mathematics; for some say these are substances as well as the sensible substances.

Metaphysics: Obviously, then, the actuality or the formula is different when the matter is different; for in some cases it is the composition, in others the mixing, and in others some other of the attributes we have named. And so, of the people who go in for defining, those who define a house as stones, bricks, and timbers are speaking of the potential house, for these are the matter; but those who propose 'a receptacle to shelter chattels and living beings', or something of the sort, speak of the actuality. Those who combine both of these speak of the third kind of substance, which is composed of matter and form (for the formula that gives the differentiae seems to be an account of the form or actuality, while that which gives the components is rather an account of the matter); and the same is true of the kind of definitions which Archytas used to accept; they are accounts of the combined form and matter. E.g. what is still weather? Absence of motion in a large expanse of air; air is the matter, and absence of motion is the actuality and substance. What is a calm? Smoothness of sea; the material substratum is the sea, and the actuality or shape is smoothness. It is obvious then, from what has been said, what sensible substance is and how it exists-one kind of it as matter, another as form or actuality, while the third kind is that which is composed of these two.

Metaphysics: We must not fail to notice that sometimes it is not clear whether a name means the composite substance, or the actuality or form, e.g. whether 'house' is a sign for the composite thing, 'a covering consisting of bricks and stones laid thus and thus', or for the actuality or form, 'a covering', and whether a line is 'two-ness in length' or 'two-ness', and whether an animal is soul in a body' or 'a soul'; for soul is the substance or actuality of some body. 'Animal' might even be applied to both, not as something definable by one formula, but as related to a single thing. But this question, while important for another purpose, is of no importance for the inquiry into sensible substance; for the essence certainly attaches to the form and the actuality. For 'soul' and 'to be soul' are the same, but 'to be man' and 'man' are not the same, unless even the bare soul is to be called man; and thus on one interpretation the thing is the same as its essence, and on another it is not.

Metaphysics: (This, then, must either be eternal or it must be destructible without being ever in course of being destroyed, and must have come to be without ever being in course of coming to be. But it has been proved and explained elsewhere that no one makes or begets the form, but it is the individual that is made, i.e. the complex of form and matter that is generated. Whether the substances of destructible things can exist apart, is not yet at all clear; except that obviously this is impossible in some cases-in the case of things which cannot exist apart from the individual instances, e.g. house or utensil. Perhaps, indeed, neither these things themselves, nor any of the other things which are not formed by nature, are substances at all; for one might say that the nature in natural objects is the only substance to be found in destructible things.)

Metaphysics: Therefore the difficulty which used to be raised by the school of Antisthenes and other such uneducated people has a certain timeliness. They said that the 'what' cannot be defined (for the definition so called is a 'long rigmarole') but of what sort a thing, e.g. silver, is, they thought it possible actually to explain, not saying what it is, but that it is like tin. Therefore one kind of substance can be defined and formulated, i.e. the composite kind, whether it be
perceptible or intelligible; but the primary parts of which this consists cannot be defined, since a definitory formula predicates something of something, and one part of the definition must play the part of matter and the other that of form.

Metaphysics: It is also obvious that, if substances are in a sense numbers, they are so in this sense and not, as some say, as numbers of units. For a definition is a sort of number; for (1) it is divisible, and into indivisible parts (for definitory formulae are not infinite), and number also is of this nature. And (2) as, when one of the parts of which a number consists has been taken from or added to the number, it is no longer the same number, but a different one, even if it is the very smallest part that has been taken away or added, so the definition and the essence will no longer remain when anything has been taken away or added. And (3) the number must be something in virtue of which it is one, and this these thinkers cannot state, what makes it one, if it is one (for either it is not one but a sort of heap, or if it is, we ought to say what it is that makes one out of many); and the definition is one, but similarly they cannot say what makes it one. And this is a natural result; for the same reason is applicable, and substance is one in the sense which we have explained, and not, as some say, by being a sort of unit or point; each is a complete reality and a definite nature. And (4) as number does not admit of the more and the less, neither does substance, in the sense of form, but if any substance does, it is only the substance which involves matter. Let this, then, suffice for an account of the generation and destruction of socalled substances in what sense it is possible and in what sense impossible-and of the reduction of things to number.

Metaphysics: Since some things are and are not, without coming to be and ceasing to be, e.g. points, if they can be said to be, and in general forms (for it is not 'white' comes to be, but the wood comes to be white, if everything that comes to be comes from something and comes to be something, , not all contraries can come from one another, but it is in different senses that a pale man comes from a dark man, and pale comes from dark. Nor has everything matter, but only those things which come to be and change into one another. Those things which, without ever being in course of changing, are or are not, have no matter.

Metaphysics: There is difficulty in the question how the matter of each thing is related to its contrary states. E.g. if the body is potentially healthy, and disease is contrary to health, is it potentially both healthy and diseased? And is water potentially wine and vinegar? We answer that it is the matter of one in virtue of its positive state and its form, and of the other in virtue of the privation of its positive state and the corruption of it contrary to its nature. It is also hard to say why wine is not said to be the matter of vinegar nor potentially vinegar (though vinegar is produced from it), and why a living man is not said to be potentially dead. In fact they are not, but the corruptions in question are accidental, and it is the matter of the animal that is itself in virtue of its corruption the potency and matter of a corpse, and it is water that is the matter of vinegar. For the corpse comes from the animal, and vinegar from wine, as night from day. And all the things which change thus into one another must go back to their matter; e.g. if from a corpse is produced an animal, the corpse first goes back to its matter, and only then becomes an animal; and vinegar first goes back to water, and only then becomes wine.

Metaphysics: To return to the difficulty which has been stated with respect both to definitions and to numbers, what is the cause of their unity? In the case of all things which have several parts and in which the totality is not, as it were, a mere heap, but the whole is something beside the parts, there is a cause; for even in bodies contact is the cause of unity in some cases, and in others viscosity or some other such quality. And a definition is a set of words which is one not
by being connected together, like the Iliad, but by dealing with one object.-What then, is it that makes man one; why is he one and not many, e.g. animal biped, especially if there are, as some say, an animal-itself and a biped-itself? Why are not those forms themselves the man, so that men would exist by participation not in man, nor in one form, but in two, animal and biped, and in general man would be not one but more than one thing, animal and biped?

Metaphysics: Clearly, then, if people proceed thus in their usual manner of definition and speech, they cannot explain and solve the difficulty. But if, as we say, one element is matter and another is form, and one is potentially and the other actually, the question will no longer be thought a difficulty. For this difficulty is the same as would arise if 'round bronze' were the definition of 'cloak'; for this word would be a sign of the definitory formula, so that the question is, what is the cause of the unity of 'round' and 'bronze'? The difficulty disappears, because the one is matter, the other form. What, then, causes this-that which was potentially to be actuallyexcept, in the case of things which are generated, the agent? For there is no other cause of the potential sphere's becoming actually a sphere, but this was the essence of either. Of matter some is intelligible, some perceptible, and in a formula there is always an element of matter as well as one of actuality; e.g. the circle is 'a plane figure'. But of the things which have no matter, either intelligible or perceptible, each is by its nature essentially a kind of unity, as it is essentially a kind of being-individual substance, quality, or quantity (and so neither 'existent' nor 'one' is present in their definitions), and the essence of each of them is by its very nature a kind of unity as it is a kind of being-and so none of these has any reason outside itself, for being one, nor for being a kind of being; for each is by its nature a kind of being and a kind of unity, not as being in the genus 'being' or 'one' nor in the sense that being and unity can exist apart from particulars.

\section*{i.e. One cannot say that 'forms' or 'matter' 'exist' as 'things' 'exist'. Existence cannot be divided against itself.}

Metaphysics: Owing to the difficulty about unity some speak of 'participation', and raise the question, what is the cause of participation and what is it to participate; and others speak of 'communion', as Lycophron says knowledge is a communion of knowing with the soul; and others say life is a 'composition' or 'connexion' of soul with body. Yet the same account applies to all cases; for being healthy, too, will on this showing be either a 'communion' or a 'connexion' or a 'composition' of soul and health, and the fact that the bronze is a triangle will be a 'composition' of bronze and triangle, and the fact that a thing is white will be a 'composition' of surface and whiteness. The reason is that people look for a unifying formula, and a difference, between potency and complete reality. But, as has been said, the proximate matter and the form are one and the same thing, the one potentially, and the other actually. Therefore it is like asking what in general is the cause of unity and of a thing's being one; for each thing is a unity, and the potential and the actual are somehow one. Therefore there is no other cause here unless there is something which caused the movement from potency into actuality. And all things which have no matter are without qualification essentially unities.

Metaphysics: It seems that when we call a thing not something else but 'that-en'-e.g. a casket is not 'wood' but 'wooden', and wood is not 'earth' but 'earthen', and again earth will illustrate our point if it is similarly not something else but 'that-en'-that other thing is always potentially (in the full sense of that word) the thing which comes after it in this series. E.g. a casket is not 'earthen' nor 'earth', but 'wooden'; for this is potentially a casket and this is the matter of a casket, wood in general of a casket in general, and this particular wood of this particular casket.

And if there is a first thing, which is no longer, in reference to something else, called 'that-en', this is prime matter; e.g. if earth is 'airy' and air is not 'fire' but 'fiery', fire is prime matter, which is not a 'this'. For the subject or substratum is differentiated by being a 'this' or not being one; i.e. the substratum of modifications is, e.g. a man, i.e. a body and a soul, while the modification is 'musical' or 'pale'. (The subject is called, when music comes to be present in it, not 'music' but 'musical', and the man is not 'paleness' but 'pale', and not 'ambulation' or 'movement' but 'walking' or 'moving',-which is akin to the 'that-en'.) Wherever this is so, then, the ultimate subject is a substance; but when this is not so but the predicate is a form and a 'this', the ultimate subject is matter and material substance. And it is only right that 'that-en' should be used with reference both to the matter and to the accidents; for both are indeterminates.

Metaphysics: But (3) it is also prior in substantiality; firstly, (a) because the things that are posterior in becoming are prior in form and in substantiality (e.g. man is prior to boy and human being to seed; for the one already has its form, and the other has not), and because everything that comes to be moves towards a principle, i.e. an end (for that for the sake of which a thing is, is its principle, and the becoming is for the sake of the end), and the actuality is the end, and it is for the sake of this that the potency is acquired. For animals do not see in order that they may have sight, but they have sight that they may see. And similarly men have the art of building that they may build, and theoretical science that they may theorize; but they do not theorize that they may have theoretical science, except those who are learning by practice; and these do not theorize except in a limited sense, or because they have no need to theorize. Further, matter exists in a potential state, just because it may come to its form; and when it exists actually, then it is in its form. And the same holds good in all cases, even those in which the end is a movement. And so, as teachers think they have achieved their end when they have exhibited the pupil at work, nature does likewise. For if this is not the case, we shall have Pauson's Hermes over again, since it will be hard to say about the knowledge, as about the figure in the picture, whether it is within or without. For the action is the end, and the actuality is the action. And so even the word 'actuality' is derived from 'action', and points to the complete reality.

Metaphysics: Obviously, therefore, the substance or form is actuality. According to this argument, then, it is obvious that actuality is prior in substantial being to potency; and as we have said, one actuality always precedes another in time right back to the actuality of the eternal prime mover.

Metaphysics: To the one belong, as we indicated graphically in our distinction of the contraries, the same and the like and the equal, and to plurality belong the other and the unlike and the unequal. 'The same' has several meanings; (1) we sometimes mean 'the same numerically'; again, (2) we call a thing the same if it is one both in definition and in number, e.g. you are one with yourself both in form and in matter; and again, (3) if the definition of its primary essence is one; e.g. equal straight lines are the same, and so are equal and equal-angled quadrilaterals; there are many such, but in these equality constitutes unity.

Metaphysics: Things are like if, not being absolutely the same, nor without difference in respect of their concrete substance, they are the same in form; e.g. the larger square is like the smaller, and unequal straight lines are like; they are like, but not absolutely the same. Other things are like, if, having the same form, and being things in which difference of degree is possible, they have no difference of degree. Other things, if they have a quality that is in form one and same-e.g. whiteness-in a greater or less degree, are called like because their form is
one. Other things are called like if the qualities they have in common are more numerous than those in which they differ-either the qualities in general or the prominent qualities; e.g. tin is like silver, quâ white, and gold is like fire, quâ yellow and red.

Metaphysics: The primary contrariety is that between positive state and privation-not every privation, however (for 'privation' has several meanings), but that which is complete. And the other contraries must be called so with reference to these, some because they possess these, others because they produce or tend to produce them, others because they are acquisitions or losses of these or of other contraries. Now if the kinds of opposition are contradiction and privation and contrariety and relation, and of these the first is contradiction, and contradiction admits of no intermediate, while contraries admit of one, clearly contradiction and contrariety are not the same. But privation is a kind of contradiction; for what suffers privation, either in general or in some determinate way, either that which is quite incapable of having some attribute or that which, being of such a nature as to have it, has it not; here we have already a variety of meanings, which have been distinguished elsewhere. Privation, therefore, is a contradiction or incapacity which is determinate or taken along with the receptive material. This is the reason why, while contradiction does not admit of an intermediate, privation sometimes does; for everything is equal or not equal, but not everything is equal or unequal, or if it is, it is only within the sphere of that which is receptive of equality. If, then, the comings-to-be which happen to the matter start from the contraries, and proceed either from the form and the possession of the form or from a privation of the form or shape, clearly all contrariety must be privation, but presumably not all privation is contrariety (the reason being that that has suffered privation may have suffered it in several ways); for it is only the extremes from which changes proceed that are contraries.

Metaphysics: Evidently, then, there cannot be forms such as some maintain, for then one man would be perishable and another imperishable. Yet the forms are said to be the same in form with the individuals and not merely to have the same name; but things which differ in kind are farther apart than those which differ in form.

Metaphysics: But again the science we are looking for must not be supposed to deal with the causes which have been mentioned in the Physics. For (A) it does not deal with the final cause (for that is the nature of the good, and this is found in the field of action and movement; and it is the first mover-for that is the nature of the end-but in the case of things unmovable there is nothing that moved them first), and (B) in general it is hard to say whether perchance the science we are now looking for deals with perceptible substances or not with them, but with certain others. If with others, it must deal either with the forms or with the objects of mathematics. Now (a) evidently the forms do not exist. (But it is hard to say, even if one suppose them to exist, why in the world the same is not true of the other things of which there are forms, as of the objects of mathematics. I mean that these thinkers place the objects of mathematics between the forms and perceptible things, as a kind of third set of things apart both from the forms and from the things in this world; but there is not a third man or horse besides the ideal and the individuals. If on the other hand it is not as they say, with what sort of things must the mathematician be supposed to deal? Certainly not with the things in this world; for none of these is the sort of thing which the mathematical sciences demand.) Nor (b) does the science which we are now seeking treat of the objects of mathematics; for none of them can exist separately. But again it does not deal with perceptible substances; for they are perishable.

Like most, Aristotle does not see Arithmetic as simply a grammar, and numbers only names in an
ordered naming convention.
Apparently the 'third man' is a claim that between the Universal and the Particular there is some third state. One must see the Universal as the Form, Definition, etc., and the Particular as the matter, member, etc., of that form. This is an abstraction from 'proposition' which is matter and form. If there is matter, form and something other, one can make a claim for the third man. Aristotle actually supports the 'third man' when he says that matter, form, and the compound are each of them 'things' when in fact only the compound, thing, proposition, exists by definition of existence.]

Metaphysics: Further, must we suppose something apart from individual things, or is it these that the science we are seeking treats of? But these are infinite in number. Yet the things that are apart from the individuals are genuses or species; but the science we now seek treats of neither of these. The reason why this is impossible has been stated. Indeed, it is in general hard to say whether one must assume that there is a separable substance besides the sensible substances (i.e. the substances in this world), or that these are the real things and Wisdom is concerned with them. For we seem to seek another kind of substance, and this is our problem, i.e. to see if there is something which can exist apart by itself and belongs to no sensible thing.-further, if there is another substance apart from and corresponding to sensible substances, which kinds of sensible substance must be supposed to have this corresponding to them? Why should one suppose men or horses to have it, more than either the other animals or even all lifeless things? On the other hand to set up other and eternal substances equal in number to the sensible and perishable substances would seem to fall beyond the bounds of probability.-But if the principle we now seek is not separable from corporeal things, what has a better claim to the name matter? This, however, does not exist in actuality, but exists in potency. And it would seem rather that the form or shape is a more important principle than this; but the form is perishable, so that there is no eternal substance at all which can exist apart and independent. But this is paradoxical; for such a principle and substance seems to exist and is sought by nearly all the most refined thinkers as something that exists; for how is there to be order unless there is something eternal and independent and permanent?

Metaphysics: Further, is there anything apart from the concrete thing (by which I mean the matter and that which is joined with it), or not? If not, we are met by the objection that all things that are in matter are perishable. But if there is something, it must be the form or shape. Now it is hard to determine in which cases this exists apart and in which it does not; for in some cases the form is evidently not separable, e.g. in the case of a house.

Metaphysics: There are three kinds of substance-one that is sensible (of which one subdivision is eternal and another is perishable; the latter is recognized by all men, and includes e.g. plants and animals), of which we must grasp the elements, whether one or many; and another that is immovable, and this certain thinkers assert to be capable of existing apart, some dividing it into two, others identifying the forms and the objects of mathematics, and others positing, of these two, only the objects of mathematics. The former two kinds of substance are the subject of physics (for they imply movement); but the third kind belongs to another science, if there is no principle common to it and to the other kinds.

Metaphysics: One might raise the question from what sort of non-being generation proceeds; for 'non-being' has three senses. If, then, one form of non-being exists potentially, still it is not by virtue of a potentiality for any and every thing, but different things come from different
things; nor is it satisfactory to say that 'all things were together'; for they differ in their matter, since otherwise why did an infinity of things come to be, and not one thing? For 'reason' is one, so that if matter also were one, that must have come to be in actuality which the matter was in potency. The causes and the principles, then, are three, two being the pair of contraries of which one is definition and form and the other is privation, and the third being the matter.

Metaphysics: Note, next, that neither the matter nor the form comes to be-and I mean the last matter and form. For everything that changes is something and is changed by something and into something. That by which it is changed is the immediate mover; that which is changed, the matter; that into which it is changed, the form. The process, then, will go on to infinity, if not only the bronze comes to be round but also the round or the bronze comes to be; therefore there must be a stop.

Metaphysics: There are three kinds of substance-the matter, which is a 'this' in appearance (for all things that are characterized by contact and not, by organic unity are matter and substratum, e.g. Fire, flesh, head; for these are all matter, and the last matter is the matter of that which is in the full sense substance); the nature, which is a 'this' or positive state towards which movement takes place; and again, thirdly, the particular substance which is composed of these two, e.g. Socrates or Callias. Now in some cases the 'this' does not exist apart from the composite substance, e.g. the form of house does not so exist, unless the art of building exists apart (nor is there generation and destruction of these forms, but it is in another way that the house apart from its matter, and health, and all ideals of art, exist and do not exist); but if the 'this' exists apart from the concrete thing, it is only in the case of natural objects. And so Plato was not far wrong when he said that there are as many forms as there are kinds of natural object (if there are forms distinct from the things of this earth). The moving causes exist as things preceding the effects, but causes in the sense of definitions are simultaneous with their effects. For when a man is healthy, then health also exists; and the shape of a bronze sphere exists at the same time as the bronze sphere. (But we must examine whether any form also survives afterwards. For in some cases there is nothing to prevent this; e.g. the soul may be of this sortnot all soul but the reason; for presumably it is impossible that all soul should survive.) Evidently then there is no necessity, on this ground at least, for the existence of the Ideas. For man is begotten by man, a given man by an individual father; and similarly in the arts; for the medical art is the formal cause of health.

Metaphysics: Or, as we are wont to put it, in a sense they have and in a sense they have not; e.g. perhaps the elements of perceptible bodies are, as form, the hot, and in another sense the cold, which is the privation; and, as matter, that which directly and of itself potentially has these attributes; and substances comprise both these and the things composed of these, of which these are the principles, or any unity which is produced out of the hot and the cold, e.g. Flesh or bone; for the product must be different from the elements. These things then have the same elements and principles (though specifically different things have specifically different elements); but all things have not the same elements in this sense, but only analogically; i.e. one might say that there are three principles-the form, the privation, and the matter. But each of these is different for each class; e.g. in color they are white, black, and surface, and in day and night they are light, darkness, and air.

Metaphysics: Since not only the elements present in a thing are causes, but also something external, i.e. the moving cause, clearly while 'principle' and 'element' are different both are causes, and 'principle' is divided into these two kinds; and that which acts as producing
movement or rest is a principle and a substance. Therefore analogically there are three elements, and four causes and principles; but the elements are different in different things, and the proximate moving cause is different for different things. Health, disease, body; the moving cause is the medical art. Form, disorder of a particular kind, bricks; the moving cause is the building art. And since the moving cause in the case of natural things is-for man, for instance, man, and in the products of thought the form or its contrary, there will be in a sense three causes, while in a sense there are four. For the medical art is in some sense health, and the building art is the form of the house, and man begets man; Further, besides these there is that which as first of all things moves all things.

Metaphysics: And in yet another way, analogically identical things are principles, i.e. actuality and potency; but these also are not only different for different things but also apply in different ways to them. For in some cases the same thing exists at one time actually and at another potentially, e.g. wine or flesh or man does so. (And these too fall under the above-named causes. For the form exists actually, if it can exist apart, and so does the complex of form and matter, and the privation, e.g. darkness or disease; but the matter exists potentially; for this is that which can become qualified either by the form or by the privation.) But the distinction of actuality and potentiality applies in another way to cases where the matter of cause and of effect is not the same, in some of which cases the form is not the same but different; e.g. the cause of man is (1) the elements in man (viz. Fire and earth as matter, and the peculiar form), and further (2) something else outside, i.e. the father, and (3) besides these the sun and its oblique course, which are neither matter nor form nor privation of man nor of the same species with him, but moving causes.

Metaphysics: Further, if the causes of substances are the causes of all things, yet different things have different causes and elements, as was said; the causes of things that are not in the same class, e.g. of colors and sounds, of substances and quantities, are different except in an analogical sense; and those of things in the same species are different, not in species, but in the sense that the causes of different individuals are different, your matter and form and moving cause being different from mine, while in their universal definition they are the same. And if we inquire what are the principles or elements of substances and relations and qualities-whether they are the same or different-clearly when the names of the causes are used in several senses the causes of each are the same, but when the senses are distinguished the causes are not the same but different, except that in the following senses the causes of all are the same. They are (1) the same or analogous in this sense, that matter, form, privation, and the moving cause are common to all things; and (2) the causes of substances may be treated as causes of all things in this sense, that when substances are removed all things are removed; Further, (3) that which is first in respect of complete reality is the cause of all things. But in another sense there are different first causes, viz. all the contraries which are neither generic nor ambiguous terms; and, further, the matters of different things are different. We have stated, then, what are the principles of sensible things and how many they are, and in what sense they are the same and in what sense different.

Metaphysics: But if there is something which is capable of moving things or acting on them, but is not actually doing so, there will not necessarily be movement; for that which has a potency need not exercise it. Nothing, then, is gained even if we suppose eternal substances, as the believers in the forms do, unless there is to be in them some principle which can cause change; nay, even this is not enough, nor is another substance besides the forms enough; for if it is not
to act, there will be no movement. Further even if it acts, this will not be enough, if its essence is potency; for there will not be eternal movement, since that which is potentially may possibly not be. There must, then, be such a principle, whose very essence is actuality. Further, then, these substances must be without matter; for they must be eternal, if anything is eternal. Therefore they must be actuality.

Metaphysics: Further, why should there always be becoming, and what is the cause of becoming?-this no one tells us. And those who suppose two principles must suppose another, a superior principle, and so must those who believe in the forms; for why did things come to participate, or why do they participate, in the forms? And all other thinkers are confronted by the necessary consequence that there is something contrary to Wisdom, i.e. to the highest knowledge; but we are not. For there is nothing contrary to that which is primary; for all contraries have matter, and things that have matter exist only potentially; and the ignorance which is contrary to any knowledge leads to an object contrary to the object of the knowledge; but what is primary has no contrary.

Metaphysics: Again, if besides sensible things no others exist, there will be no first principle, no order, no becoming, no heavenly bodies, but each principle will have a principle before it, as in the accounts of the theologians and all the natural philosophers. But if the forms or the numbers are to exist, they will be causes of nothing; or if not that, at least not of movement. Further, how is extension, i.e. a continuum, to be produced out of unextended parts? For number will not, either as mover or as form, produce a continuum. But again there cannot be any contrary that is also essentially a productive or moving principle; for it would be possible for it not to be. Or at least its action would be posterior to its potency. The world, then, would not be eternal. But it is; one of these premises, then, must be denied. And we have said how this must be done. Further, in virtue of what the numbers, or the soul and the body, or in general the form and the thing, are one-of this no one tells us anything; nor can any one tell, unless he says, as we do, that the mover makes them one. And those who say mathematical number is first and go on to generate one kind of substance after another and give different principles for each, make the substance of the universe a mere series of episodes (for one substance has no influence on another by its existence or nonexistence), and they give us many governing principles; but the world refuses to be governed badly.

Metaphysics: Again, the solid is a sort of substance; for it already has in a sense completeness. But how can lines be substances? Neither as a form or shape, as the soul perhaps is, nor as matter, like the solid; for we have no experience of anything that can be put together out of lines or planes or points, while if these had been a sort of material substance, we should have observed things which could be put together out of them.

Metaphysics: So much then for the objects of mathematics; we have said that they exist and in what sense they exist, and in what sense they are prior and in what sense not prior. Now, regarding the Ideas, we must first examine the Ideal Theory itself, not connecting it in any way with the nature of numbers, but treating it in the form in which it was originally understood by those who first maintained the existence of the Ideas. The supporters of the Ideal Theory were led to it because on the question about the truth of things they accepted the Heraclitean sayings which describe all sensible things as ever passing away, so that if knowledge or thought is to have an object, there must be some other and permanent entities, apart from those which are sensible; for there could be no knowledge of things which were in a state of flux. But when Socrates was occupying himself with the excellences of character, and in connexion with them
became the first to raise the problem of universal definition (for of the physicists Democritus only touched on the subject to a small extent, and defined, after a fashion, the hot and the cold; while the Pythagoreans had before this treated of a few things, whose definitions-e.g. those of opportunity, justice, or marriage-they connected with numbers; but it was natural that Socrates should be seeking the essence, for he was seeking to syllogize, and 'what a thing is' is the starting-point of syllogisms; for there was as yet none of the dialectical power which enables people even without knowledge of the essence to speculate about contraries and inquire whether the same science deals with contraries; for two things may be fairly ascribed to Socratesinductive arguments and universal definition, both of which are concerned with the starting-point of science):-but Socrates did not make the universals or the definitions exist apart: they, however, gave them separate existence, and this was the kind of thing they called Ideas. Therefore it followed for them, almost by the same argument, that there must be Ideas of all things that are spoken of universally, and it was almost as if a man wished to count certain things, and while they were few thought he would not be able to count them, but made more of them and then counted them; for the forms are, one may say, more numerous than the particular sensible things, yet it was in seeking the causes of these that they proceeded from them to the forms. For to each thing there answers an entity which has the same name and exists apart from the substances, and so also in the case of all other groups there is a one over many, whether these be of this world or eternal.

Metaphysics: Again, of the ways in which it is proved that the forms exist, none is convincing; for from some no inference necessarily follows, and from some arise forms even of things of which they think there are no forms. For according to the arguments from the sciences there will be forms of all things of which there are sciences, and according to the argument of the 'one over many' there will be forms even of negations, and according to the argument that thought has an object when the individual object has perished, there will be forms of perishable things; for we have an image of these. Again, of the most accurate arguments, some lead to Ideas of relations, of which they say there is no independent class, and others introduce the 'third man'.

Metaphysics: And in general the arguments for the forms destroy things for whose existence the believers in forms are more zealous than for the existence of the Ideas; for it follows that not the dyad but number is first, and that prior to number is the relative, and that this is prior to the absolute-besides all the other points on which certain people, by following out the opinions held about the forms, came into conflict with the principles of the theory.

Metaphysics: Again, according to the assumption on the belief in the Ideas rests, there will be forms not only of substances but also of many other things; for the concept is single not only in the case of substances, but also in that of non-substances, and there are sciences of other things than substance; and a thousand other such difficulties confront them. But according to the necessities of the case and the opinions about the forms, if they can be shared in there must be Ideas of substances only. For they are not shared in incidentally, but each form must be shared in as something not predicated of a subject. (By 'being shared in incidentally' I mean that if a thing shares in 'double itself', it shares also in 'eternal', but incidentally; for 'the double' happens to be eternal.) Therefore the forms will be substance. But the same names indicate substance in this and in the ideal world (or what will be the meaning of saying that there is something apart from the particulars-the one over many?). And if the Ideas and the things that share in them have the same form, there will be something common: For why should ' 2 ' be one
and the same in the perishable 2 's, or in the 2 's which are many but eternal, and not the same in the ' 2 itself' as in the individual 2? But if they have not the same form, they will have only the name in common, and it is as if one were to call both Callias and a piece of wood a 'man', without observing any community between them.

Metaphysics: But if we are to suppose that in other respects the common definitions apply to the forms, e.g. that 'plane figure' and the other parts of the definition apply to the circle itself, but 'what really is' has to be added, we must inquire whether this is not absolutely meaningless. For to what is this to be added? To 'center' or to 'plane' or to all the parts of the definition? For all the elements in the essence are Ideas, e.g. 'animal' and 'two-footed'. Further, there must be some Ideal answering to 'plane' above, some nature which will be present in all the forms as their genus.

Metaphysics: But, further, all other things cannot come from the forms in any of the usual senses of 'from'. And to say that they are patterns and the other things share in them is to use empty words and poetical metaphors. For what is it that works, looking to the Ideas? And any thing can both be and come into being without being copied from something else, so that, whether Socrates exists or not, a man like Socrates might come to be. And evidently this might be so even if Socrates were eternal. And there will be several patterns of the same thing, and therefore several forms; e.g. 'animal' and 'two-footed', and also 'man-himself', will be forms of man. Again, the forms are patterns not only of sensible things, but of forms themselves also; i.e. the genus is the pattern of the various forms-of-a-genus; therefore the same thing will be pattern and copy.

Metaphysics: Again, if number can exist separately, one might ask which is prior-1, or 3 or 2? Inasmuch as the number is composite, 1 is prior, but inasmuch as the universal and the form is prior, the number is prior; for each of the units is part of the number as its matter, and the number acts as form. And in a sense the right angle is prior to the acute, because it is determinate and in virtue of its definition; but in a sense the acute is prior, because it is a part and the right angle is divided into acute angles. As matter, then, the acute angle and the element and the unit are prior, but in respect of the form and of the substance as expressed in the definition, the right angle, and the whole consisting of the matter and the form, are prior; for the concrete thing is nearer to the form and to what is expressed in the definition, though in generation it is later. How then is 1 the starting-point? Because it is not divisible, they say; but both the universal, and the particular or the element, are indivisible. But they are starting-points in different ways, one in definition and the other in time. In which way, then, is 1 the startingpoint? As has been said, the right angle is thought to be prior to the acute, and the acute to the right, and each is one. Accordingly they make 1 the starting-point in both ways. But this is impossible for the universal is one as form or substance, while the element is one as a part or as matter. For each of the two is in a sense one-in truth each of the two units exists potentially (at least if the number is a unity and not like a heap, i.e. if different numbers consist of differentiated units, as they say), but not in complete reality; and the cause of the error they fell into is that they were conducting their inquiry at the same time from the standpoint of mathematics and from that of universal definitions, so that (1) from the former standpoint they treated unity, their first principle, as a point; for the unit is a point without position. They put things together out of the smallest parts, as some others also have done. Therefore the unit becomes the matter of numbers and at the same time prior to 2 ; and again posterior, 2 being treated as a whole, a unity, and a form. But (2) because they were seeking the universal they treated the unity which can be
predicated of a number, as in this sense also a part of the number. But these characteristics cannot belong at the same time to the same thing.

Metaphysics: Number, then, whether it be number in general or the number which consists of abstract units, is neither the cause as agent, nor the matter, nor the ratio and form of things. Nor, of course, is it the final cause.

Posterior Analytics: In the case of predicates constituting the essential nature of a thing, it clearly terminates, seeing that if definition is possible, or in other words, if essential form is knowable, and an infinite series cannot be traversed, predicates constituting a thing's essential nature must be finite in number. But as regards predicates generally we have the following prefatory remarks to make. (1) We can affirm without falsehood 'the white (thing) is walking', and that big (thing) is a log'; or again, 'the log is big', and 'the man walks'. But the affirmation differs in the two cases. When I affirm 'the white is a log', I mean that something which happens to be white is a \(\log\)-not that white is the substratum in which \(\log\) inheres, for it was not quâ white or quâ a species of white that the white (thing) came to be a log, and the white (thing) is consequently not a log except incidentally. On the other hand, when I affirm 'the \(\log\) is white', I do not mean that something else, which happens also to be a log, is white (as I should if I said 'the musician is white,' which would mean 'the man who happens also to be a musician is white'); on the contrary, \(\log\) is here the substratum-the substratum which actually came to be white, and did so quâ wood or quâ a species of wood and quâ nothing else.

The order of a sentence does not change which word stands for matter, form or thing.
Posterior Analytics: (2) Predicates which signify substance signify that the subject is identical with the predicate or with a species of the predicate. Predicates not signifying substance which are predicated of a subject not identical with themselves or with a species of themselves are accidental or coincidental; e.g. white is a coincident of man, seeing that man is not identical with white or a species of white, but rather with animal, since man is identical with a species of animal. These predicates which do not signify substance must be predicates of some other subject, and nothing can be white which is not also other than white. The forms we can dispense with, for they are mere sound without sense; and even if there are such things, they are not relevant to our discussion, since demonstrations are concerned with predicates such as we have defined.

Here is an Aristotle hostile to The Theory of Forms-is this a passage from an early work? Contrast to the following.
On Generation And Corruption: It is therefore better to suppose that in all instances of coming-to-be the matter is inseparable, being numerically identical and one with the 'containing' body, though isolable from it by definition. But the same reasons also forbid us to regard the matter, out of which the body comes-to-be, as points or lines. The matter is that of which points and lines are limits, and it is something that can never exist without quality and without form.

\section*{By definition there is no such thing as infinitely large or small.}

On Generation And Corruption: Two preliminary distinctions will prepare us to grasp the cause of growth. We must note (i) that the organic parts grow by the growth of the tissues (for every organ is composed of these as its constituents); and (ii) that flesh, bone, and every such part-like every other thing which has its form immersed in matter-has a twofold nature: For the form as well as the matter is called 'flesh' or 'bone'.

On Generation And Corruption: Now, that any and every part of the tissue quâ form should grow-and grow by the accession of something-is possible, but not that any and every part of the tissue quâ matter should do so. For we must think of the tissue after the image of flowing water that is measured by one and the same measure: particle after particle comes-to-be, and each successive particle is different. And it is in this sense that the matter of the flesh grows, some flowing out and some flowing in fresh; not in the sense that fresh matter accedes to every particle of it. There is, however, an accession to every part of its figure or 'form'.

On Generation And Corruption: That growth has taken place proportionally, is more manifest in the organic parts-e.g. in the hand. For there the fact that the matter is distinct from the form is more manifest than in flesh, i.e. than in the tissues. That is why there is a greater tendency to suppose that a corpse still possesses flesh and bone than that it still has a hand or an arm.

On Generation And Corruption: Hence in one sense it is true that any and every part of the flesh has grown; but in another sense it is false. For there has been an accession to every part of the flesh in respect to its form, but not in respect to its matter. The whole, however, has become larger. And this increase is due (a) on the one hand to the accession of something, which is called 'food' and is said to be 'contrary' to flesh, but (b) on the other hand to the transformation of this food into the same form as that of flesh as if, e.g. 'moist' were to accede to 'dry' and, having acceded, were to be transformed and to become 'dry'. For in one sense 'Like grows by Like', but in another sense 'Unlike grows by Unlike'.

On Generation And Corruption: The form of which we have spoken is a kind of power immersed in matter-a duct, as it were. If, then, a matter accedes-a matter, which is potentially a duct and also potentially possesses determinate quantity the ducts to which it accedes will become bigger. But if it is no longer able to act-if it has been weakened by the continued influx of matter, just as water, continually mixed in greater and greater quantity with wine, in the end makes the wine watery and converts it into water-then it will cause a diminution of the quantum; though still the form persists.

On Generation And Corruption: Those active powers, then, whose forms are not embodied in matter, are unaffected: but those whose forms are in matter are such as to be affected in acting. For we maintain that one and the same 'matter' is equally, so to say, the basis of either of the two opposed things-being as it were a 'kind'; and that that which can be hot must be made hot, provided the heating agent is there, i.e. comes near. Hence (as we have said) some of the active powers are unaffected while others are such as to be affected; and what holds of motion is true also of the active powers. For as in motion 'the first mover' is unmoved, so among the active powers 'the first agent' is unaffected.

On Generation And Corruption: But the third 'originative source' must be present as wellthe cause vaguely dreamed of by all our predecessors, definitely stated by none of them. On the contrary (a) some amongst them thought the nature of 'the forms' was adequate to account for coming-to-be. Thus Socrates in the Phaedo first blames everybody else for having given no explanation; and then lays it down; that 'some things are forms, others participants in the forms', and that 'while a thing is said to "be" in virtue of the form, it is said to "come-to-be" quâ sharing in," to "pass-away" quâ "losing," the 'form'. Hence he thinks that 'assuming the truth of these theses, the forms must be causes both of coming-to-be and of passing-away'. On the other hand (b) there were others who thought 'the matter' was adequate by itself to account
for coming-to-be, since 'the movement originates from the matter'.
On Generation And Corruption: Neither of these theories, however, is sound. For (a) if the forms are causes, why is their generating activity intermittent instead of perpetual and continuous-since there always are participants as well as forms? Besides, in some instances we see that the cause is other than the form. For it is the doctor who implants health and the man of science who implants science, although 'Health itself' and 'Science itself' are as well as the participants: and the same principle applies to everything else that is produced in accordance with an art. On the other hand (b) to say that 'matter generates owing to its movement' would be, no doubt, more scientific than to make such statements as are made by the thinkers we have been criticizing. For what 'alters' and transfigures plays a greater part in bringing things into being; and we are everywhere accustomed, in the products of nature and of art alike, to look upon that which can initiate movement as the producing cause. Nevertheless this second theory is not right either.

Since neither form quâ form or matter quâ matter are things-it stands to reason they cannot be causes. Again things are causes-neither forms nor matter exist independent of a thing.

On The Heavens: We must show not only that the heaven is one, but also that more than one heaven is and, further, that, as exempt from decay and generation, the heaven is eternal. We may begin by raising a difficulty. From one point of view it might seem impossible that the heaven should be one and unique, since in all formations and products whether of nature or of art we can distinguish the shape in itself and the shape in combination with matter. For instance the form of the sphere is one thing and the gold or bronze sphere another; the shape of the circle again is one thing, the bronze or wooden circle another. For when we state the essential nature of the sphere or circle we do not include in the formula gold or bronze, because they do not belong to the essence, but if we are speaking of the copper or gold sphere we do include them. We still make the distinction even if we cannot conceive or apprehend any other example beside the particular thing. This may, of course, sometimes be the case: it might be, for instance, that only one circle could be found; yet none the less the difference will remain between the being of circle and of this particular circle, the one being form, the other form in matter, i.e. a particular thing. Now since the universe is perceptible it must be regarded as a particular; for everything that is perceptible subsists, as we know, in matter. But if it is a particular, there will be a distinction between the being of 'this universe' and of 'universe' unqualified. There is a difference, then, between 'this universe' and simple 'universe'; the second is form and shape, the first form in combination with matter; and any shape or form has, or may have, more than one particular instance.

On The Heavens: On the supposition of forms such as some assert, this must be the case, and equally on the view that no such entity has a separate existence. For in every case in which the essence is in matter it is a fact of observation that the particulars of like form are several or infinite in number. Hence there either are, or may be, more heavens than one. On these grounds, then, it might be inferred either that there are or that there might be several heavens. We must, however, return and ask how much of this argument is correct and how much not.

On The Heavens: These, then, are the views which have been advanced by others and the terms in which they state them. We may begin our own statement by settling a question which to some has been the main difficulty-the question why some bodies move always and naturally upward and others downward, while others again move both upward and downward. After that we will inquire into light and heavy and of the various phenomena connected with them. The
local movement of each body into its own place must be regarded as similar to what happens in connexion with other forms of generation and change. There are, in fact, three kinds of movement, affecting respectively the size, the form, and the place of a thing, and in each it is observable that change proceeds from a contrary to a contrary or to something intermediate: it is never the change of any chance subject in any chance direction, nor, similarly, is the relation of the mover to its object fortuitous: the thing altered is different from the thing increased, and precisely the same difference holds between that which produces alteration and that which produces increase. In the same manner it must be thought that produces local motion and that which is so moved are not fortuitously related. Now, that which produces upward and downward movement is that which produces weight and lightness, and that which is moved is that which is potentially heavy or light, and the movement of each body to its own place is motion towards its own form. (It is best to interpret in this sense the common statement of the older writers that 'like moves to like'. For the words are not in every sense true to fact. If one were to remove the earth to where the moon now is, the various fragments of earth would each move not towards it but to the place in which it now is. In general, when a number of similar and undifferentiated bodies are moved with the same motion this result is necessarily produced, viz. that the place which is the natural goal of the movement of each single part is also that of the whole. But since the place of a thing is the boundary of that which contains it, and the continent of all things that move upward or downward is the extremity and the center, and this boundary comes to be, in a sense, the form of that which is contained, it is to its like that a body moves when it moves to its own place. For the successive members of the series are like one another: water, I mean, is like air and air like fire, and between intermediates the relation may be converted, though not between them and the extremes; thus air is like water, but water is like earth: For the relation of each outer body to that which is next within it is that of form to matter.) Thus to ask why fire moves upward and earth downward is the same as to ask why the healable, when moved and changed quâ healable, attains health and not whiteness; and similar questions might be asked concerning any other subject of alteration. Of course the subject of increase, when changed quâ increasable, attains not health but a superior size. The same applies in the other cases. One thing changes in quality, another in quantity: and so in place, a light thing goes upward, a heavy thing downward. The only difference is that in the last case, viz. that of the heavy and the light, the bodies are thought to have a spring of change within themselves, while the subjects of healing and increase are thought to be moved purely from without. Sometimes, however, even they change of themselves, i.e., in response to a slight external movement reach health or increase, as the case may be. And since the same thing which is healable is also receptive of disease, it depends on whether it is moved quâ healable or quâ liable to disease whether the motion is towards health or towards disease. But the reason why the heavy and the light appear more than these things to contain within themselves the source of their movements is that their matter is nearest to being. This is indicated by the fact that locomotion belongs to bodies only when isolated from other bodies, and is generated last of the several kinds of movement; in order of being then it will be first. Now whenever air comes into being out of water, light out of heavy, it goes to the upper place. It is forthwith light: becoming is at an end, and in that place it has being. Obviously, then, it is a potentiality, which, in its passage to actuality, comes into that place and quantity and quality which belong to its actuality. And the same fact explains why what is already actually fire or earth moves, when nothing obstructs it, towards its own place. For motion is equally immediate in the case of nutriment, when nothing hinders, and in the case of the thing healed, when nothing stays the healing. But the movement is also due to the original
creative force and to that which removes the hindrance or off which the moving thing rebounded, as was explained in our opening discussions, where we tried to show how none of these things moves itself. The reason of the various motions of the various bodies, and the meaning of the motion of a body to its own place, have now been explained.

On The Heavens: The following account will make it plain that there is an absolutely light and an absolutely heavy body. And by absolutely light I mean one which of its own nature always moves upward, by absolutely heavy one which of its own nature always moves downward, if no obstacle is in the way. There are, I say, these two kinds of body, and it is not the case, as some maintain, that all bodies have weight. Different views are in fact agreed that there is a heavy body, which moves uniformly towards the center. But is also similarly a light body. For we see with our eyes, as we said before, that earthy things sink to the bottom of all things and move towards the center. But the center is a fixed point. If therefore there is some body which rises to the surface of all things-and we observe fire to move upward even in air itself, while the air remains at rest-clearly this body is moving towards the extremity. It cannot then have any weight. If it had, there would be another body in which it sank: and if that had weight, there would be yet another which moved to the extremity and thus rose to the surface of all moving things. In fact, however, we have no evidence of such a body. Fire, then, has no weight. Neither has earth any lightness, since it sinks to the bottom of all things, and that which sinks moves to the center. That there is a center towards which the motion of heavy things, and away from which that of light things is directed, is manifest in many ways. First, because no movement can continue to infinity. For what cannot be can no more come-to-be than be, and movement is a coming to-be in one place from another. Secondly, like the upward movement of fire, the downward movement of earth and all heavy things makes equal angles on every side with the earth's surface: it must therefore be directed towards the center. Whether it is really the center of the earth and not rather that of the whole to which it moves, may be left to another inquiry, since these are coincident. But since that which sinks to the bottom of all things moves to the center, necessarily that which rises to the surface moves to the extremity of the region in which the movement of these bodies takes place. For the center is opposed as contrary to the extremity, as that which sinks is opposed to that which rises to the surface. This also gives a reasonable ground for the duality of heavy and light in the spatial duality center and extremity. Now there is also the intermediate region to which each name is given in opposition to the other extreme. For that which is intermediate between the two is in a sense both extremity and center. For this reason there is another heavy and light; namely, water and air. But in our view the continent pertains to form and the contained to matter: and this distinction is present in every genus. Alike in the sphere of quality and in that of quantity there is that which corresponds rather to form and that which corresponds to matter. In the same way, among spatial distinctions, the above belongs to the determinate, the below to matter. The same holds, consequently, also of the matter itself of that which is heavy and light: as potentially possessing the one character, it is matter for the heavy, and as potentially possessing the other, for the light. It is the same matter, but its being is different, as that which is receptive of disease is the same as that which is receptive of health, though in being different from it, and therefore diseased-ness is different from healthiness.

Physics: The principles in question must be either (a) one or (b) more than one. If (a) one, it must be either (i) motionless, as Parmenides and Melissus assert, or (ii) in motion, as the physicists hold, some declaring air to be the first principle, others water. If (b) more than one, then either (i) a finite or (ii) an infinite plurality. If (i) finite (but more than one), then either two
or three or four or some other number. If (ii) infinite, then either as Democritus believed one in kind, but differing in shape or form; or different in kind and even contrary.

Physics: If, then, we approach the thesis in this way it seems impossible for all things to be one. Further, the arguments they use to prove their position are not difficult to expose. For both of them reason contentiously-I mean both Melissus and Parmenides. [Their premises are false and their conclusions do not follow. Or rather the argument of Melissus is gross and palpable and offers no difficulty at all: admit one ridiculous proposition and the rest follows-a simple enough proceeding.] The fallacy of Melissus is obvious. For he supposes that the assumption 'what has come into being always has a beginning' justifies the assumption 'what has not come into being has no beginning'. Then this also is absurd, that in every case there should be a beginning of the thing-not of the time and not only in the case of coming to be in the full sense but also in the case of coming to have a quality-as if change never took place suddenly. Again, does it follow that being, if one, is motionless? Why should it not move, the whole of it within itself, as parts of it do which are unities, e.g. this water? Again, why is qualitative change impossible? But, further, being cannot be one in form, though it may be in what it is made of. (Even some of the physicists hold it to be one in the latter way, though not in the former.) Man obviously differs from horse in form, and contraries from each other.

Physics: The first set make the underlying body one either one of the three or something else which is denser than fire and rarer than air then generate everything else from this, and obtain multiplicity by condensation and rarefaction. Now these are contraries, which may be generalized into 'excess and defect'. (Compare Plato's 'Great and Small'-except that he make these his matter, the one his form, while the others treat the one which underlies as matter and the contraries as differentiae, i.e. Forms).

Some of a thing (matter) none of a thing (form) are the Great (matter) and the Small (form).
Physics: Thus, clearly, from what has been said, whatever comes to be is always complex. There is, on the one hand, (a) something which comes into existence, and again (b) something which becomes that-the latter (b) in two senses, either the subject or the opposite. By the 'opposite' I mean the 'unmusical', by the 'subject' 'man', and similarly I call the absence of shape or form or order the 'opposite', and the bronze or stone or gold the 'subject'.

Now here is something that I don't think Plato would have made a mistake about but which Aristotle seems to, the 'opposite' refers not to an object but to predication-an assertion in lieu of a denial or a denial in lieu of an assertion, the opposite is not in the thing, but in the predication-the thing in of itself has no opposite.
Physics: Plainly then, if there are conditions and principles which constitute natural objects and from which they primarily are or have come to be-have come to be, I mean, what each is said to be in its essential nature, not what each is in respect of a concomitant attribute-plainly, I say, everything comes to be from both subject and form. For 'musical man' is composed (in a way) of 'man' and 'musical': you can analyze it into the definitions of its elements. It is clear then that what comes to be will come to be from these elements.

Everything comes to be from both matter and form . . .
Physics: Now the subject is one numerically, though it is two in form. (For it is the man, the gold-the 'matter' generally-that is counted, for it is more of the nature of a 'this', and what comes to be does not come from it in virtue of a concomitant attribute; the privation, on the other hand, and the contrary are incidental in the process.) And the positive form is one-the order, the
acquired art of music, or any similar predicate.
Physics: The underlying nature is an object of scientific knowledge, by an analogy. For as the bronze is to the statue, the wood to the bed, or the matter and the formless before receiving form to any thing which has form, so is the underlying nature to substance, i.e. the 'this' or existent.

Physics: This then is one principle (though not one or existent in the same sense as the 'this'), and the definition was one as we agreed; then further there is its contrary, the privation. In what sense these are two, and in what sense more, has been stated above. Briefly, we explained first that only the contraries were principles, and later that a substratum was indispensable, and that the principles were three; our last statement has elucidated the difference between the contraries, the mutual relation of the principles, and the nature of the substratum. Whether the form or the substratum is the essential nature of a physical object is not yet clear. But that the principles are three, and in what sense, and the way in which each is a principle, is clear.

Physics: Now we distinguish matter and privation, and hold that one of these, namely the matter, is not-being only in virtue of an attribute which it has, while the privation in its own nature is not-being; and that the matter is nearly, in a sense is, substance, while the privation in no sense is. They, on the other hand, identify their Great and Small alike with not-being, and that whether they are taken together as one or separately. Their triad is therefore of quite a different kind from ours. For they got so far as to see that there must be some underlying nature, but they make it one-for even if one philosopher makes a dyad of it, which he calls Great and Small, the effect is the same, for he overlooked the other nature. For the one which persists is a joint cause, with the form, of what comes to be-a mother, as it were. But the negative part of the contrariety may often seem, if you concentrate your attention on it as an evil agent, not to exist at all.

Physics: For admitting with them that there is something divine, good, and desirable, we hold that there are two other principles, the one contrary to it, the other such as of its own nature to desire and yearn for it. But the consequence of their view is that the contrary desires its extinction. Yet the form cannot desire itself, for it is not defective; nor can the contrary desire it, for contraries are mutually destructive. The truth is that what desires the form is matter, as the female desires the male and the ugly the beautiful-only the ugly or the female not per se but per accidens.

Physics: The accurate determination of the first principle in respect of form, whether it is one or many and what it is or what they are, is the province of the primary type of science; so these questions may stand over till then. But of the natural, i.e. perishable, forms we shall speak in the expositions which follow.

Physics: Another account is that 'nature' is the shape or form which is specified in the definition of the thing.

Physics: For the word 'nature' is applied to what is according to nature and the natural in the same way as 'art' is applied to what is artistic or a work of art. We should not say in the latter case that there is anything artistic about a thing, if it is a bed only potentially, not yet having the form of a bed; nor should we call it a work of art. The same is true of natural compounds. What is potentially flesh or bone has not yet its own 'nature', and does not exist until it receives the form specified in the definition, which we name in defining what flesh or bone is. Thus in the second sense of 'nature' it would be the shape or form (not separable except in statement) of
things which have in themselves a source of motion. (The combination of the two, e.g. man, is not 'nature' but 'by nature' or 'natural'.)

Physics: The form indeed is 'nature' rather than the matter; for a thing is more properly said to be what it is when it has attained to fulfillment than when it exists potentially. Again man is born from man, but not bed from bed. That is why people say that the figure is not the nature of a bed, but the wood is-if the bed sprouted not a bed but wood would come up. But even if the figure is art, then on the same principle the shape of man is his nature. For man is born from man.

Physics: 'Shape' and 'nature', it should be added, are in two senses. For the privation too is in a way form. But whether in unqualified coming to be there is privation, i.e. a contrary to what comes to be, we must consider later.

One might go a step further and declare that neither existence nor non-existence can be predicated of either form quâ form or matter quâ matter-as existence is either asserted of or denied of things. This would illuminate that the paradox of denying the existence of form or matter as being only apparent-it is simply not predicable.
Physics: Since 'nature' has two senses, the form and the matter, we must investigate its objects as we would the essence of snubness. That is, such things are neither independent of matter nor can be defined in terms of matter only. Here too indeed one might raise a difficulty. Since there are two natures, with which is the physicist concerned? Or should he investigate the combination of the two? But if the combination of the two, then also each severally. Does it belong then to the same or to different sciences to know each severally?

Physics: If we look at the ancients, physics would to be concerned with the matter. (It was only very slightly that Empedocles and Democritus touched on the forms and the essence.)

Physics: But if on the other hand art imitates nature, and it is the part of the same discipline to know the form and the matter up to a point (e.g. the doctor has a knowledge of health and also of bile and phlegm, in which health is realized, and the builder both of the form of the house and of the matter, namely that it is bricks and beams, and so forth): if this is so, it would be the part of physics also to know nature in both its senses.

Physics: For the arts make their material (some simply 'make' it, others make it serviceable), and we use everything as if it was there for our sake. (We also are in a sense an end. 'That for the sake of which' has two senses: the distinction is made in our work On Philosophy.) The arts, therefore, which govern the matter and have knowledge are two, namely the art which uses the product and the art which directs the production of it. That is why the using art also is in a sense directive; but it differs in that it knows the form, whereas the art which is directive as being concerned with production knows the matter. For the helmsman knows and prescribes what sort of form a helm should have, the other from what wood it should be made and by means of what operations. In the products of art, however, we make the material with a view to the function, whereas in the products of nature the matter is there all along.

Physics: Again, matter is a relative term: to each form there corresponds a special matter. How far then must the physicist know the form or essence? Up to a point, perhaps, as the doctor must know sinew or the smith bronze (i.e. until he understands the purpose of each): and the physicist is concerned only with things whose forms are separable indeed, but do not exist apart from matter. Man is begotten by man and by the sun as well. The mode of existence and essence of the separable it is the business of the primary type of philosophy to define.

Physics: In another sense (2) the form or the archetype, i.e. the statement of the essence, and its genuses, are called 'causes' (e.g. of the octave the relation of 2 :, and generally number), and the parts in the definition.

Physics: All the causes now mentioned fall into four familiar divisions. The letters are the causes of syllables, the material of artificial products, fire, \&c., of bodies, the parts of the whole, and the premises of the conclusion, in the sense of 'that from which'. Of these pairs the one set are causes in the sense of substratum, e.g. the parts, the other set in the sense of essence-the whole and the combination and the form. But the seed and the doctor and the adviser, and generally the maker, are all sources whence the change or stationariness originates, while the others are causes in the sense of the end or the good of the rest; for 'that for the sake of which' means what is best and the end of the things that lead up to it. (Whether we say the 'good itself or the 'apparent good' makes no difference.)

Physics: Now, the causes being four, it is the business of the physicist to know about them all, and if he refers his problems back to all of them, he will assign the 'why' in the way proper to his science-the matter, the form, the mover, 'that for the sake of which'. The last three often coincide; for the 'what' and 'that for the sake of which' are one, while the primary source of motion is the same in species as these (for man generates man), and so too, in general, are all things which cause movement by being themselves moved; and such as are not of this kind are no longer inside the province of physics, for they cause motion not by possessing motion or a source of motion in themselves, but being themselves incapable of motion. Hence there are three branches of study, one of things which are incapable of motion, the second of things in motion, but indestructible, the third of destructible things.

Physics: The question 'why', then, is answered by reference to the matter, to the form, and to the primary moving cause. For in respect of coming to be it is mostly in this last way that causes are investigated-'what comes to be after what? what was the primary agent or patient?' and so at each step of the series.

Physics: Now the principles which cause motion in a physical way are two, of which one is not physical, as it has no principle of motion in itself. Of this kind is whatever causes movement, not being itself moved, such as (1) that which is completely unchangeable, the primary reality, and (2) the essence of that which is coming to be, i.e. the form; for this is the end or 'that for the sake of which'. Hence since nature is for the sake of something, we must know this cause also. We must explain the 'why' in all the senses of the term, namely, (1) that from this that will necessarily result ('from this' either without qualification or in most cases); (2) that 'this must be so if that is to be so' (as the conclusion presupposes the premises); (3) that this was the essence of the thing; and (4) because it is better thus (not without qualification, but with reference to the essential nature in each case).

Physics: Further, where a series has a completion, all the preceding steps are for the sake of that. Now surely as in intelligent action, so in nature; and as in nature, so it is in each action, if nothing interferes. Now intelligent action is for the sake of an end; therefore the nature of things also is so. Thus if a house, e.g. had been a thing made by nature, it would have been made in the same way as it is now by art; and if things made by nature were made also by art, they would come to be in the same way as by nature. Each step then in the series is for the sake of the next; and generally art partly completes what nature cannot bring to a finish, and partly imitates her. If, therefore, artificial products are for the sake of an end, so clearly also are natural products.

The relation of the later to the earlier terms of the series is the same in both. This is most obvious in the animals other than man: they make things neither by art nor after inquiry or deliberation. Wherefore people discuss whether it is by intelligence or by some other faculty that these creatures work, spiders, ants, and the like. By gradual advance in this direction we come to see clearly that in plants too that is produced which is conducive to the end-leaves, e.g. grow to provide shade for the fruit. If then it is both by nature and for an end that the swallow makes its nest and the spider its web, and plants grow leaves for the sake of the fruit and send their roots down (not up) for the sake of nourishment, it is plain that this kind of cause is operative in things which come to be and are by nature. And since 'nature' means two things, the matter and the form, of which the latter is the end, and since all the rest is for the sake of the end, the form must be the cause in the sense of 'that for the sake of which'.

Physics: Now each of these belongs to all its subjects in either of two ways: namely (1) substance-the one is positive form, the other privation; (2) in quality, white and black; (3) in quantity, complete and incomplete; (4) in respect of locomotion, upwards and downwards or light and heavy. Hence there are as many types of motion or change as there are meanings of the word 'is'.

Physics: The mover too is moved, as has been said-every mover, that is, which is capable of motion, and whose immobility is rest-when a thing is subject to motion its immobility is rest. For to act on the movable as such is just to move it. But this it does by contact, so that at the same time it is also acted on. Hence we can define motion as the fulfillment of the movable quâ movable, the cause of the attribute being contact with what can move so that the mover is also acted on. The mover or agent will always be the vehicle of a form, either a 'this' or 'such', which, when it acts, will be the source and cause of the change, e.g. the full-formed man begets man from what is potentially man.

Physics: (1) Some, as the Pythagoreans and Plato, make the infinite a principle in the sense of a self-subsistent substance, and not as a mere attribute of some other thing. Only the Pythagoreans place the infinite among the objects of sense (they do not regard number as separable from these), and assert that what is outside the heaven is infinite. Plato, on the other hand, holds that there is no body outside (the forms are not outside because they are nowhere), yet that the infinite is present not only in the objects of sense but in the forms also.

Actually, since a thing is defined, neither form nor matter quâ form or matter is defined. Matter without form is infinitely large. Form without matter is infinitely small. Neither can exist, by definition.
Physics: Hence Parmenides must be thought to have spoken better than Melissus. The latter says that the whole is infinite, but the former describes it as limited, 'equally balanced from the middle'. For to connect the infinite with the all and the whole is not like joining two pieces of string; for it is from this they get the dignity they ascribe to the infinite-its containing all things and holding the all in itself-from its having a certain similarity to the whole. It is in fact the matter of the completeness which belongs to size, and what is potentially a whole, though not in the full sense. It is divisible both in the direction of reduction and of the inverse addition. It is a whole and limited; not, however, in virtue of its own nature, but in virtue of what is other than it. It does not contain, but, in so far as it is infinite, is contained. Consequently, also, it is unknowable, quâ infinite; for the matter has no form. (Hence it is plain that the infinite stands in the relation of part rather than of whole. For the matter is part of the whole, as the bronze is of the bronze statue.) If it contains in the case of sensible things, in the case of intelligible things the great and the small ought to contain them. But it is absurd and impossible to suppose that the
unknowable and indeterminate should contain and determine.
Physics: It is reasonable that there should not be held to be an infinite in respect of addition such as to surpass every magnitude, but that there should be thought to be such an infinite in the direction of division. For the matter and the infinite are contained inside what contains them, while it is the form which contains. It is natural too to suppose that in number there is a limit in the direction of the minimum, and that in the other direction every assigned number is surpassed. In magnitude, on the contrary, every assigned magnitude is surpassed in the direction of smallness, while in the other direction there is no infinite magnitude. The reason is that what is one is indivisible whatever it may be, e.g. a man is one man, not many. Number on the other hand is a plurality of 'ones' and a certain quantity of them. Hence number must stop at the indivisible: For 'two' and 'three' are merely derivative terms, and so with each of the other numbers. But in the direction of largeness it is always possible to think of a larger number: For the number of times a magnitude can be bisected is infinite. Hence this infinite is potential, never actual: the number of parts that can be taken always surpasses any assigned number. But this number is not separable from the process of bisection, and its infinity is not a permanent actuality but consists in a process of coming to be, like time and the number of time.

Physics: (4) Also we may ask: of what in things is space the cause? None of the four modes of causation can be ascribed to it. It is neither in the sense of the matter of existents (for nothing is composed of it), nor as the form and definition of things, nor as end, nor does it move existents.

Physics: Now if place is what primarily contains each body, it would be a limit, so that the place would be the form or shape of each body by which the magnitude or the matter of the magnitude is defined: For this is the limit of each body.

Physics: If, then, we look at the question in this way the place of a thing is its form. But, if we regard the place as the extension of the magnitude, it is the matter. For this is different from the magnitude: it is what is contained and defined by the form, as by a bounding plane. Matter or the indeterminate is of this nature; when the boundary and attributes of a sphere are taken away, nothing but the matter is left.

In order to regard place as an extension of magnitude one would have to think in terms of place to place, i.e., as a difference between places-but not, however, place quâ place.

Physics: In view of these facts we should naturally expect to find difficulty in determining what place is, if indeed it is one of these two things, matter or form. They demand a very close scrutiny, especially as it is not easy to recognize them apart.

> Why, when Aristotle knows that thing is defined in terms of matter and form, does he continue to call matter and form quâ matter and form things?

Physics: But it is at any rate not difficult to see that place cannot be either of them. The form and the matter are not separate from the thing, whereas the place can be separated. As we pointed out, where air was, water in turn comes to be, the one replacing the other; and similarly with other bodies. Hence the place of a thing is neither a part nor a state of it, but is separable from it. For place is supposed to be something like a vessel-the vessel being a transportable place. But the vessel is no part of the thing.

Physics: In so far then as it is separable from the thing, it is not the form: quâ containing, it is different from the matter.

Physics: Also it is held that what is anywhere is both itself something and that there is a different thing outside it. (Plato of course, if we may digress, ought to tell us why the form and the numbers are not in place, if 'what participates' is place-whether what participates is the Great and the Small or the matter, as he called it in writing in the Timaeus.)

Physics: Further, how could a body be carried to its own place, if place was the matter or the form? It is impossible that what has no reference to motion or the distinction of up and down can be place. So place must be looked for among things which have these characteristics.

Physics: If the place is in the thing (it must be if it is either shape or matter) place will have a place: For both the form and the indeterminate undergo change and motion along with the thing, and are not always in the same place, but are where the thing is. Hence the place will have a place.

An odd way of saying that place is neither here nor there.
Physics: (4) As the genus is 'in' the species and generally the part of the specific form 'in' the definition of the specific form.

Physics: (5) As health is 'in' the hot and the cold and generally the form 'in' the matter.
This will elucidate Aristotle's notion of Set Theory-opposite of actual Venn. Instead of conceiving the matter in the form, he conceives the form in the matter!

Physics: Another thing is plain: since the vessel is no part of what is in it (what contains in the strict sense is different from what is contained), place could not be either the matter or the form of the thing contained, but must be different-for the latter, both the matter and the shape, are parts of what is contained.

Apparently Aristotle never understood Plato's Parmenides perhaps he never even read it.
Physics: (1) The shape is supposed to be place because it surrounds, for the extremities of what contains and of what is contained are coincident. Both the shape and the place, it is true, are boundaries. But not of the same thing: the form is the boundary of the thing, the place is the boundary of the body which contains it.

Physics: Well, then, if place is none of the three-neither the form nor the matter nor an extension which is always there, different from, and over and above, the extension of the thing which is displaced-place necessarily is the one of the four which is left, namely, the boundary of the containing body at which it is in contact with the contained body. (By the contained body is meant what can be moved by way of locomotion.)

Aristotle's inability to come to a complete abstraction gives him two forms and two matters. Two differences, (matter and extension) and two forms (form and place).

Physics: Nor (7) is it without reason that each should remain naturally in its proper place. For this part has the same relation to its place, as a separable part to its whole, as when one moves a part of water or air: so, too, air is related to water, for the one is like matter, the other formwater is the matter of air, air as it were the actuality of water, for water is potentially air, while air is potentially water, though in another way.

On The Soul: In the same way Plato in the Timaeus fashions soul out of his elements; for like, he holds, is known by like, and things are formed out of the principles or elements, so that soul must be so too. Similarly also in his lectures 'On Philosophy' it was set forth that the Animal-itself is compounded of the Idea itself of the One together with the primary length,
breadth, and depth, everything else, the objects of its perception, being similarly constituted. Again he puts his view in yet other terms: Mind is the monad, science or knowledge the dyad (because it goes undeviatingly from one point to another), opinion the number of the plane, sensation the number of the solid; the numbers are by him expressly identified with the forms themselves or principles, and are formed out of the elements; now things are apprehended either by mind or science or opinion or sensation, and these same numbers are the forms of things.

> Plato got part of logic, the perception by the apprehension of form, but not the perception by the apprehension of matter. Eating, breathing, crafts (like the figures in geometry) are perceptions by the apprehension of matter.

On The Soul: We are in the habit of recognizing, as one determinate kind of what is, substance, and that in several senses, (a) in the sense of matter or that which in itself is not 'a this', and (b) in the sense of form or essence, which is that precisely in virtue of which a thing is called 'a this', and thirdly (c) in the sense of that which is compounded of both (a) and (b). Now matter is potentiality, form actuality; of the latter there are two grades related to one another as e.g. knowledge to the exercise of knowledge.

On The Soul: Since the expression 'that whereby we live and perceive' has two meanings, just like the expression 'that whereby we know'-that may mean either (a) knowledge or (b) the soul, for we can speak of knowing by or with either, and similarly that whereby we are in health may be either (a) health or (b) the body or some part of the body; and since of the two terms thus contrasted knowledge or health is the name of a form, essence, or ratio, or if we so express it an actuality of a recipient matter-knowledge of what is capable of knowing, health of what is capable of being made healthy (for the operation of that which is capable of originating change terminates and has its seat in what is changed or altered); Further, since it is the soul by or with which primarily we live, perceive, and think:-it follows that the soul must be a ratio or formulable essence, not a matter or subject. For, as we said, the word substance has three meanings form, matter, and the complex of both and of these three what is called matter is potentiality, what is called form actuality. Since then the complex here is the living thing, the body cannot be the actuality of the soul; it is the soul which is the actuality of a certain kind of body. Hence the rightness of the view that the soul cannot be without a body, while it cannot be a body; it is not a body but something relative to a body. That is why it is in a body, and a body of a definite kind. It was a mistake, therefore, to do as former thinkers did, merely to fit it into a body without adding a definite specification of the kind or character of that body. Reflection confirms the observed fact; the actuality of any given thing can only be realized in what is already potentially that thing, i.e. in a matter of its own appropriate to it. From all this it follows that soul is an actuality or formulable essence of something that possesses a potentiality of being besouled.

On The Soul: (A) By a 'sense' is meant what has the power of receiving into itself the sensible forms of things without the matter. This must be conceived of as taking place in the way in which a piece of wax takes on the impress of a signet-ring without the iron or gold; we say that what produces the impression is a signet of bronze or gold, but its particular metallic constitution makes no difference: in a similar way the sense is affected by what is colored or flavored or sounding, but it is indifferent what in each case the substance is; what alone matters is what quality it has, i.e. in what ratio its constituents are combined.

I on the other hand define sense quite differently; That human body system which acquires something from the environment, processes it, and the product is used to sustain and promote
human life. This gives us seven senses. By this definition, half of logic goes unrecognized as logic for thousands of years.
On The Soul: The sense and its organ are the same in fact, but their essence is not the same. What perceives is, of course, a spatial magnitude, but we must not admit that either the having the power to perceive or the sense itself is a magnitude; what they are is a certain ratio or power in a magnitude. This enables us to explain why objects of sense which possess one of two opposite sensible qualities in a degree largely in excess of the other opposite destroy the organs of sense; if the movement set up by an object is too strong for the organ, the equipoise of contrary qualities in the organ, which just is its sensory power, is disturbed; it is precisely as concord and tone are destroyed by too violently twanging the strings of a lyre. This explains also why plants cannot perceive in spite of their having a portion of soul in them and obviously being affected by tangible objects themselves; for undoubtedly their temperature can be lowered or raised. The explanation is that they have no mean of contrary qualities, and so no principle in them capable of taking on the forms of sensible objects without their matter; in the case of plants the affection is an affection by form-and-matter together. The problem might be raised: Can what cannot smell be said to be affected by smells or what cannot see by colors, and so on? It might be said that a smell is just what can be smelt, and if it produces any effect it can only be so as to make something smell it, and it might be argued that what cannot smell cannot be affected by smells and further that what can smell can be affected by it only in so far as it has in it the power to smell (similarly with the proper objects of all the other senses). Indeed that this is so is made quite evident as follows. Light or darkness, sounds and smells leave bodies quite unaffected; what does affect bodies is not these but the bodies which are their vehicles, e.g. what splits the trunk of a tree is not the sound of the thunder but the air which accompanies thunder. Yes, but, it may be objected, bodies are affected by what is tangible and by flavors. If not, by what are things that are without soul affected, i.e. altered in quality? Must we not, then, admit that the objects of the other senses also may affect them? Is not the true account this, that all bodies are capable of being affected by smells and sounds, but that some on being acted upon, having no boundaries of their own, disintegrate, as in the instance of air, which does become odorous, showing that some effect is produced on it by what is odorous? But smelling is more than such an affection by what is odorous-what more? Is not the answer that, while the air owing to the momentary duration of the action upon it of what is odorous does itself become perceptible to the sense of smell, smelling is an observing of the result produced?

On The Soul: But, it may be objected, it is impossible that what is self-identical should be moved at me and the same time with contrary movements in so far as it is undivided, and in an undivided moment of time. For if what is sweet be the quality perceived, it moves the sense or thought in this determinate way, while what is bitter moves it in a contrary way, and what is white in a different way. Is it the case then that what discriminates, though both numerically one and indivisible, is at the same time divided in its being? In one sense, it is what is divided that perceives two separate objects at once, but in another sense it does so quâ undivided; for it is divisible in its being but spatially and numerically undivided. Is not this impossible? For while it is true that what is self-identical and undivided may be both contraries at once potentially, it cannot be self-identical in its being-it must lose its unity by being put into activity. It is not possible to be at once white and black, and therefore it must also be impossible for a thing to be affected at one and the same moment by the forms of both, assuming it to be the case that sensation and thinking are properly so described.

On The Soul: If thinking is like perceiving, it must be either a process in which the soul is acted upon by what is capable of being thought, or a process different from but analogous to that. The thinking part of the soul must therefore be, while impassible, capable of receiving the form of an object; that is, must be potentially identical in character with its object without being the object. Mind must be related to what is thinkable, as sense is to what is sensible.

\begin{abstract}
By his definition, thinking is also a sense, how is it that the mind has the same objects of sense as the other senses? He does not see the contradiction. Each sense has a domain of stimulus it responds to, his definition does not make it apparent.
\end{abstract}

On The Soul: Therefore, since everything is a possible object of thought, mind in order, as Anaxagoras says, to dominate, that is, to know, must be pure from all admixture; for the copresence of what is alien to its nature is a hindrance and a block: it follows that it too, like the sensitive part, can have no nature of its own, other than that of having a certain capacity. Thus that in the soul which is called mind (by mind I mean that whereby the soul thinks and judges) is, before it thinks, not actually any real thing. For this reason it cannot reasonably be regarded as blended with the body: if so, it would acquire some quality, e.g. warmth or cold, or even have an organ like the sensitive faculty: as it is, it has none. It was a good idea to call the soul 'the place of forms', though (1) this description holds only of the intellective soul, and (2) even this is the forms only potentially, not actually.

An example of schizophrenia induced by definition. If the man thinks and a man has a soul and the soul thinks, and if the thoughts of a man guide the body, and the thoughts of the soul guide the soul-so who is following who? Does the soul follow the body or does the man follow the soul?

On The Soul: Since we can distinguish between a spatial magnitude and what it is to be such, and between water and what it is to be water, and so in many other cases (though not in all; for in certain cases the thing and its form are identical), flesh and what it is to be flesh are discriminated either by different faculties, or by the same faculty in two different states: For flesh necessarily involves matter and is like what is snub-nosed, a this in a this. Now it is by means of the sensitive faculty that we discriminate the hot and the cold, i.e. the factors which combined in a certain ratio constitute flesh: the essential character of flesh is apprehended by something different either wholly separate from the sensitive faculty or related to it as a bent line to the same line when it has been straightened out.

On The Soul: The faculty of thinking then thinks the forms in the images, and as in the former case what is to be pursued or avoided is marked out for it, so where there is no sensation and it is engaged upon the images it is moved to pursuit or avoidance. E.g.. perceiving by sense that the beacon is fire, it recognizes in virtue of the general faculty of sense that it signifies an enemy, because it sees it moving; but sometimes by means of the images or thoughts which are within the soul, just as if it were seeing, it calculates and deliberates what is to come by reference to what is present; and when it makes a pronouncement, as in the case of sensation it pronounces the object to be pleasant or painful, in this case it avoids or pursues and so generally in cases of action.

On The Soul: Knowledge and sensation are divided to correspond with the realities, potential knowledge and sensation answering to potentialities, actual knowledge and sensation to actualities. Within the soul the faculties of knowledge and sensation are potentially these objects, the one what is knowable, the other what is sensible. They must be either the things themselves or their forms. The former alternative is of course impossible: it is not the stone which is present in the soul but its form.

Not having one definition for sense, Aristotle missed the fact that some senses abstract matter and some abstract form.

On The Soul: It follows that the soul is analogous to the hand; for as the hand is a tool of tools, so the mind is the form of forms and sense the form of sensible things.

On The Soul: Since according to common agreement there is no thing outside and separate in existence from sensible spatial magnitudes, the objects of thought are in the sensible forms, viz. both the abstract objects and all the states and affections of sensible things. Hence (1) no one can learn or understand anything in the absence of sense, and (when the mind is actively aware of any thing it is necessarily aware of it along with an image; for images are like sensuous contents except in that they contain no matter.

No experience, no knowledge. Words do not provide experience.
On The Soul: But sensation need not be found in all things that live. For it is impossible for touch to belong either (1) to those whose body is uncompounded or (2) to those which are incapable of taking in the forms without their matter.

Topics: Or again, look and see if anything has been said about something, of such a kind that if it be true, contrary predicates must necessarily belong to the thing: e.g. if he has said that the 'Ideas' exist in us. For then the result will be that they are both in motion and at rest, and moreover that they are objects both of sensation and of thought. For according to the views of those who posit the existence of Ideas, those Ideas are at rest and are objects of thought; while if they exist in us, it is impossible that they should be unmoved: For when we move, it follows necessarily that all that is in us moves with us as well. Clearly also they are objects of sensation, if they exist in us: For it is through the sensation of sight that we recognize the form present in each individual.

\section*{Categories by Aristotle}

\author{
translated by E. M. Edghill
}

This section of this book is set up so that the reader can write many notes in the margins. Aristotle's writings do not reflect a clear clean abstraction of concepts and thus he leaves a great deal to critique. I have perhaps not left a wide enough margin.

How are things named? In the simple sentence, from which all sentences are composed, one name is asserted or denied of another. What are the possible categories of names? In order to demonstrate his point that reason was not possible without well-defined terms, Plato will go through what was believed to be the Categories of Predication.

Things are said to be named 'equivocally' when, though they have a common name, the definition corresponding with the name differs for each. Thus, a real man and a figure in a picture can both lay claim to the name 'animal'; yet these are equivocally so named, for, though they have a common name, the definition corresponding with the name differs for each. For should any one define in what sense each is an animal, his definition in the one case will be appropriate to that case only.

On the other hand, things are said to be named 'univocally' which have both the name and the definition answering to the name in common. A man and an ox are both 'animal', and these are univocally so named, inasmuch as not only the name, but also the definition, is the same in both cases: for if a man should state in what sense each is an animal, the statement in the one case would be identical with that in the other.

Things are said to be named 'derivatively', which derive their name from some other name, but differ from it in termination. Thus the grammarian derives his name from the word 'grammar', and the courageous man from the word 'courage'.

Forms of speech are either simple or composite. Examples of the latter are such expressions as 'the man runs', 'the man wins'; of the former 'man', 'ox', 'runs', 'wins'.

Of things themselves some are predicable of a subject, and are never present in a subject. Thus 'man' is predicable of the individual man, and is never present in a subject.

By being 'present in a subject' I do not mean present as parts are present in a whole, but being incapable of existence apart from the said subject.

Some things, again, are present in a subject, but are never predicable of a subject. For instance, a certain point of grammatical knowledge is present in the mind, but is not predicable of any subject; or again, a certain whiteness may be present in the body (for color requires a material basis), yet it is never predicable of anything.

Other things, again, are both predicable of a subject and present in a subject. Thus while knowledge is present in the human mind, it is predicable of grammar.

There is, lastly, a class of things which are neither present in a subject nor predicable of a subject, such as the individual man or the individual horse. But, to speak more generally, that which is individual and has the character of a unit is never predicable of a subject. Yet in some cases there is nothing to prevent such being present in a subject. Thus a certain point of grammatical knowledge is present in a subject.

When one thing is predicated of another, all that which is predicable of the predicate will be predicable also of the subject. Thus, 'man' is predicated of the individual man; but 'animal' is predicated of 'man'; it will, therefore, be predicable of the individual man also: for the individual man is both 'man' and 'animal'.

\[
\mathrm{A}=\text { Individual, } \mathrm{B}=\mathrm{Man}, \mathrm{C}=\text { Animal }
\]

Socrates (A) is a man (B).
All Men (B) are animals (C).
Therefore, Socrates (A) is an animal. (C)

\section*{PLSIP2 S \(_{2}\)}

If genera are different and co-ordinate, their differentiae are themselves different in kind. Take as an instance the genus 'animal' and the genus 'knowledge'. 'With feet', 'two-footed', 'winged', 'aquatic', are differentiae of 'animal'; the species of knowledge are not distinguished by the same differentiae. One species of knowledge does not differ from another in being 'two-footed'.

But where one genus is subordinate to another, there is nothing to prevent their having the same differentiae: for the greater class is predicated of the lesser, so that all the differentiae of the predicate will be differentiae also of the subject.

Expressions which are in no way composite signify substance, quantity, quality, relation, place, time, position, state, action, or affection \({ }^{15}\). To sketch my meaning roughly, examples of
1). substance are 'man' or 'the horse',
2). of quantity, such terms as 'two cubits long' or 'three cubits long',
3). of quality, such attributes as 'white', 'grammatical'.
4). 'Double', 'half', 'greater', fall under the category of relation;
5). 'in the market place', 'in the Lyceum', under that of place;
6). 'yesterday', 'last year', under that of time.
7). 'Lying', 'sitting', are terms indicating position,
8). 'shod', 'armed', state;
9). 'to lance', 'to cauterize', action;
\({ }^{15}\) The Categories.
10). 'to be lanced', 'to be cauterized', affection.

No one of these terms, in and by itself, involves an affirmation; it is by the combination of such terms that positive or negative statements arise. For every assertion must, as is admitted, be either true or false, whereas expressions which are not in any way composite such as 'man', 'white', 'runs', 'wins', cannot be either true or false.

\section*{Substance}

Substance, in the truest and primary and most definite sense of the word, is that which is neither predicable of a subject nor present in a subject; for instance, the individual man or horse. But in a secondary sense those things are called substances within which, as species, the primary substances are included; also those which, as genera, include the species. For instance, the individual man is included in the species 'man', and the genus to which the species belongs is 'animal'; these, therefore-that is to say, the species 'man' and the genus 'animal'-are termed secondary substances.

It is plain from what has been said that both the name and the definition of the predicate must be predicable of the subject. For instance, 'man' is predicted of the individual man. Now in this case the name of the species 'man' is applied to the individual, for we use the term 'man' in describing the individual; and the definition of 'man' will also be predicated of the individual man, for the individual man is both man and animal. Thus, both the name and the definition of the species are predicable of the individual.

With regard, on the other hand, to those things which are present in a subject, it is generally the case that neither their name nor their definition is predicable of that in which they are present. Though, however, the definition is never predicable, there is nothing in certain cases to prevent the name being used. For instance, 'white' being present in a body is predicated of that in which it is present, for a body is called white: the definition, however, of the color 'white' is never predicable of the body.

Everything except primary substances is either
predicable of a primary substance or present in a primary substance. This becomes evident by reference to particular instances which occur. 'Animal' is predicated of the species 'man', therefore of the individual man, for if there were no individual man of whom it could be predicated, it could not be predicated of the species 'man' at all. Again, color is present in body, therefore in individual bodies, for if there were no individual body in which it was present, it could not be present in body at all. Thus everything except primary substances is either predicated of primary substances, or is present in them, and if these last did not exist, it would be impossible for anything else to exist.

Of secondary substances, the species is more truly substance than the genus, being more nearly related to primary substance. For if any one should render an account of what a primary substance is, he would render a more instructive account, and one more proper to the subject, by stating the species than by stating the genus. Thus, he would give a more instructive account of an individual man by stating that he was man than by stating that he was animal, for the former description is peculiar to the individual in a greater degree, while the latter is too general. Again, the man who gives an account of the nature of an individual tree will give a more instructive account by mentioning the species 'tree' than by mentioning the genus 'plant'.

Moreover, primary substances are most properly called substances in virtue of the fact that they are the entities which underlie everything else, and that everything else is either predicated of them or present in them. Now the same relation which subsists between primary substance and everything else subsists also between the species and the genus: for the species is to the genus as subject is to predicate, since the genus is predicated of the species, whereas the species cannot be predicated of the genus. Thus we have a second ground for asserting that the species is more truly substance than the genus.

Of species themselves, except in the case of such as are genera, no one is more truly substance
than another. We should not give a more appropriate account of the individual man by stating the species to which he belonged, than we should of an individual horse by adopting the same method of definition. In the same way, of primary substances, no one is more truly substance than another; an individual man is not more truly substance than an individual ox.

It is, then, with good reason that of all that remains, when we exclude primary substances, we concede to species and genera alone the name 'secondary substance', for these alone of all the predicates convey a knowledge of primary substance. For it is by stating the species or the genus that we appropriately define any individual man; and we shall make our definition more exact by stating the former than by stating the latter. All other things that we state, such as that he is white, that he runs, and so on, are irrelevant to the definition. Thus it is just that these alone, apart from primary substances, should be called substances.

Further, primary substances are most properly so called, because they underlie and are the subjects of everything else. Now the same relation that subsists between primary substance and everything else subsists also between the species and the genus to which the primary substance belongs, on the one hand, and every attribute which is not included within these, on the other. For these are the subjects of all such. If we call an individual man 'skilled in grammar', the predicate is applicable also to the species and to the genus to which he belongs. This law holds good in all cases.

It is a common characteristic of all substance that it is never present in a subject. For primary substance is neither present in a subject nor predicated of a subject; while, with regard to secondary substances, it is clear from the following arguments (apart from others) that they are not present in a subject. For 'man' is predicated of the individual man, but is not present in any subject: for manhood is not present in the individual man. In the same way, 'animal' is also predicated of the individual man, but is not present in him. Again, when a thing is present in a subject, though the
name may quite well be applied to that in which it is present, the definition cannot be applied. Yet of secondary substances, not only the name, but also the definition, applies to the subject: we should use both the definition of the species and that of the genus with reference to the individual man. Thus substance cannot be present in a subject.

Yet this is not peculiar to substance, for it is also the case that differentiae cannot be present in subjects. The characteristics 'terrestrial' and 'twofooted' are predicated of the species 'man', but not present in it. For they are not in man. Moreover, the definition of the differentia may be predicated of that of which the differentia itself is predicated. For instance, if the characteristic 'terrestrial' is predicated of the species 'man', the definition also of that characteristic may be used to form the predicate of the species 'man': for 'man' is terrestrial.

The fact that the parts of substances appear to be present in the whole, as in a subject, should not make us apprehensive lest we should have to admit that such parts are not substances: for in explaining the phrase 'being present in a subject', we stated that we meant 'otherwise than as parts in a whole'.

It is the mark of substances and of differentiae that, in all propositions of which they form the predicate, they are predicated univocally. For all such propositions have for their subject either the individual or the species. It is true that, inasmuch as primary substance is not predicable of anything, it can never form the predicate of any proposition. But of secondary substances, the species is predicated of the individual, the genus both of the species and of the individual. Similarly the differentiae are predicated of the species and of the individuals. Moreover, the definition of the species and that of the genus are applicable to the primary substance, and that of the genus to the species. For all that is predicated of the predicate will be predicated also of the subject. Similarly, the definition of the differentiae will be applicable to the species and to the individuals. But it was stated above that the word 'univocal' was applied to those things which had both name and definition in common. It is,
therefore, established that in every proposition, of which either substance or a differentia forms the predicate, these are predicated univocally.

All substance appears to signify that which is individual. In the case of primary substance this is indisputably true, for the thing is a unit. In the case of secondary substances, when we speak, for instance, of 'man' or 'animal', our form of speech gives the impression that we are here also indicating that which is individual, but the impression is not strictly true; for a secondary substance is not an individual, but a class with a certain qualification; for it is not one and single as a primary substance is; the words 'man', 'animal', are predicable of more than one subject.

Yet species and genus do not merely indicate quality, like the term 'white'; 'white' indicates quality and nothing further, but species and genus determine the quality with reference to a substance: they signify substance qualitatively differentiated. The determinate qualification covers a larger field in the case of the genus that in that of the species: he who uses the word 'animal' is herein using a word of wider extension than he who uses the word 'man'.

Another mark of substance is that it has no contrary. What could be the contrary of any primary substance, such as the individual man or animal? It has none. Nor can the species or the genus have a contrary. Yet this characteristic is not peculiar to substance, but is true of many other things, such as quantity. There is nothing that forms the contrary of 'two cubits long' or of 'three cubits long', or of 'ten', or of any such term. A man may contend that 'much' is the contrary of 'little', or 'great' of 'small', but of definite quantitative terms no contrary exists.

Substance, again, does not appear to admit of variation of degree. I do not mean by this that one substance cannot be more or less truly substance than another, for it has already been stated that this is the case; but that no single substance admits of varying degrees within itself. For instance, one particular substance, 'man', cannot be more or less man either than himself at some other time or than
some other man. One man cannot be more man than another, as that which is white may be more or less white than some other white object, or as that which is beautiful may be more or less beautiful than some other beautiful object. The same quality, moreover, is said to subsist in a thing in varying degrees at different times. A body, being white, is said to be whiter at one time than it was before, or, being warm, is said to be warmer or less warm than at some other time. But substance is not said to be more or less that which it is: a man is not more truly a man at one time than he was before, nor is anything, if it is substance, more or less what it is. Substance, then, does not admit of variation of degree.

The most distinctive mark of substance appears to be that, while remaining numerically one and the same, it is capable of admitting contrary qualities. From among things other than substance, we should find ourselves unable to bring forward any which possessed this mark. Thus, one and the same color cannot be white and black. Nor can the same one action be good and bad: this law holds good with everything that is not substance. But one and the selfsame substance, while retaining its identity, is yet capable of admitting contrary qualities. The same individual person is at one time white, at another black, at one time warm, at another cold, at one time good, at another bad. This capacity is found nowhere else, though it might be maintained that a statement or opinion was an exception to the rule. The same statement, it is agreed, can be both true and false. For if the statement 'he is sitting' is true, yet, when the person in question has risen, the same statement will be false. The same applies to opinions. For if any one thinks truly that a person is sitting, yet, when that person has risen, this same opinion, if still held, will be false. Yet although this exception may be allowed, there is, nevertheless, a difference in the manner in which the thing takes place. It is by themselves changing that substances admit contrary qualities. It is thus that that which was hot becomes cold, for it has entered into a different state. Similarly that which was white becomes black, and that which was bad good, by a process of change; and in the same way in all other
cases it is by changing that substances are capable of admitting contrary qualities. But statements and opinions themselves remain unaltered in all respects: it is by the alteration in the facts of the case that the contrary quality comes to be theirs. The statement 'he is sitting' remains unaltered, but it is at one time true, at another false, according to circumstances. What has been said of statements applies also to opinions. Thus, in respect of the manner in which the thing takes place, it is the peculiar mark of substance that it should be capable of admitting contrary qualities; for it is by itself changing that it does so.

If, then, a man should make this exception and contend that statements and opinions are capable of admitting contrary qualities, his contention is unsound. For statements and opinions are said to have this capacity, not because they themselves undergo modification, but because this modification occurs in the case of something else. The truth or falsity of a statement depends on facts, and not on any power on the part of the statement itself of admitting contrary qualities. In short, there is nothing which can alter the nature of statements and opinions. As, then, no change takes place in themselves, these cannot be said to be capable of admitting contrary qualities.

But it is by reason of the modification which takes place within the substance itself that a substance is said to be capable of admitting contrary qualities; for a substance admits within itself either disease or health, whiteness or blackness. It is in this sense that it is said to be capable of admitting contrary qualities.

To sum up, it is a distinctive mark of substance, that, while remaining numerically one and the same, it is capable of admitting contrary qualities, the modification taking place through a change in the substance itself.

Let these remarks suffice on the subject of substance.

\section*{Quantity}

Quantity is either discrete or continuous.

Moreover, some quantities are such that each part of the whole has a relative position to the other parts: others have within them no such relation of part to part.

Instances of discrete quantities are number and speech; of continuous, lines, surfaces, solids, and, besides these, time and place.

In the case of the parts of a number, there is no common boundary at which they join. For example: two fives make ten, but the two fives have no common boundary, but are separate; the parts three and seven also do not join at any boundary. Nor, to generalize, would it ever be possible in the case of number that there should be a common boundary among the parts; they are always separate. Number, therefore, is a discrete quantity.

The same is true of speech. That speech is a quantity is evident: for it is measured in long and short syllables. I mean here that speech which is vocal. Moreover, it is a discrete quantity for its parts have no common boundary. There is no common boundary at which the syllables join, but each is separate and distinct from the rest.

A line, on the other hand, is a continuous quantity, for it is possible to find a common boundary at which its parts join. In the case of the line, this common boundary is the point; in the case of the plane, it is the line: for the parts of the plane have also a common boundary. Similarly you can find a common boundary in the case of the parts of a solid, namely either a line or a plane.

Space and time also belong to this class of quantities. Time, past, present, and future, forms a continuous whole. Space, likewise, is a continuous quantity; for the parts of a solid occupy a certain space, and these have a common boundary; it follows that the parts of space also, which are occupied by the parts of the solid, have the same common boundary as the parts of the solid. Thus, not only time, but space also, is a continuous quantity, for its parts have a common boundary.

Quantities consist either of parts which bear a relative position each to each, or of parts which do not. The parts of a line bear a relative position to
each other, for each lies somewhere, and it would be possible to distinguish each, and to state the position of each on the plane and to explain to what sort of part among the rest each was contiguous. Similarly the parts of a plane have position, for it could similarly be stated what was the position of each and what sort of parts were contiguous. The same is true with regard to the solid and to space. But it would be impossible to show that the arts of a number had a relative position each to each, or a particular position, or to state what parts were contiguous. Nor could this be done in the case of time, for none of the parts of time has an abiding existence, and that which does not abide can hardly have position. It would be better to say that such parts had a relative order, in virtue of one being prior to another. Similarly with number: in counting, 'one' is prior to 'two', and 'two' to 'three', and thus the parts of number may be said to possess a relative order, though it would be impossible to discover any distinct position for each. This holds good also in the case of speech. None of its parts has an abiding existence: when once a syllable is pronounced, it is not possible to retain it, so that, naturally, as the parts do not abide, they cannot have position. Thus, some quantities consist of parts which have position, and some of those which have not.

Strictly speaking, only the things which I have mentioned belong to the category of quantity: everything else that is called quantitative is a quantity in a secondary sense. It is because we have in mind some one of these quantities, properly so called, that we apply quantitative terms to other things. We speak of what is white as large, because the surface over which the white extends is large; we speak of an action or a process as lengthy, because the time covered is long; these things cannot in their own right claim the quantitative epithet. For instance, should any one explain how long an action was, his statement would be made in terms of the time taken, to the effect that it lasted a year, or something of that sort. In the same way, he would explain the size of a white object in terms of surface, for he would state the area which it covered. Thus the things already mentioned, and
these alone, are in their intrinsic nature quantities; nothing else can claim the name in its own right, but, if at all, only in a secondary sense.

Quantities have no contraries. In the case of definite quantities this is obvious; thus, there is nothing that is the contrary of 'two cubits long' or of 'three cubits long', or of a surface, or of any such quantities. A man might, indeed, argue that 'much' was the contrary of 'little', and 'great' of 'small'. But these are not quantitative, but relative; things are not great or small absolutely, they are so called rather as the result of an act of comparison. For instance, a mountain is called small, a grain large, in virtue of the fact that the latter is greater than others of its kind, the former less. Thus there is a reference here to an external standard, for if the terms 'great' and 'small' were used absolutely, a mountain would never be called small or a grain large. Again, we say that there are many people in a village, and few in Athens, although those in the city are many times as numerous as those in the village: or we say that a house has many in it, and a theatre few, though those in the theatre far outnumber those in the house. The terms 'two cubits long,' 'three cubits long,' and so on indicate quantity, the terms 'great' and 'small' indicate relation, for they have reference to an external standard. It is, therefore, plain that these are to be classed as relative.

Again, whether we define them as quantitative or not, they have no contraries: for how can there be a contrary of an attribute which is not to be apprehended in or by itself, but only by reference to something external? Again, if 'great' and 'small' are contraries, it will come about that the same subject can admit contrary qualities at one and the same time, and that things will themselves be contrary to themselves. For it happens at times that the same thing is both small and great. For the same thing may be small in comparison with one thing, and great in comparison with another, so that the same thing comes to be both small and great at one and the same time, and is of such a nature as to admit contrary qualities at one and the same moment. Yet it was agreed, when substance was being discussed, that nothing admits contrary qualities at one and the same moment. For though
substance is capable of admitting contrary qualities, yet no one is at the same time both sick and healthy, nothing is at the same time both white and black. Nor is there anything which is qualified in contrary ways at one and the same time.

Moreover, if these were contraries, they would themselves be contrary to themselves. For if 'great' is the contrary of 'small', and the same thing is both great and small at the same time, then 'small' or 'great' is the contrary of itself. But this is impossible. The term 'great', therefore, is not the contrary of the term 'small', nor 'much' of 'little'. And even though a man should call these terms not relative but quantitative, they would not have contraries.

It is in the case of space that quantity most plausibly appears to admit of a contrary. For men define the term 'above' as the contrary of 'below', when it is the region at the center they mean by 'below'; and this is so, because nothing is farther from the extremities of the universe than the region at the center. Indeed, it seems that in defining contraries of every kind men have recourse to a spatial metaphor, for they say that those things are contraries which, within the same class, are separated by the greatest possible distance.

Quantity does not, it appears, admit of variation of degree. One thing cannot be two cubits long in a greater degree than another. Similarly with regard to number: what is 'three' is not more truly three than what is 'five' is five; nor is one set of three more truly three than another set. Again, one period of time is not said to be more truly time than another. Nor is there any other kind of quantity, of all that have been mentioned, with regard to which variation of degree can be predicated. The category of quantity, therefore, does not admit of variation of degree.

The most distinctive mark of quantity is that equality and inequality are predicated of it. Each of the aforesaid quantities is said to be equal or unequal. For instance, one solid is said to be equal or unequal to another; number, too, and time can have these terms applied to them, indeed can all those kinds of quantity that have been mentioned.

That which is not a quantity can by no means, it would seem, be termed equal or unequal to anything else. One particular disposition or one particular quality, such as whiteness, is by no means compared with another in terms of equality and inequality but rather in terms of similarity. Thus it is the distinctive mark of quantity that it can be called equal and unequal.

Those things are called relative, which, being either said to be of something else or related to something else, are explained by reference to that other thing. For instance, the word 'superior' is explained by reference to something else, for it is superiority over something else that is meant. Similarly, the expression 'double' has this external reference, for it is the double of something else that is meant. So it is with everything else of this kind. There are, moreover, other relatives, e.g. habit, disposition, perception, knowledge, and attitude. The significance of all these is explained by a reference to something else and in no other way. Thus, a habit is a habit of something, knowledge is knowledge of something, attitude is the attitude of something. So it is with all other relatives that have been mentioned. Those terms, then, are called relative, the nature of which is explained by reference to something else, the preposition 'of' or some other preposition being used to indicate the relation. Thus, one mountain is called great in comparison with another; for the mountain claims this attribute by comparison with something. Again, that which is called similar must be similar to something else, and all other such attributes have this external reference. It is to be noted that lying and standing and sitting are particular attitudes, but attitude is itself a relative term. To lie, to stand, to be seated, are not themselves attitudes, but take their name from the aforesaid attitudes.

It is possible for relatives to have contraries. Thus virtue has a contrary, vice, these both being relatives; knowledge, too, has a contrary, ignorance. But this is not the mark of all relatives; 'double' and 'triple' have no contrary, nor indeed has any such term.

It also appears that relatives can admit of
variation of degree. For 'like' and 'unlike', 'equal' and 'unequal', have the modifications 'more' and 'less' applied to them, and each of these is relative in character: for the terms 'like' and 'unequal' bear a reference to something external. Yet, again, it is not every relative term that admits of variation of degree. No term such as 'double' admits of this modification. All relatives have correlatives: by the term 'slave' we mean the slave of a master, by the term 'master', the master of a slave; by 'double', the double of its half; by 'half', the half of its double; by 'greater', greater than that which is less; by 'less,' less than that which is greater.

So it is with every other relative term; but the case we use to express the correlation differs in some instances. Thus, by knowledge we mean knowledge of the knowable; by the knowable, that which is to be apprehended by knowledge; by perception, perception of the perceptible; by the perceptible, that which is apprehended by perception.

Sometimes, however, reciprocity of correlation does not appear to exist. This comes about when a blunder is made, and that to which the relative is related is not accurately stated. If a man states that a wing is necessarily relative to a bird, the connexion between these two will not be reciprocal, for it will not be possible to say that a bird is a bird by reason of its wings. The reason is that the original statement was inaccurate, for the wing is not said to be relative to the bird quâ bird, since many creatures besides birds have wings, but quâ winged creature. If, then, the statement is made accurate, the connexion will be reciprocal, for we can speak of a wing, having reference necessarily to a winged creature, and of a winged creature as being such because of its wings.

Occasionally, perhaps, it is necessary to coin words, if no word exists by which a correlation can adequately be explained. If we define a rudder as necessarily having reference to a boat, our definition will not be appropriate, for the rudder does not have this reference to a boat quâ boat, as there are boats which have no rudders. Thus we cannot use the terms reciprocally, for the word
'boat' cannot be said to find its explanation in the word 'rudder'. As there is no existing word, our definition would perhaps be more accurate if we coined some word like 'ruddered' as the correlative of 'rudder'. If we express ourselves thus accurately, at any rate the terms are reciprocally connected, for the 'ruddered' thing is 'ruddered' in virtue of its rudder. So it is in all other cases. A head will be more accurately defined as the correlative of that which is 'headed', than as that of an animal, for the animal does not have a head quâ animal, since many animals have no head.

Thus we may perhaps most easily comprehend that to which a thing is related, when a name does not exist, if, from that which has a name, we derive a new name, and apply it to that with which the first is reciprocally connected, as in the aforesaid instances, when we derived the word 'winged' from 'wing' and from 'rudder'.

All relatives, then, if properly defined, have a correlative. I add this condition because, if that to which they are related is stated as haphazard and not accurately, the two are not found to be interdependent. Let me state what I mean more clearly. Even in the case of acknowledged correlatives, and where names exist for each, there will be no interdependence if one of the two is denoted, not by that name which expresses the correlative notion, but by one of irrelevant significance. The term 'slave,' if defined as related, not to a master, but to a man, or a biped, or anything of that sort, is not reciprocally connected with that in relation to which it is defined, for the statement is not exact. Further, if one thing is said \(t^{0}\) be correlative with another, and the terminology used is correct, then, though all irrelevant attributes should be removed, and only that one attribute left in virtue of which it was correctly stated to be correlative with that other, the stated correlation will still exist. If the correlative of 'the slave' is said to be 'the master', then, though all irrelevant attributes of the said 'master', such as 'biped', 'receptive of knowledge', 'human', should be removed, and the attribute 'master' alone left, the stated correlation existing between him and the slave will remain the same, for it is of a master that
a slave is said to be the slave. On the other hand, if, of two correlatives, one is not correctly termed, then, when all other attributes are removed and that alone is left in virtue of which it was stated to be correlative, the stated correlation will be found to have disappeared.

For suppose the correlative of 'the slave' should be said to be 'the man', or the correlative of 'the wing' 'the bird'; if the attribute 'master' be withdrawn from 'the man', the correlation between 'the man' and 'the slave' will cease to exist, for if the man is not a master, the slave is not a slave. Similarly, if the attribute 'winged' be withdrawn from 'the bird', 'the wing' will no longer be relative; for if the so-called correlative is not winged, it follows that 'the wing' has no correlative.

Thus it is essential that the correlated terms should be exactly designated; if there is a name existing, the statement will be easy; if not, it is doubtless our duty to construct names. When the terminology is thus correct, it is evident that all correlatives are interdependent.

Correlatives are thought to come into existence simultaneously. This is for the most part true, as in the case of the double and the half. The existence of the half necessitates the existence of that of which it is a half. Similarly the existence of a master necessitates the existence of a slave, and that of a slave implies that of a master; these are merely instances of a general rule. Moreover, they cancel one another; for if there is no double it follows that there is no half, and vice versa; this rule also applies to all such correlatives. Yet it does not appear to be true in all cases that correlatives come into existence simultaneously. The object of knowledge would appear to exist before knowledge itself, for it is usually the case that we acquire knowledge of objects already existing; it would be difficult, if not impossible, to find a branch of knowledge the beginning of the existence of which was contemporaneous with that of its object.

Again, while the object of knowledge, if it ceases to exist, cancels at the same time the knowledge which was its correlative, the converse of this is not true. It is true that if the object of
knowledge does not exist there can be no knowledge: for there will no longer be anything to know. Yet it is equally true that, if knowledge of a certain object does not exist, the object may nevertheless quite well exist. Thus, in the case of the squaring of the circle, if indeed that process is an object of knowledge, though it itself exists as an object of knowledge, yet the knowledge of it has not yet come into existence. Again, if all animals ceased to exist, there would be no knowledge, but there might yet be many objects of knowledge.

This is likewise the case with regard to perception: for the object of perception is, it appears, prior to the act of perception. If the perceptible is annihilated, perception also will cease to exist; but the annihilation of perception does not cancel the existence of the perceptible. For perception implies a body perceived and a body in which perception takes place. Now if that which is perceptible is annihilated, it follows that the body is annihilated, for the body is a perceptible thing; and if the body does not exist, it follows that perception also ceases to exist. Thus the annihilation of the perceptible involves that of perception.

But the annihilation of perception does not involve that of the perceptible. For if the animal is annihilated, it follows that perception also is annihilated, but perceptibles such as body, heat, sweetness, bitterness, and so on, will remain.

Again, perception is generated at the same time as the perceiving subject, for it comes into existence at the same time as the animal. But the perceptible surely exists before perception; for fire and water and such elements, out of which the animal is itself composed, exist before the animal is an animal at all, and before perception. Thus it would seem that the perceptible exists before perception.

It may be questioned whether it is true that no substance is relative, as seems to be the case, or whether exception is to be made in the case of certain secondary substances. With regard to primary substances, it is quite true that there is no such possibility, for neither wholes nor parts of primary substances are relative. The individual man or ox is not defined with reference to something
external. Similarly with the parts: a particular hand or head is not defined as a particular hand or head of a particular person, but as the hand or head of a particular person. It is true also, for the most part at least, in the case of secondary substances; the species 'man' and the species 'ox' are not defined with reference to anything outside themselves. Wood, again, is only relative in so far as it is some one's property, not in so far as it is wood. It is plain, then, that in the cases mentioned substance is not relative. But with regard to some secondary substances there is a difference of opinion; thus, such terms as 'head' and 'hand' are defined with reference to that of which the things indicated are a part, and so it comes about that these appear to have a relative character. Indeed, if our definition of that which is relative was complete, it is very difficult, if not impossible, to prove that no substance is relative. If, however, our definition was not complete, if those things only are properly called relative in the case of which relation to an external object is a necessary condition of existence, perhaps some explanation of the dilemma may be found.

The former definition does indeed apply to all relatives, but the fact that a thing is explained with reference to something else does not make it essentially relative.

From this it is plain that, if a man definitely apprehends a relative thing, he will also definitely apprehend that to which it is relative. Indeed this is self-evident: for if a man knows that some particular thing is relative, assuming that we call that a relative in the case of which relation to something is a necessary condition of existence, he knows that also to which it is related. For if he does not know at all that to which it is related, he will not know whether or not it is relative. This is clear, moreover, in particular instances. If a man knows definitely that such and such a thing is 'double', he will also forthwith know definitely that of which it is the double. For if there is nothing definite of which he knows it to be the double, he does not know at all that it is double. Again, if he knows that a thing is more beautiful, it follows necessarily that he will forthwith definitely know that also than which it is more beautiful. He will not merely know
indefinitely that it is more beautiful than something which is less beautiful, for this would be supposition, not knowledge. For if he does not know definitely that than which it is more beautiful, he can no longer claim to know definitely that it is more beautiful than something else which is less beautiful: for it might be that nothing was less beautiful. It is, therefore, evident that if a man apprehends some relative thing definitely, he necessarily knows that also definitely to which it is related.

Now the head, the hand, and such things are substances, and it is possible to know their essential character definitely, but it does not necessarily follow that we should know that to which they are related. It is not possible to know forthwith whose head or hand is meant. Thus these are not relatives, and, this being the case, it would be true to say that no substance is relative in character. It is perhaps a difficult matter, in such cases, to make a positive statement without more exhaustive examination, but to have raised questions with regard to details is not without advantage.

\section*{Quality}

By 'quality' I mean that in virtue of which people are said to be such and such.

Quality is a term that is used in many senses. One sort of quality let us call 'habit' or 'disposition'. Habit differs from disposition in being more lasting and more firmly established. The various kinds of knowledge and of virtue are habits, for knowledge, even when acquired only in a moderate degree, is, it is agreed, abiding in its character and difficult to displace, unless some great mental upheaval takes place, through disease or any such cause. The virtues, also, such as justice, selfrestraint, and so on, are not easily dislodged or dismissed, so as to give place to vice.

By a disposition, on the other hand, we mean a condition that is easily changed and quickly gives place to its opposite. Thus, heat, cold, disease, health, and so on are dispositions. For a man is disposed in one way or another with reference to
these, but quickly changes, becoming cold instead of warm, ill instead of well. So it is with all other dispositions also, unless through lapse of time a disposition has itself become inveterate and almost impossible to dislodge: in which case we should perhaps go so far as to call it a habit.

It is evident that men incline to call those conditions habits which are of a more or less permanent type and difficult to displace; for those who are not retentive of knowledge, but volatile, are not said to have such and such a 'habit' as regards knowledge, yet they are disposed, we may say, either better or worse, towards knowledge. Thus habit differs from disposition in this, that while the latter in ephemeral, the former is permanent and difficult to alter.

Habits are at the same time dispositions, but dispositions are not necessarily habits. For those who have some specific habit may be said also, in virtue of that habit, to be thus or thus disposed; but those who are disposed in some specific way have not in all cases the corresponding habit.

Another sort of quality is that in virtue of which, for example, we call men good boxers or runners, or healthy or sickly: in fact it includes all those terms which refer to inborn capacity or incapacity. Such things are not predicated of a person in virtue of his disposition, but in virtue of his inborn capacity or incapacity to do something with ease or to avoid defeat of any kind. Persons are called good boxers or good runners, not in virtue of such and such a disposition, but in virtue of an inborn capacity to accomplish something with ease. Men are called healthy in virtue of the inborn capacity of easy resistance to those unhealthy influences that may ordinarily arise; unhealthy, in virtue of the lack of this capacity. Similarly with regard to softness and hardness. Hardness is predicated of a thing because it has that capacity of resistance which enables it to withstand disintegration; softness, again, is predicated of a thing by reason of the lack of that capacity.

A third class within this category is that of affective qualities and affections. Sweetness, bitterness, sourness, are examples of this sort of
quality, together with all that is akin to these; heat, moreover, and cold, whiteness, and blackness are affective qualities. It is evident that these are qualities, for those things that possess them are themselves said to be such and such by reason of their presence. Honey is called sweet because it contains sweetness; the body is called white because it contains whiteness; and so in all other cases.

The term 'affective quality' is not used as indicating that those things which admit these qualities are affected in any way. Honey is not called sweet because it is affected in a specific way, nor is this what is meant in any other instance. Similarly heat and cold are called affective qualities, not because those things which admit them are affected. What is meant is that these said qualities are capable of producing an 'affection' in the way of perception. For sweetness has the power of affecting the sense of taste; heat, that of touch; and so it is with the rest of these qualities.

Whiteness and blackness, however, and the other colors, are not said to be affective qualities in this sense, but because they themselves are the results of an affection. It is plain that many changes of color take place because of affections. When a man is ashamed, he blushes; when he is afraid, he becomes pale, and so on. So true is this, that when a man is by nature liable to such affections, arising from some concomitance of elements in his constitution, it is a probable inference that he has the corresponding complexion of skin. For the same disposition of bodily elements, which in the former instance was momentarily present in the case of an excess of shame, might be a result of a man's natural temperament, so as to produce the corresponding coloring also as a natural characteristic. All conditions, therefore, of this kind, if caused by certain permanent and lasting affections, are called affective qualities. For pallor and duskiness of complexion are called qualities, inasmuch as we are said to be such and such in virtue of them, not only if they originate in natural constitution, but also if they come about through long disease or sunburn, and are difficult to remove, or indeed remain throughout life. For in the same
way we are said to be such and such because of these.

Those conditions, however, which arise from causes which may easily be rendered ineffective or speedily removed, are called, not qualities, but affections: for we are not said to be such in virtue of them. The man who blushes through shame is not said to be a constitutional blusher, nor is the man who becomes pale through fear said to be constitutionally pale. He is said rather to have been affected.

Thus such conditions are called affections, not qualities.

In like manner there are affective qualities and affections of the soul. That temper with which a man is born and which has its origin in certain deepseated affections is called a quality. I mean such conditions as insanity, irascibility, and so on: for people are said to be mad or irascible in virtue of these. Similarly those abnormal psychic states which are not inborn, but arise from the concomitance of certain other elements, and are difficult to remove, or altogether permanent, are called qualities, for in virtue of them men are said to be such and such.

Those, however, which arise from causes easily rendered ineffective are called affections, not qualities. Suppose that a man is irritable when vexed: he is not even spoken of as a bad-tempered man, when in such circumstances he loses his temper somewhat, but rather is said to be affected. Such conditions are therefore termed, not qualities, but affections.

The fourth sort of quality is figure and the shape that belongs to a thing; and besides this, straightness and curvedness and any other qualities of this type; each of these defines a thing as being such and such. Because it is triangular or quadrangular a thing is said to have a specific character, or again because it is straight or curved; in fact a thing's shape in every case gives rise to a qualification of it.

Rarity and density, roughness and smoothness, seem to be terms indicating quality: yet these, it would appear, really belong to a class different from
that of quality. For it is rather a certain relative position of the parts composing the thing thus qualified which, it appears, is indicated by each of these terms. A thing is dense, owing to the fact that its parts are closely combined with one another; rare, because there are interstices between the parts; smooth, because its parts lie, so to speak, evenly; rough, because some parts project beyond others.

There may be other sorts of quality, but those that are most properly so called have, we may safely say, been enumerated.

These, then, are qualities, and the things that take their name from them as derivatives, or are in some other way dependent on them, are said to be qualified in some specific way. In most, indeed in almost all cases, the name of that which is qualified is derived from that of the quality. Thus the terms 'whiteness', 'grammar', 'justice', give us the adjectives 'white', 'grammatical', 'just', and so on.

There are some cases, however, in which, as the quality under consideration has no name, it is impossible that those possessed of it should have a name that is derivative. For instance, the name given to the runner or boxer, who is so called in virtue of an inborn capacity, is not derived from that of any quality; for those capacities have no name assigned to them. In this, the inborn capacity is distinct from the science, with reference to which men are called, e.g. boxers or wrestlers. Such a science is classed as a disposition; it has a name, and is called 'boxing' or 'wrestling' as the case may be, and the name given to those disposed in this way is derived from that of the science. Sometimes, even though a name exists for the quality, that which takes its character from the quality has a name that is not a derivative. For instance, the upright man takes his character from the possession of the quality of integrity, but the name given him is not derived from the word 'integrity'. Yet this does not occur often.

We may therefore state that those things are said to be possessed of some specific quality which have a name derived from that of the aforesaid quality, or which are in some other way dependent on it.

One quality may be the contrary of another; thus justice is the contrary of injustice, whiteness of blackness, and so on. The things, also, which are said to be such and such in virtue of these qualities, may be contrary the one to the other; for that which is unjust is contrary to that which is just, that which is white to that which is black. This, however, is not always the case. Red, yellow, and such colors, though qualities, have no contraries.

If one of two contraries is a quality, the other will also be a quality. This will be evident from particular instances, if we apply the names used to denote the other categories; for instance, granted that justice is the contrary of injustice and justice is a quality, injustice will also be a quality: neither quantity, nor relation, nor place, nor indeed any other category but that of quality, will be applicable properly to injustice. So it is with all other contraries falling under the category of quality.

Qualities admit of variation of degree. Whiteness is predicated of one thing in a greater or less degree than of another. This is also the case with reference to justice. Moreover, one and the same thing may exhibit a quality in a greater degree than it did before: if a thing is white, it may become whiter.

Though this is generally the case, there are exceptions. For if we should say that justice admitted of variation of degree, difficulties might ensue, and this is true with regard to all those qualities which are dispositions. There are some, indeed, who dispute the possibility of variation here. They maintain that justice and health cannot very well admit of variation of degree themselves, but that people vary in the degree in which they possess these qualities, and that this is the case with grammatical learning and all those qualities which are classed as dispositions. However that may be, it is an incontrovertible fact that the things which in virtue of these qualities are said to be what they are vary in the degree in which they possess them; for one man is said to be better versed in grammar, or more healthy or just, than another, and so on.

The qualities expressed by the terms 'triangular' and 'quadrangular' do not appear to admit of
variation of degree, nor indeed do any that have to do with figure. For those things to which the definition of the triangle or circle is applicable are all equally triangular or circular. Those, on the other hand, to which the same definition is not applicable, cannot be said to differ from one another in degree; the square is no more a circle than the rectangle, for to neither is the definition of the circle appropriate. In short, if the definition of the term proposed is not applicable to both objects, they cannot be compared. Thus it is not all qualities which admit of variation of degree.

Whereas none of the characteristics I have mentioned are peculiar to quality, the fact that likeness and unlikeness can be predicated with reference to quality only, gives to that category its distinctive feature. One thing is like another only with reference to that in virtue of which it is such and such; thus this forms the peculiar mark of quality.

\section*{Relative, Action, Affection}

We must not be disturbed because it may be argued that, though proposing to discuss the category of quality, we have included in it many relative terms. We did say that habits and dispositions were relative. In practically all such cases the genus is relative, the individual not. Thus knowledge, as a genus, is explained by reference to something else, for we mean a knowledge of something. But particular branches of knowledge are not thus explained. The knowledge of grammar is not relative to anything external, nor is the knowledge of music, but these, if relative at all, are relative only in virtue of their genera; thus grammar is said be the knowledge of something, not the grammar of something; similarly music is the knowledge of something, not the music of something.

Thus individual branches of knowledge are not relative. And it is because we possess these individual branches of knowledge that we are said to be such and such. It is these that we actually possess: we are called experts because we possess knowledge in some particular branch. Those
particular branches, therefore, of knowledge, in virtue of which we are sometimes said to be such and such, are themselves qualities, and are not relative. Further, if anything should happen to fall within both the category of quality and that of relation, there would be nothing extraordinary in classing it under both these heads.

Action and affection both admit of contraries and also of variation of degree. Heating is the contrary of cooling, being heated of being cooled, being glad of being vexed. Thus they admit of contraries. They also admit of variation of degree: for it is possible to heat in a greater or less degree; also to be heated in a greater or less degree. Thus action and affection also admit of variation of degree. So much, then, is stated with regard to these categories.

\section*{Time, Place, State}

We spoke, moreover, of the category of position when we were dealing with that of relation, and stated that such terms derived their names from those of the corresponding attitudes.

As for the rest, time, place, state, since they are easily intelligible, I say no more about them than was said at the beginning, that in the category of state are included such states as 'shod', 'armed', in that of place 'in the Lyceum' and so on, as was explained before.

The proposed categories have, then, been adequately dealt with.

\section*{Opposition}

We must next explain the various senses in which the term 'opposite' is used. Things are said to be opposed in four senses: (i) as correlatives to one another, (ii) as contraries to one another, (iii) as privatives to positives, (iv) as affirmatives to negatives.

Let me sketch my meaning in outline. An instance of the use of the word 'opposite' with reference to correlatives is afforded by the expressions 'double' and 'half'; with reference to contraries by 'bad' and 'good'. Opposites in the
sense of 'privatives' and 'positives' are' blindness' and 'sight'; in the sense of affirmatives and negatives, the propositions 'he sits', 'he does not sit'.

\section*{Correlatives}
(i) Pairs of opposites which fall under the category of relation are explained by a reference of the one to the other, the reference being indicated by the preposition 'of' or by some other preposition. Thus, double is a relative term, for that which is double is explained as the double of something. Knowledge, again, is the opposite of the thing known, in the same sense; and the thing known also is explained by its relation to its opposite, knowledge. For the thing known is explained as that which is known by something, that is, by knowledge. Such things, then, as are opposite the one to the other in the sense of being correlatives are explained by a reference of the one to the other.

\section*{Contraries}
(ii) Pairs of opposites which are contraries are not in any way interdependent, but are contrary the one to the other. The good is not spoken of as the good of the bad, but as the contrary of the bad, nor is white spoken of as the white of the black, but as the contrary of the black. These two types of opposition are therefore distinct. Those contraries which are such that the subjects in which they are naturally present, or of which they are predicated, must necessarily contain either the one or the other of them, have no intermediate, but those in the case of which no such necessity obtains, always have an intermediate. Thus disease and health are naturally present in the body of an animal, and it is necessary that either the one or the other should be present in the body of an animal. Odd and even, again, are predicated of number, and it is necessary that the one or the other should be present in numbers. Now there is no intermediate between the terms of either of these two pairs. On the other hand, in those contraries with regard to which no such necessity obtains, we find an intermediate. Blackness and whiteness are naturally present in the body, but it is
not necessary that either the one or the other should be present in the body, inasmuch as it is not true to say that everybody must be white or black. Badness and goodness, again, are predicated of man, and of many other things, but it is not necessary that either the one quality or the other should be present in that of which they are predicated: it is not true to say that everything that may be good or bad must be either good or bad. These pairs of contraries have intermediates: the intermediates between white and black are gray, sallow, and all the other colors that come between; the intermediate between good and bad is that which is neither the one nor the other.

Some intermediate qualities have names, such as gray and sallow and all the other colors that come between white and black; in other cases, however, it is not easy to name the intermediate, but we must define it as that which is not either extreme, as in the case of that which is neither good nor bad, neither just nor unjust.

\section*{Privatives To Positives}
(iii) 'privatives' and 'positives' have reference to the same subject. Thus, sight and blindness have reference to the eye. It is a universal rule that each of a pair of opposites of this type has reference to that to which the particular 'positive' is natural. We say that that is capable of some particular faculty or possession has suffered privation when the faculty or possession in question is in no way present in that in which, and at the time at which, it should naturally be present. We do not call that toothless which has not teeth, or that blind which has not sight, but rather that which has not teeth or sight at the time when by nature it should. For there are some creatures which from birth are without sight, or without teeth, but these are not called toothless or blind.

To be without some faculty or to possess it is not the same as the corresponding 'privative' or 'positive'. 'Sight' is a 'positive', 'blindness' a 'privative', but 'to possess sight' is not equivalent to 'sight', 'to be blind' is not equivalent to 'blindness'. Blindness is a 'privative', to be blind is to be in a state of privation, but is not a 'privative'.

Moreover, if 'blindness' were equivalent to 'being blind', both would be predicated of the same subject; but though a man is said to be blind, he is by no means said to be blindness.

To be in a state of 'possession' is, it appears, the opposite of being in a state of 'privation', just as 'positives' and 'privatives' themselves are opposite. There is the same type of antithesis in both cases; for just as blindness is opposed to sight, so is being blind opposed to having sight.

That which is affirmed or denied is not itself affirmation or denial. By 'affirmation' we mean an affirmative proposition, by 'denial' a negative. Now, those facts which form the matter of the affirmation or denial are not propositions; yet these two are said to be opposed in the same sense as the affirmation and denial, for in this case also the type of antithesis is the same. For as the affirmation is opposed to the denial, as in the two propositions 'he sits', 'he does not sit', so also the fact which constitutes the matter of the proposition in one case is opposed to that in the other, his sitting, that is to say, to his not sitting.

It is evident that 'positives' and 'privatives' are not opposed each to each in the same sense as relatives. The one is not explained by reference to the other; sight is not sight of blindness, nor is any other preposition used to indicate the relation. Similarly blindness is not said to be blindness of sight, but rather, privation of sight. Relatives, moreover, reciprocate; if blindness, therefore, were a relative, there would be a reciprocity of relation between it and that with which it was correlative. But this is not the case. Sight is not called the sight of blindness.

That those terms which fall under the heads of 'positives' and 'privatives' are not opposed each to each as contraries, either, is plain from the following facts: Of a pair of contraries such that they have no intermediate, one or the other must needs be present in the subject in which they naturally subsist, or of which they are predicated; for it is those, as we proved, in the case of which this necessity obtains, that have no intermediate. Moreover, we cited health and disease, odd and
even, as instances. But those contraries which have an intermediate are not subject to any such necessity. It is not necessary that every substance, receptive of such qualities, should be either black or white, cold or hot, for something intermediate between these contraries may very well be present in the subject. We proved, moreover, that those contraries have an intermediate in the case of which the said necessity does not obtain. Yet when one of the two contraries is a constitutive property of the subject, as it is a constitutive property of fire to be hot, of snow to be white, it is necessary determinately that one of the two contraries, not one or the other, should be present in the subject; for fire cannot be cold, or snow black. Thus, it is not the case here that one of the two must needs be present in every subject receptive of these qualities, but only in that subject of which the one forms a constitutive property. Moreover, in such cases it is one member of the pair determinately, and not either the one or the other, which must be present.

In the case of 'positives' and 'privatives', on the other hand, neither of the aforesaid statements holds good. For it is not necessary that a subject receptive of the qualities should always have either the one or the other; that which has not yet advanced to the state when sight is natural is not said either to be blind or to see. Thus 'positives' and 'privatives' do not belong to that class of contraries which consists of those which have no intermediate. On the other hand, they do not belong either to that class which consists of contraries which have an intermediate. For under certain conditions it is necessary that either the one or the other should form part of the constitution of every appropriate subject. For when a thing has reached the stage when it is by nature capable of sight, it will be said either to see or to be blind, and that in an indeterminate sense, signifying that the capacity may be either present or absent; for it is not necessary either that it should see or that it should be blind, but that it should be either in the one state or in the other. Yet in the case of those contraries which have an intermediate we found that it was never necessary that either the one or the other should be present in every appropriate subject, but only that in certain subjects one of the pair
should be present, and that in a determinate sense. It is, therefore, plain that 'positives' and 'privatives' are not opposed each to each in either of the senses in which contraries are opposed.

Again, in the case of contraries, it is possible that there should be changes from either into the other, while the subject retains its identity, unless indeed one of the contraries is a constitutive property of that subject, as heat is of fire. For it is possible that that which is healthy should become diseased, that which is white, black, that which is cold, hot, that which is good, bad, that which is bad, good. The bad man, if he is being brought into a better way of life and thought, may make some advance, however slight, and if he should once improve, even ever so little, it is plain that he might change completely, or at any rate make very great progress; for a man becomes more and more easily moved to virtue, however small the improvement was at first. It is, therefore, natural to suppose that he will make yet greater progress than he has made in the past; and as this process goes on, it will change him completely and establish him in the contrary state, provided he is not hindered by lack of time. In the case of 'positives' and 'privatives', however, change in both directions is impossible. There may be a change from possession to privation, but not from privation to possession. The man who has become blind does not regain his sight; the man who has become bald does not regain his hair; the man who has lost his teeth does not grow his grow a new set.

\section*{Affirmatives To Negatives}
(iv) Statements opposed as affirmation and negation belong manifestly to a class which is distinct, for in this case, and in this case only, it is necessary for the one opposite to be true and the other false.

Neither in the case of contraries, nor in the case of correlatives, nor in the case of 'positives' and 'privatives', is it necessary for one to be true and the other false. Health and disease are contraries: neither of them is true or false. 'Double' and 'half' are opposed to each other as correlatives: neither of
them is true or false. The case is the same, of course, with regard to 'positives' and 'privatives' such as 'sight' and 'blindness'. In short, where there is no sort of combination of words, truth and falsity have no place, and all the opposites we have mentioned so far consist of simple words.

At the same time, when the words which enter into opposed statements are contraries, these, more than any other set of opposites, would seem to claim this characteristic. 'Socrates is ill' is the contrary of 'Socrates is well', but not even of such composite expressions is it true to say that one of the pair must always be true and the other false. For if Socrates exists, one will be true and the other false, but if he does not exist, both will be false; for neither 'Socrates is ill' nor 'Socrates is well' is true, if Socrates does not exist at all.

In the case of 'positives' and 'privatives', if the subject does not exist at all, neither proposition is true, but even if the subject exists, it is not always the fact that one is true and the other false. For 'Socrates has sight' is the opposite of 'Socrates is blind' in the sense of the word 'opposite' which applies to possession and privation. Now if Socrates exists, it is not necessary that one should be true and the other false, for when he is not yet able to acquire the power of vision, both are false, as also if Socrates is altogether non-existent.

But in the case of affirmation and negation, whether the subject exists or not, one is always false and the other true. For manifestly, if Socrates exists, one of the two propositions 'Socrates is ill', 'Socrates is not ill', is true, and the other false. This is likewise the case if he does not exist; for if he does not exist, to say that he is ill is false, to say that he is not ill is true. Thus it is in the case of those opposites only, which are opposite in the sense in which the term is used with reference to affirmation and negation, that the rule holds good, that one of the pair must be true and the other false.

That the contrary of a good is an evil is shown by induction: the contrary of health is disease, of courage, cowardice, and so on. But the contrary of an evil is sometimes a good, sometimes an evil. For defect, which is an evil, has excess for its contrary,
this also being an evil, and the mean. which is a good, is equally the contrary of the one and of the other. It is only in a few cases, however, that we see instances of this: in most, the contrary of an evil is a good.

In the case of contraries, it is not always necessary that if one exists the other should also exist: for if all become healthy there will be health and no disease, and again, if everything turns white, there will be white, but no black. Again, since the fact that Socrates is ill is the contrary of the fact that Socrates is well, and two contrary conditions cannot both obtain in one and the same individual at the same time, both these contraries could not exist at once: for if that Socrates was well was a fact, then that Socrates was ill could not possibly be one.

It is plain that contrary attributes must needs be present in subjects which belong to the same species or genus. Disease and health require as their subject the body of an animal; white and black require a body, without further qualification; justice and injustice require as their subject the human soul.

Moreover, it is necessary that pairs of contraries should in all cases either belong to the same genus or belong to contrary genera or be themselves genera. White and black belong to the same genus, color; justice and injustice, to contrary genera, virtue and vice; while good and evil do not belong to genera, but are themselves actual genera, with terms under them.

\section*{Prior}

There are four senses in which one thing can be said to be 'prior' to another. Primarily and most properly the term has reference to time: in this sense the word is used to indicate that one thing is older or more ancient than another, for the expressions 'older' and 'more ancient' imply greater length of time.

Secondly, one thing is said to be 'prior' to another when the sequence of their being cannot be reversed. In this sense 'one' is 'prior' to 'two'. For if 'two' exists, it follows directly that 'one' must exist, but if 'one' exists, it does not follow
necessarily that 'two' exists: thus the sequence subsisting cannot be reversed. It is agreed, then, that when the sequence of two things cannot be reversed, then that one on which the other depends is called 'prior' to that other.

In the third place, the term 'prior' is used with reference to any order, as in the case of science and of oratory. For in sciences which use demonstration there is that which is prior and that which is posterior in order; in geometry, the elements are prior to the propositions; in reading and writing, the letters of the alphabet are prior to the syllables. Similarly, in the case of speeches, the exordium is prior in order to the narrative.

Besides these senses of the word, there is a fourth. That which is better and more honorable is said to have a natural priority. In common parlance men speak of those whom they honor and love as 'coming first' with them. This sense of the word is perhaps the most far-fetched.

Such, then, are the different senses in which the term 'prior' is used.

Yet it would seem that besides those mentioned there is yet another. For in those things, the being of each of which implies that of the other, that which is in any way the cause may reasonably be said to be by nature 'prior' to the effect. It is plain that there are instances of this. The fact of the being of a man carries with it the truth of the proposition that he is, and the implication is reciprocal: for if a man is, the proposition wherein we allege that he is true, and conversely, if the proposition wherein we allege that he is true, then he is. The true proposition, however, is in no way the cause of the being of the man, but the fact of the man's being does seem somehow to be the cause of the truth of the proposition, for the truth or falsity of the proposition depends on the fact of the man's being or not being.

Thus the word 'prior' may be used in five senses.

\section*{Simultaneity}

The term 'simultaneous' is primarily and most appropriately applied to those things the genesis of
the one of which is simultaneous with that of the other; for in such cases neither is prior or posterior to the other. Such things are said to be simultaneous in point of time. Those things, again, are 'simultaneous' in point of nature, the being of each of which involves that of the other, while at the same time neither is the cause of the other's being. This is the case with regard to the double and the half, for these are reciprocally dependent, since, if there is a double, there is also a half, and if there is a half, there is also a double, while at the same time neither is the cause of the being of the other.

Again, those species which are distinguished one from another and opposed one to another within the same genus are said to be 'simultaneous' in nature. I mean those species which are distinguished each from each by one and the same method of division. Thus the 'winged' species is simultaneous with the 'terrestrial' and the 'water' species. These are distinguished within the same genus, and are opposed each to each, for the genus 'animal' has the 'winged', the 'terrestrial', and the 'water' species, and no one of these is prior or posterior to another; on the contrary, all such things appear to be 'simultaneous' in nature. Each of these also, the terrestrial, the winged, and the water species, can be divided again into subspecies. Those species, then, also will be 'simultaneous' point of nature, which, belonging to the same genus, are distinguished each from each by one and the same method of differentiation.

But genera are prior to species, for the sequence of their being cannot be reversed. If there is the species 'water-animal', there will be the genus 'animal', but granted the being of the genus 'animal', it does not follow necessarily that there will be the species 'water-animal'.

Those things, therefore, are said to be 'simultaneous' in nature, the being of each of which involves that of the other, while at the same time neither is in any way the cause of the other's being; those species, also, which are distinguished each from each and opposed within the same genus. Those things, moreover, are 'simultaneous' in the unqualified sense of the word which come into
being at the same time.

\section*{Motion}

There are six sorts of movement: generation, destruction, increase, diminution, alteration, and change of place.

It is evident in all but one case that all these sorts of movement are distinct each from each. Generation is distinct from destruction, increase and change of place from diminution, and so on. But in the case of alteration it may be argued that the process necessarily implies one or other of the other five sorts of motion. This is not true, for we may say that all affections, or nearly all, produce in us an alteration which is distinct from all other sorts of motion, for that which is affected need not suffer either increase or diminution or any of the other sorts of motion. Thus alteration is a distinct sort of motion; for, if it were not, the thing altered would not only be altered, but would forthwith necessarily suffer increase or diminution or some one of the other sorts of motion in addition; which as a matter of fact is not the case. Similarly that which was undergoing the process of increase or was subject to some other sort of motion would, if alteration were not a distinct form of motion, necessarily be subject to alteration also. But there are some things which undergo increase but yet not alteration. The square, for instance, if a gnomon is applied to it, undergoes increase but not alteration, and so it is with all other figures of this sort. Alteration and increase, therefore, are distinct.

Speaking generally, rest is the contrary of motion. But the different forms of motion have their own contraries in other forms; thus destruction is the contrary of generation, diminution of increase, rest in a place of change of place. As for this last, change in the reverse direction would seem to be most truly its contrary; thus motion upwards is the contrary of motion downwards and vice versa.

In the case of that sort of motion which yet remains, of those that have been enumerated, it is not easy to state what is its contrary. It appears to have no contrary, unless one should define the
contrary here also either as 'rest in its quality' or as 'change in the direction of the contrary quality', just as we defined the contrary of change of place either as rest in a place or as change in the reverse direction. For a thing is altered when change of quality takes place; therefore either rest in its quality or change in the direction of the contrary may be called the contrary of this qualitative form of motion. In this way becoming white is the contrary of becoming black; there is alteration in the contrary direction, since a change of a qualitative nature takes place.

\section*{Possessives}

The term 'to have' is used in various senses. In the first place it is used with reference to habit or disposition or any other quality, for we are said to 'have' a piece of knowledge or a virtue. Then, again, it has reference to quantity, as, for instance, in the case of a man's height; for he is said to 'have' a height of three or four cubits. It is used, moreover, with regard to apparel, a man being said to 'have' a coat or tunic; or in respect of something which we have on a part of ourselves, as a ring on the hand: or in respect of something which is a part of us, as hand or foot. The term refers also to content, as in the case of a vessel and wheat, or of a jar and wine; a jar is said to 'have' wine, and a corn-measure wheat. The expression in such cases has reference to content. Or it refers to that which has been acquired; we are said to 'have' a house or a field. A man is also said to 'have' a wife, and a wife a husband, and this appears to be the most remote meaning of the term, for by the use of it we mean simply that the husband lives with the wife.

Other senses of the word might perhaps be found, but the most ordinary ones have all been enumerated.
-THE END-

\section*{Conclusion of Categories}

What principle does Aristotle use to construct the Categories? I would be hard pressed to find one.

He does not use form and matter, for in many categories we find forms and matter side by side.

I would think that there would be some advantage to making a primary division of the bodies senses between those that abstract matter and those that abstract form. Then locate a primitive vocabulary specific to each sense. etc.

Be this as it may, one will find a striking similarity in Plato's construction of Parmenides, which uses these categories to see if anything can be predicated of the basic elements-matter and form.

\section*{Leaving the Cave; Human Enlightenment}

Once we learn that every thing has a class and things are divided by definition, how far can we divide or does division end at some place beyond which no further predication can take place?

Let me give you, then, a dream in return for a dream:-I thought that I too had a dream, and I heard in my dream that the primeval letters or elements out of which you and I and all other things are compounded, have no reason or explanation; you can only name them, but no predicate can be either affirmed or denied of them, for in the one case existence, in the other non-existence is already implied, neither of which must be added, if you mean to speak of this or that thing by itself alone. ~
~ But none of these primeval elements can be defined; they can only be named, for they have nothing but a name, and the things which are compounded of them, as they are complex, are expressed by a combination of names, for the combination of names is the essence of a definition. Theaetetus by Plato
Nothing can be predicated of either matter or form-this is what Plato will demonstrate in the dialog called Parmenides. Parmenides amounts to Plato's proof of the fundamentality of a definition. Neither form nor matter can be defined, as they are not things. Predication starts and stops at perception-direct experience.

If something can be defined, it can take a predicate. If something cannot be defined, it cannot take a predicate. If we remember some of Aristotle, we will find form, matter and their combination-the sequence was learned from Plato. Here Plato will go through the Categories using assertion and denial, singly and compounded of form and matter and their combination making the demonstration divided into six sections. Plato will be quite methodical, choosing his words and phrases carefully.
1) Assertion of form (one will mean form).
2) Assertion of matter (one will mean matter).
3) Assertion of both form and matter.
4) Denial of form.
5) Denial of matter.
6) Denial of form and matter (a very short section).

Words that denote form or matter may be described, but not defined-the meaning of these names must be learned by experience. Plato, in this demonstration, proves that reasoning begins at direct experience-perception. His dialogs demonstrating that if one removes all the crafts as the sole source of wisdom would leave one without any source of wisdom were more than a hint. A society whose individuals have forgotten crafts degenerate into meaningless unreasonable mass of human flesh.

\section*{Plato on Definition; Parmenides}
by Plato 370 BC translated by Benjamin Jowett
This section of this book is set up so that the reader can write many notes in the margins.

Persons Of The Dialogue: Cephalus; Adeimantus; Glaucon; Antiphon; Pythodorus; Socrates; Zeno; Parmenides; Aristoteles.

Cephalus rehearses a dialogue which is supposed to have been narrated in his presence by Antiphon, the half-brother of Adeimantus and Glaucon, to certain Clazomenians.

We had come from our home at Clazomenae to Athens, and met Adeimantus and Glaucon in the Agora. Welcome, Cephalus, said Adeimantus, taking me by the hand; is there anything which we can do for you in Athens?

Yes; that is why I am here; I wish to ask a favor of you.

What may that be? he said.
I want you to tell me the name of your half brother, which I have forgotten; he was a mere child when I last came hither from Clazomenae, but that was a long time ago; his father's name, if I remember rightly, was Pyrilampes?

Yes, he said, and the name of our brother, Antiphon; but why do you ask?

Let me introduce some countrymen of mine, I said; they are lovers of philosophy, and have heard that Antiphon was intimate with a certain Pythodorus, a friend of Zeno, and remembers a conversation which took place between Socrates, Zeno, and Parmenides many years ago, Pythodorus having often recited it to him.

Quite true.
And could we hear it? I asked.
Nothing easier, he replied; when he was a youth he made a careful study of the piece; at present his
thoughts run in another direction; like his grandfather Antiphon he is devoted to horses. But, if that is what you want, let us go and look for him; he dwells at Melita, which is quite near, and he has only just left us to go home.

Accordingly we went to look for him; he was at home, and in the act of giving a bridle to a smith to be fitted. When he had done with the smith, his brothers told him the purpose of our visit; and he saluted me as an acquaintance whom he remembered from my former visit, and we asked him to repeat the dialogue. At first he was not very willing, and complained of the trouble, but at length he consented. He told us that Pythodorus had described to him the appearance of Parmenides and Zeno; they came to Athens, as he said, at the great Panathenaea; the former was, at the time of his visit, about 65 years old, very white with age, but well favored. Zeno was nearly 40 years of age, tall and fair to look upon; in the days of his youth he was reported to have been beloved by Parmenides. He said that they lodged with Pythodorus in the Ceramicus, outside the wall, whither Socrates, then a very young man, came to see them, and many others with him; they wanted to hear the writings of Zeno, which had been brought to Athens for the first time on the occasion of their visit. These Zeno himself read to them in the absence of Parmenides, and had very nearly finished when Pythodorus entered, and with him Parmenides and Aristoteles who was afterwards one of the Thirty, and heard the little that remained of the dialogue. Pythodorus had heard Zeno repeat them before.

When the recitation was completed, Socrates requested that the first thesis of the first argument might be read over again, and this having been done, he said: What is your meaning, Zeno? Do you maintain that if being is many, it must be both like and unlike, and that this is impossible, for neither can the like be unlike, nor the unlike like-is that your position?

Just so, said Zeno.
And if the unlike cannot be like, or the like unlike, then according to you, being could not be many; for this would involve an impossibility. In all
that you say have you any other purpose except to disprove the being of the many? and is not each division of your treatise intended to furnish a separate proof of this, there being in all as many proofs of the not-being of the many as you have composed arguments? Is that your meaning, or have I misunderstood you?

No, said Zeno; you have correctly understood my general purpose.

I see, Parmenides, said Socrates, that Zeno would like to be not only one with you in friendship but your second self in his writings too; he puts what you say in another way, and would fain make believe that he is telling us something which is new. For you, in your poems, say The All is one, and of this you adduce excellent proofs; and he on the other hand says there is not many; and on behalf of this he offers overwhelming evidence. You affirm unity, he denies plurality. And so you deceive the world into believing that you are saying different things when really you are saying much the same. This is a strain of art beyond the reach of most of us.

Yes, Socrates, said Zeno. But although you are as keen as a Spartan hound in pursuing the track, you do not fully apprehend the true motive of the composition, which is not really such an artificial work as you imagine; for what you speak of was an accident; there was no pretence of a great purpose; nor any serious intention of deceiving the world. The truth is, that these writings of mine were meant to protect the arguments of Parmenides against those who make fun of him and seek to show the many ridiculous and contradictory results which they suppose to follow from the affirmation of the one. My answer is addressed to the partisans of the many, whose attack I return with interest by retorting upon them that their hypothesis of the being of many, if carried out, appears to be still more ridiculous than the hypothesis of the being of one. Zeal for my master led me to write the book in the days of my youth, but some one stole the copy; and therefore I had no choice whether it should be published or not; the motive, however, of writing, was not the ambition of an elder man, but the
pugnacity of a young one. This you do not seem to see, Socrates; though in other respects, as I was saying, your notion is a very just one.

I understand, said Socrates, and quite accept your account. But tell me, Zeno, do you not further think that there is an idea of likeness in itself, and another idea of unlikeness, which is the opposite of likeness, and that in these two, you and I and all other things to which we apply the term many, participatethings which participate in likeness become in that degree and manner like; and so far as they participate in unlikeness become in that degree unlike, or both like and unlike in the degree in which they participate in both? And may not all things partake of both opposites, and be both like and unlike, by reason of this participation?-Where is the wonder? Now if a person could prove the absolute like to become unlike, or the absolute unlike to become like, that, in my opinion, would indeed be a wonder; but there is nothing extraordinary, Zeno, in showing that the things which only partake of likeness and unlikeness experience both. Nor, again, if a person were to show that all is one by partaking of one, and at the same time many by partaking of many, would that be very astonishing. But if he were to show me that the absolute one was many, or the absolute many one, I should be truly amazed. And so of all the rest: I should be surprised to hear that the natures or ideas themselves had these opposite qualities; but not if a person wanted to prove of me that I was many and also one. When he wanted to show that I was many he would say that I have a right and a left side, and a front and a back, and an upper and a lower half, for I cannot deny that I partake of multitude; when, on the other hand, he wants to prove that I am one, he will say, that we who are here assembled are seven, and that I am one and partake of the one. In both instances he proves his case. So again, if a person shows that such things as wood, stones, and the like, being many are also one, we admit that he shows the coexistence of the one and many, but he does not show that the many are one or the one many; he is uttering not a paradox but a truism. If however, as I just now suggested, some one were to abstract simple notions of like,
unlike, one, many, rest, motion, and similar ideas, and then to show that these admit of admixture and separation in themselves, I should be very much astonished. This part of the argument appears to be treated by you, Zeno, in a very spirited manner; but, as I was saying, I should be far more amazed if any one found in the ideas themselves which are apprehended by reason, the same puzzle and entanglement which you have shown to exist in visible objects.

While Socrates was speaking, Pythodorus thought that Parmenides and Zeno were not altogether pleased at the successive steps of the argument; but still they gave the closest attention and often looked at one another, and smiled as if in admiration of him. When he had finished, Parmenides expressed their feelings in the following words:-

Socrates, he said, I admire the bent of your mind towards philosophy; tell me now, was this your own distinction between ideas in themselves and the things which partake of them? and do you think that there is an idea of likeness apart from the likeness which we possess, and of the one and many, and of the other things which Zeno mentioned?

I think that there are such ideas, said Socrates.
Parmenides proceeded: And would you also make absolute ideas of the just and the beautiful and the good, and of all that class?

Yes, he said, I should.
And would you make an idea of man apart from us and from all other human creatures, or of fire and water?

I am often undecided, Parmenides, as to whether I ought to include them or not.

And would you feel equally undecided, Socrates, about things of which the mention may provoke a smile?-I mean such things as hair, mud, dirt, or anything else which is vile and paltry; would you suppose that each of these has an idea distinct from the actual objects with which we come into contact, or not?

Certainly not, said Socrates; visible things like
these are such as they appear to us, and I am afraid that there would be an absurdity in assuming any idea of them, although I sometimes get disturbed, and begin to think that there is nothing without an idea; but then again, when I have taken up this position, I run away, because I am afraid that I may fall into a bottomless pit of nonsense, and perish; and so I return to the ideas of which I was just now speaking, and occupy myself with them.

Yes, Socrates, said Parmenides; that is because you are still young; the time will come, if I am not mistaken, when philosophy will have a firmer grasp of you, and then you will not despise even the meanest things; at your age, you are too much disposed to regard opinions of men. But I should like to know whether you mean that there are certain ideas of which all other things partake, and from which they derive their names; that similars, for example, become similar, because they partake of similarity; and great things become great, because they partake of greatness; and that just and beautiful things become just and beautiful, because they partake of justice and beauty.

Yes, certainly, said Socrates that is my meaning.
Then each individual partakes either of the whole of the idea or else of a part of the idea? Can there be any other mode of participation?

There cannot be, he said.
Then do you think that the whole idea is one, and yet, being one, is in each one of the many?

Why not, Parmenides? said Socrates.
Because one and the same thing will exist as a whole at the same time in many separate individuals, and will therefore be in a state of separation from itself.

Nay, but the idea may be like the day which is one and the same in many places at once, and yet continuous with itself; in this way each idea may be one; and the same in all at the same time.

I like your way, Socrates, of making one in many places at once. You mean to say, that if I were to spread out a sail and cover a number of men, there would be one whole including many-is not that
your meaning?
I think so.
And would you say that the whole sail includes each man, or a part of it only, and different parts different men?

The latter.
Then, Socrates, the ideas themselves will be divisible, and things which participate in them will have a part of them only and not the whole idea existing in each of them?

That seems to follow.
Then would you like to say, Socrates, that the one idea is really divisible and yet remains one?

Certainly not, he said.
Suppose that you divide absolute greatness, and that of the many great things, each one is great in virtue of a portion of greatness less than absolute greatness-is that conceivable?

No.
Or will each equal thing, if possessing some small portion of equality less than absolute equality, be equal to some other thing by virtue of that portion only?

Impossible.
Or suppose one of us to have a portion of smallness; this is but a part of the small, and therefore the absolutely small is greater; if the absolutely small be greater, that to which the part of the small is added will be smaller and not greater than before.

How absurd!
Then in what way, Socrates, will all things participate in the ideas, if they are unable to participate in them either as parts or wholes?

Indeed, he said, you have asked a question which is not easily answered.

Well, said Parmenides, and what do you say of another question?

What question?

I imagine that the way in which you are led to assume one idea of each kind is as follows:-You see a number of great objects, and when you look at them there seems to you to be one and the same idea (or nature) in them all; hence you conceive of greatness as one.

Very true, said Socrates.
And if you go on and allow your mind in like manner to embrace in one view the idea of greatness and of great things which are not the idea, and to compare them, will not another greatness arise, which will appear to be the source of all these?

It would seem so.
Then another idea of greatness now comes into view over and above absolute greatness, and the individuals which partake of it; and then another, over and above all these, by virtue of which they will all be great, and so each idea instead of being one will be infinitely multiplied.

But may not the ideas, asked Socrates, be thoughts only, and have no proper existence except in our minds, Parmenides? For in that case each idea may still be one, and not experience this infinite multiplication.

And can there be individual thoughts which are thoughts of nothing?

Impossible, he said.
The thought must be of something?
Yes.
Of something which is or which is not?
Of something which is.
Must it not be of a single something, which the thought recognizes as attaching to all, being a single form or nature?

Yes.
And will not the something, which is apprehended as one and the same in all, be an idea?

From that, again, there is no escape.
Then, said Parmenides, if you say that
everything else participates in the ideas, must you not say either that everything is made up of thoughts, and that all things think; or that they are thoughts but have no thought?

The latter view, Parmenides, is no more rational than the previous one. In my opinion, the ideas are, as it were, patterns fixed in nature, and other things are like them, and resemblances of them-what is meant by the participation of other things in the ideas, is really assimilation to them.

But if, said he, the individual is like the idea, must not the idea also be like the individual, in so far as the individual is a resemblance of the idea? That which is like, cannot be conceived of as other than the like of like.

Impossible.
And when two things are alike, must they not partake of the same idea?

They must.
And will not that of which the two partake, and which makes them alike, be the idea itself?

\section*{Certainly.}

Then the idea cannot be like the individual, or the individual like the idea; for if they are alike, some further idea of likeness will always be coming to light, and if that be like anything else, another; and new ideas will be always arising, if the idea resembles that which partakes of it?

Quite true.
The theory, then that other things participate in the ideas by resemblance, has to be given up, and some other mode of participation devised?

It would seem so.
Do you see then, Socrates, how great is the difficulty of affirming the ideas to be absolute?

Yes, indeed.
And, further, let me say that as yet you only understand a small part of the difficulty which is involved if you make of each thing a single idea, parting it off from other things.

What difficulty? he said.
There are many, but the greatest of all is this:-If an opponent argues that these ideas, being such as we say they ought to be, must remain unknown, no one can prove to him that he is wrong, unless he who denies their existence be a man of great ability and knowledge, and is willing to follow a long and laborious demonstration; he will remain unconvinced, and still insist that they cannot be known.

What do you mean, Parmenides? said Socrates.
In the first place, I think, Socrates, that you, or any one who maintains the existence of absolute essences, will admit that they cannot exist in us.

No, said Socrates; for then they would be no longer absolute.

True, he said; and therefore when ideas are what they are in relation to one another, their essence is determined by a relation among themselves, and has nothing to do with the resemblances, or whatever they are to be termed, which are in our sphere, and from which we receive this or that name when we partake of them. And the things which are within our sphere and have the same names with them, are likewise only relative to one another, and not to the ideas which have the same names with them, but belong to themselves and not to them.

What do you mean? said Socrates.
I may illustrate my meaning in this way, said Parmenides:-A master has a slave; now there is nothing absolute in the relation between them, which is simply a relation of one man to another. But there is also an idea of mastership in the abstract, which is relative to the idea of slavery in the abstract. These natures have nothing to do with us, nor we with them; they are concerned with themselves only, and we with ourselves. Do you see my meaning?

Yes, said Socrates, I quite see your meaning.
And will not knowledge-I mean absolute knowledge-answer to absolute truth?

Certainly.

And each kind of absolute knowledge will answer to each kind of absolute being?

Yes.
But the knowledge which we have, will answer to the truth which we have; and again, each kind of knowledge which we have, will be a knowledge of each kind of being which we have?

\section*{Certainly.}

But the ideas themselves, as you admit, we have not, and cannot have?

No, we cannot.
And the absolute natures or kinds are known severally by the absolute idea of knowledge?

Yes.
And we have not got the idea of knowledge?
No.
Then none of the ideas are known to us, because we have no share in absolute knowledge?

I suppose not.
Then the nature of the beautiful in itself, and of the good in itself, and all other ideas which we suppose to exist absolutely, are unknown to us?

It would seem so.
I think that there is a stranger consequence still.
What is it?
Would you, or would you not say, that absolute knowledge, if there is such a thing, must be a far more exact knowledge than our knowledge; and the same of beauty and of the rest?

Yes.
And if there be such a thing as participation in absolute knowledge, no one is more likely than God to have this most exact knowledge?

\section*{Certainly.}

But then, will God, having absolute knowledge, have a knowledge of human things?

Why not?

Because, Socrates, said Parmenides, we have admitted that the ideas are not valid in relation to human things; nor human things in relation to them; the relations of either are limited to their respective spheres.

Yes, that has been admitted.
And if God has this perfect authority, and perfect knowledge, his authority cannot rule us, nor his knowledge know us, or any human thing; just as our authority does not extend to the gods, nor our knowledge know anything which is divine, so by parity of reason they, being gods, are not our masters, neither do they know the things of men.

Yet, surely, said Socrates, to deprive God of knowledge is monstrous.

These, Socrates, said Parmenides, are a few, and only a few of the difficulties in which we are involved if ideas really are and we determine each one of them to be an absolute unity. He who hears what may be said against them will deny the very existence of them-and even if they do exist, he will say that they must of necessity be unknown to man; and he will seem to have reason on his side, and as we were remarking just now, will be very difficult to convince; a man must be gifted with very considerable ability before he can learn that everything has a class and an absolute essence; and still more remarkable will he be who discovers all these things for himself, and having thoroughly investigated them is able to teach them to others.

I agree with you, Parmenides, said Socrates; and what you say is very much to my mind.

And yet, Socrates, said Parmenides, if a man, fixing his attention on these and the like difficulties, does away with ideas of things and will not admit that every individual thing has its own determinate idea which is always one and the same, he will have nothing on which his mind can rest; and so he will utterly destroy the power of reasoning, as you seem to me to have particularly noted.

Very true, he said.
But, then, what is to become of philosophy? Whither shall we turn, if the ideas are unknown?

I certainly do not see my way at present.
Yes, said Parmenides; and I think that this arises, Socrates, out of your attempting to define the beautiful, the just, the good, and the ideas generally, without sufficient previous training. I noticed your deficiency, when I heard you talking here with your friend Aristoteles, the day before yesterday. The impulse that carries you towards philosophy is assuredly noble and divine; but there is an art which is called by the vulgar idle talking, and which is of imagined to be useless; in that you must train and exercise yourself, now that you are young, or truth will elude your grasp.

And what is the nature of this exercise, Parmenides, which you would recommend?

That which you heard Zeno practicing; at the same time, I give you credit for saying to him that you did not care to examine the perplexity in reference to visible things, or to consider the question that way; but only in reference to objects of thought, and to what may be called ideas.

Why, yes, he said, there appears to me to be no difficulty in showing by this method that visible things are like and unlike and may experience anything.

Quite true, said Parmenides; but I think that you should go a step further, and consider not only the consequences which flow from a given hypothesis, but also the consequences which flow from denying the hypothesis; and that will be still better training for you.

What do you mean? he said.
I mean, for example, that in the case of this very hypothesis of Zeno's about the many, you should inquire not only what will be the consequences to the many in relation to themselves and to the one, and to the one in relation to itself and the many, on the hypothesis of the being of the many, but also what will be the consequences to the one and the many in their relation to themselves and to each other, on the opposite hypothesis. Or, again, if likeness is or is not, what will be the consequences in either of these cases to the subjects of the
hypothesis, and to other things, in relation both to themselves and to one another, and so of unlikeness; and the same holds good of motion and rest, of generation and destruction, and even of being and not-being. In a word, when you suppose anything to be or not to be, or to be in any way affected, you must look at the consequences in relation to the thing itself, and to any other things which you choose-to each of them singly, to more than one, and to all; and so of other things, you must look at them in relation to themselves and to anything else which you suppose either to be or not to be, if you would train yourself perfectly and see the real truth.

That, Parmenides, is a tremendous business of which you speak, and I do not quite understand you; will you take some hypothesis and go through the steps?-then I shall apprehend you better.

That, Socrates, is a serious task to impose on a man of my years.

Then will you, Zeno? said Socrates.
Zeno answered with a smile:-Let us make our petition to Parmenides himself, who is quite right in saying that you are hardly aware of the extent of the task which you are imposing on him; and if there were more of us I should not ask him, for these are not subjects which any one, especially at his age, can well speak of before a large audience; most people are not aware that this round-about progress through all things is the only way in which the mind can attain truth and wisdom. And therefore, Parmenides, I join in the request of Socrates, that I may hear the process again which I have not heard for a long time.

When Zeno had thus spoken, Pythodorus, according to Antiphon's report of him, said, that he himself and Aristoteles and the whole company entreated Parmenides to give an example of the process. I cannot refuse, said Parmenides; and yet I feel rather like Ibycus, who, when in his old age, against his will, he fell in love, compared himself to an old racehorse, who was about to run in a chariot race, shaking with fear at the course he knew so well-this was his simile of himself. And I also
experience a trembling when I remember through what an ocean of words I have to wade at my time of life. But I must indulge you, as Zeno says that I ought, and we are alone. Where shall I begin? And what shall be our first hypothesis, if I am to attempt this laborious pastime? Shall I begin with myself, and take my own hypothesis the one? and consider the consequences which follow on the supposition either of the being or of the not being of one?

By all means, said Zeno.
And who will answer me? he said. Shall I propose the youngest? He will not make difficulties and will be the most likely to say what he thinks; and his answers will give me time to breathe.

I am the one whom you mean, Parmenides, said Aristoteles; for I am the youngest and at your service. Ask, and I will answer \({ }^{16}\).

Parmenides proceeded: If one is, he said, the one cannot be many?

Impossible.
Then the one cannot have parts, and cannot be a whole?

Why not?
Because every part is part of a whole; is it not?
Yes.
And what is a whole? would not that of which no part is wanting be a whole?

\section*{Certainly.}

Then, in either case, the one would be made up of parts; both as being a whole, and also as having parts?

To be sure.
And in either case, the one would be many, and not one?

True.
But, surely, it ought to be one and not many?
It ought.
\({ }^{16}\) One is form. (1)

Then, if the one is to remain one, it will not be a whole, and will not have parts?

No.
But if it has no parts, it will have neither beginning, middle, nor end; for these would of course be parts of it.

\section*{Right.}

But then, again, a beginning and an end are the limits of everything?

\section*{Certainly.}

Then the one, having neither beginning nor end, is unlimited?

Yes, unlimited.
And therefore formless; for it cannot partake either of round or straight.

\section*{But why?}

Why, because the round is that of which all the extreme points are equidistant from the center?

Yes.
And the straight is that of which the center intercepts the view of the extremes?

True.
Then the one would have parts and would be many, if it partook either of a straight or of a circular form?

Assuredly.
But having no parts, it will be neither straight nor round?

Right.
And, being of such a nature, it cannot be in any place, for it cannot be either in another or in itself.

How so?
Because if it were in another, it would be encircled by that in which it was, and would touch it at many places and with many parts; but that which is one and indivisible, and does not partake of a circular nature, cannot be touched all round in many places.

\section*{Certainly not.}

But if, on the other hand, one were in itself, it would also be contained by nothing else but itself; that is to say, if it were really in itself; for nothing can be in anything which does not contain it.

Impossible.
But then, that which contains must be other than that which is contained? for the same whole cannot do and suffer both at once; and if so, one will be no longer one, but two?

True.
Then one cannot be anywhere, either in itself or in another?

No.
Further consider, whether that which is of such a nature can have either rest or motion.

Why not?
Why, because the one, if it were moved, would be either moved in place or changed in nature; for these are the only kinds of motion.

Yes.
And the one, when it changes and ceases to be itself, cannot be any longer one.

It cannot.
It cannot therefore experience the sort of motion which is change of nature?

Clearly not.
Then can the motion of the one be in place?
Perhaps.
But if the one moved in place, must it not either move round and round in the same place, or from one place to another?

It must.
And that which moves in a circle must rest upon a center; and that which goes round upon a center must have parts which are different from the center; but that which has no center and no parts cannot possibly be carried round upon a center?

Impossible.
But perhaps the motion of the one consists in change of place?

Perhaps so, if it moves at all.
And have we not already shown that it cannot be in anything?

Yes.
Then its coming into being in anything is still more impossible; is it not?

I do not see why.
Why, because anything which comes into being in anything, can neither as yet be in that other thing while still coming into being, nor be altogether out of it, if already coming into being in it.

Certainly not.
And therefore whatever comes into being in another must have parts, and then one part may be in, and another part out of that other; but that which has no parts can never be at one and the same time neither wholly within nor wholly without anything.

\section*{True.}

And is there not a still greater impossibility in that which has no parts, and is not a whole, coming into being anywhere, since it cannot come into being either as a part or as a whole?

Clearly.
Then it does not change place by revolving in the same spot, not by going somewhere and coming into being in something; nor again, by change in itself?

Very true.
Then in respect of any kind of motion the one is immoveable?

Immoveable.
But neither can the one be in anything, as we affirm.

Yes, we said so.
Then it is never in the same?

Why not?
Because if it were in the same it would be in something.

Certainly.
And we said that it could not be in itself, and could not be in other?

True.
Then one is never in the same place?
It would seem not.
But that which is never in the same place is never quiet or at rest?

Never.
One then, as would seem, is neither rest nor in motion?

It certainly appears so.
Neither will it be the same with itself or other; nor again, other than itself or other.

How is that?
If other than itself it would be other than one, and would not be one.

True.
And if the same with other, it would be that other, and not itself; so that upon this supposition too, it would not have the nature of one, but would be other than one?

It would.
Then it will not be the same with other, or other than itself?

It will not.
Neither will it be other than other, while it remains one; for not one, but only other, can be other than other, and nothing else.

True.
Then not by virtue of being one will it be other?
Certainly not.
But if not by virtue of being one, not by virtue of
itself; and if not by virtue of itself, not itself, and itself not being other at all, will not be other than anything?

Right.
Neither will one be the same with itself.
How not?
Surely the nature of the one is not the nature of the same.

Why not?
It is not when anything becomes the same with anything that it becomes one.

What of that?
Anything which becomes the same with the many, necessarily becomes many and not one.

True.
But, if there were no difference between the one and the same, when a thing became the same, it would always become one; and when it became one, the same?

Certainly.
And, therefore, if one be the same with itself, it is not one with itself, and will therefore be one and also not one.

Surely that is impossible.
And therefore the one can neither be other than other, nor the same with itself.

Impossible.
And thus the one can neither be the same, nor other, either in relation to itself or other?

No.
Neither will the one be like anything or unlike itself or other.

Why not?
Because likeness is sameness of affections.
Yes.
And sameness has been shown to be of a nature distinct from oneness?

That has been shown.
But if the one had any other affection than that of being one, it would be affected in such a way as to be more than one; which is impossible.

True.
Then the one can never be so affected as to be the same either with another or with itself?

Clearly not.
Then it cannot be like another, or like itself?
No.
Nor can it be affected so as to be other, for then it would be affected in such a way as to be more than one.

It would.
That which is affected otherwise than itself or another, will be unlike itself or another, for sameness of affections is likeness.

True.
But the one, as appears, never being affected otherwise, is never unlike itself or other?

Never.
Then the one will never be either like or unlike itself or other?

Plainly not.
Again, being of this nature, it can neither be equal nor unequal either to itself or to other.

How is that?
Why, because the one if equal must be of the same measures as that to which it is equal.

True.
And if greater or less than things which are commensurable with it, the one will have more measures than that which is less, and fewer than that which is greater?

Yes.
And so of things which are not commensurate with it, the one will have greater measures than that
which is less and smaller than that which is greater.

\section*{Certainly.}

But how can that which does not partake of sameness, have either the same measures or have anything else the same?

Impossible.
And not having the same measures, the one cannot be equal either with itself or with another?

It appears so.
But again, whether it have fewer or more measures, it will have as many parts as it has measures; and thus again the one will be no longer one but will have as many parts as measures.

Right.
And if it were of one measure, it would be equal to that measure; yet it has been shown to be incapable of equality.

It has.
Then it will neither partake of one measure, nor of many, nor of few, nor of the same at all, nor be equal to itself or another; nor be greater or less than itself, or other?

\section*{Certainly.}

Well, and do we suppose that one can be older, or younger than anything, or of the same age with it?

Why not?
Why, because that which is of the same age with itself or other, must partake of equality or likeness of time; and we said that the one did not partake either of equality or of likeness?

We did say so.
And we also said, that it did not partake of inequality or unlikeness.

Very true.
How then can one, being of this nature, be either older or younger than anything, or have the same age with it?

In no way.
Then one cannot be older or younger, or of the same age, either with itself or with another?

Clearly not.
Then the one, being of this nature, cannot be in time at all; for must not that which is in time, be always growing older than itself?

Certainly.
And that which is older, must always be older than something which is younger?

True.
Then, that which becomes older than itself, also becomes at the same time younger than itself, if it is to have something to become older than.

What do you mean?
I mean this:-A thing does not need to become different from another thing which is already different; it is different, and if its different has become, it has become different; if its difference will be, it will be different; but of that which is becoming different, there cannot have been, or be about to be, or yet be, a difference-the only difference possible is one which is becoming.

That is inevitable.
But, surely, the elder is a difference relative to the younger, and to nothing else.

True.
Then that which becomes older than itself must also, at the same time, become younger than itself?

Yes.
But again, it is true that it cannot become for a longer or for a shorter time than itself, but it must become, and be, and have become, and be about to be, for the same time with itself?

That again is inevitable.
Then things which are in time, and partake of time, must in every case, I suppose, be of the same age with themselves; and must also become at once older and younger than themselves?

Yes.
But the one did not partake of those affections?
Not at all.
Then it does not partake of time, and is not in any time?

So the argument shows.
Well, but do not the expressions "was," and "has become," and "was becoming," signify a participation of past time?

Certainly.
And do not "will be," "will become," "will have become," signify a participation of future time?

Yes.
And "is," or "becomes," signifies a participation of present time?

Certainly.
And if the one is absolutely without participation in time, it never had become, or was becoming, or was at any time, or is now become or is becoming, or is, or will become, or will have become, or will be, hereafter.

Most true.
But are there any modes of partaking of being other than these?

There are none.
Then the one cannot possibly partake of being?
That is the inference.
Then the one is not at all?
Clearly not.
Then the one does not exist in such way as to be one; for if it were and partook of being, it would already be; but if the argument is to be trusted, the one neither is nor is one?

True.
But that which is not admits of no attribute or relation?

Of course not.

Then there is no name, nor expression, nor perception, nor opinion, nor knowledge of it?

Clearly not.
Then it is neither named, nor expressed, nor opined, nor known, nor does anything that is perceive it.

So we must infer.
But can all this be true about the one?
I think not.
Suppose, now, that we return once more to the original hypothesis; let us see whether, on a further review, any new aspect of the question appears.

I shall be very happy to do so.
We say that we have to work out together all the consequences, whatever they may be, which follow, if the one is \({ }^{17}\) ?

Yes.
Then we will begin at the beginning:-If one is, can one be, and not partake of being?

Impossible.
Then the one will have being, but its being will not be the same with the one; for if the same, it would not be the being of the one; nor would the one have participated in being, for the proposition that one is would have been identical with the proposition that one is one; but our hypothesis is not if one is one, what will follow, but if one is:-am I not right?

Quite right.
We mean to say, that being has not the same significance as one?

Of course.
And when we put them together shortly, and say "One is," that is equivalent to saying, "partakes of being"?

Quite true.

17 One is matter. (2)

Once more then let us ask, if one is what will follow. Does not this hypothesis necessarily imply that one is of such a nature as to have parts?

How so?
In this way:-If being is predicated of the one, if the one is, and one of being, if being is one; and if being and one are not the same; and since the one, which we have assumed, is, must not the whole, if it is one, itself be, and have for its parts, one and being?

Certainly.
And is each of these parts-one and being to be simply called a part, or must the word "part" be relative to the word "whole"?

The latter.
Then that which is one is both a whole and has a part?

Certainly.
Again, of the parts of the one, if it is-I mean being and one-does either fail to imply the other? is the one wanting to being, or being to the one?

Impossible.
Thus, each of the parts also has in turn both one and being, and is at the least made up of two parts; and the same principle goes on for ever, and every part whatever has always these two parts; for being always involves one, and one being; so that one is always disappearing, and becoming two.

Certainly.
And so the one, if it is, must be infinite in multiplicity?

Clearly.
Let us take another direction.
What direction?
We say that the one partakes of being and therefore it is?

Yes.
And in this way, the one, if it has being, has turned out to be many?

True.
But now, let us abstract the one which, as we say, partakes of being, and try to imagine it apart from that of which, as we say, it partakes-will this abstract one be one only or many?

One, I think.
Let us see:-Must not the being of one be other than one? for the one is not being, but, considered as one, only partook of being?

Certainly.
If being and the one be two different things, it is not because the one is one that it is other than being; nor because being is being that it is other than the one; but they differ from one another in virtue of other-ness and difference.

Certainly.
So that the other is not the same either with the one or with being?

Certainly not.
And therefore whether we take being and the other, or being and the one, or the one and the other, in every such case we take two things, which may be rightly called both.

How so.
In this way-you may speak of being?
Yes.
And also of one?
Yes.
Then now we have spoken of either of them?
Yes.
Well, and when I speak of being and one, I speak of them both?

\section*{Certainly.}

And if I speak of being and the other, or of the one and the other-in any such case do I not speak of both?

Yes.

And must not that which is correctly called both, be also two?

Undoubtedly.
And of two things how can either by any possibility not be one?

It cannot.
Then, if the individuals of the pair are together two, they must be severally one?

Clearly.
And if each of them is one, then by the addition of any one to any pair, the whole becomes three?

Yes.
And three are odd, and two are even?
Of course.
And if there are two there must also be twice, and if there are three there must be thrice; that is, if twice one makes two, and thrice one three?

\section*{Certainly.}

There are two, and twice, and therefore there must be twice two; and there are three, and there is thrice, and therefore there must be thrice three?

Of course.
If there are three and twice, there is twice three; and if there are two and thrice, there is thrice two?

Undoubtedly.
Here, then, we have even taken even times, and odd taken odd times, and even taken odd times, and odd taken even times.

True.
And if this is so, does any number remain which has no necessity to be?

None whatever.
Then if one is, number must also be?
It must.
But if there is number, there must also be many, and infinite multiplicity of being; for number is infinite in multiplicity, and partakes also of being:
am I not right?
Certainly.
And if all number participates in being, every part of number will also participate?

Yes.
Then being is distributed over the whole multitude of things, and nothing that is, however small or however great, is devoid of it? And, indeed, the very supposition of this is absurd, for how can that which is, be devoid of being?

In no way.
And it is divided into the greatest and into the smallest, and into being of all sizes, and is broken up more than all things; the divisions of it have no limit.

True.
Then it has the greatest number of parts?
Yes, the greatest number.
Is there any of these which is a part of being, and yet no part?

Impossible.
But if it is at all and so long as it is, it must be one, and cannot be none?

Certainly.
Then the one attaches to every single part of being, and does not fail in any part, whether great or small, or whatever may be the size of it?

True.
But reflect:-Can one in its entirety, be in many places at the same time?

No; I see the impossibility of that.
And if not in its entirety, then it is divided; for it cannot be present with all the parts of being, unless divided.

True.
And that which has parts will be as many as the parts are?

\section*{Certainly.}

Then we were wrong in saying just now, that being was distributed into the greatest number of parts. For it is not distributed into parts more than the one, into parts equal to the one; the one is never wanting to being, or being to the one, but being two they are co-equal and coextensive.

Certainly that is true.
The one itself, then, having been broken up into parts by being, is many and infinite?

True.
Then not only the one which has being is many, but the one itself distributed by being, must also be many?

\section*{Certainly.}

Further, inasmuch as the parts are parts of a whole, the one, as a whole, will be limited; for are not the parts contained the whole?

Certainly.
And that which contains, is a limit?
Of course.
Then the one if it has being is one and many, whole and parts, having limits and yet unlimited in number?

Clearly.
And because having limits, also having extremes?

Certainly.
And if a whole, having beginning and middle and end. For can anything be a whole without these three? And if any one of them is wanting to anything, will that any longer be a whole?

No.
Then the one, as appears, will have beginning, middle, and end.

It will.
But, again, the middle will be equidistant from the extremes; or it would not be in the middle?

Yes.
Then the one will partake of figure, either rectilinear or round, or a union of the two?

True.
And if this is the case, it will be both in itself and in another too.

How?
Every part is in the whole, and none is outside the whole.

True.
And all the parts are contained by the whole?
Yes.
And the one is all its parts, and neither more nor less than all?

No.
And the one is the whole?
Of course.
But if all the parts are in the whole, and the one is all of them and the whole, and they are all contained by the whole, the one will be contained by the one; and thus the one will be in itself.

That is true.
But then, again, the whole is not in the partsneither in all the parts, nor in some one of them. For if it is in all, it must be in one; for if there were any one in which it was not, it could not be in all the parts; for the part in which it is wanting is one of all, and if the whole is not in this, how can it be in them all?

It cannot.
Nor can the whole be in some of the parts; for if the whole were in some of the parts, the greater would be in the less, which is impossible.

Yes, impossible.
But if the whole is neither in one, nor in more than one, nor in all of the parts, it must be in something else, or cease to be anywhere at all?

Certainly.

If it were nowhere, it would be nothing; but being a whole, and not being in itself, it must be in another.

Very true.
The one then, regarded as a whole, is in another, but regarded as being all its parts, is in itself; and therefore the one must be itself in itself and also in another.

Certainly.
The one then, being of this nature, is of necessity both at rest and in motion?

How?
The one is at rest since it is in itself, for being in one, and not passing out of this, it is in the same, which is itself.

True.
And that which is ever in the same, must be ever at rest?

\section*{Certainly.}

Well, and must not that, on the contrary, which is ever in other, never be in the same; and if never in the same, never at rest, and if not at rest, in motion?

True.
Then the one being always itself in itself and other, must always be both at rest and in motion?

Clearly.
And must be the same with itself, and other than itself; and also the same with the others, and other than the others; this follows from its previous affections.

How so?
Every thing in relation to every other thing, is either the same or other; or if neither the same nor other, then in the relation of a part to a whole, or of a whole to a part.

Clearly.
And is the one a part of itself?
Certainly not.

Since it is not a part in relation to itself it cannot be related to itself as whole to part?

It cannot.
But is the one other than one?
No.
And therefore not other than itself?
Certainly not.
If then it be neither other, nor a whole, nor a part in relation to itself, must it not be the same with itself?

Certainly.
But then, again, a thing which is in another place from "itself," if this "itself" remains in the same place with itself, must be other than "itself," for it will be in another place?

True.
Then the one has been shown to be at once in itself and in another?

Yes.
Thus, then, as appears, the one will be other than itself?

True.
Well, then, if anything be other than anything, will it not be other than that which is other?

Certainly.
And will not all things that are not one, be other than the one, and the one other than the not-one?

Of course.
Then the one will be other than the others?
True.
But, consider:-Are not the absolute same, and the absolute other, opposites to one another?

Of course.
Then will the same ever be in the other, or the other in the same?

They will not.

If then the other is never in the same, there is nothing in which the other is during any space of time; for during that space of time, however small, the other would be in the same. Is not that true?

Yes.
And since the other is never in the same, it can never be in anything that is.

True.
Then the other will never be either in the notone, or in the one?

Certainly not.
Then not by reason of other-ness is the one other than the not-one, or the not-one other than the one.

No.
Nor by reason of themselves will they be other than one another, if not partaking of the other.

How can they be?
But if they are not other, either by reason of themselves or of the other, will they not altogether escape being other than one another?

They will.
Again, the not-one cannot partake of the one; otherwise it would not have been not-one, but would have been in some way one.

True.
Nor can the not-one be number; for having number, it would not have been not-one at all.

It would not.
Again, is the not-one part of the one; or rather, would it not in that case partake of the one?

It would.
If then, in every point of view, the one and the not-one are distinct, then neither is the one part or whole of the not-one, nor is the not-one part or whole of the one?

No.
But we said that things which are neither parts nor wholes of one another, nor other than one
another, will be the same with one another:-so we said?

Yes.
Then shall we say that the one, being in this relation to the not-one, is the same with it?

Let us say so.
Then it is the same with itself and the others, and also other than itself and the others.

That appears to be the inference. And it will also be like and unlike itself and the others?

Perhaps.
Since the one was shown to be other than the others, the others will also be other than the one.

Yes.
And the one is other than the others in the same degree that the others are other than it, and neither more nor less?

True.
And if neither more nor less, then in a like degree?

Yes.
In virtue of the affection by which the one is other than others and others in like manner other than it, the one will be affected like the others and the others like the one.

How do you mean?
I may take as an illustration the case of names: You give a name to a thing?

Yes.
And you may say the name once or oftener?
Yes.
And when you say it once, you mention that of which it is the name? and when more than once, is it something else which you mention? or must it always be the same thing of which you speak, whether you utter the name once or more than once?

Of course it is the same.

And is not "other" a name given to a thing?
Certainly.
Whenever, then, you use the word "other," whether once or oftener, you name that of which it is the name, and to no other do you give the name?

True.
Then when we say that the others are other than the one, and the one other than the others, in repeating the word "other" we speak of that nature to which the name is applied, and of no other?

Quite true.
Then the one which is other than others, and the other which is other than the one, in that the word "other" is applied to both, will be in the same condition; and that which is in the same condition is like?

Yes.
Then in virtue of the affection by which the one is other than the others, every thing will be like every thing, for every thing is other than every thing.

True.
Again, the like is opposed to the unlike?
Yes.
And the other to the same?
True again.
And the one was also shown to be the same with the others?

Yes.
And to be, the same with the others is the opposite of being other than the others?

Certainly.
And in that it was other it was shown to be like?
Yes.
But in that it was the same it will be unlike by virtue of the opposite affection to that which made it and this was the affection of other-ness.

Yes.
The same then will make it unlike; otherwise it will not be the opposite of the other.

True.
Then the one will be both like and unlike the others; like in so far as it is other, and unlike in so far as it is the same.

Yes, that argument may be used.
And there is another argument.
What?
In so far as it is affected in the same way it is not affected otherwise, and not being affected otherwise is not unlike, and not being unlike, is like; but in so far as it is affected by other it is otherwise, and being otherwise affected is unlike.

\section*{True.}

Then because the one is the same with the others and other than the others, on either of these two grounds, or on both of them, it will be both like and unlike the others?

Certainly.
And in the same way as being other than itself, and the same with itself on either of these two grounds and on both of them, it will be like and unlike itself.

Of course.
Again, how far can the one touch or not touch itself and others?-Consider.

I am considering.
The one was shown to be in itself which was a whole?

True.
And also in other things?
Yes.
In so far as it is in other things it would touch other things, but in so far as it is in itself it would be debarred from touching them, and would touch itself only.

\section*{Clearly.}

Then the inference is that it would touch both?
It would.
But what do you say to a new point of view? Must not that which is to touch another be next to that which it is to touch, and occupy the place nearest to that in which what it touches is situated?

True.
Then the one, if it is to touch itself, ought to be situated next to itself, and occupy the place next to that in which itself is?

It ought.
And that would require that the one should be two, and be in two places at once, and this, while it is one, will never happen.

No.
Then the one cannot touch itself any more than it can be two?

It cannot.
Neither can it touch others.
Why not?
The reason is, that whatever is to touch another must be in separation from, and next to, that which it is to touch, and no third thing can be between them.

True.
Two things, then, at the least are necessary to make contact possible?

They are.
And if to the two a third be added in due order, the number of terms will be three, and the contacts two?

Yes.
And every additional term makes one additional contact, whence it follows that the contacts are one less in number than the terms; the first two terms exceeded the number of contacts by one, and the whole number of terms exceeds the whole number
of contacts by one in like manner; and for every one which is afterwards added to the number of terms, one contact is added to the contacts.

True.
Whatever is the whole number of things, the contacts will be always one less.

True.
But if there be only one, and not two, there will be no contact?

How can there be?
And do we not say that the others being other than the one are not one and have no part in the one?

True.
Then they have no number, if they have no one in them?

Of course not.
Then the others are neither one nor two, nor are they called by the name of any number?

No.
One, then, alone is one, and two do not exist?
Clearly not.
And if there are not two, there is no contact?
There is not.
Then neither does the one touch the others, nor the others the one, if there is no contact?

Certainly not.
For all which reasons the one touches and does not touch itself and the others?

True.
Further-is the one equal and unequal to itself and others?

How do you mean?
If the one were greater or less than the others, or the others greater or less than the one, they would not be greater or less than each other in virtue of their being the one and the others; but, if in addition
to their being what they are they had equality, they would be equal to one another, or if the one had smallness and the others greatness, or the one had greatness and the others smallness-whichever kind had greatness would be greater, and whichever had smallness would be smaller?

\section*{Certainly.}

Then there are two such ideas as greatness and smallness; for if they were not they could not be opposed to each other and be present in that which is.

How could they?
If, then, smallness is present in the one it will be present either in the whole or in a part of the whole?

Certainly.
Suppose the first; it will be either co-equal and co-extensive with the whole one, or will contain the one?

Clearly.
If it be co-extensive with the one it will be coequal with the one, or if containing the one it will be greater than the one?

Of course.
But can smallness be equal to anything or greater than anything, and have the functions of greatness and equality and not its own functions?

Impossible.
Then smallness cannot be in the whole of one, but, if at all, in a part only?

Yes.
And surely not in all of a part, for then the difficulty of the whole will recur; it will be equal to or greater than any part in which it is.

Certainly.
Then smallness will not be in anything, whether in a whole or in a part; nor will there be anything small but actual smallness.

True.
Neither will greatness be in the one, for if
greatness be in anything there will be something greater other and besides greatness itself, namely, that in which greatness is; and this too when the small itself is not there, which the one, if it is great, must exceed; this, however, is impossible, seeing that smallness is wholly absent.

True.
But absolute greatness is only greater than absolute smallness, and smallness is only smaller than absolute greatness.

Very true.
Then other things not greater or less than the one, if they have neither greatness nor smallness; nor have greatness or smallness any power of exceeding or being exceeded in relation to the one, but only in relation to one another; nor will the one be greater or less than them or others, if it has neither greatness nor smallness.

Clearly not.
Then if the one is neither greater nor less than the others, it cannot either exceed or be exceeded by them?

Certainly not.
And that which neither exceeds nor is exceeded, must be on an equality; and being on an equality, must be equal.

Of course.
And this will be true also of the relation of the one to itself; having neither greatness nor smallness in itself, it will neither exceed nor be exceeded by itself, but will be on an equality with and equal to itself.

Certainly.
Then the one will be equal to both itself and the others?

Clearly so.
And yet the one, being itself in itself, will also surround and be without itself; and, as containing itself, will be greater than itself; and, as contained in itself, will be less; and will thus be greater and less
than itself.
It will.
Now there cannot possibly be anything which is not included in the one and the others?

Of course not.
But, surely, that which is must always be somewhere?

Yes.
But that which is in anything will be less, and that in which it is will be greater; in no other way can one thing be in another.

True.
And since there is nothing other or besides the one and the others, and they must be in something, must they not be in one another, the one in the others and the others in the one, if they are to be anywhere?

\section*{That is clear.}

But inasmuch as the one is in the others, the others will be greater than the one, because they contain the one, which will be less than the others, because it is contained in them; and inasmuch as the others are in the one, the one on the same principle will be greater than the others, and the others less than the one.

True.
The one, then, will be equal to and greater and less than itself and the others?

Clearly.
And if it be greater and less and equal, it will be of equal and more and less measures or divisions than itself and the others, and if of measures, also of parts?

Of course.
And if of equal and more and less measures or divisions, it will be in number more or less than itself and the others, and likewise equal in number to itself and to the others?

How is that?

It will be of more measures than those things which it exceeds, and of as many parts as measures; and so with that to which it is equal, and that than which it is less.

True.
And being greater and less than itself, and equal to itself, it will be of equal measures with itself and of more and fewer measures than itself; and if of measures then also of parts?

It will.
And being of equal parts with itself, it will be numerically equal to itself; and being of more parts, more, and being of less, less than itself?

Certainly.
And the same will hold of its relation to other things; inasmuch as it is greater than them, it will be more in number than them; and inasmuch as it is smaller, it will be less in number; and inasmuch as it is equal in size to other things, it will be equal to them in number.

\section*{Certainly.}

Once more then, as would appear, the one will be in number both equal to and more and less than both itself and all other things.

It will.
Does the one also partake of time? And is it and does it become older and younger than itself and others, and again, neither younger nor older than itself and others, by virtue of participation in time?

How do you mean?
If one is, being must be predicated of it?
Yes.
But to be ( \(\varepsilon \imath \nu \alpha \iota)\) is only participation of being in present time, and to have been is the participation of being at a past time, and to be about to be is the participation of being at a future time?

Very true.
Then the one, since it partakes of being, partakes of time?

\section*{Certainly.}

And is not time always moving forward?
Yes.
Then the one is always becoming older than itself, since it moves forward in time?

Certainly.
And do you remember that the older becomes older than that which becomes younger?

I remember.
Then since the one becomes older than itself, it becomes younger at the same time?

Certainly.
Thus, then, the one becomes older as well as younger than itself?

Yes.
And it is older (is it not?) when in becoming, it gets to the point of time between "was" and "will be," which is "now": for surely in going from the past to the future, it cannot skip the present?

No.
And when it arrives at the present it stops from becoming older, and no longer becomes, but is older, for if it went on it would never be reached by the present, for it is the nature of that which goes on, to touch both the present and the future, letting go the present and seizing the future, while in process of becoming between them.

True.
But that which is becoming cannot skip the present; when it reaches the present it ceases to become, and is then whatever it may happen to be becoming.

\section*{Clearly.}

And so the one, when in becoming older it reaches the present, ceases to become, and is then older.

Certainly.
And it is older than that than which it was
becoming older, and it was becoming older than itself.

Yes.
And that which is older is older than that which is younger?

True.
Then the one is younger than itself, when in becoming older it reaches the present?

Certainly.
But the present is always present with the one during all its being; for whenever it is it is always now.

Certainly.
Then the one always both is and becomes older and younger than itself?

Truly.
And is it or does it become a longer time than itself or an equal time with itself?

An equal time.
But if it becomes or is for an equal time with itself, it is of the same age with itself?

Of course.
And that which is of the same age, is neither older nor younger?

No.
The one, then, becoming and being the same time with itself, neither is nor becomes older or younger than itself?

I should say not.
And what are its relations to other things? Is it or does it become older or younger than they?

I cannot tell you.
You can at least tell me that others than the one are more than the one-other would have been one, but the others have multitude, and are more than one?

They will have multitude.

And a multitude implies a number larger than one?

Of course.
And shall we say that the lesser or the greater is the first to come or to have come into existence?

The lesser.
Then the least is the first? And that is the one?
Yes.
Then the one of all things that have number is the first to come into being; but all other things have also number, being plural and not singular.

They have.
And since it came into being first it must be supposed to have come into being prior to the others, and the others later; and the things which came into being later, are younger than that which preceded them? And so the other things will be younger than the one, and the one older than other things?

True.
What would you say of another question? Can the one have come into being contrary to its own nature, or is that impossible?

Impossible.
And yet, surely, the one was shown to have parts; and if parts, then a beginning, middle and end?

Yes.
And a beginning, both of the one itself and of all other things, comes into being first of all; and after the beginning, the others follow, until you reach the end?

\section*{Certainly.}

And all these others we shall affirm to be parts of the whole and of the one, which, as soon as the end is reached, has become whole and one?

Yes; that is what we shall say.
But the end comes last, and the one is of such a nature as to come into being with the last; and, since
the one cannot come into being except in accordance with its own nature, its nature will require that it should come into being after the others, simultaneously with the end.

\section*{Clearly.}

Then the one is younger than the others and the others older than the one.

That also is clear in my judgment.
Well, and must not a beginning or any other part of the one or of anything, if it be a part and not parts, being a part, be also of necessity one?

Certainly.
And will not the one come into being together with each part-together with the first part when that comes into being, and together with the second part and with all the rest, and will not be wanting to any part, which is added to any other part until it has reached the last and become one whole; it will be wanting neither to the middle, nor to the first, nor to the last, nor to any of them, while the process of becoming is going on?

True.
Then the one is of the same age with all the others, so that if the one itself does not contradict its own nature, it will be neither prior nor posterior to the others, but simultaneous; and according to this argument the one will be neither older nor younger than the others, nor the others than the one, but according to the previous argument the one will be older and younger than the others and the others than the one.

\section*{Certainly.}

After this manner then the one is and has become. But as to its becoming older and younger than the others, and the others than the one, and neither older nor younger, what shall we say? Shall we say as of being so also of becoming, or otherwise?

I cannot answer.
But I can venture to say, that even if one thing were older or younger than another, it could not
become older or younger in a greater degree than it was at first; for equals added to unequals, whether to periods of time or to anything else, leave the difference between them the same as at first.

Of course. Then that which is, cannot become older or younger than that which is, since the difference of age is always the same; the one is and has become older and the other younger; but they are no longer becoming so.

True.
And the one which is does not therefore become either older or younger than the others which are?

No.
But consider whether they may not become older and younger in another way.

In what way?
Just as the one was proven to be older than the others and the others than the one.

And what of that?
If the one is older than the others, has come into being a longer time than the others.

Yes.
But consider again; if we add equal time to a greater and a less time, will the greater differ from the less time by an equal or by a smaller portion than before?

By a smaller portion.
Then the difference between the age of the one and the age of the others will not be afterwards so great as at first, but if an equal time be added to both of them they will differ less and less in age?

Yes.
And that which differs in age from some other less than formerly, from being older will become younger in relation to that other than which it was older?

Yes, younger.
And if the one becomes younger the others aforesaid will become older than they were before,
in relation to the one.
Certainly.
Then that which had become younger becomes older relatively to that which previously had become and was older; it never really is older, but is always becoming, for the one is always growing on the side of youth and the other on the side of age. And in like manner the older is always in process of becoming younger than the younger; for as they are always going in opposite directions they become in ways the opposite to one another, the younger older than the older and the older younger than the younger. They cannot, however have become; for if they had already become they would be and not merely become. But that is impossible; for they are always becoming both older and younger than one another: the one becomes younger than the others because it was seen to be older and prior, and the others become older than the one because they came into being later; and in the same way the others are in the same relation tothe o ne, because they were seen to be older, and prior to the one.

That is clear.
Inasmuch then, one thing does not become older or younger than another, in that they always differ from each other by an equal number, the one cannot become older or younger than the others, nor the other than the one; but inasmuch as that which came into being earlier and that which came into being later must continually differ from each other by a different portion-in this point of view the others must become older and younger than the one, and the one than the others.

\section*{Certainly.}

For all these reasons, then, the one is and becomes older and younger than itself and the others, and neither is nor becomes older or younger than itself or the others.

\section*{Certainly.}

But since the one partakes of time, and partakes of becoming older and younger, must it not also partake of the past, the present, and the future?

Of course it must.

Then the one was and is and will be, and was becoming and is becoming and will become?

Certainly.
And there is and was and will be something which is in relation to it and belongs to it?

True.
And since we have at this moment opinion and knowledge and perception of the one, there is opinion and knowledge and perception of it?

Quite right.
Then there is name and expression for it, and it is named and expressed, and everything of this kind which appertains to other things appertains to the one.

Certainly, that is true.
Yet once more and for the third time, let us consider: If the one is both one and many, as we have described, and is, neither one nor many, and participates in time, must it not, in as far as it is one, at times partake of being, and in as far as it is not one, at times not partake of being \({ }^{18}\) ?

\section*{Certainly.}

But can it partake of being when not partaking of being, or not partake of being when partaking of being?

Impossible.
Then the one partakes and does not partake of being at different times, for that is the only way in which it can partake and not partake of the same.

True.
And is there not also a time at which it assumes being and relinquishes being-for how can it have and not have the same thing unless it receives and also gives it up at some time?

Impossible.
And the assuming of being is what you would call becoming?

18 If one is both form and matter. (3)

I should.
And the relinquishing of being you would call destruction?

I should.
The one then, as would appear, becomes and is destroyed by taking and giving up being.

Certainly.
And being one and many and in process of becoming and being destroyed, when it becomes one it ceases to be many, and when many, it ceases to be one?

Certainly.
And as it becomes one and many, must it not inevitably experience separation and aggregation?

Inevitably.
And whenever it becomes like and unlike it must be assimilated and dissimilated?

Yes.
And when it becomes greater or less or equal it must grow or diminish or be equalized?

True.
And when being in motion it rests, and when being at rest it changes to motion, it can surely be in no time at all?

How can it?
But that a thing which is previously at rest should be afterwards in motion, or previously in motion and afterwards at rest, without experiencing change, is impossible.

Impossible.
And surely there cannot be a time in which a thing can be at once neither in motion nor at rest?

There cannot.
But neither can it change without changing.
True.
When then does it change; for it cannot change either when at rest, or when in motion, or when in
time?
It cannot.
And does this strange thing in which it is at the time of changing really exist?

What thing?
The moment. For the moment seems to imply a something out of which change takes place into either of two states; for the change is not from the state of rest as such, nor, from the state of motion as such; but there is this curious nature, which we call the moment lying between rest and motion, not being in any time; and into this and out of this what is in motion changes into rest, and what is at rest into motion.

\section*{So it appears.}

And the one then, since it is at rest and also in motion, will change to either, for only in this way can it be in both. And in changing it changes in a moment, and when it is changing it will be in no time, and will not then be either in motion or at rest.

It will not.
And it will be in the same case in relation to the other changes, when it passes from being into cessation of being, or from not-being into becoming-then it passes between certain states of motion and rest, and, neither is nor is not, nor becomes nor is destroyed.

Very true.
And on the same principle, in the passage from one to many and from many to one, the one is neither one nor many, neither separated nor aggregated; and in the passage from like to unlike, and from unlike to like, it is neither like nor unlike, neither in a state of assimilation nor of dissimilation; and in the passage from small to great and equal and back again, it will be neither small nor great, nor equal, nor in a state of increase, or diminution, or equalization.

True.
All these, then, are the affections of the one, if the one has being.

\section*{Of course.}

But if one is, what will happen to the others-is not that also to be considered?

Yes.
Let us show then, if one is, what will be the affections of the others than the one.

Let us do so.
Inasmuch as there are things other than the one, the others are not the one; for if they were they could not be other than the one.

Very true.
Nor are the others altogether without the one, but in a certain way they participate in the one.

In what way?
Because the others are other than the one inasmuch as they have parts; for if they had no parts they would be simply one.

Right.
And parts, as we affirm, have relation to a whole?

So we say.
And a whole must necessarily be one made up of many; and the parts will be parts of the one, for each of the parts is not a part of many, but of a whole.

How do you mean?
If anything were a part of many, being itself one of them, it will surely be a part of itself, which is impossible, and it will be a part of each one of the other parts, if of all; for if not a part of some one, it will be a part of all the others but this one, and thus will not be a part of each one; and if not a part of each, one it will not be a part of anyone of the many; and not being a part of any one, it cannot be a part or anything else of all those things of none of which it is anything.

Clearly not.
Then the part is not a part of the many, nor of all, but is of a certain single form, which we call a
whole, being one perfect unity framed out of all-of this the part will be a part.

Certainly.
If, then, the others have parts, they will participate in the whole and in the one.

True.
Then the others than the one must be one perfect whole, having parts.

\section*{Certainly.}

And the same argument holds of each part, for the part must participate in the one; for if each of the parts is a part, this means, I suppose, that it is one separate from the rest and self-related; otherwise it is not each.

True.
But when we speak of the part participating in the one, it must clearly be other than one; for if not, it would merely have participated, but would have been one; whereas only the itself can be one.

Very true.
Both the whole and the part must participate in the one; for the whole will be one whole, of which the parts will be parts; and each part will be one part of the whole which is the whole of the part.

True.
And will not the things which participate in the one, be other than it?

\section*{Of course.}

And the things which are other than the one will be many; for if the things which are other than the one were neither one nor more than one, they would be nothing.

True.
But, seeing that the things which participate in the one as a part, and in the one as a whole, are more than one, must not those very things which participate in the one be infinite in number?

How so?
Let us look at the matter thus:-Is it not a fact that
in partaking of the one they are not one, and do not partake of the one at the very time when they are partaking of it?

Clearly.
They do so then as multitudes in which the one is not present?

Very true.
And if we were to abstract from them in idea the very smallest fraction, must not that least fraction, if it does not partake of the one, be a multitude and not one?

It must.
And if we continue to look at the other side of their nature, regarded simply, and in itself, will not they, as far as we see them, be unlimited in number?

\section*{Certainly.}

And yet, when each several part becomes a part, then the parts have a limit in relation to the whole and to each other, and the whole in relation to the parts.

\section*{Just so.}

The result to the others than the one is that of themselves and the one appears to create a new element in them which gives to them limitation in relation to one another; whereas in their own nature they have no limit.

That is clear.
Then the others than the one, both as whole and parts, are infinite, and also partake of limit.

Certainly.
Then they are both like and unlike one another and themselves.

How is that?
Inasmuch as they are unlimited in their own nature, they are all affected in the same way.

True.
And inasmuch as they all partake of limit, they are all affected in the same way.

Of course.
But inasmuch as their state is both limited and unlimited, they are affected in opposite ways.

Yes.
And opposites are the most unlike of things.
Certainly.
Considered, then, in regard to either one of their affections, they will be like themselves and one another; considered in reference to both of them together, most opposed and most unlike.

That appears to be true.
Then the others are both like and unlike themselves and one another?

True.
And they are the same and also different from one another, and in motion and at rest, and experience every sort of opposite affection, as may be proved without difficulty of them, since they have been shown to have experienced the affections aforesaid?

True.
Suppose, now, that we leave the further discussion of these matters as evident, and consider again upon the hypothesis that the one is, whether opposite of all this is or is not equally true of the others.

By all means.
Then let us begin again, and ask, If one is, what must be the affections of the others?

Let us ask that question.
Must not the one be distinct from the others, and the others from the one?

Why so?
Why, because there is nothing else beside them which is distinct from both of them; for the expression "one and the others" includes all things.

Yes, all things.
Then we cannot suppose that there is anything
different from them in which both the one and the others might exist?

There is nothing.
Then the one and the others are never in the same?

True.
Then they are separated from each other?
Yes.
And we surely cannot say that what is truly one has parts?

Impossible.
Then the one will not be in the others as a whole, nor as part, if it be separated from the others, and has no parts?

Impossible.
Then there is no way in which the others can partake of the one, if they do not partake either in whole or in part?

It would seem not.
Then there is no way in which the others are one, or have in themselves any unity?

There is not.
Nor are the others many; for if they were many, each part of them would be a part of the whole; but now the others, not partaking in any way of the one, are neither one nor many, nor whole, nor part.

True.
Then the others neither are nor contain two or three, if entirely deprived of the one?

True.
Then the others are neither like nor unlike the one, nor is likeness and unlikeness in them; for if they were like and unlike, or had in them likeness and unlikeness, they would have two natures in them opposite to one another.

That is clear.
But for that which partakes of nothing to partake of two things was held by us to be impossible?

Impossible.
Then the others are neither like nor unlike nor both, for if they were like or unlike they would partake of one of those two natures, which would be one thing, and if they were both they would partake of opposites which would be two things, and this has been shown to be impossible.

True.
Therefore they are neither the same, nor other, nor in motion, nor at rest, nor in a state of becoming, nor of being destroyed, nor greater, nor less, nor equal, nor have they experienced anything else of the sort; for, if they are capable of experiencing any such affection, they will participate in one and two and three, and odd and even, and in these, as has been proved, they do not participate, seeing that they are altogether and in every way devoid of the one.

Very true.
Therefore if one is, the one is all things, and also nothing, both in relation to itself and to other things.

\section*{Certainly.}

Well, and ought we not to consider next what will be the consequence if the one is not?

Yes; we ought.
What is the meaning of the hypothesis-If the one is not; is there any difference between this and the hypothesis-If the not one is not?

There is a difference, certainly.
Is there a difference only, or rather are not the two expressions-if the one is not, and if the not one is not, entirely opposed?

They are entirely opposed.
And suppose a person to say:-If greatness is not, if smallness is not, or anything of that sort, does he not mean, whenever he uses such an expression, that "what is not" is other than other things?

To be sure.
And so when he says "If one is not" he clearly means, that what "is not" is other than all others; we
know what he means-do we not?
Yes, we do.
When he says "one," he says something which is known; and secondly something which is other than all other things; it makes no difference whether he predicate of one being or not being, for that which is said "not to be" is known to be something all the same, and is distinguished from other things.

Certainly.
Then I will begin again, and ask: If one is not, what are the consequences? In the first place, as would appear, there is a knowledge of it, or the very meaning of the words, "if one is not," would not be known \({ }^{19}\).

True.
Secondly, the others differ from it, or it could not be described as different from the others?

Certainly.
Difference, then, belongs to it as well as knowledge; for in speaking of the one as different from the others, we do not speak of a difference in the others, but in the one.

Clearly so.
Moreover, the one that is not is something and partakes of relation to "that," and "this," and "these," and the like, and is an attribute of "this"; for the one, or the others than the one, could not have been spoken of, nor could any attribute or relative of the one that is not have been or been spoken of, nor could it have been said to be anything, if it did not partake of "some," or of the other relations just now mentioned.

True.
Being, then, cannot be ascribed to the one, since it is not; but the one that is not may or rather must participate in many things, if it and nothing else is not; if, however, neither the one nor the one that is not is supposed not to be, and we are speaking of something of a different nature, we can predicate
\({ }^{19}\) If one is not form. (4)
nothing of it. But supposing that the one that is not and nothing else is not, then it must participate in the predicate "that," and in many others.

\section*{Certainly.}

And it will have unlikeness in relation to the others, for the others being different from the one will be of a different kind.

\section*{Certainly.}

And are not things of a different kind also other in kind?

Of course.
And are not things other in kind unlike?
They are unlike.
And if they are unlike the one, that which they are unlike will clearly be unlike them?

Clearly so.
Then the one will have unlikeness in respect of which the others are unlike it?

That would seem to be true.
And if unlikeness to other things is attributed to it, it must have likeness to itself.

How so?
If the one have unlikeness to one, something else must be meant; nor will the hypothesis relate to one; but it will relate to something other than one?

Quite so.
But that cannot be.
No.
Then the one must have likeness to itself?
It must.
Again, it is not equal to the others; for if it were equal, then it would at once be and be like them in virtue of the equality; but if one has no being, then it can neither be nor be like?

It cannot.
But since it is not equal to the others, neither can the others be equal to it?

Certainly not.
And things that are not equal are unequal?
True.
And they are unequal to an unequal?
Of course.
Then the one partakes of inequality, and in respect of this the others are unequal to it?

Very true.
And inequality implies greatness and smallness?
Yes.
Then the one, if of such a nature, has greatness and smallness?

That appears to be true.
And greatness and smallness always stand apart?
True.
Then there is always something between them?
There is.
And can you think of anything else which is between them other than equality?

No, it is equality which lies between them.
Then that which has greatness and smallness also has equality, which lies between them?

That is clear.
Then the one, which is not, partakes, as would appear, of greatness and smallness and equality?

Clearly.
Further, it must surely in a sort partake of being?
How so?
It must be so, for if not, then we should not speak the truth in saying that the one is not. But if we speak the truth, clearly we must say what is. Am I not right?

Yes.
And since we affirm that we speak truly, we must also affirm that we say what is?

\section*{Certainly.}

Then, as would appear, the one, when it is not, is; for if it were not to be when it is not, but were to relinquish something of being, so as to become notbeing, it would at once be.

Quite true.
Then the one which is not, if it is to maintain itself, must have the being of not-being as the bond of not-being, just as being must have as a bond the not-being of not-being in order to perfect its own being; for the truest assertion of the being of being and of the not-being of not being is when being partakes of the being of being, and not of the being of not-being-that is, the perfection of being; and when not-being does not partake of the not-being of not-being but of the being of not-being-that is the perfection of not-being.

Most true.
Since then what is partakes of not-being, and what is not of being, must not the one also partake of being in order not to be?

\section*{Certainly.}

Then the one, if it is not, clearly has being?
Clearly.
And has not-being also, if it is not?
Of course.
But can anything which is in a certain state not be in that state without changing?

Impossible.
Then everything which is and is not in a certain state, implies change?

Certainly.
And change is motion-we may say that?
Yes, motion.
And the one has been proved both to be and not to be?

Yes.
And therefore is and is not in the same state?

Yes.
Thus the one that is not has been shown to have motion also, because it changes from being to notbeing?

That appears to be true.
But surely if it is nowhere among what is, as is the fact, since it is not, it cannot change from one place to another?

Impossible.
Then it cannot move by changing place?
No.
Nor can it turn on the same spot, for it nowhere touches the same, for the same is, and that which is not cannot be reckoned among things that are?

It cannot.
Then the one, if it is not, cannot turn in that in which it is not?

No.
Neither can the one, whether it is or is not, be altered into other than itself, for if it altered and became different from itself, then we could not be still speaking of the one, but of something else?

True.
But if the one neither suffers alteration, nor turns round in the same place, nor changes place, can it still be capable of motion?

Impossible.
Now that which is unmoved must surely be at rest, and that which is at rest must stand still?

Certainly.
Then the one that is not, stands still, and is also in motion?

That seems to be true.
But if it be in motion it must necessarily undergo alteration, for anything which is moved, in so far as it is moved, is no longer in the same state, but in another?

Yes.

Then the one, being moved, is altered?
Yes.
And, further, if not moved in any way, it will not be altered in any way?

No.
Then, in so far as the one that is not is moved, it is altered, but in so far as it is not moved, it is not altered?

Right.
Then the one that is not is altered and is not altered?

That is clear.
And must not that which is altered become other than it previously was, and lose its former state and be destroyed; but that which is not altered can neither come into being nor be destroyed?

Very true.
And the one that is not, being altered, becomes and is destroyed; and not being altered, neither becomes nor is destroyed; and so the one that is not becomes and is destroyed, and neither becomes nor is destroyed?

True.
And now, let us go back once more to the beginning, and see whether these or some other consequences will follow.

Let us do as you say.
If one is not, we ask what will happen in respect of one? That is the question.

Yes.
Do not the words "is not" signify absence of being in that to which we apply them?

\section*{Just so.}

And when we say that a thing is not, do we mean that it is not in one way but is in another? or do we mean, absolutely, that what is not has in no sort or way or kind participation of being?

Quite absolutely.

Then, that which is not cannot be, or in any way participate in being?

It cannot.
And did we not mean by becoming, and being destroyed, the assumption of being and the loss of being?

Nothing else.
And can that which has no participation in being, either assume or lose being?

Impossible.
The one then, since it in no way is, cannot have or lose or assume being in any way?

True.
Then the one that is not, since it in no way partakes of being, neither nor becomes?

No.
Then it is not altered at all; for if it were it would become and be destroyed?

True.
But if it be not altered it cannot be moved?
Certainly not.
Nor can we say that it stands, if it is nowhere; for that which stands must always be in one and the same spot?

Of course.
Then we must say that the one which is not never stands still and never moves?

Neither.
Nor is there any existing thing which can be attributed to it; for if there had been, it would partake of being?

That is clear.
And therefore neither smallness, nor greatness, nor equality, can be attributed to it?

No.
Nor yet likeness nor difference, either in relation to itself or to others?

Clearly not.
Well, and if nothing should be attributed to it, can other things be attributed to it?

Certainly not.
And therefore other things can neither be like or unlike, the same, or different in relation to it?

They cannot.
Nor can what is not, be anything, or be this thing, or be related to or the attribute of this or that or other, or be past, present, or future. Nor can knowledge, or opinion, or perception, or expression, or name, or any other thing that is, have any concern with it?

No.
Then the one that is not has no condition of any kind?

Such appears to be the conclusion.
Yet once more; if one is not, what becomes of the others? Let us determine that \({ }^{20}\).

Yes; let us determine that.
The others must surely be; for if they, like the one, were not, we could not be now speaking of them.

True.
But to speak of the others implies difference-the terms "other" and "different" are synonymous?

True.
Other means other than other, and different, different from the different?

Yes.
Then, if there are to be others, there is something than which they will be other?

Certainly.
And what can that be?-for if the one is not, they will not be other than the one.
\({ }^{20}\) If one is not matter (5)

They will not.
Then they will be other than each other; for the only remaining alternative is that they are other than nothing.

True.
And they are each other than one another, as being plural and not singular; for if one is not, they cannot be singular but every particle of them is infinite in number; and even if a person takes that which appears to be the smallest fraction, this, which seemed one, in a moment evanesces into many, as in a dream, and from being the smallest becomes very great, in comparison with the fractions into which it is split up?

Very true.
And in such particles the others will be other than one another, if others are, and the one is not?

Exactly.
And will there not be many particles, each appearing to be one, but not being one, if one is not?

True.
And it would seem that number can be predicated of them if each of them appears to be one, though it is really many?

It can.
And there will seem to be odd and even among them, which will also have no reality, if one is not?

Yes.
And there will appear to be a least among them; and even this will seem large and manifold in comparison with the many small fractions which are contained in it?

Certainly.
And each particle will be imagined to be equal to the many and little; for it could not have appeared to pass from the greater to the less without having appeared to arrive at the middle; and thus would arise the appearance of equality.

Yes.

And having neither beginning, middle, nor end, each separate particle yet appears to have a limit in relation to itself and other.

How so?
Because, when a person conceives of any one of these as such, prior to the beginning another beginning appears, and there is another end, remaining after the end, and in the middle truer middles within but smaller, because no unity can be conceived of any of them, since the one is not.

Very true.
And so all being, whatever we think of, must be broken up into fractions, for a particle will have to be conceived of without unity?

Certainly.
And such being when seen indistinctly and at a distance, appears to be one; but when seen near and with keen intellect, every single thing appears to be infinite, since it is deprived of the one, which is not?

Nothing more certain.
Then each of the others must appear to be infinite and finite, and one and many, if others than the one exist and not the one.

They must.
Then will they not appear to be like and unlike?
In what way?
Just as in a picture things appear to be all one to a person standing at a distance, and to be in the same state and alike?

True.
But when you approach them, they appear to be many and different; and because of the appearance of the difference, different in kind from, and unlike, themselves?

True.
And so must the particles appear to be like and unlike themselves and each other.

Certainly.
And must they not be the same and yet different
from one another, and in contact with themselves, although they are separated, and having every sort of motion, and every sort of rest, and becoming and being destroyed, and in neither state, and the like, all which things may be easily enumerated, if the one is not and the many are?

Most true.
Once more, let us go back to the beginning, and ask if the one is not, and the others of the one are, what will follow.

Let us ask that question.
In the first place, the others will not be one?
Impossible.
Nor will they be many; for if they were many one would be contained in them. But if no one of them is one, all of them are naught, and therefore they will not be many.

True.
If there be no one in the others, the others are neither many nor one.

They are not.
Nor do they appear either as one or many.
Why not?
Because the others have no sort or manner or way of communion with any sort of not-being, nor can anything which is not, be connected with any of the others; for that which is not has no parts.

True.
Nor is there an opinion or any appearance of notbeing in connection with the others, nor is not-being ever in any way attributed to the others.

No.
Then if one is not, the others neither are, nor any of the others either as one or many; for you cannot conceive the many without the one \({ }^{21}\).

You cannot.
\({ }^{21}\) If one is neither. (6)

Then if one is not, there is no conception of can be conceived to be either one or many?

It would seem not.
Nor as like or unlike?
No.
Nor as the same or different, nor in contact or separation, nor in any of those states which we enumerated as appearing to be;-the others neither are nor appear to be any of these, if one is not?

True.
Then may we not sum up the argument in a word and say truly: If one is not, then nothing is?

\section*{Certainly.}

Let thus much be said; and further let us affirm what seems to be the truth, that, whether one is or is not, one and the others in relation to themselves and one another, all of them, in every way, are and are not, and appear to be and appear not to be.

Most true.

\section*{Conclusion}

What is the significance of knowing about definitions? Underlying the work of the early Greeks, and a very few others is a principle that is not often, if ever, been well voiced. How the names of any particular grammar \(\backslash\) logic are manipulated is determined exclusively on the fundamental level of that grammar \(\backslash\) logic by the naming convention. The naming convention is a model of the paradigm of logical manipulation for that logic. A naming convention is developed from an abstraction denoting some causal relation. For example, both the definition of unit and Place Value Notation are the ordered naming convention in the grammar of Arithmetic. Every operation in Arithmetic, must maintain this naming convention or that method of manipulating the Arithmetic Names is not valid-it will not yield true results. Although common grammars are not ordered, they still have a convention of naming that they must adhere too in order for valid manipulation of those names to take place. The discovery of the significance of this order was attributed by Aristotle to Socrates. That order is established by the definition of a name. This means that there are two naming conventions in common grammars-one based on thing, one on form and matter. A grammar always starts with a naming convention and the significance of that convention-all methods of manipulation of those names must respect and maintain that convention. This is another way of saying, as Socrates and Plato did, that reason must follow from the definition of a word.

One would not think of calling someone a mathematician who did not have some notion of what a unit was or the significance of Place Value Notation, yet when it comes to common grammars, what a definition is and its significance to reasoning more often than not escapes a Ph.D. in any field-most cannot even tell you where the meaning of a word comes from. Definition is not an infinite circle-jerk. It is still true today what Socrates tried to warn men about, we think we know what we do not know. Man is still thoughtlessly celebrating the death of Socrates. We are still wandering about in a hemlock induced mental stupor.

Only after one knows the fundamentals of predication can one then develop the grammatical manipulations for constructing larger sentences, just like Arithmetic. For example, The car is red. becomes, The red car is fast. The fast red car is mine. etc. The addition of names to a simple premise in order to construct larger and larger sentences is determined by the definitions of the various words used in that sentence and rules of placement and parsing established by some social convention. In other words, despite the technology of our times, we are still fundamentally preliterate-the horror of which cannot be imagined by the common man until he finds himself in the grips of a judicial system that violates every tenet of human rights-simply because those judges are sociopathically expressing their illiteracy. This I know first hand.

At some point I have to stop editing this, if I am to get it out for Christmas presents, and this seems to be a favorable time. Perhaps at some future date I may be enticed to revise this. 11/26/01

\section*{The Idiot Crafticus}

A workbook for the Delian Quest.


\section*{06/20/92 A Triplicate Ratio}

Given \(\mathrm{BF}=\mathrm{N}_{1}, \mathrm{MO}=\mathrm{N}_{2}=\)
\(C E=N_{3}=\)
\(A Q=C E / 2\)
\(B M=\)
\(\mathrm{FM}=\)
\(\mathrm{AB}=\)
\(\mathrm{AF}=\)
\(\mathrm{AD}=\)
DQ =
QR =
\(\mathrm{QP}=\)
\(\mathrm{AP}=\)
\(\mathrm{AR}=\)
\(\mathrm{AC}=\)
\(\mathrm{AE}=\)
\(\mathrm{AO}=\)
\(\mathrm{BC}=\)
EF =
EK =
BH =


\(\frac{\mathrm{BC}}{\mathrm{BH}}-\frac{\mathrm{AC}}{\mathrm{AO}}=\)

\section*{08/12/92 Rusty Cube of a Sphere}

Given \(\mathrm{AB}=\mathrm{N}\).
\(\mathrm{BD}=\)
\(\mathrm{BG}=\)
DJ =
\(\mathrm{CG}=\)
\(\mathrm{BC}=\)
\(\mathrm{CD}=\)
DG =
GJ =
\(\mathrm{AC}=\)


AG =
\(\mathrm{AJ}=\)
\(\mathrm{AE}=\)
\(\mathrm{BE}=\)
\(\mathrm{EJ}=\)

01/08/93 Pythagoras Revisited
Given \(\mathrm{AB}=\mathrm{S}_{1}, \mathrm{BC}=\mathrm{S}_{2}, \mathrm{AC}=\mathrm{S}_{3}\)
\(\mathrm{AG}=\)
\(\mathrm{BH}=\)
\(\mathrm{AE}=\)
\(\mathrm{BF}=\)
\(\mathrm{EF}=\)
DE =
DF =

\(\mathrm{AD}=\)
\(\mathrm{BD}=\)
\(\mathrm{CD}=\)
\(\mathrm{AJ}=\)
\(\mathrm{JD}=\)
\(\mathrm{CJ}=\)

\section*{06/03/93 Exploring The Properties Of The Curve AH}

Given \(\mathrm{AG}=\mathrm{N}_{1}, \mathrm{AC}=\mathrm{AG} / \mathrm{N}_{2}\)
\(\mathrm{GF}=\mathrm{AG} / 3\)
\(\mathrm{AE}=\)
\(\mathrm{EG}=\)
\(\mathrm{AF}=\)
FM =
GM =
GN =
\(\mathrm{EN}=\)
\(\mathrm{NH}=\)
NS =
PN =
\(\mathrm{PS}=\)
ST =

\(P Q=\)
SQ =
QT =
QH =
\(\mathrm{CQ}=\)
\(\mathrm{CH}=\)
\(\mathrm{AH}=\)
\(\mathrm{GH}=\)
\(\mathrm{AJ}=\)
\(\mathrm{AB}=\)
GL=
DG =
\(\mathrm{BD}=\)

CG =
\(\sqrt{\mathrm{AB} \times \mathrm{DG}}-\mathrm{BD}=\)

\section*{06/07/93 For All Triangles Find BD}

Given AB, BC, AC, CD, AD.
\(C E=\)
CF =
\(\mathrm{EF}=\)
DE =
\(\mathrm{BF}=\)
GF =
\(\mathrm{BG}=\)
DG =
\(\mathrm{BD}=\)


\section*{06/09/93 Rectangular Roots}

Given \(\mathrm{AD}=\mathrm{N}_{1}, \mathrm{DE}=\mathrm{N}_{2}\)
CF =
\(\mathrm{BF}=\)
\(\mathrm{AB}=\)
\(B C=\)
\(\mathrm{AC}=\)
CD =

\(\sqrt{\mathrm{CD} \times \mathrm{AC}}-\mathrm{DE}=\)

\section*{06/21/93 A Pyramid of Ratios I}

Given \(\mathrm{AB}=1, \mathrm{AD}=\frac{\mathrm{AB}}{\mathrm{N}_{1}}, \mathrm{AL}=\frac{\mathrm{AB}}{2}\)
\(\delta=1 \ldots \mathrm{~N}_{2}, \mathrm{DE}=\frac{\mathrm{CD} \times \delta}{\mathrm{N}_{2}}\)
DL =
\(\mathrm{AC}=\)
\(\mathrm{CL}=\)
\(\mathrm{CD}=\)


DK =
AK =
\(\mathrm{BH}=\)
BK =
EK =
\(\mathrm{BE}=\)
\(\mathrm{EH}=\)
\(\mathrm{AF}=\)
\(\mathrm{HK}=\)
\(\mathrm{BF}=\)
EF =

\section*{06/27/93 Describe a Circle about a Triangle}

Given \(A B, B C\), \(A C\), find \(B D\).
BK =
\(\mathrm{AE}=\)
\(\mathrm{BF}=\)
\(\mathrm{AG}=\)
\(\mathrm{BJ}=\)
GJ =
\(\mathrm{HJ}=\)
BH =
\(\mathrm{CH}=\)
\(\mathrm{BN}=\)
\(\mathrm{MN}=\)
\(\mathrm{BM}=\)
DN =
\(\mathrm{BD}=\)


07/15/93 Pyramid of Ratios II
Given \(\mathrm{AB}=1, \mathrm{AD}=\frac{\mathrm{AB}}{\mathrm{N}_{1}}, \mathrm{DE}=\frac{\mathrm{BD}}{\mathrm{N}_{2}}\)
\(\mathrm{AG}=\frac{\mathrm{AC}}{\mathrm{N}_{2}}\).
\(\mathrm{AC}=\)
\(\mathrm{BD}=\)
\(\mathrm{AE}=\)
\(\mathrm{AH}=\)

\(\mathrm{GH}=\)
\(\mathrm{EH}=\)
DJ =
\(\mathrm{EG}=\)
\(\mathrm{FJ}=\)
AL =
\(\mathrm{DF}=\)
DL =
\(\mathrm{EF}=\)
CL=
\(\mathrm{FG}=\)
HK =
\(\mathrm{CD}=\)
EK =

\section*{07/25/93 Pyramid of Ratios III}

Given \(\mathrm{AB}=1, \mathrm{AD}=\frac{\mathrm{AB}}{2}, \mathrm{DE}=\frac{\mathrm{CD}}{\mathrm{N}}\).
\(\mathrm{BD}=\)
\(\mathrm{CD}=\)
\(\mathrm{BC}=\)
\(\mathrm{BE}=\)
\(\mathrm{BF}=\)
\(\mathrm{AF}=\)

\(\mathrm{EF}=\)
\(\mathrm{EG}=\)
\(\mathrm{FG}=\)
\(\mathrm{GC}=\)
DG =
CF =
11/06/93 Gruntwork I on the Delian Solution
Given \(\mathrm{N}, \mathrm{BH}=1, \mathrm{BF}=\frac{\mathrm{BH}}{2}\)
\(\mathrm{BD}=\frac{\mathrm{BF}}{\mathrm{N}}\).
DH =
DK =
\(\mathrm{BJ}=\)
\(\mathrm{BO}=\)
\(\mathrm{JO}=\)
\(\mathrm{JK}=\)
\(\mathrm{CD}=\)
KL =
\(\mathrm{LP}=\)
DE =
\(\mathrm{BC}=\)

\(\mathrm{CE}=\)
\(\mathrm{HO}=\)
\(\mathrm{MN}=\)
\(\mathrm{OQ}=\)
\(\mathrm{GH}=\)
OR =
\(\mathrm{CH}=\)
\(\mathrm{AB}=\)
\(\mathrm{HN}=\)
GM =
\(\mathrm{EH}=\)
EG =
\(\mathrm{HQ}=\)
\(\mathrm{AC}=\)
AE =
\(\mathrm{AH}=\)
\(\mathrm{AD}-\left(\mathrm{AB} \times \mathrm{AC}^{2}\right)^{1 / 3}=\)
\(\mathrm{AF}-\left(\mathrm{AB}^{2} \times \mathrm{AC}\right)^{1 / 3}=\)

\section*{11/09/93 Solve for Cube Placement}

Given \(\mathrm{N}, \mathrm{BH}=\mathrm{N}-1\)
\(\mathrm{BG}=\frac{\mathrm{BH}}{2}, \mathrm{CF}=\mathrm{N}^{2 / 3}-\mathrm{N}^{1 / 3}\)
\(B L=C F\).
GP =
BK =
\(\mathrm{BD}=\)
\(\mathrm{NP}=\)


GN =
EN =


GE = \(\mathrm{MO}=\)
CE =
\(\mathrm{BC}=\)
\(\mathrm{GH}=\)
\(\mathrm{EF}=\)
\(\mathrm{FH}=\)
\(\mathrm{FQ}=\)
\(\mathrm{AF}=\)
\(\mathrm{AC}=\)
\(\mathrm{AH}=\)
\(\mathrm{FO}=\)
\(\mathrm{AB}=\)
\(\left(\mathrm{AB}^{2} \times \mathrm{AH}\right)^{1 / 3}-\mathrm{AC}=\)
\((\mathrm{AB} \times \mathrm{AH} 2)^{1 / 3}-\mathrm{AF}=\)
\(\mathrm{OQ}=\)

\section*{11/10/93 Gruntwork II on the Delian Solution}

Given \(\mathrm{N}, \mathrm{DE}=\frac{\mathrm{AE}}{\mathrm{N}}\).
\(\mathrm{AD}=\)
\(\mathrm{AH}=\)
\(\mathrm{AG}=\)
\(\mathrm{AC}=\)
\(\mathrm{AF}=\)
\(\mathrm{AB}=\)
\(\left(\mathrm{AB}^{2} \times \mathrm{AE}\right)^{1 / 3}-\mathrm{AC}=\)
 \(\left(\mathrm{AB} \times \mathrm{AE}^{2}\right)^{1 / 3}-\mathrm{AD}=\)

11/11/93 The Archamedian Paper Trisector.


0
Given \(\mathrm{N}, \mathrm{AJ}=1, \mathrm{AE}=\frac{\mathrm{AJ}}{2}\) and \(\mathrm{AC}=\frac{\mathrm{AJ}}{\mathrm{N}}\).
\(\mathrm{EJ}=\)
EN =
\(\mathrm{EM}=\)
CJ =
\(\mathrm{CN}=\)
\(\mathrm{JN}=\)
JL =
GL=
GJ =
\(\mathrm{EG}=\)
EL =
\(\mathrm{EH}=\)
\(\mathrm{HM}=\)
AH =
\(\mathrm{CO}=\)
\(\mathrm{CE}=\)
\(\mathrm{EO}=\)
EK =
DE =
DK =
\(\mathrm{AD}=\)
KN =
\(\mathrm{BK}=\)
\(\mathrm{BD}=\)
\(\mathrm{AB}=\)
\(\mathrm{AB}-\mathrm{BK}=\)
AN =
AP =
\(P Q=\)
\(P Q-D K=\)

11/12/93 To Square a Circle
Given \(\mathrm{BF}=1, \mathrm{BD}=3 / 4 \times \mathrm{BE}\).
\(\mathrm{BE}=\)
\(\mathrm{EF}=\)
\(\mathrm{EH}=\)
\(\mathrm{AB}=\)
\(\mathrm{AE}=\)
\(\mathrm{AF}=\)

\(\mathrm{FK}=\)
\(\mathrm{CF}=\)
\(\mathrm{BC}=\)
\(\mathrm{CG}=\)
\(\mathrm{FG}=\)

11/18/93 Exploring Cube Roots Plate A
Given \(\mathrm{N}, \mathrm{BJ}, \mathrm{BH}=\frac{\mathrm{BH}}{2}, \mathrm{BF}=\frac{\mathrm{BH}}{\mathrm{N}}\).
\(\mathrm{HL}=\)
\(\mathrm{FH}=\)
\(\mathrm{HR}=\)
FR =
\(\mathrm{FP}=\)
\(\mathrm{PH}=\)
LP =
\(\mathrm{FL}=\)
DF =
DL =
\(\mathrm{FO}=\)
\(\mathrm{MO}=\)
\(\mathrm{LM}=\)
\(\mathrm{AF}=\)
\(\mathrm{AB}=\)
\(B \mathrm{Q}=\)
BK =
\(\mathrm{BD}=\)
\(K \mathrm{Q}=\)
KL =
\(\mathrm{BC}=\)
DJ =
\(\mathrm{LN}=\)

\(\mathrm{JS}=\)
\(\mathrm{JN}=\)
NS =
GJ =
\(\mathrm{BG}=\)
\(\mathrm{AC}=\)
\(\mathrm{AG}=\)
\(\mathrm{AJ}=\)
\(\left(\mathrm{AB}^{2} \times \mathrm{AJ}\right)^{1 / 3}-\mathrm{AC}=\)
\(\left(\mathrm{AB} \times \mathrm{AJ}^{2}\right)^{1 / 3}-\mathrm{AG}=\)

\section*{11/18/93 Exploring Cube Roots Plate B}

Given \(\mathrm{N}, \mathrm{BK}=1, \mathrm{BH}=\frac{\mathrm{BK}}{2}, \mathrm{BD}=\)
\(\frac{\mathrm{BH}}{\mathrm{N}}\).
DK =
DN =
BQ =
\(K S=\)
\(\mathrm{HR}=\)
\(\mathrm{BC}=\)
GK =
\(\mathrm{BG}=\)
DH =
\(\mathrm{FH}=\)
\(\mathrm{BF}=\)
\(\mathrm{CF}=\)
\(\mathrm{AL}=\)
DF =
\(\mathrm{NO}=\)
\(\mathrm{FP}=\)
\(\mathrm{PO}=\)
\(\mathrm{AD}=\)
11/18/93 Exploring Cube Roots Plate C
Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AK}=\mathrm{AB} \times \mathrm{N}\),
BK =
\(\mathrm{AC}=\)
\(\mathrm{AG}=\)
\(\mathrm{CG}=\)
CF =
\(\mathrm{BH}=\)
AH =
\(\mathrm{HP}=\)
\(\mathrm{AP}=\)
\(\mathrm{AO}=\)
DO =
\[
\begin{aligned}
& \mathrm{AB}= \\
& \mathrm{AF}= \\
& \mathrm{LM}= \\
& \mathrm{EL}= \\
& \mathrm{AK}= \\
& \sqrt{\mathrm{EL}^{2}-\mathrm{AL}^{2}}-\sqrt{\mathrm{AB} \times \mathrm{AK}}=
\end{aligned}
\]



\section*{11/24/93 Pyramid of Ratios IV}
\begin{tabular}{ll} 
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AE}=1, \mathrm{AB}=\frac{\mathrm{AE}}{\mathrm{N}_{1}}\) \\
\(\mathrm{BG}=\frac{\mathrm{BK}}{\mathrm{N}_{2}}\) & \\
\(\mathrm{AD}=\) & \\
\(\mathrm{DK}=\) & \(\mathrm{EH}=\) \\
\(\mathrm{DE}=\) & \(\mathrm{GH}=\) \\
\(\mathrm{BD}=\) & \(\mathrm{FH}=\) \\
\(\mathrm{BK}=\) & \(\mathrm{FJ}=\) \\
\(\mathrm{BC}=\) & \(\mathrm{HJ}=\) \\
\(\mathrm{CG}=\) & \(\mathrm{DJ}=\) \\
\(\mathrm{AC}=\) & \(\mathrm{JK}=\) \\
\(\mathrm{CE}=\) & \(\mathrm{HK}=\) \\
\(\mathrm{DF}=\) & \(\mathrm{AH}=\frac{\sqrt{2} \times \mathrm{N}_{1}}{2 \times\left(\mathrm{N}_{1}-1\right)\left(\mathrm{N}_{2}-1\right)}=\) \\
\(\mathrm{EG}=\) & \(\mathrm{HK}=\) \\
\(\mathrm{EF}=\) & \(\mathrm{AH}=\)
\end{tabular}

\section*{12/04/93 \(\mathrm{M}^{1 / 2^{\mathrm{N}}}\) Exponential Series}

Given \(\mathrm{M}, \mathrm{AF}=\mathrm{M}, \mathrm{AB}=1\).
\(\mathrm{BF}=\)
\(\mathrm{BM}=\)
\(\mathrm{AM}=\)
\(\mathrm{AN}=\)
\(\mathrm{AD}=\)
DF =
DJ =

\(\mathrm{AJ}=\)
AK =
\[
\begin{aligned}
& \mathrm{M}^{1 / 4}-\mathrm{AC}= \\
& \mathrm{M}^{2 / 4}-\mathrm{AD}= \\
& \mathrm{M}^{3 / 4}-\mathrm{AE}=
\end{aligned}
\]
\(\mathrm{AE}=\)
\(\mathrm{AC}=\)

\section*{12/06/93 Methods: Square Roots}

Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AE}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{BE}=\)
\(\mathrm{BD}=\)
DF =
\(\mathrm{AD}=\)
\(\mathrm{AF}=\)

\(\mathrm{AC}=\)
\(\sqrt{\mathrm{AB} \times \mathrm{AE}}-\mathrm{AC}=\)

12/06/93b Gruntwork on the Delian Solution IV

Given \(\mathrm{N}, \mathrm{AC}=1, \mathrm{AJ}=\mathrm{AC} \times \mathrm{N}\),
\(\mathrm{AE}=\left(\mathrm{AC}^{2} \times \mathrm{AJ}\right)^{1 / 3}\)
\(A G=\left(A C \times A J^{2}\right)^{1 / 3}\)
\(\mathrm{CG}=\)
\(\mathrm{CJ}=\)
GJ =
\(\mathrm{GN}=\)
\(\mathrm{AB}=\)
\(\mathrm{CE}=\)
\(\mathrm{CH}=\)
BK =
HK =
\(\mathrm{HJ}=\)
\(\mathrm{AH}=\)
BH =
\(\mathrm{BD}=\)
\(\mathrm{DE}=\)

\(\mathrm{AD}=\)
DK =
GQ =
CP =
\(\frac{\mathrm{AG}}{\mathrm{GN}}-\frac{\mathrm{AD}}{\mathrm{DK}}=\)
\(\frac{\mathrm{AG}}{\mathrm{GQ}}-\frac{\mathrm{AC}}{\mathrm{CP}}=\)

\section*{12/11/93 The Structure in Red}

Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AL}=\mathrm{AB} \times \mathrm{N}\).
BL =
\(\mathrm{BK}=\)
\(\mathrm{AE}=\)
\(\mathrm{AJ}=\)
\(\mathrm{BE}=\)
\(\mathrm{BJ}=\)
\(\mathrm{JL}=\)
\(\mathrm{EJ}=\)
\(\mathrm{FJ}=\)
\(\mathrm{FL}=\)
\(\mathrm{BF}=\)
\(\mathrm{FP}=\)
\(K R=\)
\(\mathrm{KL}=\)
\(\mathrm{DN}=\)
KN =
DK =
CK =
\(\mathrm{AC}=\)
\(\mathrm{CI}=\)
\(\mathrm{CN}=\)
\(\frac{\mathrm{KR}}{\mathrm{IK}}-\frac{\mathrm{HO}}{\mathrm{HI}}=\)
\(\frac{\mathrm{AF}}{\mathrm{FP}}-\frac{\mathrm{AC}}{\mathrm{CN}}=\)

\(\mathrm{FK}=\)
IK =
AK =
\(\mathrm{AI}=\)
\(\mathrm{AD}=\)
\(\mathrm{KT}=\)
\(\mathrm{FH}=\)
\(\mathrm{AF}=\)
\(\mathrm{AH}=\)
HI =
元
\(\mathrm{HO}=\)

12/12/93 The Square Root
Given \(\mathrm{N}, \mathrm{BE}=1, \mathrm{AF}=\mathrm{BE} \times \mathrm{N}\),
\(\mathrm{AD}=\frac{\mathrm{AF}}{2}, \mathrm{BD}=\frac{\mathrm{BE}}{2}\).
\(\mathrm{AB}=\)
\(\mathrm{AE}=\)
\(\mathrm{AC}=\)
\(\mathrm{CG}=\)
\(\mathrm{CD}=\)
\(\mathrm{GH}=\)
\(\mathrm{GH}-\sqrt{\mathrm{AF} \times \mathrm{BE}}=\)


\section*{12/12/93B Generalize 12/12/93}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{AF}=\mathrm{N}_{1}\)
\(\mathrm{DF}=\frac{\mathrm{AF}}{\mathrm{N}_{2}}, \mathrm{DE}=\frac{\mathrm{DF}}{\mathrm{N}_{3}}\)
\(\mathrm{AD}=\)
\(\mathrm{AE}=\)
\(\mathrm{AB}=\)
\(\mathrm{BD}=\)
BH =
\(\mathrm{GH}=\)
GH \(-2 \times \frac{\mathrm{N}_{1} \times \sqrt{\mathrm{N}_{2}-1}}{\mathrm{~N}_{2} \times \sqrt{\mathrm{N}_{3}}}=\)


\section*{04/06/94 Inscribe a Circle in a Triangle}

Given AB, BC, AC.
AK =
\(\mathrm{BD}=\)
\(\mathrm{AF}=\)
\(\mathrm{FK}=\)
CF =
\(\mathrm{CK}=\)
AN =
\(\mathrm{AH}=\)
\(\mathrm{HN}=\)
\(C D=\)
\(\mathrm{BM}=\)
\(\mathrm{BF}=\)
\(\mathrm{BE}=\)
DF =


\section*{04/21/94 The Cradle}

Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AL}=\mathrm{AB} \times \mathrm{N}\).
AF =
\(\mathrm{AC}=\)
AJ =
\(\mathrm{BL}=\)
\(\mathrm{BP}=\)
LR =
FL=
\(\mathrm{BC}=\)
BJ =
\(\mathrm{JL}=\)
\(\mathrm{BF}=\)
\(\mathrm{FJ}=\)
\(\mathrm{CF}=\)

\(\mathrm{FG}=\)
GN =
\(\mathrm{CD}=\)
\(\mathrm{DM}=\)
\(\mathrm{AD}=\)
\(\mathrm{AG}=\)
\(\frac{\mathrm{AG}}{\mathrm{GN}}-\frac{\mathrm{AD}}{\mathrm{DM}}=\)

\section*{04/26/94 Tangents and Similarity Points}

Given \(\mathrm{R}_{\mathrm{L}}, \mathrm{R}_{\mathrm{S}}, \mathrm{D}, \mathrm{AC}=\mathrm{R}_{\mathrm{L}}\),
\(B D=R_{s}, A B=D\).
\(\mathrm{DE}=\)
\(\mathrm{AE}=\)
CE =
\(\mathrm{AO}=\)
\(\mathrm{AG}=\)
GO =
BH =
\(\mathrm{BO}=\)
\(\mathrm{HO}=\)
\(\mathrm{GH}=\)
\(\mathrm{AP}=\)
\(\mathrm{BP}=\)


AJ =
\(K P=\)
\(\mathrm{BK}=\)
JK =
JP =

\section*{04/27/94 The Chordal or Power Line of two Circles}

Given AB, AD, BC, IJ.
\(\mathrm{AE}=\)
\(\mathrm{BF}=\)
\(\mathrm{GH}=\)
\(\mathrm{GI}=\)
AI =
\(\mathrm{BI}=\)
\(\mathrm{AJ}=\)
AK =
JK =


04/28/94 The Power Point
Given AB, CD, EF, AC, AE, CE.
\(\mathrm{AG}=\)
\(\mathrm{AH}=\)
\(\mathrm{AM}=\)
EM =
\(\mathrm{AK}=\)
GK =
GJ =
\(\mathrm{AJ}=\)
AN =

\(\mathrm{JN}=\)
04/30/94 Division \(\mathrm{N}^{2}\)
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AB}=\mathrm{N}_{1}, \mathrm{BC}=\mathrm{N}_{2}\)
\(\mathrm{AC}=\)
\(\mathrm{CD}=\)
\(\mathrm{BD}=\)
\(\frac{\mathrm{N}_{2}{ }^{2}}{\mathrm{~N}_{1}}-\mathrm{BD}=\)


\section*{05/01/94 Two Circles and a Parallel}

Given \(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{DE}=\mathrm{R}_{1}, \mathrm{BC}=\mathrm{R}_{2}\).
\(\mathrm{CN}=\)
\(\mathrm{EQ}=\)
CD =
\(C E=\)
ES =
NS =
SQ =
\(\mathrm{AE}=\)
\(\mathrm{AD}=\)
\(\mathrm{EP}=\)
\(\mathrm{AP}=\)
DO =
DL =
\(\mathrm{AC}=\)
\(\mathrm{AM}=\)
DR =
ML =
\(\mathrm{CK}=\)
\(\mathrm{AO}=\)
\(\mathrm{CM}=\)
\(\mathrm{MG}=\)
LR =
DK =
\(\mathrm{CH}=\)
\(\mathrm{MH}=\)
\(\mathrm{MO}=\)
GJ =
\(\mathrm{MR}=\)

\(\mathrm{RO}=\)
05/04/94 Two Circles and a Tangent
Given \(\mathrm{R}_{1}, \mathrm{R}_{2}\), D, N, FK = R1
\(\mathrm{BC}=\mathrm{R}_{2}, \mathrm{CH}=\mathrm{D}, \mathrm{FG}=\frac{\mathrm{FL}}{\mathrm{N}}\).
FL =
AK =
EK =
AQ =
GL =
GM =
\(\mathrm{AJ}=\)
\(\mathrm{AF}=\)
\(\mathrm{FJ}=\)
\(\mathrm{JL}=\)
\(\mathrm{JQ}=\)

\(\mathrm{GJ}=\)
\(\mathrm{QM}=\)
\(\mathrm{GH}=\)
\(\mathrm{HM}=\)

EF =
\(\mathrm{HO}=\)
\(\mathrm{KM}=\)

EH =
\(\mathrm{MO}=\)
\(\mathrm{MH}=\)

\section*{05/16/94 Tangent to Diameter and Circles}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{CF}=1, \mathrm{CD}=\frac{\mathrm{CE}}{\mathrm{N}_{1}}\)
\(\mathrm{EJ}=\mathrm{CE} \times \mathrm{N}_{2}\).
CE =
DE =
DJ =
JG =
\(\mathrm{BE}=\)
\(\mathrm{EG}=\)
BG =
\(\mathrm{BJ}=\)
\(\mathrm{JK}=\)
\(\mathrm{BD}=\)
\(\mathrm{BH}=\)


05/16/94b Tangent to Diameter and Circles
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AF}=1, \mathrm{DE}=\frac{\mathrm{DF}}{\mathrm{N}_{1}}\)
\(\mathrm{AJ}=\mathrm{AF} \times \mathrm{N}_{2}\).
DF =
HJ =
\(\mathrm{EF}=\)
\(\mathrm{FJ}=\)
\(\mathrm{EJ}=\)
\(\mathrm{EG}=\)
\(\mathrm{BF}=\)
\(\mathrm{FG}=\)
\(\mathrm{BG}=\)
\(\mathrm{BE}=\)
\(\mathrm{BJ}=\)
\(\mathrm{BC}=\)
\(\mathrm{KE}=\)

\(\mathrm{BC}-\mathrm{KE}=\)

10/27/94 Method: Square Root
Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AG}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{BG}=\)
\(\mathrm{BF}=\)
\(\mathrm{AF}=\)
\(\mathrm{FH}=\)
DF =
\(\mathrm{AD}=\)
\(\mathrm{BD}=\)
\(\mathrm{DG}=\)
\(\mathrm{FJ}=\)
DH =

DE =
\(\mathrm{AE}=\)
\(\sqrt{\mathrm{AB} \times \mathrm{AG}}-\mathrm{AE}=\)

10/28/94 Method: Square Root
Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AH}=\mathrm{AB} \times \mathrm{N}\).
BH =
\(\mathrm{BG}=\)
GK =
\(\mathrm{AG}=\)
DG =
\(\mathrm{AD}=\)
AL =
GL =
BD =
DH =
DK =
KL =
GJ =
\(\mathrm{JL}=\)
\(\mathrm{FG}=\)


AF =
\(\mathrm{FJ}=\)
\(\mathrm{EF}=\)
\(\mathrm{AE}=\)
\(\sqrt{\mathrm{AB} \times \mathrm{AH}}-\mathrm{AE}=\)

10/31/94 Divide a Segment Such
Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AF}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{BF}=\)
\(\mathrm{AD}=\)
AJ =
FK =
\(\mathrm{BD}=\)
\(\mathrm{BJ}=\)
\(\mathrm{BG}=\)
DH =
DG =
GH =
\(\mathrm{HJ}=\)
\(\mathrm{BC}=\)
\(\mathrm{AC}=\)
\(\mathrm{CF}=\)
\(\mathrm{CH}=\)
CE =
\(\mathrm{EF}=\)
\(\mathrm{BE}=\)
DF =
\(\mathrm{CD}=\)
\(\mathrm{BE}^{2}-\mathrm{EF}=\)

\section*{12/24/94 Power Line at Square Root}

Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AJ}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{AF}=\)
\(\mathrm{BJ}=\)
\(\mathrm{BG}=\)
\(\mathrm{AG}=\)
GS =
DG =
\(\mathrm{FG}=\)
\(\mathrm{BD}=\)
DJ =
DS =
\(\mathrm{FK}=\)
\(\mathrm{BF}=\)
\(\mathrm{BK}=\)
\(\mathrm{BP}=\)
\(\mathrm{FI}=\)
\(K P=\)
\(\mathrm{MP}=\)
\(\mathrm{BI}=\)


OS =

\section*{12/26/94 Point G}

Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AF}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{BF}=\)
\(\mathrm{BE}=\)
EF =
EK =
\(\mathrm{AD}=\)
\(\mathrm{CE}=\)
\(\mathrm{CF}=\)
\(\mathrm{DF}=\)
\(\mathrm{BC}=\)

\(\mathrm{CH}=\)
\(\mathrm{DG}_{2}=\)
\(\mathrm{DG}_{1}=\)
\(\mathrm{DG}_{1}-\mathrm{DG}_{2}=\)
\(\mathrm{BD}=\)

01/06/95 Alternate Method Quad Roots
Given \(\mathrm{N}, \mathrm{AC}=1, \mathrm{AJ}=\mathrm{AC} \times \mathrm{N}\).
\(\mathrm{CJ}=\)
\(\mathrm{AE}=\)
\(\mathrm{CE}=\)
EJ =
\(\mathrm{EN}=\)
\(\mathrm{BM}=\)
\(\mathrm{HO}=\)
\(\mathrm{MN}=\)

\(\mathrm{NO}=\)
\(\mathrm{BE}=\)
\(\mathrm{EH}=\)
\(\mathrm{BJ}=\)
\(\mathrm{MJ}=\)
\(\mathrm{MO}=\)
\(\mathrm{ML}=\)
\(\mathrm{JL}=\)
GJ =
\(\mathrm{AG}=\)
\(\left(A C \times A J^{3}\right)^{1 / 4}-A G=\)
\(\mathrm{CH}=\)
\(\mathrm{CO}=\)
\(\mathrm{KO}=\)
\(\mathrm{CK}=\)
\(\mathrm{CD}=\)
\(\mathrm{AD}=\)
\(\left(\mathrm{AC}^{3} \times \mathrm{AJ}\right)^{1 / 4}-\mathrm{AD}=\)

\section*{09/13/95 A Study in Placement}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}\).
Given \(\mathrm{AE}=1, \mathrm{AB}=\mathrm{AE} \times \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\),
\(\mathrm{AC}=\frac{\mathrm{N}_{3}}{\mathrm{~N}_{4}}\) what is GH ?
\(\mathrm{AD}=\)
DF =
DE =
\(\mathrm{CD}=\)
\(\mathrm{BE}=\)
\(\mathrm{CF}=\)
\(\mathrm{CE}=\)
\(\mathrm{BD}=\)
\(\mathrm{BE}=\)
\(\mathrm{EF}=\)
\(\mathrm{EG}=\)
\(\mathrm{FG}=\)
GJ =
Given \(\mathrm{AE}=1, \mathrm{AB}=\mathrm{AE} \times \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\)
\(\mathrm{EF}=\mathrm{AE} \times \frac{\mathrm{N}_{3}}{\mathrm{~N}_{4}}\).
\(\mathrm{EG}=\)
\(\mathrm{FG}=\)
\(\mathrm{GH}=\)
Given \(\mathrm{AE}=1, \mathrm{AB}=\mathrm{AE} \times \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\)
\(\mathrm{BG}=\mathrm{AE} \times \frac{\mathrm{N}_{3}}{\mathrm{~N}_{4}}\).
\(\mathrm{AD}=\)
\(\mathrm{BE}=\)
\(\mathrm{EG}=\)
\(\mathrm{EJ}=\)
\(\mathrm{DE}=\)
\(\mathrm{EF}=\)
\(\mathrm{BD}=\)
\(\mathrm{FG}=\)
\(\mathrm{GH}=\)

10/14/95 Alternate Method: Square Root
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AB}=1\)
\(\mathrm{AF}=\mathrm{AB} \times \mathrm{N}_{1}, \mathrm{AK}=\mathrm{AB} \times \mathrm{N}_{2}\).
\(\mathrm{BF}=\)
\(\mathrm{BO}=\)
AO =
\(\mathrm{KM}=\)


GO =
\(\mathrm{CK}=\)
\(\mathrm{AJ}=\)
\(\mathrm{AD}=\)
\(\mathrm{AC}=\)
\(\mathrm{KN}=\)
\(\sqrt{\mathrm{AB} \times \mathrm{AF}}-\mathrm{AC}=\)

10/20/95 Four Times The Square
Given \(\mathrm{N}, \mathrm{AE}=1, \mathrm{AB}=\frac{\mathrm{AE}}{\mathrm{N}}\).
\(\mathrm{BE}=\)
\(\mathrm{BF}=\)
\(\mathrm{AF}=\)
\(\mathrm{AC}=\)

\(\mathrm{CE}=\)
\(\mathrm{EG}=\)
DE =
\(\frac{\mathrm{BD}^{2}}{4 \times(\mathrm{AB} \times \mathrm{DE})}=\)
\(\mathrm{BD}=\)

\section*{11/01/95 Gemini Roots}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{AG}=1\)
\(\mathrm{EF}=\frac{\mathrm{AG}}{2 \times \mathrm{N}_{1}}, \mathrm{DE}=\mathrm{AE} \times \frac{\mathrm{N}_{2}}{\mathrm{~N}_{3}}\).
\(\mathrm{AE}=\)
\(\mathrm{EG}=\)
\(\mathrm{AF}=\)

\(\mathrm{FG}=\)
FN =
GN =
GK =
EK =
\(\mathrm{EO}=\)
\(\mathrm{OK}=\)
DE =
DO =
\(\mathrm{DJ}=\)
\(\mathrm{CD}=\)
\(\mathrm{CE}=\)
\(\mathrm{CJ}=\)
\(\mathrm{AC}=\)
\(\mathrm{AJ}=\)
AL =
\(\mathrm{AB}=\)
\(\mathrm{CG}=\)
GJ =
\(\mathrm{GM}=\)
DG =
\(\mathrm{BD}=\)
\(\frac{\mathrm{N}_{1}-1}{2}-\frac{\mathrm{AB} \times \mathrm{DG}}{\mathrm{BD}}=\)

\section*{11/05/95 Gemini Roots Again}

Given N1, N2, AG = 1
\(\mathrm{AL}=\frac{\mathrm{AR}}{\mathrm{N}_{1}}, \mathrm{IM}=\frac{\mathrm{AR}}{\mathrm{N}_{2}}\).
\(\mathrm{AF}=\)
\(\mathrm{AR}=\)
\(\mathrm{FQ}=\)
\(\mathrm{FG}=\)
\(\mathrm{AK}=\)
DO =
\(\mathrm{AB}=\)
\(\mathrm{BF}=\)
\(\mathrm{FO}=\)
\(\mathrm{OQ}=\)
\(\mathrm{NP}=\)
\(C D=\)

\(\mathrm{DE}=\)
DF =
\(\mathrm{AD}=\)
AC =
\(\mathrm{EG}=\)
CE =
\(\frac{\mathrm{N}_{1}}{2}-\frac{\sqrt{\mathrm{AC} \times \mathrm{EG}}}{\mathrm{CE}}=\)

12/01/95 Method for Equals
Given \(\mathrm{N}, \mathrm{AH}=1, \mathrm{AB}=\frac{\mathrm{AE}}{\mathrm{N}}\).
\(\mathrm{AE}=\)
\(\mathrm{EH}=\)
\(\mathrm{EP}=\)
\(\mathrm{AP}=\)
\(\mathrm{CE}=\)
\(\mathrm{CH}=\)
\(\mathrm{CL}=\)
\(\mathrm{AM}=\)
\(\mathrm{MP}=\)

\(\mathrm{NP}=\)
\(\mathrm{NP}-\frac{\mathrm{N}-1}{2 \times(\mathrm{N}+1)}=\)

\section*{12/20/95 Just for Fun}

Given \(\mathrm{N}, \mathrm{EF}=1, \mathrm{EJ}=\mathrm{EF} \times \mathrm{N}\).
\(\mathrm{AE}=\)
\(\mathrm{AF}=\)
\(\mathrm{AB}=\)
\(\mathrm{BF}=\)
\(\mathrm{BE}=\)
BH =
\(\mathrm{BJ}=\)
\(\mathrm{BD}=\)
\(\mathrm{BG}=\)
\(\mathrm{BC}=\)
\(\mathrm{GH}=\)
DE =
\(\mathrm{HO}=\)

\(\mathrm{EG}_{1}=\)
GJ =
\(\mathrm{EG}_{2}=\)
\(\frac{\mathrm{EG}_{1}}{\mathrm{EG}_{2}}=\)

\section*{12/29/95}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AC}=\mathrm{N}_{1}, \mathrm{CE}=\mathrm{N}_{2}\).
\(\mathrm{AE}=\)
\(\mathrm{AD}=\)
\(\mathrm{AB}=\)
\(\mathrm{BC}=\)
\(\mathrm{BD}=\)
\(C D=\)
DE =


01/07/96 Two Cube Rustic
Given \(\mathrm{AD}=2, \mathrm{AF}=\frac{8 \times \mathrm{AG}}{9}\).
\(\mathrm{AB}=\)
\(\mathrm{AG}=\)
\(\mathrm{AC}=\)


\section*{01/08/96 Alternate Method: Power Line}

Given \(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{D}, \mathrm{DE}=\mathrm{R}_{1}\)
\(K M=R_{2}, E K=D\).
\(\mathrm{DM}=\)
\(\mathrm{EF}=\)
\(\mathrm{JK}=\)
\(\mathrm{FJ}=\)
\(\mathrm{AD}=\)
\(\mathrm{BM}=\)
DF =
\(\mathrm{JM}=\)
\(\mathrm{FG}=\)
\(\mathrm{GJ}=\)
DI =
DG =
\(\begin{array}{ll}\mathrm{GI}= & \mathrm{GH}= \\ \mathrm{CI}= & \mathrm{DH}= \\ \mathrm{GM}=\end{array}\)
GN =


\section*{01/13/96 Pyramid of Ratios VI: Moving the Point}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AD}=1\)
\(\mathrm{AB}=\frac{\mathrm{AD}}{\mathrm{N}_{1}}, \mathrm{BE}=\frac{\mathrm{BG}}{\mathrm{N}_{2}}\).
\(\mathrm{BD}=\)
\(\mathrm{BG}=\)
\(\mathrm{BC}=\)

\(\mathrm{AE}=\)
\(\mathrm{AC}=\)
DG =
\(\mathrm{AF}=\)
CE =
\(\mathrm{EF}=\)
\(\frac{A F}{E F}-\frac{N_{2} N_{1}}{\left(N_{2}-1\right)\left(N_{1}-N_{1}\right)}=\)
DF =
GF =
\(\frac{\mathrm{DG}}{\mathrm{GF}}-\frac{\mathrm{N}_{2}+\mathrm{N}_{1}-1}{\mathrm{~N}_{2}-1}=\)

\section*{01/17/96 A Right Triangle In A Given Ratio}

Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AE}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{BE}=\)
\(\mathrm{BD}=\)
\(\mathrm{DF}=\)
DE =

\(\mathrm{AD}=\)
\(\mathrm{BC}=\)
DH =
\(\mathrm{CE}=\)
\(\mathrm{AH}=\)
\(\mathrm{CF}=\)
\(\mathrm{AG}=\)
\(\mathrm{BF}=\)
GH =
\(\mathrm{EF}=\)
\(\mathrm{FG}=\)
\(\mathrm{AC}=\)
\(\mathrm{AF}=\)
\(C D=\)
\(\frac{\mathrm{AE}}{\mathrm{AB}}-\frac{\mathrm{EF}}{\mathrm{BF}}=\)

01/17/96b Divide The Sides Of A Triangle In A Given Ratio
Given N1, N2, AB = 1
\(A G=A B \times N_{1}, B D=\frac{C F}{N_{2}}+B C\)
\(\mathrm{BG}=\)
\(\mathrm{BF}=\)
\(\mathrm{AC}=\)
\(\mathrm{AF}=\)
CF =
\(\mathrm{BC}=\)
DF =
DG =
DM =
\(\mathrm{FO}=\)
EF =
\(\mathrm{AE}=\)
\(\mathrm{EO}=\)
\(\mathrm{MO}=\)
\(\mathrm{KM}=\)
HK =
\(\mathrm{HM}=\)
\(\mathrm{BM}=\)
\(\mathrm{BH}=\)
GM =
LM =
GL =
\(\frac{\mathrm{AG}}{\mathrm{AB}}-\frac{\mathrm{GL}}{\mathrm{BH}}=\)
EK =


\section*{01/21/96 The Power Line for Cube Roots}

Given \(\mathrm{N}, \mathrm{BH}=1, \mathrm{BE}=\frac{\mathrm{BG}}{\mathrm{N}}\).
\(\mathrm{BP}=\)
\(\mathrm{HQ}=\)
BG =
GO =
GN =
\(\mathrm{NO}=\)
GH =
\(\mathrm{EG}=\)
\(\mathrm{EO}=\)
\(\mathrm{MO}=\)
\(\mathrm{EM}=\)


EL =
DM =
LK =
\(\mathrm{LO}=\)
\(\mathrm{LJ}=\)
\(\mathrm{BD}=\)
\(\mathrm{BC}=\)
\(\mathrm{EJ}=\)
\(\mathrm{AE}=\)
AH =
\(\mathrm{AB}=\)
DE =
DH =
DF =
\(\mathrm{AC}=\)
\(\mathrm{AF}=\)
\(\left(\mathrm{AB}^{2} \times \mathrm{AH}\right)^{1 / 3}-\mathrm{AC}=\)
\(\left(\mathrm{AB} \times \mathrm{AH}^{2}\right)^{1 / 3}-\mathrm{AF}=\)
01/22/96 Alternate Method: Square Root
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AF}=1\)
\(\mathrm{AL}=\mathrm{AF} \times \mathrm{N}_{1}, \mathrm{GK}=\frac{\mathrm{GL}}{\mathrm{N}_{2}}\).
FL \(=\)
\(\mathrm{FJ}=\)
AM =
AJ =
\(\mathrm{AG}=\)
GL =
FG =
\(\mathrm{FK}=\)
KL =
EK =
AK =

\(\mathrm{AE}=\)
\(\mathrm{AD}=\)
\(\mathrm{DE}=\)
\(\mathrm{BD}=\)
\(\mathrm{AB}=\)
\(\sqrt{\mathrm{AB} \times \mathrm{AE}}-\mathrm{AM}=\)

\section*{01/24/96 Tangent}

Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AE}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{BE}=\)
\(\mathrm{BD}=\)
\(\mathrm{AD}=\)
DM =
DH =
\(\mathrm{CD}=\)
\(\mathrm{BC}=\)

\(\mathrm{CE}=\)
\(\mathrm{CJ}=\)
\(\mathrm{AJ}=\)
\(\mathrm{AJ}-\sqrt{\mathrm{N}}=\)

01/25/96 Projecting to the Cubic Similarity Point
Given \(\mathrm{N}, \mathrm{BE}=1, \mathrm{BC}=\frac{\mathrm{BD}}{\mathrm{N}}\).
\(\mathrm{BD}=\)
DK =
DJ =
\(\mathrm{JK}=\)
DE =
\(\mathrm{CD}=\)
CK =
\(\mathrm{HK}=\)
\(\mathrm{CH}=\)
\(\mathrm{CF}=\)
\(\mathrm{FK}=\)
GK =
\(\mathrm{FG}=\)
GJ =
\(\mathrm{AD}=\)
\(\mathrm{AE}=\)
\(\mathrm{AB}=\)

E


\section*{01/29/96 Linear Division}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AE}=1\)
\(\mathrm{AH}=\mathrm{AE} \times \mathrm{N}_{1}, \mathrm{AC}=\frac{\mathrm{AE}}{2}\)
\(\mathrm{CF}=\mathrm{AE} \times \mathrm{N}_{2}\).
\(\mathrm{BC}=\)
\(\mathrm{CE}=\)
\(\mathrm{BE}=\)
\(\mathrm{CD}=\)
\(\mathrm{DE}=\)
\(\mathrm{AD}=\)
DG =
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{AE}=1\)
\(\mathrm{AH}=\mathrm{AE} \times \mathrm{N}_{1}, \mathrm{AC}=\frac{\mathrm{AE}}{\mathrm{N}_{2}}\)
\(\mathrm{DE}=\)
\(\mathrm{AD}=\)
\(\mathrm{CF}=\mathrm{AE} \times \mathrm{N}_{3}\).
\(\mathrm{BC}=\)
\(\mathrm{CE}=\)
\(\mathrm{BE}=\)
\(\mathrm{CD}=\)

DG =


\section*{01/31/96 Gemini Roots}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{BC}=1\)
\(B J=B C \times N_{1}, C R=C J \times N_{2}\).
\(\mathrm{CJ}=\)
\(\mathrm{CI}=\)
\(\mathrm{IJ}=\)
\(\mathrm{BF}=\)
\(\mathrm{AB}=\)
\(\mathrm{AF}=\)
\(\mathrm{CF}=\)
\(\mathrm{FJ}=\)
\(\mathrm{FO}=\)
HS =
\(\mathrm{FI}=\)
\(\mathrm{FG}=\)
\(\mathrm{AG}=\)
OS =
\(\mathrm{GO}=\)
\(\mathrm{AJ}=\)
GL =
\(\mathrm{FU}=\)
\(\mathrm{AH}=\)

DK =
\(\mathrm{AC}=\)
\(\mathrm{CH}=\)
HJ =
\(\mathrm{CE}=\)
\(\frac{\mathrm{AF}}{\mathrm{FO}}-\frac{\mathrm{AE}}{\mathrm{EN}}=\)
\(\mathrm{BD}=\)
\(\sqrt{\mathrm{BC} \times \mathrm{BJ}}-\sqrt{\mathrm{BD} \times \mathrm{BH}}=\)

\(\mathrm{AD}=\)
\(\mathrm{CD}=\)
DH =
\(\mathrm{EN}=\)
\(\mathrm{AE}=\)
\(\mathrm{BH}=\)

\section*{02/02/96 Find A Segment}

Given \(\mathrm{N}, \mathrm{N}>2=1, \mathrm{BC}=1\)
\(\mathrm{BE}=\mathrm{BC} \times \mathrm{N}\).
\(\mathrm{BD}=\)
\(\mathrm{CD}=\)
\(\mathrm{CH}=\)
DH =
DF =

\(\mathrm{AD}=\)
\(A B=\)
\(\mathrm{AB}-\frac{1}{\mathrm{~N}-2}\)

04/14/96 Method for Unequals
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{CM}=1\)
\(\mathrm{CE}=\frac{\mathrm{CM}}{\mathrm{N}_{1}}, \mathrm{LM}=\frac{\mathrm{CM}}{\mathrm{N}_{2}}\).
CK =
\(\mathrm{EL}=\)
BL =

\(\mathrm{BM}=\)
\(\mathrm{HK}=\)
\(\mathrm{BC}=\)
CH =
BK =
\(\mathrm{HN}=\)
\(\mathrm{KS}=\)
\(\mathrm{EH}=\)
JR
\(\mathrm{FK}=\)
CF =
\(\mathrm{FM}=\)
FS =
\(\mathrm{RO}=\)
PS =
\(\mathrm{PS}-\frac{\left(\mathrm{R}_{2}-2\right)\left(\mathrm{N}_{1}-2\right)}{2\left(\mathrm{~N}_{1} \mathrm{~N}_{2}-4\right)}=\)

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AJ}=1\),
\(\mathrm{HJ}=\frac{\mathrm{AJ}}{\mathrm{N}_{1}}, \mathrm{NO}=\frac{\mathrm{AJ}}{\mathrm{N}_{2}}\).
\(\mathrm{AF}=\)
\(\mathrm{HM}=\)
\(\mathrm{MO}=\)
\(\mathrm{HO}=\)
\(\mathrm{FO}=\)
\(\mathrm{AH}=\)
\(\mathrm{FH}=\)
\(\mathrm{EH}=\)
\(\mathrm{EO}=\)
\(\mathrm{OP}=\)
\(\mathrm{EG}=\)
AG =
\(\mathrm{AP}=\)
\(\mathrm{AL}=\)

\(\mathrm{AE}=\)
GP =
PL=
\(\mathrm{AB}=\)

\section*{04/17/96 A Circle In A Crescent}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{AJ}=1\)
\(\mathrm{AF}=\frac{\mathrm{AJ}}{\mathrm{N}_{1}}, \mathrm{AC}=\frac{\mathrm{AD}}{\mathrm{N}_{2}}, \mathrm{BH}=\frac{\mathrm{BJ}}{\mathrm{N}_{3}}\).
\(\mathrm{AG}=\)
\(\mathrm{FR}=\)
\(\mathrm{AD}=\)
\(\mathrm{CF}=\)
\(\mathrm{CG}=\)
\(\mathrm{BC}=\)
\(\mathrm{AB}=\)
\(\mathrm{BJ}=\)
AH =
\(\mathrm{GH}=\)
\(\mathrm{HR}=\)
\(\mathrm{AP}=\)
PR =
PS =
BS =
RS =
NS =
\(\mathrm{CN}=\)
\(\mathrm{CS}=\)
SK =
\(K M=\)
SL=
\(\mathrm{EN}=\)
HT =
\(\mathrm{GO}=\)

\(\mathrm{CK}=\)
KN =
SM =
\(\mathrm{BL}=\)
\(\mathrm{CE}=\)
GT =
\(\mathrm{OR}=\)

04/17/96b A Circle In A Crescent
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{AK}=1\)
\(\mathrm{AH}=\frac{\mathrm{AK}}{\mathrm{N}_{1}}, \mathrm{AD}=\frac{\mathrm{AE}}{\mathrm{N}_{2}}, \mathrm{CJ}=\frac{\mathrm{CK}}{\mathrm{N}_{3}}\).
\(\mathrm{AF}=\)
\(\mathrm{FP}=\)
\(\mathrm{FK}=\)
\(\mathrm{AE}=\)
\(\mathrm{EH}=\)
DE =
DH =
DN =
DF =
\(C D=\)
\(\mathrm{AC}=\)
CF =

\(\mathrm{FJ}=\)
\(\mathrm{JP}=\)
\(\mathrm{FS}=\)
PS =
\(\mathrm{QS}=\)
\(P Q=\)
CS =
\(C Q=\)
\(\mathrm{NQ}=\)
DQ =
DL =
\(\mathrm{LN}=\)
LZ =
\(\mathrm{QZ}=\)
\(\mathrm{MQ}=\)
\(\mathrm{CM}=\)
GN =
CG =
\(\mathrm{BJ}=\)
\(\mathrm{BF}=\)
\(\mathrm{FO}=\)
\(\mathrm{OP}=\)

\section*{04/22/96}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AC}\)
\(\mathrm{BF}=\frac{\mathrm{BM}}{\mathrm{N}_{1}}, \mathrm{EG}=\frac{\mathrm{EI}}{\mathrm{N}_{2}}\).
\(\mathrm{AB}=\)
\(\mathrm{BM}=\)
\(\mathrm{BE}=\)
\(\mathrm{BL}=\)
\(\mathrm{EF}=\)
\(\mathrm{EI}=\)
\(\mathrm{FG}=\)
\(\mathrm{BG}=\)
GL =
DG =
\(\mathrm{GH}=\)
HL =
\(\mathrm{EH}=\)
\(\mathrm{EL}=\)
\(\mathrm{JL}=\)
\(\mathrm{BJ}=\)
\(\mathrm{LN}=\)
GN =
JN =
\(\mathrm{EJ}=\)
EN =
GO =
\(\mathrm{NO}=\)

\(\mathrm{NR}=\)
GS =
RS =
DT =
DS =
RT =
\(\mathrm{OR}=\)
\(\mathrm{OT}=\)
DO =
\(\mathrm{OQ}=\)
\(G Q=\)
DQ =
FU =
\(\mathrm{CE}=\)

\section*{04/23/96 Found a Sketch}

Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AH}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{BH}=\)
\(\mathrm{BG}=\)
BN =
GO =
\(\mathrm{HP}=\)
\(\mathrm{GM}=\)
\(\mathrm{GH}=\)
\(\mathrm{AG}=\)
\(\mathrm{AM}=\)
\(\mathrm{AL}=\)
\(\mathrm{LM}=\)
\(\mathrm{JL}=\)
\(\mathrm{AJ}=\)
\(\mathrm{AD}=\)
\(\mathrm{BD}=\)
DH =
DJ =
\(\mathrm{BC}=\)

\(\mathrm{DF}=\)
\(\mathrm{CD}=\)
\(\mathrm{CF}=\)
\(\mathrm{CE}=\)
\(\mathrm{BE}=\)
AE =
EK =
\(\mathrm{EK}-\mathrm{CF}=\)
04/24/96 Three Circles Tangent to a Chord
Given \(N, A F=1, A C=\frac{A F}{N}\).
\(\mathrm{AD}=\)
DO =
OR =
\(\mathrm{CD}=\)
\(\mathrm{CO}=\)
\(\mathrm{PO}=\)
\(\mathrm{CP}=\)
\(\mathrm{CK}=\)
JK =
\(\mathrm{KO}=\)

\(\mathrm{JO}=\)
KS =
\(\mathrm{SO}=\)
\(\mathrm{JS}=\)
ST =
\(\mathrm{JT}=\)
\(\mathrm{TU}=\)
DU =
\(\mathrm{CV}=\)
\(C Q=\)
\(\mathrm{QV}=\)
\(\mathrm{BH}=\)
\(\mathrm{TO}=\)

\section*{04/25/96 One Over N + One}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AC}=1\)
\(A F=A C \times N_{1}, F K=A C \times N_{2}\).
\(\mathrm{CF}=\)
\(\mathrm{CE}=\)

\(\mathrm{AE}=\)
\(\mathrm{CD}=\)
DL =
DH =
\(\mathrm{EF}=\)
HL =
DF \(=\)
\(\mathrm{BC}=\)
\(\mathrm{CG}=\)
\(\mathrm{BC}-\frac{1}{\mathrm{~N}_{1}+1}=\)

\section*{04/27/96 A Root Figure}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{CD}=1\)
\(C E=C D \times N_{1}, F K=C D \times N_{2}\).
\(\mathrm{CF}=\)
DM =
EL =


DF =
\(\mathrm{EF}=\)
\(\mathrm{CG}=\)
\(\mathrm{EJ}=\)
DH =
\(\mathrm{JL}=\)
KL =
\(\mathrm{AF}=\)
\(\mathrm{AC}=\)
\(\mathrm{HM}=\)
\(\mathrm{BC}=\)
\(\mathrm{BF}=\)
\(\mathrm{BD}=\)
\(\sqrt{\mathrm{BD} \times \mathrm{BF}}-\mathrm{BD}=\)
04/29/96 What is DJ?
Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AG}=\mathrm{AB} \times \mathrm{N}\).
\(\mathrm{BG}=\)
\(\mathrm{BF}=\)
\(\mathrm{FK}=\)
\(\mathrm{FO}=\)
\(\mathrm{AF}=\)
DF =
AK =
\(\mathrm{KO}=\)
DH =
\(\mathrm{HO}=\)
DJ \(-\frac{\sqrt{N}(N-1)}{N+1}=\)


\section*{12/20/96 Alternate Method Quad Roots}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AB}=1\)
\(\mathrm{AL}=\mathrm{AB} \times \mathrm{N}_{1}, \mathrm{BQ}=\mathrm{BS} \times \mathrm{N}_{2}\).
\(\mathrm{BL}=\)
BS =
\(\mathrm{LT}=\)
\(\mathrm{BH}=\)
HL =
\(\mathrm{AF}=\)
FL =
\(\mathrm{BF}=\)
\(\mathrm{FP}=\)
\(\mathrm{FN}=\)
\(\mathrm{EF}=\)
EL =
\(\mathrm{FG}=\)
GO =


GL =
LR =
\(\mathrm{AJ}=\)
\(\mathrm{JL}=\)
\(\left(\mathrm{AB} \times \mathrm{AL}^{3}\right)^{1 / 4}-\mathrm{AJ}=\)

04/04/97 Triangles
Given \(\mathrm{AB}, \mathrm{AC}, \mathrm{CD}\).
\(\mathrm{AD}=\)
\(\mathrm{BD}_{1}=\)
\(\mathrm{BD}_{2}=\)
\(\mathrm{BC}_{1}=\)
\(\mathrm{BC}_{2}=\)


\section*{09/11/97 The Ellipse}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AD}=1\)
\(\mathrm{EF}=\frac{\mathrm{AD}}{\mathrm{N}_{1}}, \mathrm{AB}=\frac{\mathrm{AD}}{\mathrm{N}_{2}}\).
\(\mathrm{BD}=\)
\(\mathrm{BJ}=\)
\(\mathrm{AC}=\)
\(\mathrm{BC}=\)
\(\mathrm{CH}=\)
\(\mathrm{CJ}=\)
\(\mathrm{BG}=\)
\(\mathrm{CG}=\)
\(\mathrm{MN}=\)


02/10/98 A Square In A Triangle
Given \(\mathrm{N}, \mathrm{AE}=1, \mathrm{EG}=\mathrm{N}\).
\(\mathrm{AB}=\)
\(\mathrm{BJ}=\)
\(\mathrm{BD}=\)
\(\mathrm{AD}=\)
\(\mathrm{CE}=\)
\(\mathrm{AC}=\)
\(\mathrm{FG}=\)
\(\frac{\mathrm{AE}}{\mathrm{AC}}-(\mathrm{N}+1)=\)


\section*{02/25/98 Alternate Method Root Series}

Given \(\mathrm{N}, \mathrm{AH}=1, \mathrm{HN}=\mathrm{AH} \times \mathrm{N}\).
\(\mathrm{HJ}=\)
\(\mathrm{FH}=\)
\(\mathrm{AF}=\)
\(\mathrm{FG}=\)
\(\mathrm{DF}=\)
\(\mathrm{AD}=\)
DE =
\(\mathrm{BD}=\)
\(A B=\)


02/25/98B Sum Divided by One Powered
Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AH}=1\)
\(\mathrm{HM}=\mathrm{AH} \times \mathrm{N}_{1}, \mathrm{AN}=\mathrm{AH} \times \mathrm{N}_{2}\).
\(\mathrm{HO}=\)
\(\mathrm{AO}=\)
\(\mathrm{AF}=\)
FH =
\(\mathrm{FG}=\)
DF =
\(\mathrm{AD}=\)
DE =
\(\mathrm{BD}=\)
\(\mathrm{AB}=\)
\(\frac{\mathrm{AH}}{\mathrm{AB}}-\left(\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{2}}\right)^{3}\)


\section*{07/24/99 On Gemini Roots}

Given \(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{AB}=1\)
\(\mathrm{AD}=\mathrm{AB} \times \mathrm{N}_{1}, \mathrm{EF}=\frac{\mathrm{CE}}{\mathrm{N}_{2}}\).
\(\mathrm{BD}=\)
\(\mathrm{BC}=\)
\(\mathrm{CW}=\)
\(\mathrm{CT}=\)
\(\mathrm{FV}=\)
\(\mathrm{AI}=\)
BI =
DI =
IR =
\(\mathrm{AE}=\)
\(\mathrm{AC}=\)
ED =
\(\mathrm{CE}=\)
\(\mathrm{BE}=\)
\(\mathrm{EI}=\)
FI =
\(\mathrm{FG}=\)
\(\mathrm{EG}=\)
GI =
\(\mathrm{GM}=\)
\(\mathrm{Ia}=\)
EL =
BR =
\(\mathrm{Ba}=\)


BH =
\(\mathrm{EH}=\)
\(\mathrm{CI}=\)
\(\mathrm{JO}=\)
\(\mathrm{CJ}=\)
\(\mathrm{JI}=\)
\(\mathrm{CY}=\)
\(\frac{\mathrm{CY}}{\mathrm{CW}}-\frac{\mathrm{CE}}{\mathrm{EF}}=\)

\section*{08/11/99 A Delian Solution}

Plate 1
Given \(\mathrm{N}, \mathrm{AB}=1, \mathrm{AG}=\mathrm{AB} \times \mathrm{N}\).
BG =
\(\mathrm{AD}=\)


Plate 2
BF =
\(\mathrm{FG}=\)
\(\mathrm{AF}=\)
FX =
\(\mathrm{Mf}=\)
Lf \(=\)


Plate 3
ML =
FL =
\(\mathrm{Xd}=\)
df \(=\)
IX =
\(\mathrm{Md}=\)
\(\mathrm{MX}=\)


Plate 4
SX =
\(\mathrm{Lg}=\)
QX =
\(\mathrm{Fg}=\)
\(\mathrm{Xg}=\)
Qg =


Plate 5
\(\mathrm{Kg}=\)
GK =
GJ =
GT =
\(\mathrm{JT}=\)
\(\mathrm{IJ}=\)


Plate 6
\(\mathrm{FP}=\)
\(\mathrm{OP}=\)
\(K P=\)
\(\mathrm{Pi}=\)
\(\mathrm{Oi}=\)
hi \(=\)


Plate 7
fi \(=\)
fh \(=\)
\(\mathrm{KO}=\)
\(\mathrm{hk}=\)
\(\mathrm{fk}=\)
\(\mathrm{Nf}=\)
\(\mathrm{Nk}=\)


Plate 8
\(\mathrm{Nh}=\)
\(\mathrm{Oh}=\)
\(\mathrm{NO}=\)
\(\mathrm{KN}=\)
\(\mathrm{NI}=\)
\(\mathrm{KI}=\)


Plate 9
FK =
\(\mathrm{Fl}=\)
\(\mathrm{NX}=\)
\(\mathrm{XY}=\)
\(\mathrm{Fm}=\)
\(\mathrm{Km}=\)


Plate 10
Fo =
\(\mathrm{Xo}=\)
mo =
\(\mathrm{Ym}=\)
\(\mathrm{FI}=\)
IL \(=\)


Plate 11
IS =
In=
\(\mathrm{Xn}=\)
\(\mathrm{QR}=\)
\(\mathrm{KT}=\)
\(K Y=\)
\(\mathrm{KQ}=\)
\(R Y=\)


Plate 12
\(\mathrm{Xd}=\)
dp \(=\)
\(\mathrm{pq}=\)
\(\mathrm{dq}=\)
\(\mathrm{Xp}=\)
\(\mathrm{Op}=\)


Plate 13
er \(=\)
\(\mathrm{Re}=\)
\(\mathrm{Rr}=\)
\(\mathrm{Rq}=\)
\(\mathrm{Rs}=\)


Plate 14
\(\mathrm{AC}=\)
\(\mathrm{AE}=\)
\(\mathrm{BC}=\)
\(\mathrm{BE}=\)
\(\mathrm{CE}=\)
\(\mathrm{EG}=\)


Plate 15
\(\mathrm{CU}=\)
BU =
GU =
UZ =
UW =
\(\mathrm{Gg}=\)


Plate 16
tu =
gt \(=\)
\(\mathrm{Gt}=\)
GW =
Wt =-
\(\mathrm{tv}=\)
\(\mathrm{Kt}=\)


Plate 17
\(\mathrm{Rt}=\)
\(\mathrm{Rv}=\)
bc =
\(\mathrm{Rc}=\)
\(\mathrm{cv}=\)
\(\mathrm{Yw}=\)


Plate 18
WZ =
\(\mathrm{Wv}=\)
\(\mathrm{Zv}=\)


\section*{Three Pieces Of Paper}


\section*{Three Pieces Of Paper}

\section*{Introduction}

Is a novel about the search for a method to divide angles into at least three equal parts. The novel is written in the relatiologic of Geometry and the tautologic of basic Algebra.
I suspect that someday I might have something of significance to write here. J. C.

\section*{Three Pieces Of Paper}


\section*{11/11/93 The Archamedian Paper Trisector}

If one accepts the facts of the original figure, one only need prove that \(\mathrm{BK}=\mathrm{AB}\).
If one does not accept the facts, examination of the construction should make it apparent. Does \(\mathrm{FK}=\mathrm{BK}=\mathrm{AB}\) ?

N:= 4
AJ := 1
AE \(:=\frac{\mathrm{AJ}}{2}\)
EJ \(:=\) AE \(\quad\) EN \(:=\) AEEM \(:=\) AE AC \(:=\frac{\mathbf{A J}}{\mathbf{N}}\)

CJ \(:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{C N}:=\sqrt{\text { AC•CJ }} \quad \mathrm{JN}:=\sqrt{\mathbf{C N}^{2}+\mathrm{CJ}^{2}} \mathrm{JL}:=\frac{\mathrm{JN}}{2} \quad\) GL \(:=\frac{\mathrm{CN}}{2} \quad\) GJ \(:=\frac{\mathrm{CJ}}{2}\)
EG \(:=\mathbf{E J}-\mathbf{G J}\) EL \(:=\sqrt{\mathbf{E G}^{2}+\mathbf{G L}^{2}}\) EH \(:=\frac{\mathrm{EG} \cdot \mathbf{E M}}{\mathrm{EL}} \quad \mathbf{H M}:=\frac{\mathbf{G L} \cdot \mathbf{E M}}{\mathbf{E L}} \mathbf{A H}:=\mathrm{AE}+\mathbf{E H}\)
\(\mathrm{CO}:=\frac{\mathrm{AH} \cdot \mathrm{CN}}{\mathrm{HM}} \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \mathrm{EO}:=\mathrm{CO}+\mathrm{CE} \quad \mathrm{EK}:=\frac{\mathrm{EN} \cdot \mathrm{AE}}{\mathrm{EO}} \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{AE}}{\mathrm{EO}} \mathrm{DK}:=\frac{\mathrm{CN} \cdot \mathrm{EK}}{\mathrm{EN}}\)
\(\mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{KN}:=\mathrm{EN}-\mathbf{E K} \mathbf{B K}:=\mathrm{KN} \mathbf{B D}:=\sqrt{\mathbf{B K}^{2}-\mathrm{DK}^{2}} \quad \mathrm{AB}:=\mathrm{AD}-\mathbf{B D}\)
\(A B-B K=0 \quad A B=0.25 \quad\) If PK is parallel to AJ, then \(\ldots\)

\[
\mathbf{A N}:=2 \cdot \mathbf{E L} \quad \text { AP }:=\mathrm{AB} \quad \mathbf{P Q}:=\frac{\mathbf{C N} \cdot \mathbf{A P}}{\mathbf{A N}} \quad \mathbf{P Q}-\mathbf{D K}=0
\]

\section*{Three Pieces Of Paper}


\section*{Given AB, AF, BE, what is EF?}

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{5} \quad \text { AF }:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B E}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{A D}:=\mathbf{B E} \mathbf{D E}:=\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \mathbf{E F}:=\left(\mathbf{D F}^{2}+\mathbf{D E}^{2}\right)^{\frac{1}{2}}
\end{aligned}
\]
\[
E F-\sqrt{N_{1}^{2}-2 \cdot N_{1} \cdot N_{2}+N_{2}^{2}+N_{3}^{2}}=0
\]

\section*{Three Pieces Of Paper}


\section*{Three Pieces Of Paper}


\section*{010496 The Archamedian Paper Trisector- Without the Numbers.}


Given any circle AB.
Given any circle \(B C\) such that \(B C \leq 2 A B\).
Construct AE such that \(\mathrm{AE}=\mathrm{AC}\).
As \(\mathbf{A C}=\mathbf{A B}+\mathbf{B C}\)
and \(A D=A B\) so too \(D E=B C\).
Construct DH parallel to BD.
Construct CE.
As \(A B=A D\) and \(A C=A E\),
\(\triangle \mathrm{ABD}\) is proportional to \(\triangle \mathrm{ACE}\), therefore CE is parallel to BD .
From here one can take two paths.
Construct GJ parallel to EF.
As CE is parallel to DH,
DG \(=\mathbf{C H}\).
As GJ is parallel to EF,
\[
\mathbf{D G}=\mathbf{F J}
\]

As \(\angle\) HBJ is opposite and equal to \(\angle\) GBD, \(\mathbf{D G}=\mathbf{H J}\),
therefore \(\angle \mathrm{DG}\) is \(\frac{1}{3} \mathrm{CF}\).
As CE is parallel to DH and EF is parallel to GJ, EGBD is equilateral.
By construction DK = KM.
As DH is parallel to CE,
CH = DG.

As DK is equal and opposite CH ,
\[
\mathrm{MK}+\mathrm{DK}+\mathrm{DG} \text { is } \frac{1}{3} \mathrm{DG} .
\]


\section*{Three Pieces Of Paper}


\section*{042897}

\[
\begin{aligned}
& \mathbf{N}:=1.458 \quad \text { AD }:=\mathbf{1} \quad \text { AC }:=\mathbf{A D} \cdot \mathbf{N} \quad \mathbf{N}:=\mathbf{N} \\
& \mathrm{CD}:=\sqrt{\mathrm{AD}^{2}+\mathrm{AC}^{2}} \quad \mathrm{DH}:=\mathrm{CD} \\
& \text { CG }:=\mathrm{AD} \text { DG }:=\mathrm{AC} \text { GH }:=\mathrm{DH}-\mathrm{DGCH}:=\sqrt{\mathbf{G H}^{2}+\mathrm{CG}^{2}} \\
& \text { HJ := CG DJ := DG } \\
& \mathbf{F H}:=\frac{\left(\mathbf{H} \mathbf{J}^{2}+\mathbf{D H}{ }^{\mathbf{2}}\right)-\mathbf{D J}^{\mathbf{2}}}{2 \cdot \mathbf{D H}} \mathbf{E F}:=\mathbf{F H} \quad \mathbf{D E}:=\mathbf{D H}-(\mathbf{E F}+\mathbf{F H}) \\
& \text { AB := DE EG := DG - DE LM := CH LK := EG } \\
& \text { KM }:=\sqrt{L^{2}-L^{2}}{ }^{2} \text { BE }:=\mathrm{AD} \text { BK }:=2 \cdot \mathrm{BE} \quad \mathrm{BM}:=\mathrm{BK}+\mathrm{KM}
\end{aligned}
\]

Some Algebraic Names:
\(\sqrt{\mathbf{N}^{2}+1}-\mathbf{C D}=0 \quad \mathbf{N}-\mathbf{A C}=0 \quad \sqrt{\mathbf{N}^{2}+1}-\mathbf{N}-\mathbf{G H}=0 \quad \sqrt{2 \cdot \mathbf{N}^{2}-2 \cdot \sqrt{\mathbf{N}^{2}+1} \cdot \mathbf{N}+2-C H=0}\)
\(\frac{1}{\sqrt{N^{2}+1}}-\mathbf{F H}=0 \quad \frac{(N-1) \cdot(N+1)}{\sqrt{N^{2}+1}}-\mathbf{A B}=0 \quad 2+\sqrt{\frac{5 \cdot N^{2}}{N^{2}+1}-\frac{4 \cdot N}{\sqrt{N^{2}+1}}+\frac{1}{N^{2}+1}}-\mathbf{B M}=0\)

\section*{Trisection and the Cube Roots 042997}

If trisection can be placed at RUE, then PV is proportional to RW.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A H}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{B H} \\
& \mathbf{A C}:=(\mathbf{A B} \cdot \mathbf{A H})^{\frac{\mathbf{1}}{\mathbf{3}}} \quad \mathbf{A F}:=\left(\mathbf{A B} \cdot \mathbf{A H}^{\mathbf{2}}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \\
& \mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \quad \mathbf{C E}:=\frac{\mathbf{C F}}{\mathbf{2}} \\
& \mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \\
& \mathbf{A U}:=\mathbf{C E} \mathbf{N V}:=\mathbf{A U} \mathbf{M W}:=\mathbf{A U}
\end{aligned}
\]
(For the next two equations see 042897.)
\[
\mathbf{A M}:=\frac{\left(\frac{\mathbf{A E}}{\mathbf{A U}}-\mathbf{1}\right) \cdot\left(\frac{\mathbf{A E}}{\mathbf{A U}}+\mathbf{1}\right) \cdot \mathbf{A U}}{\sqrt{\left(\frac{\mathbf{A E}}{\mathbf{A U}}\right)^{2}+\mathbf{1}}}
\]
\[
M R:=2 \cdot A U+A U \cdot \sqrt{\frac{5 \cdot\left(\frac{A E}{A U}\right)^{2}}{\left(\frac{A E}{A U}\right)^{2}+1}-\frac{4 \cdot \frac{A E}{A U}}{\sqrt{\left(\frac{A E}{A U}\right)^{2}+1}}+\frac{1}{\left(\frac{A E}{A U}\right)^{2}+1}} \mathbf{R W}:=M R-M W
\]
\[
\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{F H}:=\mathbf{A H}-\mathbf{A F} \mathbf{C N}:=\frac{\mathbf{B C} \cdot \mathbf{C F}}{\mathbf{B C}+\mathbf{F H}} \quad \mathbf{N P}:=\frac{\mathbf{B J} \cdot \mathbf{C N}}{\mathbf{B C}} \quad \text { PV }:=\mathbf{N P}-\mathbf{N V}
\]
\[
\mathbf{A N}:=\mathbf{A C}+\mathbf{C N} \quad \mathbf{U V}:=\mathbf{A N} \mathbf{U W}:=\mathbf{A M} \quad \frac{\mathbf{R W} \cdot \mathbf{U V}}{\mathbf{U W}}-\mathbf{P V}=\mathbf{0}
\]

\section*{Three Pieces Of Paper}



\section*{A Square Root Figure And Triseciton 042398}

In this square root figure, what is the radius of the circle with the trisected angle? What is the radius CH ?

\[
\begin{aligned}
& \mathbf{N}:=5 \quad \mathbf{A B}:=1 \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \mathbf{A D}:=(\mathbf{A B} \cdot \mathbf{A F})^{\frac{\mathbf{1}}{\mathbf{2}}} \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathrm{G} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD} \quad \mathrm{EQ}:=\mathrm{BE} \quad \mathrm{DQ}:=\left(\mathrm{DE}^{2}+\mathrm{EQ}^{2}\right)^{\frac{1}{2}} \\
& \begin{array}{rlr}
\mathrm{A} & \mathrm{PQ}:=\mathrm{BF} \text { QM }:=\frac{\mathrm{EQ} \cdot \mathrm{PQ}}{\mathrm{DQ}} & \mathrm{DM}:=\mathbf{Q M} \\
\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \mathrm{AC}:=\frac{\mathrm{AE}}{2} & \mathrm{Db}:=\frac{\mathrm{DM}}{2}
\end{array} \\
& \mathbf{C M}:=\mathrm{AC} \quad \text { ab }:=\frac{\mathbf{C M} \cdot \mathbf{D b}}{\mathrm{DM}} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \\
& \mathbf{C a}:=\frac{\mathbf{C D}}{2} \mathrm{Aa}:=\mathrm{AC}+\mathbf{C a} \quad \mathrm{CH}:=\frac{\mathbf{a b} \cdot \mathbf{A C}}{\mathrm{Aa}} \\
& A M:=A D \quad \text { Ac }:=\frac{\mathbf{A M} \cdot \mathbf{C H}}{\mathbf{C M}} \quad \mathbf{H M}:=\mathbf{C M}-\mathbf{C H}
\end{aligned}
\]
\[
\mathbf{H M}-\mathbf{A c}=\mathbf{0}
\]
\(H M-A B \cdot \frac{\sqrt{N} \cdot(N+1)}{N+4 \cdot \sqrt{N}+1}=0 \quad C H-A B \cdot \frac{(N+1)^{2}}{4 \cdot N+16 \cdot \sqrt{N}+4}=0\)

\section*{Three Pieces Of Paper}


\section*{Three Pieces Of Paper}


\section*{07/09/00 Alternate Method Quad Roots}

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{3} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{D M}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \\
& \mathbf{A J}:=\mathbf{A D} \quad \mathbf{A K}:=\mathbf{A D} \quad \mathbf{B M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D M}^{2}} \\
& \mathbf{G M}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D M}^{2}} \quad \mathbf{A F}:=\frac{\mathbf{G M} \cdot \mathbf{A J}}{\mathbf{B M}} \\
& \mathbf{A C}:=\frac{\mathbf{B M} \cdot \mathbf{A K}}{\mathbf{G M}} \\
& \left.(\mathbf{A B} \cdot \mathbf{A G})^{3}\right)^{\frac{1}{4}}-\mathbf{A F}=\mathbf{0} \quad(\mathbf{A B} \cdot \mathbf{A G})^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]

\section*{08/01/00 Alternate Method Quad Roots}



\section*{In Trisection What Is AB? 08/02/00}


In the trisection figure given and given \(A C\) as the Unit what is \(A B\) ?
\[
\begin{aligned}
& A C:=1 \quad \mathbf{N}:=5 \quad \text { AE }:=A C \cdot \mathbf{N} \quad \text { AD }:=\frac{\mathbf{A E}}{2} \\
& \text { EP }:=\mathrm{AE} \quad \mathrm{DE}:=\mathrm{AD} \quad \mathrm{DP}:=\sqrt{\mathbf{E P}^{2}-\mathrm{DE}^{2}} \quad \text { FP }:=\mathrm{EP} \\
& \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{CD}:=\mathrm{CE}-\mathrm{DE} \quad \mathrm{CF}:=\sqrt{\mathrm{FP}^{2}-\mathrm{CD}^{2}}-\mathrm{DP} \\
& \text { PR }:=\mathbf{C F} \quad D R:=\mathbf{D P}+\mathbf{P R} \quad \mathbf{C R}:=\sqrt{\mathbf{C D}^{2}+\mathbf{D R}^{2}} \\
& C S:=\frac{C^{2}}{C R} \quad D S:=\sqrt{C D^{2}-C^{2}} \quad D L:=A D \\
& L S:=\sqrt{D L L^{2}-D^{2}} \quad \quad R S:=C R-C S \quad L R:=R S+L S \\
& \text { BD }:=\frac{\text { CD•LR }}{\text { CR }} \quad \text { AB }:=\mathbf{A D}-\mathbf{B D} \quad \text { ST }:=\mathbf{L S} \quad \text { RT }:=\text { RS }-\mathbf{S T}
\end{aligned}
\]

In trisection the length RT to the similarity point is equal to the radius of
\(\mathbf{R T}-\frac{\mathrm{N}}{2}=\mathbf{0}\)
AE :=N
AD \(:=\frac{\mathbf{N}}{2}\) the circle.
\(\mathbf{D P}:=\frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{\mathbf{N}^{2}} \quad \mathbf{C E}:=\mathbf{N}-1 \quad \mathbf{C D}:=\frac{1}{2} \cdot \mathbf{N}-1 \quad\) CF \(:=\frac{1}{2} \cdot \sqrt{(3 \cdot \mathbf{N}-2) \cdot(\mathbf{N}+2)}-\frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{\mathbf{N}^{2}}\)
\(\mathbf{D R}:=\frac{1}{2} \cdot \sqrt{(3 \cdot N-2) \cdot(N+2)} \quad \mathbf{N}-\mathbf{C R}=0 \quad \mathbf{C S}:=\frac{1}{4} \cdot \frac{(\mathbf{N}-2)^{2}}{\mathbf{N}} \quad \mathbf{L S}:=\frac{1}{4} \cdot \frac{\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}-4\right)}{\mathrm{N}}\)

DS \(:=\frac{1}{4} \cdot \frac{\sqrt{(3 \cdot N-2) \cdot(\mathbf{N}-2)^{2} \cdot(\mathbf{N}+2)}}{\mathbf{N}} \quad\) RS \(:=\frac{1}{4} \cdot(3 \cdot \mathbf{N}-2) \cdot \frac{(\mathbf{N}+2)}{\mathbf{N}} \quad\) LR \(:=\frac{1}{N} \cdot\left(\mathbf{N}^{2}+2 \cdot \mathbf{N}-2\right)\)
\(\mathbf{B D}:=\frac{1}{2} \cdot(\mathbf{N}-\mathbf{2}) \cdot \frac{\left(\mathbf{N}^{2}+\mathbf{2} \cdot \mathbf{N}-\mathbf{2}\right)}{\mathbf{N}^{2}} \quad \frac{(\mathbf{3} \cdot \mathbf{N}-\mathbf{2})}{\mathbf{N}^{2}}-\mathbf{A B}=\mathbf{0}\)
\(A B \cdot N^{2}-3 \cdot N+2=0\)

If the ratio of \(A B\) to \(N\) is given, such as \(N / A B=X\), then the Unit \(A C\) can be found from a cubic equation.
\[
x:=4 \frac{\left[\left[-X+\sqrt{-x^{2} \cdot(X-1)}\right]^{\left(\frac{2}{3}\right)}+X\right]}{\left[-X+\sqrt{-X^{2} \cdot(X-1)}\right]^{\left(\frac{1}{3}\right)}}=3.064
\]

\section*{080300 Trisection}

If \(2 I Q=E K\) then \(2 \mathrm{JK}=\mathrm{EK}\) and the
 figure projected from BCD will yeild a trisected figure JKL.
\[
\mathbf{N}:=\mathbf{3} \quad \text { BD }:=\mathbf{1}
\]
\[
\mathbf{A B}:=\frac{\mathbf{B D}}{2} \quad \mathbf{A D}:=\mathbf{A B} \quad \mathbf{A P}:=\frac{\mathbf{A D}}{2}
\]
\[
\mathbf{B P}:=\mathbf{A B}+\mathbf{A P} \quad \mathbf{B O}:=\frac{\mathbf{B P}}{\mathbf{N}} \quad \mathbf{A E}:=\mathbf{A B}
\]
\[
\text { DO }:=\text { BD - BO GO }:=\sqrt{\text { BO } \cdot \mathbf{D O}}
\]

BG \(:=\sqrt{\mathbf{G O}^{2}+\mathbf{B O}^{2}} \quad \mathrm{BS}:=\frac{\mathrm{BG}}{2} \quad\) ER \(:=\mathrm{BS} \quad\) TO \(:=\mathrm{ER}\) GT \(:=\mathrm{GO}-\mathrm{TO} \quad \mathrm{AS}:=\sqrt{\mathrm{AB}^{2}-\mathrm{BS}^{2}}\)
ES \(:=\) AE - AS BR \(:=\) ES OR \(:=\) BO - BR ET \(:=\) OR IO \(:=\frac{\text { ET } \cdot \mathbf{G O}}{\text { GT }}\) BI \(:=\) IO - BO
\(\mathrm{AI}:=\mathrm{BI}+\mathrm{AB} \quad \mathrm{BE}:=\sqrt{\mathbf{E R}^{2}+\mathbf{B R}^{2}}\) GE \(:=\mathrm{BE}\) GI \(:=\frac{\text { GE GO }}{\text { GT }}\) EI \(:=\mathbf{G I}-\mathbf{G E}\) AK \(:=\mathrm{AI}\) IK \(:=\mathbf{E I}\)
\(\mathrm{IQ}:=\frac{\mathbf{I K}{ }^{2}+\mathbf{A I}^{2}-\mathbf{A K}}{2 \cdot \mathbf{A I}} \quad \mathrm{EK}:=\mathbf{A K}-\mathbf{A E} \frac{\mathbf{E K}}{\mathbf{I Q}}=2\)

\section*{Some Algebraic Names:}
\[
\begin{aligned}
& \frac{3}{4 \cdot N}-\mathbf{B O}=0 \quad 1-\frac{3}{4 \cdot N}-\mathbf{D O}=0 \quad \frac{1}{(4 \cdot N)} \cdot \sqrt{3} \cdot \sqrt{4 \cdot N-3}-\mathbf{G O}=0 \\
& \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{\frac{1}{N}-B G=0 \quad \frac{1}{4} \cdot \sqrt{3} \cdot \sqrt{\frac{1}{N}}-\mathbf{B S}=0 \quad \frac{1}{4} \cdot \frac{\sqrt{3}}{\mathrm{~N}} \cdot \sqrt{4 \cdot \mathbf{N}-3}-\frac{1}{4} \cdot \sqrt{3} \cdot \sqrt{\frac{1}{N}}-\mathbf{G T}=0} \\
& \frac{1}{4} \cdot \sqrt{\frac{(4 \cdot N-3)}{N}}-\mathbf{A S}=0 \quad \frac{1}{2}-\frac{1}{4} \cdot \sqrt{\frac{(4 \cdot N-3)}{N}}-\mathbf{E S}=0 \quad \frac{3}{(4 \cdot N)}-\frac{1}{2}+\frac{1}{4} \cdot \sqrt{4-\frac{3}{N}-O R}=0 \\
& \frac{-1}{4} \cdot \frac{\left.3 \cdot \sqrt{4 \cdot N-3} \cdot \sqrt{N}-2 \cdot \sqrt{4 \cdot N-3} \cdot N^{\left(\frac{3}{2}\right)}+4 \cdot \mathbf{N}^{2}-3 \cdot N\right]}{\left.\left[N^{\frac{3}{2}}\right) \cdot(-\sqrt{4 \cdot N-3}+\sqrt{N})\right]}
\end{aligned}
\]

\[
\begin{aligned}
& \frac{1}{2} \cdot \sqrt{\frac{-(-2 \cdot \sqrt{N}+\sqrt{4 \cdot N-3})}{\sqrt{N}}} \cdot \frac{\sqrt{4 \cdot N-3}}{(\sqrt{4 \cdot N-3}-\sqrt{N})}-G I=0 \\
& \frac{-1}{2} \cdot \sqrt{2-\frac{\sqrt{4 \cdot N-3}}{\sqrt{N}} \cdot \frac{\sqrt{N}}{(-\sqrt{4 \cdot N-3}+\sqrt{N})}-E I=0}
\end{aligned}
\]
\[
\frac{1}{4} \cdot \frac{(2 \cdot \sqrt{N}-\sqrt{4 \cdot N-3})}{(\sqrt{4 \cdot N-3}-\sqrt{N})}-I Q=0 \quad \frac{1}{2} \cdot \frac{(2 \cdot \sqrt{N}-\sqrt{4 \cdot N-3})}{(\sqrt{4 \cdot N-3}-\sqrt{N})}-E K=0
\]

\section*{08/07/00 Proportion Series II}

Two unknowns have the same proportion as two givens and the sum of the unknowns are known. Find the
 two unknowns.
\[
\begin{aligned}
& \mathrm{AB}:=9 \quad \mathrm{CD}:=3 \quad \mathrm{BC}:=5 \\
& \mathrm{BO}:=\frac{\mathrm{AB} \cdot \mathrm{BC}}{\mathrm{AB}+\mathrm{CD}} \quad \mathrm{CO}:=\frac{\mathrm{CD} \cdot \mathrm{BC}}{\mathrm{AB}+\mathrm{CD}} \\
& \mathrm{BO}=3.75 \quad \mathrm{CO}=1.25 \\
& \mathrm{BO}+\mathrm{CO}-\mathrm{BC}=0 \\
& \frac{\mathrm{AB}}{\mathrm{CD}}-\frac{\mathrm{BO}}{\mathrm{CO}}=0
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{m} \angle \mathrm{UDG}=69.867^{\circ} \\
& \mathrm{m} \angle \mathrm{UDCI}=23.289^{\circ} \\
& \frac{\mathrm{m} \angle \mathrm{UDG}}{\mathrm{~m} \angle \mathrm{UDCI}}=3.000
\end{aligned}
\]

Trisection and the square root figure.

```
m\angleUDG = 69.867}\mp@subsup{}{}{\circ
m}\angleUDCI = 23.289``
m\angleUDG
```

Trisection and the square root figure.


\section*{08/23/00 Trisection In A Square Root Figure}

Given the square root figure drawn for trisection, what is AR given \(A B\) and


AD?
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{3} \quad \mathbf{A B}:=1 \quad \mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathbf{B N}:=\frac{\mathbf{B D}}{2} \quad \mathbf{K N}:=\mathbf{B N} \quad \mathbf{C J}:=\mathbf{B N} \\
& \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}} \quad \mathbf{A K}:=\mathbf{A J} \\
& \mathbf{A N}:=\mathbf{A B}+\mathbf{B N} \quad \mathbf{A P}:=\frac{\mathbf{A K} \mathbf{K}^{2}+\mathbf{A N ^ { 2 }}-\mathbf{K N}^{2}}{\mathbf{2} \cdot \mathbf{A N}} \\
& \mathbf{A F}:=\frac{\mathbf{A P} \cdot \mathbf{A N}}{\mathbf{A K}} \quad \text { FK }:=\mathbf{A K}-\mathbf{A F} \quad \mathbf{E F}:=\mathbf{F K}
\end{aligned}
\]
\(A E:=A K-2 \cdot(E F) \quad A R:=\frac{A P \cdot A E}{A K} \quad N \cdot \frac{\left(N^{2}+6 \cdot N+1\right)}{(N+1)^{3}}-A R=0 \quad B R:=A R-A B\)
\((3 \cdot N+1) \cdot \frac{(N-1)}{(N+1)^{3}}-B R=0\)
Does KS = FK?
\(B P:=A P-A B \quad D P:=B D-B P \quad N P:=B N-B P \quad K S:=N P \quad K S-F K=0\)


\section*{09/03/00 Ratios In Trisection}

How does BF vary with BC? How does DF vary with BC?

\[
\mathbf{N}_{1}:=\mathbf{4} \quad \mathbf{N}_{2}:=8
\]
\[
\begin{aligned}
& \mathrm{BG}:=\mathbf{1} \quad \text { BE }:=\frac{\mathrm{BG}}{2} \quad \text { EM }:=\mathrm{BE} \quad \mathrm{BO}:=\sqrt{2 \cdot \mathrm{BE}^{2}} \\
& \mathrm{EN}:=\mathrm{BE} \quad \text { EK }:=\frac{\mathrm{BE} \cdot \mathbf{B E}}{\mathrm{BO}} \quad \text { KN }:=\mathrm{EN}-\text { EK } \quad \text { BK }:=\frac{\mathrm{BO}}{2}
\end{aligned}
\]
\[
\mathbf{B N}:=\sqrt{\mathbf{B K}^{2}+\mathbf{K N}^{2}} \quad \mathrm{BD}:=\frac{\mathbf{B N}^{2}}{\mathbf{B G}} \quad \mathrm{BC}:=\mathrm{BD} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{\mathbf{2}}}
\]
\[
\mathbf{C G}:=\mathbf{B G}-\mathbf{B C} \quad \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C G}} \quad \mathbf{A J}:=\mathrm{BE}
\]
\[
\mathbf{A C}:=\sqrt{\mathbf{A J}^{2}-\mathbf{C J}^{2}} \quad \mathrm{AB}:=\mathrm{AC}-\mathbf{B C} \quad \mathrm{AE}:=\mathrm{AB}+\mathbf{B E}
\]
\[
\mathbf{J H}:=\frac{\mathbf{C J}}{\mathbf{A} \mathbf{J}} \quad \mathbf{A H}:=\mathbf{A J}-\mathbf{J H} \quad \mathbf{A L}:=\frac{\mathbf{A H} \cdot \mathbf{A E}}{\mathbf{A C}} \quad \mathbf{J L}:=\mathbf{A L}-\mathbf{A J}
\]
\[
\mathbf{L M}:=\mathbf{J L} \quad \mathbf{A M}:=\mathbf{A L}+\mathbf{L M} \quad \mathbf{A F}:=\frac{\mathbf{A H} \cdot \mathbf{A M}}{\mathbf{A C}} \quad \mathbf{B F}:=\mathrm{AF}-\mathbf{A B}
\]
\[
\frac{-1}{4} \cdot(-2+\sqrt{2}) \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}-\mathbf{B C}=\mathbf{0}
\]
\[
B F-\frac{1}{8} \cdot(7 \cdot \sqrt{2}-10) \cdot\left(N_{1}-4 \cdot N_{2}-2 \cdot N_{2} \cdot \sqrt{2}\right) \cdot \frac{\left(2 \cdot N_{1}-2 \cdot N_{2}-N_{2} \cdot \sqrt{2}\right)^{2}}{N_{2}^{3}}=0
\]
\[
\frac{1}{2} \cdot \frac{\left(2 \cdot N_{1}-2 \cdot N_{2}-N_{2} \cdot \sqrt{2}\right)^{2} \cdot\left[(2 \cdot \sqrt{2}-3) \cdot\left(N_{1}-4 \cdot N_{2}-2 \cdot N_{2} \cdot \sqrt{2}\right)\right]}{\left(N_{2}{ }^{2} \cdot N_{1}\right)}-\frac{B F}{B C}=0
\]

\(\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left[(7 \cdot \sqrt{2}-10) \cdot\left(12 \cdot \sqrt{2} \cdot \mathbf{N}_{2}{ }^{2}+17 \cdot \mathbf{N}_{2}{ }^{2}+2 \cdot \mathbf{N}_{1}{ }^{2}-10 \cdot N_{1} \cdot N_{2}-6 \cdot \mathbf{N}_{1} \cdot \sqrt{2} \cdot \mathbf{N}_{2}\right)\right]}{4 \mathbf{N}_{2}{ }^{3}}-\mathbf{D F}=0\)
\[
\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left[(2 \cdot \sqrt{2}-3) \cdot\left(2 \cdot \mathbf{N}_{1}{ }^{2}-10 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-6 \cdot \mathrm{~N}_{1} \cdot \sqrt{2} \cdot \mathbf{N}_{2}+17 \cdot \mathbf{N}_{2}{ }^{2}+12 \cdot \sqrt{2} \cdot \mathbf{N}_{2}{ }^{2}\right)\right]}{N_{1} \cdot \mathbf{N}_{2}{ }^{2}}-\frac{\mathrm{DF}}{\mathrm{BC}}=0
\]

\section*{Goshdarn Good Pencil 09/16/00}

\[
\mathbf{N}:=\mathbf{2}
\]
\[
\mathbf{B C}:=\mathbf{1} \quad \text { BJ }:=\mathbf{B C} \cdot \mathbf{N} \quad \mathbf{B E}:=\sqrt{\mathbf{B C} \cdot \mathbf{B J}}
\]
\[
\mathbf{C J}:=\mathbf{B J}-\mathbf{B C} \quad \mathbf{C I}:=\frac{\mathbf{C J}}{2} \quad \text { IO }:=\mathbf{C I}
\]
NO := CJ CR := CJ
\[
\mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{E I}:=\mathbf{C I}-\mathbf{C E} \quad \mathbf{E J}:=\mathbf{C J}-\mathbf{C E}
\]
\[
\text { EL }:=\sqrt{\text { CEEJ }} \quad \text { EG }:=\frac{\text { EI•EL }}{\text { EL }+\mathbf{I O}} \quad \text { GI }:=\text { EI }-\mathbf{E G}
\]
\[
\mathbf{G O}:=\sqrt{\mathbf{G I}^{2}+\mathbf{I O}^{2}} \quad \text { OP }:=\mathbf{G O}
\]
\[
\mathrm{IP}:=\mathbf{I O}+\mathbf{O P} \quad \text { EF }:=\frac{\mathbf{E I} \cdot \mathbf{E L}}{\mathrm{EL}+\mathrm{IP}} \quad \text { FI }:=\mathrm{EI}-\mathbf{E F}
\]
\[
\mathrm{FO}:=\sqrt{\mathrm{FI}^{2}+\mathrm{IO}^{2}} \quad \mathrm{OK}:=\frac{\mathrm{IO} \cdot \mathrm{NO}}{\mathrm{FO}}
\]
\[
F K:=\mathrm{OK}-\mathrm{FO} \quad \mathrm{FQ}:=\frac{\mathrm{FI} \cdot \mathrm{FK}}{\mathrm{FO}} \quad \text { QI }:=\mathrm{FQ}+\mathrm{FI} \quad \mathrm{CQ}:=\mathrm{CI}-\mathrm{QI} \quad \text { QJ }:=\mathrm{CJ}-\mathrm{CQ} \quad \text { QK }:=\sqrt{\mathrm{CQ} \cdot \mathrm{QJ}}
\]
\[
\mathrm{CD}:=\frac{\mathrm{CQ} \cdot \mathrm{CR}}{\mathrm{CR}+\mathrm{QK}} \quad \mathrm{BD}:=\mathrm{CD}+\mathrm{BC} \quad\left(\mathrm{BC}^{2} \cdot \mathrm{BJ}\right)^{\frac{1}{3}}-\mathrm{BD}=0.000004486957912
\]


What is AE if given the difference between their extremes and the radius given as a ratio of that segment? (Internal Unit).


KM \(:=\mathbf{G M}-\mathbf{G K}\) JK \(:=\) CG \(\quad \mathbf{A G}:=\frac{\text { JK•GM }}{\text { KM }} \quad\) AH \(:=\mathbf{A G}+\mathbf{G H} \quad \mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \quad\) AE \(:=\mathrm{AB}+\mathbf{B E}\)
\(A E-\frac{\left(N_{3} \cdot N_{2}-4 \cdot N_{3} \cdot N_{1}+N_{1} \cdot N_{4}\right)}{2 \cdot\left(N_{3} \cdot N_{2}-N_{1} \cdot N_{4}\right)}=0\)

Given \(A B, D E, A D\) find \(B E, A C, C D, E C, B C\).

\[
\begin{aligned}
& \mathbf{N}_{1}:=2 \quad \mathbf{N}_{2}:=4 \quad \mathbf{N}_{3}:=1 \\
& \mathbf{A B}:=\mathbf{N}_{1} \quad \mathbf{A D}:=\mathbf{N}_{2} \quad \mathbf{D E}:=\mathbf{N}_{3} \\
& \mathbf{B D}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A D}^{2}} \quad \mathbf{B F}:=\frac{\mathbf{A B}^{2}}{\mathbf{B D}} \quad \mathbf{D G}:=\frac{\mathbf{D E}^{2}}{\mathbf{B D}} \quad \mathbf{B E}:=\sqrt{\mathbf{A D}^{2}-\mathbf{D E}^{2}}
\end{aligned}
\]
\[
\mathbf{A F}:=\sqrt{\mathbf{A B}^{2}-\mathbf{B F}^{2}} \quad \mathbf{E G}:=\sqrt{\mathbf{D E}^{2}-\mathbf{D G}^{2}}
\]

FG \(:=\mathrm{BD}-(\mathrm{BF}+\mathrm{DG}) \quad \mathrm{EJ}:=\mathrm{FG} \quad \mathrm{FJ}:=\mathrm{EG} \quad \mathrm{AJ}:=\mathrm{AF}-\mathrm{FJ} \quad \mathrm{AE}:=\sqrt{\mathbf{E J}^{2}+\mathrm{AJ}^{2}} \quad \mathrm{~S}_{\mathbf{1}}:=\mathrm{AD} \quad \mathrm{S}_{\mathbf{2}}:=\mathrm{DE} \quad \mathrm{S}_{3}:=\mathrm{AE}\) \(\mathrm{AH}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{\mathbf{2}}{ }^{2}}{2 \cdot \mathrm{~S}_{1}} \quad \mathrm{EH}:=\sqrt{\mathrm{AE}^{2}-\mathrm{AH}^{2}} \quad \mathrm{CH}:=\frac{\mathrm{EH} \cdot \mathrm{AH}}{\mathrm{AB}+\mathrm{EH}} \quad \mathrm{AC}:=\mathrm{AH}-\mathrm{CH} \quad \mathrm{CE}:=\frac{\mathrm{AC} \cdot \mathrm{DE}}{\mathrm{AB}} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC}\)
\(\left.N_{1} \cdot \frac{\left(-N_{3}{ }^{2} \cdot N_{2}+N_{2}{ }^{3}+N_{1}{ }^{2} \cdot N_{2}-N_{1} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}} \cdot N_{3}\right)}{\left(N_{1}{ }^{3}+N_{1} \cdot N_{2}{ }^{2}+N_{3} \cdot \sqrt{-N_{3}{ }^{2} \cdot N_{2}{ }^{2}+N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}} \cdot N_{3}+N_{3}{ }^{2} \cdot N_{1}{ }^{2}}\right.}\right)-A C=0\)
\(N_{3} \cdot \frac{\left(-N_{3}{ }^{2} \cdot N_{2}+N_{2}{ }^{3}+N_{2} \cdot N_{1}{ }^{2}-N_{1} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}\right)}{\left(N_{1}{ }^{3}+N_{1} \cdot N_{2}{ }^{2}+N_{3} \cdot \sqrt{-N_{3}{ }^{2} \cdot N_{2}{ }^{2}+N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}} \cdot N_{3}+N_{3}{ }^{2} \cdot N_{1}{ }^{2}}\right)}-C E=0\)

Modify 02/28/98 for Mean proportionals between E and
J.

\[
\begin{aligned}
& \text { AE :=1 } \quad \mathbf{N}:=\mathbf{3} \\
& \text { EJ :=AE•N JK :=AE } \\
& \mathbf{H J}:=\frac{\mathbf{J K} \cdot \mathbf{E J}}{\mathbf{J K}+\mathbf{E J}} \quad \mathbf{E H}:=\mathbf{E J}-\mathbf{H J} \quad \text { GH }:=\frac{\mathbf{E H} \cdot \mathbf{H J}}{\mathbf{E H}+\mathbf{H J}} \\
& \mathbf{E G}:=\mathbf{E H}-\mathbf{G H} \quad \text { FG }:=\frac{\mathbf{E G} \cdot \mathbf{G H}}{\mathbf{E G}+\mathbf{G H}} \quad \mathbf{E F}:=\mathbf{E G}-\mathbf{F G} \\
& \mathrm{DE}:=\frac{\mathrm{EF} \cdot \mathrm{AE}}{\mathrm{EF}+\mathrm{AE}} \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{CD}:=\frac{\mathrm{AD} \cdot \mathrm{DE}}{\mathrm{AD}+\mathrm{DE}} \\
& \mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \quad \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{C D}}{\mathbf{A C}+\mathbf{C D}} \quad \mathrm{AB}:=\mathrm{AC}-\mathbf{B C} \\
& \text { M :=0.. } 3 \quad \mathbf{P}:=\mathbf{0 . .} 3 \\
& \text { AEAB }_{\mathbf{M}, \mathbf{P}}:=\left[\frac{\mathbf{N}^{\mathbf{M}+1}}{(\mathbf{N}+\mathbf{1})^{\mathbf{M}}}+\mathbf{1}\right]^{\mathbf{P}} \\
& \text { AEAB }=\left[\begin{array}{llll}
1 & 4 & 16 & 64 \\
1 & 3.25 & 10.563 & 34.328 \\
1 & 2.688 & 7.223 & 19.411 \\
1 & 2.266 & 5.133 & 11.63
\end{array}\right]
\end{aligned}
\]
\(\mathrm{AEAB}_{3,3}-\frac{\mathrm{AE}}{\mathrm{AB}}=0 \quad \mathrm{AEAB}_{3,2}-\frac{\mathrm{AE}}{\mathrm{AC}}=0 \quad \mathrm{AEAB}_{3,1}-\frac{\mathrm{AE}}{\mathrm{AD}}=0 \quad \mathrm{AEAB}_{3,0}-\frac{\mathrm{AE}}{\mathrm{AE}}=0\)
\(\mathrm{AEAB}_{3,3}-\frac{\mathrm{AE}}{\mathrm{AB}}=0\)

\section*{Multiplication and Division-Line By A Line 11/29/00}

Given some unit, and two differences, multiply or divide the one difference by the other.

For Division:

\[
\begin{aligned}
& \mathbf{A C}:=\mathbf{1} \quad \mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{2}:=12 \quad \text { AH }:=\mathbf{N}_{1} \\
& \mathbf{C J}:=\mathbf{N}_{\mathbf{2}} \quad \text { AB }:=\frac{\mathbf{A H}}{(\mathbf{C J}+\mathbf{A H})} \cdot \mathbf{A C} \\
& \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\mathbf{B C} \mathbf{C G}:=\frac{\mathbf{B D} \cdot \mathbf{A C}}{\mathbf{A B}}
\end{aligned}
\]
\[
\mathrm{CG}-\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}}=0
\]
\[
C G=4
\]

\section*{Three Pieces Of Paper}


\section*{AMeCeSCE 010101}

Alternate method for common segment common endpoint square root.

\[
\begin{array}{lll}
\mathbf{N}_{1}:=5 \quad \mathbf{N}_{2}:=3 \quad A C:=N_{1} & B C:=N_{2} \\
\mathbf{A B}:=\mathbf{A C}-\mathbf{B C} & \mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}} & \mathbf{C D}:=\sqrt{\mathbf{B D}^{2}+\mathrm{BC}^{2}}
\end{array}
\]
\[
\sqrt{\mathbf{N}_{2} \cdot \mathbf{N}_{1}}-\mathbf{C D}=0
\]

Three Given Five Taken 042101

Given \(A B, C D, A C\) and that CDB, and BAC are right angles, what are \(B D, A E, C E, B E, D E\) ?

\(B G:=B C-C G \quad C F:=B C-B F\)
\(\mathrm{AF}:=\sqrt{\mathrm{AB}^{2}-\mathrm{BF}^{2}} \quad \mathrm{DG}:=\sqrt{\mathrm{CD}^{2}-\mathrm{CG}^{2}}\)

FH : \(=\frac{\text { BG•AF }}{\text { DG }} \quad \mathrm{CH}:=\mathrm{CF}+\mathrm{FH}\)

\(B D:=\sqrt{\mathrm{BG}^{2}+\mathrm{DG}^{2}}\)

AH \(:=\frac{\text { BD } \cdot \mathbf{F H}}{\text { BG }}\)
\(\mathbf{B E}:=\frac{\mathbf{A H} \cdot \mathbf{B C}}{\mathbf{C H}}\)

DE := BD - BE
\(\mathbf{C E}:=\frac{\mathbf{A C} \cdot \mathbf{B C}}{\mathbf{C H}}\)
AE :=AC - CE
Idea about process progression: Given two differences one renders a set number of processes upon them, then one progresses to three?


\section*{Some Algebraic Names:}
\[
\begin{aligned}
& \sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}-\mathrm{BC}=0 \quad \frac{\mathrm{~N}_{2}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{CG}=0 \\
& \frac{\mathrm{~N}_{1}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{BF}=0 \\
& \frac{\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}-\mathrm{N}_{2}{ }^{2}\right)}{\sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{BG}=0
\end{aligned}
\]
\[
\frac{\mathrm{N}_{3}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{CF}=0
\]
\[
\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{3}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{AF}=\mathbf{0}
\]
\[
N_{2} \cdot \sqrt{\frac{\left(\mathbf{N}_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right)}{\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}}-\mathbf{D G}=0
\]
\[
\frac{N_{3} \cdot \mathbf{N}_{1} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right)}{N_{2} \cdot \sqrt{\left(N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right) \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}}-\mathbf{F H}=0
\]
\[
\left[\frac{N_{3}{ }^{2}}{\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}}}+\frac{N_{3} \cdot N_{1} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right)}{N_{2} \cdot \sqrt{\left(N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right) \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}}\right]-C H=0 \quad N_{3} \cdot \frac{N_{1}}{N_{2}}-A H=0
\]

\section*{The Five Sought:}
\[
\sqrt{\mathrm{N}_{1}^{2}+\mathrm{N}_{3}^{2}-\mathrm{N}_{2}^{2}}-\mathbf{B D}=0
\]

\(\frac{N_{2} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}{N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}} \cdot N_{1}}-C E=0 \quad N_{3}-\frac{N_{2} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}{\left(N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}} \cdot N_{1}\right)}-A E=0\)

\section*{Given \(A B\) as unit, \(A D\) and \(D C\), what is}

\(\mathrm{AC}:=\sqrt{\mathrm{AD}^{2}+\mathrm{CD}^{2}} \quad \mathrm{~S}_{1}:=\mathrm{AF} \quad \mathrm{S}_{2}:=\mathrm{AC} \quad \mathrm{S}_{3}:=\mathrm{CF}\)
\(\mathrm{AG}:=\frac{\mathrm{S}_{\mathbf{2}}{ }^{2}+\mathrm{S}_{\mathbf{1}}{ }^{2}-\mathrm{S}_{\mathbf{3}}{ }^{2}}{2 \cdot \mathrm{~S}_{\mathbf{1}}} \quad \mathrm{CG}:=\sqrt{\mathrm{AC}^{2}-\mathrm{AG}^{2}}\)
\(L_{1}:=\mathrm{AD}\)
\(L_{2}:=\mathbf{C G}\)
\(L_{3}:=\mathrm{CD}\)
\(\mathrm{DH}:=\mathrm{L}_{3}-\frac{\mathrm{L}_{\mathbf{2}} \cdot\left(\mathbf{L}_{\mathbf{1}}{ }^{2}+\mathrm{L}_{\mathbf{3}}{ }^{2}\right)}{\mathrm{L}_{3} \cdot \mathbf{L}_{\mathbf{2}}+\sqrt{\mathrm{L}_{1}{ }^{2}+\mathrm{L}_{3}{ }^{2}-\mathrm{L}_{\mathbf{2}}{ }^{2}} \cdot \mathbf{L}_{\mathbf{1}}}\)
\(A H:=L_{1} \cdot \frac{\left(L_{1}{ }^{2}+L_{3}{ }^{2}\right)}{\left(L_{3} \cdot L_{2}+\sqrt{L_{1}{ }^{2}+L_{3}{ }^{2}-L_{2}{ }^{2}} \cdot L_{1}\right)}\)
FH \(:=A F-A H \quad H J:=\frac{\text { DH FH }}{\text { AH }}\)

DJ \(:=\mathbf{D H}+\mathbf{H J} \quad\) EJ \(:=\mathbf{D E}-\mathbf{D J} \quad\) FJ \(:=\frac{\mathrm{AD} \cdot \mathrm{FH}}{\mathrm{AH}} \quad \mathrm{EF}:=\sqrt{\mathrm{FJ}^{2}+\mathbf{E J}^{2}} \quad \mathrm{DF}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{FJ}^{2}}\)

\section*{Some Algebraic Names:}

\(A B \cdot \frac{N_{2} \cdot N_{1}{ }^{3}+N_{2} \cdot N_{1}-\sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-1-N_{1}{ }^{4}}}{N_{1}{ }^{3}+N_{1}{ }^{2} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1} \cdot N_{2}{ }^{2}-1-N_{1}{ }^{4}}+N_{1}}-D H=0\)
\(2 \cdot \mathrm{AB} \cdot \frac{\left(1+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}\right)}{\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot \sqrt{2 \cdot \mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{1}{ }^{4} \cdot \mathrm{~N}_{2}{ }^{2}-1-\mathrm{N}_{1}{ }^{4}}+1+\mathrm{N}_{1}{ }^{2}\right)}-\mathrm{AH}=0\)
\[
\begin{aligned}
& \mathrm{AB}-2 \cdot \mathrm{AB} \cdot \frac{\left(1+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}\right)}{\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot \sqrt{2 \cdot \mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{1}{ }^{4} \cdot \mathrm{~N}_{2}{ }^{2}-1-\mathrm{N}_{1}{ }^{4}}+1+\mathrm{N}_{1}{ }^{2}\right)}-\mathrm{FH}=0
\end{aligned}
\]

\[
\frac{1}{2} \cdot A B \cdot \frac{\left(N_{1}{ }^{3} \cdot \mathrm{~N}_{2}+\mathrm{N}_{2} \cdot \mathrm{~N}_{1}-\sqrt{2 \cdot \mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{1}{ }^{4} \cdot \mathrm{~N}_{2}{ }^{2}-1-\mathrm{N}_{1}{ }^{4}}\right)}{\left[\left(1+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}\right) \cdot \mathrm{N}_{1}\right]}-\mathrm{DJ}=0
\]
\[
\frac{1}{2} \cdot A B \cdot \frac{\left(3 \cdot N_{2} \cdot N_{1}+4 \cdot N_{2}{ }^{3} \cdot \mathrm{~N}_{1}{ }^{3}-\mathrm{N}_{1}{ }^{3} \cdot \mathrm{~N}_{2}+\sqrt{2 \cdot \mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{1}{ }^{4} \cdot \mathrm{~N}_{2}{ }^{2}-1-\mathrm{N}_{1}{ }^{4}}\right)}{\left[\left(1+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}\right) \cdot \mathrm{N}_{1}\right]}-E J=0
\]
\[
\frac{-1}{2} \cdot \mathrm{AB} \frac{\left(-\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot \sqrt{2 \cdot \mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{1}{ }^{4} \cdot \mathrm{~N}_{2}{ }^{2}-1-\mathrm{N}_{1}{ }^{4}}+1-\mathrm{N}_{1}{ }^{2}+2 \cdot \mathrm{~N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}\right)}{\left[\mathrm{N}_{1} \cdot\left(1+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}\right)\right]}-\mathbf{F J}=0
\]
\[
\sqrt{\left(N_{1}{ }^{3} \cdot N_{2}+N_{1} \cdot N_{2}-\sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-1-N_{1}{ }^{4}}\right) \cdot A B^{2} \cdot \frac{N_{2}}{\left[N_{1} \cdot\left(1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right)\right]}}-D F=0
\]

\section*{CF is the radius of a circle expressed} in trisection. Is AF the counterpart of

\[
\begin{aligned}
& \mathrm{N}:=5 \quad \mathrm{AB}:=1 \\
& \mathrm{AE}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \\
& \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathbf{A O}:=\frac{\mathbf{A D}}{2} \quad \mathbf{D E}:=\mathbf{B D} \quad \mathbf{D Q}:=\frac{\mathbf{D E}}{2} \\
& \mathbf{E Q}:=\mathbf{D Q} \quad \mathbf{B Q}:=\mathbf{B D}+\mathbf{D Q} \\
& \mathbf{Q R}:=\sqrt{\mathbf{B Q} \cdot \mathbf{E Q}} \quad \mathbf{E R}:=\sqrt{\mathbf{Q R}}+\mathbf{E}+\mathbf{E Q} \\
& \mathbf{E L}:=\mathbf{2} \cdot \mathbf{E R} \quad \mathbf{L P}:=\mathbf{E L} \quad \mathbf{D L}:=\frac{\mathbf{Q R} \cdot \mathbf{E L}}{\mathbf{E R}}
\end{aligned}
\]
\(\mathbf{L}_{\mathbf{1}}:=\frac{\mathbf{L P}}{\mathbf{D L}} \quad \mathbf{L}_{\mathbf{2}}:=\frac{\mathbf{A O}}{\mathbf{L P}}\)
\(A G:=\sqrt{L P^{2} \cdot L_{2} \cdot \frac{\left(3 \cdot L_{1} \cdot L_{2}+4 \cdot L_{2} \cdot{ }^{3} L_{1}{ }^{3}-L_{1}{ }_{1}{ }^{3} L_{2}+\sqrt{2 \cdot L_{1}{ }^{2}+4 \cdot L_{1}{ }^{4} \cdot L_{2}{ }^{2}-1-L_{1}{ }^{4}}\right)}{\left[\left(1+L_{2}{ }^{2} \cdot L_{1}{ }^{2}\right) \cdot L_{1}\right]}}\)
\(\mathbf{D G}:=\sqrt{\mathbf{A D}^{2}-\mathbf{A G}^{2}} \quad\) AU \(:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A G}} \quad \mathbf{D U}:=\frac{\mathbf{D G} \cdot \mathbf{A D}}{\text { AG }} \quad \mathbf{L U}:=\mathbf{D L}+\mathbf{D U} \quad\) TU \(:=\frac{\mathbf{D G} \cdot \mathbf{L U}}{\mathbf{A D}} \quad \mathbf{G U}:=\mathbf{A U}-\mathbf{A G}\)
TG \(:=\mathbf{T U}-\mathbf{G U} \quad\) FT \(:=\) TG \(\quad \mathbf{A F}:=\mathbf{A G}-(\mathbf{F T}+\mathbf{T G}) \quad\) AC \(:=\frac{\mathbf{A D} \cdot \mathbf{A F}}{\mathbf{A U}}\)

From 012496 for \(\quad 2 \cdot A B \cdot \frac{N}{(1+\mathbf{N})} \quad A C-2 \cdot A B \cdot \frac{N}{(1+\mathbf{N})}=0\) AC



Does HM intersect at D? What is the Algebraic name of HM in relation to \(A B\) and \(A G\) ?
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \text { AB }:=\mathbf{1} \quad \text { AG }:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \\
& \text { AK }:=\mathbf{A F} \quad \text { FK }:=\mathbf{B F} \quad \text { AE }:=\frac{2 \mathbf{A K}^{2}-\mathbf{F K}^{2}}{2 \mathbf{A F}} \\
& \text { AJ }:=\mathbf{A E} \quad \text { JK }:=\mathbf{A K}-\mathbf{A J} \quad \text { HJ }:=\mathbf{J K}
\end{aligned}
\]
\[
\mathrm{AH}:=\mathrm{AK}-(\mathbf{J K}+\mathbf{H J}) \quad \text { AC }:=\frac{\mathrm{AE} \cdot \mathbf{A H}}{\mathrm{AK}} \quad \mathbf{C E}:=\mathrm{AE}-\mathrm{AC} \quad \text { BE }:=\mathrm{AE}-\mathrm{AB} \quad \mathbf{E G}:=\mathrm{BG}-\mathbf{B E}
\]
\[
\text { EK }:=\sqrt{\mathbf{B E} \cdot \mathbf{E G}} \quad \mathrm{BC}:=\mathrm{AC}-\mathbf{A B} \quad \mathbf{C G}:=\mathrm{BG}-\mathbf{B C} \quad \mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathbf{C G}} \quad \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathbf{E K}}{\mathrm{EK}+\mathrm{CH}}
\]
\[
\mathrm{DF}:=2 \cdot \mathrm{DE} \quad \mathrm{HM}:=\sqrt{\mathrm{CE}^{2}+(\mathrm{EK}+\mathrm{CH})^{2}}
\]

\section*{Some Algebraic Names:}
\(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A B}-\mathbf{B G}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{B F}=0 \quad \frac{1}{2} \cdot \mathbf{A B}+\frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{A F}=\mathbf{0}\)
\[
\frac{1}{4} \cdot A B \cdot \frac{\left(N^{2}+6 \cdot N+1\right)}{(1+N)}-A E=0 \quad \frac{1}{4} \cdot A B \cdot \frac{\left(1-2 \cdot N+N^{2}\right)}{(1+N)}-J K=0 \quad 2 \cdot A B \cdot \frac{N}{(1+N)}-A H=0
\]
\(A B \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{3}} \cdot N-A C=0\)
\(\frac{1}{4} \cdot A B \cdot\left(N^{2}+6 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}-C E=0\)
\(\frac{1}{4} \cdot A B \cdot(N+3) \cdot \frac{(\mathbf{N}-1)}{(1+\mathbf{N})}-\mathbf{B E}=0\)
\(\frac{1}{4} \cdot A B \cdot(3 \cdot N+1) \cdot \frac{(N-1)}{(1+N)}-E G=0\)

\[
\begin{aligned}
& \frac{1}{4} \cdot A B \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \frac{(N-1)}{(1+N)}-E K=0 \\
& A B \cdot(3 \cdot N+1) \cdot \frac{(N-1)}{(1+N)^{3}}-B C=0 \\
& A B \cdot N^{2} \cdot(N+3) \cdot \frac{(N-1)}{(1+N)^{3}}-C G=0
\end{aligned}
\]
\[
A B \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N \cdot \frac{(N-1)}{(1+N)^{3}}-C H=0
\]
\[
\frac{1}{4} \cdot A B \cdot \frac{(N-1)^{2}}{(1+N)}-D E=0 \quad \frac{1}{2} \cdot A B \cdot \frac{(N-1)^{2}}{(N+1)}-D F=0 \quad \frac{1}{2} \cdot A B \cdot(N-1) \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{2}}-H M=0
\]

What is the Algebraic name of the circle HM? Does point \(N\) divide DR in half?

\[
\begin{aligned}
& \mathbf{N}:=5.768 \quad \text { AB }:=.583 \quad \text { AJ }:=A B \cdot N \\
& \text { BJ }:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B H}:=\frac{\mathbf{B J}}{2} \quad \text { HR }:=\mathbf{B H} \\
& \text { HP }:=\frac{\mathbf{H R}}{2} \quad \text { GO }:=\mathbf{H P} \quad A H:=A B+B H \\
& \text { AO }:=\mathrm{AH} \quad \mathrm{AG}:=\sqrt{\mathbf{A O}^{2}-\mathbf{G O}^{2}} \\
& H Q:=B H \quad A Q:=A H \quad F H:=\frac{H Q^{2}}{2 \cdot A H} \\
& \text { AF }:=\mathbf{A H}-\text { FH FM }:=\frac{\text { GO•AF }}{\text { AG }} \\
& \text { HJ := BH } \quad \text { FJ }:=\mathbf{F H}+\mathbf{H J} \quad \text { BF }:=\text { BJ }-\mathbf{F J}
\end{aligned}
\]
\(F Q:=\sqrt{B F \cdot F J} \quad M Q:=F Q-F M \quad H M:=\sqrt{F H^{2}+F M^{2}} \quad H M-M Q=0\)
\(D H:=\frac{H R^{2}}{A H} \quad \frac{D H}{2}-F H=0\)

\section*{Some Algebraic Names:}
\(A B \cdot N-A B-B J=0 \quad \frac{1}{2} \cdot A B \cdot(N-1)-B H=0 \quad \frac{1}{4} \cdot A B \cdot(N-1)-H P=0\)
\(\frac{1}{2} \cdot \mathbf{A B} \cdot(1+\mathbf{N})-\mathbf{A H}=0 \quad \frac{1}{4} \cdot \mathrm{AB} \cdot \sqrt{(\mathrm{N}+3) \cdot(3 \cdot N+1)}-\mathbf{A G}=0 \quad \frac{1}{4} \cdot \mathrm{AB} \cdot \frac{(\mathrm{N}-1)^{2}}{(1+\mathrm{N})}-\mathbf{F H}=0\)
\(\frac{1}{4} \cdot A B \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)}-A F=0 \quad \frac{1}{4} \cdot(N-1) \cdot A B \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{[(1+N) \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}]}-F M=0\)

\[
\frac{1}{2} \cdot(1+N) \cdot A B \cdot \frac{(N-1)}{\sqrt{(N+3) \cdot(3 \cdot N+1)}}-M Q=0 \quad \frac{1}{2} \cdot A B \cdot(N-1) \cdot \frac{(1+N)}{\sqrt{(N+3) \cdot(3 \cdot N+1)}}-H M=0
\]
\[
\mathbf{H M}-\mathbf{M Q}=\mathbf{0}
\]
\[
\frac{1}{2} \cdot \mathrm{AB} \cdot \frac{(\mathrm{~N}-1)^{2}}{(1+\mathrm{N})}-\mathrm{DH}=0 \quad \frac{\mathrm{DH}}{2}-\mathrm{FH}=0
\]

\section*{Four Lines To A Point 042901}



\section*{Some Algebraic Names:}

\[
\begin{aligned}
& A B \cdot(\mathbf{N}-1)-B D=0 \\
& \frac{A B \cdot(\mathbf{N}-1)}{2}-\mathbf{B O}=0 \\
& \frac{1}{2} \cdot A B \cdot(1+\mathbf{N})-A O=0 \\
& \frac{1}{2} \cdot A B \cdot \frac{(N-1)^{2}}{(1+N)}-\mathbf{H O}=0 \\
& 2 \cdot A B \cdot \frac{\mathbf{N}}{(1+N)}-A H=0 \\
& \frac{1}{2} \cdot A B \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}-\mathbf{G O}=\mathbf{0} \\
& A B \cdot(\mathbf{3} \cdot \mathbf{N}+1) \cdot \frac{(N-1)}{(1+N)^{3}}-\mathbf{B G}=0 \\
& A B \cdot(N-1) \cdot N^{2} \cdot \frac{(N+3)}{(1+N)^{3}}-D G=0
\end{aligned}
\]
\[
\sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N \cdot(\mathbf{N}-1) \cdot \frac{A B}{(1+\mathbf{N})^{3}}-\mathbf{G L}=0
\]
\[
\left.\frac{1}{2} \cdot A B \cdot\left(N^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{\left[3 \cdot N+1+3 \cdot N^{2}+N^{3}-2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}\right.}\right]-\mathbf{E O}=0
\]
\[
A B \cdot(\mathbf{N}-1) \cdot \frac{[\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}-\mathbf{3} \cdot \mathbf{N}-1]}{\left[3 \cdot \mathbf{N}+\mathbf{1}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}\right]}-\mathbf{B E}=0 \quad \quad \mathbf{A B} \cdot \frac{(\mathbf{N}-1)}{(1+\mathbf{N})}-\mathbf{B H}=0
\]
\[
A B \cdot \frac{(N-1)^{2} \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N} \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}{\left[\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right] \cdot(1+\mathbf{N})^{3}\right]}-\mathbf{E G}=0
\]
\[
A B \cdot(\mathbf{N}-1)^{2} \cdot \mathbf{N} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}+1]}{\left[\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right] \cdot(1+\mathbf{N})\right]}-\mathbf{E H}=\mathbf{0}
\]
\[
\begin{aligned}
& N \cdot(\mathbf{N}-1) \cdot \frac{A B}{(1+N)} \cdot \frac{[N+\sqrt{(N+3) \cdot(3 \cdot N+1)}+1]}{\left(N^{2}+4 \cdot N+1\right)}-\mathbf{H M}=0 \\
& A B \cdot \frac{(N-1)^{2}}{(1+N)^{2}} \cdot N \cdot \frac{[N+\sqrt{(N+3) \cdot(3 \cdot N+1)}+1]}{\left(N^{2}+4 \cdot N+1\right)}-H_{2}=0
\end{aligned}
\]
\[
\frac{1}{2} \cdot A B \cdot(N-1)^{2} \cdot \frac{\left(N^{2}+4 \cdot N+1\right)}{\left[7 \cdot N \cdot(N+1)+2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-O U=0
\]
\[
\mathbf{N} \cdot(\mathbf{N}-1) \cdot \mathbf{A B} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}+1]}{\left[7 \cdot \mathbf{N}+7 \cdot \mathbf{N}^{2}+2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-\mathbf{U P}=0
\]

\(\frac{\left[A B \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}\right]}{\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right]} \cdot \frac{(1+\mathbf{N})}{\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}}-\mathrm{OE}_{2}=0\)
\((1+N)^{2} \cdot \frac{A B}{\sqrt{3+10 \cdot N+3 \cdot N^{2}}}-A S_{2}=0\)

\[
\begin{aligned}
& -\mathbf{A B} \cdot \mathbf{N} \cdot\left[\mathbf{N}^{2}+6 \cdot \mathbf{N}+1-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right] \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \\
& \left(2 \cdot \mathbf{N}^{4}+\mathbf{1 0} \cdot \mathbf{N}^{3}+\mathbf{8} \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+\mathbf{2}\right)-\mathbf{3} \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N} \ldots \\
& \quad+-\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}-3 \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}^{2}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}^{3}
\end{aligned}
\]
\[
\frac{1}{2} \cdot A B \cdot(N-1)^{2} \cdot \frac{\left(N^{2}+4 \cdot N+1\right)}{\left[7 \cdot N \cdot(N+1)+2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-\mathbf{U O}=0
\]
\[
\mathbf{N} \cdot(\mathbf{N}-1) \cdot \mathbf{A B} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}+1]}{\left[7 \cdot \mathbf{N}+7 \cdot \mathbf{N}^{2}+2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-\mathbf{P U}=0
\]
\[
\begin{aligned}
& \frac{\left[A B \cdot\left(N^{2}+4 \cdot N+1\right) \cdot(\mathbf{N}-1)^{2}\right]}{\left[3 \cdot N+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}\right]} \cdot \frac{(1+\mathbf{N})}{\sqrt{(N+3) \cdot(3 \cdot N+1)}}-\frac{1}{2} \cdot A B \cdot(1+N)-A E_{2}=0 \\
& -\mathbf{A B} \cdot \mathbf{N} \cdot \frac{\left[\mathbf{N}^{2}+6 \cdot \mathbf{N}+1-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right]}{\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right]}-\mathbf{A E}=\mathbf{0} \\
& \frac{-2 \cdot A B \cdot N \cdot(1+\mathbf{N}) \cdot\left[\mathbf{N}^{2}+6 \cdot \mathbf{N}-\sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}+1-\sqrt{(N+3) \cdot(3 \cdot N+1)}\right]}{\left(2 \cdot \mathbf{N}^{4}+10 \cdot \mathbf{N}^{3}+8 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+2\right)-3 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N} \ldots}-A P=0 \\
& +-\sqrt{(N+3) \cdot(3 \cdot \mathbf{N}+1)}-3 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}^{2}-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}^{3}
\end{aligned}
\]

\section*{Compass Construction 043001}


The process is simple, construct point \(O\) and then bisect AOC. From point \(\mathbf{N}\) construct \(\mathbf{P}\) from the perpendicular L-which is the midpoint of NS.
Bisect APC constructing E and F which are bisected at point \(M\). Draw \(S\) to \(M\) to construct point \(D\).
o When there is no difference between two things, those things are said to be equal. This is true even of tolerance. If a figure is more accurate than the tools used to construct the figure, then that figure is equal, in that tool, to a solution that is tool independant.
\(\mathrm{m} \angle \mathrm{ABC}-3 \cdot \mathrm{~m} \angle \mathrm{ABD}=0.000^{\circ}\)
\(\mathrm{m} \angle A B_{2} \mathrm{C}-3 \cdot \mathrm{~m} \angle A B_{2} \mathrm{D}=-0.000^{\circ}\)
\[
\rightarrow \text { Move C->60 } \rightarrow \text { Move C->75 }
\]


Pull K.






\[
\begin{array}{ll}
\text { EM }:=\frac{1}{2} \cdot \sqrt{3} & \text { AL }:=\frac{1}{2} \cdot \sqrt{2} \\
\text { AM }:=\frac{1}{2} & \text { JL }:=\frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}} \\
\text { LM }:=\frac{1}{4} \cdot \sqrt{6}-\frac{1}{10-2 \cdot \sqrt{5}} \cdot \sqrt{2} \\
& \text { AG }:=\frac{1}{4} \cdot \sqrt{8+2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}
\end{array}
\]

\section*{Elliptic Progression Outtake One 0507011}

A method of trisection Algebraically.


N:= M
\[
N \geq 4=1 \quad A F:=6 \quad A E:=\frac{A F}{2}
\]

DE \(:=\frac{\mathbf{A F}}{\mathbf{N}} \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathrm{DF}:=\mathbf{A F}-\mathrm{AD}\)
DG \(:=\sqrt{\text { AD } \cdot \mathbf{D F}} \quad\) CD \(:=\mathrm{DE} \quad\) EG \(:=\mathbf{A E}\)
\(\mathrm{CO}:=\frac{\mathrm{CD}^{2}}{\mathrm{EG}} \quad \mathrm{CG}:=\mathrm{EG} \quad \mathrm{CJ}:=\mathrm{CG}-4 \cdot \mathrm{CO}\)
\(\mathbf{B C}:=\frac{\mathbf{C D} \cdot \mathbf{C J}}{\mathbf{C G}} \quad \mathbf{A B}:=\mathbf{A E}-(\mathbf{2} \cdot \mathbf{D E}+\mathbf{B C})\)
BJ := \(\frac{\text { DG } \cdot \mathbf{B C}}{\text { CD }} \quad\) BD \(:=\mathbf{B C}+\mathbf{C D}\)
\(\mathrm{JK}:=\sqrt{\mathrm{DG}^{2}-2 \cdot \mathrm{DG} \cdot \mathrm{BJ}+\mathrm{BJ}^{2}+\mathrm{BD}^{2}} \quad \frac{\mathrm{JK}}{2 \cdot \mathrm{DE}}=1 \quad\) Some Algebraic Names,
Part of this demonstration may be something of a reductio ad absurdum, if one supposed that CJ were not true. I suppose I need a plate to demonstrate it.
\(\mathrm{AF} \cdot \frac{(\mathbf{N}-2)}{2 \cdot \mathrm{~N}}-\mathbf{A D}=\mathbf{0} \quad \mathrm{AF} \cdot \frac{(\mathbf{N}+2)}{2 \cdot \mathbf{N}}-\mathbf{D F}=\mathbf{0} \quad \mathrm{AF} \cdot \frac{\sqrt{(\mathbf{N}-2) \cdot(\mathbf{N}+2)}}{2 \cdot \mathbf{N}}-\mathbf{D G}=\mathbf{0}\)
\(\frac{2 \mathrm{AF}}{\mathrm{N}^{2}}-\mathbf{C O}=0 \quad \mathrm{AF} \cdot \frac{(\mathrm{N}-4) \cdot(\mathrm{N}+4)}{2 \cdot \mathbf{N}^{2}}-\mathbf{C J}=0 \quad \mathrm{AF} \cdot \frac{(\mathrm{N}-4) \cdot(\mathrm{N}+4)}{\mathrm{N}^{3}}-\mathrm{BC}=0\)
\(A F \cdot \frac{(N+2) \cdot(N-4)^{2}}{2 \cdot N^{3}}-A B=0 \quad \begin{aligned} & \text { One of the meanings of trisection is solving for } \\ & \text { the following equation when given } A F \text { and } A B .\end{aligned}\)
\(\frac{A F}{A B}-\frac{2 \cdot N^{3}}{(N+2) \cdot(N-4)^{2}}=0\)
\(A F \cdot \frac{(N-4) \cdot(N+4) \cdot \sqrt{(N-2) \cdot(N+2)}}{2 \cdot N^{3}}-B J=0 \quad A F \cdot \frac{2 \cdot\left(N^{2}-8\right)}{N^{3}}-B D=0 \quad \frac{2 \cdot A F}{N}-J K=0\)
\[
\begin{aligned}
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}-\frac{A F}{A B}=0 \quad \frac{A F}{A B}=6 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}-6=0 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}=6 \\
& 2 \cdot M^{3}-6 \cdot\left[(M+2) \cdot(M-4)^{2}\right]=0 \\
& 2 \cdot M^{3}-\left(6 \cdot M^{3}-36 \cdot M^{2}+192\right)=0 \\
& 4 \cdot M^{3}-36 \cdot M^{2}+192=0 \\
& M^{3}-9 \cdot M^{2}+48=0 \quad M^{2} \cdot(M-9)+48=0 \quad M \equiv 8.303889634816388 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}=6 \quad D E-\frac{A F}{M}=0 \quad Z:=5.9,6 . .8 .9
\end{aligned}
\]


\section*{Elliptic Progression Outtake Two 0507012}

\section*{Angles TEV and EVJ equals CTG.}


Outtake Three: Alternate Method: Pentasection Or Irrational Rationals 0507013

\[
\begin{aligned}
& \mathbf{A L}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A L}}{\mathbf{2}} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \\
& \mathbf{C E}:=\mathbf{A C} \text { ER }:=\mathbf{A E} \mathbf{C R}:=\sqrt{\mathbf{C E}^{2}+\mathbf{E R}^{2}} \\
& \mathbf{C J}:=\mathbf{C R} \quad \mathbf{E J}:=\mathbf{C J}-\mathbf{C E} \\
& \mathbf{J R}:=\sqrt{\mathbf{E J}^{2}+\mathbf{E R}^{2}} \mathbf{N R}:=\mathbf{J R} \\
& \mathbf{E N}:=\mathbf{A E} \mathbf{E M}:=\frac{\mathbf{E N}^{2}+\mathbf{E R}^{2}-\mathbf{N R}^{2}}{\mathbf{2} \cdot \mathbf{E R}}
\end{aligned}
\]

KN \(:=\) EM EK \(:=\sqrt{\mathbf{E N}^{2}-K^{2}} \quad\) EL \(:=\mathbf{A E} \quad\) KL \(:=\mathbf{E L}-\mathbf{E K} \quad \mathbf{L N}:=\sqrt{\mathbf{K L}^{2}+\mathrm{KN}^{2}}\)

\(\mathbf{P R}-\mathbf{L N}=\mathbf{0} \quad \mathbf{A N}:=\sqrt{\mathbf{A L}^{2}-\mathbf{L N}^{2}}\)
Irrational means the inability of a grammar to provide a name for a given thing. Many things are then irrational in Arithmetic due to the principles of the naming convention. Algebraic naming solves the problem by incorporating operands as part of a name. Algebra provides a degree of rationality then that is not achievable by Arithmetic. The following are some Algebraic names.
\(\frac{1}{2}-\mathbf{A E}=\mathbf{0} \quad \frac{1}{4}-\mathbf{A C}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{5}-\mathbf{C R}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{5}-\frac{1}{4}-\mathbf{E J}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{10-2 \cdot \sqrt{5}}-\mathbf{J R}=\mathbf{0}\)
\(\frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{E M}=0 \quad \frac{1}{2} \cdot \sqrt{\frac{5}{8}+\frac{1}{8} \cdot \sqrt{5}}-\mathbf{E K}=0 \quad \frac{1}{2}-\frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}-K L=0\)
\(\frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathbf{L N}=0 \quad \frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{E G}=0 \quad \frac{5}{8}-\frac{1}{8} \cdot \sqrt{5}-\mathbf{G L}=\mathbf{0}\)
\(\frac{3}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{A G}=0 \quad \frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}-\mathbf{G P}=0 \quad \frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathbf{P R}=0\)
\(\frac{1}{4} \cdot \sqrt{8+2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathrm{AN}=0\)

\section*{Outtake Four: Some Names 0507014}

\[
\begin{aligned}
& \mathbf{A G}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A G}}{\mathbf{2}} \mathbf{A C}:=\frac{\mathbf{A E}}{\mathbf{2}} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C J}:=\sqrt{\mathbf{A C} \cdot \mathbf{C G}} \\
& \mathbf{E L}:=\mathbf{A E} \quad \mathbf{C E}:=\mathbf{A C} \\
& \mathbf{J L}:=\sqrt{\mathbf{E L}^{2}-\mathbf{2} \cdot \mathbf{E L} \cdot \mathbf{C J}+\mathbf{C J}^{2}+\mathbf{C E}^{2}} \\
& \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}^{2}} \quad \mathbf{G J}:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}^{2}} \\
& \mathbf{A L}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E L}^{2}}
\end{aligned}
\]
\(\mathrm{AE}:=\frac{\mathbf{1}}{\mathbf{2}} \quad \mathrm{AC}:=\frac{\mathbf{1}}{\mathbf{4}} \quad \mathrm{CG}:=1-\frac{1}{4}\)
\(\mathbf{C J}:=\frac{1}{4} \cdot \sqrt{\mathbf{3}}\)
JL \(:=\frac{1}{4} \cdot \sqrt{6}-\frac{1}{4} \cdot \sqrt{2}\)
AJ := \(\frac{\mathbf{1}}{\mathbf{2}}\)
GJ \(:=\frac{\mathbf{1}}{\mathbf{2}} \cdot \sqrt{\mathbf{3}}\) *
AL \(:=\frac{1}{2} \cdot \sqrt{2}\)





\section*{On Trisection 051301}

For any given trisection what is the Algebraic names of BC and BE taking BG as unit?


Some Algebraic Names:
\[
\begin{aligned}
& N-1-A B=0 \quad \frac{1}{2}-B F=0 \quad \frac{1}{2} \cdot(2 \cdot N-1)-A F=0 \quad \frac{1}{4} \cdot \frac{\left(8 \cdot N^{2}-8 \cdot N+1\right)}{(2 \cdot N-1)}-A E=0 \\
& \frac{1}{4} \cdot \frac{1}{(2 \cdot N-1)}-I K=0 \quad 2 \cdot N \cdot \frac{(N-1)}{(2 \cdot N-1)}-A H=0 \quad \frac{\left(8 \cdot N^{2}-8 \cdot N+1\right)}{(2 \cdot N-1)^{3}} \cdot N \cdot(N-1)-A C=0
\end{aligned}
\]
\[
(N-1)^{2} \cdot \frac{(4 \cdot N-1)}{(2 \cdot N-1)^{3}}-B C=0 \quad \frac{1}{4} \cdot \frac{(-3+4 \cdot N)}{(2 \cdot N-1)}-B E=0
\]
\[
\begin{aligned}
& \text { N:=9 } \\
& \text { BG :=1 } \\
& \text { AG := BG•N } \\
& \mathbf{A B}:=\mathbf{A G}-\mathbf{B G} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \\
& \text { AF }:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A N}:=\mathbf{A F} \quad \mathbf{A K}:=\mathbf{A N} \\
& \text { FK := BF } \quad \mathrm{S}_{\mathbf{1}}:=\mathrm{AF} \quad \mathrm{~S}_{\mathbf{2}}:=\mathrm{AK} \quad \mathrm{~S}_{\mathbf{3}}:=\mathrm{FK} \\
& \mathrm{AE}:=\frac{\mathrm{S}_{\mathbf{2}}{ }^{2}+\mathrm{S}_{\mathbf{1}}{ }^{2}-\mathrm{S}_{\mathbf{3}}{ }^{2}}{2 \cdot \mathrm{~S}_{\mathbf{1}}} \quad \mathrm{AI}:=\mathrm{AE} \\
& \mathbf{I K}:=\mathbf{A K}-\mathbf{A I} \quad \mathbf{H I}:=\mathbf{I K} \quad \text { AH }:=\mathbf{A K}-(\mathbf{H I}+\mathbf{I K}) \\
& A C:=\frac{\mathbf{A E} \cdot \mathbf{A H}}{\mathbf{A K}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B E}:=\mathrm{AE}-\mathbf{A B}
\end{aligned}
\]


For any given QLX, XLZ is \(1 / 3\) of that angle. What are the Algebraic names in this figure for the cords QX and XZ?
\[
\mathbf{N}:=5 \quad \text { CE :=1 } \quad \text { CN }:=\text { CE } \cdot \mathbf{N}
\]
\[
\mathbf{E N}:=\mathbf{C N}-\mathbf{C E} \quad \text { EL }:=\frac{\mathbf{E N}}{2} \quad \text { LV }:=\mathbf{E L}
\]
\[
\mathbf{C L}:=\mathbf{C E}+\mathbf{E L}
\]
\[
\mathbf{C V}:=\mathbf{C L} \quad \mathbf{S}_{1}:=\mathbf{C L} \quad \mathbf{S}_{2}:=\mathbf{C V}
\]
\[
S_{3}:=L V \quad C K:=\frac{S_{2}^{2}+S_{1}^{2}-S_{3}^{2}}{2 \cdot S_{1}}
\]
\(\mathbf{C R}:=\mathbf{C K} \quad \mathbf{R V}:=\mathbf{C V}-\mathbf{C R} \quad \mathbf{Q R}:=\mathbf{R V} \quad \mathbf{C Q}:=\mathbf{C V}-(\mathbf{Q R}+\mathbf{R V}) \quad \mathbf{C I}:=\frac{\mathbf{C K} \cdot \mathbf{C Q}}{\mathbf{C V}} \quad \mathbf{E I}:=\mathbf{C I}-\mathbf{C E}\) IN \(:=\) EN - EI IQ \(:=\sqrt{\text { EI•IN }} \quad\) LP \(:=\) IQ \(\quad\) LX \(:=\) EL \(\quad\) IL \(:=\) EL- EI PX \(:=\mathbf{L X}-\mathbf{L P} \quad\) AL \(:=\frac{\text { IL•LX }}{\text { PX }}\) \(A E:=A L-E L \quad A C:=A E-C E \quad A I:=A C+C I \quad A X:=\sqrt{A L^{2}+L^{2}} \quad\) AQ \(:=\frac{A X \cdot A I}{A L} \quad\) QX \(:=A X-A Q\) \(\mathrm{CX}:=\sqrt{\mathrm{CL}^{2}+\mathrm{LX}^{2}} \quad \mathrm{CS}:=\frac{\mathrm{CL}^{2}}{\mathrm{CX}} \quad \mathrm{SX}:=\mathrm{CX}-\mathrm{CS} \quad \mathrm{OS}:=\mathrm{SX} \quad \mathrm{CO}:=\mathrm{CX}-(\mathrm{SX}+\mathrm{OS})\) \(G O:=\frac{L X \cdot C O}{C X} \quad C G:=\frac{C L \cdot C O}{C X} \quad E G:=C G-C E A G:=A E+E G \quad A O:=\sqrt{A G^{2}+G O^{2}}\)
\(\mathbf{A U}:=\frac{\mathbf{A G} \cdot \mathbf{A L}}{\mathbf{A O}}\) OU \(:=\mathbf{A U}-\mathbf{A O} \quad \mathbf{U Z}:=\mathbf{O U} \quad \mathbf{A Z}:=\mathbf{A O}+(\mathbf{O U}+\mathbf{U Z})\)

\[
\begin{aligned}
& \mathbf{L W}:=\frac{\mathbf{G O} \cdot \mathbf{A L}}{\mathbf{A G}} \quad \mathbf{A W}:=\frac{\mathbf{A O} \cdot \mathbf{A L}}{\mathbf{A G}} \\
& \mathbf{W Z}:=\mathbf{A Z}-\mathbf{A W} \quad \mathbf{W Y}:=\frac{\mathbf{G O} \cdot \mathbf{W Z}}{\mathbf{A O}} \\
& \mathbf{Y Z}:=\frac{\mathbf{A G} \cdot \mathbf{W Z}}{\mathbf{A O}} \quad \mathbf{Y X}:=\mathbf{L X}-(\mathbf{L W}+\mathbf{W Y}) \\
& \mathbf{X Z}:=\sqrt{\mathbf{Y} \mathbf{X}^{\mathbf{2}}+\mathbf{Y} \mathbf{Z}^{2}}
\end{aligned}
\]

Some Algebraic Names:
\[
\left.\begin{array}{ll}
\frac{1}{2} \cdot \mathrm{CE} \cdot \mathrm{~N}-\frac{1}{2} \cdot \mathrm{CE}-\mathrm{EL}=0 & \frac{1}{4} \cdot \mathrm{CE} \cdot \frac{\left(1+6 \cdot N+\mathrm{N}^{2}\right)}{(1+N)}-\mathrm{CK}=0
\end{array} \quad \frac{1}{4} \cdot \mathrm{CE} \cdot \frac{\left(1+\mathbf{N}^{2}-2 \cdot \mathrm{~N}\right)}{(1+N)}-\mathrm{RV}=0\right)
\]
\[
C E \cdot \mathbf{N}^{2} \cdot \frac{\left(-3+2 \cdot N+N^{2}\right)}{(1+\mathbf{N})^{3}}-I N=0 \quad(N-1) \cdot N \cdot C E \cdot \frac{\sqrt{(N+3) \cdot(3 \cdot N+1)}}{(1+N)^{3}}-I Q=0
\]
\[
\frac{1}{2} \cdot C E \cdot \frac{\left(2 \cdot N-6 \cdot N^{2}+2 \cdot N^{3}+N^{4}+1\right)}{(1+N)^{3}}-I L=0
\]
\[
\left[\frac{1}{2} \cdot C E \cdot(\mathbf{N}-1) \cdot \frac{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}-2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}+3 \cdot \mathbf{N}+1\right]}{(1+\mathbf{N})^{3}}\right]-\mathbf{P X}=0
\]
\[
\frac{1}{2} \cdot \mathbf{C E} \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{\left[\mathbf{N}^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}-\mathbf{A L}=0
\]
\[
\mathbf{C E} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{[\mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{3} \cdot \mathbf{N}-\mathbf{1}]}{\left[\mathbf{N}^{3}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}\right]}-\mathbf{A E}=\mathbf{0}
\]
\[
- \text { CE } \cdot \mathrm{N} \cdot \frac{\left[-N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+6 \cdot N+1-\sqrt{(N+3) \cdot(3 \cdot N+1)}+\mathbf{N}^{2}\right]}{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}-\mathbf{A C}=0
\]
\[
\frac{C E \cdot(N-1)^{2} \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot\left(N^{2}+4 \cdot N+1\right)}{\left[\mathbf{N}^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right] \cdot(1+N)^{3}}-A I=0
\]
\[
\frac{1}{2} \cdot C E \cdot(N-1) \cdot \sqrt{2} \cdot \sqrt{\frac{(1+N)^{3}}{\left[N^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}}-A X=0
\]
\[
\mathbf{C E} \cdot(\mathbf{N}-1) \cdot \sqrt{2} \cdot \sqrt{\frac{(1+N)^{3}}{\left[\mathbf{N}^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}} \cdot N \cdot \frac{\sqrt{(N+3) \cdot(3 \cdot N+1)}}{(1+N)^{3}}-A Q=0
\]
\[
\sqrt{\frac{\left[2 \cdot(1+\mathbf{N})^{3}\right]}{\left[\begin{array}{l}
\mathbf{N}^{3}+\mathbf{3} \cdot \mathbf{N}^{2}-2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \ldots \\
+\mathbf{3} \cdot \mathbf{N}+1
\end{array}\right.} \cdot \mathbf{C E} \cdot(\mathbf{N}-1) \cdot \frac{\left[\begin{array}{l}
\left(\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}\right)-2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \ldots \\
+-\mathbf{Q X}+1
\end{array}\right.}{2 \cdot(1+\mathbf{N})^{3}} \ldots=0}
\]
\(\frac{\mathrm{CE}}{2} \cdot \sqrt{2} \cdot \sqrt{\left(1+\mathbf{N}^{2}\right)}-\mathbf{C X}=0 \quad \frac{1}{4} \cdot \mathbf{C E} \cdot(1+\mathrm{N})^{2} \cdot \frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{C S}=0 \quad \frac{1}{4} \cdot \sqrt{2} \cdot \mathbf{C E} \cdot \frac{(\mathrm{~N}-1)^{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{S X}=0\)
\(\frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}} \cdot \mathrm{CE} \cdot \mathbf{N}-\mathrm{CO}=0 \quad \mathrm{CE} \cdot \mathbf{N} \cdot \frac{(\mathbf{N}-1)}{\left(1+\mathbf{N}^{2}\right)}-\mathbf{G O}=0 \quad \mathrm{CE} \cdot \frac{\mathbf{N}^{2}+\mathbf{N}}{\left(1+\mathbf{N}^{2}\right)}-\mathrm{CG}=0 \quad \mathrm{CE} \cdot \frac{(\mathrm{N}-1)}{\left(1+\mathbf{N}^{2}\right)}-\mathbf{E G}=0\)
\(\mathbf{C E} \cdot(\mathbf{N}-1)^{2} \cdot \mathbf{N} \cdot \frac{[\mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}-\mathbf{2} \cdot \mathbf{N}+\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}]}{\left[\left[\mathbf{N}^{3}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}+\mathbf{3} \cdot \mathbf{N}+1\right] \cdot\left(\mathbf{1}+\mathbf{N}^{2}\right)\right]}-\mathbf{A G}=\mathbf{0}\)










\[
\begin{aligned}
& \mathrm{m} \angle \mathrm{RGP}=39.823^{\circ} \\
& \mathrm{m} \angle \mathrm{DAE}=19.911^{\circ} \\
& \frac{\mathrm{m} \angle \mathrm{RGP}}{\mathrm{~m} \angle \mathrm{DAE}}=2.000
\end{aligned}
\]





\section*{Segment DF And HM 052201}

Given \(A B\) and \(A G\), what is


HM and DF?
\[
\begin{array}{ll}
\mathbf{N}:=7.111 & \text { AB }:=.375 \\
\mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} & \text { BG }:=\mathbf{A G}-\mathbf{A B}
\end{array}
\]
\[
\text { BF }:=\frac{\mathbf{B G}}{2} \quad \text { FK }:=\mathbf{B F}
\]
\[
\mathbf{A F}:=\mathbf{A B}+\mathbf{B F}
\]
\[
A K:=\sqrt{A F^{2}+F K^{2}}
\]
\[
\mathbf{A J}:=\frac{\mathbf{A F}}{\mathbf{A K}} \quad \mathbf{J K}:=\mathbf{A K}-\mathbf{A J}
\]
\(\mathbf{H J}:=\mathbf{J K} \quad \mathrm{AH}:=\mathrm{AK}-(\mathbf{J K}+\mathbf{H J}) \quad \mathrm{AC}:=\frac{\mathrm{AF} \cdot \mathbf{A H}}{\mathrm{AK}} \quad \mathrm{EM}:=\frac{\mathrm{BF}}{2} \quad \mathrm{FL}:=2 \cdot \mathrm{AF} \quad \mathrm{EF}:=\frac{\mathrm{FL}}{2}-\frac{\sqrt{-4 \mathrm{EM}^{2}+\mathrm{FL}^{2}}}{2}\)
\(\mathrm{AE}:=\mathrm{AF}-\mathrm{EF} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{CH}:=\frac{\mathrm{FK} \cdot \mathrm{AH}}{\mathrm{AK}} \mathrm{HM}:=\sqrt{(\mathrm{EM}+\mathrm{CH})^{2}+\mathrm{CE}^{2}} \quad \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathbf{E M}}{\mathrm{EM}+\mathrm{CH}}\)
DF := DE + EF

\section*{Some Algebraic Names:}
\(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A G}=\mathbf{0} \quad \mathbf{A B} \cdot \mathbf{N}-\mathbf{A B}-\mathbf{B G}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{B F}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{F K}=\mathbf{0}\)
\(\frac{1}{2} \cdot \mathbf{A B}+\frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{A F}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \sqrt{2} \cdot \sqrt{1+\mathbf{N}^{2}}-\mathbf{A K}=0 \quad \frac{1}{4} \cdot \mathbf{A B} \cdot(1+\mathbf{N})^{2} \cdot \frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{A J}=0\)
\(\frac{1}{4} \cdot \sqrt{2} \cdot \mathbf{A B} \cdot \frac{\left(1+\mathbf{N}^{2}-2 \cdot N\right)}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{J K}=0 \quad A B \cdot \sqrt{2} \cdot \frac{N}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{A H}=0 \quad \mathbf{A B} \cdot(1+\mathbf{N}) \cdot \frac{\mathrm{N}}{1+\mathbf{N}^{2}}-\mathbf{A C}=0\)

\[
\begin{aligned}
& \frac{1}{4} \cdot A B \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}-A E=0 \\
& \frac{1}{4} \cdot A B \cdot \frac{\left(\sqrt{3 \cdot N^{2}+10 \cdot N+3}+\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N^{2}-4 \cdot N-4 \cdot N^{2}\right)}{\left(1+N^{2}\right)}-C E=0
\end{aligned}
\]
\[
(\mathbf{N}-1) \cdot \mathbf{A B} \cdot \frac{\mathbf{N}}{\left(1+\mathbf{N}^{2}\right)}-\mathbf{C H}=0
\]
\[
\frac{1}{2} \cdot A B \cdot \sqrt{(1+N) \cdot \frac{\left[N^{3}+3 \cdot N^{2}-2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N+3 \cdot N+1\right]}{\left(1+N^{2}\right)}}-\mathbf{H M}=\mathbf{0}
\]
\[
\frac{1}{4} \cdot\left(\sqrt{3 \cdot N^{2}+10 \cdot N+3}+\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N^{2}-4 \cdot N-4 \cdot N^{2}\right) \cdot \frac{A B}{\left(N^{2}+4 \cdot N+1\right)}-D E=0
\]
\[
\frac{1}{2} \cdot A B \cdot \frac{\left(3 \cdot N+3 \cdot N^{2}+1+\mathbf{N}^{3}-2 \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot \mathbf{N}\right)}{\left(\mathbf{N}^{2}+4 \cdot N+1\right)}-D F=0
\]











\section*{Point of Intersection 052701}


\section*{Do RY and PW intersect at G?}

N: =5
CE :=1
CN := CE•N

EN \(:=\mathbf{C N}-\mathbf{C E} \quad\) EL \(:=\frac{\text { EN }}{2} \quad\) LV \(:=\) EL
LT \(:=\) EL \(\quad\) LY \(:=\) EL \(\quad\) CL \(:=\) CE + EL \(\quad\) CT \(:=\mathbf{C L}\)
\(S_{1}:=\mathbf{C L} \quad S_{2}:=\mathbf{C T} \quad S_{3}:=\mathbf{L T}\)
\(\mathrm{KL}:=\frac{\mathrm{S}_{\mathbf{3}}{ }^{\mathbf{2}}+\mathrm{S}_{\mathbf{1}}{ }^{\mathbf{2}}-\mathrm{S}_{\mathbf{2}}{ }^{\mathbf{2}}}{2 \cdot \mathrm{~S}_{\mathbf{1}}} \quad \mathrm{CK}:=\mathrm{CL}-\mathrm{KL} \quad \mathrm{CS}:=\mathrm{CK} \quad\) ST \(:=\mathrm{CT}-\mathrm{CS} \quad\) RS \(:=\mathrm{ST}\)
\(\mathbf{C R}:=\mathbf{C T}-(\mathbf{S T}+\mathbf{R S}) \quad \mathrm{CF}:=\frac{\mathrm{CK} \cdot \mathrm{CR}}{\mathrm{CT}} \quad \mathrm{FR}:=\sqrt{\mathrm{CR}^{2}-\mathrm{CF}^{2}} \quad\) FQ \(:=\frac{\mathbf{L V} \cdot \mathbf{C F}}{\mathrm{CL}} \quad\) FL \(:=\mathrm{CL}-\mathbf{C F}\) \(\mathbf{G L}:=\frac{\mathbf{F L} \cdot \mathbf{L Y}}{(\mathbf{L Y}+\mathbf{F R})}\)

\section*{Some Algebraic Names:}
\[
\begin{aligned}
& \mathbf{C E} \cdot \mathbf{N}-\mathbf{C N}=0 \\
& \mathrm{CE} \cdot \mathrm{~N}-\mathrm{CE}-\mathrm{EN}=0 \quad \frac{1}{2} \cdot \mathrm{CE} \cdot \mathrm{~N}-\frac{1}{2} \cdot \mathrm{CE}-\mathrm{EL}=0 \quad \frac{1}{2} \cdot \mathrm{CE}+\frac{1}{2} \cdot \mathrm{CE} \cdot \mathrm{~N}-\mathrm{CL}=0 \\
& \frac{1}{4} \cdot C E \cdot \frac{(N-1)^{2}}{(1+N)}-K L=0 \quad \frac{1}{4} \cdot C E \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)}-C K=0 \quad \frac{1}{4} \cdot C E \cdot \frac{\left(1-2 \cdot N+N^{2}\right)}{(1+N)}-S T=0 \\
& 2 \cdot C E \cdot \frac{N}{(1+N)}-C R=0 \quad C E \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{3}} \cdot N-C F=0 \\
& C E \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N \cdot \frac{(N-1)}{(1+N)^{3}}-F R=0 \quad C E \cdot(N-1) \cdot\left(1+6 \cdot N+N^{2}\right) \cdot \frac{N}{(1+N)^{4}}-F Q=0 \\
& \frac{1}{2} \cdot C E \cdot \frac{\left(1+2 \cdot N-6 \cdot N^{2}+2 \cdot N^{3}+N^{4}\right)}{(1+N)^{3}}-F L=0
\end{aligned}
\]

\[
G L:=\frac{1}{2} \cdot \frac{C E \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}}{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}+2 \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}+3 \cdot \mathbf{N}+1\right]}
\]

From Segment DF And HM 052201:
\[
\frac{1}{2} \cdot \frac{C E \cdot\left(\mathbf{N}^{3}+3 \cdot N^{2}+3 \cdot N-2 N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+1\right)}{\left(N^{2}+4 \cdot N+1\right)}-G L=0
\]
\[
\frac{\frac{1}{2} \cdot \frac{C E \cdot\left(\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}+3 \cdot N-2 N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+1\right.}{\left(\mathbf{N}^{2}+4 \cdot N+1\right)}}{\frac{1}{2} \cdot \frac{C E \cdot\left(N^{2}+4 \cdot N+1\right) \cdot(N-1)^{2}}{\left[N^{3}+3 \cdot N^{2}+2 N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}}=1
\]

Which does reduce to,
\(1=1\)




\section*{A Small Extrapolation 060101}

Given AE, AG, and EG, what is the Algebraic name of the segment GJ?

\[
\begin{aligned}
& \mathbf{S}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{1} \\
& \mathbf{A E}:=\mathbf{S}_{\mathbf{1}} \quad \mathbf{A G}:=\mathbf{S}_{\mathbf{2}} \quad \mathbf{E G}:=\mathbf{S}_{\mathbf{3}} \\
& \mathbf{A C}:=\frac{\mathbf{A G}^{\mathbf{2}}+\mathbf{A E}^{\mathbf{2}}-\mathbf{E G}^{\mathbf{2}}}{\mathbf{2} \mathbf{A E}} \\
& \mathbf{A H}:=\frac{\mathbf{A C} \cdot \mathbf{A E}}{\mathbf{A G}} \quad \mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \\
& \mathbf{H J}:=\mathbf{G H} \quad \mathbf{G J}:=\mathbf{G H}+\mathbf{H J}
\end{aligned}
\]

Some Algebraic Names:
\[
\begin{array}{ll}
\frac{S_{2}{ }^{2}+S_{1}{ }^{2}-S_{3}^{2}}{2 S_{1}}-A C=0 & \frac{S_{1}{ }^{2}+S_{2}{ }^{2}-S_{3}^{2}}{2 S_{2}}-A H=0
\end{array} \quad \frac{S_{1}{ }^{2}-S_{2}^{2}-S_{3}^{2}}{2 S_{2}}-\mathbf{G H}=0
\]

\section*{Units From Both Sides 060201}

Start with AB as unit and find. . . . then start with .... as unit and find AB.

\[
\frac{1}{2} \cdot \mathbf{A B} \cdot(1+\mathbf{N})-\mathbf{A F}=\mathbf{0} \quad \mathbf{A B} \sqrt{\mathbf{N}}-\mathbf{A E}=\mathbf{0} \quad \mathbf{A B} \cdot(\sqrt{\mathbf{N}}-1)-\mathbf{B E}=\mathbf{0}
\]


\(\frac{B G_{2}}{2}-B F_{2}=0 \quad \frac{B G_{2}}{\left(2 \cdot N_{2}\right)}-B E_{2}=0\)
\[
\frac{\mathrm{BG}_{2}}{2} \cdot \frac{\left(\mathbf{N}_{2}-1\right)}{\mathbf{N}_{2}}-\mathrm{EF}_{2}=0
\]
\[
\frac{\mathrm{BG}_{2}}{2} \cdot \frac{\sqrt{2 \cdot \mathbf{N}_{2}^{2}-2 \cdot \mathbf{N}_{2}+1}}{\mathbf{N}_{2}}-\mathrm{EN}_{2}=0
\]
\[
\frac{\mathrm{BG}_{2}}{4} \cdot \frac{\sqrt{2 \cdot \mathrm{~N}_{2}^{2}-2 \cdot \mathbf{N}_{2}+1}}{\mathrm{~N}_{2}}-\mathrm{NP}_{2}=0
\]
\[
\frac{\mathrm{BG}_{2}}{4} \cdot \frac{\left(2 \cdot \mathbf{N}_{2}^{2}-2 \cdot \mathbf{N}_{2}+1\right)}{\left[\mathbf{N}_{2} \cdot\left(\mathbf{N}_{2}-1\right)\right]}-\mathbf{L} \mathbf{N}_{2}=0
\]
\[
\frac{\mathrm{BG}_{2}}{4 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{2}-1\right)}-\mathrm{AB}_{2}=0
\]


\[
\mathrm{AB}_{3}:=\mathrm{AF}_{3}-\mathrm{BF}_{3} \quad \mathrm{AB}_{3}=0.573
\]

BD \(_{3}:=\frac{1}{2} \cdot \frac{\text { BG }_{3}}{\mathbf{N}_{3}} \quad\) DG \(_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \frac{\left(2 \cdot \mathbf{N}_{3}-1\right)}{\mathbf{N}_{3}} \quad\) DI \(_{3}:=\frac{1}{\left(2 \cdot \mathbf{N}_{3}\right)} \cdot\) BG \(_{3} \cdot \sqrt{2 \cdot N_{3}-1}\)
DF \(_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \frac{\left(\mathbf{N}_{3}-1\right)}{\mathbf{N}_{3}} \quad\) EF \(_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \frac{\left(\mathbf{N}_{3}-1\right)}{\left(\mathbf{N}_{3}+\sqrt{2 \cdot \mathbf{N}_{3}-1}\right)}\)

EN \(_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \sqrt{2} \cdot \sqrt{\frac{\mathbf{N}_{3}}{\left(\mathbf{N}_{3}+\sqrt{2 \cdot N_{3}-1}\right)}} \quad\) NP \(_{3}:=\frac{1}{4} \cdot\) BG \(_{3} \cdot \sqrt{2} \cdot \sqrt{\frac{N_{3}}{\left(N_{3}+\sqrt{2 \cdot N_{3}-1}\right)}}\)
\(\mathrm{LN}_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \frac{\mathbf{N}_{3}}{\left(\mathbf{N}_{3}-1\right)} \quad\) AB \(_{3}:=\frac{1}{2} \cdot \frac{\text { BG }_{3}}{\left(\mathbf{N}_{3}-1\right)}\)

\[
\mathbf{A H}:=\mathbf{A D}
\]
\[
\mathbf{F H}:=\mathbf{B F} \quad \mathbf{A C}:=\frac{\mathbf{A H ^ { 2 }}+\mathbf{A F}^{2}-\mathbf{F H}^{2}}{\mathbf{2} \cdot \mathbf{A F}}
\]
\[
\mathbf{B C}:=A C-A B
\]
\(A C:=A B \cdot N \cdot \frac{\left(6 \cdot \mathbf{N}+1+\mathbf{N}^{2}\right)}{(\mathbf{N}+1)^{3}}\)
\(\mathbf{B C}:=\mathbf{A B} \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-1)}{(\mathbf{N}+1)^{3}}\)

\section*{Isolating A Problem 060301}

If one is given point \(F\), then finding point \(G\) would lead straightway to the solution. How is BK related to BC?

\[
\mathbf{N}:=\mathbf{4} \quad \mathbf{B E}:=\mathbf{1}
\]
\[
\mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{B C}:=\frac{\mathbf{B E}}{\mathbf{N}} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C}
\]
\[
\mathbf{C G}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{C D}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{AC}:=\frac{\mathbf{C G}^{2}}{\mathbf{C D}}
\]
\[
\text { AF }:=\mathbf{A C} \mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{D F}:=\mathbf{B D}
\]
\[
\mathbf{D K}:=\frac{\mathbf{D F}^{2}+\mathbf{A D}^{2}-\mathbf{A F}^{2}}{2 \mathbf{A D}} \quad \mathbf{B K}:=\mathbf{B D}-\mathbf{D K}
\]
\[
\mathbf{C K}:=\mathbf{B C}-\mathbf{B K}
\]
\(B E \cdot \frac{(\mathbf{N}-1)}{N}-\mathbf{C E}=0 \quad B E \cdot \frac{\sqrt{(N-1)}}{\mathbf{N}}-\mathbf{C G}=0 \quad B E \cdot \frac{(\mathbf{N}-2)}{2 \cdot \mathbf{N}}-\mathbf{C D}=\mathbf{0}\)
\(\mathbf{B E} \cdot \frac{\mathbf{2} \cdot(\mathbf{N}-1)}{\mathbf{N} \cdot(\mathbf{N}-2)}-\mathbf{A C}=\mathbf{0}\)
\(\mathbf{B E} \cdot \frac{\mathbf{N}}{2 \cdot(\mathbf{N}-2)}-\mathbf{A D}=\mathbf{0}\) \(B E \cdot \frac{(\mathbf{N}-2) \cdot\left(\mathbf{N}^{2}+2 \cdot \mathbf{N}-2\right)}{2 \cdot \mathbf{N}^{3}}-\mathbf{D K}=0\)
\(B E \cdot \frac{(3 \cdot \mathbf{N}-2)}{\mathbf{N}^{3}}-\mathbf{B K}=\mathbf{0} \quad \mathbf{B E} \cdot \frac{(\mathbf{N}-1) \cdot(\mathbf{N}-2)}{\mathbf{N}^{3}}-\mathbf{C K}=0 \quad \frac{B K}{B C}-\frac{(3 \cdot \mathbf{N}-2)}{\mathbf{N}^{2}}=0\)


For any \(A B, A F\) what is \(D G\) ?
\[
\begin{aligned}
& \mathbf{N}:=4.39 \quad \text { AB }:=.615 \quad \text { AF }:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E K}:=\mathrm{BE} \\
& \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{D E}:=\frac{\mathbf{E K}}{\mathbf{A E}} \quad \text { EF }:=\mathrm{BE} \\
& \text { FM }:=\mathbf{B F} \quad \mathbf{E M}:=\sqrt{\mathbf{F M}^{2}-\mathbf{E F}^{2}} \quad \text { GM }:=\mathbf{F M} \\
& \text { GQ }:=\mathbf{D E} \quad \mathbf{M Q}:=\sqrt{\mathbf{G M}^{2}-\mathbf{G Q}^{2}} \quad \text { EQ }:=\mathbf{M Q}-\mathbf{E M} \\
& \text { DG }:=\mathbf{E Q}
\end{aligned}
\]

Some Algebraic Names:
\[
A B \cdot(\mathbf{N}-1)-\mathbf{B F}=0 \quad \frac{\mathbf{A B} \cdot(\mathbf{N}-1)}{2}-\mathbf{B E}=0 \quad \frac{1}{2} \cdot \mathbf{A B} \cdot(\mathbf{N}+1)-\mathbf{A E}=0
\]
\[
\frac{1}{2} \cdot \mathbf{A B} \cdot \frac{(\mathbf{N}-1)^{2}}{(\mathbf{N}+1)}-\mathbf{D E}=0 \quad \frac{1}{2} \cdot \sqrt{3} \cdot \mathbf{A B} \cdot(\mathbf{N}-1)-\mathbf{E M}=\mathbf{0}
\]
\[
\frac{A B \cdot[\sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot(\mathbf{N}-1)]}{2 \cdot(\mathbf{N}+1)}-M Q=0
\]
\[
\frac{\mathbf{A B} \cdot(\mathbf{N}-1) \cdot[\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}-\sqrt{3}-\sqrt{3} \cdot \mathbf{N}]}{2 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{D G}=\mathbf{0}
\]



Elipse By Parallels 082601

\[
\begin{aligned}
& \mathrm{N}_{1}:=4 \quad \mathrm{~N}_{2}:=1 \\
& \mathrm{AF}:=\mathbf{1} \quad \mathbf{A C}:=\frac{\mathrm{AF}}{2} \quad \mathrm{CJ}:=\mathrm{AC} \\
& \mathrm{BC}:=\frac{\mathrm{AC}}{\mathrm{~N}_{1}} \quad \mathrm{AE}:=\frac{\mathrm{AF}}{\mathrm{~N}_{2}} \\
& \mathrm{EF}:=\mathrm{AF}-\mathrm{AE} \quad \mathrm{EH}:=\sqrt{\mathrm{AE} \cdot \mathbf{E F}} \quad \mathrm{EG}:=\frac{\mathrm{BC} \cdot \mathbf{E H}}{\mathrm{CJ}} \\
& \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \mathbf{C G}:=\sqrt{\mathbf{C E}^{2}+\mathrm{EG}^{2}}
\end{aligned}
\]

\section*{Some Algebraic Names:}
\[
\begin{aligned}
& \mathrm{BC}:=\frac{1}{\left(2 \cdot \mathrm{~N}_{1}\right)} \quad \mathrm{AE}:=\frac{1}{\mathrm{~N}_{2}} \quad \mathrm{EF}:=1-\frac{1}{\mathrm{~N}_{2}} \quad \mathrm{EH}:=\frac{\sqrt{\mathrm{N}_{2}-1}}{\mathrm{~N}_{2}} \quad \mathrm{EG}:=\frac{\sqrt{\mathrm{N}_{2}-1}}{\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}} \\
& \mathrm{CE}:=\frac{1}{\mathrm{~N}_{2}}-\frac{1}{2} \quad \mathrm{CG}:=\frac{1}{2} \cdot \frac{\sqrt{4 \cdot \mathrm{~N}_{1}{ }^{2}-4 \cdot \mathrm{~N}_{1}{ }^{2} \cdot \mathbf{N}_{2}+\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}{ }^{2}+4 \cdot \mathrm{~N}_{2}-4}}{\left(\mathbf{N}_{1} \cdot \mathrm{~N}_{2}\right)}
\end{aligned}
\]

\section*{Three Pieces Of Paper}


\section*{Just Another Proof Of Paper 010202}

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{7} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \\
& \mathbf{A J}:=\mathbf{A E} \quad \mathbf{E J}:=\mathbf{B E} \quad \mathbf{E a}:=\frac{\mathbf{E} \mathbf{J}^{2}+\mathbf{A E}^{2}-\mathbf{A J}^{2}}{2 \cdot \mathbf{A E}} \\
& \mathbf{G b}:=\mathbf{E a} \mathbf{G J}:=\mathbf{2} \cdot \mathbf{G b} \mathbf{A G}:=\mathbf{A J}-\mathbf{G J} \\
& \text { Aa }:=\mathbf{A E}-\mathbf{E a} \quad \mathbf{A U}:=\frac{\mathbf{A a} \cdot \mathbf{A G}}{\mathbf{A J}} \\
& \mathbf{J a}:=\sqrt{\mathbf{A} \mathbf{J}^{2}-\mathbf{A a}} \quad \mathbf{G U}:=\frac{\mathbf{J a} \cdot \mathbf{A G}}{\mathbf{A J}} \\
& \mathbf{U a}:=\mathbf{A a}-\mathbf{A U} \text { JO}:=\sqrt{\mathbf{U} \mathbf{a}^{2}+(\mathbf{G U}+\mathbf{J a})^{2}} \\
& \mathbf{J N}:=\frac{\mathbf{J O} \cdot \mathbf{E a}}{\mathbf{U a}} \quad \mathbf{J N}-\mathbf{B E}=\mathbf{0}
\end{aligned}
\]

From 4/29/94 OP \(:=\sqrt{\mathrm{Ja}^{2}-2 \cdot \mathbf{J a} \cdot \mathbf{G U}+\mathbf{G U}^{2}+\mathrm{Ua}^{2}}\)


\section*{Some Algebraic Names;}

\[
\begin{array}{ll}
\mathbf{N}-1-B F=0 & \frac{\mathbf{N}-1}{2}-B E=0 \\
\frac{N+1}{2}-A E=0 & \frac{(N-1)^{2}}{4 \cdot(\mathbf{N}+1)}-\mathbf{E a}=0
\end{array}
\]
\[
\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)}-\mathbf{G J}=0 \quad \frac{\mathbf{N}^{2}+6 \cdot \mathbf{N}+1}{4 \cdot(\mathbf{N}+1)}-A a=0
\]
\[
\frac{2 \cdot \mathbf{N}}{\mathbf{N}+1}-\mathbf{A G}=0 \quad \frac{\mathbf{N} \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}{(\mathbf{N}+1)^{3}}-\mathbf{A U}=0
\]
\[
\frac{(\mathbf{N}-1) \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}}{4 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{J a}=\mathbf{0}
\]
\[
\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{G U}=\mathbf{0}
\]
\[
\frac{\left(\mathbf{N}^{2}+6 \cdot N+1\right) \cdot(N-1)^{2}}{4 \cdot(N+1)^{3}}-\mathbf{U a}=0 \quad \frac{(N-1) \cdot\left(N^{2}+6 \cdot N+1\right)}{2 \cdot(N+1)^{2}}-J O=0 \quad \frac{N-1}{2}-J N=0
\]
\[
\frac{(N-1)^{2}}{2 \cdot(N+1)}-O P=0 \quad \frac{(N-1) \cdot\left(N^{2}+4 \cdot N+1\right)}{(N+1)^{2}}-N O=0 \quad \frac{(N-1)^{2} \cdot\left(N^{2}+4 \cdot N+1\right)}{2 \cdot(N+1)^{3}}-E U=0
\]
\[
\frac{(\mathbf{N}-1) \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot N+1)}}{2 \cdot(\mathbf{N}+1)^{3}}-\mathbf{E N}=0
\]
\[
\frac{(\mathbf{N}-1) \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}}{2 \cdot(\mathbf{N}+1)^{3}}-\frac{\mathbf{N}-1}{2}-\mathbf{L N}=0
\]

\section*{Three Pieces Of Paper}


\section*{Three Pieces Of Paper}

\section*{Introduction}

Is a novel about the search for a method to divide angles into at least three equal parts. The novel is written in the relatiologic of Geometry and the tautologic of basic Algebra.
I suspect that someday I might have something of significance to write here. J. C.

\section*{Three Pieces Of Paper}


\section*{11/11/93 The Archamedian Paper Trisector}

If one accepts the facts of the original figure, one only need prove that \(\mathrm{BK}=\mathrm{AB}\).
If one does not accept the facts, examination of the construction should make it apparent. Does \(\mathrm{FK}=\mathrm{BK}=\mathrm{AB}\) ?

N:= 4
AJ := 1
AE \(:=\frac{\mathrm{AJ}}{2}\)
EJ \(:=\) AE \(\quad\) EN \(:=\) AEEM \(:=\) AE AC \(:=\frac{\mathbf{A J}}{\mathbf{N}}\)

CJ \(:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{C N}:=\sqrt{\text { AC•CJ }} \quad \mathrm{JN}:=\sqrt{\mathbf{C N}^{2}+\mathrm{CJ}^{2}} \mathrm{JL}:=\frac{\mathrm{JN}}{2} \quad\) GL \(:=\frac{\mathrm{CN}}{2} \quad\) GJ \(:=\frac{\mathrm{CJ}}{2}\)
EG \(:=\mathbf{E J}-\mathbf{G J}\) EL \(:=\sqrt{\mathbf{E G}^{2}+\mathbf{G L}^{2}}\) EH \(:=\frac{\mathrm{EG} \cdot \mathbf{E M}}{\mathrm{EL}} \quad \mathbf{H M}:=\frac{\mathbf{G L} \cdot \mathbf{E M}}{\mathbf{E L}} \mathbf{A H}:=\mathrm{AE}+\mathbf{E H}\)
\(\mathrm{CO}:=\frac{\mathrm{AH} \cdot \mathrm{CN}}{\mathrm{HM}} \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \mathrm{EO}:=\mathrm{CO}+\mathrm{CE} \quad \mathrm{EK}:=\frac{\mathrm{EN} \cdot \mathrm{AE}}{\mathrm{EO}} \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathrm{AE}}{\mathrm{EO}} \mathrm{DK}:=\frac{\mathrm{CN} \cdot \mathrm{EK}}{\mathrm{EN}}\)
\(\mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{KN}:=\mathrm{EN}-\mathbf{E K} \mathbf{B K}:=\mathrm{KN} \mathbf{B D}:=\sqrt{\mathbf{B K}^{2}-\mathrm{DK}^{2}} \quad \mathrm{AB}:=\mathrm{AD}-\mathbf{B D}\)
\(A B-B K=0 \quad A B=0.25 \quad\) If PK is parallel to AJ, then \(\ldots\)

\[
\mathbf{A N}:=2 \cdot \mathbf{E L} \quad \text { AP }:=\mathrm{AB} \quad \mathbf{P Q}:=\frac{\mathbf{C N} \cdot \mathbf{A P}}{\mathbf{A N}} \quad \mathbf{P Q}-\mathbf{D K}=0
\]

\section*{Three Pieces Of Paper}


\section*{Given AB, AF, BE, what is EF?}

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{5} \quad \text { AF }:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B E}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{A D}:=\mathbf{B E} \mathbf{D E}:=\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \mathbf{E F}:=\left(\mathbf{D F}^{2}+\mathbf{D E}^{2}\right)^{\frac{1}{2}}
\end{aligned}
\]
\[
E F-\sqrt{N_{1}^{2}-2 \cdot N_{1} \cdot N_{2}+N_{2}^{2}+N_{3}^{2}}=0
\]

\section*{Three Pieces Of Paper}



\section*{Archamedian Trisection Revisited.}

I am curious as to why the Archamedian trisection is still taught the way it was given so long ago and the idea from which it derives is not in any of my books.

I am going to use a circle to demonstrate some principles concerning angles. To help log the results in mathematical terms, I will divide the circle into quadrants and label them either plus or minus. The top is labeled one.

The circle is divided into \(1 / 8\) segments of 90 degrees for each quadrant. I start at the top. Since the angle at the perimeter is \(1 / 2\) of the angle at the center, when I start the figure I use twice the arc segment for the angle \(I\) am working with. I have marked some quadrants with plus and minus and have found that for the figure, I would say that \(I\) have \(1+1 / 8-1 / 8\). From this I have learned that my starting angle of the smaller circle will be 90 degrees.
\[
\begin{aligned}
& \frac{90}{8}=11.25 \\
& 90+\frac{90}{8}-\frac{90}{8}=90 \quad\left(1+\frac{1}{8}-\frac{1}{8}\right) .90=90
\end{aligned}
\]



B := \(\mathbf{1}+\frac{\mathbf{1}}{\mathbf{8}}-\frac{\mathbf{1}}{\mathbf{8}} \quad \mathbf{B}=\mathbf{1}\)
\(\frac{B \cdot 4}{4} \cdot 90=90 \quad \frac{B \cdot 3}{4} \cdot 90=67.5\)
\(\frac{B \cdot 2}{4} \cdot 90=45 \quad \frac{B}{4} \cdot 90=22.5\)
\(8+1-1=8\)
\(8 \cdot 11.25=90\)
\(8+1-1-2=6\)
\(6 \cdot 11.25=67.5\)
\(8+1-1-2-2=4\)
\(4 \cdot 11.25=45\)
\(8+1-1-2-2-2=2\)
\(2 \cdot \mathbf{1 1 . 2 5}=22.5\)
\(8+1-1-2-2-2-2=0\)
\(\bmod (8+1-1,2)=0\)
\(B:=1+\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \quad B=1.125 \quad \frac{9}{8}=1.125\)
\(\frac{B \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{B \cdot 3.5}{4.5} \cdot 90=78.75\)
\(\frac{B \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{B \cdot 1.5}{4.5} \cdot 90=33.75\)
\[
\frac{B \cdot .5}{4.5} \cdot 90=11.25
\]
\(8+1+1-1=9\)
\(9 \cdot 11.25=101.25\)
\(8+1+1-1-2=7\)
\(7 \cdot 11.25=78.75\)
\(8+1+1-1-2-2=5\)
\(5 \cdot 11.25=56.25\)
\(8+1+1-1-2-2-2=3\)
\(\mathbf{3} \cdot \mathbf{1 1 . 2 5}=33.75\)
\(8+1+1-1-2-2-2-2=1 \quad 1 \cdot 11.25=11.25\)
\(\bmod (\mathbf{8}+\mathbf{1}+\mathbf{1}-\mathbf{1}, \mathbf{2})=\mathbf{1}\)


\[
B:=1+\frac{3}{24}-\frac{8}{24} \quad B=0.7917 \quad \frac{19}{24}=0.7917
\]
\(\frac{B \cdot 3.1666}{3.1666} \cdot 90=71.25 \quad \frac{B \cdot 2.1666}{3.1666} \cdot 90=48.7495\)
\(\frac{B \cdot 1.16666}{3.16666} \cdot 90=26.2499 \quad \frac{B \cdot \mathbf{1 6 6 6 6 6}}{3.166666} \cdot 90=3.75\)
\begin{tabular}{ll}
\((24+3)-8=19\) & \(19 \cdot 3.75=71.25\) \\
\((24+3)-8-(1 \cdot 6)=13\) & \(13 \cdot 3.75=48.75\) \\
\((24+3)-8-(2 \cdot 6)=7\) & \(7 \cdot 3.75=26.25\) \\
\((24+3)-8-(3 \cdot 6)=1\) & \(1 \cdot 3.75=3.75\)
\end{tabular}
\(\bmod (24+3-8,2)=1\)
\[
B:=1+\frac{1}{8}-\frac{1}{8}+\frac{10}{8} \quad B=2.25 \quad \frac{18}{8}=2.25
\]
\begin{tabular}{|c|c|}
\hline \[
\frac{B \cdot 9}{9} \cdot 90=202.5
\] & \[
\frac{B \cdot 8}{9} \cdot 90=180
\] \\
\hline \[
\frac{B \cdot 7}{9} \cdot 90=157.5
\] & \(\frac{B \cdot 6}{9} \cdot 90=13.5\) \\
\hline \(8+1-1+10=18\) & \(18 \cdot 11.25=202.5\) \\
\hline \(8+1-1+10-(2 \cdot 1)=16\) & \(6 \quad 16 \cdot 11.25=180\) \\
\hline \(8+1-1+10-(2 \cdot 2)=14\) & \(4 \quad 14 \cdot 11.25=157.5\) \\
\hline \(8+1-1+10-(2 \cdot 3)=12\) & \(2 \quad 12 \cdot 11.25=135\) \\
\hline \(8+1-1+10-(2 \cdot 4)=10\) & \(0 \quad 10 \cdot 11.25=112.5\) \\
\hline \(8+1-1+10-(2 \cdot 5)=8\) & \(8 \cdot 11.25=90\) \\
\hline \(8+1-1+10-(2 \cdot 6)=6\) & \(6 \cdot 11.25=67.5\) \\
\hline \(8+1-1+10-(2 \cdot 7)=4\) & \(4 \cdot 11.25=45\) \\
\hline \[
\begin{aligned}
& 8+1-1+10-(2 \cdot 8)=2 \\
& \bmod ((8+1-1)+10,2)=
\end{aligned}
\] & \(\begin{aligned} & \text { ( } \\ & =0\end{aligned} \quad 2 \cdot 11.25=22.5\) \\
\hline
\end{tabular}
\(B:=1+\frac{1}{7}-\frac{2}{7} \quad B=0.8571 \quad \frac{6}{7}=0.8571\)
\[
\begin{array}{ll}
\frac{B \cdot 6}{6} \cdot 90=77.1429 & \frac{B \cdot 4}{6} \cdot 90=51.4286 \\
\frac{B \cdot 2}{6} \cdot 90=25.7143 & \text { c }:=\frac{90}{7}
\end{array}
\]
\[
\begin{array}{ll}
7+1-(1 \cdot 2)=6 & 6 \cdot c=77.1429 \\
7+1-(2 \cdot 2)=4 & 4 \cdot c=51.4286 \\
7+1-(3 \cdot 2)=2 & 2 \cdot c=25.7143 \\
\bmod (7+1-2,2)=0 &
\end{array}
\]
\[
B:=1+\frac{1}{7}-\frac{1}{7} \quad B=1 \quad \frac{7}{7}=1
\]
\(\frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.2857\)
\(\frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571\)
\(7+1-1=7 \quad 7 \cdot \mathbf{c}=90\)
\(7+1-1-(1 \cdot 2)=5 \quad 5 \cdot \mathbf{c}=64.2857\)
\(7+1-1-(2 \cdot 2)=3 \quad 3 \cdot \mathbf{c}=38.5714\)
\(7+1-1-(3 \cdot 2)=1 \quad 1 \cdot \mathbf{c}=12.8571\)
\(\bmod (7+1-1,2)=1\)


01_12_95.mcd

B :=1 \(+\frac{\mathbf{1}}{\mathbf{7}}-\frac{\mathbf{1}}{\mathbf{7}} \quad \mathbf{B}=\mathbf{1}\)
\(\frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{\text { B } \cdot 5}{7} \cdot 90=64.2857\)
\(\frac{\text { B } \cdot 3}{7} \cdot 90=38.5714 \quad \frac{\text { B } \cdot \mathbf{1}}{7} \cdot 90=12.8571\)
\(7+1-1=7\)
\(7+1-1-(1 \cdot 2)=5\)
\(7+1-1-(2 \cdot 2)=3\)
\(7+1-1-2-2-2=1\)
\(\bmod (7+1-1,2)=1\)


Work in progress.

\section*{Three Pieces Of Paper}


\section*{010496 The Archamedian Paper Trisector- Without the Numbers.}


Given any circle AB.
Given any circle \(B C\) such that \(B C \leq 2 A B\).
Construct AE such that \(\mathrm{AE}=\mathrm{AC}\).
As \(\mathbf{A C}=\mathbf{A B}+\mathbf{B C}\)
and \(A D=A B\) so too \(D E=B C\).
Construct DH parallel to BD.
Construct CE.
As \(A B=A D\) and \(A C=A E\),
\(\triangle \mathrm{ABD}\) is proportional to \(\triangle \mathrm{ACE}\), therefore CE is parallel to BD .
From here one can take two paths.
Construct GJ parallel to EF.
As CE is parallel to DH,
DG \(=\mathbf{C H}\).
As GJ is parallel to EF,
\[
\mathbf{D G}=\mathbf{F J}
\]

As \(\angle\) HBJ is opposite and equal to \(\angle\) GBD, \(\mathbf{D G}=\mathbf{H J}\),
therefore \(\angle \mathrm{DG}\) is \(\frac{1}{3} \mathrm{CF}\).
As CE is parallel to DH and EF is parallel to GJ, EGBD is equilateral.
By construction DK = KM.
As DH is parallel to CE,
CH = DG.

As DK is equal and opposite CH ,
\[
\mathrm{MK}+\mathrm{DK}+\mathrm{DG} \text { is } \frac{1}{3} \mathrm{DG} .
\]


\section*{Three Pieces Of Paper}


\section*{042897}

\[
\begin{aligned}
& \mathbf{N}:=1.458 \quad \text { AD }:=\mathbf{1} \quad \text { AC }:=\mathbf{A D} \cdot \mathbf{N} \quad \mathbf{N}:=\mathbf{N} \\
& \mathrm{CD}:=\sqrt{\mathrm{AD}^{2}+\mathrm{AC}^{2}} \quad \mathrm{DH}:=\mathrm{CD} \\
& \text { CG }:=\mathrm{AD} \text { DG }:=\mathrm{AC} \text { GH }:=\mathrm{DH}-\mathrm{DGCH}:=\sqrt{\mathbf{G H}^{2}+\mathrm{CG}^{2}} \\
& \text { HJ := CG DJ := DG } \\
& \mathbf{F H}:=\frac{\left(\mathbf{H} \mathbf{J}^{2}+\mathbf{D H}{ }^{\mathbf{2}}\right)-\mathbf{D J}^{\mathbf{2}}}{2 \cdot \mathbf{D H}} \mathbf{E F}:=\mathbf{F H} \quad \mathbf{D E}:=\mathbf{D H}-(\mathbf{E F}+\mathbf{F H}) \\
& \text { AB := DE EG := DG - DE LM := CH LK := EG } \\
& \text { KM }:=\sqrt{L^{2}-L^{2}}{ }^{2} \text { BE }:=\mathrm{AD} \text { BK }:=2 \cdot \mathrm{BE} \quad \mathrm{BM}:=\mathrm{BK}+\mathrm{KM}
\end{aligned}
\]

Some Algebraic Names:
\(\sqrt{\mathbf{N}^{2}+1}-\mathbf{C D}=0 \quad \mathbf{N}-\mathbf{A C}=0 \quad \sqrt{\mathbf{N}^{2}+1}-\mathbf{N}-\mathbf{G H}=0 \quad \sqrt{2 \cdot \mathbf{N}^{2}-2 \cdot \sqrt{\mathbf{N}^{2}+1} \cdot \mathbf{N}+2-C H=0}\)
\(\frac{1}{\sqrt{N^{2}+1}}-\mathbf{F H}=0 \quad \frac{(N-1) \cdot(N+1)}{\sqrt{N^{2}+1}}-\mathbf{A B}=0 \quad 2+\sqrt{\frac{5 \cdot N^{2}}{N^{2}+1}-\frac{4 \cdot N}{\sqrt{N^{2}+1}}+\frac{1}{N^{2}+1}}-\mathbf{B M}=0\)

\section*{Trisection and the Cube Roots 042997}

If trisection can be placed at RUE, then PV is proportional to RW.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A H}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{B H} \\
& \mathbf{A C}:=(\mathbf{A B} \cdot \mathbf{A H})^{\frac{\mathbf{1}}{\mathbf{3}}} \quad \mathbf{A F}:=\left(\mathbf{A B} \cdot \mathbf{A H}^{\mathbf{2}}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \\
& \mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \quad \mathbf{C E}:=\frac{\mathbf{C F}}{\mathbf{2}} \\
& \mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \\
& \mathbf{A U}:=\mathbf{C E} \mathbf{N V}:=\mathbf{A U} \mathbf{M W}:=\mathbf{A U}
\end{aligned}
\]
(For the next two equations see 042897.)
\[
\mathbf{A M}:=\frac{\left(\frac{\mathbf{A E}}{\mathbf{A U}}-\mathbf{1}\right) \cdot\left(\frac{\mathbf{A E}}{\mathbf{A U}}+\mathbf{1}\right) \cdot \mathbf{A U}}{\sqrt{\left(\frac{\mathbf{A E}}{\mathbf{A U}}\right)^{2}+\mathbf{1}}}
\]
\[
M R:=2 \cdot A U+A U \cdot \sqrt{\frac{5 \cdot\left(\frac{A E}{A U}\right)^{2}}{\left(\frac{A E}{A U}\right)^{2}+1}-\frac{4 \cdot \frac{A E}{A U}}{\sqrt{\left(\frac{A E}{A U}\right)^{2}+1}}+\frac{1}{\left(\frac{A E}{A U}\right)^{2}+1}} \mathbf{R W}:=M R-M W
\]
\[
\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{F H}:=\mathbf{A H}-\mathbf{A F} \mathbf{C N}:=\frac{\mathbf{B C} \cdot \mathbf{C F}}{\mathbf{B C}+\mathbf{F H}} \quad \mathbf{N P}:=\frac{\mathbf{B J} \cdot \mathbf{C N}}{\mathbf{B C}} \quad \text { PV }:=\mathbf{N P}-\mathbf{N V}
\]
\[
\mathbf{A N}:=\mathbf{A C}+\mathbf{C N} \quad \mathbf{U V}:=\mathbf{A N} \mathbf{U W}:=\mathbf{A M} \quad \frac{\mathbf{R W} \cdot \mathbf{U V}}{\mathbf{U W}}-\mathbf{P V}=\mathbf{0}
\]

\section*{Three Pieces Of Paper}




\section*{A Square Root Figure And Triseciton 042398}

In this square root figure, what is the radius of the circle with the trisected angle? What is the radius CH ?

\[
\begin{aligned}
& \mathbf{N}:=5 \quad \mathbf{A B}:=1 \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \mathbf{A D}:=(\mathbf{A B} \cdot \mathbf{A F})^{\frac{\mathbf{1}}{\mathbf{2}}} \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathrm{G} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD} \quad \mathrm{EQ}:=\mathrm{BE} \quad \mathrm{DQ}:=\left(\mathrm{DE}^{2}+\mathrm{EQ}^{2}\right)^{\frac{1}{2}} \\
& \begin{array}{rlr}
\mathrm{A} & \mathrm{PQ}:=\mathrm{BF} \text { QM }:=\frac{\mathrm{EQ} \cdot \mathrm{PQ}}{\mathrm{DQ}} & \mathrm{DM}:=\mathbf{Q M} \\
\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \mathrm{AC}:=\frac{\mathrm{AE}}{2} & \mathrm{Db}:=\frac{\mathrm{DM}}{2}
\end{array} \\
& \mathbf{C M}:=\mathrm{AC} \quad \text { ab }:=\frac{\mathbf{C M} \cdot \mathbf{D b}}{\mathrm{DM}} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \\
& \mathbf{C a}:=\frac{\mathbf{C D}}{2} \mathrm{Aa}:=\mathrm{AC}+\mathbf{C a} \quad \mathrm{CH}:=\frac{\mathbf{a b} \cdot \mathbf{A C}}{\mathrm{Aa}} \\
& A M:=A D \quad \text { Ac }:=\frac{\mathbf{A M} \cdot \mathbf{C H}}{\mathbf{C M}} \quad \mathbf{H M}:=\mathbf{C M}-\mathbf{C H}
\end{aligned}
\]
\[
\mathbf{H M}-\mathbf{A c}=\mathbf{0}
\]
\(H M-A B \cdot \frac{\sqrt{N} \cdot(N+1)}{N+4 \cdot \sqrt{N}+1}=0 \quad C H-A B \cdot \frac{(N+1)^{2}}{4 \cdot N+16 \cdot \sqrt{N}+4}=0\)

\section*{Three Pieces Of Paper}

\(\mathrm{m} \angle \mathrm{ABHI}=69.505^{\circ}\)
\(m \angle A B H A L=23.168^{\circ}\)
\(\frac{\mathrm{m} \angle \mathrm{ABHI}}{\mathrm{m} \angle \mathrm{ABHAL}}=3.000\)
\(\stackrel{\rightharpoonup}{*}\) Animate



\section*{Three Pieces Of Paper}


\section*{07/09/00 Alternate Method Quad Roots}

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{3} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{D M}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \\
& \mathbf{A J}:=\mathbf{A D} \quad \mathbf{A K}:=\mathbf{A D} \quad \mathbf{B M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D M}^{2}} \\
& \mathbf{G M}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D M}^{2}} \quad \mathbf{A F}:=\frac{\mathbf{G M} \cdot \mathbf{A J}}{\mathbf{B M}} \\
& \mathbf{A C}:=\frac{\mathbf{B M} \cdot \mathbf{A K}}{\mathbf{G M}} \\
& \left.(\mathbf{A B} \cdot \mathbf{A G})^{3}\right)^{\frac{1}{4}}-\mathbf{A F}=\mathbf{0} \quad(\mathbf{A B} \cdot \mathbf{A G})^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]

\section*{08/01/00 Alternate Method Quad Roots}



\section*{In Trisection What Is AB? 08/02/00}


In the trisection figure given and given \(A C\) as the Unit what is \(A B\) ?
\[
\begin{aligned}
& \mathrm{AC}:=.884 \quad \text { AE := } \mathbf{3 . 5 2 1} \\
& \text { AD }:=\frac{\mathbf{A E}}{2} \\
& \text { EP }:=\mathbf{A E} \text { DE }:=\mathbf{A D} \mathbf{D P}:=\sqrt{\mathbf{E P} P^{2}-\mathbf{D E}^{2}} \text { FP }:=\mathbf{E P} \\
& \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \mathrm{CD}:=\mathrm{CE}-\mathrm{DE} \quad \mathrm{CF}:=\sqrt{\mathrm{FP}^{2}-\mathrm{CD}^{2}}-\mathrm{DP} \\
& \text { PR }:=\mathbf{C F} \quad \text { DR }:=\mathrm{DP}+\mathbf{P R} \quad \mathbf{C R}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DR}^{2}} \\
& \mathrm{CS}:=\frac{\mathrm{CD}^{2}}{\mathrm{CR}} \text { DS }:=\sqrt{\mathrm{CD}^{2}-\mathrm{CS}^{2}} \quad \mathrm{DL}:=\mathrm{AD} \\
& \mathrm{LS}:=\sqrt{\mathrm{DL}^{2}-\mathrm{DS}^{2}} \quad \mathrm{RS}:=\mathrm{CR}-\mathrm{CS} \quad \mathrm{LR}:=\mathrm{RS}+\mathrm{LS} \\
& \text { BD }:=\frac{\mathbf{C D} \cdot \mathbf{L R}}{\text { CR }} \text { AB }:=\mathrm{AD}-\mathbf{B D} \quad \text { ST }:=\mathbf{L S} \quad \text { RT }:=\mathbf{R S}-\mathbf{S T}
\end{aligned}
\]

In trisection the length RT to the similarity point is equal to the radius of
\[
\mathbf{R T}-\left(\frac{\mathbf{1}}{\mathbf{2}}\right) \cdot \mathrm{AE}=\mathbf{0}
\] the circle.
\(\mathbf{A D}-\frac{\mathbf{A E}}{2}=\mathbf{0} \quad \mathbf{D P}-\frac{\mathbf{A E}}{2} \cdot \sqrt{\mathbf{3}}=\mathbf{0} \quad \mathbf{C F}-\left[\frac{1}{2} \cdot \sqrt{-(\mathbf{A E}+2 \cdot \mathbf{A C}) \cdot(-\mathbf{3} \cdot \mathbf{A E}+2 \cdot \mathbf{A C})}-\frac{1}{2} \cdot \mathbf{A E} \cdot \sqrt{\mathbf{3}}\right]=\mathbf{0}\)
\(\mathbf{C E}-(\mathbf{A E}-\mathbf{A C})=\mathbf{0} \quad \mathbf{C D}-\left(\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{A E}-\mathbf{A C}\right)=\mathbf{0} \quad \mathbf{D R}-\frac{\mathbf{1}}{2} \cdot \sqrt{(\mathbf{A E}+\mathbf{2} \cdot \mathbf{A C}) \cdot(\mathbf{3} \cdot \mathbf{A E}-\mathbf{2} \cdot \mathbf{A C})}=\mathbf{0}\)
\(C R-A E=0 \quad C S-\left(\frac{1}{4}\right) \cdot \frac{(-A E+2 \cdot A C)^{2}}{A E}=0 \quad L S-\frac{1}{4} \cdot \frac{\left(-4 \cdot \mathrm{AC}^{2}+4 \cdot A E \cdot A C+A E^{2}\right)}{A E}=0\)
\(\mathbf{D S}-\frac{1}{4} \cdot \frac{(\mathbf{A E}-2 \cdot \mathbf{A C})}{\mathbf{A E}} \cdot \sqrt{(\mathbf{A E}+2 \cdot \mathbf{A C}) \cdot(\mathbf{3} \cdot \mathbf{A E}-2 \cdot \mathbf{A C})}=0 \quad \mathbf{L R}-\frac{\left(\mathbf{A E}^{2}-2 \cdot \mathbf{A C}+2 \cdot \mathbf{A E} \cdot \mathbf{A C}\right)}{\mathbf{A E}}=0\)
\(\mathrm{RS}-\frac{1}{4} \cdot(\mathrm{AE}+2 \cdot \mathrm{AC}) \cdot \frac{(3 \cdot \mathrm{AE}-2 \cdot \mathrm{AC})}{\mathrm{AE}}=0 \quad \mathrm{BD}-\left(\frac{1}{2} \cdot \mathbf{A E}-\frac{3}{\mathrm{AE}} \cdot \mathrm{AC}^{2}+\frac{2}{\mathrm{AE}^{2}} \cdot \mathrm{AC}^{3}\right)=0\)
\(A B-A C^{2} \cdot \frac{(3 \cdot A E-2 \cdot A C)}{A E^{2}}=0 \quad A B \cdot A E^{2}-A C^{2}(3 \cdot A E-2 \cdot A C)=0\)

\section*{080300 Trisection}

If \(2 \mathrm{IQ}=\mathrm{EK}\) then \(2 \mathrm{JK}=\mathrm{EK}\) and the

figure projected from BCD will yeild a trisected figure JKL.
\[
\mathbf{N}:=\mathbf{3} \quad \text { BD }:=\mathbf{2}
\]
\[
\mathbf{A B}:=\frac{\mathbf{B D}}{2} \quad \mathbf{A D}:=\mathbf{A B} \quad \mathbf{A P}:=\frac{\mathbf{A D}}{2}
\]
\[
\mathbf{B P}:=\mathbf{A B}+\mathbf{A P} \quad \mathbf{B O}:=\frac{\mathbf{B P}}{\mathbf{N}} \quad \mathbf{A E}:=\mathbf{A B}
\]
\[
\text { DO }:=\text { BD - BO GO }:=\sqrt{\text { BO DO }}
\]
\[
\text { BG }:=\sqrt{\mathbf{G O}^{2}+\mathbf{B O}^{2}} \quad \mathrm{BS}:=\frac{\mathrm{BG}}{2} \quad \text { ER }:=\mathrm{BS} \quad \text { TO }:=\text { ER GT }:=\mathrm{GO}-\mathrm{TO} \quad \mathrm{AS}:=\sqrt{\mathrm{AB}^{2}-\mathrm{BS}^{2}}
\]
\[
\text { ES }:=\text { AE - AS BR }:=\text { ES OR }:=\text { BO - BR } \quad \text { ET }:=\text { OR } \quad \text { IO }:=\frac{\text { ET } \cdot \text { GO }}{\text { GT }} \text { BI }:=\text { IO - BO }
\]
\[
\mathrm{AI}:=\mathrm{BI}+\mathrm{AB} \quad \mathrm{BE}:=\sqrt{\mathbf{E R}^{2}+\mathrm{BR}^{2}} \text { GE }:=\mathrm{BE} \text { GI }:=\frac{\text { GE } \cdot \mathbf{G O}}{\text { GT }} \text { EI }:=\text { GI - GE AK }:=\mathrm{AI} \text { IK }:=\mathrm{EI}
\]
\[
\mathrm{IQ}:=\frac{\mathbf{I K}^{2}+\mathbf{A I}^{2}-\mathbf{A K}^{2}}{2 \cdot \mathrm{AI}} \quad \mathbf{E K}:=\mathrm{AK}-\mathrm{AE} \frac{\mathbf{E K}}{\mathrm{IQ}}=2 \quad \text { Some Algebraic Names: }
\]
\[
\begin{aligned}
& \frac{3 \cdot B D}{4 \cdot N}-B O=0 \quad \frac{B D}{4} \cdot \frac{(4 \cdot N-3)}{N}-D O=0 \quad \frac{B D}{(4 \cdot N)} \cdot \sqrt{3} \cdot \sqrt{4 \cdot N-3}-G O=0 \quad \frac{B D}{2} \cdot \sqrt{3} \cdot \sqrt{\frac{1}{N}}-B G=0 \\
& \frac{B D}{4} \cdot \sqrt{3} \cdot \sqrt{\frac{1}{N}}-\mathbf{B S}=0 \quad \frac{B D}{4} \cdot \sqrt{3} \cdot \frac{\sqrt{4 \cdot N-3}-\sqrt{\frac{1}{N}} \cdot N}{N}-\mathbf{G T}=0 \quad \frac{B D}{4} \cdot \sqrt{\frac{(4 \cdot N-3)}{N}}-\mathbf{A S}=0 \\
& \frac{B D}{4} \cdot\left[2-\sqrt{\frac{(4 \cdot N-3)}{N}}\right]-E S=0 \quad \frac{B D}{4} \cdot \frac{\left[3-2 \cdot N+\sqrt{\frac{(4 \cdot N-3)}{N}} \cdot \mathbf{N}\right]}{N}-O R=0 \\
& \frac{-B D}{4} \cdot \frac{\left[3 \cdot \sqrt{4 \cdot N-3} \cdot \sqrt{N}-2 \cdot \sqrt{4 \cdot N-3} \cdot \mathbf{N}^{\left(\frac{3}{2}\right)}+4 \cdot \mathbf{N}^{2}-3 \cdot \mathbf{N}\right]}{\left[N^{\left(\frac{3}{2}\right)} \cdot(-\sqrt{4 \cdot N-3}+\sqrt{N})\right]}-I O=0 \frac{-B D}{2} \cdot \frac{(\sqrt{4 \cdot N-3}-2 \cdot \sqrt{N})}{(\sqrt{4 \cdot N-3}-\sqrt{N})}-\mathbf{B I}=0
\end{aligned}
\]

\[
\begin{aligned}
& \frac{-B D}{(-2 \cdot \sqrt{4 \cdot N-3}+2 \cdot \sqrt{N})} \cdot \sqrt{N}-A I=0 \\
& \frac{B D}{2} \cdot \sqrt{2-\frac{1}{\sqrt{N}} \cdot \sqrt{4 \cdot N-3}}-B E=0
\end{aligned}
\]
\[
\frac{B D}{2} \cdot \sqrt{\frac{-(-2 \cdot \sqrt{N}+\sqrt{4 \cdot N-3})}{\sqrt{N}}} \cdot \frac{\sqrt{4 \cdot N-3}}{(\sqrt{4 \cdot N-3}-\sqrt{N})}-G I=0
\]
\[
\frac{-B D}{2} \cdot \sqrt{2-\frac{\sqrt{4 \cdot N-3}}{\sqrt{N}}} \cdot \frac{\sqrt{N}}{(-\sqrt{4 \cdot N-3}+\sqrt{N})}-E I=0
\]
\[
\frac{B D}{4} \cdot \frac{(2 \cdot \sqrt{N}-\sqrt{4 \cdot N-3})}{(\sqrt{4 \cdot N-3}-\sqrt{N})}-I Q=0 \quad \frac{B D}{2} \cdot \frac{(2 \cdot \sqrt{N}-\sqrt{4 \cdot N-3})}{(\sqrt{4 \cdot N-3}-\sqrt{N})}-E K=0
\]


\section*{08/07/00 Proportion Series II}

Two unknowns have the same proportion as two givens and the sum of the unknowns are known. Find the
 two unknowns.
\[
\begin{aligned}
& \mathrm{AB}:=9 \quad \mathrm{CD}:=3 \quad \mathrm{BC}:=5 \\
& \mathrm{BO}:=\frac{\mathrm{AB} \cdot \mathrm{BC}}{\mathrm{AB}+\mathrm{CD}} \quad \mathrm{CO}:=\frac{\mathrm{CD} \cdot \mathrm{BC}}{\mathrm{AB}+\mathrm{CD}} \\
& \mathrm{BO}=3.75 \quad \mathrm{CO}=1.25 \\
& \mathrm{BO}+\mathrm{CO}-\mathrm{BC}=0 \\
& \frac{\mathrm{AB}}{\mathrm{CD}}-\frac{\mathrm{BO}}{\mathrm{CO}}=0
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{m} \angle \mathrm{UDG}=69.867^{\circ} \\
& \mathrm{m} \angle \mathrm{UDCI}=23.289^{\circ} \\
& \frac{\mathrm{m} \angle \mathrm{UDG}}{\mathrm{~m} \angle \mathrm{UDCI}}=3.000
\end{aligned}
\]

Trisection and the square root figure.

```
m\angleUDG = 69.867}\mp@subsup{}{}{\circ
m}\angleUDCI = 23.289``
m\angleUDG
```

Trisection and the square root figure.


\section*{08/23/00 Trisection In A Square Root Figure}

Given the square root figure drawn for trisection, what is AR given AB and


AD?
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{4} \quad \mathbf{A B}:=\mathbf{2} \quad \mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathbf{B N}:=\frac{\mathbf{B D}}{\mathbf{2}} \quad \mathbf{K N}:=\mathbf{B N} \\
& \mathbf{A N}:=\mathbf{A B}+\mathbf{B N} \quad \mathbf{A K}:=\mathbf{A N} \\
& \mathbf{A P}:=\frac{\mathbf{A K} \mathbf{K}^{2}+\mathbf{A N}^{2}-\mathbf{K N}^{2}}{\mathbf{2} \cdot \mathbf{A N}} \quad \mathbf{A F}:=\frac{\mathbf{A P} \cdot \mathbf{A N}}{\mathbf{A K}}
\end{aligned}
\]
FK := AK - AF EF := FK
\(\mathrm{AE}:=\mathbf{A K}-2 \cdot(\mathbf{E F}) \mathrm{AR}:=\frac{\mathbf{A P} \cdot \mathbf{A E}}{\mathbf{A K}} \quad \mathrm{AB} \cdot \mathbf{N} \cdot \frac{\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+1\right)}{(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{A R}=\mathbf{0} \quad \mathrm{BR}:=\mathrm{AR}-\mathrm{AB}\)
\(A B \cdot(\mathbf{3} \cdot \mathbf{N}+1) \cdot \frac{(\mathbf{N}-1)}{(\mathbf{N}+1)^{3}}-B R=0 \quad\) Does \(K S=F K ?\)
\(\mathbf{B P}:=\mathbf{A P}-\mathbf{A B} \quad \mathbf{D P}:=\mathbf{B D}-\mathbf{B P} \quad \mathbf{N P}:=\mathbf{B N}-\mathbf{B P} \quad\) KS \(:=\mathbf{N P} \quad \mathrm{KS}-\mathbf{F K}=\mathbf{0}\)
\(\frac{A B \cdot(N-1)^{2}}{4 \cdot(N+1)}-K S=0\)



ID = 0.198 inches
IC \(=4.896\) inches \(\mathrm{IAQ}=0.584\) inches IAP = 1.696 inches
\(\left(\mathrm{ID}^{2} \cdot \mathrm{IC}\right)^{\left(\frac{1}{3}\right)}-\mathrm{IAQ}=-0.007\)
\(\left(I D \cdot \mathrm{IC}^{2}\right)\left(\frac{1}{3}\right)-\mathrm{IAP}=-0.015\)


\section*{09/03/00 Ratios In Trisection}

How does BF vary with BC? How does DF vary with BC?

\[
\mathbf{N}_{1}:=\mathbf{4} \quad \mathbf{N}_{2}:=8
\]
\[
\begin{aligned}
& \mathrm{BG}:=\mathbf{1} \quad \text { BE }:=\frac{\mathrm{BG}}{2} \quad \text { EM }:=\mathrm{BE} \quad \mathrm{BO}:=\sqrt{2 \cdot \mathrm{BE}^{2}} \\
& \mathrm{EN}:=\mathrm{BE} \quad \text { EK }:=\frac{\mathrm{BE} \cdot \mathbf{B E}}{\mathrm{BO}} \quad \text { KN }:=\mathrm{EN}-\text { EK } \quad \text { BK }:=\frac{\mathrm{BO}}{2}
\end{aligned}
\]
\[
\mathbf{B N}:=\sqrt{\mathbf{B K}^{2}+\mathbf{K N}^{2}} \quad \mathrm{BD}:=\frac{\mathbf{B N}^{2}}{\mathbf{B G}} \quad \mathrm{BC}:=\mathrm{BD} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{\mathbf{2}}}
\]
\[
\mathbf{C G}:=\mathbf{B G}-\mathbf{B C} \quad \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C G}} \quad \mathbf{A J}:=\mathrm{BE}
\]
\[
\mathbf{A C}:=\sqrt{\mathbf{A J}^{2}-\mathbf{C J}^{2}} \quad \mathrm{AB}:=\mathrm{AC}-\mathbf{B C} \quad \mathrm{AE}:=\mathrm{AB}+\mathbf{B E}
\]
\[
\mathbf{J H}:=\frac{\mathbf{C J}}{\mathbf{A} \mathbf{J}} \quad \mathbf{A H}:=\mathbf{A J}-\mathbf{J H} \quad \mathbf{A L}:=\frac{\mathbf{A H} \cdot \mathbf{A E}}{\mathbf{A C}} \quad \mathbf{J L}:=\mathbf{A L}-\mathbf{A J}
\]
\[
\mathbf{L M}:=\mathbf{J L} \quad \mathbf{A M}:=\mathbf{A L}+\mathbf{L M} \quad \mathbf{A F}:=\frac{\mathbf{A H} \cdot \mathbf{A M}}{\mathbf{A C}} \quad \mathbf{B F}:=\mathrm{AF}-\mathbf{A B}
\]
\[
\frac{-1}{4} \cdot(-2+\sqrt{2}) \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}-\mathbf{B C}=\mathbf{0}
\]
\[
B F-\frac{1}{8} \cdot(7 \cdot \sqrt{2}-10) \cdot\left(N_{1}-4 \cdot N_{2}-2 \cdot N_{2} \cdot \sqrt{2}\right) \cdot \frac{\left(2 \cdot N_{1}-2 \cdot N_{2}-N_{2} \cdot \sqrt{2}\right)^{2}}{N_{2}^{3}}=0
\]
\[
\frac{1}{2} \cdot \frac{\left(2 \cdot N_{1}-2 \cdot N_{2}-N_{2} \cdot \sqrt{2}\right)^{2} \cdot\left[(2 \cdot \sqrt{2}-3) \cdot\left(N_{1}-4 \cdot N_{2}-2 \cdot N_{2} \cdot \sqrt{2}\right)\right]}{\left(N_{2}{ }^{2} \cdot N_{1}\right)}-\frac{B F}{B C}=0
\]

\(\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left[(7 \cdot \sqrt{2}-10) \cdot\left(12 \cdot \sqrt{2} \cdot \mathbf{N}_{2}{ }^{2}+17 \cdot \mathbf{N}_{2}{ }^{2}+2 \cdot \mathbf{N}_{1}{ }^{2}-10 \cdot N_{1} \cdot N_{2}-6 \cdot \mathbf{N}_{1} \cdot \sqrt{2} \cdot \mathbf{N}_{2}\right)\right]}{4 \mathbf{N}_{2}{ }^{3}}-\mathbf{D F}=0\)
\[
\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left[(2 \cdot \sqrt{2}-3) \cdot\left(2 \cdot \mathbf{N}_{1}{ }^{2}-10 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-6 \cdot \mathrm{~N}_{1} \cdot \sqrt{2} \cdot \mathbf{N}_{2}+17 \cdot \mathbf{N}_{2}{ }^{2}+12 \cdot \sqrt{2} \cdot \mathbf{N}_{2}{ }^{2}\right)\right]}{N_{1} \cdot \mathbf{N}_{2}{ }^{2}}-\frac{\mathrm{DF}}{\mathrm{BC}}=0
\]

\section*{Goshdarn Good Pencil 09/16/00}

\[
\mathbf{N}:=\mathbf{2}
\]
\[
\mathbf{B C}:=\mathbf{1} \quad \text { BJ }:=\mathbf{B C} \cdot \mathbf{N} \quad \mathbf{B E}:=\sqrt{\mathbf{B C} \cdot \mathbf{B J}}
\]
\[
\mathbf{C J}:=\mathbf{B J}-\mathbf{B C} \quad \mathbf{C I}:=\frac{\mathbf{C J}}{2} \quad \text { IO }:=\mathbf{C I}
\]
NO := CJ CR := CJ
\[
\mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{E I}:=\mathbf{C I}-\mathbf{C E} \quad \mathbf{E J}:=\mathbf{C J}-\mathbf{C E}
\]
\[
\text { EL }:=\sqrt{\text { CEEJ }} \quad \text { EG }:=\frac{\text { EI•EL }}{\text { EL }+\mathbf{I O}} \quad \text { GI }:=\text { EI }-\mathbf{E G}
\]
\[
\mathbf{G O}:=\sqrt{\mathbf{G I}^{2}+\mathbf{I O}^{2}} \quad \text { OP }:=\mathbf{G O}
\]
\[
\mathrm{IP}:=\mathbf{I O}+\mathbf{O P} \quad \text { EF }:=\frac{\mathbf{E I} \cdot \mathbf{E L}}{\mathrm{EL}+\mathrm{IP}} \quad \text { FI }:=\mathrm{EI}-\mathbf{E F}
\]
\[
\mathrm{FO}:=\sqrt{\mathrm{FI}^{2}+\mathrm{IO}^{2}} \quad \mathrm{OK}:=\frac{\mathrm{IO} \cdot \mathrm{NO}}{\mathrm{FO}}
\]
\[
F K:=\mathrm{OK}-\mathrm{FO} \quad \mathrm{FQ}:=\frac{\mathrm{FI} \cdot \mathrm{FK}}{\mathrm{FO}} \quad \text { QI }:=\mathrm{FQ}+\mathrm{FI} \quad \mathrm{CQ}:=\mathrm{CI}-\mathrm{QI} \quad \text { QJ }:=\mathrm{CJ}-\mathrm{CQ} \quad \text { QK }:=\sqrt{\mathrm{CQ} \cdot \mathrm{QJ}}
\]
\[
\mathrm{CD}:=\frac{\mathrm{CQ} \cdot \mathrm{CR}}{\mathrm{CR}+\mathrm{QK}} \quad \mathrm{BD}:=\mathrm{CD}+\mathrm{BC} \quad\left(\mathrm{BC}^{2} \cdot \mathrm{BJ}\right)^{\frac{1}{3}}-\mathrm{BD}=0.000004486957912
\]


What is AE if given the difference between their extremes and the radius given as a ratio of that segment? (Internal Unit).


KM \(:=\mathbf{G M}-\mathbf{G K}\) JK \(:=\) CG \(\quad \mathbf{A G}:=\frac{\text { JK•GM }}{\text { KM }} \quad\) AH \(:=\mathbf{A G}+\mathbf{G H} \quad \mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \quad\) AE \(:=\mathrm{AB}+\mathbf{B E}\)
\(A E-\frac{\left(N_{3} \cdot N_{2}-4 \cdot N_{3} \cdot N_{1}+N_{1} \cdot N_{4}\right)}{2 \cdot\left(N_{3} \cdot N_{2}-N_{1} \cdot N_{4}\right)}=0\)


Given \(A B, D E, A D\) find \(B E, A C, C D, C E, B C\).
\(B A D\) and BED are right.
\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{1}
\]

\[
\mathbf{E J}:=\mathrm{FG} \quad \text { FJ }:=\mathbf{E G} \quad \mathbf{A J}:=\mathbf{A F}-\mathbf{F J} \quad \mathbf{A E}:=\sqrt{\mathbf{E J ^ { 2 }}+\mathbf{A J}^{2}}
\]

E
\[
\begin{aligned}
& \mathrm{AB}:=\mathbf{N}_{1} \quad \mathrm{AD}:=\mathbf{N}_{2} \quad \mathrm{DE}:=\mathbf{N}_{3} \\
& \mathbf{B D}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A D}^{2}} \mathbf{B F}:=\frac{\mathbf{A B}^{2}}{\mathbf{B D}} \quad \mathbf{D G}:=\frac{\mathbf{D E}^{2}}{\mathbf{B D}} \quad \mathbf{B E}:=\sqrt{\mathbf{B D}^{2}-\mathbf{D E}^{2}}
\end{aligned}
\]
\[
\mathbf{A F}:=\sqrt{\mathbf{A B}^{2}-\mathbf{B F}^{2}} \quad \mathbf{E G}:=\sqrt{\mathbf{D E}^{2}-\mathbf{D G}^{2}} \quad \mathbf{F G}:=\mathbf{B D}-(\mathbf{B F}+\mathbf{D G})
\]
\[
\mathrm{S}_{1}:=\mathrm{AD} \mathrm{~S}_{2}:=\mathrm{DE} \mathrm{~S}_{3}:=\mathrm{AE} \quad \mathrm{AH}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{\mathbf{2}}{ }^{2}}{2 \cdot \mathrm{~S}_{1}}
\]
\[
\mathrm{EH}:=\sqrt{\mathrm{AE}^{2}-\mathrm{AH}^{2}} \mathrm{CH}:=\frac{\mathrm{EH} \cdot \mathbf{A H}}{\mathrm{AB}+\mathbf{E H}} \quad \mathrm{AC}:=\mathrm{AH}-\mathrm{CH} \quad \mathrm{CE}:=\frac{\mathrm{AC} \cdot \mathrm{DE}}{\mathrm{AB}} \quad \mathrm{CD}:=\mathrm{AD}-\mathrm{AC} \quad \mathrm{BC}:=\mathrm{BE}-\mathrm{CE}
\]
\[
\left.N_{1} \cdot \frac{\left(-N_{3}{ }^{2} \cdot N_{2}+N_{2}{ }^{3}+N_{1}{ }^{2} \cdot N_{2}-N_{1} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}} \cdot N_{3}\right)}{\left(N_{1}{ }^{3}+N_{1} \cdot N_{2}{ }^{2}+N_{3} \cdot \sqrt{-N_{3}{ }^{2} \cdot N_{2}{ }^{2}+N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}} \cdot N_{3}+N_{3}{ }^{2} \cdot N_{1}{ }^{2}}\right.}\right)-A C=0
\]

Modify 02/28/98 for Mean proportionals between E and
J.

\[
\begin{aligned}
& \text { AE :=1 } \quad \mathbf{N}:=\mathbf{3} \\
& \text { EJ :=AE•N JK :=AE } \\
& \mathbf{H J}:=\frac{\mathbf{J K} \cdot \mathbf{E J}}{\mathbf{J K}+\mathbf{E J}} \quad \mathbf{E H}:=\mathbf{E J}-\mathbf{H J} \quad \text { GH }:=\frac{\mathbf{E H} \cdot \mathbf{H J}}{\mathbf{E H}+\mathbf{H J}} \\
& \mathbf{E G}:=\mathbf{E H}-\mathbf{G H} \quad \text { FG }:=\frac{\mathbf{E G} \cdot \mathbf{G H}}{\mathbf{E G}+\mathbf{G H}} \quad \mathbf{E F}:=\mathbf{E G}-\mathbf{F G} \\
& \mathrm{DE}:=\frac{\mathrm{EF} \cdot \mathrm{AE}}{\mathrm{EF}+\mathrm{AE}} \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{CD}:=\frac{\mathrm{AD} \cdot \mathrm{DE}}{\mathrm{AD}+\mathrm{DE}} \\
& \mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \quad \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{C D}}{\mathbf{A C}+\mathbf{C D}} \quad \mathrm{AB}:=\mathrm{AC}-\mathbf{B C} \\
& \text { M :=0.. } 3 \quad \mathbf{P}:=\mathbf{0 . .} 3 \\
& \text { AEAB }_{\mathbf{M}, \mathbf{P}}:=\left[\frac{\mathbf{N}^{\mathbf{M}+1}}{(\mathbf{N}+\mathbf{1})^{\mathbf{M}}}+\mathbf{1}\right]^{\mathbf{P}} \\
& \text { AEAB }=\left[\begin{array}{llll}
1 & 4 & 16 & 64 \\
1 & 3.25 & 10.563 & 34.328 \\
1 & 2.688 & 7.223 & 19.411 \\
1 & 2.266 & 5.133 & 11.63
\end{array}\right]
\end{aligned}
\]
\(\mathrm{AEAB}_{3,3}-\frac{\mathrm{AE}}{\mathrm{AB}}=0 \quad \mathrm{AEAB}_{3,2}-\frac{\mathrm{AE}}{\mathrm{AC}}=0 \quad \mathrm{AEAB}_{3,1}-\frac{\mathrm{AE}}{\mathrm{AD}}=0 \quad \mathrm{AEAB}_{3,0}-\frac{\mathrm{AE}}{\mathrm{AE}}=0\)
\(\mathrm{AEAB}_{3,3}-\frac{\mathrm{AE}}{\mathrm{AB}}=0\)

\section*{Multiplication and Division-Line By A Line 11/29/00}

Given some unit, and two differences, multiply or divide the one difference by the other.

For Division:

\[
\begin{aligned}
& \mathbf{A C}:=\mathbf{1} \quad \mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{2}:=12 \quad \text { AH }:=\mathbf{N}_{1} \\
& \mathbf{C J}:=\mathbf{N}_{\mathbf{2}} \quad \text { AB }:=\frac{\mathbf{A H}}{(\mathbf{C J}+\mathbf{A H})} \cdot \mathbf{A C} \\
& \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\mathbf{B C} \mathbf{C G}:=\frac{\mathbf{B D} \cdot \mathbf{A C}}{\mathbf{A B}}
\end{aligned}
\]
\[
\mathrm{CG}-\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}}=0
\]
\[
C G=4
\]

From an observer \(C\), the distance to star \(A\) and \(B\) are known, a reference CEF has been constructed, find the difference between the two stars.

A

B
\(D \underbrace{}_{c}=\)
E
\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \quad \mathbf{N}_{2}:=25 \quad \mathbf{N}_{3}:=1 \quad \mathbf{N}_{4}:=.5 \\
& \mathbf{B C}:=\mathbf{N}_{1} \quad \text { AC }:=\mathbf{N}_{2} \quad \text { CE }:=\mathbf{N}_{3} \quad \text { EF }:=\mathbf{N}_{4} \\
& \text { BD }:=\frac{\mathrm{EF} \cdot \mathbf{B C}}{\mathrm{CE}} \quad \text { CF }:=\sqrt{\mathrm{CE}^{2}-\mathrm{EF}^{2}} \mathrm{CD}:=\frac{\mathrm{CF} \cdot \mathrm{BC}}{\mathrm{CE}}
\end{aligned}
\]
\[
\mathrm{AD}:=\mathrm{AC}-\mathbf{C D} \quad \mathbf{A B}:=\sqrt{\mathrm{BD}^{2}+\mathrm{AD}^{2}}
\]
\(A B-\sqrt{\frac{1}{N_{3}} \cdot\left(N_{2}{ }^{2} \cdot N_{3}-2 \cdot N_{2} \cdot \sqrt{N_{3}{ }^{2}-N_{4}{ }^{2}} \cdot \mathbf{N}_{1}+N_{1}{ }^{2} \cdot \mathbf{N}_{3}\right)}=0\)

\section*{Three Pieces Of Paper}


\section*{AMeCeSCE 010101}


Alternate method for common segment common endpoint square root. \(\sqrt{\mathrm{AC} \cdot \mathrm{BC}}=\mathrm{CD}\)
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{5} \quad \mathbf{N}_{2}:=\mathbf{3} \quad \mathbf{A C}:=\mathbf{N}_{1} \\
& \mathbf{B C}:=\mathbf{N}_{2} \\
& \mathbf{A B}:=\mathbf{A C}-\mathbf{B C} \quad \mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}} \quad \mathbf{C D}:=\sqrt{\mathbf{B D}^{2}+\mathbf{B C}^{2}} \\
& \sqrt{\mathbf{N}_{2} \cdot \mathbf{N}_{1}}-\mathbf{C D}=\mathbf{0}
\end{aligned}
\]

Three Given Five Taken 042101

Given \(A B, C D, A C\) and that CDB, and BAC are right angles, what are \(B D, A E, C E, B E, D E\) ?

\(B G:=B C-C G \quad C F:=B C-B F\)
\(\mathrm{AF}:=\sqrt{\mathrm{AB}^{2}-\mathrm{BF}^{2}} \quad \mathrm{DG}:=\sqrt{\mathrm{CD}^{2}-\mathrm{CG}^{2}}\)

FH : \(=\frac{\text { BG•AF }}{\text { DG }} \quad \mathrm{CH}:=\mathrm{CF}+\mathrm{FH}\)

\(B D:=\sqrt{\mathrm{BG}^{2}+\mathrm{DG}^{2}}\)

AH \(:=\frac{\text { BD } \cdot \mathbf{F H}}{\text { BG }}\)
\(\mathbf{B E}:=\frac{\mathbf{A H} \cdot \mathbf{B C}}{\mathbf{C H}}\)

DE := BD - BE
\(\mathbf{C E}:=\frac{\mathbf{A C} \cdot \mathbf{B C}}{\mathbf{C H}}\)
AE :=AC - CE
Idea about process progression: Given two differences one renders a set number of processes upon them, then one progresses to three?


\section*{Some Algebraic Names:}
\[
\begin{aligned}
& \sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}-\mathrm{BC}=0 \quad \frac{\mathrm{~N}_{2}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{CG}=0 \\
& \frac{\mathrm{~N}_{1}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{BF}=0 \\
& \frac{\left(\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}-\mathrm{N}_{2}{ }^{2}\right)}{\sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{BG}=0
\end{aligned}
\]
\[
\frac{\mathrm{N}_{3}{ }^{2}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{CF}=0
\]
\[
\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{3}}{\sqrt{\mathrm{~N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}}}-\mathrm{AF}=\mathbf{0}
\]
\[
N_{2} \cdot \sqrt{\frac{\left(\mathbf{N}_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right)}{\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}}-\mathbf{D G}=0
\]
\[
\frac{N_{3} \cdot \mathbf{N}_{1} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right)}{N_{2} \cdot \sqrt{\left(N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right) \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}}-\mathbf{F H}=0
\]
\[
\left[\frac{N_{3}{ }^{2}}{\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}}}+\frac{N_{3} \cdot N_{1} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right)}{N_{2} \cdot \sqrt{\left(N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right) \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}}\right]-C H=0 \quad N_{3} \cdot \frac{N_{1}}{N_{2}}-A H=0
\]

\section*{The Five Sought:}
\[
\sqrt{\mathrm{N}_{1}^{2}+\mathrm{N}_{3}^{2}-\mathrm{N}_{2}^{2}}-\mathbf{B D}=0
\]

\(\frac{N_{2} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}{N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}} \cdot N_{1}}-C E=0 \quad N_{3}-\frac{N_{2} \cdot\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}{\left(N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}} \cdot N_{1}\right)}-A E=0\)

\title{
Given \(A B\) as unit, \(A D\) and \(D C\), what is EF and DF?
}

\(\mathrm{AC}:=\sqrt{\mathrm{AD}^{2}+\mathrm{CD}^{2}} \quad \mathrm{~S}_{1}:=\mathrm{AF} \quad \mathrm{S}_{2}:=\mathrm{AC} \mathrm{S}_{3}:=\mathrm{CF}\)
\(\mathrm{AG}:=\frac{\mathrm{S}_{\mathbf{2}}{ }^{2}+\mathrm{S}_{\mathbf{1}}{ }^{2}-\mathrm{S}_{\mathbf{3}}{ }^{2}}{2 \cdot \mathrm{~S}_{\mathbf{1}}} \quad \mathrm{CG}:=\sqrt{\mathrm{AC}^{2}-\mathrm{AG}^{2}}\)
\(\mathrm{L}_{1}:=\mathrm{AD} \quad \mathrm{L}_{\mathbf{2}}:=\mathrm{CG}_{\mathbf{L}} \quad \mathrm{L}_{\mathbf{3}}:=\mathbf{C D}\)
\(\mathrm{DH}:=\mathrm{L}_{3}-\frac{\mathrm{L}_{2} \cdot\left(\mathrm{~L}_{1}{ }^{2}+\mathrm{L}_{3}{ }^{2}\right)}{\mathrm{L}_{3} \cdot \mathrm{~L}_{2}+\sqrt{\mathrm{L}_{1}{ }^{2}+\mathrm{L}_{3}{ }^{2}-\mathrm{L}_{2}{ }^{2}} \cdot \mathrm{~L}_{1}}\)

\(A H:=L_{1} \frac{\left(L_{1}{ }^{2}+L_{3}{ }^{2}\right)}{\left(L_{3} \cdot L_{2}+\sqrt{L_{1}{ }^{2}+L_{3}{ }^{2}-L_{2}{ }^{2}} \cdot \mathbf{L}_{1}\right)}\)
FH \(:=\mathbf{A F}-\mathbf{A H} \quad \mathbf{H J}:=\frac{\mathbf{D H} \cdot \mathbf{F H}}{\mathbf{A H}}\)

DJ \(:=\mathrm{DH}+\mathrm{HJ}\) EJ \(:=\mathbf{D E}-\mathbf{D J}\) FJ \(:=\frac{\mathbf{A D} \cdot \mathbf{F H}}{\mathbf{A H}} \quad \mathrm{EF}:=\sqrt{\mathrm{FJ}^{2}+\mathbf{E J}^{2}} \mathrm{DF}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{FJ}^{2}}\)

\section*{Some Algebraic Names:}

\[
\begin{aligned}
& \mathrm{AB}-2 \cdot \mathrm{AB} \cdot \frac{\left(1+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}\right)}{\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot \sqrt{2 \cdot \mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{1}{ }^{4} \cdot \mathrm{~N}_{2}{ }^{2}-1-\mathrm{N}_{1}{ }^{4}}+1+\mathrm{N}_{1}{ }^{2}\right)}-\mathrm{FH}=0
\end{aligned}
\]

\(\frac{1}{2} \cdot \mathrm{AB} \cdot \frac{\left(\mathrm{N}_{1}{ }^{3} \cdot \mathrm{~N}_{2}+\mathrm{N}_{2} \cdot \mathrm{~N}_{1}-\sqrt{2 \cdot \mathrm{~N}_{1}{ }^{2}+4 \cdot \mathrm{~N}_{1}{ }^{4} \cdot \mathrm{~N}_{2}{ }^{2}-1-\mathrm{N}_{1}{ }^{4}}\right)}{\left[\left(1+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}\right) \cdot \mathrm{N}_{1}\right]}-\mathrm{DJ}=0\)
\(\frac{1}{2} \cdot A B \cdot \frac{\left(3 \cdot N_{2} \cdot N_{1}+4 \cdot N_{2}{ }^{3} \cdot N_{1}{ }^{3}-N_{1}{ }^{3} \cdot N_{2}+\sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-1-N_{1}{ }^{4}}\right)}{\left[\left(1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right) \cdot N_{1}\right]}-E J=0\)
\(\frac{-1}{2} \cdot A B \frac{\left(-N_{1} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-1-N_{1}{ }^{4}}+1-N_{1}{ }^{2}+2 \cdot N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right)}{\left[N_{1} \cdot\left(1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right)\right]}-F J=0\)
\(A B \cdot \sqrt{N_{2} \cdot \frac{\left(3 \cdot N_{1} \cdot N_{2}+4 \cdot N_{2}{ }^{3} \cdot N_{1}{ }^{3}-N_{1}{ }^{3} \cdot N_{2}+\sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-1-N_{1}{ }^{4}}\right)}{\left[\left(1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right) \cdot N_{1}\right]}}-E F=0\)
\(A B \cdot \sqrt{\left(N_{1}{ }^{3} \cdot N_{2}+N_{1} \cdot N_{2}-\sqrt{2 \cdot N_{1}{ }^{2}+4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-1-N_{1}{ }^{4}}\right) \cdot \frac{N_{2}}{\left[N_{1} \cdot\left(1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right)\right]}}-D F=0\)

\section*{Counterpoint 042301}

CF is the radius of a circle expressed in trisection. Is AF the counterpart of AC?

\[
\begin{aligned}
& \mathrm{N}:=\mathbf{5 . 4 8 6 4 3} \quad \mathrm{AB}:=\mathbf{. 5 4 3 3 1} \\
& \text { AE := AB } \cdot \mathbf{N} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \\
& \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathrm{AD}:=\mathrm{AB}+\mathbf{B D} \\
& \text { AO }:=\frac{\text { AD }}{2} \quad \text { DE }:=\text { BD DQ }:=\frac{\mathrm{DE}}{2} \\
& \text { EQ := DQ BQ := BD + DQ } \\
& \mathbf{Q R}:=\sqrt{\mathbf{B Q} \cdot \mathbf{E Q}} \quad \mathbf{E R}:=\sqrt{\mathbf{Q R}^{2}+\mathbf{E Q}^{2}} \\
& \text { EL }:=2 \cdot \mathbf{E R ~ L P}:=\mathbf{E L} \text { DL }:=\frac{\mathbf{Q R} \cdot \mathbf{E L}}{\mathrm{ER}}
\end{aligned}
\]

Try to figure out how I do this;
\[
\begin{aligned}
& \mathbf{A G}:=\frac{\mathbf{A B} \cdot(\mathbf{N}-1)}{4} \cdot \sqrt{2} \cdot \sqrt{(1+\mathbf{N}) \cdot \sqrt{3}} \cdot \sqrt{\frac{\left[\frac{5}{18} \cdot \sqrt{3} \cdot \frac{(1+\mathbf{N})}{(\mathbf{N}-1)}+\frac{1}{18} \cdot \frac{(1+\mathbf{N})^{3}}{(\mathbf{N}-1)^{3}} \cdot \sqrt{3}+\frac{1}{3} \cdot \frac{\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}}{(\mathbf{N}-1)}\right]}{\left[\frac{1}{12} \cdot \frac{\left(13 \cdot \mathbf{N}^{2}-\mathbf{2 2} \cdot \mathbf{N}+13\right)}{(\mathbf{N}-1)}\right]}} \\
& \text { DG }:=\sqrt{\mathbf{A D}^{2}-\mathbf{A G}^{2}} \mathbf{A U}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A G}} \text { DU }:=\frac{\mathbf{D G} \cdot \mathbf{A D}}{\mathbf{A G}} \mathbf{L U}:=\mathbf{D L}+\mathbf{D U} \mathbf{T U}:=\frac{\mathbf{D G} \cdot \mathbf{L U}}{\mathbf{A D}} \text { GU }:=\mathbf{A U}-\mathbf{A G} \\
& \text { TG }:=\mathbf{T U}-\mathbf{G U F T}:=\mathbf{T G} \text { AF }:=\mathbf{A G}-(\mathbf{F T}+\mathbf{T G}) \quad \mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A F}}{\mathbf{A U}}
\end{aligned}
\]

From 012496 for \(A C \quad 2 \cdot A B \cdot \frac{N}{(1+N)} \quad A C-2 \cdot A B \cdot \frac{N}{(1+\mathbf{N})}=0\)



Does HM intersect at D? What is the Algebraic name of HM in relation to \(A B\) and \(A G\) ?
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \text { AB }:=\mathbf{1} \quad \text { AG }:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \\
& \text { AK }:=\mathbf{A F} \quad \text { FK }:=\mathbf{B F} \quad \text { AE }:=\frac{2 \mathbf{A K}^{2}-\mathbf{F K}^{2}}{2 \mathbf{A F}} \\
& \text { AJ }:=\mathbf{A E} \quad \text { JK }:=\mathbf{A K}-\mathbf{A J} \quad \text { HJ }:=\mathbf{J K}
\end{aligned}
\]
\[
\mathrm{AH}:=\mathrm{AK}-(\mathbf{J K}+\mathbf{H J}) \quad \text { AC }:=\frac{\mathrm{AE} \cdot \mathbf{A H}}{\mathrm{AK}} \quad \mathbf{C E}:=\mathrm{AE}-\mathrm{AC} \quad \text { BE }:=\mathrm{AE}-\mathrm{AB} \quad \mathbf{E G}:=\mathrm{BG}-\mathbf{B E}
\]
\[
\text { EK }:=\sqrt{\mathbf{B E} \cdot \mathbf{E G}} \quad \mathrm{BC}:=\mathrm{AC}-\mathbf{A B} \quad \mathbf{C G}:=\mathrm{BG}-\mathbf{B C} \quad \mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathbf{C G}} \quad \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathbf{E K}}{\mathrm{EK}+\mathrm{CH}}
\]
\[
\mathrm{DF}:=2 \cdot \mathrm{DE} \quad \mathrm{HM}:=\sqrt{\mathrm{CE}^{2}+(\mathrm{EK}+\mathrm{CH})^{2}}
\]

\section*{Some Algebraic Names:}
\(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A B}-\mathbf{B G}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{B F}=0 \quad \frac{1}{2} \cdot \mathbf{A B}+\frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{A F}=\mathbf{0}\)
\[
\frac{1}{4} \cdot A B \cdot \frac{\left(N^{2}+6 \cdot N+1\right)}{(1+N)}-A E=0 \quad \frac{1}{4} \cdot A B \cdot \frac{\left(1-2 \cdot N+N^{2}\right)}{(1+N)}-J K=0 \quad 2 \cdot A B \cdot \frac{N}{(1+N)}-A H=0
\]
\(A B \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{3}} \cdot N-A C=0\)
\(\frac{1}{4} \cdot A B \cdot\left(N^{2}+6 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}-C E=0\)
\(\frac{1}{4} \cdot A B \cdot(N+3) \cdot \frac{(\mathbf{N}-1)}{(1+\mathbf{N})}-\mathbf{B E}=0\)
\(\frac{1}{4} \cdot A B \cdot(3 \cdot N+1) \cdot \frac{(N-1)}{(1+N)}-E G=0\)

\[
\begin{aligned}
& \frac{1}{4} \cdot A B \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \frac{(N-1)}{(1+N)}-E K=0 \\
& A B \cdot(3 \cdot N+1) \cdot \frac{(N-1)}{(1+N)^{3}}-B C=0 \\
& A B \cdot N^{2} \cdot(N+3) \cdot \frac{(N-1)}{(1+N)^{3}}-C G=0
\end{aligned}
\]
\[
A B \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N \cdot \frac{(N-1)}{(1+N)^{3}}-C H=0
\]
\[
\frac{1}{4} \cdot A B \cdot \frac{(N-1)^{2}}{(1+N)}-D E=0 \quad \frac{1}{2} \cdot A B \cdot \frac{(N-1)^{2}}{(N+1)}-D F=0 \quad \frac{1}{2} \cdot A B \cdot(N-1) \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{2}}-H M=0
\]

What is the Algebraic name of the circle HM? Does point \(N\) divide DR in half?

\[
\begin{aligned}
& \mathbf{N}:=5.768 \quad \text { AB }:=.583 \quad \text { AJ }:=A B \cdot N \\
& \text { BJ }:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B H}:=\frac{\mathbf{B J}}{2} \quad \text { HR }:=\mathbf{B H} \\
& \text { HP }:=\frac{\mathbf{H R}}{2} \quad \text { GO }:=\mathbf{H P} \quad A H:=A B+B H \\
& \text { AO }:=\mathrm{AH} \quad \mathrm{AG}:=\sqrt{\mathbf{A O}^{2}-\mathbf{G O}^{2}} \\
& H Q:=B H \quad A Q:=A H \quad F H:=\frac{H Q^{2}}{2 \cdot A H} \\
& \text { AF }:=\mathbf{A H}-\text { FH FM }:=\frac{\text { GO•AF }}{\text { AG }} \\
& \text { HJ := BH } \quad \text { FJ }:=\mathbf{F H}+\mathbf{H J} \quad \text { BF }:=\text { BJ }-\mathbf{F J}
\end{aligned}
\]
\(F Q:=\sqrt{B F \cdot F J} \quad M Q:=F Q-F M \quad H M:=\sqrt{F H^{2}+F M^{2}} \quad H M-M Q=0\)
\(D H:=\frac{H R^{2}}{A H} \quad \frac{D H}{2}-F H=0\)

\section*{Some Algebraic Names:}
\(A B \cdot N-A B-B J=0 \quad \frac{1}{2} \cdot A B \cdot(N-1)-B H=0 \quad \frac{1}{4} \cdot A B \cdot(N-1)-H P=0\)
\(\frac{1}{2} \cdot \mathbf{A B} \cdot(1+\mathbf{N})-\mathbf{A H}=0 \quad \frac{1}{4} \cdot \mathrm{AB} \cdot \sqrt{(\mathrm{N}+3) \cdot(3 \cdot N+1)}-\mathbf{A G}=0 \quad \frac{1}{4} \cdot \mathrm{AB} \cdot \frac{(\mathrm{N}-1)^{2}}{(1+\mathrm{N})}-\mathbf{F H}=0\)
\(\frac{1}{4} \cdot A B \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)}-A F=0 \quad \frac{1}{4} \cdot(N-1) \cdot A B \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{[(1+N) \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}]}-F M=0\)

\[
\frac{1}{2} \cdot(1+N) \cdot A B \cdot \frac{(N-1)}{\sqrt{(N+3) \cdot(3 \cdot N+1)}}-M Q=0 \quad \frac{1}{2} \cdot A B \cdot(N-1) \cdot \frac{(1+N)}{\sqrt{(N+3) \cdot(3 \cdot N+1)}}-H M=0
\]
\[
\mathbf{H M}-\mathbf{M Q}=\mathbf{0}
\]
\[
\frac{1}{2} \cdot \mathrm{AB} \cdot \frac{(\mathrm{~N}-1)^{2}}{(1+\mathrm{N})}-\mathrm{DH}=0 \quad \frac{\mathrm{DH}}{2}-\mathrm{FH}=0
\]


\section*{Four Lines To A Point 042901}



\section*{Some Algebraic Names:}

\[
\begin{aligned}
& A B \cdot(\mathbf{N}-1)-B D=0 \\
& \frac{A B \cdot(\mathbf{N}-1)}{2}-\mathbf{B O}=0 \\
& \frac{1}{2} \cdot A B \cdot(1+\mathbf{N})-A O=0 \\
& \frac{1}{2} \cdot A B \cdot \frac{(N-1)^{2}}{(1+N)}-\mathbf{H O}=0 \\
& 2 \cdot A B \cdot \frac{\mathbf{N}}{(1+N)}-A H=0 \\
& \frac{1}{2} \cdot A B \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}-\mathbf{G O}=\mathbf{0} \\
& A B \cdot(\mathbf{3} \cdot \mathbf{N}+1) \cdot \frac{(N-1)}{(1+N)^{3}}-\mathbf{B G}=0 \\
& A B \cdot(N-1) \cdot N^{2} \cdot \frac{(N+3)}{(1+N)^{3}}-D G=0
\end{aligned}
\]
\[
\sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N \cdot(\mathbf{N}-1) \cdot \frac{A B}{(1+\mathbf{N})^{3}}-\mathbf{G L}=0
\]
\[
\left.\frac{1}{2} \cdot A B \cdot\left(N^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{\left[3 \cdot N+1+3 \cdot N^{2}+N^{3}-2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}\right.}\right]-\mathbf{E O}=0
\]
\[
A B \cdot(\mathbf{N}-1) \cdot \frac{[\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}-\mathbf{3} \cdot \mathbf{N}-1]}{\left[3 \cdot \mathbf{N}+\mathbf{1}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}\right]}-\mathbf{B E}=0 \quad \quad \mathbf{A B} \cdot \frac{(\mathbf{N}-1)}{(1+\mathbf{N})}-\mathbf{B H}=0
\]
\[
A B \cdot \frac{(N-1)^{2} \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N} \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}{\left[\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right] \cdot(1+\mathbf{N})^{3}\right]}-\mathbf{E G}=0
\]
\[
A B \cdot(\mathbf{N}-1)^{2} \cdot \mathbf{N} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}+1]}{\left[\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right] \cdot(1+\mathbf{N})\right]}-\mathbf{E H}=\mathbf{0}
\]
\[
\begin{aligned}
& N \cdot(\mathbf{N}-1) \cdot \frac{A B}{(1+N)} \cdot \frac{[N+\sqrt{(N+3) \cdot(3 \cdot N+1)}+1]}{\left(N^{2}+4 \cdot N+1\right)}-\mathbf{H M}=0 \\
& A B \cdot \frac{(N-1)^{2}}{(1+N)^{2}} \cdot N \cdot \frac{[N+\sqrt{(N+3) \cdot(3 \cdot N+1)}+1]}{\left(N^{2}+4 \cdot N+1\right)}-H_{2}=0
\end{aligned}
\]
\[
\frac{1}{2} \cdot A B \cdot(N-1)^{2} \cdot \frac{\left(N^{2}+4 \cdot N+1\right)}{\left[7 \cdot N \cdot(N+1)+2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-O U=0
\]
\[
\mathbf{N} \cdot(\mathbf{N}-1) \cdot \mathbf{A B} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}+1]}{\left[7 \cdot \mathbf{N}+7 \cdot \mathbf{N}^{2}+2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-\mathbf{U P}=0
\]

\(\frac{\left[A B \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}\right]}{\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right]} \cdot \frac{(1+\mathbf{N})}{\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}}-\mathrm{OE}_{2}=0\)
\((1+N)^{2} \cdot \frac{A B}{\sqrt{3+10 \cdot N+3 \cdot N^{2}}}-A S_{2}=0\)

\[
\begin{aligned}
& -\mathbf{A B} \cdot \mathbf{N} \cdot\left[\mathbf{N}^{2}+6 \cdot \mathbf{N}+1-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right] \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \\
& \left(2 \cdot \mathbf{N}^{4}+\mathbf{1 0} \cdot \mathbf{N}^{3}+\mathbf{8} \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+\mathbf{2}\right)-\mathbf{3} \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N} \ldots \\
& \quad+-\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}-3 \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}^{2}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}^{3}
\end{aligned}
\]
\[
\frac{1}{2} \cdot A B \cdot(N-1)^{2} \cdot \frac{\left(N^{2}+4 \cdot N+1\right)}{\left[7 \cdot N \cdot(N+1)+2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-\mathbf{U O}=0
\]
\[
\mathbf{N} \cdot(\mathbf{N}-1) \cdot \mathbf{A B} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}+1]}{\left[7 \cdot \mathbf{N}+7 \cdot \mathbf{N}^{2}+2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-\mathbf{P U}=0
\]
\[
\begin{aligned}
& \frac{\left[A B \cdot\left(N^{2}+4 \cdot N+1\right) \cdot(\mathbf{N}-1)^{2}\right]}{\left[3 \cdot N+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}\right]} \cdot \frac{(1+\mathbf{N})}{\sqrt{(N+3) \cdot(3 \cdot N+1)}}-\frac{1}{2} \cdot A B \cdot(1+N)-A E_{2}=0 \\
& -\mathbf{A B} \cdot \mathbf{N} \cdot \frac{\left[\mathbf{N}^{2}+6 \cdot \mathbf{N}+1-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right]}{\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right]}-\mathbf{A E}=\mathbf{0} \\
& \frac{-2 \cdot A B \cdot N \cdot(1+\mathbf{N}) \cdot\left[\mathbf{N}^{2}+6 \cdot \mathbf{N}-\sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N}+1-\sqrt{(N+3) \cdot(3 \cdot N+1)}\right]}{\left(2 \cdot \mathbf{N}^{4}+10 \cdot \mathbf{N}^{3}+8 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+2\right)-3 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot \mathbf{N} \ldots}-A P=0 \\
& +-\sqrt{(N+3) \cdot(3 \cdot \mathbf{N}+1)}-3 \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}^{2}-\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}^{3}
\end{aligned}
\]

\section*{Compass Construction 043001}


The process is simple, construct point \(O\) and then bisect AOC. From point \(\mathbf{N}\) construct \(\mathbf{P}\) from the perpendicular L-which is the midpoint of NS.
Bisect APC constructing E and F which are bisected at point \(M\). Draw \(S\) to \(M\) to construct point \(D\).
o When there is no difference between two things, those things are said to be equal. This is true even of tolerance. If a figure is more accurate than the tools used to construct the figure, then that figure is equal, in that tool, to a solution that is tool independant.
\(\mathrm{m} \angle \mathrm{ABC}-3 \cdot \mathrm{~m} \angle \mathrm{ABD}=0.000^{\circ}\)
\(\mathrm{m} \angle A B_{2} \mathrm{C}-3 \cdot \mathrm{~m} \angle A B_{2} \mathrm{D}=-0.000^{\circ}\)
\[
\rightarrow \text { Move C->60 } \rightarrow \text { Move C->75 }
\]




Pull K.




050601.MCD

\section*{Just some Algebraic Names}
\[
\begin{aligned}
& \text { AB := . } 818 \quad \mathbf{N}:=\mathbf{4 . 0 8 2} \\
& \mathbf{A E}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \\
& \mathbf{B O}:=\frac{\mathrm{BE}}{2} \quad \mathrm{AO}:=\mathrm{AB}+\mathbf{B O} \\
& \text { AJ }:=\text { AO JO }:=\text { BO GO }:=\frac{\text { JO }}{2} \\
& \mathrm{AG}:=\sqrt{\mathrm{AO}^{2}-\mathrm{GO}^{2}}
\end{aligned}
\]

\[
\begin{aligned}
& \text { AP }:=\frac{\mathbf{A G}^{2}}{\mathbf{A O}} \quad \text { OP }:=\mathbf{A O}-\mathbf{A P} \\
& \text { NO }:=\mathbf{2} \cdot \mathbf{O P} \quad \text { AN }:=\mathbf{A O}-\mathbf{N O} \\
& \text { JM }:=\mathbf{N O} \quad \mathbf{H O}:=\mathbf{B O} \\
& \mathbf{H J}:=\mathbf{2} \cdot \mathbf{J M} \quad \text { AH }:=\mathbf{A J}-\mathbf{H J} \\
& \text { AC }:=\frac{\mathbf{A N} \cdot \mathbf{A H}}{\mathbf{A J}} \quad \mathbf{C H}:=\sqrt{\mathbf{A H}^{2}-\mathbf{A C}^{2}} \\
& \mathbf{H Q}:=2 \cdot \mathbf{C H} \quad \mathbf{C N}:=\mathbf{A N}-\mathbf{A C} \\
& \mathbf{J N}:=\frac{\mathbf{C H} \cdot \mathbf{A J}}{\mathbf{A H}} \quad \mathbf{C Q}:=\mathbf{C H}
\end{aligned}
\]
\(\mathrm{JQ}:=\sqrt{(\mathrm{CQ}+\mathrm{JN})^{2}+\mathrm{CN}^{2}} \quad \mathrm{OR}:=\frac{\mathrm{JO}^{2}+\mathrm{HO}^{2}-\mathrm{HJ}^{2}}{2 \cdot \mathrm{HO}} \quad \mathrm{JR}:=\sqrt{\mathrm{JO}^{2}-\mathrm{OR}^{2}}\)
FO \(:=\frac{\mathrm{JO} \cdot \mathbf{G O}}{\mathrm{OR}} \quad \mathrm{FJ}:=\mathrm{FO} \quad \mathrm{DQ}:=\frac{\mathrm{JQ} \cdot \mathrm{CQ}}{\mathrm{CQ}+\mathrm{JN}} \quad \mathrm{DF}:=\mathrm{JQ}-(\mathrm{DQ}+\mathrm{FJ}) \quad \mathrm{FH}:=\mathrm{HO}-\mathrm{FO}\)
FG \(:=\frac{\mathbf{J R} \cdot \mathbf{G O}}{\mathbf{O R}} \quad\) AF \(:=\mathbf{A G}-\mathbf{F G}\)
\(\mathbf{A E}-\mathbf{A B} \cdot \mathbf{N}=\mathbf{0} \quad \mathbf{B E}-(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A B})=\mathbf{0} \quad \mathbf{B O}-\frac{1}{2} \cdot \mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})=\mathbf{0}\)
\(\mathbf{A O}-\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{A B} \cdot(\mathbf{1}+\mathbf{N})=\mathbf{0} \quad \mathbf{A G}-\frac{\mathbf{A B}}{\mathbf{4}} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}=\mathbf{0}\)
\(A P-\frac{A B}{8} \cdot(N+3) \cdot \frac{(3 \cdot N+1)}{(1+N)}=0 \quad O P-\frac{A B}{8} \cdot \frac{(N-1)^{2}}{(1+N)}=0 \quad N O-\frac{A B}{4} \cdot \frac{(N-1)^{2}}{(1+N)}=0\)
\(A N-\frac{A B}{4} \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)}=0 \quad H J-\frac{A B}{2} \cdot \frac{(N-1)^{2}}{(1+N)}=0 \quad A H-2 \cdot A B \cdot \frac{N}{(1+N)}=0\)
\(A C-A B \cdot\left(1+6 \cdot \mathbf{N}+\mathbf{N}^{2}\right) \cdot \frac{\mathbf{N}}{(1+\mathbf{N})^{3}}=0 \quad \mathbf{C H}-\mathbf{A B} \cdot \mathbf{N} \cdot \sqrt{\mathbf{N}+3} \cdot \sqrt{3 \cdot \mathbf{N}+1} \cdot \frac{(\mathbf{N}-1)}{(1+\mathbf{N})^{3}}=0\)
\(H Q-2 \cdot A B \cdot N \cdot \sqrt{N+3} \cdot \sqrt{3 \cdot N+1} \cdot \frac{(N-1)}{(1+N)^{3}}=0 \quad C N-\frac{A B}{4} \cdot\left(N^{2}+6 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}=0\)
\(\mathbf{J N}-\frac{\mathbf{A B}}{4} \cdot(\mathbf{N}-1) \cdot \sqrt{3 \cdot \mathbf{N}+1} \cdot \frac{\sqrt{\mathbf{N}+3}}{(1+\mathbf{N})}=0 \quad \mathbf{J Q}-\frac{\mathbf{A B}}{2} \cdot(\mathbf{N}-1) \cdot \frac{\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}{(1+\mathbf{N})^{2}}=0\)
\(O R-\frac{A B}{4} \cdot\left(N^{2}+6 \cdot N+1\right) \cdot \frac{(N-1)}{(1+N)^{2}}=0 \quad J R-\frac{A B}{4} \cdot(N-1)^{2} \cdot \sqrt{N+3} \cdot \frac{\sqrt{3 \cdot N+1}}{(1+N)^{2}}=0\)
\(F O-\frac{A B}{2} \cdot(1+N)^{2} \cdot \frac{(N-1)}{\left(N^{2}+6 \cdot N+1\right)}=0 \quad D Q-2 \cdot N \cdot(N-1) \cdot \frac{A B}{(1+N)^{2}}=0\)
\(\mathbf{D F}-2 \cdot \mathbf{N} \cdot(\mathbf{N}-1) \cdot \frac{\mathbf{A B}}{\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}=0 \quad \mathbf{F H}-2 \cdot \mathbf{N} \cdot(\mathbf{N}-1) \cdot \frac{\mathbf{A B}}{\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}=0\)
\(F G-\frac{A B}{4} \cdot(N-1)^{2} \cdot \sqrt{N+3} \cdot \frac{\sqrt{3 \cdot N+1}}{\left(N^{2}+6 \cdot N+1\right)}=0 \quad G O-\frac{A B}{4} \cdot(N-1)=0\)
\(A F-\left[\frac{A B}{4} \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}-\frac{1}{4} \cdot \mathbf{A B} \cdot(\mathbf{N}-1)^{2} \cdot \sqrt{\mathbf{N}+3} \cdot \frac{\sqrt{3 \cdot \mathbf{N}+1}}{\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}\right]=0\)


\[
\begin{array}{ll}
\text { EM }:=\frac{1}{2} \cdot \sqrt{3} & \text { AL }:=\frac{1}{2} \cdot \sqrt{2} \\
\text { AM }:=\frac{1}{2} & \text { JL }:=\frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}} \\
\text { LM }:=\frac{1}{4} \cdot \sqrt{6}-\frac{1}{10-2 \cdot \sqrt{5}} \cdot \sqrt{2} \\
& \text { AG }:=\frac{1}{4} \cdot \sqrt{8+2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}
\end{array}
\]

\section*{Elliptic Progression Outtake One 0507011}

A method of trisection Algebraically.


N:= M
\[
N \geq 4=1 \quad A F:=6 \quad A E:=\frac{A F}{2}
\]

DE \(:=\frac{\mathbf{A F}}{\mathbf{N}} \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathrm{DF}:=\mathbf{A F}-\mathrm{AD}\)
DG \(:=\sqrt{\text { AD } \cdot \mathbf{D F}} \quad\) CD \(:=\mathrm{DE} \quad\) EG \(:=\mathbf{A E}\)
\(\mathrm{CO}:=\frac{\mathrm{CD}^{2}}{\mathrm{EG}} \quad \mathrm{CG}:=\mathrm{EG} \quad \mathrm{CJ}:=\mathrm{CG}-4 \cdot \mathrm{CO}\)
\(\mathbf{B C}:=\frac{\mathbf{C D} \cdot \mathbf{C J}}{\mathbf{C G}} \quad \mathbf{A B}:=\mathbf{A E}-(\mathbf{2} \cdot \mathbf{D E}+\mathbf{B C})\)
BJ := \(\frac{\text { DG } \cdot \mathbf{B C}}{\text { CD }} \quad\) BD \(:=\mathbf{B C}+\mathbf{C D}\)
\(\mathrm{JK}:=\sqrt{\mathrm{DG}^{2}-2 \cdot \mathrm{DG} \cdot \mathrm{BJ}+\mathrm{BJ}^{2}+\mathrm{BD}^{2}} \quad \frac{\mathrm{JK}}{2 \cdot \mathrm{DE}}=1 \quad\) Some Algebraic Names,
Part of this demonstration may be something of a reductio ad absurdum, if one supposed that CJ were not true. I suppose I need a plate to demonstrate it.
\(\mathrm{AF} \cdot \frac{(\mathbf{N}-2)}{2 \cdot \mathrm{~N}}-\mathbf{A D}=\mathbf{0} \quad \mathrm{AF} \cdot \frac{(\mathbf{N}+2)}{2 \cdot \mathbf{N}}-\mathbf{D F}=\mathbf{0} \quad \mathrm{AF} \cdot \frac{\sqrt{(\mathbf{N}-2) \cdot(\mathbf{N}+2)}}{2 \cdot \mathbf{N}}-\mathbf{D G}=\mathbf{0}\)
\(\frac{2 \mathrm{AF}}{\mathrm{N}^{2}}-\mathbf{C O}=0 \quad \mathrm{AF} \cdot \frac{(\mathrm{N}-4) \cdot(\mathrm{N}+4)}{2 \cdot \mathbf{N}^{2}}-\mathbf{C J}=0 \quad \mathrm{AF} \cdot \frac{(\mathrm{N}-4) \cdot(\mathrm{N}+4)}{\mathrm{N}^{3}}-\mathrm{BC}=0\)
\(A F \cdot \frac{(N+2) \cdot(N-4)^{2}}{2 \cdot N^{3}}-A B=0 \quad \begin{aligned} & \text { One of the meanings of trisection is solving for } \\ & \text { the following equation when given } A F \text { and } A B .\end{aligned}\)
\(\frac{A F}{A B}-\frac{2 \cdot N^{3}}{(N+2) \cdot(N-4)^{2}}=0\)
\(A F \cdot \frac{(N-4) \cdot(N+4) \cdot \sqrt{(N-2) \cdot(N+2)}}{2 \cdot N^{3}}-B J=0 \quad A F \cdot \frac{2 \cdot\left(N^{2}-8\right)}{N^{3}}-B D=0 \quad \frac{2 \cdot A F}{N}-J K=0\)
\[
\begin{aligned}
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}-\frac{A F}{A B}=0 \quad \frac{A F}{A B}=6 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}-6=0 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}=6 \\
& 2 \cdot M^{3}-6 \cdot\left[(M+2) \cdot(M-4)^{2}\right]=0 \\
& 2 \cdot M^{3}-\left(6 \cdot M^{3}-36 \cdot M^{2}+192\right)=0 \\
& 4 \cdot M^{3}-36 \cdot M^{2}+192=0 \\
& M^{3}-9 \cdot M^{2}+48=0 \quad M^{2} \cdot(M-9)+48=0 \quad M \equiv 8.303889634816388 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}=6 \quad D E-\frac{A F}{M}=0 \quad Z:=5.9,6 . .8 .9
\end{aligned}
\]


\section*{Elliptic Progression Outtake Two 0507012}

\section*{Angles TEV and EVJ equals CTG.}


Outtake Three: Alternate Method: Pentasection Or Irrational Rationals 0507013

\[
\begin{aligned}
& \mathbf{A L}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A L}}{\mathbf{2}} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \\
& \mathbf{C E}:=\mathbf{A C} \text { ER }:=\mathbf{A E} \mathbf{C R}:=\sqrt{\mathbf{C E}^{2}+\mathbf{E R}^{2}} \\
& \mathbf{C J}:=\mathbf{C R} \quad \mathbf{E J}:=\mathbf{C J}-\mathbf{C E} \\
& \mathbf{J R}:=\sqrt{\mathbf{E J}^{2}+\mathbf{E R}^{2}} \mathbf{N R}:=\mathbf{J R} \\
& \mathbf{E N}:=\mathbf{A E} \mathbf{E M}:=\frac{\mathbf{E N}^{2}+\mathbf{E R}^{2}-\mathbf{N R}^{2}}{\mathbf{2} \cdot \mathbf{E R}}
\end{aligned}
\]

KN \(:=\) EM EK \(:=\sqrt{\mathbf{E N}^{2}-K^{2}} \quad\) EL \(:=\mathbf{A E} \quad\) KL \(:=\mathbf{E L}-\mathbf{E K} \quad \mathbf{L N}:=\sqrt{\mathbf{K L}^{2}+\mathrm{KN}^{2}}\)

\(\mathbf{P R}-\mathbf{L N}=\mathbf{0} \quad \mathbf{A N}:=\sqrt{\mathbf{A L}^{2}-\mathbf{L N}^{2}}\)
Irrational means the inability of a grammar to provide a name for a given thing. Many things are then irrational in Arithmetic due to the principles of the naming convention. Algebraic naming solves the problem by incorporating operands as part of a name. Algebra provides a degree of rationality then that is not achievable by Arithmetic. The following are some Algebraic names.
\(\frac{1}{2}-\mathbf{A E}=\mathbf{0} \quad \frac{1}{4}-\mathbf{A C}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{5}-\mathbf{C R}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{5}-\frac{1}{4}-\mathbf{E J}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{10-2 \cdot \sqrt{5}}-\mathbf{J R}=\mathbf{0}\)
\(\frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{E M}=0 \quad \frac{1}{2} \cdot \sqrt{\frac{5}{8}+\frac{1}{8} \cdot \sqrt{5}}-\mathbf{E K}=0 \quad \frac{1}{2}-\frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}-K L=0\)
\(\frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathbf{L N}=0 \quad \frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{E G}=0 \quad \frac{5}{8}-\frac{1}{8} \cdot \sqrt{5}-\mathbf{G L}=\mathbf{0}\)
\(\frac{3}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{A G}=0 \quad \frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}-\mathbf{G P}=0 \quad \frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathbf{P R}=0\)
\(\frac{1}{4} \cdot \sqrt{8+2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathrm{AN}=0\)

\section*{Outtake Four: Some Names 0507014}

\[
\begin{aligned}
& \mathbf{A G}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A G}}{\mathbf{2}} \mathbf{A C}:=\frac{\mathbf{A E}}{\mathbf{2}} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C J}:=\sqrt{\mathbf{A C} \cdot \mathbf{C G}} \\
& \mathbf{E L}:=\mathbf{A E} \quad \mathbf{C E}:=\mathbf{A C} \\
& \mathbf{J L}:=\sqrt{\mathbf{E L}^{2}-\mathbf{2} \cdot \mathbf{E L} \cdot \mathbf{C J}+\mathbf{C J}^{2}+\mathbf{C E}^{2}} \\
& \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}^{2}} \quad \mathbf{G J}:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}^{2}} \\
& \mathbf{A L}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E L}^{2}}
\end{aligned}
\]
\(\mathrm{AE}:=\frac{\mathbf{1}}{\mathbf{2}} \quad \mathrm{AC}:=\frac{\mathbf{1}}{\mathbf{4}} \quad \mathrm{CG}:=1-\frac{1}{4}\)
\(\mathbf{C J}:=\frac{1}{4} \cdot \sqrt{\mathbf{3}}\)
JL \(:=\frac{1}{4} \cdot \sqrt{6}-\frac{1}{4} \cdot \sqrt{2}\)
AJ := \(\frac{\mathbf{1}}{\mathbf{2}}\)
GJ \(:=\frac{\mathbf{1}}{\mathbf{2}} \cdot \sqrt{\mathbf{3}}\) *
AL \(:=\frac{1}{2} \cdot \sqrt{2}\)

\section*{Angles and the Ellipse 050801.mcd}
\[
\mathrm{AC}:=1 \quad \mathrm{CP}:=\sqrt{2 \mathrm{AC}^{2}}
\]
\[
\mathbf{A P}:=\mathbf{A C} \quad \mathbf{E P}:=\mathbf{C P}
\]
\[
\mathbf{C E}:=\sqrt{\mathrm{AC}^{2}+(\mathbf{A P}+\mathbf{E P})^{2}}
\]
\[
\text { EK }:=\text { CE EH }:=\mathbf{C E}
\]
\[
\mathrm{AE}:=\sqrt{\mathrm{CE}^{2}-\mathrm{AC}^{2}}
\]
\[
\mathbf{A H}:=\mathbf{E H}-\mathbf{A E}
\]
\[
\text { AT }:=\mathbf{A H} \quad \text { EU }:=\frac{\mathbf{A T} \cdot \mathbf{E K}}{\text { AC }}
\]

\[
\frac{\mathbf{E K}}{\mathbf{E U}}-(1+\sqrt{2}+\sqrt{2} \cdot \sqrt{2+\sqrt{2}})=0
\]

An Elliptic Progression takes place on a finite length of line. An Elliptic Progression may be defined in terms of a number of diameters of smaller circles, each defined by the same angle from the circumferance of the larger circle and from the center of a circle to its perimeter. When the sum of the number of those diameters minus one half the starting diameter are equal to the radius of the larger circle, the angle that defined the smaller circles will divide the larger circle evenly and the same number of times as the total number of smaller circles. This means that the division of a circle into equal angles may be expressed as an elliptic function.





\section*{On Trisection 051301}

For any given trisection what is the Algebraic names of BC and BE taking BG as unit?


Some Algebraic Names:
\[
\begin{aligned}
& N-1-A B=0 \quad \frac{1}{2}-B F=0 \quad \frac{1}{2} \cdot(2 \cdot N-1)-A F=0 \quad \frac{1}{4} \cdot \frac{\left(8 \cdot N^{2}-8 \cdot N+1\right)}{(2 \cdot N-1)}-A E=0 \\
& \frac{1}{4} \cdot \frac{1}{(2 \cdot N-1)}-I K=0 \quad 2 \cdot N \cdot \frac{(N-1)}{(2 \cdot N-1)}-A H=0 \quad \frac{\left(8 \cdot N^{2}-8 \cdot N+1\right)}{(2 \cdot N-1)^{3}} \cdot N \cdot(N-1)-A C=0
\end{aligned}
\]
\[
(N-1)^{2} \cdot \frac{(4 \cdot N-1)}{(2 \cdot N-1)^{3}}-B C=0 \quad \frac{1}{4} \cdot \frac{(-3+4 \cdot N)}{(2 \cdot N-1)}-B E=0
\]
\[
\begin{aligned}
& \text { N:=9 } \\
& \text { BG :=1 } \\
& \text { AG := BG•N } \\
& \mathbf{A B}:=\mathbf{A G}-\mathbf{B G} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \\
& \text { AF }:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A N}:=\mathbf{A F} \quad \mathbf{A K}:=\mathbf{A N} \\
& \text { FK := BF } \quad \mathrm{S}_{\mathbf{1}}:=\mathrm{AF} \quad \mathrm{~S}_{\mathbf{2}}:=\mathrm{AK} \quad \mathrm{~S}_{\mathbf{3}}:=\mathrm{FK} \\
& \mathrm{AE}:=\frac{\mathrm{S}_{\mathbf{2}}{ }^{2}+\mathrm{S}_{\mathbf{1}}{ }^{2}-\mathrm{S}_{\mathbf{3}}{ }^{2}}{2 \cdot \mathrm{~S}_{\mathbf{1}}} \quad \mathrm{AI}:=\mathrm{AE} \\
& \mathbf{I K}:=\mathbf{A K}-\mathbf{A I} \quad \mathbf{H I}:=\mathbf{I K} \quad \text { AH }:=\mathbf{A K}-(\mathbf{H I}+\mathbf{I K}) \\
& A C:=\frac{\mathbf{A E} \cdot \mathbf{A H}}{\mathbf{A K}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B E}:=\mathrm{AE}-\mathbf{A B}
\end{aligned}
\]


For any given QLX, XLZ is \(1 / 3\) of that angle. What are the Algebraic names in this figure for the cords QX and XZ?
\[
\mathbf{N}:=5 \quad \text { CE :=1 } \quad \text { CN }:=\text { CE } \cdot \mathbf{N}
\]
\[
\mathbf{E N}:=\mathbf{C N}-\mathbf{C E} \quad \text { EL }:=\frac{\mathbf{E N}}{2} \quad \text { LV }:=\mathbf{E L}
\]
\[
\mathbf{C L}:=\mathbf{C E}+\mathbf{E L}
\]
\[
\mathbf{C V}:=\mathbf{C L} \quad \mathbf{S}_{1}:=\mathbf{C L} \quad \mathbf{S}_{2}:=\mathbf{C V}
\]
\[
S_{3}:=L V \quad C K:=\frac{S_{2}^{2}+S_{1}^{2}-S_{3}^{2}}{2 \cdot S_{1}}
\]
\(\mathbf{C R}:=\mathbf{C K} \quad \mathbf{R V}:=\mathbf{C V}-\mathbf{C R} \quad \mathbf{Q R}:=\mathbf{R V} \quad \mathbf{C Q}:=\mathbf{C V}-(\mathbf{Q R}+\mathbf{R V}) \quad \mathbf{C I}:=\frac{\mathbf{C K} \cdot \mathbf{C Q}}{\mathbf{C V}} \quad \mathbf{E I}:=\mathbf{C I}-\mathbf{C E}\) IN \(:=\) EN - EI IQ \(:=\sqrt{\text { EI•IN }} \quad\) LP \(:=\) IQ \(\quad\) LX \(:=\) EL \(\quad\) IL \(:=\) EL- EI PX \(:=\mathbf{L X}-\mathbf{L P} \quad\) AL \(:=\frac{\text { IL•LX }}{\text { PX }}\) \(A E:=A L-E L \quad A C:=A E-C E \quad A I:=A C+C I \quad A X:=\sqrt{A L^{2}+L^{2}} \quad\) AQ \(:=\frac{A X \cdot A I}{A L} \quad\) QX \(:=A X-A Q\) \(\mathrm{CX}:=\sqrt{\mathrm{CL}^{2}+\mathrm{LX}^{2}} \quad \mathrm{CS}:=\frac{\mathrm{CL}^{2}}{\mathrm{CX}} \quad \mathrm{SX}:=\mathrm{CX}-\mathrm{CS} \quad \mathrm{OS}:=\mathrm{SX} \quad \mathrm{CO}:=\mathrm{CX}-(\mathrm{SX}+\mathrm{OS})\) \(G O:=\frac{L X \cdot C O}{C X} \quad C G:=\frac{C L \cdot C O}{C X} \quad E G:=C G-C E A G:=A E+E G \quad A O:=\sqrt{A G^{2}+G O^{2}}\)
\(\mathbf{A U}:=\frac{\mathbf{A G} \cdot \mathbf{A L}}{\mathbf{A O}}\) OU \(:=\mathbf{A U}-\mathbf{A O} \quad \mathbf{U Z}:=\mathbf{O U} \quad \mathbf{A Z}:=\mathbf{A O}+(\mathbf{O U}+\mathbf{U Z})\)

\[
\begin{aligned}
& \mathbf{L W}:=\frac{\mathbf{G O} \cdot \mathbf{A L}}{\mathbf{A G}} \quad \mathbf{A W}:=\frac{\mathbf{A O} \cdot \mathbf{A L}}{\mathbf{A G}} \\
& \mathbf{W Z}:=\mathbf{A Z}-\mathbf{A W} \quad \mathbf{W Y}:=\frac{\mathbf{G O} \cdot \mathbf{W Z}}{\mathbf{A O}} \\
& \mathbf{Y Z}:=\frac{\mathbf{A G} \cdot \mathbf{W Z}}{\mathbf{A O}} \quad \mathbf{Y X}:=\mathbf{L X}-(\mathbf{L W}+\mathbf{W Y}) \\
& \mathbf{X Z}:=\sqrt{\mathbf{Y} \mathbf{X}^{\mathbf{2}}+\mathbf{Y} \mathbf{Z}^{2}}
\end{aligned}
\]

Some Algebraic Names:
\[
\left.\begin{array}{ll}
\frac{1}{2} \cdot \mathrm{CE} \cdot \mathrm{~N}-\frac{1}{2} \cdot \mathrm{CE}-\mathrm{EL}=0 & \frac{1}{4} \cdot \mathrm{CE} \cdot \frac{\left(1+6 \cdot N+\mathrm{N}^{2}\right)}{(1+N)}-\mathrm{CK}=0
\end{array} \quad \frac{1}{4} \cdot \mathrm{CE} \cdot \frac{\left(1+\mathbf{N}^{2}-2 \cdot \mathrm{~N}\right)}{(1+N)}-\mathrm{RV}=0\right)
\]
\[
C E \cdot \mathbf{N}^{2} \cdot \frac{\left(-3+2 \cdot N+N^{2}\right)}{(1+\mathbf{N})^{3}}-I N=0 \quad(N-1) \cdot N \cdot C E \cdot \frac{\sqrt{(N+3) \cdot(3 \cdot N+1)}}{(1+N)^{3}}-I Q=0
\]
\[
\frac{1}{2} \cdot C E \cdot \frac{\left(2 \cdot N-6 \cdot N^{2}+2 \cdot N^{3}+N^{4}+1\right)}{(1+N)^{3}}-I L=0
\]
\[
\left[\frac{1}{2} \cdot C E \cdot(\mathbf{N}-1) \cdot \frac{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}-2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}+3 \cdot \mathbf{N}+1\right]}{(1+\mathbf{N})^{3}}\right]-\mathbf{P X}=0
\]
\[
\frac{1}{2} \cdot \mathbf{C E} \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{\left[\mathbf{N}^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}-\mathbf{A L}=0
\]
\[
\mathbf{C E} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{[\mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{3} \cdot \mathbf{N}-\mathbf{1}]}{\left[\mathbf{N}^{3}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}\right]}-\mathbf{A E}=\mathbf{0}
\]
\[
- \text { CE } \cdot \mathrm{N} \cdot \frac{\left[-N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+6 \cdot N+1-\sqrt{(N+3) \cdot(3 \cdot N+1)}+\mathbf{N}^{2}\right]}{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}-\mathbf{A C}=0
\]
\[
\frac{C E \cdot(N-1)^{2} \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot\left(N^{2}+4 \cdot N+1\right)}{\left[\mathbf{N}^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right] \cdot(1+N)^{3}}-A I=0
\]
\[
\frac{1}{2} \cdot C E \cdot(N-1) \cdot \sqrt{2} \cdot \sqrt{\frac{(1+N)^{3}}{\left[N^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}}-A X=0
\]
\[
\mathbf{C E} \cdot(\mathbf{N}-1) \cdot \sqrt{2} \cdot \sqrt{\frac{(1+N)^{3}}{\left[\mathbf{N}^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}} \cdot N \cdot \frac{\sqrt{(N+3) \cdot(3 \cdot N+1)}}{(1+N)^{3}}-A Q=0
\]
\[
\sqrt{\frac{\left[2 \cdot(1+\mathbf{N})^{3}\right]}{\left[\begin{array}{l}
\mathbf{N}^{3}+\mathbf{3} \cdot \mathbf{N}^{2}-2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \ldots \\
+\mathbf{3} \cdot \mathbf{N}+1
\end{array}\right.} \cdot \mathbf{C E} \cdot(\mathbf{N}-1) \cdot \frac{\left[\begin{array}{l}
\left(\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}\right)-2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \ldots \\
+-\mathbf{Q X}+1
\end{array}\right.}{2 \cdot(1+\mathbf{N})^{3}} \ldots=0}
\]
\(\frac{\mathrm{CE}}{2} \cdot \sqrt{2} \cdot \sqrt{\left(1+\mathbf{N}^{2}\right)}-\mathbf{C X}=0 \quad \frac{1}{4} \cdot \mathbf{C E} \cdot(1+\mathrm{N})^{2} \cdot \frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{C S}=0 \quad \frac{1}{4} \cdot \sqrt{2} \cdot \mathbf{C E} \cdot \frac{(\mathrm{~N}-1)^{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{S X}=0\)
\(\frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}} \cdot \mathrm{CE} \cdot \mathbf{N}-\mathrm{CO}=0 \quad \mathrm{CE} \cdot \mathbf{N} \cdot \frac{(\mathbf{N}-1)}{\left(1+\mathbf{N}^{2}\right)}-\mathbf{G O}=0 \quad \mathrm{CE} \cdot \frac{\mathbf{N}^{2}+\mathbf{N}}{\left(1+\mathbf{N}^{2}\right)}-\mathrm{CG}=0 \quad \mathrm{CE} \cdot \frac{(\mathrm{N}-1)}{\left(1+\mathbf{N}^{2}\right)}-\mathbf{E G}=0\)
\(\mathbf{C E} \cdot(\mathbf{N}-1)^{2} \cdot \mathbf{N} \cdot \frac{[\mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}-\mathbf{2} \cdot \mathbf{N}+\sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}]}{\left[\left[\mathbf{N}^{3}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}+\mathbf{3} \cdot \mathbf{N}+1\right] \cdot\left(\mathbf{1}+\mathbf{N}^{2}\right)\right]}-\mathbf{A G}=\mathbf{0}\)










\[
\begin{aligned}
& \mathrm{m} \angle \mathrm{RGP}=39.823^{\circ} \\
& \mathrm{m} \angle \mathrm{DAE}=19.911^{\circ} \\
& \frac{\mathrm{m} \angle \mathrm{RGP}}{\mathrm{~m} \angle \mathrm{DAE}}=2.000
\end{aligned}
\]





\section*{Segment DF And HM 052201}

Given \(A B\) and \(A G\), what is


HM and DF?
\[
\begin{array}{ll}
\mathbf{N}:=7.111 & \text { AB }:=.375 \\
\mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} & \text { BG }:=\mathbf{A G}-\mathbf{A B}
\end{array}
\]
\[
\text { BF }:=\frac{\mathbf{B G}}{2} \quad \text { FK }:=\mathbf{B F}
\]
\[
\mathbf{A F}:=\mathbf{A B}+\mathbf{B F}
\]
\[
A K:=\sqrt{A F^{2}+F K^{2}}
\]
\[
\mathbf{A J}:=\frac{\mathbf{A F}}{\mathbf{A K}} \quad \mathbf{J K}:=\mathbf{A K}-\mathbf{A J}
\]
\(\mathbf{H J}:=\mathbf{J K} \quad \mathrm{AH}:=\mathrm{AK}-(\mathbf{J K}+\mathbf{H J}) \quad \mathrm{AC}:=\frac{\mathrm{AF} \cdot \mathbf{A H}}{\mathrm{AK}} \quad \mathrm{EM}:=\frac{\mathrm{BF}}{2} \quad \mathrm{FL}:=2 \cdot \mathrm{AF} \quad \mathrm{EF}:=\frac{\mathrm{FL}}{2}-\frac{\sqrt{-4 \mathrm{EM}^{2}+\mathrm{FL}^{2}}}{2}\)
\(\mathrm{AE}:=\mathrm{AF}-\mathrm{EF} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{CH}:=\frac{\mathrm{FK} \cdot \mathrm{AH}}{\mathrm{AK}} \mathrm{HM}:=\sqrt{(\mathrm{EM}+\mathrm{CH})^{2}+\mathrm{CE}^{2}} \quad \mathrm{DE}:=\frac{\mathrm{CE} \cdot \mathbf{E M}}{\mathrm{EM}+\mathrm{CH}}\)
DF := DE + EF

\section*{Some Algebraic Names:}
\(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A G}=\mathbf{0} \quad \mathbf{A B} \cdot \mathbf{N}-\mathbf{A B}-\mathbf{B G}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{B F}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{F K}=\mathbf{0}\)
\(\frac{1}{2} \cdot \mathbf{A B}+\frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{A F}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \sqrt{2} \cdot \sqrt{1+\mathbf{N}^{2}}-\mathbf{A K}=0 \quad \frac{1}{4} \cdot \mathbf{A B} \cdot(1+\mathbf{N})^{2} \cdot \frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{A J}=0\)
\(\frac{1}{4} \cdot \sqrt{2} \cdot \mathbf{A B} \cdot \frac{\left(1+\mathbf{N}^{2}-2 \cdot N\right)}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{J K}=0 \quad A B \cdot \sqrt{2} \cdot \frac{N}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{A H}=0 \quad \mathbf{A B} \cdot(1+\mathbf{N}) \cdot \frac{\mathrm{N}}{1+\mathbf{N}^{2}}-\mathbf{A C}=0\)

\[
\begin{aligned}
& \frac{1}{4} \cdot A B \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}-A E=0 \\
& \frac{1}{4} \cdot A B \cdot \frac{\left(\sqrt{3 \cdot N^{2}+10 \cdot N+3}+\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N^{2}-4 \cdot N-4 \cdot N^{2}\right)}{\left(1+N^{2}\right)}-C E=0
\end{aligned}
\]
\[
(\mathbf{N}-1) \cdot \mathbf{A B} \cdot \frac{\mathbf{N}}{\left(1+\mathbf{N}^{2}\right)}-\mathbf{C H}=0
\]
\[
\frac{1}{2} \cdot A B \cdot \sqrt{(1+N) \cdot \frac{\left[N^{3}+3 \cdot N^{2}-2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N+3 \cdot N+1\right]}{\left(1+N^{2}\right)}}-\mathbf{H M}=\mathbf{0}
\]
\[
\frac{1}{4} \cdot\left(\sqrt{3 \cdot N^{2}+10 \cdot N+3}+\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N^{2}-4 \cdot N-4 \cdot N^{2}\right) \cdot \frac{A B}{\left(N^{2}+4 \cdot N+1\right)}-D E=0
\]
\[
\frac{1}{2} \cdot A B \cdot \frac{\left(3 \cdot N+3 \cdot N^{2}+1+\mathbf{N}^{3}-2 \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot \mathbf{N}\right)}{\left(\mathbf{N}^{2}+4 \cdot N+1\right)}-D F=0
\]











\section*{Point of Intersection 052701}


\section*{Do RY and PW intersect at G?}

N: =5
CE :=1
CN := CE•N

EN \(:=\mathbf{C N}-\mathbf{C E} \quad\) EL \(:=\frac{\text { EN }}{2} \quad\) LV \(:=\) EL
LT \(:=\) EL \(\quad\) LY \(:=\) EL \(\quad\) CL \(:=\) CE + EL \(\quad\) CT \(:=\mathbf{C L}\)
\(S_{1}:=\mathbf{C L} \quad S_{2}:=\mathbf{C T} \quad S_{3}:=\mathbf{L T}\)
\(\mathrm{KL}:=\frac{\mathrm{S}_{\mathbf{3}}{ }^{\mathbf{2}}+\mathrm{S}_{\mathbf{1}}{ }^{\mathbf{2}}-\mathrm{S}_{\mathbf{2}}{ }^{\mathbf{2}}}{2 \cdot \mathrm{~S}_{\mathbf{1}}} \quad \mathrm{CK}:=\mathrm{CL}-\mathrm{KL} \quad \mathrm{CS}:=\mathrm{CK} \quad\) ST \(:=\mathrm{CT}-\mathrm{CS} \quad\) RS \(:=\mathrm{ST}\)
\(\mathbf{C R}:=\mathbf{C T}-(\mathbf{S T}+\mathbf{R S}) \quad \mathrm{CF}:=\frac{\mathrm{CK} \cdot \mathrm{CR}}{\mathrm{CT}} \quad \mathrm{FR}:=\sqrt{\mathrm{CR}^{2}-\mathrm{CF}^{2}} \quad\) FQ \(:=\frac{\mathbf{L V} \cdot \mathbf{C F}}{\mathrm{CL}} \quad\) FL \(:=\mathrm{CL}-\mathbf{C F}\) \(\mathbf{G L}:=\frac{\mathbf{F L} \cdot \mathbf{L Y}}{(\mathbf{L Y}+\mathbf{F R})}\)

\section*{Some Algebraic Names:}
\[
\begin{aligned}
& \mathbf{C E} \cdot \mathbf{N}-\mathbf{C N}=0 \\
& \mathrm{CE} \cdot \mathrm{~N}-\mathrm{CE}-\mathrm{EN}=0 \quad \frac{1}{2} \cdot \mathrm{CE} \cdot \mathrm{~N}-\frac{1}{2} \cdot \mathrm{CE}-\mathrm{EL}=0 \quad \frac{1}{2} \cdot \mathrm{CE}+\frac{1}{2} \cdot \mathrm{CE} \cdot \mathrm{~N}-\mathrm{CL}=0 \\
& \frac{1}{4} \cdot C E \cdot \frac{(N-1)^{2}}{(1+N)}-K L=0 \quad \frac{1}{4} \cdot C E \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)}-C K=0 \quad \frac{1}{4} \cdot C E \cdot \frac{\left(1-2 \cdot N+N^{2}\right)}{(1+N)}-S T=0 \\
& 2 \cdot C E \cdot \frac{N}{(1+N)}-C R=0 \quad C E \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{3}} \cdot N-C F=0 \\
& C E \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N \cdot \frac{(N-1)}{(1+N)^{3}}-F R=0 \quad C E \cdot(N-1) \cdot\left(1+6 \cdot N+N^{2}\right) \cdot \frac{N}{(1+N)^{4}}-F Q=0 \\
& \frac{1}{2} \cdot C E \cdot \frac{\left(1+2 \cdot N-6 \cdot N^{2}+2 \cdot N^{3}+N^{4}\right)}{(1+N)^{3}}-F L=0
\end{aligned}
\]

\[
G L:=\frac{1}{2} \cdot \frac{C E \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}}{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}+2 \mathbf{N} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}+3 \cdot \mathbf{N}+1\right]}
\]

From Segment DF And HM 052201:
\[
\frac{1}{2} \cdot \frac{C E \cdot\left(\mathbf{N}^{3}+3 \cdot N^{2}+3 \cdot N-2 N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+1\right)}{\left(N^{2}+4 \cdot N+1\right)}-G L=0
\]
\[
\frac{\frac{1}{2} \cdot \frac{C E \cdot\left(\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}+3 \cdot N-2 N \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}+1\right.}{\left(\mathbf{N}^{2}+4 \cdot N+1\right)}}{\frac{1}{2} \cdot \frac{C E \cdot\left(N^{2}+4 \cdot N+1\right) \cdot(N-1)^{2}}{\left[N^{3}+3 \cdot N^{2}+2 N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}}=1
\]

Which does reduce to,
\(1=1\)


Some Algebraic Names;
\[
\begin{aligned}
& \text { CE := } \mathbf{N}_{1} \quad \text { EK := } \mathbf{N}_{2} \quad \text { EG }-\frac{\mathbf{N}_{2}}{2}=0 \quad \text { CG }-\left(\mathbf{N}_{1}+\frac{\mathbf{N}_{2}}{2}\right)=0 \\
& P Q-\frac{1}{2} \cdot \frac{\mathbf{N}_{2}{ }^{2}}{\left(2 \cdot N_{1}+N_{2}\right)}=0 \quad C P-2 \cdot N_{1} \cdot \frac{\left(N_{1}+N_{2}\right)}{\left(2 \cdot N_{1}+N_{2}\right)}=0 \\
& C F:=N_{1} \cdot\left(N_{1}+N_{2}\right) \cdot \frac{\left(8 \cdot N_{1}{ }^{2}+8 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}\right)}{\left(2 \cdot N_{1}+N_{2}\right)^{3}}
\end{aligned}
\]
\[
\operatorname{PF}-\left(N_{1}+N_{2}\right) \cdot N_{1} \cdot \sqrt{\left(N_{2}+4 \cdot N_{1}\right) \cdot\left(3 \cdot N_{2}+4 \cdot N_{1}\right)} \cdot \frac{N_{2}}{\left(2 \cdot N_{1}+N_{2}\right)^{3}}=0
\]
\(F G-\frac{1}{2} \cdot N_{2}{ }^{2} \cdot \frac{\left(6 \cdot N_{1}{ }^{2}+6 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}\right)}{\left(2 \cdot N_{1}+N_{2}\right)^{3}}=0\)
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \\
& \text { CE : }=\mathbf{N}_{1} \quad E K:=\mathbf{N}_{\mathbf{2}} \\
& \mathrm{EG}:=\frac{\mathrm{EK}}{2} \quad \mathrm{CG}:=\mathrm{CE}+\mathrm{EG} \\
& C Q:=C G \quad P Q:=\frac{E G^{2}}{C Q} \\
& \text { CP := CQ - PQ GT := EG } \\
& \mathbf{C F}:=\frac{\mathbf{C P}^{2}+\mathbf{C G}^{2}-\mathrm{EG}^{2}}{2 \cdot \mathbf{C G}} \\
& \text { PF }:=\sqrt{\mathbf{C P}^{2}-\mathbf{C F}^{2}} \quad \text { GS }:=\mathbf{E G} \\
& \mathbf{F G}:=\mathbf{C G}-\mathbf{C F} \quad \mathrm{FS}:=\sqrt{\mathrm{FG}^{2}+\mathbf{G S}^{2}} \\
& \text { DG }:=\frac{\text { GS } \cdot \mathbf{G T}}{\text { FG }} \quad \text { CD }:=\text { CG - DG } \\
& \text { BL }:=\frac{\text { PF } \cdot C D}{\text { CP }}
\end{aligned}
\]
\[
\begin{aligned}
& F S-\sqrt{\left[\frac{1}{2} \cdot N_{2}{ }^{2} \cdot \frac{\left(6 \cdot N_{1}{ }^{2}+6 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}\right.}{\left(2 \cdot N_{1}+N_{2}\right)^{3}}\right]^{2}+\left(\frac{N_{2}}{2}\right)^{2}}=0 \quad \text { OR } \\
& F S-\left(\frac{1}{2}\right) \cdot N_{2} \cdot \sqrt{2} \cdot \frac{\sqrt{\left(138 \cdot N_{2}{ }^{2} \cdot N_{1}{ }^{4}+116 \cdot N_{2}{ }^{3} \cdot N_{1}{ }^{3}+54 \cdot N_{2}{ }^{4} \cdot N_{1}{ }^{2}+32 \cdot N_{1}{ }^{6}+96 \cdot N_{1}{ }_{2}{ }^{5} \cdot N_{1}\right) N_{2}}}{\left(2 \cdot N_{1}+N_{2}\right)^{3}}=0 \\
& D G-\frac{\left(2 \cdot N_{1}+N_{2}\right)^{3}}{\left[2 \cdot\left(6 \cdot N_{1}{ }^{2}+6 \cdot N_{1} \cdot N_{2}+N_{2}^{2}\right)\right]}=0 \\
& C D-N_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot \frac{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\left.6 \cdot \mathbf{N}_{1}{ }^{2}+6 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}\right)}=0 \\
& B L-\frac{\left(N_{1}+N_{2}\right) \cdot \mathbf{N}_{1} \cdot \sqrt{\left(\mathbf{N}_{2}+4 \cdot \mathbf{N}_{1}\right) \cdot\left(3 \cdot N_{2}+4 \cdot \mathbf{N}_{1}\right)} \cdot \mathbf{N}_{2}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(6 \cdot \mathbf{N}_{1}{ }^{2}+6 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}\right)}=0
\end{aligned}
\]



\section*{A Small Extrapolation 060101}

Given AE, AG, and EG, what is the Algebraic name of the segment GJ?

\[
\begin{aligned}
& \mathbf{S}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{1} \\
& \mathbf{A E}:=\mathbf{S}_{\mathbf{1}} \quad \mathbf{A G}:=\mathbf{S}_{\mathbf{2}} \quad \mathbf{E G}:=\mathbf{S}_{\mathbf{3}} \\
& \mathbf{A C}:=\frac{\mathbf{A G}^{\mathbf{2}}+\mathbf{A E}^{\mathbf{2}}-\mathbf{E G}^{\mathbf{2}}}{\mathbf{2} \mathbf{A E}} \\
& \mathbf{A H}:=\frac{\mathbf{A C} \cdot \mathbf{A E}}{\mathbf{A G}} \quad \mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \\
& \mathbf{H J}:=\mathbf{G H} \quad \mathbf{G J}:=\mathbf{G H}+\mathbf{H J}
\end{aligned}
\]

Some Algebraic Names:
\[
\begin{array}{ll}
\frac{S_{2}{ }^{2}+S_{1}{ }^{2}-S_{3}^{2}}{2 S_{1}}-A C=0 & \frac{S_{1}{ }^{2}+S_{2}{ }^{2}-S_{3}^{2}}{2 S_{2}}-A H=0
\end{array} \quad \frac{S_{1}{ }^{2}-S_{2}^{2}-S_{3}^{2}}{2 S_{2}}-\mathbf{G H}=0
\]

\section*{Units From Both Sides 060201}

Start with AB as unit and find. . . . then start with .... as unit and find AB.

\[
\frac{1}{2} \cdot \mathbf{A B} \cdot(1+\mathbf{N})-\mathbf{A F}=\mathbf{0} \quad \mathbf{A B} \sqrt{\mathbf{N}}-\mathbf{A E}=\mathbf{0} \quad \mathbf{A B} \cdot(\sqrt{\mathbf{N}}-1)-\mathbf{B E}=\mathbf{0}
\]


\(\frac{B G_{2}}{2}-B F_{2}=0 \quad \frac{B G_{2}}{\left(2 \cdot N_{2}\right)}-B E_{2}=0\)
\[
\frac{\mathrm{BG}_{2}}{2} \cdot \frac{\left(\mathbf{N}_{2}-1\right)}{\mathbf{N}_{2}}-\mathrm{EF}_{2}=0
\]
\[
\frac{\mathrm{BG}_{2}}{2} \cdot \frac{\sqrt{2 \cdot \mathbf{N}_{2}^{2}-2 \cdot \mathbf{N}_{2}+1}}{\mathbf{N}_{2}}-\mathrm{EN}_{2}=0
\]
\[
\frac{\mathrm{BG}_{2}}{4} \cdot \frac{\sqrt{2 \cdot \mathrm{~N}_{2}^{2}-2 \cdot \mathbf{N}_{2}+1}}{\mathrm{~N}_{2}}-\mathrm{NP}_{2}=0
\]
\[
\frac{\mathrm{BG}_{2}}{4} \cdot \frac{\left(2 \cdot \mathbf{N}_{2}^{2}-2 \cdot \mathbf{N}_{2}+1\right)}{\left[\mathbf{N}_{2} \cdot\left(\mathbf{N}_{2}-1\right)\right]}-\mathbf{L} \mathbf{N}_{2}=0
\]
\[
\frac{\mathrm{BG}_{2}}{4 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{2}-1\right)}-\mathrm{AB}_{2}=0
\]


\[
\mathrm{AB}_{3}:=\mathrm{AF}_{3}-\mathrm{BF}_{3} \quad \mathrm{AB}_{3}=0.573
\]

BD \(_{3}:=\frac{1}{2} \cdot \frac{\text { BG }_{3}}{\mathbf{N}_{3}} \quad\) DG \(_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \frac{\left(2 \cdot \mathbf{N}_{3}-1\right)}{\mathbf{N}_{3}} \quad\) DI \(_{3}:=\frac{1}{\left(2 \cdot \mathbf{N}_{3}\right)} \cdot\) BG \(_{3} \cdot \sqrt{2 \cdot N_{3}-1}\)
DF \(_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \frac{\left(\mathbf{N}_{3}-1\right)}{\mathbf{N}_{3}} \quad\) EF \(_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \frac{\left(\mathbf{N}_{3}-1\right)}{\left(\mathbf{N}_{3}+\sqrt{2 \cdot \mathbf{N}_{3}-1}\right)}\)

EN \(_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \sqrt{2} \cdot \sqrt{\frac{\mathbf{N}_{3}}{\left(\mathbf{N}_{3}+\sqrt{2 \cdot N_{3}-1}\right)}} \quad\) NP \(_{3}:=\frac{1}{4} \cdot\) BG \(_{3} \cdot \sqrt{2} \cdot \sqrt{\frac{N_{3}}{\left(N_{3}+\sqrt{2 \cdot N_{3}-1}\right)}}\)
\(\mathrm{LN}_{3}:=\frac{1}{2} \cdot\) BG \(_{3} \cdot \frac{\mathbf{N}_{3}}{\left(\mathbf{N}_{3}-1\right)} \quad\) AB \(_{3}:=\frac{1}{2} \cdot \frac{\text { BG }_{3}}{\left(\mathbf{N}_{3}-1\right)}\)

\[
\mathbf{A H}:=\mathbf{A D}
\]
\[
\mathbf{F H}:=\mathbf{B F} \quad \mathbf{A C}:=\frac{\mathbf{A H ^ { 2 }}+\mathbf{A F}^{2}-\mathbf{F H}^{2}}{\mathbf{2} \cdot \mathbf{A F}}
\]
\[
\mathbf{B C}:=A C-A B
\]
\(A C:=A B \cdot N \cdot \frac{\left(6 \cdot \mathbf{N}+1+\mathbf{N}^{2}\right)}{(\mathbf{N}+1)^{3}}\)
\(\mathbf{B C}:=\mathbf{A B} \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-1)}{(\mathbf{N}+1)^{3}}\)

\section*{Isolating A Problem 060301}

If one is given point \(F\), then finding point \(G\) would lead straightway to the solution. How is BK related to BC?

\[
\mathbf{N}:=\mathbf{4} \quad \mathbf{B E}:=\mathbf{1}
\]
\[
\mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{B C}:=\frac{\mathbf{B E}}{\mathbf{N}} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C}
\]
\[
\mathbf{C G}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{C D}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{AC}:=\frac{\mathbf{C G}^{2}}{\mathbf{C D}}
\]
\[
\text { AF }:=\mathbf{A C} \mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{D F}:=\mathbf{B D}
\]
\[
\mathbf{D K}:=\frac{\mathbf{D F}^{2}+\mathbf{A D}^{2}-\mathbf{A F}^{2}}{2 \mathbf{A D}} \quad \mathbf{B K}:=\mathbf{B D}-\mathbf{D K}
\]
\[
\mathbf{C K}:=\mathbf{B C}-\mathbf{B K}
\]
\(B E \cdot \frac{(\mathbf{N}-1)}{N}-\mathbf{C E}=0 \quad B E \cdot \frac{\sqrt{(N-1)}}{\mathbf{N}}-\mathbf{C G}=0 \quad B E \cdot \frac{(\mathbf{N}-2)}{2 \cdot \mathbf{N}}-\mathbf{C D}=\mathbf{0}\)
\(\mathbf{B E} \cdot \frac{\mathbf{2} \cdot(\mathbf{N}-1)}{\mathbf{N} \cdot(\mathbf{N}-2)}-\mathbf{A C}=\mathbf{0}\)
\(\mathbf{B E} \cdot \frac{\mathbf{N}}{2 \cdot(\mathbf{N}-2)}-\mathbf{A D}=\mathbf{0}\) \(B E \cdot \frac{(\mathbf{N}-2) \cdot\left(\mathbf{N}^{2}+2 \cdot \mathbf{N}-2\right)}{2 \cdot \mathbf{N}^{3}}-\mathbf{D K}=0\)
\(B E \cdot \frac{(3 \cdot \mathbf{N}-2)}{\mathbf{N}^{3}}-\mathbf{B K}=\mathbf{0} \quad \mathbf{B E} \cdot \frac{(\mathbf{N}-1) \cdot(\mathbf{N}-2)}{\mathbf{N}^{3}}-\mathbf{C K}=0 \quad \frac{B K}{B C}-\frac{(3 \cdot \mathbf{N}-2)}{\mathbf{N}^{2}}=0\)


For any \(A B, A F\) what is \(D G\) ?
\[
\begin{aligned}
& \mathbf{N}:=4.39 \quad \text { AB }:=.615 \quad \text { AF }:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E K}:=\mathrm{BE} \\
& \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{D E}:=\frac{\mathbf{E K}}{\mathbf{A E}} \quad \text { EF }:=\mathrm{BE} \\
& \text { FM }:=\mathbf{B F} \quad \mathbf{E M}:=\sqrt{\mathbf{F M}^{2}-\mathbf{E F}^{2}} \quad \text { GM }:=\mathbf{F M} \\
& \text { GQ }:=\mathbf{D E} \quad \mathbf{M Q}:=\sqrt{\mathbf{G M}^{2}-\mathbf{G Q}^{2}} \quad \text { EQ }:=\mathbf{M Q}-\mathbf{E M} \\
& \text { DG }:=\mathbf{E Q}
\end{aligned}
\]

Some Algebraic Names:
\[
A B \cdot(\mathbf{N}-1)-\mathbf{B F}=0 \quad \frac{\mathbf{A B} \cdot(\mathbf{N}-1)}{2}-\mathbf{B E}=0 \quad \frac{1}{2} \cdot \mathbf{A B} \cdot(\mathbf{N}+1)-\mathbf{A E}=0
\]
\[
\frac{1}{2} \cdot \mathbf{A B} \cdot \frac{(\mathbf{N}-1)^{2}}{(\mathbf{N}+1)}-\mathbf{D E}=0 \quad \frac{1}{2} \cdot \sqrt{3} \cdot \mathbf{A B} \cdot(\mathbf{N}-1)-\mathbf{E M}=\mathbf{0}
\]
\[
\frac{A B \cdot[\sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot(\mathbf{N}-1)]}{2 \cdot(\mathbf{N}+1)}-M Q=0
\]
\[
\frac{\mathbf{A B} \cdot(\mathbf{N}-1) \cdot[\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}-\sqrt{3}-\sqrt{3} \cdot \mathbf{N}]}{2 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{D G}=\mathbf{0}
\]




Elipse By Parallels 082601

\[
\begin{aligned}
& \mathrm{N}_{1}:=4 \quad \mathrm{~N}_{2}:=1 \\
& \mathrm{AF}:=\mathbf{1} \quad \mathbf{A C}:=\frac{\mathrm{AF}}{2} \quad \mathrm{CJ}:=\mathrm{AC} \\
& \mathrm{BC}:=\frac{\mathrm{AC}}{\mathrm{~N}_{1}} \quad \mathrm{AE}:=\frac{\mathrm{AF}}{\mathrm{~N}_{2}} \\
& \mathrm{EF}:=\mathrm{AF}-\mathrm{AE} \quad \mathrm{EH}:=\sqrt{\mathrm{AE} \cdot \mathbf{E F}} \quad \mathrm{EG}:=\frac{\mathrm{BC} \cdot \mathbf{E H}}{\mathrm{CJ}} \\
& \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \mathbf{C G}:=\sqrt{\mathbf{C E}^{2}+\mathrm{EG}^{2}}
\end{aligned}
\]

\section*{Some Algebraic Names:}
\[
\begin{aligned}
& \mathrm{BC}:=\frac{1}{\left(2 \cdot \mathrm{~N}_{1}\right)} \quad \mathrm{AE}:=\frac{1}{\mathrm{~N}_{2}} \quad \mathrm{EF}:=1-\frac{1}{\mathrm{~N}_{2}} \quad \mathrm{EH}:=\frac{\sqrt{\mathrm{N}_{2}-1}}{\mathrm{~N}_{2}} \quad \mathrm{EG}:=\frac{\sqrt{\mathrm{N}_{2}-1}}{\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}} \\
& \mathrm{CE}:=\frac{1}{\mathrm{~N}_{2}}-\frac{1}{2} \quad \mathrm{CG}:=\frac{1}{2} \cdot \frac{\sqrt{4 \cdot \mathrm{~N}_{1}{ }^{2}-4 \cdot \mathrm{~N}_{1}{ }^{2} \cdot \mathbf{N}_{2}+\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}{ }^{2}+4 \cdot \mathrm{~N}_{2}-4}}{\left(\mathbf{N}_{1} \cdot \mathrm{~N}_{2}\right)}
\end{aligned}
\]

\section*{Three Pieces Of Paper}


\section*{Just Another Proof Of Paper 010202}

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{7} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \\
& \mathbf{A J}:=\mathbf{A E} \quad \mathbf{E J}:=\mathbf{B E} \quad \mathbf{E a}:=\frac{\mathbf{E} \mathbf{J}^{2}+\mathbf{A E}^{2}-\mathbf{A J}^{2}}{2 \cdot \mathbf{A E}} \\
& \mathbf{G b}:=\mathbf{E a} \mathbf{G J}:=\mathbf{2} \cdot \mathbf{G b} \mathbf{A G}:=\mathbf{A J}-\mathbf{G J} \\
& \text { Aa }:=\mathbf{A E}-\mathbf{E a} \quad \mathbf{A U}:=\frac{\mathbf{A a} \cdot \mathbf{A G}}{\mathbf{A J}} \\
& \mathbf{J a}:=\sqrt{\mathbf{A} \mathbf{J}^{2}-\mathbf{A a}} \quad \mathbf{G U}:=\frac{\mathbf{J a} \cdot \mathbf{A G}}{\mathbf{A J}} \\
& \mathbf{U a}:=\mathbf{A a}-\mathbf{A U} \text { JO}:=\sqrt{\mathbf{U} \mathbf{a}^{2}+(\mathbf{G U}+\mathbf{J a})^{2}} \\
& \mathbf{J N}:=\frac{\mathbf{J O} \cdot \mathbf{E a}}{\mathbf{U a}} \quad \mathbf{J N}-\mathbf{B E}=\mathbf{0}
\end{aligned}
\]

From 4/29/94 OP \(:=\sqrt{\mathrm{Ja}^{2}-2 \cdot \mathbf{J a} \cdot \mathbf{G U}+\mathbf{G U}^{2}+\mathrm{Ua}^{2}}\)


\section*{Some Algebraic Names;}

\[
\begin{array}{ll}
\mathbf{N}-1-B F=0 & \frac{\mathbf{N}-1}{2}-B E=0 \\
\frac{N+1}{2}-A E=0 & \frac{(N-1)^{2}}{4 \cdot(\mathbf{N}+1)}-\mathbf{E a}=0
\end{array}
\]
\[
\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)}-\mathbf{G J}=0 \quad \frac{\mathbf{N}^{2}+6 \cdot \mathbf{N}+1}{4 \cdot(\mathbf{N}+1)}-A a=0
\]
\[
\frac{2 \cdot \mathbf{N}}{\mathbf{N}+1}-\mathbf{A G}=0 \quad \frac{\mathbf{N} \cdot\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}{(\mathbf{N}+1)^{3}}-\mathbf{A U}=0
\]
\[
\frac{(\mathbf{N}-1) \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}}{4 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{J a}=\mathbf{0}
\]
\[
\frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{G U}=\mathbf{0}
\]
\[
\frac{\left(\mathbf{N}^{2}+6 \cdot N+1\right) \cdot(N-1)^{2}}{4 \cdot(N+1)^{3}}-\mathbf{U a}=0 \quad \frac{(N-1) \cdot\left(N^{2}+6 \cdot N+1\right)}{2 \cdot(N+1)^{2}}-J O=0 \quad \frac{N-1}{2}-J N=0
\]
\[
\frac{(N-1)^{2}}{2 \cdot(N+1)}-O P=0 \quad \frac{(N-1) \cdot\left(N^{2}+4 \cdot N+1\right)}{(N+1)^{2}}-N O=0 \quad \frac{(N-1)^{2} \cdot\left(N^{2}+4 \cdot N+1\right)}{2 \cdot(N+1)^{3}}-E U=0
\]
\[
\frac{(\mathbf{N}-1) \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot N+1)}}{2 \cdot(\mathbf{N}+1)^{3}}-\mathbf{E N}=0
\]
\[
\frac{(\mathbf{N}-1) \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}}{2 \cdot(\mathbf{N}+1)^{3}}-\frac{\mathbf{N}-1}{2}-\mathbf{L N}=0
\]



For any two intersecting circles, the power-line BJ intersects their common tangents AC at midpoint.

\[
\begin{aligned}
& \text { AC := } 5 \quad \text { AF := } 4 \\
& \text { CE := } 3 \quad \text { FH }:=\text { AF } \text { EH }:=\text { CE } \\
& \text { AD := CE DF := AF - AD } \\
& \text { EJ := CE FJ := AF } \\
& \mathrm{DE}:=\mathrm{AC} \mathrm{EF}:=\sqrt{\mathrm{DF}^{2}+\mathrm{DE}^{2}} \\
& \mathbf{E G}:=\frac{\mathbf{E J}^{2}+\mathbf{E F}^{2}-\mathbf{F J}^{2}}{2 \cdot \mathbf{E F}}
\end{aligned}
\]
\(\mathrm{EH}:=\frac{\mathrm{DF} \cdot \mathrm{EG}}{\mathrm{EF}} \mathrm{CH}:=\mathrm{CE}+\mathrm{EH} \mathrm{GH}:=\frac{\mathrm{DE} \cdot \mathrm{EG}}{\mathrm{EF}} \mathrm{CK}:=\mathrm{GH} \mathrm{KG}:=\mathrm{CH} \mathrm{BK}:=\frac{\mathrm{DF} \cdot \mathrm{KG}}{\mathrm{DE}} \quad \mathrm{BC}:=\mathrm{CK}+\mathrm{BK}\) \(\mathbf{B C}-\frac{\mathbf{A C}}{2}=0\)


The power line is the line upon which lays a segment between the two midpoints on the two tangents of two given circles or between a point and a circle. The intersection of two circles lays halfway between their two tangents.
A power plane lays between two spheres or a sphere and a point.


\section*{\(Z X=1.951\) inches}
\(A B X=0.702\) inches
\(\frac{Z X}{A B X}=2.780\)





\(m \angle O K J=18.765^{\circ}\)

\(m \angle E A H=49.456^{\circ}\)
























\begin{tabular}{|l|}
\hline\(\rightarrow\) Move X->A \\
\hline\(\rightarrow\) Move X->B \\
\hline\(\rightarrow\) Move X->C \\
\hline\(\rightarrow\) Move X->D \\
\hline\(\rightarrow\) Move X->E \\
\hline\(\rightarrow\) Move X->F \\
\hline\(\rightarrow\) Move X->G \\
\hline\(\rightarrow\) Move X->H \\
\hline\(\rightarrow\) Move X->d \\
\hline\(\rightarrow\) Move \(x->a\) \\
\hline\(\rightarrow\) Move \(x->b\) \\
\hline\(\rightarrow\) Move \(x->c\) \\
\hline\(\rightarrow\) Move \(x->d\) \\
\hline\(\rightarrow\) Move \(x->e\) \\
\hline\(\rightarrow\) Move \(x->f\) \\
\hline\(\rightarrow\) Move \(x->g\) \\
\hline\(\rightarrow\) Move \(x->h\) \\
\hline\(\rightarrow\) Move \(x->j\) \\
\hline\(\rightarrow\) Move \(x->k\) \\
\hline\(\rightarrow\) Move \(x->I\) \\
\hline
\end{tabular}






















Three Pieces Of
Paper


\[
\begin{aligned}
& \mathrm{AD}:=.969 \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2} \quad \mathrm{~N}:=1.51 \\
& \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{BC}:=\frac{\mathrm{BD}}{\mathrm{~N}} \\
& \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \\
& \mathrm{AF}:=\mathrm{AD} \quad \mathrm{CF}:=\sqrt{\mathrm{AF}^{2}-\mathrm{AC}^{2}} \\
& \mathrm{FI}:=\sqrt{\mathrm{CD}^{2}+\mathrm{CF}^{2}}
\end{aligned}
\]

DI: \(: \mathbf{2} \cdot \mathbf{C F}\) AI \(:=\mathbf{A D}\)
\(\mathbf{A L}:=\frac{\left(\mathbf{2} \mathbf{A D}^{2}-\mathbf{D I}^{2}\right)}{\mathbf{2} \cdot \mathbf{A D}}\)
\(\mathbf{F J}:=\mathbf{A C}-\mathbf{A L} \mathbf{I L}:=\sqrt{\mathbf{A I}^{\mathbf{2}}-\mathbf{A L}^{\mathbf{2}}}\)
\(\mathbf{I J}:=\mathbf{I L}-\mathbf{C F} \quad\) EL \(:=\frac{\mathbf{F J} \cdot \mathbf{I L}}{\mathbf{I J}}\)
\(\mathrm{AE}:=\mathbf{A L}+\mathbf{E L} \quad \mathrm{EI}:=\frac{\mathrm{FI} \cdot \mathbf{I L}}{\mathrm{IJ}}\)
EF := EI - FI

\(\mathbf{F G}:=\frac{\mathbf{E F}{ }^{\mathbf{2}}+\mathbf{A F} \mathbf{F}^{2}-\mathbf{A E} \mathbf{E}^{\mathbf{2}}}{-\mathbf{A F}}\)
\[
\mathbf{A G}:=\mathbf{A F}+\mathbf{F G}
\]
\[
\mathbf{A N}:=\frac{\mathbf{A C} \cdot \mathbf{A G}}{\mathbf{A F}}
\]
EN \(:=\) AE - AN FM \(:=\frac{\text { FG }}{\mathbf{2}}\)
\(\mathbf{F M}-\mathbf{E N}=\mathbf{0}\)

Some Algebraic Names;
\(\mathbf{B C}-\frac{\mathbf{A D}-\mathbf{A B}}{\mathbf{N}}=\mathbf{0} \quad \mathbf{C D}-(\mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{A D}-\mathbf{A B})}{\mathbf{N}}=\mathbf{0} \quad \mathbf{A C}-\frac{(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B})}{\mathbf{N}}=\mathbf{0}\)
\(\mathbf{C F}-\frac{\sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}+\mathbf{A B} \cdot \mathbf{N})}}{\mathbf{N}}=\mathbf{0}\)
\(\mathbf{F I}-\sqrt{\mathbf{2}} \cdot \sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{\mathbf{A D}}{\mathbf{N}}}=\mathbf{0}\)
\(\mathbf{D I}-\mathbf{2} \cdot \frac{\sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}+\mathbf{A B} \cdot \mathbf{N})}}{\mathbf{N}}=\mathbf{0}\)
\(A L-\frac{-\left(A D^{2} \cdot N^{2}-4 \cdot A D \cdot N \cdot A B+4 \cdot A B^{2} \cdot N-2 \cdot N^{2} \cdot A B^{2}-2 \cdot A D^{2}+4 \cdot A D \cdot A B-2 \cdot A B^{2}\right)}{\left(A D \cdot N^{2}\right)}=0\)
\(\mathbf{F J}-(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{(\mathbf{A D} \cdot \mathbf{N}+\mathbf{2} \cdot \mathbf{A D}-\mathbf{2} \cdot \mathbf{A B}+\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{N})}{\left(\mathbf{A D} \cdot \mathbf{N}^{2}\right)}=\mathbf{0}\)
\(\mathbf{I L}-\frac{(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B})}{\left(\mathbf{A D} \cdot \mathbf{N}^{2}\right)} \cdot \sqrt{\mathbf{4}} \cdot \sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}+\mathbf{A B} \cdot \mathbf{N})}=\mathbf{0}\)
\(\mathbf{I J}--\sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}+\mathbf{A B} \cdot \mathbf{N})} \cdot \frac{(-\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{A D}+\mathbf{2} \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})}{\left(\mathbf{A D} \cdot \mathbf{N}^{2}\right)}=\mathbf{0}\)
\(E L-\frac{-2 \cdot(\mathbf{N}-1) \cdot(A D-A B) \cdot(A D \cdot N+2 \cdot A D-2 \cdot A B+2 \cdot A B \cdot N) \cdot(A B \cdot N+A D-A B)}{A D \cdot\left[\mathbf{N}^{2} \cdot(-2 \cdot A B \cdot N-2 \cdot A D+2 \cdot A B+A D \cdot N)\right]}=0\)
\(A E--A D^{2} \cdot \frac{N}{(-2 \cdot A B \cdot N-2 \cdot A D+2 \cdot A B+A D \cdot N)}=0\)
\(\mathbf{E I}-2 \cdot \sqrt{2} \cdot \sqrt{(N-1) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{A D}{N}} \cdot \frac{(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B})}{(2 \cdot \mathbf{A B} \cdot \mathbf{N}+2 \cdot \mathbf{A D}-2 \cdot \mathbf{A B}-\mathbf{A D} \cdot \mathbf{N})}=0\)

\(\mathbf{F G}--2 \cdot \mathbf{A D} \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{(\mathbf{N}-1)}{(-2 \cdot \mathbf{A B} \cdot \mathbf{N}-2 \cdot \mathbf{A D}+2 \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})}=0\)
\(A G--A D^{2} \cdot \frac{N}{(-2 \cdot A B \cdot N-2 \cdot A D+2 \cdot A B+A D \cdot N)}=0\)
\(\mathbf{A N}-(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}) \cdot \frac{\mathbf{A D}}{(2 \cdot \mathbf{A B} \cdot \mathbf{N}+\mathbf{2} \cdot \mathbf{A D}-\mathbf{2} \cdot \mathbf{A B}-\mathbf{A D} \cdot \mathbf{N})}=\mathbf{0}\)
\(\mathbf{E N}--\mathbf{A D} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{A D}-\mathbf{A B})}{(-2 \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{A D}+2 \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})}=\mathbf{0} \quad \mathbf{F M}-\mathbf{E N}=\mathbf{0}\)





\section*{022803}

If \(D\) were between EF, then it would be the point sought for angle trisection. When is moved between \(A\) and \(C\) the locus AD is formed. This locus is not straight, but it is fairly straight.

Even if a large segment is used from two points on AD, say GH for an intercept, this drawing program claims that I have attained a
 trisection for any angle.

If a very small segment is taken, as below, tolerance is beyond the drawing program. What does it look like using Algebra? Trisection to within millionths, in some circumstances, may be tolerable.


As the different points of intersection is no actually viewable on the finer figure, the rougher figure will be used for drawings, but the equations will refer to the finer.
\[
\mathbf{N}_{1}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{4}
\]

\[
\mathbf{N}_{3}:=\mathbf{2}
\]
\[
\mathrm{AC}:=\mathrm{N}_{1} \mathrm{AO}:=\frac{\mathrm{AC}}{2}
\]
\[
\mathbf{N}_{\mathbf{A B}}:=\frac{\mathbf{A C}}{\mathbf{N}_{2}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B}
\]
\[
\mathrm{BE}:=\sqrt{\mathrm{AB} \cdot \mathrm{BC}} \quad \mathrm{DE}:=\frac{\mathrm{BE}}{2}
\]
\[
\mathbf{B O}:=\mathbf{A O}-\mathbf{A B} \quad \mathbf{G O}:=\mathbf{A O}
\]
\[
\mathbf{D L}:=\frac{\mathbf{B O} \cdot \mathbf{D E}}{\mathbf{G O}-\mathbf{B E}} \quad \mathbf{E L}:=\sqrt{\mathbf{D L}^{2}+\mathbf{D E}^{2}}
\]
\[
\mathbf{L N}:=\mathbf{E L} \quad \mathbf{L M}:=\frac{\mathbf{L N}}{\mathbf{N}_{\mathbf{3}}} \quad \mathbf{D M}:=\mathbf{D L}+\mathbf{L M} \quad \mathbf{E M}:=\sqrt{\mathbf{D E}^{2}+\mathbf{D M}^{2}} \quad \mathbf{E P}:=\frac{\mathbf{E M} \cdot \mathbf{B E}}{\mathbf{D E}}
\]

\[
\mathbf{B P}:=\frac{\mathbf{D M} \cdot \mathbf{B E}}{\mathbf{D E}} \quad \mathbf{P O}:=\mathbf{B P}+\mathbf{B O}
\]
\[
\mathbf{E H}:=\frac{\mathbf{A O}^{2}+\mathbf{E P}^{2}-\mathbf{P O}^{\mathbf{2}}}{-\mathbf{E P}}
\]
\[
\mathbf{H P}:=\mathbf{E P}+\mathbf{E H} \text { PR }:=\frac{\mathbf{B P} \cdot \mathbf{H P}}{\mathbf{E P}}
\]
OR := PR - PO BQ := BO - OR
\[
\text { HR }:=\frac{\mathbf{B E} \cdot \mathbf{H P}}{\mathrm{EP}} \quad \text { BT }:=\frac{\mathrm{BQ} \cdot \mathbf{B E}}{\mathrm{HR}-\mathbf{B E}}
\]
\[
\mathbf{E T}:=\sqrt{\mathbf{B E}^{2}+\mathbf{B T}^{2}} \quad \mathbf{P T}:=\mathbf{B P}-\mathbf{B T} \quad \mathbf{P S}:=\frac{\mathbf{P T}^{2}+\mathbf{E P}^{2}-\mathbf{E T}^{2}}{2 \cdot \mathbf{E P}} \mathbf{E S}:=\mathbf{E P}-\mathbf{P S} \quad \mathbf{S T}:=\sqrt{\mathbf{E T}^{2}-\mathbf{E S}^{2}}
\]
\[
\text { KM }:=\frac{\text { ST } \cdot \mathbf{E M}}{\text { ES }} \text { EI }:=\frac{\text { ET }}{2} \text { EK }:=\frac{\text { ET } \cdot \mathbf{E M}}{\text { ES }} \text { OT }:=\text { BT }+ \text { BO }
\]

\(\mathbf{E X}:=\frac{\mathbf{A O}^{2}+\mathbf{E Z}^{\mathbf{2}}-\mathbf{O Z} \mathbf{2}^{\mathbf{2}}}{-\mathbf{E Z}} \mathbf{X Z}:=\mathbf{E Z}+\mathbf{E X ~ Z a}:=\frac{\mathbf{B Z} \cdot \mathbf{X Z}}{\mathbf{E Z}} \quad \mathbf{O a}:=\mathbf{Z a}-\mathbf{O Z} \mathbf{B b}:=\mathbf{B O}-\mathbf{O a}\)
\(\mathbf{X a}:=\frac{\mathbf{B E} \cdot \mathbf{X Z}}{\mathbf{E Z}} \quad \mathbf{B U}:=\frac{\mathbf{B b} \cdot \mathbf{B E}}{\mathbf{X a}-\mathbf{B E}} \quad \mathbf{E U}:=\sqrt{\mathbf{B E}^{2}+\mathbf{B U}^{2}} \quad \mathrm{UZ}:=\mathbf{B Z}-\mathbf{B U} \quad \mathrm{Zc}:=\frac{\mathbf{U Z}^{2}+\mathbf{E Z}^{2}-\mathbf{E U}^{2}}{2 \cdot \mathbf{E Z}}\)
\(\mathbf{U c}:=\sqrt{\mathbf{U Z}^{2}-\mathbf{Z c}^{2}}\) VW \(:=\frac{\mathbf{U c} \cdot \mathbf{E W}}{\mathbf{E Z}-\mathbf{Z c}}\) OU \(:=\mathbf{B U}+\mathbf{B O} \quad \quad\) IM \(:=\mathbf{D M}-\mathbf{D I} \mathbf{I K}:=\mathbf{E K}-\mathbf{E I}\)
\(\mathbf{I g}:=\frac{\mathbf{I K}^{\mathbf{2}}+\mathbf{I M} \mathbf{M}^{2}-\mathbf{K M}^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{I M}}\)

\(\mathbf{E V}:=\frac{\mathbf{E U} \cdot \mathbf{E W}}{\mathbf{E Z}-\mathbf{Z c}}\)
TU := OT - OU
\(\mathbf{U V}:=\mathbf{E V}-\mathbf{E U}\)
TV := VW - TW
\(\mathbf{U h}:=\frac{\mathbf{U V}^{\mathbf{2}}+\mathbf{T \mathbf { U } ^ { 2 }}-\mathbf{T V}^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{T U}}\)

eh := Bh - Dg \(\quad\) Ke \(:=\mathbf{D E}-\mathbf{K g}\) ef \(:=\frac{\text { eh } \cdot \mathbf{K e}}{(\mathrm{Ke}+\mathbf{V h})} \quad\) Bf \(:=\mathbf{D g}+\) ef \(\quad\) Of \(:=\mathbf{B f}+\mathbf{B O}\)
\(\mathbf{O m}:=\frac{\mathbf{A O ^ { 2 }}}{2 \cdot \mathbf{O f}} \quad \mathrm{Ej}:=\frac{\mathbf{A O}^{2}}{\mathbf{O f}} \quad \mathbf{O m}-\frac{\mathbf{E j}}{2}=\mathbf{0} \quad \mathrm{Ef}:=\sqrt{\mathbf{B E}^{2}+\mathbf{B f}} \quad \mathrm{Ek}:=\frac{\mathbf{A O}^{2}+\mathbf{E f}^{2}-\mathbf{O f}^{2}}{-\mathbf{E f}}\)
Om \(-\frac{\text { Ek }}{2}=-\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 2 6 3 9} \frac{\mathrm{Ek}}{\mathrm{Ej}}=1.000000000030396\)
And so the Trisection is accurate to within a few decimal places. 30 degree angle shown.

\section*{The Gravitating Answer. 030503}

How many itterations to go beyond 15 decimal place precision in trisection? The itteration is from AO where GH determines a new A.

\[
\begin{aligned}
& \Delta:=22 \quad \delta:=0 . . \Delta \quad \mathrm{N}:=2 \\
& \mathbf{C F}:=\mathbf{1} \quad \mathbf{C O}:=\frac{\mathbf{C F}}{2} \\
& \mathbf{C D}:=\frac{\mathbf{C O}}{\mathbf{N}} \quad \text { DO }:=\mathbf{C O}-\mathbf{C D} \\
& \text { DF }:=\mathbf{D O}+\mathbf{C O} \quad \text { DG }:=\sqrt{\mathbf{C D} \cdot \mathbf{D F}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{AD}_{0}:=\frac{\mathrm{DO} \cdot \mathrm{DG}}{\mathrm{CO}-\mathrm{DG}} \quad \mathrm{AO}_{0}:=\mathrm{AD}_{0}+\mathrm{DO} \quad \mathrm{EO}_{\mathbf{0}}:=\frac{\mathbf{C O}^{2}}{2 \cdot\left(\mathrm{AD}_{0}+\mathrm{DO}\right)} \quad \mathrm{DE}_{0}:=\mathrm{DO}-\mathrm{EO}_{0} \\
& \mathrm{EH}_{0}:=\sqrt{\left(\mathrm{CO}+\mathrm{EO}_{0}\right) \cdot\left(\mathrm{CO}-\mathrm{EO}_{\mathbf{0}}\right)}
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{A G}:=\sqrt{\mathbf{D G}^{2}+\left(\mathbf{A D}_{\Delta}\right)^{2}} \\
& \mathbf{G H}:=\frac{\mathbf{C O}^{2}+\mathbf{A G}^{2}-\left(\mathbf{A O _ { \Delta } ) ^ { 2 }}\right.}{-\mathbf{A G}} \\
& \mathbf{E O} \mathbf{\Delta}_{\Delta}-\frac{\mathbf{G H}}{2}=\mathbf{0}
\end{aligned}
\]

The displayed precision is for 15 decimal places. Trisection is beyond that. Since the physical world is quantitized, physical trisection is possible.
\begin{tabular}{|c|}
\hline \[
\mathbf{E O}_{\delta}-\frac{\mathbf{G H}}{2}
\] \\
\hline -0.019836790725685 \\
\hline -0.004498504834066 \\
\hline -0.001019750164038 \\
\hline - 0.000231158851096 \\
\hline - 0.000052399460482 \\
\hline - 0.000011877993414 \\
\hline - 0.000002692522516 \\
\hline - 0.000000610345304 \\
\hline - 0.000000138354048 \\
\hline - 0.000000031362317 \\
\hline - 0.000000007109260 \\
\hline - 0.000000001611539 \\
\hline - 0.000000000365306 \\
\hline - 0.000000000082808 \\
\hline - 0.000000000018771 \\
\hline - 0.000000000004255 \\
\hline - 0.000000000000965 \\
\hline - \(\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 2 1 9 ~}\) \\
\hline - 0.000000000000050 \\
\hline -0.000000000000011 \\
\hline -2.789435349370706 \(\cdot 10^{-15}\) \\
\hline 0 \\
\hline 0 \\
\hline
\end{tabular}

One can see how rapidly each recursion increases precision. And so, for any required precision, one can trisect an angle grearter than that, relatively rapidly--espectially if one combine yesterdays plate with today's.

030803
Is anything saved by starting from a much more precise point for itteration demonstrated in 0305?

\[
\begin{array}{ll}
\text { DF }:=1 & \text { DO }:=\frac{\text { DF }}{2} \\
\text { N }:=2 & \text { Dx }:=\frac{\text { DO }}{\mathbf{N}} \\
\text { Ox }:=\text { DO }-\mathbf{D x} & \text { Fx }:=\mathbf{D F}-\mathbf{D x} \\
\text { Gx }:=\sqrt{\text { Dx } \cdot \mathbf{F x}} & \text { AO }:=\frac{\mathbf{O x} \cdot \mathbf{D O}}{\mathbf{D O}-\mathbf{G x}} \\
\text { HO }:=\text { DO } & \text { LO }:=\frac{\mathbf{H O}}{2}
\end{array}
\]
\(E x:=\frac{\mathbf{O x} \cdot \mathbf{G x}}{\mathbf{G x}+\mathbf{D O}} \quad \mathrm{Ob}:=\frac{\mathbf{L O}^{\mathbf{2}}}{\mathbf{A O}}\)
\(\mathbf{L b}:=\sqrt{\mathbf{L O}^{2}-\mathbf{O b}^{2}} \quad \mathrm{ab}:=\frac{\mathrm{Ex} \cdot \mathrm{Lb}}{\mathrm{Gx}}\)
\(\mathrm{Aa}:=\mathrm{AO}+\mathbf{a b}-\mathbf{O b}\)
\(\mathbf{A x}:=\mathbf{A O}-\mathbf{O x} \quad \mathbf{A E}:=\mathbf{A x}+\mathbf{E x}\)
\(\mathrm{Kc}:=\frac{\mathrm{Lb} \cdot \mathrm{AE}}{\mathrm{Aa}} \mathrm{Cc}:=\frac{\mathbf{A O} \cdot \mathrm{Kc}}{\mathrm{DO}}\)

\(\mathbf{E c}:=\frac{\mathbf{a b} \cdot \mathbf{A E}}{\mathrm{Aa}} \mathrm{CE}:=\mathbf{C c}+\mathbf{E c} \mathrm{AC}:=\mathrm{AE}-\mathbf{C E}\)
\(\mathrm{AB}:=\frac{\mathbf{A C}}{2}\)

\[
\begin{gathered}
\Delta:=\mathbf{2 2} \quad \delta:=\mathbf{0} . . \Delta \\
\mathbf{B O}_{\mathbf{0}}:=\mathbf{A O}-\mathbf{A B} \\
\mathbf{N O}_{\mathbf{0}}:=\frac{\mathbf{D O}^{2}}{\mathbf{2} \mathbf{B O _ { \mathbf { 0 } }}} \\
\mathbf{N x}_{\mathbf{0}}:=\mathbf{O x}-\mathbf{N O}_{\mathbf{0}} \\
\mathbf{H N}_{\mathbf{0}}:=\sqrt{\left.\left(\mathbf{D O}+\mathbf{N O}_{\mathbf{0}}\right) \cdot \mathbf{D O}-\mathbf{N O}_{\mathbf{0}}\right)}
\end{gathered}
\]

\[
\mathbf{B x}_{\Delta}:=\mathbf{B O}_{\Delta}-\mathbf{O x}
\]
\[
\mathbf{B G}:=\sqrt{\left.\mathbf{G x} \mathbf{x}^{2}+(\mathbf{B x})_{\Delta}\right)^{2}}
\]
\[
\mathbf{G H}:=\frac{\left.\mathbf{D O}^{2}+\mathbf{B G}^{2}-(\mathbf{B O})_{\Delta}\right)^{2}}{-\mathbf{B G}}
\]
\[
\mathrm{NO}_{\Delta}-\frac{\mathrm{GH}}{2}=0
\]
\begin{tabular}{l}
\(\mathrm{NO}_{\delta}-\frac{\mathrm{GH}}{2}\) \\
\hline\(-\mathbf{0 . 0 0 0 7 3 3 0 7 2 4 7 5 0 4 4}\) \\
\hline\(-\mathbf{0 . 0 0 0 1 6 6 1 7 4 1 3 4 2 0 6}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 3 7 6 6 8 6 1 9 2 1 2}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 8 5 3 8 7 8 2 7 6 9}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 1 9 3 5 5 8 4 9 1 4}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 4 3 8 7 6 1 4 7 9}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 9 9 4 5 9 1 5 3}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 2 2 5 4 5 5 5 9}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 5 1 1 0 6 6 3}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 1 1 5 8 4 9 3}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 0 2 6 2 6 0 9}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 5 9 5 2 9}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 1 3 4 9 4}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 3 0 5 9}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 6 9 3}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 1 5 7}\) \\
\hline\(-\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5}\) \\
\hline\(-7.965850201685498 \cdot 10^{-15}\) \\
\hline\(-1.706967900361178 \cdot 10^{-15}\) \\
\hline 0 \\
\hline 0 \\
\hline 0 \\
\hline 0 \\
\hline
\end{tabular}
\(\delta\)


Although one starts off in a more precise spot, not much in the way of steps for 15 decimal place precision is saved. The steps are a waste of time.
\(\begin{array}{rr}m \angle E Z N & =73.646^{\circ} \\ m \angle E A B N & =16.354^{\circ} \angle E Z N-m \quad \angle E A B N=57.292^{\circ}\end{array}\) \(m \angle E Z N+m \quad \angle E A B N=90.000^{\circ}\)
\(m \angle E D A=19.097^{\circ}\)
\(\frac{m \angle E Z N}{m \angle E D A}=3.856\)
\(\frac{m \angle E A B N}{m \angle E D A}=0.856\)
m \(\angle E Z N\)
\(\frac{m \angle E D A}{m \angle E D A}=3.000\)













\(m \angle B W A C=46.885^{\circ}\)
\(m \angle C B A C=15.628^{\circ}\)
\(\frac{m \angle B W A C}{m \angle C B A C}=3.000\)
\(\mathrm{m} \angle B W E B J=68.443^{\circ}\)
\(\mathrm{m} \angle A Z E B J=22.814^{\circ}\)
m \(\angle\) BWEBJ
m \(\angle A Z E B J=3.000\)
m \(\angle B W D B J=21.557^{\circ}\)
\(\mathrm{m} \angle A Z D B J=7.186^{\circ}\)
\(\frac{m \angle B W D B J}{m \angle A Z D B J}=3.000\)





\(\mathrm{m} \angle \mathrm{JBWBY}=59.369^{\circ}\)
\(\mathrm{m} \angle B X B W B Y=19.789^{\circ}\)
m \(\quad\) JBWBY
\(\mathbf{m} \angle B X B W B Y=3.000\)
\[
\mathrm{m} \angle \mathrm{JAC}=39.579^{\circ}
\]












^
m \(\angle E Y E X E Z=60.000^{\circ}\)












GHGD \(=1.553\) inches
GDET \(=1.553\) inches









\(\mathrm{m} \angle \mathrm{JAC}=60.000^{\circ}\)
\(\mathrm{m} \angle \mathrm{CGAC}=20.000^{\circ}\)
\(\frac{\mathrm{m} \angle \mathrm{JAC}}{\mathrm{m} \angle \mathrm{CGAC}}=3.000\)
\(\mathrm{m} \angle \mathrm{CPCKCQ}=60.000^{\circ}\)
\[
\frac{\mathrm{m} \angle \mathrm{JAC}}{\mathrm{~m} \angle \mathrm{CGAC}} \cdot 1000=2999.999
\]
full range of possible
placement. Next Maxima and minima

Mostly beyond program tol.


\[
\rightarrow \text { Move J->GW }
\]






\(m \angle U C E=11.601^{\circ}\)
Since the trisection is perfect, one can examine the program limitations.
\(\frac{m \angle D U C}{3}=11.601^{\circ}\)
\(m \angle A T A M A S=11.601^{\circ}\)
\(m \angle D U C=34.802^{\circ}\)
\(\frac{m \angle D U C}{\text { mLATAMAS }}=3.000\)








By proportioning the figure and watching the error change, one can see that the figure is beyond the limits of the program.
\(\mathrm{m} \angle \mathrm{JGAC}=17.500^{\circ}\)



\(\mathrm{m} \angle \mathrm{HAG}=69.181^{\circ}\)
\(m \angle H A G A C=90.000^{\circ}\) \(m \angle A G H A C=23.060^{\circ}\)
\(m \angle F U A F V=69.630^{\circ}\)
\(\mathrm{m} \angle \mathrm{GBFUGA}=23.210^{\circ}\)

m \(\angle\) FUAFV
m \(\angle G B F U G A=3.000\)


\(\mathrm{m} \angle \mathrm{GBIBJ}=50.727^{\circ}\)
\(m \angle A Y G B N=16.909^{\circ}\)
\(\stackrel{\rightharpoonup}{*}\) Animate
m/GBIBJ
\(\frac{\mathrm{m} \angle A Y G B N}{}=3.000\)



```
m\angleJAC = 48.305
    m\angleJSAC = 16.102 }\quad\mathrm{ m\JSAC}=3.00
```

\[
\begin{array}{lll}
\mathrm{m} \angle \mathrm{JAC} & =47.080^{\circ} \\
\mathrm{m} \angle \mathrm{JSAC} & =15.693^{\circ} & \frac{\mathrm{m} \angle \mathrm{JAC}}{\mathrm{~m} \angle \mathrm{JSAC}}=3.000
\end{array} \mathrm{~m} \angle \mathrm{JAC}=47.080^{\circ}
\]
\begin{tabular}{|l|}
\hline\(\rightarrow\) Move J->HJ \\
\hline\(\rightarrow\) Move J->HH \\
\hline\(\rightarrow\) Move J->HI \\
\hline\(\rightarrow\) Move J->HG \\
\hline\(\rightarrow\) Move J->HL \\
\hline\(\rightarrow\) Move J->HK \\
\hline\(\rightarrow\) Move J->HN \\
\hline\(\rightarrow\) Move J->HM \\
\hline\(\rightarrow\) Move J \(->H \mathrm{HO}\) \\
\hline
\end{tabular}








Three Pieces Of
Paper


Or given any AE, AC find the
 diameter of the Circle.
\[
\begin{array}{ll}
\mathbf{N}:=\mathbf{3} & \text { AE }:=\mathbf{1} \\
\mathbf{A C}:=\mathbf{A E} \cdot \mathbf{N} & \text { AG }:=\mathbf{A E}
\end{array}
\]

DE := AE•2 CJ := AE
\(\mathbf{C E}:=\sqrt{\mathrm{AE}^{2}+\mathrm{AC}^{2}}\)
CG \(:=\mathrm{AE}\) FG \(:=\frac{\mathrm{DE} \cdot \mathrm{CG}}{\mathrm{CE}}\)
\(\mathbf{J L}:=\) FG \(\quad \mathbf{J M}:=\frac{\mathbf{J L}^{\mathbf{2}}}{\mathbf{2 \cdot C J}}\)
\[
\begin{aligned}
& \text { CM }:=\text { CJ - JM LM }:=\sqrt{J L L^{2}-J M^{2}} \quad \text { NO }:=A C \quad C N:=\frac{C M \cdot N O}{L M} \quad \text { AO }:=\text { CN } \quad \text { EO }:=A O+A E \\
& \text { OP }:=\frac{\mathbf{A E}^{2}}{\mathbf{L M}} \\
& \text { Major := EO } \\
& \text { Minor := OP Major }=5 \\
& \text { Major }-\frac{\mathbf{N}^{2}+1}{2}=0 \quad \text { Minor }-\frac{\mathbf{N}^{2}+1}{2 \cdot \mathbf{N}}=0 \\
& \frac{\text { Major }}{\text { Minor }}-\mathbf{N}=0
\end{aligned}
\]

Given AC, AB and either pont of contact, D or F from any C, 032304 what is the lenght of the cord DF cut off by a line from any C?

\[
\begin{aligned}
& \mathbf{N}_{1}:=1.708 \quad \mathbf{N}_{2}:=1.649 \\
& \mathbf{N}_{3}:=1.24 \\
& \text { AC }^{\prime}:=\mathbf{N}_{1} \quad \mathbf{C F}:=\mathbf{N}_{2} \\
& \text { AF }:=\mathbf{N}_{3} \\
& \text { DF }_{1}:=\frac{\mathbf{N}_{3}{ }^{2}+\mathbf{N}_{2}{ }^{2}-\mathbf{N}_{1}{ }^{2}}{\mathbf{N}_{2}} \\
& \text { CD }_{2}:=\mathbf{C F}-\mathrm{DF}_{1} \quad \mathbf{N}_{2}:=\mathbf{C D} \\
& \text { DF }_{2}:=\frac{\mathbf{N}_{3}^{2}+\mathbf{N}_{2}^{2}-\mathbf{N}_{1}^{2}}{\mathbf{N}_{2}}
\end{aligned}
\]
\[
\mathrm{DF}_{1}=0.812 \quad \mathrm{DF}_{2}=-0.812 \quad \mathrm{DF}_{1}+\mathrm{DF}_{2}=0
\]


0405043

All this extra work and I have lost accuracy from 022803!
\(\mathrm{N}:=4 \quad \mathrm{CE}:=1\)

\[
\mathrm{CO}:=\frac{\mathrm{CE}}{2} \quad \mathrm{CD}:=\frac{\mathrm{CE}}{\mathrm{~N}}
\]
\[
\text { J } \quad \mathrm{DO}:=\mathrm{CO}-\mathrm{CD}
\]
\[
\mathbf{H} \quad \mathbf{D N}:=\sqrt{(\mathbf{C O}+\mathbf{D O}) \cdot(\mathbf{C O}-\mathbf{D O})}
\]
\[
\mathrm{AD}:=\frac{\mathrm{DO} \cdot \mathrm{DN}}{\mathrm{CO}-\mathrm{DN}} \mathrm{DM}:=\frac{\mathrm{DN}}{2}
\]
\(\mathrm{AN}:=\sqrt{\mathrm{AD}^{2}+\mathrm{DN}^{2}} \mathrm{HL}:=\frac{\mathrm{AN}}{2} \quad \mathrm{LA}:=\frac{\mathrm{HL}}{2} \mathrm{Ok}:=\sqrt{\mathrm{CO}^{2}-\mathrm{DO}^{2}} \quad \mathrm{Ck}:=\mathrm{CO}-\mathrm{Ok}\)
\(\mathrm{Fm}:=\frac{\mathrm{Ck} \cdot \mathrm{HL}}{\mathrm{CO}} \mathrm{Jm}:=\frac{\mathrm{DO} \cdot \mathrm{HL}}{\mathrm{CO}}\)
\(\mathbf{J F}:=\sqrt{\mathbf{F m}^{2}+\mathbf{J m}^{\mathbf{2}}} \quad\) Fn \(:=\frac{\mathbf{J F}}{\mathbf{2}}\)
Fo \(:=\frac{\text { Fm } \cdot F n}{\text { JF }} \quad\) Lo \(:=\mathrm{HL}-\) Fo
no \(:=\frac{\mathbf{J m}}{\mathbf{2}} \quad \mathrm{Ln}:=\sqrt{\mathrm{no}^{2}+\mathbf{L o}^{2}}\)
Iq := \(\frac{\text { no } \cdot \mathbf{H L}}{\mathrm{Ln}} \mathrm{Lq}:=\frac{\mathrm{Lo} \cdot \mathbf{H L}}{\mathrm{Ln}}\)


Fq \(:=\mathrm{HL}-\mathrm{Lq} \quad \mathrm{FI}:=\sqrt{\mathrm{Iq}^{2}+\mathrm{Fq}^{2}} \quad \mathrm{Fr}:=\frac{\mathrm{FI}}{2} \mathrm{Fs}:=\frac{\mathrm{Fq} \cdot \mathrm{Fr}}{\mathrm{FI}} \quad \mathrm{Ls}:=\mathrm{HL}-\mathrm{Fs} \quad \mathrm{Lr}:=\sqrt{\mathrm{HL}^{2}-\mathrm{Fr}^{2}}\)
\(\mathbf{L b}:=\frac{\mathbf{H L}^{2}}{2 \cdot \mathbf{L r}} \quad\) rs \(:=\frac{\mathbf{I q}}{\mathbf{2}}\)

\[
\text { Lv }:=\frac{\mathrm{Ls} \cdot \mathbf{H L}}{\mathrm{Lr}} \mathbf{H v}:=\frac{\mathrm{rs} \cdot \mathbf{H L}}{\mathrm{Lr}}
\]
\[
\mathbf{L v}:=\frac{\mathbf{L s} \cdot \mathbf{H L}}{\mathrm{Lr}} \quad \text { Fv }:=\mathbf{H L}-\mathbf{L v}
\]
\[
\text { FH }:=\sqrt{H v^{2}+F v^{2}} \mathbf{F t}:=\frac{F H}{2}
\]
\[
\text { Lf }:=\frac{\mathbf{H L}}{2} \quad \mathbf{F u}:=\frac{\mathbf{F v} \cdot \mathbf{F t}}{\mathbf{F H}} \quad \text { tu }:=\frac{\mathbf{H v}}{2}
\]
\[
\mathbf{L u}:=\mathbf{H L}-\mathbf{F u} \mathbf{L t}:=\sqrt{\mathbf{L u}^{2}+\mathbf{t u}^{2}}
\]

\(\mathbf{L g}:=\frac{\mathbf{L t} \cdot \mathbf{L f}}{\mathbf{L u}}\)
\[
\mathbf{M N}:=\frac{\mathbf{D N}}{\mathbf{2}} \mathbf{N L}:=\frac{\mathbf{A N}}{\mathbf{2}}
\]
\[
\mathbf{H}_{\mathbf{H}} \quad \mathrm{ML}:=\sqrt{\mathrm{NL}^{2}-\mathrm{MN}^{2}}
\]
\[
\mathbf{M b}:=\mathbf{M L}+\mathbf{L b}
\]
\[
\mathbf{N b}:=\sqrt{\mathbf{M} \mathbf{N}^{2}+\mathbf{M b}^{2}}
\]
\(\mathrm{Nc}:=\frac{\mathrm{CO}^{2}+(2 \cdot \mathbf{N b})^{2}-(2 \cdot \mathbf{M b}+\mathbf{D O})^{2}}{-2 \cdot \mathbf{N b}} \mathrm{cw}:=\frac{\mathbf{M N} \cdot(\mathbf{N b}+\mathbf{N c})}{\mathrm{Nb}}+\mathbf{M N}\)
Dw \(:=\frac{2 \cdot \mathbf{M b} \cdot(\mathbf{2} \cdot \mathbf{N b}+\mathbf{N c})}{2 \cdot \mathbf{N b}}-\mathbf{2} \cdot \mathbf{M b}\) Ow \(:=\mathrm{Dw}-\mathrm{DO} \mathrm{Dx}^{\prime}:=\mathrm{Dw}-\mathbf{2 \cdot O w}\) Ma \(1:=\frac{\mathrm{Dx} \cdot \mathrm{DN}}{2 \cdot(\mathrm{cw}-\mathrm{DN})}\)
\(\mathrm{Na}_{1}:=\sqrt{\mathrm{MN}^{2}+\left(\mathrm{Ma}_{1}\right)^{2}}\) ba \(_{1}:=\mathrm{Mb}-\mathrm{Ma} \mathrm{Nz}:=\frac{\left(\mathrm{Na}_{1}\right)^{2}+\mathrm{Nb}^{2}-\left(\mathrm{ba}_{1}\right)^{2}}{2 \cdot \mathrm{Nb}^{2}} \mathrm{za}_{1}:=\sqrt{\left(\mathrm{Na}_{1}\right)^{2}-\mathbf{N z}^{2}}\)
be \(:=\frac{\text { za }_{1} \cdot \mathrm{Nb}}{\mathrm{Nz}}\)
\[
\begin{aligned}
& \mathbf{M g}:=\mathbf{M L}+\mathbf{L g} \\
& \mathbf{N g}:=\sqrt{\mathbf{M N}^{2}+\mathbf{M g}^{2}} \\
& \mathrm{Nh}:=\frac{\mathrm{CO}^{2}+(2 \cdot \mathrm{Ng})^{2}-(2 \cdot \mathrm{Mg}+\mathrm{DO})^{2}}{-2 \cdot \mathrm{Ng}} \mathrm{hb}_{1}:=\frac{\mathrm{MN} \cdot(\mathrm{Ng}+\mathrm{Nh})}{\mathrm{Ng}}+\mathrm{MN} \\
& \mathrm{Db}_{1}:=\frac{\mathbf{2} \cdot \mathrm{Mg} \cdot(\mathbf{2} \cdot \mathrm{Ng}+\mathrm{Nh})}{2 \cdot \mathrm{Ng}}-\mathbf{2} \cdot \mathrm{Mg} \mathrm{Ob}_{1}:=\mathrm{Db}_{1}-\mathrm{DO} \quad \mathrm{Dc}_{1}:=\mathrm{Db}_{1}-\mathbf{2 \cdot O b _ { 1 }} \\
& \text { Md }_{1}:=\frac{\mathrm{Dc}_{1} \cdot \mathrm{DN}}{2 \cdot\left(\mathrm{hb}_{1}-\mathrm{DN}\right)} \quad \mathrm{Nd}_{1}:=\sqrt{\mathrm{MN}^{2}+\left(\mathrm{Md}_{1}\right)^{2}} \quad \mathrm{gd}_{1}:=\mathrm{Mg}-\mathrm{Md}_{1} \\
& \mathrm{Ne}_{1}:=\frac{\left(\mathrm{Nd}_{1}\right)^{2}+\mathrm{Ng}^{2}-\left(\mathrm{gd}_{1}\right)^{2}}{2 \cdot \mathrm{Ng}} \quad \text { ed }_{1}:=\sqrt{\left(\mathrm{Nd}_{1}\right)^{2}-\left(\mathrm{Ne}_{1}\right)^{2}} \quad \text { gj }:=\frac{\mathrm{ed}_{1} \cdot \mathrm{Ng}}{\mathrm{Ne}_{1}} \quad \mathrm{Ne}:=\frac{\mathrm{Na}_{1} \cdot \mathrm{Nb}}{\mathrm{Nz}} \\
& \mathbf{e a}_{1}:=\mathbf{N e}-\mathbf{N a} \mathbf{1}_{1} \\
& \text { E } \\
& \text { ba }_{\mathbf{1}}:=\mathbf{M b}-\mathbf{M a}_{\mathbf{1}} \\
& \text { bf }_{1}:=\frac{\text { be }^{2}+\text { ba }_{1}{ }^{2}-\mathrm{ea} \mathbf{1}^{2}}{2 \cdot{ }^{2}} \\
& \text { ef } 1:=\sqrt{\mathrm{be}^{2}-\mathrm{bf}_{1}{ }^{2}} \\
& \underbrace{C}_{0} \\
& \mathrm{Nj}:=\frac{\mathrm{Nd}_{\mathbf{1}} \cdot \mathrm{Ng}}{\mathrm{Ne}_{\mathbf{1}}} \mathrm{jd}_{\mathbf{1}}:=\mathbf{N j}-\mathrm{Nd}_{\mathbf{1}} \\
& \mathrm{gg}_{1}:=\frac{\mathrm{gj}{ }^{2}+\mathrm{gd}_{1}{ }^{2}-\mathrm{jd}_{1}{ }^{2}}{2 \cdot \mathrm{gd}_{1}} \\
& j g_{1}:=\sqrt{\mathrm{gj}^{2}-\mathrm{gg}_{1}{ }^{2}}
\end{aligned}
\]

\(\mathrm{Mg}_{1}:=\mathrm{Mg}-\mathrm{gg}_{1} \quad \mathrm{Mf}_{1}:=\mathrm{Mb}-\mathrm{bf}_{1}\)
jh \(_{1}:=\mathrm{Mf}_{\mathbf{1}}-\mathrm{Mg}_{\mathbf{1}} \quad\) eh \(\mathbf{1}_{\mathbf{1}}:=\) ef \(_{\mathbf{1}}-\mathrm{jg}_{\mathbf{1}}\)
\(\mathrm{ej}:=\sqrt{\mathrm{jh}}{ }_{\mathbf{1}}{ }^{2}+\mathrm{eh}_{1}{ }^{2} \quad \mathrm{Bj}_{\mathbf{1}}:=\mathrm{DM}-\mathrm{jg} \mathbf{1}\)
\(\mathrm{jj}_{1}:=\frac{\mathrm{jh}_{1} \cdot \mathrm{Bj}_{1}}{\mathrm{eh}_{1}} \quad\) BD \(:=\mathrm{Mg}_{1}+\mathrm{jj}_{\mathbf{1}}\)
\[
\mathbf{B O}:=\mathbf{B D}+\mathbf{D O}
\]
K

Compared to 022803
\[
\text { Om }-\frac{E k}{2}=-0.000000000002639 \quad \text { - } \quad \frac{19591}{2639}=7.423645
\]


\[
\begin{array}{ll}
\text { EM }:=\frac{1}{2} \cdot \sqrt{3} & \text { AL }:=\frac{1}{2} \cdot \sqrt{2} \\
\text { AM }:=\frac{1}{2} & \text { JL }:=\frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}} \\
\text { LM }:=\frac{1}{4} \cdot \sqrt{6}-\frac{1}{10-2 \cdot \sqrt{5}} \cdot \sqrt{2} \\
& \text { AG }:=\frac{1}{4} \cdot \sqrt{8+2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}
\end{array}
\]

\section*{Outtake Four: Some Names 0507014}

\[
\begin{aligned}
& \mathbf{A G}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A G}}{\mathbf{2}} \mathbf{A C}:=\frac{\mathbf{A E}}{\mathbf{2}} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C J}:=\sqrt{\mathbf{A C} \cdot \mathbf{C G}} \\
& \mathbf{E L}:=\mathbf{A E} \quad \mathbf{C E}:=\mathbf{A C} \\
& \mathbf{J L}:=\sqrt{\mathbf{E L}^{2}-\mathbf{2} \cdot \mathbf{E L} \cdot \mathbf{C J}+\mathbf{C J}^{2}+\mathbf{C E}^{2}} \\
& \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}^{2}} \quad \mathbf{G J}:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}^{2}} \\
& \mathbf{A L}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E L}^{2}}
\end{aligned}
\]
\(\mathrm{AE}:=\frac{\mathbf{1}}{\mathbf{2}} \quad \mathrm{AC}:=\frac{\mathbf{1}}{\mathbf{4}} \quad \mathrm{CG}:=1-\frac{1}{4}\)
\(\mathbf{C J}:=\frac{1}{4} \cdot \sqrt{\mathbf{3}}\)
JL \(:=\frac{1}{4} \cdot \sqrt{6}-\frac{1}{4} \cdot \sqrt{2}\)
AJ := \(\frac{\mathbf{1}}{\mathbf{2}}\)
GJ \(:=\frac{\mathbf{1}}{\mathbf{2}} \cdot \sqrt{\mathbf{3}}\) *
AL \(:=\frac{1}{2} \cdot \sqrt{2}\)

\section*{Elliptic Progression Outtake One 0507011}

A method of trisection Algebraically.


N:= M
\[
N \geq 4=1 \quad A F:=6 \quad A E:=\frac{A F}{2}
\]

DE \(:=\frac{\mathbf{A F}}{\mathbf{N}} \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathrm{DF}:=\mathbf{A F}-\mathrm{AD}\)
DG \(:=\sqrt{\text { AD } \cdot \mathbf{D F}} \quad\) CD \(:=\mathrm{DE} \quad\) EG \(:=\mathbf{A E}\)
\(\mathrm{CO}:=\frac{\mathrm{CD}^{2}}{\mathrm{EG}} \quad \mathrm{CG}:=\mathrm{EG} \quad \mathrm{CJ}:=\mathrm{CG}-4 \cdot \mathrm{CO}\)
\(\mathbf{B C}:=\frac{\mathbf{C D} \cdot \mathbf{C J}}{\mathbf{C G}} \quad \mathbf{A B}:=\mathbf{A E}-(\mathbf{2} \cdot \mathbf{D E}+\mathbf{B C})\)
BJ := \(\frac{\text { DG } \cdot \mathbf{B C}}{\text { CD }} \quad\) BD \(:=\mathbf{B C}+\mathbf{C D}\)
\(\mathrm{JK}:=\sqrt{\mathrm{DG}^{2}-2 \cdot \mathrm{DG} \cdot \mathrm{BJ}+\mathrm{BJ}^{2}+\mathrm{BD}^{2}} \quad \frac{\mathrm{JK}}{2 \cdot \mathrm{DE}}=1 \quad\) Some Algebraic Names,
Part of this demonstration may be something of a reductio ad absurdum, if one supposed that CJ were not true. I suppose I need a plate to demonstrate it.
\(\mathrm{AF} \cdot \frac{(\mathbf{N}-2)}{2 \cdot \mathrm{~N}}-\mathbf{A D}=\mathbf{0} \quad \mathrm{AF} \cdot \frac{(\mathbf{N}+2)}{2 \cdot \mathrm{~N}}-\mathbf{D F}=\mathbf{0} \quad \mathrm{AF} \cdot \frac{\sqrt{(\mathbf{N}-2) \cdot(\mathbf{N}+2)}}{2 \cdot \mathrm{~N}}-\mathrm{DG}=\mathbf{0}\)
\(\frac{2 \mathrm{AF}}{\mathrm{N}^{2}}-\mathbf{C O}=0 \quad \mathrm{AF} \cdot \frac{(\mathrm{N}-4) \cdot(\mathrm{N}+4)}{2 \cdot \mathbf{N}^{2}}-\mathbf{C J}=0 \quad \mathrm{AF} \cdot \frac{(\mathrm{N}-4) \cdot(\mathrm{N}+4)}{\mathrm{N}^{3}}-\mathrm{BC}=0\)
\(A F \cdot \frac{(N+2) \cdot(N-4)^{2}}{2 \cdot N^{3}}-A B=0 \quad \begin{aligned} & \text { One of the meanings of trisection is solving for } \\ & \text { the following equation when given } A F \text { and } A B .\end{aligned}\)
\(\frac{A F}{A B}-\frac{2 \cdot N^{3}}{(N+2) \cdot(N-4)^{2}}=0\)
\(A F \cdot \frac{(N-4) \cdot(N+4) \cdot \sqrt{(N-2) \cdot(N+2)}}{2 \cdot N^{3}}-B J=0 \quad A F \cdot \frac{2 \cdot\left(N^{2}-8\right)}{N^{3}}-B D=0 \quad \frac{2 \cdot A F}{N}-J K=0\)
\[
\begin{aligned}
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}-\frac{A F}{A B}=0 \quad \frac{A F}{A B}=6 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}-6=0 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}=6 \\
& 2 \cdot M^{3}-6 \cdot\left[(M+2) \cdot(M-4)^{2}\right]=0 \\
& 2 \cdot M^{3}-\left(6 \cdot M^{3}-36 \cdot M^{2}+192\right)=0 \\
& 4 \cdot M^{3}-36 \cdot M^{2}+192=0 \\
& M^{3}-9 \cdot M^{2}+48=0 \quad M^{2} \cdot(M-9)+48=0 \quad M \equiv 8.303889634816388 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}=6 \quad D E-\frac{A F}{M}=0 \quad Z:=5.9,6 . .8 .9
\end{aligned}
\]


\section*{Elliptic Progression Outtake Two 0507012}

\section*{Angles TEV and EVJ equals CTG.}


Outtake Three: Alternate Method: Pentasection Or Irrational Rationals 0507013

\[
\begin{aligned}
& \mathbf{A L}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A L}}{\mathbf{2}} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \\
& \mathbf{C E}:=\mathbf{A C} \text { ER }:=\mathbf{A E} \mathbf{C R}:=\sqrt{\mathbf{C E}^{2}+\mathbf{E R}^{2}} \\
& \mathbf{C J}:=\mathbf{C R} \quad \mathbf{E J}:=\mathbf{C J}-\mathbf{C E} \\
& \mathbf{J R}:=\sqrt{\mathbf{E J}^{2}+\mathbf{E R}^{2}} \mathbf{N R}:=\mathbf{J R} \\
& \mathbf{E N}:=\mathbf{A E} \mathbf{E M}:=\frac{\mathbf{E N}^{2}+\mathbf{E R}^{2}-\mathbf{N R}^{2}}{\mathbf{2} \cdot \mathbf{E R}}
\end{aligned}
\]

KN \(:=\) EM EK \(:=\sqrt{\mathbf{E N}^{2}-K^{2}} \quad\) EL \(:=\mathbf{A E} \quad\) KL \(:=\mathbf{E L}-\mathbf{E K} \quad \mathbf{L N}:=\sqrt{\mathbf{K L}^{2}+\mathrm{KN}^{2}}\)

\(\mathbf{P R}-\mathbf{L N}=\mathbf{0} \quad \mathbf{A N}:=\sqrt{\mathbf{A L}^{2}-\mathbf{L N}^{2}}\)
Irrational means the inability of a grammar to provide a name for a given thing. Many things are then irrational in Arithmetic due to the principles of the naming convention. Algebraic naming solves the problem by incorporating operands as part of a name. Algebra provides a degree of rationality then that is not achievable by Arithmetic. The following are some Algebraic names.
\(\frac{1}{2}-\mathbf{A E}=\mathbf{0} \quad \frac{1}{4}-\mathbf{A C}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{5}-\mathbf{C R}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{5}-\frac{1}{4}-\mathbf{E J}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{10-2 \cdot \sqrt{5}}-\mathbf{J R}=\mathbf{0}\)
\(\frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{E M}=0 \quad \frac{1}{2} \cdot \sqrt{\frac{5}{8}+\frac{1}{8} \cdot \sqrt{5}}-\mathbf{E K}=0 \quad \frac{1}{2}-\frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}-K L=0\)
\(\frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathbf{L N}=0 \quad \frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{E G}=0 \quad \frac{5}{8}-\frac{1}{8} \cdot \sqrt{5}-\mathbf{G L}=\mathbf{0}\)
\(\frac{3}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{A G}=0 \quad \frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}-\mathbf{G P}=0 \quad \frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathbf{P R}=0\)
\(\frac{1}{4} \cdot \sqrt{8+2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathrm{AN}=0\)

\section*{Elliptic Progression}

An Elliptic Progression takes place on a
 finite length of line. An Elliptic Progression may be defined in terms of a number of diameters of smaller circles, each defined by the same angle from the circumferance of the larger circle, from the center of a circle to its perimeter. When the sum of the number of those diameters minus one half the starting diameter are equal to the radius of the larger circle, the angle that defined the smaller circles will divide the larger circle evenly and the same number of times as the total number of smaller circles. This means that the division of a circle into equal angles is based on a simple elliptic funciton.
\[
\begin{aligned}
& \Delta:=2 \quad N:=0 . . \Delta \\
& \mathbf{A C}_{\mathbf{0}}:=.552 \quad \mathbf{C P}_{\mathbf{0}}:=\sqrt{2\left(\mathrm{AC}_{0}\right)^{2}}
\end{aligned}
\]
\[
\left[\begin{array}{l}
\mathbf{A C}_{\mathbf{N}+1} \\
\mathbf{C P}_{\mathbf{N}+1}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{C P}_{\mathbf{N}} \\
\sqrt{\left(\mathbf{A C}_{\mathbf{0}}\right)^{2}+\left[\left(\mathbf{A C _ { N }}+\mathbf{C P}\right)_{\mathbf{N}}\right]^{2}}
\end{array}\right]^{\mathbf{F}}
\]
\[
\mathbf{C E}:=\mathrm{AC}_{\Delta} \quad \mathrm{AE}:=\sqrt{\mathbf{C E}^{2}-\left(\mathrm{AC}_{0}\right)^{2}}
\]

\(\mathrm{EH}:=\mathrm{CE} \quad \mathrm{EK}:=\mathbf{C E} \quad \mathrm{AH}:=\mathrm{EH}-\mathrm{AE} \quad \mathrm{AT}:=\mathrm{AH} \quad \mathrm{EU}:=\frac{\mathrm{AH} \cdot \mathbf{E K}}{\mathrm{AC}_{\mathbf{0}}}\)
\[
\mathbf{E U}=0.287
\]


\section*{Angles and the Ellipse 050801.mcd}
\[
\mathrm{AC}:=1 \quad \mathrm{CP}:=\sqrt{2 \mathrm{AC}^{2}}
\]
\[
\mathbf{A P}:=\mathbf{A C} \quad \mathbf{E P}:=\mathbf{C P}
\]
\[
\mathbf{C E}:=\sqrt{\mathrm{AC}^{2}+(\mathbf{A P}+\mathbf{E P})^{2}}
\]
\[
\text { EK }:=\text { CE EH }:=\mathbf{C E}
\]
\[
\mathrm{AE}:=\sqrt{\mathrm{CE}^{2}-\mathrm{AC}^{2}}
\]
\[
\mathbf{A H}:=\mathbf{E H}-\mathbf{A E}
\]
\[
\text { AT }:=\mathbf{A H} \quad \text { EU }:=\frac{\mathbf{A T} \cdot \mathbf{E K}}{\text { AC }}
\]

\[
\frac{\mathbf{E K}}{\mathbf{E U}}-(1+\sqrt{2}+\sqrt{2} \cdot \sqrt{2+\sqrt{2}})=0
\]

An Elliptic Progression takes place on a finite length of line. An Elliptic Progression may be defined in terms of a number of diameters of smaller circles, each defined by the same angle from the circumferance of the larger circle and from the center of a circle to its perimeter. When the sum of the number of those diameters minus one half the starting diameter are equal to the radius of the larger circle, the angle that defined the smaller circles will divide the larger circle evenly and the same number of times as the total number of smaller circles. This means that the division of a circle into equal angles may be expressed as an elliptic function.

\section*{Straight Line Ellipse}
 041904

\section*{Cardinal}
\[
\begin{aligned}
& \mathbf{U}:=\mathbf{1} \quad \mathbf{R}_{1}:=3 \\
& \mathbf{R}_{\mathbf{2}}:=\mathbf{2} \quad \text { AC }:=\mathbf{U} \\
& \mathbf{B E}:=\mathbf{A C} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{\mathbf{R}_{\mathbf{1}}} \\
& \mathbf{A B}:=\frac{\mathbf{A C}}{\mathbf{R}_{\mathbf{2}}} \quad \mathbf{A E}:=\sqrt{\mathbf{B E}^{2}-\mathbf{A B}}{ }^{\mathbf{2}} \\
& \mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathbf{D H}:=\frac{\mathbf{A E} \cdot \mathbf{B D}}{\mathbf{B E}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{A H}:=\mathbf{A B}-\mathbf{B H} \quad \mathbf{A D}:=\sqrt{\mathbf{A H}^{2}+\mathbf{D H}^{2}} \\
& \mathbf{A D}:=\frac{\mathbf{U}}{\left(\mathbf{R}_{1} \cdot \mathbf{R}_{2}\right)} \cdot \sqrt{\left(\mathbf{R}_{1}\right)^{2}-2 \cdot \mathbf{R}_{1}+\left(\mathbf{R}_{2}\right)^{2}} \quad \frac{\sqrt{\left(\mathbf{R}_{1}\right)^{2}-2 \cdot R_{1}+\left(\mathbf{R}_{2}\right)^{2}}}{\mathbf{R}_{1} \cdot \mathbf{R}_{2}}-\frac{\mathbf{A D}}{\mathbf{U}}=0
\end{aligned}
\]
Ordinal

\[
\begin{aligned}
& \mathbf{N}_{1}:=1.344 \quad \mathbf{N}_{2}:=.3 \\
& \mathbf{N}_{3}:=.5
\end{aligned}
\]
\[
\mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B D}:=\mathbf{N}_{\mathbf{2}}
\]
\[
\mathbf{A B}:=\mathbf{N}_{\mathbf{3}} \quad \mathbf{A F}:=\mathbf{A C}
\]
\[
\mathbf{B E}:=\mathrm{AC} \quad \mathbf{A E}:=\sqrt{\mathbf{B E}^{2}-\mathrm{AB}^{2}}
\]
\[
\mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathrm{DH}:=\frac{\mathbf{A E} \cdot \mathbf{B D}}{\mathbf{B E}}
\]
\[
\mathbf{A H}:=\mathbf{A B}-\mathbf{B H}
\]
\[
\sqrt{\frac{1}{N_{1}} \cdot\left[\left(N_{3}\right)^{2} \cdot N_{1}-2 \cdot\left(N_{3}\right)^{2} \cdot N_{2}+\left(N_{2}\right)^{2} \cdot N_{1}\right]}-A D=0
\]
\[
\mathbf{A D}:=\sqrt{\mathbf{A H ^ { 2 }}+\mathbf{D H ^ { 2 }}}
\]

\section*{Straight Line Ellipse}

\section*{041904B}
\[
\mathbf{N}_{1}:=1.344 \quad \mathbf{N}_{2}:=.415
\]
\[
\mathbf{N}_{\mathbf{3}}:=\mathbf{1 . 1 0 2}
\]
\[
\mathbf{A C}:=\mathbf{N}_{1} \quad \mathbf{B D}:=\mathbf{N}_{\mathbf{2}}
\]
\[
\mathbf{A B}:=\mathbf{N}_{\mathbf{3}} \quad \mathbf{A F}:=\mathbf{A C}
\]
\[
\mathbf{B E}:=\mathbf{A C} \quad \mathbf{A E}:=\sqrt{\mathbf{B E}^{2}-\mathbf{A B}^{2}}
\]
\[
\mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathbf{D H}:=\frac{\mathbf{A E} \cdot \mathbf{B D}}{\mathbf{B E}}
\]
\[
\mathbf{A H}:=\mathbf{A B}-\mathbf{B H}
\]
\[
\mathrm{AD}:=\sqrt{\mathrm{AH}^{2}+\mathrm{DH}^{2}}
\]
\[
A D:=\sqrt{\frac{1}{N_{1}}\left[\left(N_{3}\right)^{2} \cdot N_{1}-2 \cdot\left(N_{3}\right)^{2} \cdot N_{2}+\left(N_{2}\right)^{2} \cdot N_{1}\right]}
\]


\section*{Another Ellipse 031405a}

The locus formed by N and I as determined by L provides an ellipse. Privide an Algebraic name for the Major and Minor Axis.
\[
\mathbf{N}_{1}:=1.25 \quad \mathbf{N}_{2}:=3
\]
\[
\mathbf{A C}:=\mathbf{N}_{1} \quad \mathbf{A D}:=\mathbf{N}_{2}
\]
\[
\mathbf{D V}:=\mathbf{A C} \quad \mathbf{A V}:=\sqrt{\mathbf{A D}^{2}+\mathbf{D V}}
\]
\[
\mathbf{A F}:=\mathbf{2} \cdot \mathbf{A C} \quad \mathbf{V X}:=\mathbf{A F}-\mathbf{A D}
\]

\[
\begin{aligned}
& \mathbf{A Y}:=\frac{\mathbf{A V} \cdot \mathbf{A C}}{\mathbf{A C}-\mathbf{V X}} \\
& \mathbf{A G}:=\frac{\mathbf{A D} \cdot \mathbf{A Y}}{\mathbf{A V}} \\
& \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A C}+\mathbf{A D}} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \\
& \mathbf{B G}:=\mathbf{B C}+\mathbf{C G} \\
& \mathbf{B E}:=\frac{\mathbf{B G}}{\mathbf{2}} \\
& \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \mathbf{E S}:=\mathbf{B E} \\
& \mathbf{C S}:=\sqrt{\mathbf{E S}}{ }^{2}-\mathbf{C E} \\
& \mathbf{C R}:=\frac{\mathbf{D V} \cdot \mathbf{A C}}{\mathbf{A D}}
\end{aligned}
\]

\(E Z-\frac{\mathbf{N}_{1}{ }^{2} \cdot \sqrt{\mathbf{N}_{2}{ }^{2}-\mathbf{N}_{1}{ }^{2}}}{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)}=0\)
BG \(-\frac{2 \cdot \mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}}{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)}=0\)



\[
\begin{aligned}
& \mathrm{AE}=2.069 \text { inches } \\
& \mathrm{CE}=0.529 \text { inches }
\end{aligned}
\]

\(\mathrm{LC}=0.885\) inches
\(\mathrm{CD}=0.227\) inches
\(\frac{\mathrm{AE}}{\mathrm{CE}}=3.909\)
\(\frac{L C}{C D}=3.909\)
\(\frac{\mathrm{AE}}{\mathrm{CE}}-\frac{\mathrm{LC}}{\mathrm{CD}}=0.000\)

\[
\begin{aligned}
& \mathrm{AE}=2.069 \text { inches } \\
& \mathrm{CE}=4.062 \text { inches }
\end{aligned}
\]

\[
\mathrm{LC}=0.885 \text { inches }
\]
\[
\mathrm{CD}=1.739 \text { inches }
\]
\[
\frac{\mathrm{AE}}{\mathrm{CE}}=0.509
\]
\[
\frac{\mathrm{LC}}{\mathrm{CD}}=0.509
\]
\[
\frac{\mathrm{AE}}{\mathrm{CE}}-\frac{\mathrm{LC}}{\mathrm{CD}}=0.000
\]

Elipse Projected From a Perpendicular.
Let AC be some perpendicular on some line GH.
\(\mathrm{N}_{1}:=1.9167\)
\(\mathbf{N}_{2}:=. \mathbf{3 2 4 4}\)
\(\mathrm{N}_{3}:=.437\)
\[
\begin{aligned}
& \mathbf{A C}:=\mathbf{N}_{1} \quad \mathbf{C D}:=\mathbf{N}_{2} \quad \mathbf{C E}:=\mathbf{C D} \quad \mathbf{C G}:=\sqrt{\mathbf{C E} \cdot \mathbf{A C}} \quad \mathbf{G H}:=\mathbf{2} \mathbf{C G} \\
& \mathbf{G I}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{C I}:=\mathbf{C G}-\mathbf{G I} \\
& \mathbf{A D}:=\mathbf{A C}-\mathbf{C D} \quad \mathbf{A I}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C I}^{2}} \quad \mathbf{A M}:=\frac{\mathbf{A D}}{2}
\end{aligned}
\]

\[
\mathbf{D M}:=\mathbf{A M}
\]
\[
\mathbf{D U}:=\frac{\mathbf{C I} \cdot \mathbf{A D}}{\mathbf{A I}}
\]
\[
\mathbf{A U}:=\frac{\mathbf{A C} \cdot \mathbf{A D}}{\mathbf{A I}}
\]
\[
\mathbf{I U}:=\mathbf{A I}-\mathbf{A U}
\]

AL \(:=\frac{\mathbf{D U} \cdot \mathbf{A I}}{\mathbf{I U}}\)


\(\mathrm{AB}:=\mathbf{N}_{1} \quad \mathbf{A H}:=\mathbf{N}_{2} \quad \mathrm{BH}:=\sqrt{\mathrm{AB}^{2}+\mathrm{AH}^{2}} \quad \mathrm{GO}:=\frac{\mathrm{AB} \cdot \mathbf{2} \cdot \mathrm{AB}}{\mathrm{BH}}\)
HO \(:=\mathbf{B H}-\mathbf{G O} \quad \mathrm{DH}:=\frac{\mathrm{BH} \cdot \mathrm{BH}}{\mathrm{HO}} \quad \mathrm{AC}:=\frac{\mathbf{A B} \cdot \mathrm{DH}}{\mathrm{BH}} \quad \mathrm{BO}:=\sqrt{\mathrm{BH}^{2}-\mathrm{HO}^{2}}\)
DG \(:=\frac{\mathrm{BO} \cdot \mathrm{BH}}{\mathrm{HO}} \quad \mathrm{DE}:=\frac{\mathrm{BH} \cdot \mathrm{DG}}{\mathrm{AB}} \quad \mathrm{CD}:=\frac{\mathrm{DG}^{2}}{\mathrm{DE}} \quad \mathrm{BC}:=\mathrm{AC}-\mathrm{AB}\)
\(\mathrm{CE}:=\mathrm{DE}-\mathrm{CD} \quad \frac{\mathrm{CE}}{\mathrm{BC}}-\left(\frac{\mathrm{AH}}{\mathrm{AB}}\right)^{3}=0 \quad \frac{\mathrm{~N}_{2}^{3}}{\mathrm{~N}_{1}^{3}}-\frac{\mathrm{CE}}{\mathrm{BC}}=0\)

More \(\left(\mathbf{A}^{\mathbf{3}} \cdot \mathbf{N}\right)-(\mathbf{N}-1) \cdot \mathbf{A} \quad\) Let \(\mathrm{N}_{3}\) be N
\[
\begin{aligned}
& \mathbf{B N}:=\frac{\mathbf{B C}}{\mathbf{N}_{3}} \quad \mathrm{KN}:=\frac{\mathbf{C D}}{\mathbf{N}_{3}} \mathbf{C G}:=\mathbf{A C}+\mathbf{A B} \quad \mathbf{G N}:=2 \cdot \mathbf{A B}+\frac{\mathbf{B C}}{\mathbf{N}_{3}} \\
& \mathbf{N R}:=\frac{\mathbf{C E} \cdot \mathbf{G N}}{\mathbf{C G}}\left[\frac{\mathbf{N}_{\mathbf{2}}^{3}}{\mathbf{N}_{\mathbf{1}}^{3}} \cdot \mathbf{N}_{3}-\frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{3}-\mathbf{1}\right)}{\mathbf{N}_{\mathbf{1}}}\right]-\frac{\mathbf{N R}}{\mathbf{B N}}=\mathbf{0}
\end{aligned}
\]
\[
\frac{A H}{A B}=2 \quad \frac{C E}{B C}=8 \quad \frac{N R}{B N}=26
\]
\[
2^{3} \cdot 4-(2 \cdot 3)=26
\]


\section*{Just Another Ellipse}

033105b
Given the difference between the foci and difference between the proportional radii, etc., etc.
\[
N_{1}:=1.708 \quad N_{2}:=.=693 \quad N_{3}:=1.032 \quad N_{4}:=2.435
\]
\[
\mathbf{D E}:=\mathbf{N}_{1} \quad \text { BC }:=\mathbf{N}_{2} \quad \text { FG }:=\mathbf{D E}+\mathbf{B C} \quad \mathbf{A B}:=\frac{\mathbf{B C}}{2} \quad \text { AD }:=\mathbf{N}_{3}
\]
\[
\mathbf{C D}:=\mathbf{A D}+\mathbf{A B} \quad \mathbf{B E}:=\mathbf{D E}-\mathbf{A D}+\mathbf{A B} \quad \mathbf{E H}:=\mathbf{B E} \quad \mathbf{D H}:=\mathbf{C D}
\]

041205

\[
\begin{aligned}
& \mathbf{N}_{1}:=2.188 \quad \mathbf{N}_{2}:=.278 \\
& \mathbf{N}_{3}:=\mathbf{3 . 0 9 5} \\
& \mathbf{C D}:=\mathbf{N}_{1} \quad \mathbf{C O}:=\frac{\mathbf{C D}}{2} \\
& \mathbf{E F}:=\mathbf{N}_{2} \quad \mathbf{C E}:=\frac{\mathrm{CD}}{\mathbf{N}_{3}} \\
& \mathbf{C G}:=\mathbf{C E}+\mathbf{E F} \\
& \mathbf{D H}:=\mathbf{C D}-\mathbf{C G}+\mathbf{2} \cdot \mathbf{E F}
\end{aligned}
\]
\[
\mathbf{I P}:=\frac{\sqrt{(-\mathbf{C D}+\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}+\mathbf{C I})(\mathbf{C D}-\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}-\mathbf{C I})}}{\mathbf{2} \cdot \mathbf{C D}}
\]


\(\mathbf{N}^{\mathbf{3}} \mathrm{N}\) Cubed 041305 b
\[
\begin{aligned}
& \mathbf{N}_{1}:=1 \quad \mathbf{N}_{2}:=36 \\
& \text { DH }:=\mathbf{N}_{1} \text { FH }:=\mathbf{N}_{2} \\
& \text { DF }:=\mathbf{D H}+\mathbf{F H} \quad \text { AD }:=\frac{\text { DF }}{2} \\
& \text { EH }:=\sqrt{\text { DH FH }} \quad \text { HI }:=\frac{\text { EH } \cdot \mathbf{A D}}{\text { FH }} \\
& \text { HM }:=\mathbf{E H}-2 \cdot(\mathbf{E H}-\mathbf{H I}) \\
& \frac{\text { FH }}{\mathbf{H M}}-\left(\frac{\text { DH }}{\mathbf{H M}}\right)^{\mathbf{3}}=\mathbf{0}
\end{aligned}
\]
\[
\mathrm{DF}:=\sqrt{\mathrm{DH}^{2}+\mathbf{E H ^ { 2 }}} \quad \mathrm{EF}:=\sqrt{\mathrm{FH}}{ }^{2}+\mathbf{E H ^ { 2 }}
\]
\[
\frac{F H}{H M}-\left(\frac{E F}{D F}\right)^{3}=0
\]
\[
\frac{\mathrm{FH}}{\mathrm{HM}}=216 \quad\left(\frac{\mathrm{FH}}{\mathrm{DH}}\right)^{1.5}=216
\]


\section*{042205B}

Given the major axis and the difference between the two foci, what is the minor axis?
\[
\mathbf{N}_{1}:=\mathbf{2 . 6 0 4}
\]
\[
\mathbf{N}_{2}:=\mathbf{2 . 2 3 4}
\]
\[
\begin{aligned}
& \text { DE }:=\mathbf{N}_{1} \quad \text { FI }:=\mathbf{N}_{2} \quad \text { EI }:=\frac{\text { DE }-\mathbf{F I}}{2} \quad \text { DI }:=\mathbf{D E}-\mathbf{E I} \quad \text { EP }:=\sqrt{\text { EI } \cdot \mathbf{D I}} \\
& \text { AQ }:=\mathbf{E P}
\end{aligned}
\]
\[
A Q-\frac{1}{2} \cdot \sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}=0
\]
\[
\mathbf{N}_{\mathbf{2}}:=\mathbf{A} \mathbf{Q}
\]

What are the foci if given the major and minor?
\[
F I-\sqrt{N_{1}^{2}-4 \cdot N_{2}^{2}}=0
\]
\[
S_{1}^{3} x_{1}^{0} 0
\]

\section*{Introduction}

The most important idea found in philosophy is the relation between the ability to reason and human will. The most important idea found in religion is the relation between the ability to reason and human will. Plato tried to teach the distinction between human activity and human will in the Gorgias-what we do and what we will are not the same. The Judeo-Christian Scriptures are written in such a manner as to test for it.

The easiest way to understand the concept is examine it by example. If the cardio-vascular system did not function, one could not say that that system supported the life of an individual. If our digestive system did not function, one could not say that that system supported our life. If our mind does not function, one cannot say that man has human willhe may do as he pleases, but it is not human will-and consequently his is not actually alive-his existence is ephemeral.

If one were able to solve for the name of the Beast in the book of Revelation, one may come to define a human body life system, those systems whose function determine if we are alive or dead, something like:-

A human body life system are those human body systems which must acquire something from the environment, process what it has acquired in order to make a product that sustained and promoted the life of the human body.

The fact that the puzzle would be solved by a particular individual at a particular time in history speaks volumes for its validity-the validity of the concept itself. That individual is not different from other men-the messenger is not the message.

The human mind is that life system which must acquire form from the environment and apply those forms as human behavior that sustains and promotes the life of man. If one's mind were functioning correctly, they could take the puzzle step by step and demonstrate that the Beast is the Spirit of Truth. The mental tests in the Scripture are extensiveand as it is written in them, they are sealed-the seal is simply due to the fact that the mind of man cannot yet process information correctlyin other words, the seal is nothing mystical-a biological fact is employed in their writing. All knowledge and learning is not for its own sake, that is self-referential non-sense, it is for the hope that one day man will be able to live.

Geometry is an elementary craft that teaches about the application of form to a given material difference. Hither-to-now it has been a craft whose foundation has been enumerated. I will not refer to the so called
non-Euclidean Geometries for they are not Geometries at all, the contradictions in them are so numerous and fundamental they are a joke. One cannot argue with someone who claims that a single difference is an example of a multi-difference-as if two precedes one. Or those who effectively believe that two exists but not one. Their minds use words, but not the ideas the words designate. If one has had any contact at all with elementary Set Theory, or if one understood the writings of Plato, one would know that there are two and only two methods of constructing a set, enumeration and definition. This is because the most elementary construction of any thing is the application of form to material. A thing is any material in any form or shape. This fact determines the elements of grammar, the elements of all reasoning. As enumeration is to material, so definition is to form, as Plato tried to get his readers to abstract-however-lacking the ability of abstraction, no words cannot correct that defect.

A body life system can either abstract form from a thing, in which case it must supply the material for the form in order to construct a thing that sustains and promotes the life of the body, or it abstracts material from a thing and it must supply a form for that material in order to construct a thing that sustains and promotes human life. For example, when we see a thing, the material of it does not end up in our head, or when we eat something we do not become its form. I am only going to touch on these matters here as my main goal is the introduction of Geometry on the basis of Definition-for it is this understanding of Geometry by which the Delian Problem can be and is solved.

When Plato set the geometric tools themselves as straight edge and compass, he enumerated the foundation of Geometry. What would Geometry be like if one were to establish the foundation on definition?-a definition something like:-

A two dimensional Geometric tool is that geometric tool that produces one and only one difference between two points.
What this effectively does is establish that all of the geometric products, the things constructed will resolved into units-just like the foundation of Arithmetic, if Arithmetic were still pure. One can see that the straightedge is inducted, by definition into the class of geometric tools, the compass also is admitted by definition, but now there is one more tool-the concept of which is used in almost every geometric construction by the notion of ratio itself-that tool which produces the ellipse. In the ellipse, the difference between the two foci as the sum of the two radii is one. One can say that the straightedge produces the Unit of Discourse, the circle the Universe of Discourse, and the ellipse every ratio between the Unit and Universe of Discourse.

In this novel, for one can say that it is a novel, one will be led to a geometric figure whose root is in the square root to a figure that gives
every aspect of the ellipse that produces cube root abstractions. In effect, even the figure itself testifies to the fact that one has been conceptually missing the notion of what Geometry is.

I have omitted much material in this edition, as it will be placed in the other works-Three Pieces of Paper, and Eloi. The format is to present a graphic, a plate where the reader can actually do the example themselves, starting where they like, and then what I had once done with the graphic.

Two items one will find conspicuously absent from all of these works, Cartesian Co-ordinate systems and Trigonometry. Both of these deal with relative differences and are not part of pure Geometry. One should not actually even study these until they know the first principles of grammar. What is currently taught about them is full of misconceptions.

Informative through exercise. One can say that this work is an exercise in saying what we see. Every true formal presentation constructs a thing-one part is form, one part is material-the elementary Algebra is the tautologic-form based logic system, the figures are a relatiologic-a material based logic system. The fact that there must be these two in any valid presentation has long been missed in logic. A true formal system uses both languages, one a tautologic-one a relatiologic. In the ancient tradition, it means that constructability rules.

Enjoy. J.C.

\section*{The Delian Quest-1992}



\section*{920620 EP}


Given:
\(\qquad\)


\section*{A Duplicate Ratio 062092}

Given some point O place CE on BF such that \(O\) is the point of similarity.
\[
\begin{aligned}
& \text { CE := } \mathbf{5} \quad \mathrm{N}_{\mathbf{1}}:=\mathbf{2 . 3 2} \quad \mathrm{N}_{2}:=\mathbf{1 . 3 6} \\
& B F:=N_{1} \cdot C E \quad M O:=N_{2} \cdot C E \\
& \text { FM }:=\sqrt{2 \cdot \mathbf{B F}^{2}} \quad \text { AB }:=\frac{\mathbf{B F} \cdot \mathbf{M O}}{\text { FM }} \\
& \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \quad \mathbf{A Q}:=\frac{\mathbf{C E}}{2} \\
& \mathbf{D Q}:=\sqrt{\mathbf{A D}^{2}+\mathbf{A Q}^{2}} \mathbf{Q R}:=\mathbf{D Q} \quad \mathbf{Q P}:=\mathbf{D Q} \\
& \mathbf{A P}:=\mathbf{Q P}-\mathbf{A Q} \mathbf{A R}:=\mathbf{Q R}+\mathbf{A Q} \mathbf{A C}:=\mathbf{A P} \\
& \text { AE := AR AO := AF BC := AC - AB } \\
& \text { EF := AF - AE EK := EFBH := EK } \\
& \frac{B C}{B H}-\frac{A C}{A O}=0 \\
& \frac{\sqrt{2 \cdot \mathrm{~N}_{2}{ }^{2}+2 \cdot \mathrm{~N}_{2} \cdot \sqrt{2} \cdot \mathrm{~N}_{1}+1}-1}{2} \cdot \mathrm{CE}-\mathrm{AC}=0
\end{aligned}
\]


\section*{920812 EP}


Given:
\(\qquad\)

\section*{081292 Rusty Cube of a Sphere}

Given \(A B\), how close is \(B J\) to the cube root of \(A B\) taken as a sphere?


\section*{The Delian Quest-1993}



\section*{930108 EP}


Given:
\(\qquad\)

\section*{010893 Pythagoras Revisited}

Given \(A B, B C, A C\), what is \(C D\), \(A D, B D\) and \(C J ?\)
G

\[
\begin{aligned}
& \mathrm{AB}:=10 \quad \mathrm{~S}_{1}:=.467 \quad \mathrm{~S}_{2}:=.759 \\
& \mathrm{BC}:=\mathrm{S}_{1} \cdot \mathrm{AB} \quad \mathrm{AC}:=\mathrm{S}_{2} \cdot \mathrm{AB} \\
& \mathrm{AG}:=\mathrm{AC} \quad \mathrm{BH}:=\mathrm{BC} \quad \mathrm{AE}:=\frac{\mathrm{AG}^{2}}{\mathrm{AB}} \quad \mathrm{BF}:=\frac{\mathrm{BH}^{2}}{\mathrm{AB}} \\
& \mathrm{EF}:=\mathrm{AB}-(\mathrm{AE}+\mathrm{BF}) \mathrm{DE}:=\frac{\mathrm{EF}}{2} \quad \mathrm{DF}:=\mathrm{DE}
\end{aligned}
\]
\[
\mathrm{AD}:=\mathrm{AE}+\mathrm{DE} \frac{\mathrm{AB}}{2} \cdot\left(\mathrm{~S}_{2}{ }^{2}+1-\mathrm{S}_{1}{ }^{2}\right)-\mathrm{AD}=0 \quad \mathrm{BD}:=\mathrm{BF}+\frac{\mathrm{AB}}{2} \cdot\left(\mathrm{~S}_{1}{ }^{2}+1-\mathrm{S}_{2}{ }^{2}\right)-\mathrm{BD}=0
\]
\[
\mathrm{CD}:=\sqrt{\mathrm{AC}^{2}-\mathrm{AD}^{2}} \frac{\sqrt{\left(\mathrm{~S}_{1}+\mathbf{1}+\mathrm{S}_{2}\right) \cdot\left(-\mathrm{S}_{1}+\mathbf{1}+\mathrm{S}_{2}\right) \cdot\left(\mathrm{S}_{1}-\mathbf{1}+\mathrm{S}_{2}\right) \cdot\left(\mathrm{S}_{1}+\mathbf{1}-\mathrm{S}_{2}\right)}}{2} \cdot \mathrm{AB}-\mathrm{CD}=\mathbf{0}
\]

\[
\begin{aligned}
& \mathrm{AJ}:=\frac{\mathrm{AB}}{2} \mathrm{JD}:=\mathrm{AD}-\mathrm{AJ} \quad \mathrm{CJ}:=\sqrt{\mathrm{JD}^{2}+\mathrm{CD}^{2}} \\
& \frac{\mathrm{AB}}{2} \cdot \sqrt{2 \cdot \mathrm{~S}_{2}{ }^{2}-1+2 \cdot \mathrm{~S}_{1}{ }^{2}}-\mathrm{CJ}=0 \\
& \left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)-\left(\frac{\mathrm{AB}^{2}}{2}+2 \cdot \mathrm{CJ}^{2}\right)=0
\end{aligned}
\]

The sum of the squares on any two sides of any triangle is equal to the sum of half the square on the remaining side plus twice the square on the medial bisector (CJ).


\section*{930603 EP}


Given:
\(\qquad\)

\section*{060393 Exploring The Curve CJ}

Given AG and GF = AG/3 and any \(A C\), is \(B D\) the square root of \(A B x\) DG?
\[
\begin{aligned}
& \text { AG }:=\mathbf{1 0} \quad \mathbf{N}:=.25409 \\
& \text { AC }:=\mathbf{N} \cdot \mathbf{A G} \quad \text { GF }:=\frac{\mathbf{A G}}{3} \quad \text { AE }:=\frac{\mathbf{A G}}{2} \\
& \text { EG }:=\text { AE } \quad \text { AF }:=\text { AG }-\mathbf{G F} \text { FM }:=\sqrt{\mathbf{A F} \cdot \mathbf{G F}}
\end{aligned}
\]
\[
\mathbf{G M}:=\sqrt{\mathbf{G F}^{2}+\mathbf{F M}^{2}} \mathbf{G N}:=\mathbf{G M} \quad \mathbf{E N}:=\sqrt{\mathbf{G N}^{2}-\mathbf{E G}^{2}}
\]
\[
\text { NS := GM PN }:=\text { AE PS }:=\mathbf{N S}-\mathbf{P N}
\]
\[
\text { ST }:=2 \cdot \mathbf{G M} \quad \text { SQ }:=\mathrm{AC}+\mathrm{PS} \quad \text { QT }:=\mathbf{S T}-\mathrm{SQ}
\]
\[
\mathrm{QH}:=\sqrt{\mathrm{SQ} \cdot \mathrm{QT}} \quad \mathrm{CQ}:=\mathrm{EN} \quad \mathrm{CH}:=\mathrm{QH}-\mathrm{CQ}
\]
\[
\mathrm{AH}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CH}^{2}} \quad \mathrm{CG}:=\mathrm{AG}-\mathrm{AC} \quad \mathrm{GH}:=\sqrt{\mathrm{CG}^{2}+\mathrm{CH}^{2}} \quad \mathrm{AJ}:=\mathrm{AH} \quad \mathrm{AB}:=\frac{\mathrm{AJ}}{\mathrm{AG}}
\]
\[
\mathbf{G L}:=\mathbf{G H} \quad \mathbf{D G}:=\frac{\mathbf{G L}^{2}}{\mathbf{A G}} \mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G}) \sqrt{\mathbf{A B} \cdot \mathbf{D G}}-\mathbf{B D}=\mathbf{0}
\]
\[
\frac{A G}{3} \cdot\left[\sqrt{1+12 \cdot\left(N-N^{2}\right)}-1\right]-B D=0
\]


\section*{930607 EP}


Given:
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{060793 For All Triangles Find BD}

Given \(A B, B C, A C, C D, A D\), find \(B D\)
To simplify use line names found in 010893
\(\mathbf{C E}:=\frac{\mathrm{CD}^{2}+\mathrm{AC}^{2}-\mathrm{AD}^{2}}{2 \cdot \mathrm{AC}} \quad \mathrm{CF}:=\frac{\mathrm{BC}^{2}+\mathrm{AC}^{2}-\mathrm{AB}^{2}}{2 \cdot \mathrm{AC}} \quad \mathrm{EF}:=\mathrm{CF}-\mathrm{CE}\)
\[
\begin{aligned}
& \mathrm{DE}:=\sqrt{\mathrm{CD}^{2}-\mathrm{CE}^{2}} \quad \mathrm{BF}:=\sqrt{\mathrm{BC}^{2}-\mathrm{CF}^{2}} \quad \text { GF }:=\mathrm{DE} \quad \mathrm{DG}:=\mathrm{EF} \\
& \text { BG : = BF - GF } \\
& \mathrm{BD}:=\sqrt{\mathrm{DG}^{2}+\mathrm{BG}^{2}} \\
& B D=3.983
\end{aligned}
\]

\section*{OR}
\[
\mathrm{BG}_{2}:=\mathrm{BF}+\mathrm{GF} \quad \mathrm{BD}_{2}:=\sqrt{\mathrm{DG}^{2}+\mathrm{BG}_{2}^{2}} \quad \mathrm{BD}_{2}=5.757
\]


\section*{930609 EP}


Given:
\(\qquad\)

\section*{060993 Rectangular Roots}
\[
\begin{aligned}
& \mathbf{A B}:=\mathbf{B F} \quad \mathbf{B C}:=\sqrt{\mathbf{B F}^{2}-\mathbf{C F}^{2}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \sqrt{\mathbf{C D} \cdot \mathbf{A C}}-\mathbf{D E}=0 \\
& \frac{\mathbf{A D}}{\mathbf{2}} \cdot[1+\sqrt{-(\mathbf{2} \cdot \mathbf{N}-1) \cdot(\mathbf{2} \cdot \mathbf{N}+1)}]-\mathbf{A C}=\mathbf{0} \\
& \text { rectangular roots of } \mathbf{D E} \text {. } \\
& \frac{\mathbf{A D}}{\mathbf{2}} \cdot[1-\sqrt{-(\mathbf{2} \cdot \mathbf{N}-1) \cdot(\mathbf{2} \cdot \mathbf{N}+1)}]-\mathbf{C D}=0
\end{aligned}
\]


\section*{930621 EP}


\section*{Given:}
\(\qquad\)


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{062193 Pyramid of Ratios I}

Divide AB by \(\mathbf{N}_{1}\) then divide CD by \(\mathbf{N}_{2}\), what are BF/EF and AC/AF?

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \delta:=\mathbf{1} . . \mathbf{N}_{\mathbf{2}} \\
& A B:=1 \quad A D:=\frac{A B}{N_{1}} \quad A L:=\frac{A B}{2} \\
& \mathbf{D L}:=\mathbf{A L}-\mathbf{A D} \quad \mathbf{A C}:=\sqrt{\frac{\mathbf{A B}^{2}}{2}} \\
& \mathbf{C L}:=\mathrm{AL} \mathbf{C D}:=\sqrt{\mathrm{DL}^{2}+\mathrm{CL}^{2}}
\end{aligned}
\]


\(\mathbf{A F}_{\delta}:=\frac{\mathbf{E H}_{\delta} \cdot \mathbf{A B}}{\mathbf{B H}_{\delta}} \quad \mathbf{B F}_{\delta}:=\frac{\mathbf{B E}_{\delta} \cdot \mathbf{A B}}{\mathbf{B H}_{\delta}} \quad \mathbf{E F}_{\delta}:=\mathbf{B F}_{\delta}-\mathbf{B E}_{\delta}\)
if \(\left(E F_{\delta}, \frac{\mathrm{BF}_{\delta}}{\mathbf{E F}_{\delta}}, \mathbf{0}\right)\)
\begin{tabular}{|c|}
\hline 3.75 \\
\hline 5 \\
\hline 7.5 \\
\hline 15 \\
\hline 0 \\
\hline
\end{tabular}
if \(\left(\mathbf{N}_{\mathbf{2}}-\delta, \frac{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{\mathbf{2}}-\delta}, \mathbf{0}\right.\)
\begin{tabular}{|c|}
\hline 3.75 \\
\hline 5 \\
\hline 7.5 \\
\hline 15 \\
\hline 0 \\
\hline
\end{tabular}
\(\frac{\mathrm{AC}}{\mathrm{AF}_{\delta}}\)
\begin{tabular}{|c|}
\hline 3.667 \\
\hline 2 \\
\hline 1.444 \\
\hline 1.167 \\
\hline 1 \\
\hline
\end{tabular}
\(\frac{\left(\mathbf{N}_{1}-1\right) \cdot \mathbf{N}_{2}+\delta}{\mathbf{N}_{1} \cdot \delta}\)
\begin{tabular}{|c|}
\hline 3.667 \\
\hline 2 \\
\hline 1.444 \\
\hline 1.167 \\
\hline 1 \\
\hline
\end{tabular}


\section*{930627 EP}


Given:
\(\qquad\)

\section*{062793 Describe A Circle About a Triangle}

What is the Algebraic name for the Radius circumscribing a Triangle? Let us suppose that the Letters of that name are simply S1, S2 and S3.
\[
\begin{aligned}
& \mathrm{AB}:=10 \quad \mathrm{~N}_{1}:=.87189 \\
& \mathbf{N}_{2}:=.2855 \quad B C:=A B \cdot \mathbf{N}_{1} \quad A C:=A B \cdot \mathbf{N}_{2} \\
& \mathrm{BK}:=\frac{\mathrm{AB}}{2} \quad \mathrm{AE}:=\mathrm{AC} \quad \mathrm{BF}:=\mathrm{BC} \\
& \mathbf{A G}:=\frac{\mathbf{A E}^{2}}{\mathbf{A B}} \mathbf{B J}:=\frac{\mathbf{B F}^{2}}{\mathbf{A B}} \quad \mathbf{G J}:=\mathbf{A B}-(\mathbf{A G}+\mathbf{B J}) \\
& \mathrm{HJ}:=\frac{\mathrm{GJ}}{2} \quad \mathrm{BH}:=\mathrm{BJ}+\mathrm{HJ} \quad \mathrm{CH}:=\sqrt{\mathrm{BC}^{2}-\mathrm{BH}^{2}} \\
& B N:=\frac{B C}{2} \quad B M:=\frac{B C \cdot B K}{B H} \quad M N:=B M-B N \\
& \text { DN }:=\frac{\mathbf{B H} \cdot \mathbf{M N}}{\mathbf{C H}} \text { BD }:=\sqrt{\mathbf{B N}^{2}+\mathrm{DN}^{2}}
\end{aligned}
\]

The Algebraic Name of the Radius.
\(\frac{A B \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\sqrt{\left(1+\mathbf{N}_{1}+\mathbf{N}_{2}\right)} \cdot \sqrt{\left(-1+\mathbf{N}_{1}+\mathbf{N}_{2}\right)} \cdot \sqrt{\left(1-\mathbf{N}_{1}+\mathbf{N}_{2}\right)} \cdot \sqrt{\left(1+\mathbf{N}_{1}-\mathbf{N}_{2}\right)}}-B D=0\)


\section*{930715 EP}


Given:
\(\qquad\)
\(\qquad\)

 ----------------------------------------
\(\qquad\) -----------------------------------------
\(\qquad\) ---------------------------------------
\(\qquad\)

\section*{071593 Pyramid of Ratios II}
\(A B\) is divided by N1 and AC and BD is divided by N2, what are EG/FG and CD/DF?
\[
\text { if }\left(\mathbf{F G}_{\delta}, \frac{\mathbf{E G}_{\delta}}{\mathbf{F G}_{\delta}}, \mathbf{0}\right) \quad \text { if }\left[\mathbf{N}_{2}-\delta, \frac{\mathbf{N}_{2}+\delta \cdot\left(\mathbf{N}_{1}-\mathbf{2}\right)}{\mathbf{N}_{2}-\delta}, \mathbf{0}\right]
\]
\begin{tabular}{|c|}
\hline 1.5 \\
\hline 2.333 \\
\hline 4 \\
\hline 9 \\
\hline 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 1.5 \\
\hline 2.333 \\
\hline 4 \\
\hline 9 \\
\hline 0 \\
\hline
\end{tabular}
if \(\left(\delta, \frac{\mathrm{CD}}{\mathrm{DF}_{\delta}}, \mathbf{0}\right.\)
\[
\text { if }\left[\delta, \mathbf{N}_{2} \cdot \frac{\left[\left(\mathbf{N}_{2}+\delta \cdot \mathbf{N}_{1}\right)-2 \cdot \delta\right]}{\left[\delta^{2} \cdot\left(\mathbf{N}_{1}-\mathbf{1}\right)\right]}, \mathbf{0}\right]
\]
\begin{tabular}{|c|}
\hline 15 \\
\hline 4.375 \\
\hline 2.222 \\
\hline 1.406 \\
\hline 1 \\
\hline
\end{tabular}

\footnotetext{
\begin{tabular}{|c|}
\hline 15 \\
\hline 4.375 \\
\hline 2.222 \\
\hline 1.406 \\
\hline 1 \\
\hline
\end{tabular}
}
\[
\begin{aligned}
& \mathrm{CL}:=\sqrt{\frac{\mathrm{AC}^{2}}{2}} \quad \mathrm{HK}_{\delta}:=\frac{\mathrm{DL} \cdot \mathrm{GH}_{\delta}}{\mathrm{CL}} \mathrm{EK}_{\delta}:=\mathbf{E H}_{\delta}+\mathrm{HK}_{\delta} \quad \mathrm{DJ}_{\delta}:=\frac{\mathrm{HK}_{\delta} \cdot \mathbf{D E}_{\delta}}{\mathrm{EK}_{\delta}} \quad \mathrm{FJ}_{\delta}:=\frac{\mathrm{GH}_{\delta} \cdot \mathbf{D E}_{\delta}}{\mathbf{E K}_{\delta}} \\
& \mathrm{DF}_{\delta}:=\sqrt{\left(\mathrm{DJ}_{\delta}\right)^{2}+\left(\mathrm{FJ}_{\delta}\right)^{2}} \quad \mathbf{E F} \boldsymbol{\delta}_{\delta}:=\frac{\mathbf{E G}_{\delta} \cdot \mathrm{DE}_{\delta}}{\mathbf{E K}_{\delta}} \mathrm{FG}_{\delta}:=\mathbf{E G}_{\delta}-\mathbf{E F _ { \delta }} \quad \mathbf{C D}:=\sqrt{\mathbf{C L}^{2}+\mathbf{D L}^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \delta:=\mathbf{1} . . \mathbf{N}_{\mathbf{2}} \\
& \mathrm{AB}:=1 \quad \mathrm{AD}:=\frac{\mathrm{AB}}{\mathrm{~N}_{1}} \quad \mathbf{A C}:=\sqrt{\frac{\mathbf{A B}^{2}}{2}} \mathrm{BD}:=\mathrm{AB}-\mathbf{A D} \\
& \mathbf{D E}_{\delta}:=\frac{\mathbf{B D} \cdot \delta}{\mathbf{N}_{2}} \quad \mathbf{A G}_{\delta}:=\frac{\mathbf{A C} \cdot \delta}{\mathbf{N}_{2}} \quad \mathbf{A E}_{\delta}:=\mathbf{A D}+\mathbf{D E}_{\delta} \\
& \mathbf{A H}_{\delta}:=\sqrt{\frac{\left(\mathbf{A G}_{\delta}\right)^{2}}{2}} \mathbf{G H}_{\delta}:=\mathbf{A H}_{\delta} \quad \mathbf{E H}_{\delta}:=A E_{\delta}-\mathbf{A H}_{\delta} \\
& E G_{\delta}:=\sqrt{\left(\mathbf{E H}_{\delta}\right)^{2}+\left(\mathbf{G H}_{\delta}\right)^{2}} \mathbf{A L}:=\frac{\mathbf{A B}}{2} \mathrm{DL}:=\mathrm{AL}-\mathbf{A D}
\end{aligned}
\]


\section*{930725 EP}


Given:
\(\qquad\)

\section*{072593 Pyramid of Ratios III}

\section*{Dividing DC by an number provides wht in terms of BE/BF and AF/CF?}




Given:
\(\qquad\)
-----------------------------------------
\(\qquad\)

\section*{110693 Gruntwork I on the Delian Solution}

Does \(\left(A B^{2} \times A H\right)^{1 / 3}=A C\) and \(\left(A B \times A H^{2}\right)^{1 / 2}=A E ?\)
\[
\begin{aligned}
& \mathbf{N}:=4 \quad \text { BH }:=1 \\
& \mathbf{B F}:=\frac{\mathbf{B H}}{2} \text { BD }:=\frac{\mathbf{B F}}{\mathbf{N}} \text { DH }:=\mathbf{B H}-\mathbf{B D} \\
& \text { DK }:=\sqrt{\text { BD } \cdot \text { DH }} \quad \text { BJ }:=\text { DK BO }:=\text { BH } \\
& \text { JO }:=\text { BJ }+ \text { BO JK }:=\text { BD CD }:=\frac{\mathrm{JK} \cdot \mathrm{DK}}{\mathrm{JO}} \\
& \text { KL }:=\text { DH LP }:=\text { JO DE }:=\frac{\text { KL } \cdot \mathrm{DK}}{\mathrm{LP}} \\
& \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \mathrm{CE}:=\mathrm{CD}+\mathrm{DE} \mathrm{MN}:=\mathrm{BC}
\end{aligned}
\]
GH \(:=\mathrm{MN} \quad \mathrm{CH}:=\mathrm{BH}-\mathrm{BC} \quad \mathrm{HN}:=\sqrt{2 \cdot \mathrm{CH}^{2}} \quad \mathrm{GM}:=\mathrm{HN} \quad \mathrm{EH}:=\mathrm{CH}-\mathrm{CEEG}:=\mathrm{EH}-\mathbf{G H}\) \(H Q:=\frac{G M \cdot E H}{E G}\) HO \(:=\sqrt{2 \cdot B^{2}} \quad\) OQ \(:=H Q-H O\) OR \(:=\sqrt{\frac{O Q^{2}}{2}} \quad A B:=O R \quad A C:=A B+B C\) \(A E:=A B+B D+D E \quad A H:=A B+B H \quad\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A E=0\)


\section*{931109 EP}


Given:
\(\qquad\)


With straight edge and compass only, solve the given problem. \(B H\) is the difference between the segments \(A H\) and AB.
CF is the difference between the cube root of \(A B\) squared by \(A H\) and the cube root of \(A H\) squared by \(A B\). Find \(A B\) and place the roots.


BH := \(\mathbf{3 . 4 3 7 5}\) N := \(\mathbf{1 . 3 2 5 3}\)
\(B G:=\frac{B H}{2} \quad C F:=\frac{B H}{N \cdot 3}\)
BL \(:=\) CF GP \(:=\) BG BK \(:=\frac{B L}{2}\)
BD := BK NP := BD GN := GP - NP
\(\mathbf{E N}:=\mathbf{B L}\) GE \(:=\sqrt{\mathbf{G N}^{2}-\mathbf{E N}^{2}}\)
GH := BG EF := BD
\[
\text { FH }:=\mathbf{G H}+\mathrm{GE}-\mathrm{EFFQ}:=\mathrm{FH} \text { FO }:=\mathrm{BL} \text { OQ }:=\mathrm{FQ}-\mathrm{FO} \quad \mathrm{MO}:=\mathrm{CF} \quad \mathrm{AF}:=\frac{\mathrm{MO} \cdot \mathrm{FQ}}{\mathrm{OQ}}
\]
\[
\text { AC }:=\mathbf{A F}-\mathbf{C F} \mathbf{A H}:=\mathbf{A F}+\mathbf{F H} \mathbf{A B}:=\mathbf{A H}-\mathbf{B H}
\]
\[
\frac{\mathbf{1} \cdot \mathbf{B H}}{3} \cdot \frac{[3 \cdot \mathbf{N}-\sqrt{3} \cdot \sqrt{(3 \cdot \mathbf{N}+1) \cdot(\mathbf{N}-1)}-1]}{[\mathbf{N} \cdot[\mathbf{3} \cdot \mathbf{N}+\sqrt{3} \cdot \sqrt{(3 \cdot \mathbf{N}+\mathbf{1}) \cdot(\mathbf{N}-\mathbf{1})}-\mathbf{3}]]}-\mathbf{A B}=\mathbf{0}
\]
\[
\left(\mathrm{AB}^{2} \cdot \mathrm{AH}\right)^{\frac{1}{3}}-\mathrm{AC}=0 \quad\left(\mathrm{AB} \cdot \mathrm{AH}^{2}\right)^{\frac{1}{3}}-\mathrm{AF}=0 \quad \frac{\mathrm{AH}}{\mathrm{AB}}=17.36924
\]

The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship.

\section*{931109 EP}


Given:
\(\qquad\)


Demonstrate the duiplicate ratio first.
110993 A

\[
\begin{aligned}
& \mathbf{C D}:=10 \quad \mathbf{N}:=1.2 \\
& \mathbf{A B}:=\frac{\mathbf{C D}}{\mathbf{N} \cdot 3} \quad \mathbf{A B}<\frac{\mathbf{C D}}{3}=1
\end{aligned}
\]

\[
\mathbf{A} \quad \mathbf{B}
\]
\[
\mathbf{C E}:=\frac{\mathbf{A B}}{2} \quad \mathbf{C F}:=\frac{\mathbf{C D}}{2} \quad \mathbf{G I}:=\mathbf{A B} \quad \mathbf{E F}:=\mathbf{C F}-\mathbf{C E}
\]
\[
\text { FI }:=\mathbf{E F} \quad \text { FG }:=\sqrt{\mathbf{F I}^{2}-\text { GI }^{2}} \quad \text { FJ }:=\mathbf{C F} \quad \text { FK }:=\frac{\text { FG•FJ }}{\text { FI }} \quad \text { JK }:=\frac{\text { GI•FJ }}{\text { FI }}
\]
\[
\mathbf{C K}:=\mathbf{C F}-\mathbf{F K}
\]

\[
\begin{aligned}
& \text { LO }:=\mathbf{A B} \quad \text { DF }:=\mathbf{C F} \\
& \mathbf{M N}:=\mathbf{A B}
\end{aligned}
\]
\[
\mathbf{C L}:=\frac{\mathbf{C K} \cdot \mathbf{L O}}{\mathbf{J K}}
\]
\(\mathbf{C L}:=\frac{\mathbf{C K} \cdot \mathrm{LO}}{\mathrm{JK}}\)
\[
\mathbf{D K}:=\mathbf{D F}+\mathbf{F K}
\] DK := DF + FK
\[
\text { DM }:=\frac{\mathbf{D K} \cdot \mathbf{M N}}{\mathbf{J K}}
\]
\[
\mathbf{C D}-(\mathbf{D M}+\mathbf{C L}+\mathbf{A B})=\mathbf{0} \quad \mathbf{L M}:=\mathbf{C D}-(\mathbf{D M}+\mathbf{C L}) \quad \mathbf{L M}-\mathbf{A B}=\mathbf{0}
\]
\[
\begin{aligned}
& \frac{\mathbf{D M}}{\mathbf{L M}}-\frac{\mathbf{L M}}{\mathbf{C L}}=0 \quad \frac{\mathbf{C D}}{\mathbf{N} \cdot 3}-\mathbf{L M}=0 \\
& {\left[\frac{\mathbf{C D}}{6} \cdot \frac{[3 \cdot \mathbf{N}-1-\sqrt{3} \cdot \sqrt{(3 \cdot \mathbf{N}+1) \cdot(\mathbf{N}-1)}]}{\mathbf{N}}\right]-\mathbf{C L}=0} \\
& \frac{2}{[3 \cdot \mathbf{N}-1-\sqrt{3} \cdot \sqrt{(3 \cdot \mathbf{N}+1) \cdot(\mathbf{N}-1)}]}-\frac{L M}{\mathbf{C L}}=0
\end{aligned}
\]

\section*{931109 EP}


Given:
\(\qquad\)


Demonstrate the duiplicate ratio first.
110993 B

\[
\text { AB := } 10 \quad \text { N }:=.15406
\]
\[
\mathbf{C D}:=\mathbf{3} \cdot \mathbf{A B}+\mathbf{N} \cdot \mathbf{A B}
\]


FK \(:=\frac{\text { FG•FJ }}{\text { FI }} \quad\) JK \(:=\frac{\text { GI•FJ }}{\text { FI }} \quad\) CK \(:=\) CF - FK \(\quad\) LO \(:=\) AB \(\quad\) DF \(:=\) CF
\(\mathrm{MN}:=\mathrm{AB} \quad\) CL \(:=\frac{\text { CK LO }}{\mathrm{JK}}\) DK \(:=\mathrm{DF}+\) FK \(\quad\) DM \(:=\frac{\text { DK } \cdot \text { MN }}{\text { JK }}\)
\(\mathbf{C D}-(\mathbf{D M}+\mathbf{C L}+\mathbf{A B})=\mathbf{0} \quad \mathbf{L M}:=\mathbf{C D}-(\mathbf{D M}+\mathbf{C L}) \quad \mathbf{L M}-\mathbf{A B}=\mathbf{0}\)
\(\frac{\mathbf{D M}}{\mathbf{L M}}-\frac{\mathbf{L M}}{\mathbf{C L}}=0 \quad \mathbf{A B} \cdot\left(1+\frac{\mathbf{N}-\sqrt{4 \cdot \mathbf{N}+\mathbf{N}^{2}}}{2}\right)-\mathbf{C L}=0\)


\section*{931110 EP}


Given:
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\) ------------------------------------\(\vdots\)
\(\qquad\)

\section*{111093 Gruntwork II on the Delian Solution}
\[
\begin{aligned}
& \text { N := } 4.846 \\
& \text { AE:= } 1 \\
& \text { DE }:=\frac{\mathbf{A E}}{\mathbf{N}} \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \mathbf{A H}:=\mathbf{A E} \\
& \text { AG }:=\mathbf{A D} \quad \mathbf{A C}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A E}} \quad \mathbf{A F}:=\mathrm{AC} \\
& \mathrm{AB}:=\frac{\mathrm{AC} \cdot \mathbf{A C}}{\mathrm{AD}} \\
& \left(A B^{2} \cdot A E\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A E^{2}\right)^{\frac{1}{3}}-A D=0 \\
& \frac{\mathrm{AE}}{\mathrm{AB}}=2 \quad \frac{\mathrm{AD}}{\mathrm{AB}}=1.588 \quad \frac{\mathrm{AC}}{\mathrm{AB}}=1.26
\end{aligned}
\]

\section*{Albebraic Names:}
\[
\frac{1}{N}-D E=0 \quad 1-\frac{1}{N}-A D=0 \quad \frac{(N-1)^{2}}{N^{2}}-A C=0 \quad \frac{(N-1)^{3}}{N^{3}}-A B=0
\]


\section*{931112 EP}


Given:
\(\qquad\)

111293 To Square A Circle Off The Base Of A Right Triangle.
Sometime in 1992, I remembered reading that some man spent some
 time in prison and learned the process for squaring a circle off the base of a right triangle but then history lost the figure, so I set out to find it - or something that could pass for it. It took a couple hours so I wonder what he did with the rest of his time?

Using the approximation, \(\pi=\) 22/7, square the circle off the base of a right triangle.
\(\mathrm{BF}:=1 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EF}:=\mathrm{BE} \quad \mathrm{EH}:=\mathrm{BE} \quad \mathrm{BD}:=\frac{3}{4} \cdot \mathrm{BE} \quad \mathrm{AB}:=\mathrm{BD}\)
\[
\begin{aligned}
& \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FK}:=\frac{\mathrm{EH} \cdot \mathbf{A F}}{\mathrm{AE}} \mathrm{CF}:=\mathrm{FK} \quad \mathrm{BC}:=\mathrm{BF}-\mathbf{C F} \\
& \mathrm{CG}:=\sqrt{\mathrm{BC} \cdot \mathbf{C F}} \quad \mathrm{FG}:=\sqrt{\mathbf{C F}^{2}+\mathrm{CG}^{2}} \quad \pi_{-} \mathbf{A}:=\frac{\mathrm{FG}^{2}}{\mathbf{B E}^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \pi=\mathbf{3 . 1 4 1 5 9 2 6 5 3 5 9} \\
& \pi_{-} A=\mathbf{3 . 1 4 2 8 5 7 1 4 2 8 5 7} \\
& \frac{\pi}{\pi_{-} A}=\mathbf{0 . 9 9 9 5 9 7 6 6 2 5 0 5 8 4 3}
\end{aligned}
\]



931118A EP
Given:
\(\qquad\)

\section*{111893 Exploring Cube Roots Plate A}

Using the parallel FO to project to the point of similarity for the square root, point \(L\) is used for the cube root.

\[
\begin{aligned}
& \mathbf{N}:=2 \\
& \text { BJ }:=1 \quad \text { BH }:=\frac{\text { BJ }}{2} \text { HL }:=\text { BH } \quad \text { BF }:=\frac{\text { BH }}{\mathrm{N}} \\
& \text { FH }:=\mathrm{BH}-\mathrm{BF} \text { HR }:=\mathrm{BJ} \text { FR }:=\sqrt{\mathrm{FH}^{2}+\mathrm{HR}^{2}} \\
& F P:=\frac{F^{2}}{F R} \quad P H:=\frac{H R \cdot F P}{F H} \quad L P:=\sqrt{H L^{2}-P^{2}} \\
& \text { FL }:=\mathbf{L P}-\text { FP DF }:=\frac{\text { FH•FL }}{\text { FR }} \text { DL }:=\frac{\text { HR } \cdot F L}{\text { FR }} \\
& \text { FO := BH FM := DL MO := FO - FM } \\
& \text { LM }:=\text { DF AF }:=\frac{\mathbf{L M} \cdot \mathbf{F O}}{\text { MO }} \text { AB }:=\mathbf{A F}-\mathbf{B F} \\
& \text { BQ := BJ BK := DL BD := BF - DF }
\end{aligned}
\]
\(\mathrm{KQ}:=\mathrm{BQ}+\mathrm{BK} \quad \mathrm{KL}:=\mathrm{BD} \quad \mathrm{BC}:=\frac{\mathrm{KL} \cdot \mathrm{BQ}}{\mathrm{KQ}} \quad \mathrm{DJ}:=\mathrm{BJ}-\mathrm{BD} \quad \mathrm{LN}:=\mathrm{DJ} \quad \mathrm{JS}:=\mathrm{BJ}\)
JN \(:=\) DL \(\quad\) NS \(:=\mathbf{J S}+\mathbf{J N} \quad\) GJ \(:=\frac{\mathbf{L N} \cdot \mathbf{J S}}{\text { NS }} \quad\) BG \(:=\mathbf{B J}-\mathbf{G J} \quad\) AC \(:=\mathrm{AB}+\mathbf{B C} \quad\) AG \(:=\mathrm{AB}+\mathrm{BG}\)
\(\mathbf{A J}:=\mathbf{A B}+\mathbf{B J}\)
\[
\left(A B^{2} \cdot A J\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A J^{2}\right)^{\frac{1}{3}}-A G=0
\]



931118B EP
Given:
\(\qquad\)

\section*{111893 Exploring Cube Roots Plate B}

If \(A L=1 / 2\) of \(C G\), then the circle \(L M\) passes through the square root of \(A B \times A K\), being point \(E\).

\[
\begin{aligned}
& \mathbf{N}:=1.2 \quad \text { BK := } 1 \\
& \mathbf{B H}:=\frac{\mathbf{B K}}{2} \quad \mathbf{B D}:=\frac{\mathbf{B H}}{\mathbf{N}} \quad \text { DK }:=\mathbf{B K}-\mathbf{B D} \\
& \text { DN }:=\sqrt{\text { BD } \cdot \text { DK }} \text { BQ }:=\text { BK } \quad \text { KS }:=\text { BK HR }:=\text { BK } \\
& \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B Q}}{\mathbf{B Q}+\mathbf{D N}} \mathrm{GK}:=\frac{\mathrm{DK} \cdot \mathrm{KS}}{\mathrm{KS}+\mathrm{DN}} \mathrm{BG}:=\mathrm{BK}-\mathbf{G K} \\
& \text { DH }:=\text { BH - BD FH }:=\frac{\text { DH } \cdot \mathbf{H R}}{\mathbf{H R}+\mathbf{D N}} \text { BF }:=\mathrm{BH}-\mathbf{F H} \\
& \text { CF := BF - BC AL := CF DF := BF - BD } \\
& \text { NO := DF FP }:=\text { BH PO }:=\text { FP - DN } \\
& \mathrm{AD}:=\frac{\mathrm{NO} \cdot \mathbf{D N}}{\mathrm{PO}} \quad \mathrm{AB}:=\mathrm{AD}-\mathbf{B D} \quad \mathrm{AB}=1.523
\end{aligned}
\]

AF := AB + BF LM := AF EL := AF AK := AD + DK
\[
\mathbf{A E}_{1}:=\sqrt{\mathbf{E L} \mathbf{L}^{2}-\mathbf{A L}^{2}} \quad \mathbf{A E} E_{2}:=\sqrt{\mathbf{A B} \cdot \mathbf{A K}} \quad \mathbf{A E} \mathbf{1}_{1}-\mathbf{A E}_{2}=0
\]


\section*{931118 C EP}


Given:
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{111893C Exploring Cube Roots}

The circle AO passes through point M.

\[
\begin{aligned}
& \text { N:= } 2 \\
& \mathrm{AB}:=\mathbf{N} \quad \mathrm{BK}:=1 \quad \mathrm{AK}:=\mathbf{B K}+\mathbf{A B} \\
& A C:=\left(A B^{2} \cdot A K\right)^{\frac{1}{3}} \quad A G:=\left(A B \cdot A K^{2}\right)^{\frac{1}{3}} \\
& \text { CG }:=A G-A C \quad C F:=\frac{C G}{2} \text { BH }:=\frac{B K}{2} \\
& \mathrm{AH}:=\mathrm{AB}+\mathrm{BH} \quad \mathrm{HP}:=\mathrm{BH} \quad \mathrm{AP}:=\sqrt{\mathrm{AH}^{2}+\mathrm{HP}^{2}} \\
& \text { AO }:=\frac{\mathrm{AP}}{2} \quad \text { DO }:=\frac{\mathrm{HP}}{2} \quad \mathrm{AF}:=\mathrm{AC}+\mathrm{CF} \text { AD }:=\frac{\mathrm{AH}}{2} \\
& \text { DF := AF - AD FM := CF MO := AO } \\
& \mathbf{M O}{ }^{2}-\left[\mathrm{DF}^{2}+(\mathrm{DO}+\mathbf{F M})^{2}\right]=0
\end{aligned}
\]


111893N
\[
\mathrm{AB}=0.547
\]
\[
\begin{aligned}
& \mathbf{N}:=1.5 \\
& \text { BJ := } 1 \\
& \text { BH }:=\frac{\mathbf{B J}}{2} \text { BD }:=\frac{\mathbf{B H}}{\mathbf{N}} \quad \mathbf{H J}:=\mathbf{B H} \\
& \begin{array}{l}
\text { BJ }:=1 \quad \text { BH }:=\frac{\text { BJ }}{2} \quad \text { BD }:=\frac{\text { BH }}{\mathrm{N}} \quad \text { HJ }:=\mathrm{BH} \\
\text { DH }:=\mathrm{BH}-\mathrm{BD} \quad \text { HR }:=\text { BJ DJ }:=\mathrm{DH}+\mathrm{HJ} \\
\text { DL }:=\sqrt{\text { BD•DJ }} \quad \text { DF }:=\frac{\text { DH } \cdot \text { DL }}{\text { DL +HR }}
\end{array} \\
& \begin{array}{l}
\text { BJ }:=1 \quad \text { BH }:=\frac{\text { BJ }}{2} \text { BD }:=\frac{B H}{\text { N }} \\
\text { DH }:=\text { BH - BD HR }:=\text { BJ DJ }:= \\
\text { DL }:=\sqrt{\text { BD•DJ }} \quad \text { DF }:=\frac{\text { DH } \cdot \text { DL }}{\text { DL +HR }}
\end{array} \\
& \text { FO }:=\text { BH BF }:=\text { BD + DF } \\
& \text { MO := FO - DL LM := DF } \\
& \mathrm{AF}:=\frac{\mathbf{L M} \cdot \mathrm{FO}}{\mathrm{MO}} \quad \mathrm{AB}:=\mathrm{AF}-\mathbf{B F} \\
& \mathrm{N}:=1.5
\end{aligned}
\]


\section*{931122 EP}

\section*{Given:}

\(\qquad\)


\section*{112293 Cube by Iteration}

When \(F_{1}\) and \(F_{2}\) are the same point on \(C\), then a sixth root series has been constructed. Use iteration to place \(F_{2}\) on \(F_{1}\).
\[
\mathbf{A B}:=\mathbf{1} \quad \mathbf{A E}:=\mathbf{2} \quad \delta:=\mathbf{0} . . \Delta
\]
\[
A C:=\sqrt{A B \cdot A E} \quad C E:=A E-A C C G:=\sqrt{A C \cdot C E} \quad A G:=\sqrt{A C^{2}+C G^{2}}
\]


Not a very promising prospect!


\section*{931124 EP}


Given:
\(\qquad\)


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) --------------------------------------
\(\qquad\)

\section*{112493 POR Series IV}

Generalize the work of 07/25/93 for dividing the base AE with K constant.

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{A E}:=\mathbf{1} \\
& \alpha:=\mathbf{1} . . \mathbf{N}_{1}-\mathbf{1} \quad \beta:=\mathbf{1} . . \mathbf{N}_{2}-\mathbf{1}
\end{aligned}
\]
\[
\mathrm{AB}:=\frac{\mathbf{A E}}{\mathbf{N}_{1}} \quad \mathbf{A D}:=\frac{\mathbf{A E}}{2} \quad \mathbf{D K}:=\mathrm{AD} \quad \mathrm{DE}:=\mathrm{AD}
\]
\[
\mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \quad \mathrm{BG}:=\frac{\mathrm{BK}}{\mathbf{N}_{2}} \quad \mathrm{BC}:=\frac{\mathrm{BD} \cdot \mathbf{B G}}{\mathrm{BK}}
\]
\[
\mathbf{C G}:=\frac{\mathrm{DK} \cdot \mathrm{BG}}{\mathrm{BK}} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} D F:=\frac{\mathrm{CG} \cdot \mathrm{DE}}{\mathrm{CE}} \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CG}^{2}}
\]
\[
\mathbf{E F}:=\sqrt{\mathbf{D E}^{2}+\mathbf{D F}^{2}} \mathbf{A H}:=\frac{\mathbf{D F} \cdot \mathbf{A E}}{\mathbf{E F}} \mathbf{E H}:=\frac{\mathbf{D E} \cdot \mathbf{A E}}{\mathbf{E F}} \mathbf{G H}:=\mathbf{E H}-\mathbf{E G} \quad \mathrm{FH}:=\mathbf{E H}-\mathbf{E F}
\]
\[
\text { FJ }:=\frac{\text { DF } \cdot \text { FH }}{\text { EF }} \quad \text { HJ }:=\frac{\text { DE FH }}{\text { EF }} \quad \text { DJ }:=\text { DF }+ \text { FJ JK }:=\text { DK - DJ HK }:=\sqrt{H J^{2}+J K^{2}}
\]
\[
\frac{\mathrm{AH}}{\mathrm{HK}}=0.265 \frac{\sqrt{2} \cdot \mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{1}-1\right) \cdot\left(\mathbf{N}_{2}-1\right)}=0.265 \quad{\operatorname{Series} A_{\alpha, \beta}}:=\frac{\sqrt{2} \cdot \mathbf{N}_{1} \cdot \beta}{2 \cdot\left(\mathbf{N}_{1}-\alpha\right) \cdot\left(\mathbf{N}_{2}-\beta\right)}
\]
\[
\text { SeriesAH }=\left[\begin{array}{llll}
0.265 & 0.707 & 1.591 & 4.243 \\
0.53 & 1.414 & 3.182 & 8.485
\end{array}\right]
\]
\[
\frac{\mathbf{E H}}{\mathbf{G H}}=2.85 \quad \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \frac{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-2 \cdot \mathbf{N}_{2}-\mathbf{N}_{1}+2}{\left(\mathbf{N}_{2}-1\right) \cdot\left(2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-2 \cdot \mathbf{N}_{2}+\mathbf{N}_{1}^{2}-2 \cdot \mathbf{N}_{1}+2\right)}=2.85
\]
\[
\operatorname{SeriesEH}_{\alpha, \beta}:=\mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \frac{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-2 \cdot \mathbf{N}_{2} \cdot \alpha-\mathbf{N}_{1} \cdot \beta+2 \cdot \alpha \cdot \beta}{\left(\mathbf{N}_{2}-\beta\right) \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \alpha-2 \cdot \mathbf{N}_{2} \cdot \alpha^{2}+\mathbf{N}_{1}{ }^{2} \cdot \beta-2 \cdot \mathbf{N}_{1} \cdot \alpha \cdot \beta+2 \cdot \alpha^{2} \cdot \beta\right)}
\]
SeriesEH \(=\left[\begin{array}{llll}2.85 & 3 & 3.643 & 6 \\ 1.65 & 2 & 2.786 & 5.25\end{array}\right]\)


\section*{931204 EP}


Given:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
 \(\vdots\)
\(\qquad\)

\section*{120493 Exponential Series \(\mathbf{M}^{\boldsymbol{\wedge}}\left(1 / \mathbf{2}^{\wedge} \mathbf{N}\right)\)}

Given some number, construct a two prime exponential series from it, such as a Quad Root Series, using the common segment, common

\[
\begin{aligned}
& \mathbf{M}:=8 \\
& \mathbf{A F}:=\mathbf{M} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \mathbf{B M}:=\sqrt{\mathbf{A B} \cdot \mathbf{B F}} \quad \mathbf{A M}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B M}^{2}} \\
& \mathbf{A N}:=\mathbf{A F} \quad \mathbf{A D}:=\mathbf{A M} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \\
& \text { DJ }:=\sqrt{\mathbf{A D} \cdot \mathbf{D F}} \quad \mathbf{A J}:=\sqrt{\mathbf{A D}^{2}+\mathbf{D J}^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \text { AK }:=\mathrm{AF} \text { AE }:=\mathrm{AJ} \quad \mathrm{AH}:=\mathrm{AD} \quad \mathrm{AC}:=\frac{\mathrm{AD} \cdot \mathbf{A H}}{\mathrm{AJ}} \\
& \left(A B^{3} \cdot A F^{1}\right)^{\frac{1}{4}}-\mathbf{A C}=0 \quad\left(A B^{2} \cdot \mathbf{A F}^{2}\right)^{\frac{1}{4}}-\mathbf{A D}=0 \quad\left(A B^{1} \cdot A F^{3}\right)^{\frac{1}{4}}-\mathbf{A E}=\mathbf{0} \\
& \mathbf{M}^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0} \\
& M^{\frac{2}{4}}-A D=0 \\
& \mathbf{M}^{\frac{3}{4}}-\mathbf{A E}=0
\end{aligned}
\]


\section*{931206 EP}


Given:
\(\qquad\)


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{120693 Alternate Method: Square Root} Common Segment Common Endpoint



\section*{120693B EP}


Given:



\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{120693B Gruntwork IV on the Delian Solution}

Are A, P and Q collinear? Are \(\mathbf{A}, \mathrm{K}\) and N collinear?
\[
\begin{aligned}
& \mathrm{N}:=\mathbf{5} \quad \mathrm{AC}:=\mathbf{1} \quad \mathrm{AJ}:=\mathrm{AC} \cdot \mathbf{N} \\
& \mathrm{AE}:=\left(\mathbf{A C}^{2} \cdot \mathbf{A J}\right)^{\left(\frac{1}{3}\right)} \mathrm{AG}:=\left(\mathbf{A C} \cdot \mathbf{A J}^{2}\right)^{\left(\frac{1}{3}\right)} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \\
& \mathbf{G J}:=\mathbf{C J}-\mathbf{C G} \quad \mathbf{G N}:=\sqrt{\mathbf{C G} \cdot \mathbf{G J}} \\
& \mathrm{AB}:=\frac{\mathrm{AE}}{2} \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{CH}:=\frac{\mathrm{CJ}}{2} \\
& \mathrm{BK}:=\mathrm{AB} \quad \mathrm{HK}:=\mathbf{C H} \quad \mathbf{H J}:=\mathbf{C H} \mathrm{AH}:=\mathrm{AJ}-\mathrm{HJ} \text { BH }:=\mathrm{AH}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BK}^{2}+\mathrm{BH}^{2}-\mathbf{H K}^{2}}{2 \cdot \mathrm{BH}} \\
& \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{D K}:=\sqrt{\mathbf{A D} \cdot \mathbf{D E}} \quad \mathbf{G Q}:=\sqrt{\mathbf{A G} \cdot \mathbf{G J}} \quad \mathbf{C P}:=\sqrt{\mathbf{A C} \cdot \mathbf{C E}} \\
& \frac{\mathbf{A G}}{\mathbf{G N}}-\frac{\mathbf{A D}}{\mathrm{DK}}=0 \quad \frac{\mathbf{A G}}{\mathbf{G Q}}-\frac{\mathbf{A C}}{\mathbf{C P}}=0
\end{aligned}
\]



\section*{931211 EP}

Given:
\(\qquad\)

\section*{121193}


The structure in red appears to be a constant.
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{6} \quad \text { AB }:=1 \quad \text { AL }:=\mathrm{AB} \cdot \mathbf{N} \\
& \mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{A E}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A L}\right)^{\frac{1}{3}} \\
& \mathbf{A J}:=\left(\mathbf{A B} \cdot \mathbf{A L}^{2}\right)^{\frac{1}{3}} \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \\
& \mathbf{J L}:=\mathbf{B L}-\mathbf{B J} \quad \mathbf{E J}:=\mathbf{A J}-\mathbf{A E} \quad \text { FJ }:=\frac{\mathbf{J L} \cdot \mathbf{E J}}{\mathbf{J L}+\mathbf{B E}} \\
& \text { FL }:=\mathbf{J L}+\mathbf{F J} \quad \mathbf{B F}:=\mathbf{B L}-\mathbf{F L} \quad \text { FP }:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}}
\end{aligned}
\]

KR \(:=\mathrm{BK} \quad\) KL \(:=\mathrm{BK} \quad\) FK \(:=\mathrm{FL}-\mathrm{KL} \quad\) IK \(:=\frac{\mathrm{FK} \cdot \mathbf{K R}}{\mathrm{KR}+\mathbf{F P}}\) AK \(:=\mathbf{B K}+\mathrm{AB} \quad \mathrm{AI}:=\mathrm{AK}-\mathrm{IK}\) \(\mathrm{AD}:=\frac{\mathrm{AI}}{2} \quad \mathrm{KT}:=\mathrm{BL} \quad \mathrm{FH}:=\frac{\mathrm{FK} \cdot \mathrm{FP}}{\mathrm{KT}+\mathrm{FP}} \quad \mathrm{AF}:=\mathrm{BF}+\mathrm{AB} \quad \mathrm{AH}:=\mathrm{AF}+\mathrm{FH} \quad \mathrm{HI}:=\mathrm{AI}-\mathrm{AH}\) HO \(:=\sqrt{\text { AH } \cdot \mathrm{HI}} \mathrm{DN}:=\mathrm{AD} \quad \mathrm{KN}:=\mathrm{BK} \quad \mathrm{DK}:=\mathrm{AK}-\mathrm{AD} \quad \mathrm{CK}:=\frac{\mathrm{KN}^{2}+\mathrm{DK}^{2}-\mathrm{DN}^{2}}{2 \cdot \mathrm{DK}}\) \(\mathrm{AC}:=\mathrm{AK}-\mathbf{C K} \quad \mathbf{C I}:=\mathrm{AI}-\mathrm{AC} \quad \mathrm{CN}:=\sqrt{\mathrm{AC} \cdot \mathbf{C I}} \quad \frac{\mathrm{KR}}{\mathrm{IK}}-\frac{\mathrm{HO}}{\mathrm{HI}}=0 \quad \frac{\mathrm{AF}}{\mathrm{FP}}-\frac{\mathrm{AC}}{\mathrm{CN}}=0\)


\section*{931212 EP}


Given:
\(\qquad\)

\section*{121293 The Square Root}

Square root by common segment common midpoint. Given AFand BE is GH their root?
\[
\begin{aligned}
& \mathrm{N}:=5 \quad \mathrm{BE}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{B E} \cdot \mathbf{N} \\
& \mathbf{A D}:=\frac{\mathbf{A F}}{2} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \\
& \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{C G}:=\mathbf{A C} \\
& \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{G H}:=2 \cdot \sqrt{\mathbf{C G}^{2}-\mathbf{C D}^{2}} \\
& \mathbf{G H}-\sqrt{\mathbf{A F} \cdot \mathbf{B E}}=\mathbf{0}
\end{aligned}
\]


\section*{931212B EP}


Given:
\(\qquad\)
\(\qquad\)
\(\qquad\) ------------------------------------------
\(\qquad\)

\section*{121293B Generalize The Previous Square Root Figure}

\[
\begin{aligned}
& \mathbf{N}_{1}:=1 \quad \mathbf{N}_{2}:=3 \quad \mathbf{N}_{3}:=2 \\
& \mathbf{A F}:=\mathbf{N}_{1} \quad \mathbf{D F}:=\frac{\mathbf{A F}}{\mathbf{N}_{2}} \quad \mathbf{A D}:=\mathrm{AF}-\mathbf{D F} \\
& \mathbf{D E}:=\frac{\mathbf{D F}}{\mathbf{N}_{3}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E} \quad \mathbf{A B}:=\frac{\mathbf{A E}}{2} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{A B} \\
& \mathbf{G H}:=2 \cdot \sqrt{(\mathbf{B H})^{2}-(\mathbf{B D})^{2}} \\
& \text { GH }-2 \cdot \frac{\mathbf{N}_{1} \cdot \sqrt{\mathbf{N}_{2}-1}}{\mathbf{N}_{2} \cdot \sqrt{\mathbf{N}_{3}}}=\mathbf{0}
\end{aligned}
\]

The Delian Quest-1994



\section*{940406 EP}


Given:
\(\qquad\)
\(\qquad\)


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{040694 Inscribing A Circle In A Given Triangle}

Given three sides of a triangle, what is the length of the inscribed radius?



\section*{940421 EP}


\section*{Given:}
\(\qquad\)

\section*{042194 The Cradle}

Are A, M, N colinear?



\section*{940426 EP}


\section*{Given:}
\(\qquad\)

\section*{042694 Tangents and Similarity Points}

What is the Algebraic names of the similarity points \(O\) and \(P\) in relation to the radius of each circle and the difference between their centers?
\[
\text { I will work with point } \mathrm{O} \text { first. }
\]
Given \(R_{L}=\) large radius
\(\mathbf{R}_{\mathbf{S}}=\) small radius
\(D=\) difference between origins.
\(\mathbf{R}_{\mathrm{L}}:=\mathbf{4} \quad \mathrm{R}_{\mathrm{S}}:=\mathbf{1} \quad \mathrm{D}:=\mathbf{8}\)
AC := \(\mathbf{R}_{\mathbf{L}} \quad\) BD \(:=\mathbf{R}_{\mathbf{S}} \quad\) AB \(:=\mathbf{D}\)
\(\mathbf{D E}:=\mathbf{A B} \quad \mathbf{A E}:=\mathbf{B D} \quad \mathbf{C E}:=\mathrm{AC}-\mathbf{A E}\)
AO := \(\frac{\text { DE } \cdot \mathrm{AC}}{\text { CE }} \quad\) AO \(=10.667\)

EOR "External similarity point Origin to center of Radius Large"
\(\operatorname{EOR}_{\mathbf{L}}:=\) if \(\left(\mathbf{R}_{\mathbf{L}} \neq \mathbf{R}_{\mathbf{S}}\right.\), if \(\left.\mathbf{R}_{\mathbf{S}}>\mathrm{R}_{\mathbf{L}}, \mathbf{0}, \frac{\mathrm{D} \cdot \mathbf{R}_{\mathbf{L}}}{\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}}\right), \infty \quad \operatorname{EOR}_{\mathbf{L}}=10.667\)

What is the length of line (OG) tangent to both circles?
\(\mathrm{AG}:=\mathrm{AC} \quad \mathrm{GO}:=\sqrt{\mathrm{AO}^{2}-\mathrm{AG}^{2}} \quad \mathrm{GO}=9.888\)
And what is the formula?
\(\mathrm{EOT}_{\mathrm{LR}}\) " External similarity point Origin to Tangent (Large Radius)"
\(\operatorname{EOT}_{\mathbf{L R}}:=\mathbf{R}_{\mathbf{L}} \cdot \frac{\sqrt{\left.\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathrm{S}}+\mathbf{D}\right) \cdot\left(-\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathrm{S}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathrm{L}}-\mathbf{R}_{\mathrm{S}}} \quad \quad\) EOT \(_{\mathbf{L R}}=9.888\)

What is the length of the line tangent to the least circle (HO)?


EOT \(_{\mathbf{S R}}:=\mathbf{R}_{\mathbf{S}} \cdot \frac{\sqrt{-\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathrm{S}}-\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}} \quad\) EOT \(_{\mathbf{S R}}=2.472\)
Lastly what is the length of line from tangent to tangent of these circles?


J

GH := EOT LR - EOT \(_{\text {SR }}\)
\(\mathbf{G H}=7.416\)
And what is the formula? ETT "Tangent to Tangent"

ETT \(:=\sqrt{-\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}-\mathbf{R}_{\mathbf{S}}-\mathbf{D}\right)}\)
\(\mathbf{E T T}=7.416\)

I will now turn my attention to the point \(P\), the internal similarity point.
\[
\mathbf{A P}:=\frac{\mathbf{A B} \cdot \mathbf{A C}}{\mathbf{A C}+\mathbf{B D}} \quad \mathbf{A P}=6.4
\]

IOR "Internal similarity point to center of Radius Large"
\(\operatorname{IOR}_{\mathrm{L}}:=\mathrm{D} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}} \quad \operatorname{IOR}_{\mathrm{L}}=6.4\)
\[
\text { BP := AB - AP } \quad \text { BP = } 1.6
\]
\(I_{\text {I }}^{s}\) "Internal similarity point to center of Radius Small" J

\(I O T_{\mathrm{LR}}\) "Internal similarity point Origin to Tangent (Large Radius)"
J

\[
\begin{aligned}
& \mathrm{IOT}_{\mathbf{L R}}:=\mathbf{R}_{\mathbf{L}} \cdot \frac{\sqrt{\left.\left.-\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}-\mathbf{D}\right) \cdot \mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}}{\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}\right.} \\
& \mathrm{IOT}_{\mathbf{L R}}=4.996 \quad \mathbf{K P}:=\sqrt{\mathbf{B P}^{2}-\mathbf{B K}^{2}} \quad \mathrm{KP}=1.249
\end{aligned}
\]
\(10 T_{S R}\) "Internal similarity point Origin to Tangent (Small Radius)" J
\(A\)
C
IOT \(_{\mathbf{S R}}:=\mathbf{R}_{\mathbf{S}} \cdot \frac{\sqrt{-\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}-\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}+\mathbf{D}\right)}}{\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{S}}}\)
\[
\mathrm{IOT}_{\mathrm{SR}}=1.249 \quad \mathrm{JK}:=\mathrm{JP}+\mathrm{KP} \quad \mathrm{JK}=6.245
\]

ITT "Internal similarity point Tangent to Tangent"
ITT \(:=\sqrt{-\left(R_{L}+R_{S}-D\right) \cdot\left(R_{L}+R_{S}+D\right)} \quad\) ITT \(=6.245\)


\section*{940427 EP}


\section*{Given:}
\(\qquad\)

\section*{042794 The Chordal or Power Line of two Circles}

\(\mathrm{AB}:=1.323 \quad \mathrm{AD}:=.771 \quad \mathrm{BC}:=.448 \quad \mathrm{AE}:=\frac{\mathrm{AD}^{2}}{\mathrm{AB}} \quad \mathrm{BF}:=\frac{\mathrm{BC}^{2}}{\mathrm{AB}} \quad \mathrm{GH}:=\mathrm{AB}-(\mathrm{AE}+\mathrm{BF})\)
GI \(:=\frac{\mathbf{G H}}{2}\) AI \(:=\mathbf{A E}+\mathbf{G I} \quad\) BI \(:=\mathbf{B F}+\mathbf{G I}\)
\(\mathrm{D}:=\mathrm{AB} \quad \mathbf{R}_{1}:=\mathrm{AD} \quad \mathbf{R}_{2}:=\mathrm{BC}\)
\[
A I-\frac{\left(R_{1}^{2}+D^{2}-R_{2}^{2}\right)}{2 \cdot D}=0
\]

\[
B I-\frac{\left(R_{2}^{2}+D^{2}-R_{1}^{2}\right)}{2 \cdot D}=0
\]

If these equations look familiar, see 010893 The perpendicular of a Triangle would be on the powerline.
\[
\mathbf{I J}:=1.112 \quad \text { AJ }:=\sqrt{\mathbf{A I}^{2}+\mathbf{I J}^{2}} \quad \text { AK }:=\mathrm{AD}
\]
\[
\mathrm{JK}:=\sqrt{\mathrm{AJ}^{2}-\mathrm{AK}^{2}} \quad \mathbf{P}:=\mathrm{IJ}
\]
\[
J K-\frac{\sqrt{R_{1}^{4}-2 \cdot R_{1}{ }^{2} \cdot D^{2}-2 \cdot R_{1}^{2} \cdot R_{2}^{2}+D^{4}-2 \cdot R_{2}^{2} \cdot D^{2}+R_{2}^{4}+4 \cdot P^{2} \cdot D^{2}}}{2 \cdot D}=0
\]


\section*{940428 EP}


Given:
\(\qquad\)

Given three circles find their power point and if it is at all possible, cut all three perpendicularly. Demonstrate an Algebraic name for the power point and the length of the resultant tangent.

\[
\begin{aligned}
& \mathrm{AB}:=.438 \quad \mathrm{CD}:=.354 \quad \mathrm{EF}:=.471 \\
& \mathrm{AC}:=1.667 \quad \mathrm{AE}:=1.559 \quad \mathrm{CE}:=1.357 \\
& \mathbf{R}_{1}:=\mathrm{AB} \quad \mathrm{R}_{2}:=\mathrm{CD} \quad \mathrm{R}_{3}:=\mathrm{EF} \\
& \mathrm{D}_{1}:=\mathrm{AC} \quad \mathrm{D}_{2}:=\mathrm{AE} \quad \mathrm{D}_{3}:=\mathrm{CE} \\
& \mathrm{AG}:=\frac{\mathbf{R}_{1}{ }^{2}+\mathrm{D}_{1}{ }^{2}-\mathbf{R}_{2}{ }^{2}}{2 \cdot \mathbf{D}_{1}} \\
& \mathrm{AH}:=\frac{\mathbf{R}_{1}{ }^{2}+\mathrm{D}_{2}{ }^{2}-\mathbf{R}_{3}{ }^{2}}{2 \cdot \mathbf{D}_{2}}
\end{aligned}
\]
\[
A M:=\frac{\mathbf{D}_{2}{ }^{2}+\mathbf{D}_{1}{ }^{2}-\mathbf{D}_{3}^{2}}{2 \cdot \mathbf{D}_{1}} \quad \mathrm{EM}:=\sqrt{\mathrm{AE}^{2}-\mathrm{AM}^{2}} \quad \mathrm{AK}:=\frac{\mathrm{AE} \cdot \mathrm{AH}}{\mathrm{AM}} \quad \mathrm{GK}:=\mathrm{AK}-\mathrm{AG} \quad \mathrm{GJ}:=\frac{\mathrm{AM} \cdot \mathrm{GK}}{\mathrm{EM}}
\]
\[
\text { GJ }-\frac{1}{2} \cdot \frac{\left[\begin{array}{l}
\left.\mathbf{D}_{2}{ }^{2} \cdot \mathbf{D}_{1}{ }^{2}-\mathbf{D}_{2}{ }^{2} \cdot \mathbf{R}_{1}{ }^{2}+\mathbf{D}_{2}{ }^{2} \cdot \mathbf{R}_{2}{ }^{2}+\mathbf{D}_{3}{ }^{2} \cdot \mathbf{R}_{1}{ }^{2}-2 \cdot \mathbf{D}_{1}{ }^{2} \cdot \mathbf{R}_{3}{ }^{2}\right) \cdot \ldots \\
\left.+\mathbf{R}_{1}{ }^{2} \cdot \mathbf{D}_{1}{ }^{2}-\mathbf{D}_{3}{ }^{2} \cdot \mathbf{R}_{2}{ }^{2}-\mathbf{D}_{1}{ }^{4}+\mathbf{D}_{3}{ }^{2} \cdot \mathbf{D}_{1}{ }^{2}+\mathbf{D}_{1}{ }^{2} \cdot \mathbf{R}_{1}{ }^{2}+\mathbf{D}_{1}-\mathbf{D}_{3}\right) \cdot\left(\mathbf{D}_{2}+\mathbf{D}_{1}+\mathbf{D}_{3}\right) \cdot\left(\mathbf{D}_{2}-\mathbf{D}_{1}-\mathbf{D}_{3}\right) \cdot\left(\mathbf{D}_{2}-\mathbf{D}_{1}+\mathbf{D}_{3}\right)
\end{array}\right.}{=0}
\]

\[
\mathbf{A J}:=\sqrt{\mathbf{A G}^{2}+\mathbf{G \mathbf { J } ^ { 2 }}} \quad \mathbf{A N}:=\mathbf{A B} \quad \mathbf{J N}:=\sqrt{\mathbf{A J}^{2}-\mathbf{A N}}
\]
\[
\mathbf{J N}=0.786
\]



\section*{940429 EP}

\(\qquad\)

\section*{Given \(A B, A F, B E\) what is \(E F\) ?}

\[
\begin{aligned}
& \mathbf{N}_{1}:=2 \quad \mathbf{N}_{2}:=3 \quad \mathbf{N}_{3}:=5 \quad \text { AF }:=\mathbf{N}_{1} \quad \mathbf{B E}:=\mathbf{N}_{2} \quad \mathbf{A B}:=\mathbf{N}_{3} \\
& \mathbf{A D}:=\mathbf{B E} \quad \mathbf{D E}:=\mathbf{A B} \text { DF }:=\mathbf{A F}-\mathbf{A D} \text { EF }:=\left(\mathbf{D F}^{2}+\mathbf{D E}^{2}\right)^{\frac{1}{2}}
\end{aligned}
\]
\[
E F-\sqrt{N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+N_{2}^{2}+N_{3}^{2}}=0
\]


\section*{940430 EP}


Given:
\(\qquad\)

\section*{043094 Division \(\mathbf{N}^{2}\)}

\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \quad \mathbf{N}_{2}:=2 \\
& \mathbf{A B}:=\mathbf{N}_{1} \quad \mathbf{B C}:=\mathbf{N}_{2} \quad \mathbf{A C}:=\sqrt{\mathbf{A B}^{2}+\mathrm{BC}^{2}} \\
& \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{A C}}{\mathbf{A B}} \quad \mathbf{B D}:=\sqrt{\mathbf{C D}^{2}-\mathrm{BC}^{2}} \\
& \frac{\mathbf{N}_{2}^{2}}{\mathbf{N}_{1}}-\mathbf{B D}=\mathbf{0}
\end{aligned}
\]


\section*{940501 EP}


Given:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) ---------------------------
\(\qquad\)

Given the radius of two tangent circles find the radius of the third that is tangent to the two circles and tangent to the parallel opposite AP which is tangent to the larger circle.
\[
\mathbf{A P}:=\sqrt{\mathbf{A E}^{2}-\mathbf{E P}^{2}} \quad \mathbf{D O}:=\frac{\mathbf{E P} \cdot \mathbf{A D}}{\mathbf{A P}}
\]
\[
\text { DL }:=\frac{\mathbf{D O} \cdot \mathbf{D E}}{\mathbf{C D}} \quad \mathrm{AC}:=\mathrm{AD}-\mathbf{C D} \quad \mathbf{A M}:=\frac{\mathbf{A P} \cdot \mathbf{A C}}{\mathrm{AE}} \quad \text { AO }:=\frac{\mathbf{A E} \cdot \mathbf{A D}}{\mathbf{A P}} \quad \mathrm{MO}:=\mathrm{AO}-\mathrm{AM}
\]
\[
\text { DK }:=\frac{\text { MR } \cdot \mathbf{D L}}{\text { LR }} \quad \text { CK }:=\mathbf{D K}-\mathbf{C D} \mathbf{C H}:=\frac{\text { LR } \cdot \mathbf{C K}}{\text { ML }} \quad \mathbf{C M}:=\mathbf{B C} \quad \mathrm{MH}:=\sqrt{\mathbf{C M}^{2}-\mathrm{CH}^{2}}
\] MG := 2•MH GL := ML - MG GJ := \(\frac{\text { CM } \cdot \text { GL }}{\text { MG }} \quad \begin{aligned} & \text { The Algebraic name for GJ suggests a } \\ & \text { simpler method of construction. }\end{aligned}\)

\[
\begin{aligned}
& \mathbf{R}_{1}:=3 \quad \mathbf{R}_{2}:=2 \\
& \text { DE := } \mathbf{R}_{\mathbf{1}} \quad \mathrm{BC}:=\mathbf{R}_{\mathbf{2}} \quad \mathrm{CN}:=\mathrm{BC} \\
& \text { EQ := DE CD := BC CE := CD + DE } \\
& \text { ES := CN NS := CE SQ := EQ - ES } \\
& \text { AE }:=\frac{\mathrm{NS} \cdot \mathrm{EQ}}{\mathrm{SQ}} \quad \mathrm{AD}:=\mathrm{AE}-\mathrm{DE} \quad \mathrm{EP}:=\mathrm{DE}
\end{aligned}
\]


940504 EP


Given:



\(\qquad\)

\section*{050494 Two Circles And A Tangent}


Given two circles, the difference between them and a point on one expressed as a ratio of the diameter, find the circle tangent to both at that point.
\[
\begin{aligned}
& \mathbf{R}_{1}:=1 \quad \mathbf{R}_{2}:=.5 \quad D:=2 \quad \mathrm{~N}:=2 \\
& \text { FK }:=\mathbf{R}_{1} \quad \mathbf{B C}:=\mathbf{R}_{2} \quad \text { CH }:=\mathbf{D} \quad \text { FL }:=2 \cdot \mathbf{F K} \\
& \text { AK }:=\frac{\mathbf{D} \cdot \mathbf{R}_{1}}{\mathbf{R}_{1}-\mathbf{R}_{2}} \quad \text { EK }:=\frac{\mathbf{R}_{1}{ }^{2}+\mathbf{D}^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}}{2 \cdot \mathbf{D}} \\
& \text { AQ }:=\mathbf{R}_{\mathbf{1}} \cdot \frac{\sqrt{\left.\mathbf{R}_{1}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(-\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}}{\mathbf{R}_{1}-\mathbf{R}_{\mathbf{2}}}
\end{aligned}
\]

FG \(:=\frac{\text { FL }}{\mathbf{N}} \quad \mathbf{G L}:=\) FL - FG \(\quad \mathbf{G M}:=\sqrt{\text { FG } \cdot \mathbf{G L}} \mathbf{A J}:=\frac{\text { AQ } \cdot \mathbf{A Q}}{\text { AK }} \quad\) AF \(:=\) AK - FK \(\quad\) FJ \(:=\) AJ \(-\mathbf{A F}\)
\[
\mathbf{J L}:=\mathbf{F L}-\mathbf{F J} \quad \mathrm{JQ}:=\sqrt{\mathbf{F J} \cdot \mathbf{J L}} \quad \mathbf{G J}:=F \mathbf{F J}-F G \quad \mathbf{Q M}:=\sqrt{(\mathbf{J Q}+\mathbf{G M})^{2}+\mathbf{G J}} \quad \mathrm{GH}:=\frac{\mathbf{G J} \cdot \mathbf{G M}}{\mathrm{JQ}+\mathbf{G M}}
\]
\[
\text { HM }:=\frac{\text { QM } \cdot \mathbf{G M}}{\text { JQ + GM }} \text { EF }:=\text { EK }- \text { FK EH }:=\text { EF }+ \text { FG }+ \text { GHHO }:=\frac{\text { HM } \cdot \text { EH }}{\text { GH }} \quad \text { MO }:=\text { HO }- \text { HM }
\]
\[
\mathbf{K M}:=\mathbf{F K} \quad \mathbf{M N}:=\frac{\mathbf{K M} \cdot \mathbf{M O}}{\mathbf{Q M}} \quad \mathbf{M N}-\frac{\left(4 \cdot \mathbf{R}_{1} \cdot \mathbf{D}\right)-\mathbf{N} \cdot\left(\mathbf{R}_{2}+\mathbf{D}-\mathbf{R}_{1}\right) \cdot\left(\mathbf{R}_{2}+\mathbf{R}_{1}-\mathbf{D}\right)}{2 \mathbf{N} \cdot\left(\mathbf{R}_{2}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right)-\mathbf{4} \cdot \mathbf{D}}=\mathbf{0}
\]


\section*{940506 EP}


\section*{Given:}
\(\qquad\)

\section*{050694 A Ratio In Trisection}
\[
\begin{aligned}
& \text { K } \\
& \text { What is AJ to CG? } \\
& \mathbf{N}:=2.423 \quad \text { FH }:=1 \\
& \text { CE := FH } \\
& \mathrm{CG}:=\frac{\mathrm{FH}}{\mathrm{~N}} \quad \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}-\mathrm{CG}^{2}} \quad \mathrm{CD}:=\frac{\mathrm{CG}^{2}}{\mathrm{CE}} \\
& \text { DG }:=\sqrt{C G^{2}-C D^{2}} \quad E H:=2 \cdot E G B H:=\frac{D G \cdot E H}{E G} \quad C H:=F H \\
& \mathrm{BC}:=\sqrt{\mathrm{CH}^{2}-\mathrm{BH}^{2}} \mathrm{AC}:=2 \cdot \mathrm{BC} \quad \mathrm{AE}:=\mathrm{AC}+\mathrm{CE} \quad \mathrm{AJ}:=\frac{\mathrm{CG} \cdot \mathrm{AE}}{\mathrm{CE}} \quad 3 \cdot \mathrm{CG}-\frac{4 \cdot \mathrm{CG}^{3}}{\mathrm{CE}^{2}}-\mathrm{AJ}=0 \\
& 3 \cdot C G-4 \cdot C G^{3}-A J=0 \\
& A J-\frac{3 \cdot N^{2}-4}{N^{3}}=0 \quad A J-\left(\frac{3}{N}-\frac{4}{N^{3}}\right)=0
\end{aligned}
\]

The resultant equation suggests this construction.



\section*{940507 EP}


Given:
\(\qquad\)

\section*{050794 A Trisection Ratio}

\section*{In trisection, what is the ratio of FG/EK?}

\[
\begin{aligned}
& \mathrm{N}:=2 \\
& \mathrm{AE}:=\mathbf{1} \quad \mathbf{E H}:=\frac{\mathbf{A E}}{2} \quad \mathrm{HK}:=\mathrm{AE} \cdot \mathrm{~N} \quad \mathrm{AK}:=\mathrm{AE}+\mathrm{EH}+\mathrm{HK} \\
& \mathbf{D} \mathrm{EJ}:=\mathrm{AE} \quad \mathrm{EK}:=\mathrm{EH}+\mathrm{HK} \quad \mathrm{AD}:=\frac{\mathrm{EJ} \cdot \mathrm{AK}}{\mathrm{EK}} \quad \mathrm{CD}:=\mathrm{AE} \\
& \mathrm{AC}:=\mathrm{AD}-\mathbf{C D} \quad \mathrm{BC}:=\frac{\mathrm{AC}}{2} \quad \mathrm{CE}:=\mathrm{AE} \mathrm{BE}:=\sqrt{\mathrm{CE}^{2}-\mathrm{BC}^{2}} \\
& \mathrm{BD}:=\mathrm{CD}+\mathrm{BC} \quad \mathrm{DE}:=\sqrt{\mathbf{B D}^{2}+\mathrm{BE}^{2}} \quad \mathrm{DF}:=\frac{\mathrm{BD} \cdot \mathbf{A D}}{\mathrm{DE}}
\end{aligned}
\]
\[
\text { EG }:=\text { AE DG }:=\text { DE }+ \text { EG FG }:=\text { DG }-\mathbf{D F}
\]

Algebraic Names,
\[
\begin{aligned}
& F G-\left[1+\frac{(\mathbf{N}+1) \cdot(2 \cdot \mathbf{N}-1)}{(2 \mathbf{N}+1) \cdot \sqrt{(\mathbf{N}+1) \cdot(2 \mathbf{N}+1)}}\right]=0 \quad \mathbf{E K}-\frac{1}{2}-\mathbf{N}=0 \\
& \frac{F G}{E K}-2 \cdot \frac{[2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+1) \cdot(2 \cdot \mathbf{N}+1)}+\sqrt{(\mathbf{N}+1) \cdot(2 \cdot \mathbf{N}+1)}+(\mathbf{N}+1) \cdot(2 \cdot \mathbf{N}-1)]}{\left[(2 \cdot \mathbf{N}+1)^{2} \cdot \sqrt{(\mathbf{N}+1) \cdot(2 \cdot \mathbf{N}+1)}\right]}=0
\end{aligned}
\]


940516A EP


Given:
\(\qquad\)

\section*{051694A Tangent Diameter and Circles}

Choose a point along CF and the number of circles tanget to it and to the circumscribing circle and place them in the downright position.

\[
\mathrm{DJ}:=\mathrm{CE} \cdot \frac{\sqrt{\mathrm{~N}_{1}{ }^{2}-2 \cdot \mathrm{~N}_{1}+1+\mathrm{N}_{2}{ }^{2} \cdot \mathrm{~N}_{1}{ }^{2}}}{\mathrm{~N}_{1}}
\]
\[
J G:=C E \cdot \frac{N_{1} \cdot N_{2}{ }^{2}}{\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}}}
\]
\[
E G:=C E \cdot \frac{\left(N_{1}-1\right) \cdot N_{2}}{\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}}}
\]



\(\qquad\)

\section*{05/16/94B Tangent Diameter and Circles}

\(\mathbf{H}^{\mathbf{H}}\)
Choose a point along DF and the number of circles tanget to it and to the circumscribing circle and place them in the upright position.
\[
\mathbf{B J}:=\mathbf{B E}+\mathbf{E J} \quad \mathrm{KE}:=\frac{\mathbf{H J} \cdot \mathbf{B E}}{\mathrm{BJ}} \quad \mathrm{BC}:=\mathrm{BF}-\sqrt{\mathbf{E F}^{2}+\left[\left(\frac{\mathbf{A J}-\mathbf{A F}}{\mathrm{AF}}\right) \cdot K E\right]^{2}} \mathbf{B C}-K E=0 \quad K E=0.375
\]
\[
\left.1-\frac{2 \cdot N_{1}^{2}-2 \cdot N_{1}+1+N_{1}^{2} \cdot N_{2}^{2}-2 \cdot N_{1}^{2} \cdot N_{2}}{N_{1} \cdot\left(\sqrt{N_{1}}{ }^{2}+2 \cdot N_{1} \cdot N_{2}^{2}-4 \cdot N_{1} \cdot N_{2}-N_{2}^{2}+2 \cdot N_{2}\right.}+N_{1}+N_{1} \cdot N_{2}^{2}-2 \cdot N_{1} \cdot N_{2}\right) \quad-B C=0
\]
\[
\begin{aligned}
& \mathbf{N}_{1}:=2 \quad \mathbf{N}_{2}:=2 \quad \text { AF }:=1 \\
& \text { DF }:=\text { AF } \quad \text { DE }:=\frac{\text { DF }}{\mathbf{N}_{\mathbf{1}}} \quad \text { AJ }:=\mathrm{AF} \cdot \mathbf{N}_{\mathbf{2}} \\
& \text { HJ := AF EF := DF - DE FJ := AJ - AF } \\
& \mathbf{E J}:=\sqrt{\mathbf{E F}^{2}+\mathrm{FJ}^{2}} \quad \mathrm{EG}:=\frac{\mathrm{EF}^{2}}{\mathrm{EJ}} \quad \mathrm{BF}:=\mathrm{AF} \\
& F G:=\sqrt{E F^{2}-E G^{2}} B G:=\sqrt{B F^{2}-F G^{2}} \quad B E:=B G-E G
\end{aligned}
\]


\section*{941027 EP}


Given:
\(\qquad\)

\section*{102794 Trivial Method Square Root}
\(A E\) is the square root of \(A B \times A G\).

\[
\begin{aligned}
& N:=5 \quad \text { AB := } \mathbf{1} \\
& A G:=A B \cdot N \text { BG }:=A G-A B \quad B F:=\frac{B G}{2} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{FH}:=\mathrm{BF} \quad \mathrm{DF}:=\frac{\mathrm{FH}^{2}}{\mathrm{AF}} \quad \mathrm{AD}:=\mathrm{AF}-\mathrm{DF} \\
& \text { BD := AD - AB DG := BG - BD FJ := BF } \\
& \mathrm{DH}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \quad \mathrm{DE}:=\frac{\mathrm{DF} \cdot \mathbf{D H}}{\mathrm{DH}+\mathbf{F J}} \quad \mathrm{AE}:=\mathrm{AB}+\mathrm{BD}+\mathrm{DE} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A G}}-\mathbf{A E}=\mathbf{0}
\end{aligned}
\]


\section*{941028 EP}


Given:
\(\qquad\)
\(\qquad\)
\(\qquad\) ---------------------------------------
\(\qquad\)

\section*{102894 Trivial Method Square Root}
\(A E\) is the square root of \(A B \times A H\).
\[
\begin{aligned}
& \mathrm{N}:=5 \quad \mathrm{AB}:=1 \quad \mathrm{AH}:=\mathrm{AB} \cdot \mathrm{~N} \text { BH }:=\mathrm{AH}-\mathrm{AB} \\
& \mathrm{BG}:=\frac{\mathrm{BH}}{2} \quad \mathbf{G K}:=\mathrm{BG} \quad \mathrm{AG}:=\mathrm{AB}+\mathrm{BG} \\
& \text { DG }:=\frac{\mathbf{G K}^{2}}{\mathbf{A G}} \quad \mathbf{A D}:=\mathbf{A G}-\mathbf{D G} \quad \mathbf{A L}:=\mathbf{B G} \\
& \mathbf{G L}:=\sqrt{\mathbf{A L}^{2}+\mathrm{AG}^{2}} \mathrm{BD}:=\mathrm{BG}-\mathbf{D G} \text { DH }:=\mathbf{B H}-\mathbf{B D} \\
& \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DH}} \quad \mathrm{KL}:=\sqrt{\mathrm{AD}^{2}+(\mathrm{AL}+\mathrm{DK})^{2}} \\
& \mathbf{S}_{\mathbf{1}}:=\mathbf{G K} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{G L} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{K L} \\
& \mathbf{G J}:=\frac{\mathbf{S}_{\mathbf{2}}{ }^{2}+\mathbf{S}_{\mathbf{1}}{ }^{2}-\mathbf{S}_{\mathbf{3}}{ }^{2}}{2 \cdot \mathbf{S}_{\mathbf{1}}} \quad \mathrm{JL}:=\sqrt{\mathbf{G L}^{2}-\mathbf{G J}^{2}}
\end{aligned}
\]


FG \(:=\frac{\text { DG } \cdot \mathbf{G J}}{\mathrm{GK}} \quad \mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \quad \mathrm{FJ}:=\frac{\mathrm{DK} \cdot \mathrm{GJ}}{\mathrm{GK}} \quad \mathrm{EF}:=\frac{\mathrm{AF} \cdot \mathbf{F J}}{\mathrm{FJ}+\mathbf{A L}} \mathrm{AE}:=\mathrm{AF}-\mathrm{EF} \quad \sqrt{\mathrm{AB} \cdot \mathrm{AH}}-\mathrm{AE}=\mathbf{0}\)



941031 EP
Given:
\(\qquad\)

\section*{103194 Square Root of a Segment}

Given a unit divide a segment into N and its square. Let \(A B\) be the unit and \(B F\) the segment then BE is N and EF its square.

\[
\mathrm{EF}:=\mathrm{CF}-\mathbf{C E} \quad \mathrm{BE}:=\mathrm{BC}+\mathbf{C E} \quad \mathrm{DF}:=\mathrm{BF}-\mathbf{B E} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathrm{BE}^{2}-\mathbf{E F}=0
\]
\[
B E-\frac{N-2+N \cdot \sqrt{4 \cdot N-3}}{2 \cdot N+1+\sqrt{4 \cdot N-3}}=0 \quad \quad E F-\left(N-\frac{N-2+N \cdot \sqrt{4 \cdot N-3}}{2 \cdot N+1+\sqrt{4 \cdot N-3}}-1\right)=0
\]
\[
\begin{aligned}
& \mathbf{N}:=22 \quad \mathbf{A B}:=1 \\
& \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{2} \\
& \text { AJ }:=\mathrm{AF} \quad \text { FK }:=\mathrm{AF} \quad \mathbf{B D}:=\mathrm{AD}-\mathrm{AB} \quad \mathbf{B J}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A J}^{2}} \\
& \mathbf{B G}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \mathbf{D H}:=\mathbf{A D} \mathbf{D G}:=\frac{\mathbf{A J} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \mathbf{G H}:=\sqrt{\mathbf{D H}^{2}-\mathbf{D G}^{2}} \\
& \mathbf{H J}:=\mathbf{B J}+\mathbf{B G}+\mathbf{G H} \quad \mathbf{B C}:=\frac{\mathbf{A B} \cdot(\mathbf{B G}+\mathbf{G H})}{\mathbf{B J}} \quad \mathbf{A C}:=\mathrm{AB}+\mathbf{B C} \\
& \mathrm{CF}:=\mathrm{AF}-\mathrm{AC} \mathrm{CH}:=\sqrt{\mathrm{AC} \cdot \mathrm{CF}} \quad \mathrm{CE}:=\frac{\mathrm{CF} \cdot \mathrm{CH}}{(\mathrm{CH}+\mathrm{FK})}
\end{aligned}
\]


\section*{941224 EP}


\section*{Given:}
\(\qquad\)

\section*{122494 Power Line At Square Root}

In this square root figure, what is the Algebraic name of the tangent circle OS?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A J}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A J}} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B G}:=\frac{\mathbf{B J}}{\mathbf{2}} \\
& \mathrm{AG}:=\mathrm{AB}+\mathrm{BG} \quad \mathrm{GS}:=\mathrm{BG} \quad \mathrm{DG}:=\frac{\mathrm{GS}^{2}}{\mathrm{AG}} \\
& \text { FG := AG - AF BD := BG - DG DJ := BJ - BD } \\
& \text { DS }:=\sqrt{\mathbf{B D} \cdot \mathrm{DJ}} \quad \text { FK }:=\frac{\mathrm{DS} \cdot \mathrm{FG}}{\mathrm{DG}} \quad \mathrm{BF}:=\mathrm{AF}-\mathrm{AB} \\
& B K:=\sqrt{B^{2}+F^{2}} \quad \text { FI }:=\frac{\text { DJ } \cdot F K}{D S} B I:=F I+B F
\end{aligned}
\]

BP \(:=\frac{\text { BK BJ }}{\text { BI }} \quad\) KP \(:=\) BP - BK \(\quad\) MP \(:=\frac{B J \cdot K P}{B K} \quad\) OS \(:=\frac{\text { MP }}{2}\)

\section*{Algebraic Names}
\(D G-\frac{(N-1)^{2}}{2 \cdot(N+1)}=0 \quad O S-\frac{-2 \cdot N^{2}+2 \cdot N-\sqrt{N}+N^{\frac{5}{2}}}{2 \cdot\left[N^{2}-\sqrt{N}-N^{\frac{3}{2}}+1\right]}=0\)


\section*{941225 EP}


Given:
\(\qquad\)

\title{
122595 Two Prime Exponential Series Developed Through The Powerline Progression
}

\[
\begin{array}{ll}
\Delta:=2 & \delta:=1 . . \Delta \\
\mathbf{N}:=5 & \mathbf{A B}:=1
\end{array}
\]
\[
\mathbf{A O}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A G}:=\sqrt{\mathbf{A B} \cdot \mathbf{A O}} \quad \mathbf{B O}:=\mathbf{A O}-\mathbf{A B}
\]
\[
\text { BJ }:=\frac{\mathbf{B O}}{2} \quad \text { JZ }:=\mathbf{B J} \quad \text { JV }:=\mathbf{B J} \quad \text { JO }:=\mathbf{B J}
\]
\[
\mathrm{BG}_{1}:=\mathbf{A G}-\mathbf{A B G O} \mathbf{1}_{1}:=\mathbf{B O}-\mathrm{BG}_{1} \mathbf{G W _ { 1 }}:=\sqrt{\mathrm{BG}_{1} \cdot \mathrm{GO}_{1}}
\]
\[
\mathbf{G J}_{1}:=\mathrm{BJ}-\mathrm{BG}_{1} \quad \mathrm{GH}_{1}:=\frac{\mathrm{GJ}_{1} \cdot \mathbf{G W}_{1}}{\mathbf{J Z}+\mathbf{G} W_{1}}
\]
\[
\left[\begin{array}{l}
\mathbf{B G}_{\delta+1} \\
\mathbf{G O}_{\delta+1} \\
\mathbf{G W}_{\delta+1} \\
\mathbf{G J}_{\delta+1} \\
\mathbf{G H}_{\delta+1}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta} \\
\mathbf{B O}-\left(\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right) \\
\sqrt{\left(\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right) \cdot\left[\mathbf{B O}-\left(\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right)\right]} \\
\left.\mathbf{B J}-\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right) \\
{\left[\mathbf{B J}-\left(\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right)\right] \cdot \sqrt{\left(\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right) \cdot\left[\mathbf{B O}-\left(\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right)\right]}} \\
\mathbf{J Z}+\sqrt{\left(\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right) \cdot\left[\mathbf{B O}-\left(\mathbf{B G}_{\delta}+\mathbf{G H}_{\delta}\right)\right]}
\end{array}\right] \mathbf{F J}:=\frac{(\mathbf{N}-\mathbf{1})^{2}}{2 \cdot(\mathbf{N}+\mathbf{1})}
\]
\[
B F:=\text { BJ - FJ } \quad \text { FO }:=\mathrm{FJ}+\mathbf{J O} \quad \text { FV }:=\sqrt{B F \cdot F O}
\]
\[
\mathrm{HR}:=\frac{\mathrm{FV} \cdot \mathbf{H J}}{\mathrm{FJ}} \quad \mathrm{BH}:=\mathrm{BJ}-\mathbf{H J} \quad \mathrm{BR}:=\sqrt{\mathrm{HR}^{2}+\mathrm{BH}^{2}}
\]
\[
\mathbf{H M}:=\frac{\text { FO } \cdot \mathbf{H R}}{\text { FV }} \text { BU }:=\frac{\mathbf{B R} \cdot \mathbf{B O}}{\mathbf{B H}+\mathbf{H M}} \quad \text { RU }:=\mathbf{B U}-\mathbf{B R}
\]
\[
\mathbf{S U}:=\frac{\mathbf{B O} \cdot \mathbf{R U}}{\mathbf{B R}} \quad \text { TV }:=\frac{\mathbf{S U}}{2} \quad \text { PU }:=\frac{\mathrm{BH} \cdot \mathbf{S U}}{\mathbf{B R}}
\]
\(\mathbf{B P}:=\mathbf{B U}-\mathbf{P U} \mathbf{B E}:=\frac{\mathbf{B R} \cdot \mathbf{B P}}{\mathbf{B H}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E}\)
\[
\frac{\frac{1}{N^{2^{\Delta}}}}{}-\mathbf{A E}=0
\]


Z

\[
\begin{aligned}
& \text { LU }:=\frac{\mathrm{HR} \cdot \mathrm{BU}}{\mathrm{BR}} \quad \text { BL }:=\frac{\mathrm{BH} \cdot \mathrm{BU}}{\mathrm{BR}} \quad \mathrm{HO}:=\mathrm{JO}+\mathrm{HJ} \\
& \text { OR }:=\sqrt{\mathrm{HR}^{2}+\mathrm{HO}^{2}} \text { DS }:=\mathrm{LU} \text { OS }:=\frac{\mathrm{OR} \cdot \mathrm{DS}}{\mathrm{HR}} \\
& \text { DO }:=\frac{\mathrm{HO} \cdot \mathrm{DS}}{\mathrm{HR}} \text { QS }:=\frac{\mathrm{DO} \cdot \mathrm{SU}}{\text { OS }} \text { OQ }:=\mathrm{OS}-\mathrm{QS} \\
& \text { KO }:=\frac{\text { OS } \cdot \mathrm{OQ}}{\text { DO }} \text { AK }:=\mathrm{AO}-\mathrm{KO} \\
& \frac{2^{\Delta}-1}{2^{\Delta}} \\
& \mathbf{N}^{2}-\mathrm{AK}=0
\end{aligned}
\]


\section*{941226 EP}


Given:
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Is G, the intersection of FH and BK, on DJ?

\[
\begin{aligned}
& \mathbf{N}:=5 \\
& \mathbf{A B}:=1 \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \text { BE := } \frac{\mathrm{BF}}{2} \quad \text { EF }:=\mathrm{BEEK}:=\mathrm{BE} \\
& \mathrm{AD}:=\sqrt{\mathrm{AB} \cdot \mathrm{AF}} \quad \mathrm{CE}:=\frac{(\mathrm{N}-1)^{2}}{2 \cdot(\mathrm{~N}+1)} \quad \mathrm{CF}:=\mathrm{CE}+\mathrm{EF} \\
& \mathrm{DF}:=\mathrm{AF}-\mathrm{AD} \mathrm{BC}:=\mathrm{BF}-\mathrm{CF} \mathrm{CH}:=\sqrt{\mathrm{BC} \cdot \mathrm{CF}} \\
& \text { DG }_{1}:=\frac{\mathrm{CH} \cdot \mathrm{DF}}{\mathrm{CF}} \\
& \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{DG}_{2}:=\frac{\mathrm{EK} \cdot \mathrm{BD}}{\mathrm{BE}} \quad \mathrm{DG}_{1}-\mathrm{DG}_{2}=0
\end{aligned}
\]

\section*{The Delian Quest—1995}



\section*{950106 EP}


Given:
\(\qquad\)

\section*{010695 Alternate Method Quad Roots}

\[
M L:=\frac{B J \cdot M O}{M J} \quad J L:=M J-M L \quad G J:=\frac{M J \cdot J L}{B J} \quad A G:=A J-G J \quad\left(A C \cdot A J^{3}\right)^{\frac{1}{4}}-A G=0
\]
\[
\mathrm{CH}:=\mathrm{CE}+\mathrm{EHCO}:=\sqrt{\mathrm{CH}^{2}+\mathrm{HO}^{2}} \mathrm{KO}:=\frac{\mathrm{CH} \cdot \mathrm{MO}}{\mathrm{CO}} \mathrm{CK}:=\mathrm{CO}-\mathrm{KO} \mathrm{CD}:=\frac{\mathrm{CO} \cdot \mathrm{CK}}{\mathrm{CH}} \mathrm{AD}:=\mathrm{AC}+\mathrm{CD}
\]
\[
\left(A C^{3} \cdot \mathbf{A J}\right)^{\frac{1}{4}}-\mathbf{A D}=0 \quad \mathbf{N}^{\frac{3}{4}}-\mathbf{A G}=0 \quad \mathbf{N}^{\frac{1}{4}}-\mathbf{A D}=0
\]
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A C}:=\mathbf{1} \quad \mathbf{A J}:=\mathbf{A C} \cdot \mathbf{N} \\
& \mathbf{C J}:=\mathbf{A J}-\mathbf{A C} \quad \mathbf{A E}:=\sqrt{\mathbf{A C} \cdot \mathbf{A J}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \\
& \text { EJ := CJ - CE EN }:=\sqrt{\text { CE•EJ }} \text { BM }:=\text { EN HO }:=\text { EN } \\
& \text { MN := EN NO := EN BE := EN EH := EN } \\
& \mathbf{B J}:=\mathrm{BE}+\mathbf{E J} \quad \mathrm{MJ}:=\sqrt{\mathrm{BJ}^{2}+\mathrm{BM}^{2}} \text { MO }:=\mathrm{MN}+\mathrm{NO}
\end{aligned}
\]



Given:
\(\qquad\)


Archamedian Trisection Revisited.

I am curious as to why the Archamedian trisection is still taught the way it was given so long ago and the idea from which it derives is not in any of my books.
\(+\quad\) I am going to use a circle to demonstrate some principles concerning angles. To help log the results in mathematical terms, I will divide the circle into quadrants and label them either plus or minus. The top is labeled one.

The circle is divided into \(1 / 8\) segments of 90 degrees for each quadrant. I start at the top. Since the angle at the perimeter is \(1 / 2\) of the angle at the center, when I start the figure I use twice the arc segment for the angle I am working with. I have marked some quadrants with plus and minus and have found that for the figure, I would say that I have \(1+1 / 8-1 / 8\). From this I have learned that my starting angle of the smaller circle will be 90 degrees.
\[
\begin{aligned}
& \frac{90}{8}=11.25 \\
& 90+\frac{90}{8}-\frac{90}{8}=90 \quad\left(1+\frac{1}{8}-\frac{1}{8}\right) \cdot 90=90
\end{aligned}
\]



I have added another plus to a quadrant at the bottom of the figure.
\[
\begin{aligned}
& \mathrm{B}:=1+\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \quad \mathrm{~B}=1.125 \quad \frac{9}{8}=1.125 \\
& \frac{\mathrm{~B} \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{\mathrm{~B} \cdot 3.5}{4.5} \cdot 90=78.75 \\
& \frac{\mathrm{~B} \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{\mathrm{~B} \cdot 1.5}{4.5} \cdot 90=33.75 \\
& \frac{\mathrm{~B} \cdot .5}{4.5} \cdot 90=11.25
\end{aligned}
\]
\[
\begin{array}{ll}
8+1+1-1=9 & 9 \cdot 11.25=101.25 \\
8+1+1-1-2=7 & 7 \cdot 11.25=78.75 \\
8+1+1-1-2-2=5 & 5 \cdot 11.25=56.25 \\
8+1+1-1-2-2-2=3 & 3 \cdot 11.25=33.75 \\
8+1+1-1-2-2-2-2=1 & 1 \cdot 11.25=11.25
\end{array}
\]

\(\bmod (8+1+1-1,2)=1\)
\[
\begin{aligned}
& +\quad B:=1+\frac{1}{8}-\frac{1}{8}+\frac{1}{8} \quad B=1.125 \quad \frac{9}{8}=1.125 \\
& \frac{\mathrm{~B} \cdot 4.5}{4.5} \cdot 90=101.25 \quad \frac{\mathrm{~B} \cdot 3.5}{4.5} \cdot 90=78.75 \\
& \frac{\mathrm{~B} \cdot 2.5}{4.5} \cdot 90=56.25 \quad \frac{\mathrm{~B} \cdot 1.5}{4.5} \cdot 90=33.75 \\
& +\quad \frac{\mathrm{B} \cdot .5}{4.5} \cdot 90=11.25 \\
& 8+1=9 \\
& 9 \cdot 11.25=101.25 \\
& 8+1-(1 \cdot 2)=7 \\
& 7 \cdot 11.25=78.75 \\
& 8+1-(2 \cdot 2)=5 \\
& 5 \cdot 11.25=56.25 \\
& 8+1-(3 \cdot 2)=3 \\
& 3 \cdot 11.25=33.75 \\
& 8+1-(4 \cdot 2)=1 \\
& 1 \cdot 11.25=11.25 \\
& \bmod (8+1,2)=1
\end{aligned}
\]

\[
\begin{aligned}
& \text { B := } 1+\frac{1}{8}-\frac{1}{8}+\frac{10}{8} \quad B=2.25 \quad \frac{18}{8}=2.25 \\
& \frac{\mathrm{~B} \cdot 9}{9} \cdot 90=202.5 \quad \frac{\mathrm{~B} \cdot 8}{9} \cdot 90=180 \\
& \frac{\mathrm{~B} \cdot 7}{9} \cdot 90=157.5 \quad \frac{\mathrm{~B} \cdot 6}{9} \cdot 90=13.5 \\
& 8+1-1+10=18 \\
& 18 \cdot 11.25=202.5 \\
& 8+1-1+10-(2 \cdot 1)=16 \\
& 16 \cdot 11.25=180 \\
& 8+1-1+10-(2 \cdot 2)=14 \\
& 14 \cdot 11.25=157.5 \\
& 8+1-1+10-(2 \cdot 3)=12 \\
& 12 \cdot 11.25=135 \\
& 8+1-1+10-(2 \cdot 4)=10 \\
& 10 \cdot 11.25=112.5 \\
& 8+1-1+10-(2 \cdot 5)=8 \quad 8 \cdot 11.25=90 \\
& 8+1-1+10-(2 \cdot 6)=6 \\
& 6 \cdot 11.25=67.5 \\
& 8+1-1+10-(2 \cdot 7)=4 \\
& 4 \cdot 11.25=45 \\
& 8+1-1+10-(2 \cdot 8)=2 \\
& 2 \cdot 11.25=22.5 \\
& \bmod ((8+1-1)+10,2)=0
\end{aligned}
\]
\(\mathrm{B}:=1+\frac{1}{7}-\frac{2}{7} \quad \mathrm{~B}=0.8571 \quad \frac{6}{7}=0.8571\)
\[
\begin{array}{ll}
\frac{\mathrm{B} \cdot 6}{6} \cdot 90=77.1429 & \frac{\mathrm{~B} \cdot 4}{6} \cdot 90=51.4286 \\
\frac{\mathrm{~B} \cdot 2}{6} \cdot 90=25.7143 & \mathrm{c}:=\frac{90}{7} \\
7+1-(1 \cdot 2)=6 & 6 \cdot \mathrm{c}=77.1429 \\
7+1-(2 \cdot 2)=4 & 4 \cdot \mathrm{c}=51.4286 \\
7+1-(3 \cdot 2)=2 & 2 \cdot \mathrm{c}=25.7143 \\
\bmod (7+1-2,2)=0 &
\end{array}
\]

\(B:=1+\frac{1}{7}-\frac{1}{7} \quad B=1\)
\(\frac{B \cdot 7}{7} \cdot 90=90 \quad \frac{B \cdot 5}{7} \cdot 90=64.2857\)
\(\frac{B \cdot 3}{7} \cdot 90=38.5714 \quad \frac{B \cdot 1}{7} \cdot 90=12.8571\)
\(7+1-1=7\)
\(7+1-1-(1 \cdot 2)=5\)
\(7+1-1-(2 \cdot 2)=3\)
\(7+1-1-2-2-2=1\)
\(\bmod (7+1-1,2)=1\)


Work in progress.



Given:



\(\qquad\)

\section*{040195 Exponential Series-Roots and Powers}

I remember a dream was it? That exponential notation is not demonstrable in Geometric Grammar, that it is a pure conceptual abstract.

\[
\mathbf{N}_{1}:=5 \quad \mathbf{A B}:=\mathbf{1}
\]
\[
\mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N}_{1}
\]
\[
\delta:=\mathbf{0} . .3
\]
\[
\mathbf{N}_{2}:=3
\]
\[
\mathbf{A J}_{\mathbf{0}}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{2}} \quad \mathbf{A N}:=\mathbf{A} \mathbf{J}_{\mathbf{0}}
\]
\[
\mathbf{A J}_{1}:=\frac{\mathbf{A N}^{2}}{\mathbf{A F}} \quad \mathbf{A J _ { \delta + 1 }}:=\frac{\mathbf{A J}_{\delta} \cdot \mathbf{A N}}{\mathbf{A F}}
\]
\[
\mathbf{A D}_{0}:=\mathbf{A J}_{0} \quad \mathbf{D F}_{\mathbf{0}}:=\mathbf{A F}-\mathbf{A D}_{0} \quad \mathbf{D O}_{0}:=\sqrt{\mathbf{A D}_{\mathbf{0}} \cdot \mathbf{D F}_{\mathbf{0}}}
\]
\[
\mathbf{A O}_{0}:=\sqrt{\left(\mathbf{D O}_{0}\right)^{2}+\left(\mathbf{A D}_{0}\right)^{2}}
\]
\[
\left[\begin{array}{l}
\mathbf{A D}_{\delta+1} \\
\mathbf{D F}_{\delta+1} \\
\mathbf{D O}_{\delta+1} \\
\mathbf{A O}_{\delta+1}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{A O}_{\delta} \\
\mathbf{A F}-\mathbf{A O}_{\delta} \\
\sqrt{\left.\mathbf{A O _ { \delta } \cdot ( \mathbf { A F } - \mathbf { A O }}{ }_{\delta}\right)} \\
\sqrt{\left.\mathbf{A O _ { \delta } \cdot ( \mathbf { A F } - \mathbf { A O }}{ }_{\delta}\right)+\left(\mathbf{A O _ { \delta } ) ^ { 2 }}\right.}
\end{array}\right]
\]
\[
\sum_{\delta}\left[\frac{\mathrm{AF}}{\mathrm{AJ}_{\delta}}-\left(\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}\right)^{\delta+1}\right]=0
\]
\[
\sum_{\delta}\left[\frac{A F}{A D_{\delta}}-\left(\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}\right)^{\frac{1}{2^{\delta}}}\right]=0
\]



Given:
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)


Given \(A E, A B, A C\) what is \(G H\) ?
\(\mathrm{N}_{1}:=8.028 \quad \mathrm{~N}_{2}:=3.044 \quad\) AE \(:=1.833\)
\(\mathrm{AD}:=\frac{\mathrm{AE}}{2} \quad\) AB \(:=\frac{\mathrm{AE}}{\mathrm{N}_{1}} \quad\) AC \(:=\frac{\mathrm{AE}}{\mathrm{N}_{2}} \quad\) DF \(:=\mathrm{AD}\)
\[
\mathbf{C D}:=\mathrm{AD}-\mathrm{AC} \quad \mathrm{CF}:=\sqrt{\mathrm{DF}^{2}-\mathrm{CD}^{2}}
\]
\(\mathbf{C E}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} E \mathrm{EF}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CF}^{2}} \quad \mathrm{EG}:=\frac{\mathrm{EF} \cdot \mathrm{BE}}{\mathrm{CE}} \quad \mathrm{FG}:=\mathrm{EG}-\mathrm{EF} \mathbf{G H}:=\left|\frac{\mathrm{AD} \cdot \mathrm{FG}}{\mathrm{EF}}\right|\)
\[
\frac{A E}{2} \cdot \frac{N_{1}-N_{2}}{N_{1} \cdot\left(N_{2}-1\right)}-G H=0
\]

Given \(A E, A B, E F\) what is \(G H\) ?

\[
\mathbf{G H}:=\frac{\mathbf{A D} \cdot \mathbf{F G}}{\mathrm{EF}} \quad \frac{\mathbf{A E}}{2} \cdot \frac{\left(\mathbf{N}_{2}^{2} \cdot \mathbf{N}_{1}-\mathbf{N}_{2}^{2}-\mathbf{N}_{1}\right)}{\mathbf{N}_{1}}-\mathbf{G H}=\mathbf{0}
\]

Given \(A E, A B\), \(B G\) what is \(G H\) ?

\(\mathrm{N}_{2}:=1.633\)
\(\mathrm{AE}:=1.833 \quad \mathrm{AD}:=\frac{\mathrm{AE}}{2} \quad \mathrm{AB}:=\frac{\mathrm{AE}}{\mathrm{N}_{1}} \quad \mathrm{BG}:=\frac{\mathrm{AE}}{\mathrm{N}_{2}}\)
\(\mathrm{BE}:=\mathrm{AE}-\mathrm{AB} E G:=\sqrt{\mathrm{BE}^{2}+\mathrm{BG}^{2}} \mathrm{EJ}:=\frac{\mathrm{EG}^{2}}{\mathrm{BE}}\)
EF \(:=\frac{\mathrm{EG} \cdot \mathrm{AE}}{\mathrm{EJ}} \mathrm{FG}:=\mathrm{EG}-\mathrm{EF}\) GH \(:=\left|\frac{\mathrm{AD} \cdot \mathrm{FG}}{\mathrm{EF}}\right|\)
\[
\frac{A E}{2} \cdot \frac{N_{2}^{2}+N_{1}^{2}-N_{2}^{2} \cdot N_{1}}{N_{2}^{2} \cdot N_{1} \cdot\left(N_{1}-1\right)}-G H=0
\]
\[
\begin{aligned}
& \mathrm{N}_{2}:=1.22 \\
& \mathrm{AE}:=1.833 \quad \mathrm{AD}:=\frac{\mathrm{AE}}{2} \quad \mathrm{AB}:=\frac{\mathrm{AE}}{\mathrm{~N}_{1}} \quad \mathrm{DE}:=\mathrm{AD} \\
& \mathrm{EF}:=\frac{\mathrm{AE}}{\mathbf{N}_{2}} \quad \mathrm{CE}:=\frac{\mathrm{EF}^{2}}{\mathrm{AE}} \quad \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \\
& \text { BE }:=\mathbf{B D}+\mathbf{D E} \quad \mathbf{E G}:=\frac{\mathbf{E F} \cdot \mathbf{B E}}{\mathrm{CE}} \text { FG }:=\mathbf{E G}-\mathbf{E F}
\end{aligned}
\]



Given:
\(\qquad\)

\section*{101495 Alternate Method Square Root}

For any \(A K\) is \(A C\) the root of \(A B \times A F\) ?

\(\mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{4}\)
\(\mathrm{AB}:=1 \quad \mathrm{AF}:=\mathbf{A B} \cdot \mathrm{N}_{1} \quad \mathrm{AK}:=\mathrm{AB} \cdot \mathrm{N}_{2} \quad \mathrm{BF}:=\mathrm{AF}-\mathrm{AB}\)
\(\mathbf{B O}:=\frac{\mathbf{B F}}{2} \quad \mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \quad \mathrm{KM}:=\mathbf{A O} \quad \mathrm{AM}:=\sqrt{\mathrm{AK}^{2}+\mathrm{KM}^{2}}\)
GO := BO DJ \(:=\mathbf{B O} \quad \mathbf{A J}:=\mathbf{A M} \mathbf{A D}:=\sqrt{\mathbf{A J}^{2}-\mathbf{D J}^{2}}\)
\(\mathbf{K N}:=\mathrm{AD} \mathbf{C K}:=\mathrm{AD} A C:=\sqrt{\mathbf{C K}^{2}-\mathrm{AK}^{2}}\)
\(\sqrt{\mathrm{AB} \cdot \mathrm{AF}}-\mathrm{AC}=\mathbf{0}\)


\section*{951020 EP}


\section*{Given:}
\(\qquad\)


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{102095 Four Times The Square}


AD \(:=\mathbf{A E}-\mathbf{D E} \quad \mathbf{D G}:=\sqrt{\mathbf{A D} \cdot \mathbf{D E}}\)
\(N_{1}:=2 \quad A E:=1 \quad A B:=\frac{A E}{N_{1}}\)
\(\mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{BF}:=\sqrt{\mathrm{AB} \cdot \mathrm{BE}} \quad \mathrm{AF}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BF}^{2}}\)
\(\mathrm{AC}:=\mathrm{AF} \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \mathrm{EG}:=\mathrm{CE} \mathrm{DE}:=\frac{\mathrm{EG}^{2}}{\mathrm{AE}}\)
\(\mathrm{BD}:=\mathrm{AE}-(\mathrm{AB}+\mathrm{DE}) \quad \frac{\mathrm{BD}^{2}}{4 \cdot(\mathrm{AB} \cdot \mathrm{DE})}=\mathbf{1}\)

\section*{Algebraic Names:}
\[
\frac{1}{\mathbf{N}_{1}}-\mathrm{AB}=0 \quad 1-\frac{1}{\mathrm{~N}_{1}}-\mathrm{BE}=0 \quad \sqrt{\frac{\left(\mathbf{N}_{1}-1\right.}{\left(\mathbf{N}_{1} \cdot N_{1}\right)}}-\mathrm{BF}=0 \quad \sqrt{\frac{\mathrm{~N}_{1}}{\mathbf{N}_{1}^{2}}}-\mathrm{AF}=0
\]
\(1-\sqrt{\frac{N_{1}}{N_{1}{ }^{2}}}-\mathbf{C E}=0 \quad 1-2 \cdot \sqrt{\frac{1}{N_{1}}}+\frac{1}{N_{1}}-D E=0 \quad 2 \cdot \sqrt{\frac{1}{N_{1}}}-\frac{2}{N_{1}}-B D=0\)
\(2 \cdot \sqrt{\frac{1}{N_{1}}}-\frac{1}{N_{1}}-A D=0 \quad \frac{\sqrt{2 \cdot \sqrt{\frac{1}{N_{1}}} \cdot N_{1}{ }^{2}-5 \cdot N_{1}+4 \cdot \sqrt{\frac{1}{N_{1}}} \cdot N_{1}-1}}{N_{1}}-D G=0\)


\section*{951101 EP}


Given:
\(\qquad\)

\section*{110195 A Modification Of The Square Root Figure, Gemini Roots}

On a given segment and from any point on that segment construct a square and a segment that will divide that square by ( \(\mathrm{N}-1\) )/2 times.
\(\mathbf{N}_{1}:=5\)
\(\mathrm{N}_{2}:=2\)
AG := 1
\(\mathrm{AE}:=\frac{\mathrm{AG}}{2} \quad \mathrm{EG}:=\mathrm{AE} \quad \mathrm{EF}:=\frac{\mathrm{AG}}{2 \cdot \mathrm{~N}_{1}} \quad \mathrm{AF}:=\mathrm{AE}+\mathrm{EF}\)
FG \(:=\mathbf{E G}-\mathbf{E I F N}:=\sqrt{\mathrm{AF} \cdot \mathbf{F G}} \mathrm{GN}:=\sqrt{\mathrm{FN}^{2}+\mathrm{FG}^{2}}\) GK \(:=\mathbf{G N}\)
\(\mathrm{EK}:=\sqrt{\mathbf{G K}^{2}-\mathrm{EG}^{2}} \mathbf{E O}:=\frac{\mathrm{EG} \cdot \mathrm{EF}}{\mathrm{EK}} \mathbf{O K}:=\mathrm{EO}+\mathbf{E K} \quad \mathrm{DE}:=\frac{\mathrm{AE}}{\mathbf{N}_{2}} \quad \mathrm{DO}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EO}^{2}}\)
DJ \(:=\mathbf{O K}-\) DO CD \(:=\frac{\text { DE DJ }}{\text { DO }} \quad \mathbf{C E}:=\mathbf{C D}+\mathrm{DECJ}:=\frac{\text { EO } \cdot \mathrm{DJ}}{\text { DO }} \quad \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AJ}:=\sqrt{\mathrm{AC}^{2}+\mathrm{CJ}^{2}}\)
\(\mathbf{A L}:=\mathbf{A J} \quad \mathbf{A B}:=\frac{\mathbf{A L}^{2}}{\mathbf{A G}} \quad \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{G J}:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}^{2}} \quad \mathbf{G M}:=\mathbf{G J} \quad \mathbf{D G}:=\frac{\mathbf{G M}^{2}}{\mathbf{A G}}\)
\(\mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G}) \quad \frac{\mathbf{N}_{\mathbf{1}}-\mathbf{1}}{2}-\frac{\sqrt{\mathrm{AB} \cdot \mathbf{D G}}}{\mathbf{B D}}=\mathbf{0}\)


\section*{951105 EP}


\section*{Given:}
\(\qquad\)

\section*{110595 Alternate Method Gemini Roots}
\[
\begin{aligned}
& N_{1}:=3 \quad N_{2}:=5 \\
& \mathrm{AG}:=1 \text { AF }:=\frac{\mathrm{AG}}{2} \quad \text { AR }:=\mathrm{AF} \text { FQ }:=\mathrm{AF} \text { FG }:=\mathrm{AF} \\
& \mathrm{AL}:=\frac{\mathrm{AR}}{\mathrm{~N}_{1}} \quad \mathrm{IM}:=\frac{\mathrm{AR}}{\mathrm{~N}_{2}} \quad \mathrm{AK}:=\frac{\mathrm{AL} \cdot \mathrm{IM}}{\mathrm{AR}} \\
& \text { DO := IM AB := AK BF := AF - AB FO := BF } \\
& \mathrm{OQ}:=\mathrm{FQ}-\mathrm{FO} \quad \mathrm{NP}:=\frac{(\mathrm{AG}-2 \cdot \mathrm{AB}) \cdot \mathrm{OQ}}{\mathrm{FO}} \quad \mathrm{NP}-2 \cdot \mathrm{AK}=0 \quad \mathrm{CD}:=\mathrm{AK} \text { DE }:=\mathrm{AK} \\
& \text { DF }:=\sqrt{\mathrm{FO}^{2}-\mathrm{DO}^{2}} \mathrm{AD}:=\mathrm{AF}-\mathrm{DF} \mathrm{AC}:=\mathrm{AD}-\mathrm{CD} \mathrm{EG}:=\mathrm{FG}+\mathrm{DF} \text { - DE } \\
& C E:=N P \quad \frac{N_{1}}{2}-\frac{\sqrt{A C \cdot E G}}{C E}=0
\end{aligned}
\]


\section*{951201 EP}


Given:
\(\qquad\)

\section*{120195 Method For Equals}

\section*{Given AB find NP.}

\[
\begin{aligned}
& \mathrm{N}_{1}:=5 \\
& \mathrm{AH}:=1 \quad \mathrm{AE}:=\frac{\mathrm{AH}}{2} \quad \mathrm{EH}:=\mathrm{AE} \quad \mathrm{EP}:=\mathrm{AE} \quad \mathrm{AP}:=\sqrt{2 \cdot \mathrm{AE}^{2}} \\
& \mathrm{AB}:=\frac{\mathrm{AE}}{\mathrm{~N}_{1}} \quad \mathrm{CE}:=\mathrm{AB} \quad \mathrm{CH}:=\mathrm{EH}+\mathrm{CE} \quad \mathrm{CL}:=\sqrt{2 \cdot \mathrm{CE}^{2}} \\
& \mathrm{AM}:=\frac{\mathrm{CL} \cdot \mathbf{A H}}{\mathrm{CH}} \quad \mathrm{MP}:=\mathrm{AP}-\mathrm{AM} \quad \mathrm{NP}:=\frac{\mathrm{EP} \cdot \mathrm{MP}}{\mathrm{AP}}
\end{aligned}
\]
\[
\frac{1}{2} \cdot \frac{\left(N_{1}-1\right)}{\left(N_{1}+1\right)}-N P=0 \quad \frac{\left(N_{1}-1\right)}{\left(N_{1}+1\right)}-2 \cdot N P=0
\]


\section*{951207 EP}B

Given:
\(\qquad\)

Scholia: 100 Great Problems of Elementary Mathematics H. Dorrie Problem 27 Euler's Line \(\delta:=0 . .2 \quad\) AC \(:=\left[\begin{array}{l}\text { Side_1 } \\ \text { Side_2 } \\ \text { Side_3 }\end{array}\right] \quad \mathrm{BC}:=\left[\begin{array}{l}\text { Side_2 } \\ \text { Side_3 } \\ \text { Side_1 }\end{array}\right] \quad\) AB \(:=\left[\begin{array}{l}\text { Side_3 } \\ \text { Side_1 } \\ \text { Side_2 }\end{array}\right] \begin{aligned} & \text { Given three sides of a triangle, } \\ & \text { determine the length of the Euler line. }\end{aligned} \begin{aligned} & \text { Work the drawing from each of the } \\ & \text { sides. }\end{aligned}\)

TRIANGLE \(:=(\) Side_1 + Side_2 \(>\) Side_3 \() \cdot(\) Side_1 + Side_3 \(>\) Side_2 \() \cdot(\) Side_2 + Side_3 \(>\) Side_1 \()\)


The following sequence is from 06_07_93.MCD. In that paper I treated it as a problem between two triangles, which it is. One can restate it as finding the fourth side of a quadrilateral by pulling up a line.
\[
\begin{aligned}
& \mathrm{eM}_{\delta}:=\mathrm{Ae}_{\delta}-\mathrm{AM}_{\delta} \mathrm{Sm}_{\delta}:=\mathrm{eM}_{\delta} \quad \mathrm{Se}_{\delta}:=\sqrt{\left(\mathrm{AS}_{\delta}\right)^{2}-\left(\mathrm{Ae}_{\delta}\right)^{2}} \quad \mathrm{Mm}_{\delta}:=\mathrm{Se}_{\delta} \\
& \mathrm{Um}_{\delta}:=\mathrm{if}\left[\mathrm{AC}_{\delta}<\sqrt{\left(\mathrm{BC}_{\delta}\right)^{2}+\left(\mathrm{AB}_{\delta}\right)^{2}}, \mathrm{MU}_{\delta}-\mathrm{Mm}_{\delta}, \mathrm{MU}_{\delta}+\mathrm{Mm}_{\delta}\right] \mathrm{SU}_{\delta}:=\sqrt{\left(\mathrm{Um}_{\delta}\right)^{2}+\left(\mathrm{Sm}_{\delta}\right)^{2}} \mathrm{UO}_{\delta}:=3 \cdot \mathrm{SU}_{\delta}
\end{aligned}
\]

Due to the way in which certain lines lay, the above switch was needed.



\section*{951216 EP}


Given:

\(\qquad\)

Descartes gives a figure for solving \(\mathrm{z}^{2}=\mathrm{az}+\mathrm{b}^{2}\) which should have been stated as \(\mathrm{z}^{2}=\) \(2 \mathrm{az}+\mathrm{b}^{2}\), generalize the figure. Descartes' figure was given only when \(\mathrm{n}=2\). In this form, it is an equation of two givens and one unknown, generalized it as three givens and solves for three unknowns. Attempt to eliminate two of the unknowns as a function of the three givens.


Given \(\mathrm{a}, \mathrm{n}\) and b for the equation \(\mathrm{z}^{2}=\mathrm{naz}+\mathrm{b}^{2}+\) cd find \(\mathrm{z}, \mathrm{c}\), and d .
\[
\begin{aligned}
& \mathrm{AD}:=\mathrm{n} \cdot \mathrm{a} \quad \mathrm{BE}:=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}} \quad \mathrm{BC}:=\frac{\mathrm{a}^{2}}{\mathrm{BE}} \\
& \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}} \\
& \mathrm{FG}:=\frac{\mathrm{AD}}{2} \quad \mathrm{CG}:=\sqrt{\mathrm{FG}^{2}-\mathrm{CF}^{2}} \\
& \mathrm{AG}:=\mathrm{FG} \quad \mathrm{AC}:=\mathrm{AG}+\mathrm{CG} \\
& \mathrm{BG}:=\mathrm{CG}-\mathrm{BC} \quad \mathrm{DG}:=\mathrm{FG} \\
& \mathrm{BD}:=\mathrm{DG}-\mathrm{BG} \quad \mathrm{AB}:=\mathrm{AG}+\mathrm{BG} \\
& \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{DE}:=\mathrm{BE}-\mathrm{BD} \\
& \mathrm{DH}:=\frac{\mathrm{b}^{2}}{\mathrm{DE}} \quad \mathrm{DI}:=\mathrm{AE} \quad \mathrm{HI}:=\mathrm{DI}-\mathrm{DH}
\end{aligned}
\]
\[
z:=A E \quad z=12.622
\]
\[
c:=D E \quad c=0.622
\]
\[
d:=\mathrm{HI} \quad d=6.186
\]
\(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0\)
Place values here :
\[
\begin{aligned}
& \mathrm{n} \equiv 3 \\
& \mathrm{a} \equiv 4 \\
& \mathrm{~b} \equiv 2
\end{aligned}
\]


Expressing c and d in terms of the givens does not really look esthetically pleasing.
\[
d:=2 \cdot a \cdot \frac{b^{2}}{\sqrt{a^{2}+b^{2}}} \cdot \frac{2 \cdot a-\sqrt{-2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}}{-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{-2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}} \cdot \sqrt{2 \cdot b+n \cdot \sqrt{a^{2}+b^{2}}}}}
\]
\[
c:=\frac{-1}{2} \cdot \frac{\left(-2 \cdot b^{2}+n \cdot a \cdot \sqrt{a^{2}+b^{2}}-a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\sqrt{a^{2}+b^{2}}}
\]

The symbolic processor could not reduce cd directly so I had to do it in terms of the equation by resolving z .
\(z:=\frac{1}{2} \cdot \frac{\left(n \cdot a \cdot \sqrt{a^{2}+b^{2}}+a \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}+2 \cdot b^{2}\right)}{\sqrt{a^{2}+b^{2}}}\) \(z^{2}-\left(n \cdot a \cdot z+b^{2}+c \cdot d\right)=0 \quad p:=-a \cdot b^{2} \cdot \frac{\left.2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\) \((c \cdot d)-p=0\)
\(z^{2}-\left[n \cdot a \cdot z+b^{2}+\left[-a \cdot b^{2} \cdot \frac{\left(2 \cdot a-\sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}\right)}{\left(a^{2}+b^{2}\right)}\right]\right]=0\)
Solve for z below.
\(\left[\left[\begin{array}{c}\frac{1}{2} \cdot n \cdot a+\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4} \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}{\sqrt{a^{2}+b^{2}}} \\ \frac{1}{2} \cdot n \cdot a-\frac{1}{2} \cdot \frac{\sqrt{n^{2} \cdot a^{4}+n^{2} \cdot a^{2} \cdot b^{2}-4 \cdot a^{2} \cdot b^{2}+4 \cdot b^{4}+4 \cdot a \cdot b^{2} \cdot \sqrt{n^{2} \cdot a^{2}+n^{2} \cdot b^{2}-4 \cdot b^{2}}}}{\sqrt{a^{2}+b^{2}}}\end{array}\right]\right.\)

Scholia: The Geometry of Rene Descartes with a facsimile of the first edition.
Translated by D. Eugene and M. Latham
\(z^{2}:=a z-b^{2}\)
The problem is given for the solution of \(z\) when \(a\) and \(b\) are given. Working the problem backward, \(z^{2}+b^{2}:=a z\) one can see constants in the figure for solving when only a and b are given.
\[
b:=2.12 \quad z:=1.41
\]

Finding a is just a matter of expressing b in terms of cz , and a becomes \(\mathrm{z}+\mathrm{c}\).
\[
c:=\frac{b^{2}}{z} \quad a:=z+c
\]

We find that this chas another relation to z , for i holds a proportion to it in the given equation.
\[
\begin{aligned}
& \left(c^{2}+b^{2}\right)-a \cdot c=0 \\
& \left(c^{2}+b^{2}\right)-((z+c) \cdot c)=0 \\
& \left(c^{2}+b^{2}\right)-(c \cdot z)-c^{2}=0 \\
& \left(z^{2}+b^{2}\right)-(z+c) \cdot z=0 \\
& \left(z^{2}+b^{2}\right)-(c \cdot z)-z^{2}=0
\end{aligned}
\]

Descartes and other mathematicians speak as if we have two different values for z , however, I see quite plainly that we have \(a z\) and a c that was found. The unique name of the symbols in context are thus preserved.

One can also see that working the figure in a straight forward manner, imaginary situations are not possible,



The primitive form of construction is very suggestive of Descartes process. If however we use Pythagorean division, the figure may not be so apparent. One should note that contrary to his statement on page 4, one cannot divide a line by a line. In geometry one can divide a square by a line. This is the law of tautology, which holds for all mathematics. It will also be noted that Descartes claims to be working with a quadratic equation, and his solution is indeed for one, however he states it as a quadratic deficient by a rectangle, deficient in fact by az. The authors of the notes make the same mistake.


\section*{951220 EP}


\section*{Given:}
\(\qquad\)

\section*{122095 Just For Fun}



\section*{951221 EP}


Given:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{122195 Pascal's Triangle With Exponential Division}


DK \(:=\frac{\text { DF } \cdot \text { BD }}{\text { CD }} \quad\) FK \(:=\frac{\text { DK } \cdot \text { BC }}{\text { BD }} \quad\) HK \(:=\frac{\text { FK } \cdot \text { FK }}{\text { DK }} \quad\) JK \(:=\frac{\text { HK } \cdot \text { HK }}{\text { FK }}\)
\[
\frac{D K}{F K}-\frac{(N-1)}{(\sqrt{N}-1)}=0 \quad \frac{D K}{H K}-\frac{N^{2}-2 \cdot N+1}{N-2 \cdot \sqrt{N}+1}=0 \quad \frac{D K}{J K}-\frac{N^{3}-3 \cdot N^{2}+3 \cdot N-1}{N^{\frac{3}{2}}-3 \cdot N+3 \cdot \sqrt{N}-1}=0
\]

\section*{A more civil figure.}

\[
\mathbf{A B}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A E}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}}
\]

F E DCB A
\(\frac{B F}{B E}-\frac{(N-1)}{(\sqrt{N}-1)}=0 \quad \frac{B F}{B D}-\frac{N^{2}-2 \cdot N+1}{N-2 \cdot \sqrt{N}+1}=0 \quad \frac{B F}{B C}-\frac{N^{3}-3 \cdot N^{2}+3 \cdot N-1}{N^{\frac{3}{2}}-3 \cdot N+3 \cdot \sqrt{N}-1}=0\)

\[
\frac{B G}{B F}-\frac{N-1}{N^{\frac{3}{4}}-1}=0 \quad \frac{B G}{B E}-\frac{N^{2}-2 \cdot N+1}{N^{\left(\frac{3}{2}\right)}-2 \cdot N^{\left(\frac{3}{4}\right)}+1}=0 \quad \frac{B G}{B C}-\frac{N^{3}-3 \cdot N^{2}+3 \cdot N-1}{N^{\frac{9}{4}}-3 \cdot N^{\left(\frac{3}{2}\right)}+3 \cdot N^{\left(\frac{3}{4}\right)}-1}=0
\]



Given:

\(\qquad\)

\section*{122995}

\section*{Given AC and CE find BC.}

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=4 \quad \mathbf{N}_{2}:=9 \\
& \mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{C E}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A E}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C E}^{2}} \quad \mathbf{A D}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A E}} \\
& \mathbf{A B}:=\frac{\mathbf{A D}^{2}}{\mathbf{A C}} \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\sqrt{\mathrm{AB} \cdot \mathbf{B C}} \\
& \mathbf{C D}:=\sqrt{\mathbf{B C}^{2}+\mathbf{B D}^{2}} \quad \mathbf{D E}:=\mathrm{AE}-\mathbf{A D}
\end{aligned}
\]
\[
B C-\frac{N_{1} \cdot N_{2}{ }^{2}}{{N_{1}}^{2}+{N_{2}}^{2}}=0 \quad B D-\frac{N_{1}{ }^{2} \cdot N_{2}}{{N_{1}}^{2}+{N_{2}}^{2}}=0 \quad A B-\left(N_{1}-\frac{N_{1} \cdot N_{2}{ }^{2}}{{N_{1}}^{2}+N_{2}{ }^{2}}\right)=0
\]
\[
\mathrm{AD}-\frac{\mathrm{N}_{1}^{2}}{\sqrt{\mathrm{~N}_{1}^{2}+\mathrm{N}_{2}^{2}}}=0 \quad \mathrm{DE}-\frac{\mathrm{N}_{2}^{2}}{\sqrt{\mathrm{~N}_{1}^{2}+\mathrm{N}_{2}^{2}}}=0
\]

The Delian Quest-1996



\section*{960107 EP}


\section*{Given:}
\(\qquad\)

\section*{010796 Rusty Cubes}


A rusty Compass construction for the duplication of the cube.
\[
\begin{aligned}
& \mathrm{AD}:=2 \quad \mathrm{AB}:=\frac{\mathrm{AD}}{2} \quad \mathrm{AG}:=\sqrt{2 \cdot \mathrm{AB}^{2}} \quad \mathrm{AF}:=\frac{\mathrm{AG}}{9} \cdot 8 \\
& \mathrm{AC}:=\mathrm{AF} \quad \mathrm{AC}=1.257 \\
& \left(\mathbf{A B}^{2} \cdot \mathbf{A D}\right)^{\frac{1}{3}}=1.26 \quad \frac{\left(\mathrm{AB}^{2} \cdot \mathbf{A D}\right)^{\frac{1}{3}}}{\mathrm{AC}}=1.002
\end{aligned}
\]

I remember a rusty construction for squaring a circle off the base of a right triangle. Here is one more rust pile construction.


\section*{960108 EP}


Given:

\(\qquad\)

\section*{010896 Alternate Method Power Line}
\[
\begin{aligned}
& \mathbf{R}_{1}:=\mathbf{2} \quad \mathbf{R}_{2}:=\mathbf{5} \quad \mathbf{D}:=\mathbf{4} \\
& \text { DE := } \mathbf{R}_{1} \quad \text { KM }:=\mathbf{R}_{\mathbf{2}} \quad \text { EK }:=\mathbf{D} \quad \text { DM }:=\mathrm{DE}+\mathbf{E K}+\mathrm{KM} \\
& \text { EF := DE JK := KM FJ := EK - (EF + JK }) \text { AD := DM } \\
& \text { BM := DM DF := DE + EF JM := JK + KM } \\
& \text { FG }:=\frac{\text { DF FJ }}{\text { DF + JM }} \quad \text { GJ }:=\text { FJ }- \text { FG } \quad \text { DI }:=\frac{\text { DM }}{2} \\
& \text { DG }:=\text { DF }+ \text { FG GI }:=\text { DI }- \text { DG CI }:=\text { DI GN }:=\frac{\text { AD } \cdot \mathbf{F G}}{\text { DF }} \\
& \mathbf{G H}:=\frac{\mathbf{G I} \cdot \mathbf{G N}}{\mathbf{C I}+\mathbf{G N}} \mathbf{D H}:=\mathbf{D F}+\mathbf{F G}+\mathbf{G H} \mathbf{D H}=\mathbf{1 . 3 7 5} \\
& \text { HM := DM - DH } \\
& \mathbf{D H}-\frac{\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}{2 \cdot \mathrm{D}}=\mathbf{0} \\
& H M-\frac{\left(R_{2}+R_{1}+D\right) \cdot\left(R_{2}-R_{1}+D\right)}{2 \cdot D}=0
\end{aligned}
\]



\section*{960113 EP}


Given:



\(\qquad\)

\section*{011396 Pyramid of Ratios VI, Moving the Point}

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{5} \quad \mathbf{N}_{2}:=7 \quad \mathbf{N}_{1}:=\mathbf{N}_{1} \quad \mathbf{N}_{2}:=\mathbf{N}_{2} \\
& \mathbf{A D}:=1 \quad \mathbf{A B}:=\frac{\mathbf{A D}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathrm{BG}:=\sqrt{\mathrm{AB} \cdot \mathrm{BD}} \quad \mathrm{BE}:=\frac{\mathrm{BG}}{\mathbf{N}_{2}} \quad \mathrm{BC}:=\frac{\mathrm{BD} \cdot \mathrm{BE}}{\mathrm{BG}} \\
& \mathrm{AE}:=\sqrt{\mathrm{AB}^{2}+\mathrm{BE}^{2}} \quad \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{AF}:=\frac{\mathrm{AE} \cdot \mathrm{AD}}{\mathrm{AC}} \\
& E F:=A F-A E \quad \frac{A F}{E F}-\frac{\mathbf{N}_{1} \cdot N_{2}}{\left(N_{1}-1\right) \cdot\left(N_{2}-1\right)}=0
\end{aligned}
\]
\(\Delta:=2 . . \mathbf{N}_{1} \quad \delta:=2 . . \mathbf{N}_{2}\)
\(\operatorname{SeriesAF}_{\Delta, \delta}:=\frac{\Delta \cdot \delta}{(\Delta-1) \cdot(\delta-1)}\)
SeriesAF \(=\left[\begin{array}{llllll}4 & 3 & 2.667 & 2.5 & 2.4 & 2.333 \\ 3 & 2.25 & 2 & 1.875 & 1.8 & 1.75 \\ 2.667 & 2 & 1.778 & 1.667 & 1.6 & 1.556 \\ 2.5 & 1.875 & 1.667 & 1.563 & 1.5 & 1.458\end{array}\right]\)
\(\mathrm{DG}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BG}^{2}} \mathrm{CE}:=\sqrt{\mathrm{BC}^{2}+\mathrm{BE}^{2}} \quad \mathrm{DF}:=\frac{\mathrm{CE} \cdot \mathrm{AD}}{\mathrm{AC}} \mathrm{GF}:=\mathrm{DG}-\mathrm{DF}\)
\(\frac{\text { DG }}{G F}-\frac{\left(N_{2}+N_{1}-1\right)}{\left(N_{2}-1\right)}=0\)

SeriesDG \(_{\Delta, \delta}:=\frac{(\delta+\Delta-1)}{(\delta-1)}\)
\[
\text { SeriesDG }=\left[\begin{array}{llllll}
3 & 2 & 1.667 & 1.5 & 1.4 & 1.333 \\
4 & 2.5 & 2 & 1.75 & 1.6 & 1.5 \\
5 & 3 & 2.333 & 2 & 1.8 & 1.667 \\
6 & 3.5 & 2.667 & 2.25 & 2 & 1.833
\end{array}\right]
\]



960116 EP
Given:

\(\qquad\)

The figure cuts the base in Cube Roots and provides some interesting ratios.

\[
\mathbf{N}:=10
\]
\[
\text { AG }:=\mathbf{N} \quad \mathbf{A B}:=\frac{\mathbf{A G}}{\mathbf{N}} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{B G}}{2}
\]
\[
\mathbf{A C}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A G}\right)^{\frac{1}{3}} \mathbf{B C}:=\mathbf{A C}-\mathbf{A B}
\]
\[
A F:=\left(A B \cdot A G^{2}\right)^{\frac{1}{3}} B F:=A F-A B \quad F G:=B G-B F
\]
\[
\text { HJ }:=\frac{\mathbf{B C} \cdot \mathbf{B G}}{\mathbf{B C}+\mathbf{F G}} \text { BD }:=\text { HJ } \quad \text { DG }:=\mathbf{B G}-\mathbf{B D}
\]
\[
\mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \mathbf{G J}:=\sqrt{\mathbf{D J}^{2}+\mathrm{DG}^{2}} \mathbf{B J}:=\sqrt{\mathbf{D J ^ { 2 } + \mathbf { B D } ^ { 2 }}}
\]
\[
\mathbf{G N}:=\frac{\mathbf{G J} \cdot \mathbf{F G}}{\mathbf{B G}} \quad \mathbf{B M}:=\frac{\mathbf{B J} \cdot \mathbf{B C}}{\mathbf{B G}}
\]
\[
\frac{\mathrm{AG}}{\mathrm{AB}}=10
\]
\[
\frac{\mathbf{G N}}{\mathbf{B M}}=10
\]
\[
\begin{array}{ll}
\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{0}{3}}=1.68 & \frac{\mathrm{GJ}}{\mathrm{GN}}=1.68 \\
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}=7 . \mathrm{N}^{\frac{0}{3}} \\
\mathbf{N}^{\frac{2}{3}} \\
=1.68 \\
& \frac{\mathrm{BJ}}{\mathrm{BM}}=7.796
\end{array}
\]

\[
\mathbf{C F}:=\mathrm{AF}-\mathrm{AC} \text { BP }:=\frac{\mathrm{BD} \cdot \mathbf{B C}}{\mathrm{BG}} \mathrm{CD}:=\frac{\mathrm{BD} \cdot \mathbf{C F}}{\mathrm{BG}}
\]

FR \(:=\frac{\mathrm{BD} \cdot \mathbf{F G}}{\mathrm{BG}}\)
\[
\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{4}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{3}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{3}}=43.982
\]
\[
N^{\frac{4}{3}}+N^{\frac{3}{3}}+N^{\frac{2}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}=43.982 \quad \frac{B G}{B P}=43.982
\]
\[
\left(\frac{A G}{A B}\right)^{\frac{1}{3}}+\left(\frac{A G}{A B}\right)^{\frac{1}{3}}+\left(\frac{A G}{A B}\right)^{\frac{2}{3}}+\left(\frac{A G}{A B}\right)^{\frac{3}{3}}+\left(\frac{A B}{A G}\right)^{\frac{0}{3}}+\left(\frac{A B}{A G}\right)^{\frac{1}{3}}=20.415
\]
\[
N^{\frac{3}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}+\frac{1}{N^{\frac{1}{3}}}=20.415 \quad \frac{B G}{C D}=20.415
\]
\[
\left(\frac{A G}{A B}\right)^{\frac{2}{3}}+\left(\frac{A G}{A B}\right)^{\frac{1}{3}}+\left(\frac{A G}{A B}\right)^{\frac{0}{3}}+\left(\frac{A G}{A B}\right)^{\frac{0}{3}}+\left(\frac{A B}{A G}\right)^{\frac{1}{3}}+\left(\frac{A B}{A G}\right)^{\frac{2}{3}}=9.476
\]
\[
\mathrm{N}^{\frac{2}{3}}+\mathrm{N}^{\frac{1}{3}}+\mathrm{N}^{\frac{0}{3}}+\mathrm{N}^{\frac{0}{3}}+\frac{1}{\mathrm{~N}^{\frac{1}{3}}}+\frac{1}{\mathrm{~N}^{\frac{2}{3}}}=9.476 \quad \frac{\mathrm{BG}}{\mathrm{FR}}=9.476
\]

\(\frac{A G}{B P}=48.869\)
\[
\frac{\mathrm{N}^{\frac{5}{3}}+\mathrm{N}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=48.869
\]
\[
\frac{\mathrm{AG}^{\frac{4}{3}}+\mathrm{AB}^{\frac{2}{3}} \cdot \mathrm{AG}^{\frac{2}{3}}}{\mathrm{AG}^{\frac{1}{3}} \cdot \mathrm{AB}-\mathrm{AB}^{\frac{4}{3}}}=22.683
\]
\(\frac{\mathrm{AG}}{\mathrm{CD}}=22.683\)
\[
\frac{N^{\frac{4}{3}}+N^{\frac{2}{3}}}{N^{\frac{1}{3}}-N^{\frac{0}{3}}}=22.683
\]
\[
\frac{A G+A B^{\frac{2}{3}} \cdot A G^{\frac{1}{3}}}{A G^{\frac{1}{3}} \cdot A B^{\frac{2}{3}}-A B}=10.528
\]
\[
\frac{A G}{F R}=10.528 \quad \frac{\mathrm{~N}+\mathrm{N}^{\frac{1}{3}}}{\mathrm{~N}^{\frac{1}{3}}-\mathrm{N}^{\frac{0}{3}}}=10.528
\]


960117A EP


Given:

\(\qquad\)

\section*{011796A Right Triangle In A Given Ratio}

Given \(A E\) and \(A B\) on \(A E\), place a right triangle on \(B E\) as base such that the opposite sides are in the ratio of \(A B\) to AE.
\[
\mathbf{N}:=3
\]

\[
\mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \text { FG }:=\mathbf{G H} \mathbf{A F}:=\mathbf{A H}-(\mathbf{F G}+\mathbf{G H})
\]
\(S_{1}:=A D \quad S_{2}:=A F \quad S_{3}:=\mathrm{DF}\)
\(\mathrm{CD}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot \mathrm{~S}_{1}} \quad \mathrm{BC}:=\mathrm{BD}-\mathrm{CD}\)
\(\mathbf{C E}:=\mathrm{CD}+\mathrm{DE} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}} \quad \mathrm{BF}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CF}^{2}} \quad \mathrm{EF}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CF}^{2}} \quad \mathrm{AC}:=\mathrm{AD}-\mathrm{CD}\)
\(\frac{A E}{A B}-\frac{E F}{B F}=0 \quad A C-\frac{N^{2}+N}{N^{2}+1}=0 \quad B F-\frac{N-1}{\sqrt{N^{2}+1}}=0 \quad E F-\frac{N^{2}-N}{\sqrt{N^{2}+1}}=0\)
\[
\begin{aligned}
& A B:=1 \quad A E:=A B \cdot N \quad B E:=A E-A B \\
& \text { BD }:=\frac{\mathrm{BE}}{2} \text { DF }:=\mathrm{BD} \text { DE }:=\mathrm{BD} \text { AD }:=\mathrm{AB}+\mathrm{BD} \\
& \text { DH }:=\mathbf{B D} \mathbf{A H}:=\sqrt{\mathbf{A D}^{2}+\text { DH }^{2}} \text { AG }:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A H}}
\end{aligned}
\]



960117B EP
Given:
\(\qquad\)

\section*{011796B Divide The Sides Of A Triangle In A Given Ratio}

Given \(A G\) and \(A B\) on \(A G\) and a right triangle on \(B G\) divide the sides of the triangle such that a section on one side is to the other as \(A B\) is to AG.




\section*{960121 EP}

Given:
\(\qquad\)

\section*{012196 More On Cube Roots}

\[
\begin{aligned}
& \mathbf{N}:=5 \\
& \text { BH := } 1 \\
& \begin{array}{l}
\text { BP }:=\text { BH HQ }:=\text { BH } \\
\text { BG }:=\frac{\text { BH }}{2} \text { GO }:=\text { BG GN }:=\text { BG NO }:=\text { BH } \quad \text { GH }:=\text { BG }
\end{array} \\
& \mathrm{BE}:=\frac{\mathrm{BG}}{\mathrm{~N}} \quad \mathrm{EG}:=\mathrm{BG}-\mathrm{BE} \mathbf{E O}:=\sqrt{\mathrm{EG}^{2}+\mathrm{GO}^{2}} \\
& \text { MO }:=\frac{\text { GO NO }}{\text { EO }} \text { EM }:=\text { MO }- \text { EO EL }:=\frac{\text { EM }}{2} \text { LK }:=\text { EL } \\
& \mathbf{L O}:=\mathbf{E O}+\mathbf{E L L J}:=\frac{\mathbf{L K}^{2}}{\mathbf{L O}} \quad \mathbf{E J}:=\mathbf{E L}-\mathbf{L J} \\
& \mathbf{A E}:=\frac{\mathrm{EO} \cdot \mathbf{E J}}{\mathrm{EG}} \mathbf{A H}:=\mathbf{A E}+\mathbf{E G}+\mathbf{G H} \mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \\
& \text { DE }:=\frac{\text { EG•EM }}{\text { EO }} \text { DM }:=\frac{\mathbf{G O} \cdot \mathbf{E M}}{\text { EO }} \mathbf{B D}:=\mathbf{B G}-(\mathbf{E G}+\mathbf{D E})
\end{aligned}
\]
\(\mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B P}}{\mathbf{B P}+\mathbf{D M}} \mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \mathbf{D F}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{D M}+\mathbf{H Q}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B D}+\mathbf{D F}\)
\[
\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A F=0
\]



\section*{960122 EP}

Given:
\(\qquad\)

\section*{012296 Trivial Method Square Root}

For any \(E\) between \(M\) and \(L\), \(A M\) is the square root of \(A B \times A E\).
\[
\begin{aligned}
& N_{1}:=6 \quad N_{2}:=\mathbf{3} \\
& \text { AF }:=1 \quad \text { AL }:=A F \cdot \mathbf{N}_{1} \quad \text { FL }:=A L-A F \quad F J:=\frac{\text { FL }}{2} \\
& \mathbf{A M}:=\sqrt{\mathbf{A F} \cdot \mathbf{A L}} \quad \mathbf{A J}:=\mathbf{A F}+\mathbf{F J} \quad \mathbf{A G}:=\frac{\mathbf{A M}^{2}}{\mathbf{A J}} \\
& \text { GL :=AL - AG GK := } \frac{\mathbf{G L}}{\mathbf{N}_{\mathbf{2}}} \quad \text { FG }:=\mathbf{A G}-\mathbf{A F} \\
& \text { FK }:=\text { GK + FG KL }:=\text { FL }- \text { FK EK }:=\sqrt{\text { FK } \cdot K L} \\
& \mathrm{AK}:=\mathrm{FK}+\mathrm{AF} \mathrm{AE}:=\sqrt{\mathrm{AK}^{2}+\mathrm{EK}^{2}} \mathrm{AD}:=\frac{\mathrm{AK} \cdot \mathrm{AJ}}{\mathrm{AE}} \\
& \text { DE := AE - AD BD := DE AB := AE - } 2 \cdot \mathrm{BD} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A M}=\mathbf{0}
\end{aligned}
\]



\section*{960124 EP}

\section*{Given:}
\(\qquad\)

\section*{012496 Tangent}

The tangent from any point outside a circle is equal to the square root of the difference to the circle and that difference plus the diameter of the circle.

\[
\begin{aligned}
& \mathbf{N}:=5 \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A E}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathrm{DM}:=\mathrm{BD} \quad \mathrm{DH}:=\mathrm{BD} \quad \mathrm{CD}:=\frac{\mathrm{DH} \cdot \mathrm{DM}}{\mathrm{AD}} \\
& B C:=B D-C D \quad C E:=B E-B C \\
& \mathbf{C J}:=\sqrt{B C \cdot C E} \quad A J:=\sqrt{(A B+B C)^{2}+\mathbf{C J}^{2}} \\
& \mathbf{A J}-\sqrt{\mathbf{N}}=\mathbf{0}
\end{aligned}
\]
\(A C:=A B+B C \quad 2 \cdot A B \cdot \frac{N}{(1+N)}-A C=0\)



\section*{960125 EP}

Given:
\(\qquad\)


Given a point on BD (a point on the cubes powerline), project to the point of cubic similarity.
\[
A B-\frac{1}{2 \cdot(N-1) \cdot\left(4 \cdot N^{2}-2 \cdot N+1\right)}=0
\]
\[
\begin{aligned}
& \mathbf{N}:=9 \quad \text { BE := } \mathbf{1} \\
& \text { BD }:=\frac{\mathbf{B E}}{2} \text { DK }:=\text { BD DJ }:=\text { BD JK }:=\text { BE } \quad \text { DE }:=\text { BD } \\
& \mathbf{B C}:=\frac{\mathrm{BD}}{\mathrm{~N}} \quad \mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{CK}:=\sqrt{\mathrm{CD}^{2}+\mathrm{DK}^{2}} \\
& \text { HK }:=\frac{\text { DK JK }}{\text { CK }} \quad \text { CH }:=\mathrm{HK}-\mathrm{CK} \mathrm{CF}:=\frac{\mathrm{CH}}{2} \\
& \mathrm{FK}:=\mathrm{CK}+\mathrm{CF} \text { GK }:=\frac{\mathrm{DK} \cdot \mathrm{FK}}{\mathrm{CK}} \quad \mathrm{FG}:=\frac{\mathrm{CD} \cdot \mathrm{FK}}{\mathrm{CK}} \\
& \text { GJ }:=\text { JK - GK AD }:=\frac{\text { GJ } \cdot \text { DK }}{\text { FG }} \text { AE }:=\mathrm{AD}+\mathrm{DE} \\
& \mathrm{AB}:=\mathbf{A E}-\mathbf{B E} \\
& A E-\frac{(2 \cdot N-1)^{3}}{2 \cdot(N-1) \cdot\left(4 \cdot N^{2}-2 \cdot N+1\right)}=0
\end{aligned}
\]



960129 EP
Given:


012996 Linear division \(\frac{N_{1}+2 \cdot N_{2}}{2 \cdot\left(N_{1}+N_{2}\right)}\)

\[
\mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{2}:=9
\]
\[
\mathbf{A E}:=\mathbf{1}
\]
\[
\mathrm{AH}:=\mathrm{AE} \cdot \mathbf{N}_{1} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{2} \quad \mathrm{CF}:=\mathrm{AE} \cdot \mathbf{N}_{2} \quad \mathrm{BC}:=\frac{\mathrm{AC} \cdot \mathbf{C F}}{\mathrm{AH}}
\]
\[
\mathrm{CE}:=\mathrm{AC} \mathrm{BE}:=\mathrm{CE}+\mathrm{BC} \quad \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathrm{CE}}{\mathrm{BE}} \quad \mathrm{DE}:=\mathrm{CE}-\mathrm{CD}
\]
\[
\mathbf{H} \quad \mathbf{A D}:=\mathrm{AC}+\mathbf{C D} \quad \mathrm{DG}:=\frac{\mathbf{A H} \cdot \mathbf{C D}}{\mathrm{AC}}
\]
\(D E-\frac{N_{1}}{2 \cdot\left(N_{1}+N_{2}\right)}=0\)
\[
A D-\frac{N_{1}+2 \cdot \mathbf{N}_{2}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad C D-\frac{\mathbf{N}_{2}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0
\]
\[
D G-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0
\]

Linear division \(\frac{N_{1} \cdot N_{2}-N_{1}+N_{3} \cdot N_{2}}{N_{2} \cdot\left(N_{1} \cdot N_{2}-N_{1}+N_{3}\right)}\)

\[
\mathbf{N}_{1}:=4 \quad \mathbf{N}_{2}:=4 \quad \mathbf{N}_{3}:=2 \quad \text { AE }:=1
\]
\[
\mathrm{AH}:=\mathrm{AE} \cdot \mathbf{N}_{1} \quad \mathrm{AC}:=\frac{\mathbf{A E}}{\mathbf{N}_{2}} \quad \mathrm{CF}:=\mathrm{AE} \cdot \mathbf{N}_{3} \quad \mathrm{BC}:=\frac{\mathrm{AC} \cdot \mathrm{CF}}{\mathrm{AH}}
\]
\[
\mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \mathrm{BE}:=\mathrm{CE}+\mathrm{BC} \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathrm{CE}}{\mathrm{BE}} \mathrm{DE}:=\mathrm{CE}-\mathrm{CD}
\]
\[
\mathrm{AD}:=\mathrm{AC}+\mathrm{CD} \quad \mathrm{DG}:=\frac{\mathrm{CF} \cdot \mathrm{CE}}{\mathrm{BE}}
\]
\(D E-A E \cdot \frac{N_{1} \cdot\left(N_{2}-1\right)^{2}}{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}\right)}=0 \quad A D-A E \cdot \frac{N_{1} \cdot N_{2}-N_{1}+N_{3} \cdot N_{2}}{\mathbf{N}_{2} \cdot\left(N_{1} \cdot \mathbf{N}_{2}-N_{1}+\mathbf{N}_{3}\right)}=0\)

DG - AE \(\cdot \frac{\mathbf{N}_{1} \cdot \mathbf{N}_{3} \cdot\left(\mathbf{N}_{2}-1\right)}{\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{1}+\mathbf{N}_{3}}=0\)
\(C D-A E \cdot \frac{N_{3} \cdot\left(N_{2}-1\right)}{N_{2} \cdot\left(N_{1} \cdot N_{2}-N_{1}+N_{3}\right)}=0\)



\section*{960131 EP}

Given:
\(\qquad\)

\section*{013196 On Gemini Roots}


Hitting AO from any RT while maintaining Gemini Roots.
\[
\begin{aligned}
& \mathrm{N}_{1}:=5 \quad \mathrm{~N}_{2}:=3 \quad \mathrm{BC}:=1 \\
& \mathrm{BJ}:=\mathrm{BC} \cdot \mathrm{~N}_{1} \quad \mathrm{CJ}:=\mathrm{BJ}-\mathrm{BC} \quad \mathrm{CI}:=\frac{\mathrm{CJ}}{2} \\
& \mathrm{IJ}:=\mathrm{CI} \quad \mathrm{BF}:=\sqrt{\mathrm{BC} \cdot \mathrm{BJ}} \quad \mathrm{AB}:=\mathrm{BF} \\
& \mathrm{AF}:=\mathrm{AB}+\mathrm{BF} \quad \mathrm{CF}:=\mathrm{BF}-\mathrm{BC} \quad \mathrm{FJ}:=\mathrm{CJ}-\mathrm{CF} \\
& \text { FO }:=\sqrt{\mathrm{CF} \cdot \mathrm{FJ}} \quad \text { CR }:=\mathrm{CJ} \cdot \mathrm{~N}_{2} \quad \mathrm{HS}:=\mathrm{CR} \\
& \text { FI }:=\mathrm{FJ}-\mathrm{IJ} \quad \text { FG }:=\frac{\mathrm{FI} \cdot \mathrm{FO}}{\mathrm{FO}+\mathrm{HS}} \quad \mathrm{AG}:=\mathrm{AB}+\mathrm{BF}+\mathrm{FG}
\end{aligned}
\]
\[
\text { OS }:=\sqrt{(H S+F O)^{2}+\mathrm{FI}^{2}} \text { GO }:=\frac{\mathrm{OS} \cdot \mathbf{F O}}{\mathrm{HS}+\mathrm{FO}} \quad \mathrm{AJ}:=\mathrm{AF}+\mathrm{FJ} \quad \text { GL }:=\frac{\mathrm{HS} \cdot \mathbf{G O}}{\mathrm{OS}} \quad \text { FU }:=\frac{\mathrm{AG} \cdot F O}{\mathrm{GL}}
\]
\[
\mathbf{A H}:=\frac{\mathrm{FU} \cdot \mathbf{A J}}{\mathrm{FU}+\mathbf{F J}} \quad \mathbf{D K}:=\frac{\mathrm{FO} \cdot(\mathbf{A F}-\mathbf{C F})}{\mathrm{FU}-\mathbf{C F}} \quad \mathbf{A D}:=\frac{\mathbf{A G} \cdot \mathbf{D K}}{\mathbf{G L}} \quad \mathbf{A C}:=\mathrm{AF}-\mathbf{C F} \quad \mathbf{C D}:=\mathrm{AD}-\mathbf{A C}
\]
\[
\mathbf{C H}:=\mathrm{AH}-\mathbf{A C} \mathrm{DH}:=\mathbf{C H}-\mathbf{C D} \mathbf{H J}:=\mathbf{C J}-\mathbf{C H} E N:=\frac{\mathrm{CR} \cdot \mathrm{DH}}{\mathbf{C D}+\mathbf{H J}} \quad \mathrm{CE}:=\frac{\mathrm{CD} \cdot(\mathrm{CR}+\mathrm{EN})}{\mathrm{CR}}
\]
\[
\mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \quad \frac{\mathbf{A F}}{\mathbf{F O}}-\frac{\mathbf{A E}}{\mathbf{E N}}=0 \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \quad \mathbf{B H}:=\mathbf{B C}+\mathbf{C H} \sqrt{\mathbf{B C} \cdot \mathbf{B J}}-\sqrt{\mathbf{B D} \cdot \mathbf{B H}}=\mathbf{0}
\]



\section*{960202 EP}

\section*{Given:}
\(\qquad\)

\section*{020296 Find A Segment}

\section*{Given \(B E\) and \(B C\) such that}
\(\sqrt{(A B+B E) \cdot A B}=A B+B C\), find \(A B\).

\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \quad \mathbf{N}_{1}>2=1 \\
& \mathbf{B C}:=1 \quad \text { BE }:=\mathbf{B C} \cdot \mathbf{N}_{1} \quad \text { BD }:=\frac{B E}{2} \quad \text { CD }:=\mathbf{B D}-\mathbf{B C}
\end{aligned}
\]
\[
\mathrm{CH}:=\mathrm{BD} \text { DH }:=\sqrt{\mathrm{CD}^{2}+\mathrm{CH}^{2}} \mathrm{DF}:=\frac{\mathrm{DH}}{2}
\]
\[
\mathbf{A D}:=\frac{\mathbf{D H} \cdot \mathbf{D F}}{\mathbf{C D}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{A B}-\frac{1}{\left(\mathbf{N}_{1}-2\right)}=0 \quad \sqrt{(\mathbf{A B}+\mathbf{B E}) \cdot \mathbf{A B}}-(\mathbf{A B}+\mathbf{B C})=\mathbf{0}
\]


Use iteration to find any root pair for BE.
Remember that when N is set to 2 , we have cube roots.
\[
\begin{aligned}
& \mathrm{CI}:=1 \quad \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{GI}:=\mathrm{CG} \quad \mathrm{BC}:=1 \\
& \mathrm{BI}:=\mathrm{BC}+\mathrm{CI} \quad \mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EK}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EG}:=\mathrm{CG}-\mathrm{CE} \\
& \mathrm{AE}:=\frac{\mathrm{EK}}{\mathrm{EG}} \quad \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AG}:=\mathrm{AC}+\mathrm{CG} \\
& \mathrm{~N}:=2 \mathrm{GN}:=\mathrm{CG} \cdot \mathrm{~N} \quad \mathrm{IO}:=\mathrm{GN} \quad \mathrm{CM}:=\mathrm{GN} \\
& \Delta:=40 \quad \delta:=0 . . \Delta
\end{aligned}
\]
\[
\left[\begin{array}{c}
\mathrm{EP}_{0} \\
\mathrm{FG}_{0} \\
\mathrm{AF}_{0} \\
\mathrm{FI}_{0} \\
\mathrm{CF}_{0} \\
\mathrm{FL}_{0}
\end{array}\right]:=\left[\begin{array}{c}
\mathrm{EK} \\
\frac{\mathrm{EG} \cdot \mathrm{GN}}{\mathrm{GN}+\mathrm{EK}} \\
\mathrm{AG}-\frac{\mathrm{EG} \cdot \mathrm{GN}}{\mathrm{GN}+\mathrm{EK}} \\
\sqrt{\left.\left[\left[\mathrm{AG}-\left(\frac{\mathrm{EG} \cdot \mathrm{GN}}{\mathrm{GN}+\mathrm{EK}}\right)\right]-\mathrm{AC}\right)\right] \cdot \mathrm{GN}} \\
{\left[\mathrm{GI}+\left(\frac{\mathrm{EG} \cdot \mathrm{GN}}{\mathrm{GN}+\mathrm{EK}}\right)\right]}
\end{array}\right]
\]
\[
\left[\begin{array}{l}
\mathrm{EP}_{\delta+1} \\
\mathrm{FG}_{\delta+1} \\
\mathrm{AF}_{\delta+1} \\
\mathrm{FI}_{\delta+1} \\
\mathrm{CF}_{\delta+1} \\
\mathrm{FL}_{\delta+1}
\end{array}\right]:=\left[\begin{array}{c}
\frac{\mathrm{FL}_{\delta} \cdot \mathrm{AE}}{\mathrm{AF}_{\delta}} \\
\frac{\mathrm{EG} \cdot \mathrm{GN}}{\mathrm{GN}+\mathrm{EP}_{\delta}} \\
\mathrm{AG}-\mathrm{FG}_{\delta} \\
\mathrm{GI}+\mathrm{FG}_{\delta} \\
\mathrm{AF}_{\delta}-\mathrm{AC} \\
\sqrt{\mathrm{CF}_{\delta} \cdot \mathrm{FI}_{\delta}}
\end{array}\right]
\]
\[
\begin{aligned}
& \mathrm{AK}:=\sqrt{\mathrm{AE}^{2}+\mathrm{EK}^{2}} \quad \mathrm{AL}:=\sqrt{\left(\mathrm{AF}_{\Delta}\right)^{2}+\left(\mathrm{FL}_{\Delta}\right)^{2}} \quad \mathrm{AJ}:=\frac{\mathrm{AK}^{2}}{\mathrm{AL}} \quad \mathrm{AQ}:=\frac{\mathrm{AF}_{\Delta} \cdot \mathrm{AJ}}{\mathrm{AL}} \quad \mathrm{CQ}:=\mathrm{AQ}-\mathrm{AC} \\
& \mathrm{IQ}:=\mathrm{CI}-\mathrm{CQ} \quad \mathrm{JQ}:=\sqrt{\mathrm{CQ} \cdot \mathrm{IQ}} \quad \mathrm{CD}:=\frac{\mathrm{CQ} \cdot \mathrm{CM}}{\mathrm{CM}+\mathrm{JQ}} \quad \mathrm{HI}:=\frac{\mathrm{IQ} \cdot \mathrm{IO}}{\mathrm{IO}+\mathrm{JQ}} \quad \mathrm{DH}:=\mathrm{CI}-(\mathrm{CD}+\mathrm{HI}) \\
& \mathrm{BD}:=\mathrm{BC}+\mathrm{CD} \quad \mathrm{BH}:=\mathrm{BC}+\mathrm{CD}+\mathrm{DH} \quad \frac{\mathrm{DH}}{\sqrt{\mathrm{CD} \cdot \mathrm{HI}}}=1 \quad \mathrm{BE}-\sqrt{\mathrm{BD} \cdot \mathrm{BH}}=0.000000000000000
\end{aligned}
\]

The next two equations are for the Delian Problem only.
\[
\begin{aligned}
&\left(\mathrm{BC}^{2} \cdot \mathrm{BI}\right)^{\frac{1}{3}}-\mathrm{BD}=0.000000000000000 \quad\left(\mathrm{BC} \cdot \mathrm{BI}^{2}\right)^{\frac{1}{3}}-\mathrm{BH}=0.0000000000000000 \\
& \mathrm{BD}=1.259921049894873 \quad 2^{\frac{1}{3}}=1.259921049894873 \\
& \mathrm{BH}=1.587401051968199 \quad 4^{\frac{1}{3}}=1.587401051968199
\end{aligned}
\]




The problem as stated was to duplicate the altar of Apollo. The solution demanded was material and not theoretical, and therefore has been solved by a finite number of steps. The next step is to solve it theoretically. That solution alone will conquer contiguous domains and will satisfy the purist.


\section*{960414 EP}


\section*{Given:}
\(\qquad\)

\section*{041496 Method for Unequals}

Given three circles in the said configuration, find the fourth. I had this sketched out in 95, but if I put it there I would have a lot of document links to redo in "The Quest."

\[
\mathbf{N}_{1}:=7 \quad \mathbf{N}_{2}:=3
\]
\[
\mathbf{C M}:=1
\]
\[
C K:=\frac{C M}{2} \quad C E:=\frac{C M}{N_{1}}
\]
\(\mathbf{L M}:=\frac{\mathbf{C M}}{\mathbf{N}_{\mathbf{2}}}\)
EL := CM - ( \(\mathbf{C E}+\mathbf{L M})\)

BL \(:=\frac{\text { EL } \cdot \mathbf{L M}}{\text { LM - CE }} \quad\) BM \(:=\) BL + LM \(\quad\) BC \(:=\) BM \(-\mathbf{C M} \quad\) BK \(:=\frac{\text { CM }}{2}+\mathbf{B C}\)
\(\mathbf{R}_{1}:=\mathrm{LM} \quad \mathbf{R}_{\mathbf{2}}:=\mathrm{CE} \quad \mathbf{D}:=\mathrm{EL} \quad\) KS \(:=\mathrm{CK} \quad \mathrm{EH}:=\frac{\left(\mathbf{R}_{\mathbf{2}}{ }^{2}+\mathrm{D}^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}\right)}{2 \cdot \mathrm{D}}\)

FK \(:=\frac{\text { Ks }^{2}}{\mathbf{B K}} \quad\) CF \(:=\mathbf{C K}-\) FK \(\quad\) FM \(:=\mathbf{C M}-\mathbf{C F} \quad\) FS \(:=\sqrt{\text { CF•FM }}\)
\(\mathrm{HK}:=\mathrm{CK}-(\mathrm{CE}+\mathrm{EH}) \mathrm{CH}:=\mathbf{C K}-\mathrm{HK}\) HN \(:=\frac{\mathrm{FS} \cdot \mathrm{HK}}{\mathrm{FK}} \quad \mathrm{AF}:=\frac{\mathrm{CH} \cdot \mathrm{FS}}{\mathrm{HN}} \quad \mathrm{JR}:=\frac{\mathrm{FS} \cdot \mathrm{CM}}{\mathrm{AF}+\mathrm{FM}}\)
RO \(:=\frac{\text { CM } \cdot(\text { FS }- \text { JR })}{\text { FS }} \quad\) PS \(:=\frac{\text { RO }}{2} \quad\) PS \(-\frac{\left(N_{2}-2\right) \cdot\left(N_{1}-2\right)}{2 \cdot\left(N_{1} \cdot N_{2}-4\right)}=0\)



\section*{960415 EP}

\section*{Given:}
\(\qquad\)

\(\mathrm{N}_{1}:=10\)
\(\mathrm{AB}:=1 \quad \mathrm{BE}:=\mathrm{AB} \cdot \mathrm{N}_{1} \mathrm{BD}:=\frac{\mathrm{BE}}{2}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{AC}:=\sqrt{\mathrm{AB} \cdot \mathrm{AE}}\)
\(\mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}\)
\(\mathrm{DF}:=\mathrm{BD} \quad \mathrm{CF}:=\sqrt{\mathrm{BC} \cdot \mathrm{CE}}\)
\(\mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \mathrm{CG}:=\frac{\mathrm{CF}^{2}}{\mathrm{CD}}\)
\(B G:=C G-B C \quad E G:=B G+B E\)
\(\mathrm{CH}:=\frac{1}{2} \cdot \mathrm{CF} \quad \mathrm{DH}:=\sqrt{\mathrm{CH}^{2}+\mathrm{CD}^{2}}\)


DI \(:=\frac{1}{2} \cdot \mathrm{DH} \quad \mathrm{DL}:=\frac{\mathrm{CD} \cdot \mathrm{DI}}{\mathrm{DH}}\)
BL := BD - DL EL := BE - BL
\(\mathrm{JL}:=\sqrt{\mathrm{BL} \cdot \mathrm{EL}} \mathrm{GL}:=\mathrm{BL}+\mathrm{BG}\)
\(\mathrm{GJ}:=\sqrt{\mathrm{JL}^{2}+\mathrm{GL}^{2}} \mathrm{GK}:=\frac{\mathrm{BG} \cdot \mathrm{EG}}{\mathrm{GJ}}\)
GM := \(\frac{\mathrm{GL} \cdot \mathrm{GK}}{\mathrm{GJ}} \quad \mathrm{BM}:=\mathrm{GM}-\mathrm{BG}\)
EM := BE - BM

\(\mathrm{IL}:=\sqrt{\mathrm{DI}^{2}-\mathrm{DL}^{2}} \quad \mathrm{CO}:=\frac{\mathrm{GL} \cdot \mathrm{CH}}{\mathrm{IL}}\)
\(\mathrm{NP}:=\frac{\mathrm{CH} \cdot \mathrm{EG}}{(\mathrm{CO}+\mathrm{CE})} \quad \mathrm{EP}:=\frac{\mathrm{CE} \cdot \mathrm{NP}}{\mathrm{CH}}\)
\[
\mathrm{CQ}:=\frac{\mathrm{IL} \cdot \mathrm{CG}}{\mathrm{GL}} \quad \mathrm{CR}:=\frac{\mathrm{BC} \cdot \mathrm{CQ}}{\mathrm{CH}}
\]
\[
\mathrm{GR}:=\mathrm{CG}-\mathrm{CR} \quad \mathrm{BS}:=\frac{\mathrm{CR} \cdot \mathrm{BG}}{\mathrm{GR}}
\]

\[
\begin{aligned}
& \delta:=1 . .100 \\
& \mathrm{E}_{\delta}:=\frac{\mathrm{BE}}{\delta} \quad \mathrm{BT}_{\delta}:=\mathrm{E}_{\delta} \mathrm{EV}_{\delta}:=\mathrm{E}_{\delta}
\end{aligned}
\]
\[
\mathrm{TW}_{\delta}:=\frac{\mathrm{BT}_{\delta} \cdot \mathrm{BM}}{\mathrm{BS}} \mathrm{VX}_{\delta}:=\frac{\mathrm{EV}_{\delta} \cdot \mathrm{EM}}{\mathrm{EP}}
\]




960416 EP

\section*{Given:}
\(\qquad\)

\section*{041696 Given Three Radii}


Given \(A J, H J\) and \(N O\) find \(A B\) such that \(A B\) is collinear with \(A J\) and HJ .
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{4} \quad \mathbf{N}_{2}:=16 \\
& A J:=1 \quad A F:=\frac{A J}{2} \quad H J:=\frac{A J}{N_{1}} \quad \text { NO }:=\frac{A J}{N_{2}} \\
& \text { HM := HJ MO := NO HO := HM + MO } \\
& \text { FO := AF - NO AH := AJ - HJ FH := AH - AF }
\end{aligned}
\]
\(S_{1}:=\) FH \(_{2}:=\mathrm{FO}_{3}:=\mathrm{HO} \quad \mathrm{EH}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot S_{1}} \quad \mathrm{EO}:=\sqrt{\mathrm{HO}^{2}-\mathrm{EH}^{2}}\) OP \(:=\mathrm{NO}\)
\(E G:=\mathbf{O P} \quad \mathbf{A E}:=\mathbf{A H}-\mathbf{E H A G}:=\mathrm{AE}+\mathrm{EG} \quad \mathrm{GP}:=\mathrm{EO} \quad \mathrm{AP}:=\sqrt{\mathrm{AG}^{2}+\mathrm{GP}^{2}} \quad \mathrm{PL}:=\frac{\mathrm{AG} \cdot(\mathrm{NO}+\mathrm{OP})}{\mathrm{AP}}\)
\(A L:=A P-P L A B:=\frac{A P \cdot A L}{2 \cdot A G} \quad A B-\frac{\mathbf{N}_{2} \cdot \mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}-2 \cdot \mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{2} \cdot \mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}-4\right)}=\mathbf{0}\)



960417a EP
Given:

\section*{041796 A Circle In A Crescent}




960417b EP
Given:
\(\qquad\)

\[
\begin{aligned}
& \mathbf{N}_{1}:=1.7 \quad \mathbf{N}_{2}:=2 \quad \mathbf{N}_{3}:=1.3 \\
& \text { AK }:=1 \quad \text { AF }:=\frac{\mathbf{A K}}{2} \quad \text { FP }:=\text { AF } \quad \text { FK }:=\text { AF } \\
& \text { AH }:=\frac{\mathbf{A K}}{\mathbf{N}_{1}} \quad \text { AE }:=\frac{\mathbf{A H}}{2} \quad \text { EH }:=\mathbf{A E} \quad \text { AD }:=\frac{\mathbf{A E}}{\mathbf{N}_{2}}
\end{aligned}
\]
\[
\text { DE }:=\mathbf{A E}-\mathbf{A D} \mathbf{D H}:=\mathbf{E H}+\mathbf{D E} \quad \mathbf{D N}:=\mathbf{D H}
\]
\[
\mathbf{D F}:=\mathrm{AF}-\mathbf{A D} \quad \mathbf{R}_{1}:=\mathrm{AF} \quad \mathbf{R}_{2}:=\mathrm{DH} \quad \mathbf{D}:=\mathrm{DF}
\]
\[
\mathbf{C D}:=\frac{\mathbf{R}_{2}^{2}+\mathbf{D}^{2}-\mathbf{R}_{1}{ }^{2}}{2 \cdot D} \quad A C:=A D+C D
\]
\[
\mathbf{C K}:=\mathrm{AK}-\mathrm{AC} \mathbf{C J}:=\frac{\mathrm{CK}}{\mathrm{~N}_{3}} \quad \mathbf{C F}:=\mathbf{C K}-\mathbf{F K}
\]
\[
\text { FJ }:=\mathbf{C J}-\mathbf{C F} \quad J P:=\sqrt{F^{2}-F J^{2}} \quad \text { FS }:=\frac{F P \cdot C F}{F J} \quad \text { PS }:=F S+F P \quad \text { QS }:=\frac{F P \cdot P S}{J P} \quad P Q:=\frac{F J \cdot Q S}{F P}
\]
\[
\mathrm{CS}:=\frac{\mathrm{JP} \cdot \mathrm{CF}}{\mathrm{FJ}} \quad \mathrm{CQ}:=\mathrm{QS}-\mathrm{CS} \quad \mathrm{NQ}:=\mathrm{PQ} \quad \mathrm{DQ}:=\sqrt{\mathrm{NQ}^{2}+\mathrm{DN}^{2}} \quad \mathrm{DL}:=\frac{\mathrm{DN}^{2}}{\mathrm{DQ}} \quad \mathrm{LN}:=\sqrt{\mathrm{DN}^{2}-\mathrm{DL}^{2}}
\]
\[
\mathbf{L Z}:=\frac{\mathbf{C D} \cdot \mathbf{L N}}{\mathbf{C Q}} \mathbf{Q Z}:=\mathbf{D Q}-\mathbf{D L}+\mathbf{L Z} \quad \mathrm{MQ}:=\frac{\mathbf{C Q} \cdot \mathbf{Q Z}}{\mathrm{DQ}} \quad \mathbf{C M}:=\mathbf{C Q}-\mathrm{MQ} \quad \mathrm{GN}:=\mathrm{CM}
\]
\[
\text { CG }:=\sqrt{\mathrm{DN}^{2}-\mathrm{GN}^{2}} \quad \mathrm{BJ}:=\frac{\mathrm{CG} \cdot \mathrm{JP}}{\mathrm{GN}} \quad \mathrm{BF}:=\mathrm{BJ}-\mathrm{FJ} \quad \mathrm{FO}:=\frac{\mathrm{FP} \cdot \mathrm{DF}}{\mathrm{BF}} \quad \mathrm{OP}:=\mathrm{FP}-\mathrm{FO} \quad \text { OP }=0.175
\]

\section*{Given BF as a ratio to \(B M\) and EG as a ratio to \(E I\), what is CE?}

\[
\begin{aligned}
& \mathrm{N}_{1}:=2.5 \quad \mathrm{~N}_{\mathbf{2}}:=1.5 \quad \mathrm{AC}:=1 \\
& \mathrm{AB}:=\frac{\mathrm{AC}}{2} \quad \mathrm{BM}:=\mathrm{AB} \quad \mathrm{BE}:=\mathrm{AB} \\
& \mathbf{B L}:=\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B M}}{\mathbf{N}_{\mathbf{1}}} \\
& \mathrm{EF}:=\sqrt{\mathrm{BE}^{2}-\mathrm{BF}^{2}} \quad \mathrm{EI}:=2 \cdot \mathrm{EF} \\
& \text { EG := } \frac{\mathbf{E I}}{\mathbf{N}_{2}} \quad \text { FG }:=\mathbf{E G}-\mathbf{E F}
\end{aligned}
\]
BG \(:=\sqrt{\mathbf{B F}^{2}+\text { FG }^{2}}\) GL \(:=\mathbf{B L}-\mathbf{B G} \quad \mathbf{D G}:=\mathbf{G L} \quad \mathbf{G H}:=\frac{\mathrm{FG} \cdot \mathbf{G L}}{\mathbf{B G}} \quad \mathbf{H L}:=\sqrt{\mathbf{G L}^{2}-\mathbf{G H}}{ }^{2} \mathbf{E H}:=\mathbf{E G}+\mathbf{G H}\) \(\mathbf{E L}:=\sqrt{\mathbf{E H}^{2}+\mathbf{H I} J L}:=\frac{\mathbf{E L}}{2} \quad \mathbf{B J}:=\sqrt{\mathbf{B L}^{2}-\mathrm{JL}^{2}} \quad \mathbf{L N}:=\frac{\mathbf{B L} \cdot \mathbf{J L}}{\mathbf{B J}} \quad \mathbf{G N}:=\sqrt{\mathbf{L N}^{2}+\mathrm{GL}^{2}} \quad \mathrm{JN}:=\sqrt{\mathbf{L N}^{2}-\mathrm{JL}^{2}}\)
 NO \(:=\sqrt{\mathbf{G N}^{2}-\mathbf{G O}^{2}} \quad \mathbf{N R}:=\frac{\mathbf{N O}^{2}}{\mathbf{G N}}\) GS \(:=\frac{\mathbf{D G}^{2}}{\mathbf{G N}}\) RS \(:=\mathbf{G N}-(\mathbf{N R}+\mathbf{G S}) \quad \mathbf{D T}:=\mathbf{R S} \quad \mathbf{D S}:=\sqrt{\mathbf{D G}^{2}-\mathbf{G S}^{2}}\) RT \(:=\mathrm{DS}\) OR \(:=\sqrt{\mathrm{NO}^{2}-\mathrm{NR}^{2}}\) OT \(:=\mathrm{OR}-\mathrm{RT}\) DO \(:=\sqrt{\mathrm{DT}^{2}+\mathrm{OT}^{2}}\)
 FU \(:=\frac{\text { GQ } \cdot \text { BF }}{\text { DQ }} \quad\) CE \(:=\frac{\text { BE } \cdot \mathbf{E G}}{\text { FU }+ \text { EF }} \quad\) CE \(=0.193\)
Edit In progress for three circles.



Process summary

\(\mathrm{N}_{1}:=\frac{1}{2} \quad \mathrm{~N}_{2}:=\frac{9}{8} \quad \mathrm{~N}_{3}:=3\)
\(\mathrm{AB}:=108 \quad \mathrm{BC}:=\mathrm{AB} \quad \mathrm{AC}:=2 \cdot \mathrm{AB} \quad \mathrm{BD}:=\mathrm{AB} \cdot \mathrm{N}_{1}\)
\(C D:=\sqrt{\mathrm{BC}^{2}+\mathrm{BD}^{2}} \quad \mathrm{EF}:=\frac{\mathrm{CD}-\mathrm{BD}}{\mathrm{N}_{2}}\)
\(\mathrm{DE}:=\mathrm{CD}-\mathrm{EF} \quad \mathrm{BE}:=\sqrt{\mathrm{DE}^{2}-\mathrm{BD}^{2}}\)
\(\mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \quad \mathrm{GH}:=\frac{\mathrm{AE}-\mathrm{EF}}{\mathrm{N}_{3}}\)
\(\mathrm{EG}:=\mathrm{EF}+\mathrm{GH} \quad \mathrm{DG}:=\mathrm{CD}-\mathrm{GH} \quad \mathrm{Ba}:=\frac{\mathrm{BE} \cdot \mathrm{CD}}{\mathrm{DE}}\)
\(\mathrm{Db}:=\frac{\mathrm{DE}^{2}+\mathrm{DG}^{2}-\mathrm{EG}^{2}}{2 \cdot \mathrm{DG}} \quad \mathrm{Eb}:=\sqrt{\mathrm{DE}^{2}-\mathrm{Db}^{2}}\)

\(\mathrm{Ec}:=\frac{\mathrm{DE}^{2}}{\mathrm{~Eb}} \quad \mathrm{Dc}:=\frac{\mathrm{Db} \cdot \mathrm{DE}}{\mathrm{Eb}} \quad \mathrm{Dd}:=\frac{\mathrm{DE}^{2}}{\mathrm{BD}}\)
\(\mathrm{Ed}:=\frac{\mathrm{BE} \cdot \mathrm{Dd}}{\mathrm{DE}} \quad \mathrm{Ee}:=\frac{\mathrm{DE} \cdot \mathrm{Ed}}{\mathrm{Dc}} \quad \mathrm{Ef}:=\frac{\mathrm{Ee} \cdot \mathrm{DE}}{\mathrm{DE}+\mathrm{Ee}}\)
\(\mathrm{Eg}:=\frac{\mathrm{Ec} \cdot \mathrm{Ef}}{\mathrm{DE}} \quad \mathrm{bg}:=\mathrm{Eb}-\mathrm{Eg} \quad \mathrm{BM}:=\frac{\mathrm{bg} \cdot \mathrm{BD}}{\mathrm{Db}}\)
\(\mathrm{DM}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BM}^{2}}\) Bk \(:=\frac{\mathrm{BM} \cdot \mathrm{CD}}{\mathrm{DM}}\)
\(\mathrm{HM}:=\mathrm{CD}-\mathrm{DM} \quad \mathrm{Hk}:=\frac{\mathrm{BD} \cdot \mathrm{HM}}{\mathrm{DM}}\)
\(\mathrm{Mk}:=\frac{\mathrm{BM} \cdot \mathrm{Hk}}{\mathrm{BD}} \quad \mathrm{Ik}:=\frac{\mathrm{Hk}^{2}}{\mathrm{Mk}} \quad \mathrm{HI}:=\sqrt{\mathrm{Hk}^{2}+\mathrm{Ik}^{2}}\)

\(\mathrm{Ea}:=\frac{\mathrm{BE} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{Ba}:=\mathrm{BE}+\mathrm{Ea} \quad \mathrm{Ia}:=\mathrm{Ik}+\mathrm{Ba}+\mathrm{Bk}\)
\(\mathrm{Fa}:=\frac{\mathrm{BD} \cdot \mathrm{EF}}{\mathrm{DE}} \quad \mathrm{FI}:=\sqrt{\mathrm{Ia}^{2}+\mathrm{Fa}^{2}} \quad \mathrm{JI}:=\frac{\mathrm{HI}^{2}}{\mathrm{FI}}\)
\(\mathrm{Jm}:=\frac{\mathrm{Fa} \cdot \mathrm{JI}}{\mathrm{FI}} \quad \mathrm{JK}:=\frac{\mathrm{CD} \cdot \mathrm{Jm}}{\mathrm{BD}+\mathrm{Jm}}\)
\(\mathrm{JK}=17.571\)
When GH is small, so that H is on the other side of BD , the similarity point is on the other side of the figure.



\section*{960423 EP}

Given:

\(\qquad\)

\section*{042396a}


\section*{Is CF always equal to EK?}
\[
\begin{aligned}
& \mathbf{N}_{1}:=3 \quad \text { AB }:=1 \\
& \mathbf{A H}:=\mathbf{A B} \cdot \mathbf{N}_{1} \quad \text { BH }:=\mathbf{A H}-\mathbf{A B} \\
& \mathbf{B G}:=\frac{\mathbf{B H}}{2} \quad \mathbf{B N}:=\mathbf{B G} \mathbf{G O}:=\mathbf{B G} \quad \mathbf{H P}:=\mathrm{BG} \\
& \mathbf{G M}:=\mathbf{B G} \quad \mathbf{G H}:=\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A H}-\mathbf{G H} \\
& \mathbf{A M}:=\sqrt{\mathbf{G M}^{2}+\mathbf{A G}^{2}} \mathbf{A L}:=\frac{\mathbf{A G}}{\mathbf{A M}}
\end{aligned}
\]
\[
\mathbf{L M}:=\mathbf{A M}-\mathbf{A L} \mathbf{J L}:=\mathbf{L M} \quad \mathbf{A J}:=\mathbf{A M}-(\mathbf{J L}+\mathbf{L M}) \quad \mathbf{A D}:=\frac{\mathbf{A G} \cdot \mathbf{A J}}{\mathbf{A M}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B}
\]
\[
\mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B N}}{\mathbf{B N}+\mathbf{D J}} \quad \mathbf{D F}:=\frac{\mathbf{D H} \cdot \mathbf{D J}}{\mathbf{B N}+\mathbf{D J}} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{C F}:=\mathbf{C D}+\mathbf{D F}
\]
\[
\mathrm{CE}:=\frac{\mathrm{CF}}{2} \mathrm{BE}:=\mathrm{BC}+\mathrm{CE} \mathrm{AE}:=\mathrm{AB}+\mathrm{BE} \mathrm{EK}:=\frac{\mathrm{GM} \cdot \mathrm{AE}}{\mathrm{AG}} \mathrm{EK}-\mathrm{CF}=0 \quad \mathrm{C} \quad \text { EK }=0.75
\]


Proof of equality in a tautologic is simply the demonstration that two names are synonyms. Is CF always equal to EK?
\[
\begin{aligned}
& \mathbf{N}:=3 \quad \text { AB }:=1 \quad \text { AH }:=\mathbf{N} \\
& \mathbf{B H}:=\mathbf{N}-1 \quad \text { BG }:=\frac{\mathbf{N}-1}{2} \\
& \text { AG }:=\frac{1}{2} \cdot \mathbf{N}+\frac{1}{2} \\
& \text { AM }:=\frac{1}{2} \cdot \sqrt{2 \cdot \mathbf{N}^{2}+2}
\end{aligned}
\]
\(A L:=\frac{1}{2} \cdot \frac{(N+1)^{2}}{\sqrt{2 \cdot N^{2}+2}} \quad L M:=\frac{1}{2} \cdot \frac{(N-1)^{2}}{\sqrt{2 \cdot N^{2}+2}} \quad\) AJ \(:=\frac{2}{\sqrt{2 \cdot N^{2}+2}} \cdot N \quad A D:=(N+1) \cdot \frac{N}{\left(N^{2}+1\right)}\)
\(B D:=\frac{(N-1)}{\left(N^{2}+1\right)} \quad D H:=N^{2} \cdot \frac{(N-1)}{\left(N^{2}+1\right)} \quad\) DJ \(:=\frac{(N-1)}{\left(N^{2}+1\right)} \cdot N \quad B C:=\frac{(N-1)}{(N+1)^{2}}\)

DF : \(=2 \cdot N^{3} \cdot \frac{(N-1)}{\left[(N+1)^{2} \cdot\left(N^{2}+1\right)\right]}\)
CD := \(2 \cdot(\mathbf{N}-1) \cdot \frac{\mathrm{N}}{\left[\left(\mathbf{N}^{2}+\mathbf{1}\right) \cdot(\mathrm{N}+1)^{2}\right]}\)
\(\mathrm{CF}:=2 \cdot \mathrm{~N} \cdot \frac{(\mathrm{~N}-1)}{(\mathrm{N}+1)^{2}} \quad \mathrm{CE}:=\mathrm{N} \cdot \frac{(\mathrm{N}-1)}{(\mathrm{N}+1)^{2}} \quad \mathrm{BE}:=\frac{(\mathrm{N}-1)}{(\mathrm{N}+1)} \quad \mathrm{AE}:=2 \cdot \frac{\mathrm{~N}}{(\mathrm{~N}+1)}\)
\(E K:=2 \cdot(N-1) \cdot \frac{N}{(N+1)^{2}} \quad E K-C F=0 \quad E K=0.75\)

Meditation : Do these equations satisfy the requirement that a definition must contain both form and matter?



960424 EP
Given:
\(\qquad\)

\section*{Three Circles 042496}


Given AC, find CK and BH.
\[
\mathbf{N}:=1.5 \quad \text { AF }:=1 \quad \text { AD }:=\frac{\mathbf{A F}}{2}
\]
\[
\text { AC }:=\frac{\mathbf{A F}}{\mathbf{N}} \quad \text { DO }:=\text { AD } \quad \text { OR }:=\text { AF }
\]
\[
\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{C O}:=\sqrt{\mathbf{C D}^{2}+\mathbf{D O}^{2}}
\]
\[
\text { PO }:=\frac{\text { DO } \cdot \text { OR }}{\text { CO }} \quad \text { CP }:=\text { PO - CO } \quad \text { CK }:=\frac{\text { DO } \cdot \text { CP }}{\text { PO }}
\]
\[
\mathrm{JK}:=\mathbf{C K} \text { KO }:=\sqrt{\mathrm{CD}^{2}+(\mathrm{DO}+\mathbf{C K})^{2}}
\]

JO \(:=\sqrt{\mathrm{KO}^{2}-\mathrm{JK}^{2}} \quad\) KS \(:=\frac{\mathrm{JK}^{2}}{\mathrm{KO}} \quad\) SO \(:=\mathrm{KO}-\mathrm{KS} \quad \mathrm{JS}:=\frac{\mathrm{JK} \cdot \mathrm{SO}}{\mathrm{JO}} \quad\) ST \(:=\frac{\mathrm{CD} \cdot \mathrm{SO}}{\mathrm{DO}+\mathrm{CK}} \quad \mathrm{JT}:=\mathrm{JS}+\mathrm{ST}\)
TO \(:=\frac{\text { KO } \cdot \mathbf{S T}}{\mathbf{C D}} \quad\) TU \(:=\frac{\mathbf{C D} \cdot \mathbf{J T}}{\text { KO }} \quad\) DU \(:=\) TO - ( \(\left.\mathbf{D O}+\mathbf{T U}\right) \quad\) CV \(:=\mathbf{D U} \quad\) CQ \(:=2 \cdot \mathbf{C K} \mathbf{Q V}:=\mathbf{C Q}-\mathbf{C V}\)
\[
\text { BH }:=\frac{C K \cdot C V}{Q V} \quad \text { BH }=0.19
\]

\section*{Some Algebraic Names}
\[
\begin{aligned}
& \text { AC }:=\frac{1}{N} \quad \text { CD }:=\frac{1}{2}-\frac{1}{N} \quad \text { CO }:=\frac{1}{2} \cdot \sqrt{2} \cdot \frac{\sqrt{N^{2}-2 \cdot N+2}}{N} \quad \text { PO }:=\frac{1}{2} \cdot \frac{\sqrt{2}}{\sqrt{N^{2}-2 \cdot N+2}} \cdot N \\
& \text { CP }:=\sqrt{2} \cdot \frac{(N-1)}{\sqrt{N^{2}-2 \cdot N+2} \cdot N} \quad \text { CK }:=\frac{(N-1)}{N^{2}} \quad \text { KO }:=\frac{1}{2} \cdot \sqrt{2} \cdot \frac{\sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}}{N^{2}} \\
& \text { JO }:=\frac{1}{2} \cdot \sqrt{2} \quad \quad \text { KS }:=\frac{(N-1)^{2}}{N^{2}} \cdot \frac{\sqrt{2}}{\sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}} \quad \text { SO }:=\frac{1}{2} \cdot \sqrt{2} \cdot \frac{N^{2}}{\sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}} \\
& \text { JS }:=\frac{(N-1)}{\sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}} \quad \text { ST }:=\frac{1}{2} \cdot(N-2) \cdot \sqrt{2} \cdot \frac{N^{3}}{\left[\sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2} \cdot\left(N^{2}+2 \cdot N-2\right)\right]}
\end{aligned}
\]

\[
\begin{aligned}
& \text { JT }:=\frac{1}{\left(2 \cdot \sqrt{N^{4}+2 \cdot N^{2}-4 \cdot N+2}\right.} \cdot \frac{\left(2 \cdot N^{3}+2 \cdot N^{2}-8 \cdot N+4+\sqrt{2} \cdot N^{4}-2 \cdot \sqrt{2} \cdot N^{3}\right)}{\left(N^{2}+2 \cdot N-2\right)} \text { TO }:=\frac{N^{2}}{\left(N^{2}+2 \cdot N-2\right)} \\
& \text { TU }:=\frac{1}{2} \cdot(N-\sqrt{2}) \cdot(N-2) \cdot(N-2+\sqrt{2}) \cdot \frac{N}{\left[\left(N^{2}+2 \cdot N-2\right) \cdot\left(N^{2}-\sqrt{2} \cdot N+2-\sqrt{2}\right)\right]}
\end{aligned}
\]
\[
\text { DU }:=\frac{-1}{2} \cdot(\sqrt{2}-2) \cdot \frac{(N-1)}{\left(N^{2}-\sqrt{2} \cdot N+2-\sqrt{2}\right)} \quad \text { CQ }:=2 \cdot \frac{(N-1)}{N^{2}}
\]
\[
\text { QV }:=\frac{1}{2} \cdot(\sqrt{2}+2) \cdot(\mathbf{N}-1) \cdot \frac{(N+2-2 \cdot \sqrt{2})^{2}}{\left[\left(N^{2}-\sqrt{2} \cdot N+2-\sqrt{2}\right) \cdot \mathbf{N}^{2}\right]} \quad \mathbf{B H}:=\frac{(N-1) \cdot(3-2 \cdot \sqrt{2})}{[(N+2)-2 \cdot \sqrt{2}]^{2}}
\]


\section*{Working on Moving D.}



\section*{960425 EP}

\section*{Given:}
\(\qquad\)

\section*{One Over N + One 042596}

\section*{Construct \(1 /(\mathrm{N}+1)\)}

\[
\mathbf{N}_{1}:=2.817 \quad \mathbf{N}_{2}:=3 \quad \text { AC }:=1
\]
\[
A F:=A C \cdot \mathbf{N}_{1} C F:=A F-A C C E:=\frac{C F}{2}
\]
\(\mathrm{AE}:=\mathrm{AC}+\mathrm{CE} \quad \mathrm{FK}:=\mathrm{AC} \cdot \mathrm{N}_{2} \mathrm{EJ}:=\frac{\mathrm{FK} \cdot \mathrm{AE}}{\mathrm{AF}}\)
\(\mathrm{DL}:=\mathrm{FK} \mathrm{EF}:=\mathrm{CE} \mathrm{DF}:=\frac{\mathrm{EF} \cdot \mathrm{DL}}{\mathrm{EJ}} \mathrm{CG}:=\frac{\mathrm{FK} \cdot \mathrm{AC}}{\mathrm{AF}} \mathrm{CD}:=\mathrm{CF}-\mathrm{DF} \mathrm{DH}:=\mathrm{CG} \mathbf{H L}:=\mathrm{DL}-\mathrm{DH}\)
\(B C:=\frac{C D \cdot C G}{H L}\)
CF \(:=\mathbf{N}_{1}-1 \quad\) CE \(:=\frac{1}{2} \cdot\left(\mathbf{N}_{1}-1\right) \quad\) AE \(:=\frac{1}{2} \cdot\left(1+\mathbf{N}_{1}\right) \quad\) FK \(:=\mathbf{N}_{2} \quad\) EJ \(:=\frac{1}{2} \cdot \mathbf{N}_{2} \cdot \frac{\left(1+\mathbf{N}_{1}\right)}{\mathbf{N}_{1}}\)
\(D F:=\frac{\left(\mathbf{N}_{1}-1\right)}{\left(1+\mathbf{N}_{1}\right)} \cdot \mathbf{N}_{1} \quad \mathrm{CG}:=\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}} \quad C D:=\frac{\left(\mathbf{N}_{1}-1\right)}{\left(1+\mathbf{N}_{1}\right)} \quad H L:=N_{2} \cdot \frac{\left(\mathbf{N}_{1}-1\right)}{\mathbf{N}_{1}} \quad \frac{1}{\mathbf{N}_{1}+1}-B C=0\)



\section*{960426 EP}

Given:

\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{042696.MCD}


\section*{Three Base Theorem.}

Three peaks, three predictable bases that intersect our hypotenuse through the Gemini roots.
\(\mathrm{BC}:=7.2 \quad \mathrm{CI}:=216 \quad \mathrm{CG}:=\frac{\mathrm{CI}}{2} \quad \mathrm{BI}:=\mathrm{BC}+\mathrm{CI}\)
\(\mathrm{BE}:=\sqrt{\mathrm{BC} \cdot \mathrm{BI}} \quad \mathrm{BM}:=61.38\)
\(\mathrm{EM}:=\sqrt{\mathrm{BM}^{2}+\mathrm{BE}^{2}} \quad \mathrm{BD}:=\mathrm{EM}-\mathrm{BM}\)
\(\mathrm{BH}:=\mathrm{BM}+\mathrm{EM} \quad \mathrm{GN}:=\mathrm{CG} \quad \mathrm{CE}:=\mathrm{BE}-\mathrm{BC}\)
\(\mathrm{EI}:=\mathrm{CI}-\mathrm{CE} \quad \mathrm{EN}:=\sqrt{\mathrm{CE} \cdot \mathrm{EI}} \quad \mathrm{EH}:=\mathrm{BH}-\mathrm{BE}\)
\(\mathrm{EG}:=\mathrm{EI}-\mathrm{CG} \quad \mathrm{AE}:=\frac{\mathrm{EN}^{2}}{\mathrm{EG}} \quad \mathrm{HI}:=\mathrm{EI}-\mathrm{EH}\)
\(\mathrm{HL}:=\frac{\mathrm{EN} \cdot \mathrm{HI}}{\mathrm{EI}} \quad \mathrm{AG}:=\mathrm{AE}+\mathrm{EG}\)

\[
\begin{aligned}
& \mathrm{AH}:=\mathrm{AE}+\mathrm{EH} \quad \mathrm{Ea}:=\frac{\mathrm{AH} \cdot \mathrm{EN}}{\mathrm{HL}} \\
& \mathrm{FG}:=\frac{\mathrm{EG} \cdot \mathrm{AG}}{(\mathrm{Ea}+\mathrm{EG})} \quad \mathrm{CF}:=\mathrm{CG}-\mathrm{FG} \\
& \mathrm{FI}:=\mathrm{CG}+\mathrm{FG} \\
& \mathrm{FP}:=\sqrt{\mathrm{CF} \cdot \mathrm{FI}} \\
& \mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \\
& \mathrm{EO}:=\frac{\mathrm{FP} \cdot \mathrm{AE}}{\mathrm{AF}} \\
& \mathrm{EF}:=\mathrm{AF}-\mathrm{AE} \\
& \mathrm{GU}:=\frac{\mathrm{EO} \cdot \mathrm{FG}}{\mathrm{EF}}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{AC}:=\mathrm{AE}-\mathrm{CE} \quad \mathrm{AI}:=\mathrm{AC}+\mathrm{CI} \\
& \mathrm{AP}:=\sqrt{\mathrm{AF}^{2}+\mathrm{FP}^{2}} \quad \mathrm{AW}:=\frac{\mathrm{AC} \cdot \mathrm{AI}}{\mathrm{AP}}
\end{aligned}
\]
\[
\mathrm{AX}:=\frac{\mathrm{AF} \cdot \mathrm{AW}}{\mathrm{AP}} \quad \mathrm{CX}:=\mathrm{AX}-\mathrm{AC} \quad \mathrm{XI}:=\mathrm{CI}-\mathrm{CX}
\]
\[
\mathrm{WX}:=\sqrt{\mathrm{CX} \cdot \mathrm{XI}} \quad \mathrm{XG}:=\mathrm{CG}-\mathrm{CX} \quad \mathrm{YU}:=\mathrm{XG}
\]
\[
\mathrm{UV}:=\mathrm{CG} \quad \mathrm{YV}:=\mathrm{YU}+\mathrm{UV} \quad \mathrm{XH}:=\frac{\mathrm{YV} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}}
\]
\[
\mathrm{CH}:=\mathrm{AH}-\mathrm{AC} \frac{\mathrm{CH}}{\mathrm{XH}+\mathrm{CX}}=1
\]
\[
\mathrm{CD}:=\mathrm{BD}-\mathrm{BC} \quad \mathrm{DX}:=\frac{\mathrm{CX} \cdot \mathrm{WX}}{\mathrm{WX}+\mathrm{GU}}
\]
\[
\frac{C D}{C X-D X}=1
\]

\[
\begin{aligned}
& \mathrm{IZ}:=\frac{\mathrm{GU} \cdot \mathrm{AI}}{\mathrm{AG}} \mathrm{Ed}:=\mathrm{IZ} \quad \frac{\overline{\mathrm{EO}+\mathrm{Ed}}}{\mathrm{EH}}=1 \\
& \mathrm{Ce}:=\frac{\mathrm{GU} \cdot \mathrm{AC}}{\mathrm{AG}} \quad \mathrm{Ef}:=\mathrm{Ce} \quad \frac{\mathrm{CD}}{\frac{\mathrm{CE} \cdot \mathrm{Ce}}{\mathrm{EO}+\mathrm{Ef}}}=1
\end{aligned}
\]
\(\mathrm{Ek}:=\mathrm{GU} \quad \mathrm{Ig}:=\frac{\mathrm{Ek} \cdot \mathrm{BI}}{\mathrm{BE}} \quad \mathrm{Cm}:=\frac{\mathrm{Ek} \cdot \mathrm{BC}}{\mathrm{BE}}\)
\(\mathrm{Fn}:=\mathrm{Ig} \quad \mathrm{gn}:=\mathrm{FI} \quad \mathrm{FH}:=\frac{\mathrm{gn} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Fn}}\)
\(\frac{\mathrm{FH}}{\mathrm{AH}-\mathrm{AF}}=1 \quad \mathrm{DF}:=\frac{\mathrm{CF} \cdot \mathrm{FP}}{\mathrm{FP}+\mathrm{Cm}}\)
\(\frac{C D}{C F-D F}=1\)



\section*{960427 EP}

Given:
\(\qquad\)

\section*{A Root Flgure 042796}

Given \(C D, C E\), and \(E F=C E\), and that \(B D\) is the square root of \(B C \times B F\), find BC.

\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \quad \mathbf{N}_{2}:=3 \quad \text { CD }:=1 \\
& \text { CE }:=\mathrm{CD} \cdot \mathbf{N}_{1} \quad \text { CF }:=2 \cdot \mathrm{CE} \quad \text { FK }:=\mathrm{CD} \cdot \mathbf{N}_{2} \\
& \text { DM }:=\mathrm{FK} \text { EL }:=\mathrm{FK} \quad \text { DF }:=\mathrm{CF}-\mathrm{CD} \\
& \text { EF }:=\frac{\mathrm{CF}}{2} \quad \text { EJ }:=\frac{\text { DM } \cdot \mathrm{EF}}{\text { DF }} \text { JL }:=\mathrm{EL}-\mathrm{EJ}
\end{aligned}
\]

KL \(:=\mathrm{EF}\) AF \(:=\frac{\mathrm{KL} \cdot \mathrm{FK}}{\mathrm{JL}} \quad \mathrm{AC}:=\mathrm{AF}-\mathrm{CF}\) CG \(:=\frac{\mathrm{FK} \cdot \mathrm{AC}}{\mathrm{AF}}\) DH \(:=\mathrm{CG}\) HM \(:=\mathrm{DM}-\mathrm{DH}\) BC \(:=\frac{\mathrm{CD} \cdot \mathrm{DH}}{\mathrm{HM}}\)
\(B F:=B C+C F \quad B D:=B C+C D \quad \sqrt{B C \cdot B F}-B D=0\)
\(C F:=2 \cdot N_{1} \quad\) FK \(:=N_{2} \quad\) DF \(:=\left(2 \cdot N_{1}-1\right) \quad\) EF \(:=N_{1} \quad\) EJ \(:=\frac{N_{1} \cdot N_{2}}{2 \cdot N_{1}-1}\)
\(\mathbf{J L}:=\mathbf{N}_{\mathbf{2}} \cdot \frac{\left(\mathbf{N}_{1}-\mathbf{1}\right)}{\left(\mathbf{2 \cdot \mathbf { N } _ { 1 } - \mathbf { 1 } )}\right.}\)
\(A F:=\frac{\mathbf{N}_{1} \cdot\left(2 \cdot N_{1}-1\right)}{\mathbf{N}_{1}-1}\)
\(A C:=\frac{\mathbf{N}_{1}}{\left(\mathbf{N}_{1}-1\right)}\)
\(C G:=\frac{N_{2}}{\left(2 \cdot N_{1}-1\right)}\)
\(H M:=2 \cdot N_{2} \cdot \frac{\left(N_{1}-1\right)}{\left(2 \cdot N_{1}-1\right)}\)
\(B C:=\frac{1}{2 \cdot\left(N_{1}-1\right)}\)
\(B F:=\frac{1}{2} \cdot \frac{\left(2 \cdot N_{1}-1\right)^{2}}{\left(N_{1}-1\right)}\)
\(B D:=\frac{1}{2} \cdot \frac{\left(2 \cdot N_{1}-1\right)}{\left(N_{1}-1\right)}\)



Given:
\(\qquad\)

\section*{042896.MCD}


\(\mathrm{Ga}:=\frac{\mathrm{GZ} \cdot \mathrm{AG}}{\mathrm{EG}} \quad \mathrm{Hb}:=\frac{\mathrm{GH} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Gb}:=\mathrm{GH}-\mathrm{Hb} \quad \mathrm{Ib}:=\frac{\mathrm{AG} \cdot(\mathrm{GH}+\mathrm{GZ})}{\mathrm{GH}+\mathrm{Ga}}\)
\(\mathrm{Bd}:=\mathrm{BG}-\mathrm{Ib} \quad \mathrm{BC}:=\frac{\mathrm{Bd} \cdot \mathrm{BY}}{\mathrm{BY}+\mathrm{Gb}}\)
\(A C:=A B+B C\)
\(\mathrm{CG}:=\mathrm{BG}-\mathrm{BC} \quad \mathrm{BJ}:=\frac{\mathrm{GZ} \cdot \mathrm{BC}}{\mathrm{CG}}\)

I had finally decided to write this up in Oct. of 94 , and being punctual, here it is.

Given one root in a prime root series, determine the rest of the series using the straight edge method. The other method uses a compass and is shown at the end of document.

Process Summary will use \(5^{\text {th }}\) root series for example.
\(\mathrm{AG}:=3^{5} \quad \mathrm{AB}:=1 \quad \mathrm{AE}:=3^{3}\)
\(\mathrm{BG}:=\mathrm{AG}-\mathrm{AB} \quad \mathrm{GZ}:=\mathrm{BG} \quad \mathrm{YZ}:=\mathrm{BG}\)
\(\mathrm{BY}:=\mathrm{BG} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB} \quad \mathrm{EG}:=\mathrm{BG}-\mathrm{BE}\)
\(\mathrm{GH}:=\frac{\mathrm{BY} \cdot \mathrm{EG}}{\mathrm{BE}}\)


\[
\begin{aligned}
& \mathrm{GK}:=\frac{\mathrm{BJ} \cdot \mathrm{AG}}{\mathrm{AB}} \quad \mathrm{KZ}:=\mathrm{GZ}+\mathrm{GK} \\
& \mathrm{FG}:=\frac{\mathrm{YZ} \cdot \mathrm{GK}}{\mathrm{KZ}} \quad \mathrm{AF}:=\mathrm{AG}-\mathrm{FG} \\
& \mathrm{Ke}:=\frac{\mathrm{GK} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \quad \mathrm{Me}:=\frac{\mathrm{AG} \cdot \mathrm{KZ}}{\mathrm{GK}+\mathrm{Ga}} \\
& \mathrm{BD}:=\frac{(\mathrm{BG}-\mathrm{Me}) \cdot \mathrm{BY}}{\mathrm{KZ}-\mathrm{Ke}} \quad \mathrm{AD}:=\mathrm{AB}+\mathrm{BD}
\end{aligned}
\]

\[
\begin{array}{ll}
\frac{\left(\mathrm{AB}^{5} \cdot \mathrm{AG}^{0}\right)^{\frac{1}{5}}}{\mathrm{AB}}=1 & \frac{\left(\mathrm{AB}^{4} \cdot \mathrm{AG}^{1}\right)^{\frac{1}{5}}}{\mathrm{AC}}=1 \\
\frac{\left(\mathrm{AB}^{3} \cdot \mathrm{AG}^{2}\right)^{\frac{1}{5}}}{\mathrm{AD}}=1 & \frac{\left(\mathrm{AB}^{2} \cdot \mathrm{AG}^{3}\right)^{\frac{1}{5}}}{\mathrm{AE}}=1 \\
\frac{\left(\mathrm{AB} \cdot \mathrm{AG}^{4}\right)^{\frac{1}{5}}}{\mathrm{AF}}=1 & \frac{\left(\mathrm{AB}^{0} \cdot \mathrm{AG}^{5}\right)^{\frac{1}{5}}}{\mathrm{AG}}=1
\end{array}
\]

Compass method
If any of a prime root series can be given exactly, every root of the series can be determined exactly.



\section*{960429 EP}

\section*{Given:}
\(\qquad\)

DJ is the Geometric name, what is its Algebraic name?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathrm{BG}:=\mathrm{AG}-\mathbf{A B} \\
& \text { BF : }=\frac{\mathbf{B G}}{2} \\
& \text { FK := BF FO := BF AF := BF + AB } \\
& \mathbf{D F}:=\frac{\mathbf{F K} \cdot \mathbf{F O}}{\mathbf{A F}} \quad \mathbf{A K}:=\sqrt{\mathbf{A F}^{2}+\mathbf{F K}^{2}} \quad \text { KO }:=\mathbf{B G} \\
& \text { HO }:=\frac{\text { AF } \cdot \text { KO }}{\text { AK }} \text { DO }:=\frac{\text { AK } \cdot \text { FO }}{\text { AF }} \quad \text { DH }:=\text { HO - DO } \\
& \text { DJ }:=\sqrt{\text { DH } \cdot \text { DO }}
\end{aligned}
\]
\[
\text { AG }:=\mathbf{N} \quad \text { BG }:=\mathbf{N}-1 \quad \text { BF }:=\frac{\mathbf{N}-1}{2} \quad \text { AF }:=\frac{1}{2} \cdot \mathbf{N}+\frac{1}{2} \quad \text { DF }:=\frac{1}{2} \cdot \frac{(\mathbf{N}-1)^{2}}{(\mathbf{N}+1)} \quad \text { AK }:=\frac{1}{2} \cdot \sqrt{2 \cdot \mathbf{N}^{2}+2}
\]
\[
\text { HO }:=(N+1) \cdot \frac{(N-1)}{\sqrt{2 \cdot N^{2}+2}} \quad \text { DO }:=\frac{1}{2} \cdot \sqrt{2 \cdot N^{2}+2} \cdot \frac{(N-1)}{(N+1)} \quad \text { DH }:=2 \cdot N \cdot \frac{(N-1)}{\left[\sqrt{2 \cdot N^{2}+2} \cdot(N+1)\right]}
\]
\[
\mathbf{D J}:=\sqrt{\mathbf{N}} \cdot \frac{(\mathbf{N}-1)}{(\mathbf{N}+\mathbf{1})}
\]


\section*{Geometric Exponential Series of the form}


Generalize some of the ratios found in 010896 and 011696 for the sides of the right triangle.
\[
\begin{aligned}
& \mathrm{N}=4 \quad \mathrm{Root}=4 \quad \mathrm{M}=1 \quad \mathrm{BG}:=\mathrm{N} \quad \mathrm{AB}:=\mathrm{M} \\
& \mathrm{AG}:=\mathrm{AB}+\mathrm{BG} \quad \mathrm{BO}:=\frac{\mathrm{BG}}{2} \quad \\
& \mathrm{AC}:=\left(\mathrm{AB}^{\text {Root-1} \cdot \mathrm{AG})^{\frac{1}{\text { Root }}} \mathrm{AF}:=\left(\mathrm{AB} \cdot \mathrm{AG}^{\text {Root }-1}\right)^{\frac{1}{\text { Root }}}}\right. \\
& \mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{FG}:=\mathrm{AG}-\mathrm{AF} \quad \mathrm{FX}:=\sqrt{\mathrm{AF}^{2}+\mathrm{AG}^{2}} \\
& \mathrm{FY}:=\frac{\mathrm{AF}^{2}}{\mathrm{FX}} \quad \mathrm{BD}:=\frac{\mathrm{FY} \cdot \mathrm{BG}}{\mathrm{FX}} \quad \mathrm{AD}:=\mathrm{BD}+\mathrm{AB} \\
& \mathrm{DG}:=\mathrm{AG}-\mathrm{AD} \quad \mathrm{DK}:=\sqrt{\mathrm{BD} \cdot \mathrm{DG}} \\
& \mathrm{BK}:=\sqrt{\mathrm{BD}}{ }^{2}+\mathrm{DK}^{2} \quad \mathrm{GK}:=\sqrt{\mathrm{DG}^{2}+\mathrm{DK}^{2}} \\
& \mathrm{BJ}:=\frac{\mathrm{BK} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{GL}:=\frac{\mathrm{GK} \cdot \mathrm{FG}}{\mathrm{BG}}
\end{aligned}
\]


Plug in BG here as N . AB as M. Plug in root series also.
\[
\mathrm{N} \equiv 4 \quad \text { Root } \equiv 4 \quad \delta:=1 \text {.. Root }
\]
\(M \equiv 1\)
\(\mathrm{GL}=1.377 \quad \mathrm{BJ}=0.275\)
\(\frac{\mathrm{GL}}{\mathrm{BJ}}=5\)
\(\frac{\mathrm{AG}}{\mathrm{AB}}=5\)

\[
\mathrm{BM}:=\frac{\mathrm{BD} \cdot \mathrm{BC}}{\mathrm{BG}} \quad \mathrm{FQ}:=\frac{\mathrm{BD} \cdot \mathrm{FG}}{\mathrm{BG}}
\]



961220 EP
Given:
\(\qquad\)

\section*{122096 Alternate Method Quad Roots}

If FN:FP as BQ:BS then quad roots series can be divided off in the figure.

\(\mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathrm{N}_{\mathbf{2}}:=.2\)
\(A B:=1 \quad A L:=A B \cdot N_{1}\)
BL:= AL - AB BS := BL LT := BL
BH := \(\frac{\text { BL }}{2} \quad\) HL := BH \(\quad\) BQ \(:=\mathrm{BS} \cdot \mathrm{N}_{2}\)
\(\mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}} \quad \mathbf{F L}:=\mathbf{A L}-\mathbf{A F} \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}\)
\(\mathrm{FP}:=\sqrt{\mathrm{BF} \cdot \mathrm{FL}} \quad \mathrm{FN}:=\frac{\mathrm{BQ} \cdot \mathrm{FP}}{\mathrm{BS}} \quad \mathrm{EF}:=\frac{\mathrm{BF} \cdot \mathrm{FN}}{\mathrm{BQ}}\)
\(\mathrm{EL}:=\mathrm{EF}+\mathrm{FL} \mathrm{FG}:=\frac{\mathrm{EF} \cdot \mathrm{FL}}{\mathrm{EL}} \mathbf{G O}:=\frac{\mathrm{FN} \cdot \mathrm{FG}}{\mathrm{EF}}\)
GL := FL - FG LR \(:=\mathbf{B Q}\) JL \(:=\frac{\mathbf{G L} \cdot \mathbf{L R}}{\mathbf{L R}+\mathbf{G O}}\)
AJ := AL - JL
\(\left.A B \cdot \mathbf{A L}^{3}\right)^{\frac{1}{4}}-\mathbf{A J}=0\)

The Delian Quest-1997




970404 EP
Given:

\section*{040497 Triangles}

Given the base, one side and the height of a triangle, find both possible lengths of the remaining side.

\[
\begin{gathered}
\mathbf{A B}:=5 \quad \text { AC }:=4 \quad \mathbf{C D}:=3 \\
\mathbf{A D}:=\sqrt{\mathbf{A C}^{2}-\mathbf{C D}^{2}} \quad \mathbf{B D}_{1}:=\mathbf{A B}+\mathbf{A D} \quad \mathbf{B D}_{2}:=\mathbf{A B}-\mathbf{A D}
\end{gathered}
\]
\[
\mathrm{BC}_{1}:=\sqrt{\mathrm{CD}^{2}+\mathrm{BD}_{1}^{2}}
\]
\[
\mathrm{BC}_{2}:=\sqrt{\mathrm{CD}^{2}+\mathrm{BD}_{2}^{2}}
\]
\[
\mathrm{BC}_{1}=8.213 \quad \mathrm{BC}_{2}=3.813
\]
\[
\mathrm{S}_{1}:=\mathrm{AB} \quad \mathrm{~S}_{2}:=\mathrm{AC} \quad \mathrm{~S}_{3}:=\mathrm{BC}_{1}
\]
\[
\frac{\sqrt{S_{1}+S_{2}+S_{3}} \cdot \sqrt{-S_{1}+S_{2}+S_{3}} \cdot \sqrt{S_{1}-S_{2}+S_{3}} \cdot \sqrt{S_{1}+S_{2}-S_{3}}}{2 \cdot S_{1}}-C D=0
\]
\[
\mathrm{S}_{1}:=\mathrm{AB} \quad \mathrm{~S}_{2}:=\mathrm{AC} \quad \mathrm{~S}_{3}:=\mathrm{BC}_{2}
\]
\[
\frac{\sqrt{S_{1}+S_{2}+S_{3}} \cdot \sqrt{-S_{1}+S_{2}+S_{3}} \cdot \sqrt{S_{1}-S_{2}+S_{3}} \cdot \sqrt{S_{1}+S_{2}-S_{3}}}{2 \cdot S_{1}}-C D=0
\]

The Delian Quest-1998






\section*{980210 EP}

Given:
\(\qquad\)

\section*{A Square In A Triangle 021098}
What is the Algebraic Name for the square as given in a right triangle? What is the

\[
\begin{aligned}
& \mathrm{N}:=4 \quad \text { AE }:=1 \quad \mathrm{EG}:=\mathrm{N} \\
& \mathbf{A B}:=\frac{\mathbf{A E}}{2} \quad \mathrm{BJ}:=\frac{\mathrm{EG}}{2} \quad \mathbf{B D}:=\mathbf{B J} \\
& \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \quad \mathbf{C E}:=\mathbf{B D} \cdot \frac{\mathbf{A E}}{\mathbf{A D}} \\
& \mathbf{A C}:=\mathbf{A E}-\mathbf{C E} \quad \mathrm{FG}:=\mathrm{EG}-\mathbf{C E}
\end{aligned}
\]
\[
\frac{A E}{A C}-(N+1)=0 \quad A C-\frac{1}{N+1}=0 \quad C E-\frac{N}{N+1}=0 \quad F G-\frac{N^{2}}{N+1}=0
\]



980225a EP

\section*{Given:}
\(\qquad\)

\section*{Alternate Method Root Series 022598}


Given a length and a unit, raise that length to any whole power.

Given for the third power.
\(\mathrm{N}:=\mathbf{1 . 3}\) AH \(:=\mathbf{1}\) HN \(:=\mathbf{A H} \cdot \mathbf{N}\)
\(\mathbf{H J}:=\mathbf{H N}-\mathbf{A H} \quad \mathbf{F H}:=\frac{\mathbf{A H} \cdot \mathbf{H J}}{\mathbf{A H}+\mathbf{H J}}\) AF \(:=\mathbf{A H}-\mathbf{F H}\)
FG \(:=\) FH DF \(:=\frac{\text { AF•FG }}{\mathbf{A F}+\text { FG }} \mathbf{A D}:=\mathbf{A F}-\mathbf{D F}\)
DE \(:=\mathbf{D F} \quad \mathbf{B D}:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}} \mathbf{A B}:=\mathbf{A D}-\mathbf{B D}\)
\(\frac{A H}{A F}-N^{1}=0 \quad \frac{A H}{A D}-N^{2}=0 \quad \frac{A H}{A B}-N^{3}=0\)



980225B EP
Given:
\(\qquad\)

\section*{Sum Dlvided by One Powered 022598B}

\[
\begin{aligned}
& \mathbf{N}_{1}:=5 \quad \mathbf{N}_{2}:=\mathbf{6} \quad \text { AH }:=1 \quad H M:=A H \cdot N_{1} A N:=A H \cdot N_{2} \\
& \mathbf{H O}:=\frac{\mathbf{A H} \cdot \mathbf{H M}}{\mathbf{A N}} \mathbf{A O}:=\mathbf{A H}+\mathbf{H O} \mathbf{A F}:=\frac{\mathbf{A H}^{2}}{\mathbf{A O}} \\
& \text { FH }:=\mathbf{A H}-\mathbf{A F} \mathbf{F G}:=\mathbf{F H} \mathbf{D F}:=\frac{\mathbf{A F} \cdot \mathbf{F G}}{\mathbf{A F}+\mathbf{F G}} \mathbf{A D}:=\mathbf{A F}-\mathbf{D F} \\
& \mathbf{D E}:=\mathbf{D F} \quad \mathbf{B D}:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \\
& \frac{A H}{A B}-\left(\frac{N_{1}+N_{2}}{N_{2}}\right)^{3}=0
\end{aligned}
\]

\section*{The Delian Quest-1999}




990724 EP
Given:
\(\qquad\)

\section*{On Gemini Roots 072499}

\section*{CE is to EF as CY is to} CW


EG \(:=\mathrm{EF}+\mathrm{FG}\) GI \(:=\mathrm{FI}-\) FG GM \(:=\frac{\mathrm{FV} \cdot \mathrm{GI}}{\text { FI }} \quad \mathrm{Ia}:=\frac{\mathrm{EG} \cdot \mathrm{IR}}{\mathrm{GM}} \mathrm{EL}:=\frac{\mathrm{Ia} \cdot \mathrm{ED}}{\mathrm{Ia}+\mathrm{DI}} \mathrm{BR}:=\sqrt{\mathrm{BI}^{2}+\mathrm{IR}^{2}}\)
\(\mathrm{Ba}:=\mathrm{Ia}-\mathrm{BI} \quad \mathrm{BH}:=\frac{\mathrm{BI} \cdot \mathrm{BE}}{\mathrm{Ba}} \quad \mathrm{EH}:=\mathrm{BE}+\mathrm{BH} \quad \mathrm{CI}:=\mathrm{AC}-\mathrm{AI} \mathrm{JO}:=\frac{\mathrm{IR} \cdot \mathrm{CE}}{\mathrm{CI}+\mathrm{Ia}} \quad \mathrm{CJ}:=\frac{\mathrm{CI} \cdot \mathrm{JO}}{\mathrm{IR}}\)
\(\mathrm{JI}:=\mathbf{C I}-\mathbf{C J} \mathbf{C Y}:=\frac{\mathbf{I R} \cdot \mathbf{C J}}{\mathbf{J I}} \frac{\mathbf{C Y}}{\mathbf{C W}}-\frac{\mathbf{C E}}{\mathbf{E F}}=0\)



990811 EP
Given:
\(\qquad\)

\section*{A Delian Solution 081199}


What are the minor and major axis for the ellipse that will give point \(Z\) for the cube root?
\[
\mathbf{A B}:=\mathbf{1} \quad \mathbf{N}:=\mathbf{1 6} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N}
\]

BG := AG - AB
\(\mathrm{BF}:=\frac{\mathrm{BG}}{2} \quad\) FG \(:=\mathrm{BF} \quad \mathrm{AF}:=\mathrm{AB}+\mathrm{BF}\)
\(\mathrm{FX}:=\mathrm{BF} \quad\) Mf \(:=\frac{\sqrt{\mathrm{AF}^{2}+\mathrm{FX}^{2}}}{2} \quad\) Lf \(:=\frac{\mathrm{FX}}{2}\)
ML \(:=\) Mf \(-\mathbf{L f} \quad\) FL \(:=\frac{\mathbf{A F}}{2}\) Xd \(:=\mathrm{FL} \quad\) df \(:=\mathbf{L f}\) IX \(:=\) FX \(\quad\) Md \(:=M f+\operatorname{df} M X:=\sqrt{X d^{2}+M d^{2}}\) \(\mathbf{S X}:=\frac{\text { MX } \cdot \mathrm{IX}}{\mathrm{IX}-\mathrm{ML}} \quad \mathrm{Lg}:=\frac{\mathrm{FL} \cdot \mathrm{ML}}{\mathrm{ML}+\mathrm{FX}} \quad \mathbf{Q X}:=\frac{\mathrm{SX}}{2}\)

Fg \(:=\mathbf{F L}-\mathbf{L g} \quad \mathbf{X g}:=\frac{\mathbf{M X} \cdot \mathbf{F g}}{\text { Xd }}\) Qg \(:=\mathbf{Q X}-\mathbf{X g}\)
\(\mathrm{Kg}:=\frac{\mathrm{Xg} \cdot \mathrm{Qg}}{\mathrm{Fg}} \quad \mathrm{GK}:=\mathrm{FG}+\mathrm{Fg}+\mathrm{Kg}\) GJ \(:=\mathrm{BG}\)
GT \(:=\frac{\text { Fg } \cdot \mathbf{G K}}{\text { FX }}\) JT \(:=\mathbf{G J}+\) GT IJ \(:=\mathbf{B F}\)
FP \(:=\frac{\text { IJ } \cdot \mathbf{G J}}{\text { JT }}\) OP \(:=\frac{\text { IX } \cdot \mathbf{G T}}{\text { JT }}\)
KP \(:=\mathbf{F g}+\mathbf{K g}+\mathbf{F P}\) Pi \(:=\mathbf{L f} \quad \mathbf{O i}:=\mathbf{O P}+\mathbf{P i} \quad\) hi \(:=\frac{\mathrm{KP} \cdot \mathbf{O i}}{\mathbf{O P}} \quad\) fi \(:=\mathbf{F P}+\mathbf{F L} \quad\) fh \(:=\mathbf{h i}-\mathbf{f i} \quad \mathrm{KO}:=\sqrt{\mathrm{KP}^{2}+\mathbf{O P}^{2}}\)

\(\mathrm{Nl}:=\frac{\mathrm{OP} \cdot \mathrm{KN}}{\mathrm{KO}} \quad \mathrm{Kl}:=\frac{\mathrm{KP} \cdot \mathrm{KN}}{\mathrm{KO}} \mathrm{FK}:=\mathrm{KP}-\mathrm{FP}\) Fl \(:=\mathbf{F K}-\mathrm{Kl} \quad \mathrm{NX}:=\sqrt{(\mathrm{FX}+\mathrm{Nl})^{2}+\mathrm{Fl}^{2}} \quad \mathrm{XY}:=\frac{\mathrm{NX} \cdot \mathbf{I X}}{\mathrm{IX}-\mathrm{Nl}} \mathrm{Fm}:=\frac{\mathrm{Fl} \cdot \mathrm{XY}}{\mathrm{NX}}\) \(\mathrm{Km}:=\mathrm{FK}-\mathrm{Fm} \mathrm{Fo}:=\frac{\mathrm{Fl} \cdot \mathbf{F X}}{\mathrm{FX}+\mathbf{N l}} \quad \mathrm{Xo}:=\frac{\mathrm{NX} \cdot \mathrm{Fo}}{\mathrm{Fl}} \quad \mathrm{mo}:=\mathrm{Fm}-\mathrm{Fo} \quad \mathrm{Ym}:=\frac{\mathrm{FX} \cdot \mathrm{mo}}{\mathrm{Fo}} \quad \mathrm{FI}:=\mathbf{2} \cdot \mathbf{B F} \quad \mathrm{IL}:=\sqrt{\mathrm{FL}^{2}+\mathrm{FI}^{2}}\)


Is the segment Zv equal to the perpendicular for the ellipse?

\(A C:=\left(A B^{2} \cdot A G\right)^{\frac{1}{3}} A E:=\left(A B \cdot A G^{2}\right)^{\frac{1}{3}}\)
\(\mathrm{BC}:=\mathrm{AC}-\mathrm{AB} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)

CE := BE - BC EG := BG - BE
\(\mathbf{C U}:=\frac{\mathrm{BC} \cdot \mathbf{C E}}{\mathrm{BC}+\mathbf{E G}} \quad \mathbf{B U}:=\mathrm{BC}+\mathbf{C U}\)
\(\mathbf{G U}:=\mathbf{B G}-\mathbf{B U} \quad \mathbf{U Z}:=\sqrt{\mathbf{B U} \cdot \mathbf{G U}}\)
\(\mathbf{U W}:=\frac{\mathbf{G K} \cdot \mathbf{U Z}}{\mathbf{G T}} \mathbf{G g}:=\mathbf{G K}-\mathbf{K g}\)
\(\mathbf{t u}:=\mathbf{Q R} \quad\) gt \(:=\frac{\mathbf{K T} \cdot \mathbf{t u}}{\mathbf{G K}} \quad \mathbf{G t}:=\mathbf{G g}+\mathbf{g t}\)
\(\mathbf{G W}:=\mathbf{G U}+\mathbf{U W} \mathbf{W t}:=\mathbf{G W}-\mathbf{G} \mathbf{t}\)
\(\mathbf{t v}:=\frac{\mathbf{G T} \cdot \mathbf{W t}}{\mathrm{KT}} \mathrm{Kt}:=\mathbf{G K}-\mathrm{Gt} \quad \mathrm{Rt}:=\frac{\mathrm{GT} \cdot \mathbf{K t}}{\mathrm{KT}}\)
\(\mathbf{R v}:=\mathbf{t v}-\mathbf{R t} \quad \mathbf{b c}:=2 \cdot \mathbf{R s} \quad \mathbf{R c}:=\mathbf{R s}\)
\(\mathbf{c V}:=\mathbf{R c}+\mathbf{R v} \quad \mathbf{Y w}:=2 \cdot \mathbf{R Y} \quad \mathbf{W Z}:=\frac{\mathrm{KT} \cdot \mathbf{U Z}}{\mathrm{GT}}\)
\(\mathbf{W v}:=\frac{\mathbf{G K} \cdot \mathbf{t v}}{\mathbf{G T}} \quad \mathbf{Z v}:=|\mathbf{W Z}-\mathbf{W v}|\)
\(\mathbf{N}_{1}:=Y w \quad \mathbf{N}_{2}:=\mathrm{bc} \quad \mathbf{N}_{3}:=\mathrm{cv} \quad \mathbf{N}_{4}:=\mathrm{bc} \quad \sqrt{\mathbf{N}_{3} \cdot\left(\mathbf{N}_{4}-\mathbf{N}_{3}\right)} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}-\mathbf{Z v}=0 \quad \frac{A C}{2 \cdot A B}-2^{\frac{1}{3}}=0\)
\(\sqrt{N_{3} \cdot\left(N_{4}-N_{3}\right)} \cdot \frac{N_{1}}{N_{2}}\) is from 09/11/97 The Ellipse for the segment Zv (BG), units divided out.


As this method of construction does not quite make it to two, sixteen will do as well.

\section*{Plate 1}


Plate 2
\(\mathrm{BF}=\frac{\mathrm{BG}}{2}\),
\(\mathrm{FG}=\mathrm{BF}\),
\(\mathrm{AF}=\mathrm{AB}+\mathrm{BF}\)
\(F X=B F\),
\(\mathrm{Mf}=\frac{\sqrt{\mathrm{AF}^{2}+\mathrm{FX}^{2}}}{2}\),
\(L F=\frac{F X}{2}\)


\section*{Plate 3}


Plate 4
\(\mathrm{SX}=\frac{\mathrm{MX} \times \mathrm{IX}}{\mathrm{IX}-\mathrm{ML}}\),
\(L g=\frac{F L \times M L}{M L+F X}\),
\(\mathrm{QX}=\frac{\mathrm{SX}}{2}\)
\(\mathrm{Fg}=\mathrm{FL}-\mathrm{Lg}\),
\(\mathrm{Xg}=\frac{\mathrm{MX} \times \mathrm{Fg}}{\mathrm{Xd}}\),
\(\mathrm{Qg}=\mathrm{QX}-\mathrm{Xg}\)


\section*{Plate 5}

\[
\begin{aligned}
& \mathrm{Kg}=\frac{\mathrm{Xg} \times \mathrm{Qg}}{\mathrm{Fg}}, \\
& \mathrm{GK}=\mathrm{FG}+\mathrm{Fg}+\mathrm{Kg}, \\
& \mathrm{GJ}=\mathrm{BG} \\
& \mathrm{GT}=\frac{\mathrm{Fg} \times \mathrm{GK}}{\mathrm{FX}}, \\
& \mathrm{JT}=\mathrm{GJ}+\mathrm{GT}, \\
& \mathrm{IJ}=\mathrm{BF}
\end{aligned}
\]
\(\mathrm{FP}=\frac{\mathrm{IJ} \times \mathrm{GJ}}{\mathrm{JT}}\),
\(\mathrm{OP}=\frac{\mathrm{IX} \times \mathrm{GT}}{\mathrm{JT}}\),
\(K P=F g+K g+F P\),
\(\mathrm{Pi}=\mathrm{Lf}\),
\(\mathrm{Oi}=\mathrm{OP}+\mathrm{Pi}\),
\(h i=\frac{\mathrm{KP} \times \mathrm{Oi}}{\mathrm{OP}}\),
Plate 6


\section*{Plate 7}


Plate 8
\[
\begin{aligned}
& \mathrm{Nh}=\mathrm{hk}+\mathrm{Nk} \\
& \mathrm{Oh}=\frac{\mathrm{KO} \times \mathrm{Oi}}{\mathrm{OP}} \\
& \mathrm{NO}=\mathrm{Oh}-\mathrm{Nh} \\
& \mathrm{KN}=\mathrm{KO}-\mathrm{NO} \\
& \mathrm{NI}=\frac{\mathrm{OP} \times \mathrm{KN}}{\mathrm{KO}} \\
& \mathrm{KI}=\frac{\mathrm{KP} \times \mathrm{KN}}{\mathrm{KO}}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{FK}=\mathrm{KP}-\mathrm{FP}, \\
& \mathrm{Fl}=\mathrm{FK}-\mathrm{Kl}, \\
& \mathrm{NX}=\sqrt{(\mathrm{FX}+\mathrm{Nl})^{2}+\mathrm{Fl}^{2}} \\
& \mathrm{XY}=\frac{\mathrm{NX} \times \mathrm{IX}}{\mathrm{IX}-\mathrm{Nl}}, \\
& \mathrm{Fm}=\frac{\mathrm{Fl} \times \mathrm{XY}}{\mathrm{NX}}, \\
& \mathrm{Km}=\mathrm{FK}-\mathrm{Fm}
\end{aligned}
\]

Plate 10
\(\mathrm{Fo}=\frac{\mathrm{Fl} \times \mathrm{FX}}{\mathrm{FX}+\mathrm{Nl}}\),
\(\mathrm{Xo}=\frac{\mathrm{NX} \times \mathrm{Fo}}{\mathrm{Fl}}\),
\(\mathrm{mo}=\mathrm{Fm}-\mathrm{Fo}\)
\(\mathrm{Ym}=\frac{\mathrm{FX} \times \mathrm{mo}}{\mathrm{Fo}}\),
\(\mathrm{FI}=2 \times \mathrm{BF}\),
\(\mathrm{IL}=\sqrt{\mathrm{FL}^{2}+\mathrm{FI}^{2}}\)


\section*{Plate 11 The Minor Axis}


Plate 12
\(\mathrm{Xd}=\mathrm{FL}\),
\(\mathrm{dp}=\frac{\mathrm{GK} \times \mathrm{Xd}}{\mathrm{KT}}\),
\(\mathrm{pq}=\mathrm{QR}\)
\(\mathrm{dq}=\mathrm{dp}-\mathrm{pq}\),
\(\mathrm{Xp}=\frac{\mathrm{GT} \times \mathrm{Xd}}{\mathrm{KT}}\),
\(\mathrm{Op}=\mathrm{QX}-\mathrm{Xp}\)


Plate 13 The Major Axis

\[
\begin{aligned}
& \mathrm{AC}=\left(\mathrm{AB}^{2} \times \mathrm{AG}\right)^{1 / 3}, \\
& \mathrm{AE}=\left(\mathrm{AB} \times \mathrm{AG}^{2}\right)^{1 / 3} \\
& \mathrm{BC}=\mathrm{AC}-\mathrm{AB}, \\
& \mathrm{BE}=\mathrm{AE}-\mathrm{AB}, \\
& \mathrm{CE}=\mathrm{BE}-\mathrm{BC} \\
& \mathrm{EG}=\mathrm{BG}-\mathrm{BE}
\end{aligned}
\]


Plate 15


Plate 16
\(\mathrm{tu}=\mathrm{QR}\),
\(\mathrm{gt}=\frac{\mathrm{KT} \times \mathrm{tu}}{\mathrm{GK}}\),
\(\mathrm{Gt}=\mathrm{Gg}+\mathrm{gt}\)
\(\mathrm{GW}=\mathrm{GU}+\mathrm{UW}\),
\(\mathrm{Wt}=\mathrm{GW}-\mathrm{Gt}\)
\(\mathrm{tv}=\frac{\mathrm{GT} \times \mathrm{Wt}}{\mathrm{KT}}\),
\(\mathrm{Kt}=\mathrm{GK}-\mathrm{Gt}\)


Plate 17


Plate 18
\[
\begin{aligned}
& \mathrm{WZ}=\frac{\mathrm{KT} \times \mathrm{UZ}}{\mathrm{GT}}, \\
& \mathrm{Wv}=\frac{\mathrm{GK} \times \mathrm{tv}}{\mathrm{GT}} \\
& \mathrm{Zv}=|\mathrm{WZ}-\mathrm{Wv}| \\
& \mathrm{N}_{1}=\mathrm{Yw}, \mathrm{~N}_{2}=\mathrm{bc}, \\
& \mathrm{~N}_{3}=\mathrm{cv}, \mathrm{~N}_{4}=\mathrm{bc} \\
& \sqrt{\mathrm{~N}_{3} \times\left(\mathrm{N}_{4}-\mathrm{N}_{3}\right)} \times \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}-\mathrm{Zv}=0
\end{aligned}
\]


The language in this damn thing is all wrong correct it.

\title{
Basic Arithmetic in Geometry Introduction
}

An outline of basic math moves in Geometry mainly concerning cardinal operations.
A primary mechanism required for language is the ratio. And it is on a biological level first. On a conscious level, one must understand that as things are to each other, so too our mental manipulations of things must be to each other. This identity between reality and mentality is call rationality. It then follows that people who habitually lie, being aware of it or not, are not rational. On a religious level, when one says that God is Truth, they are enunciating a standard in rationality-of judgment.

\section*{Cardinal and Ordinal Operations.}

These techniques are primarily focused not on ordinal operations but on cardinal. An example of an ordinal operation is Euclid's Book 1:1. The operations here depend first upon the unit.

\section*{Contents}
\begin{tabular}{ll} 
The Unit & Technique 1 \\
Addition Subtraction & Technique 2 \\
Number Construction & Technique 3 \\
Unit Ratio & Technique 4 \\
Fractions. & Technique 5 \\
Ratio Two Numbers. & Technique 6 \\
Multiplication & Technique 7 \\
Division & Technique 8
\end{tabular}

\section*{Basic Techniques}

\section*{Technique 1. To construct a unit.}


With a given line, assert two points.
\(\overline{\mathrm{A0B1}}\) is the unit by convention.
Every formal logic starts the same way-Arithmetic with the definition of the unit, so too in geometry. Craft is all about standards in construction and one starts by constructing our first standard.

Geometry is a relatiologic, which means the material difference is given, and the geometer asserts boundaries. The material difference in geometry is unspecified, of no concern to the geometer. He can neither add to, nor subtract from difference, he can only make things by asserting boundaries to it.

The construction of a unit is understood in this wise:-Between two assertions there is one and only one difference.

Note: Preserve both naming conventions, Geometric and Arithmetic.

\section*{Technique 2. To a given unit add another.}


To a given line, Let \(\overline{\mathrm{A} 1 \mathrm{B0}}\) be the given unit and to it, simply add another. Construct \(\odot\) B1A0.
\(\overline{\mathrm{B} 1 \mathrm{C} 2}\) is the required addition.
\(1+1=2\) and \(2-1=1\).

One need not drag this out for subtraction.

\section*{Technique 3: To construct a number.}


Given \(\overline{\mathrm{AOB1}}\) as our unit and 4 the number we are to construct, etc., Technique 4. To construct a ratio between linear units.
\[
\wedge \lambda
\]

\(\overline{0 A 1}: \overline{0 B 1}\) Is what was required.

\section*{Technique 5. Construct a fraction.}


Let \(\overline{\mathrm{AOB1}}\) be our given unit, and \(\frac{2}{3}\) the fraction which we are to construct.
\(\overline{\mathrm{HOJ} 1}\) is \(\frac{2}{3}\). Furthermore, I say that HON4 is \(\frac{4 \times 2}{3} \ldots\)

\section*{Technique 6. Provide a ratio between numbers with two} different units.


Let the numbers be 5 A and 5 B. Then 1A:1B :: 5A:5B.

\section*{Technique 7. Multiply two numbers.}


With the given unit \(\overline{\text { A1B0 }}\) multiply \(2 \times 4\).


With the given unit \(\overline{\mathrm{A} 1 \mathrm{BO}}\) divide 6 by 2.

\section*{Multiplication And Division of Lines}
1. An unit is that by virtue of which each of the things that exist is called one. Euclid's Elements

The Basic figures in this little thing are written up in my work Threee Pieces of Paper, or The Delian Quest. This is not a formal presentation, is a presentation of craft basics.

John Clark


312
(c) JClark8659@hotmail.com

Printed via import to MS Word.

\section*{Following the Yellow Brick Road}


\section*{Introduction}

Maybe I am too dogmatic, but I think one should have geometry teach one something of basic math. One should be able to add, subtract, multiply and divide with lines. These can provide proofs and constructible.

The figures can be modified in various ways to produce various results. I present a few here. The main figure is composed of the notion of common unit, and that multiplication and division works with square numbers, which is distinct from squaring a number. The square thus constructed provides the properties needed for multiplication and division.

I once read, in an Algebra book, that exponential notation had nothing to do with Geometry, that it was a pure mental abstract. What am I, then, to do with all the figures I have come up with that display the principles?

I would also like to see how the four basic operations of Math hold up in "non-Euclidean" Geometries. In fact, as part of their presentation, I think the four basic operations of mathematics should be a requirement. Perhaps by teaching the remaining two in geometry, something about reality and standards of thought will be learned.

The material in this little flyer is not new to me, it is part of four works I am currently engaged in, The Delian Quest, which is essentially completed, it needs some lipstick and a dress, Three Pieces of Paper, Eloi, and something with a puny Latin name.

Oh, and no, I have never studied geometry in an institution-I have never seen ideas survive in an institution. I have and probably will be again, be institutionalized at my own request.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Function Contents} & Page & \multicolumn{5}{|l|}{Function Link to Introdution} & Page \\
\hline & \multicolumn{5}{|l|}{( \(\left.\mathrm{N}_{1} \cdot \mathrm{~N}_{2}\right)-\mathrm{N}_{3}=0.00000\)} & Link tor & & & & & & \\
\hline & \[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=1.13725
\] & \(\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1}}=1.87931\) & \multicolumn{3}{|l|}{\[
\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{2}}=2.13725
\]} & Link tor & \(\frac{\mathrm{N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{5}=0.00000\) & \(\mathrm{N}_{2}{ }^{2} \mathrm{~N}_{6}\) & \(=0.00000\) & & & Link to 11 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{1}{N_{1}}-N_{3}=0.00000
\]} & Link to 3 & \(\sqrt{2}-\mathrm{N}_{5}=0.00000\) & \(\frac{\sqrt{2} \cdot \mathbf{N}_{1}}{\mathrm{~N}_{2}}\) & \(\mathrm{N}_{6}=0.00000\) & & \(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{\sqrt{2}}-\mathrm{N}_{7}=0.00000\) & Link to 12 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}}{N_{2}{ }^{2}}-N_{4}=0.00000 \quad \frac{N_{1}}{N_{2}{ }^{3}}-N_{5}=0.00000
\]} & Eink to4 & \(\mathrm{N}_{5}-2^{0.75}=0.00000\) & \(\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)\) & \(\mathrm{N}_{5}-\mathrm{N}_{6}=0.00\) & & \(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{5}}-\mathrm{N}_{7}=0.00000\) & Link to 13 \\
\hline & \multicolumn{5}{|l|}{2. \(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}-\mathrm{N}_{4}=0.00000\)} & Link tos & \(\mathrm{N}_{1}{ }^{0.5}-\mathrm{N}_{2}=0.00000\) & \(\mathrm{N}_{1}{ }^{0.25}\) & \(-\mathrm{N}_{3}=0.00000\) & & \(\mathrm{N}_{1}{ }^{0.125-\mathrm{N}_{4}}=0.00000\) & Link to 14 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}{ }^{2}}{\left(N_{2}+N_{1}\right) \cdot N_{2}}-N_{3}=0.00000
\]} & Link to 6 & \(\frac{\mathrm{N}_{1}{ }^{0.5}}{\mathrm{~N}_{2}{ }^{0.5}}-\mathrm{N}_{3}=0.00000\) & \(\frac{\mathrm{N}_{1}{ }^{0.25}}{\mathrm{~N}_{2}{ }^{0.75}}\) & \(-\mathrm{N}_{4}=0.00000\) & & \({ }_{1}^{0.5} \mathrm{~N}_{2}{ }^{1.5}-\mathrm{N}_{5}=0.00000\) & Link to 15 \\
\hline & \multicolumn{5}{|l|}{\(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}+\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}\right)-\mathrm{N}_{3}=0.00000\)} & Eink to7 & \[
\frac{N_{1}{ }^{2}}{\left(N_{1}+N_{2}\right) \cdot N_{2}}-L_{1}=0.0
\] & .00000 & \[
\frac{\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}-\mathrm{M}
\] & \[
I_{1}=0.0
\] & .00000 & Link to 16 \\
\hline & \multicolumn{5}{|l|}{\[
\mathrm{N}_{3}{ }^{2}-\frac{\mathrm{BC}}{\mathrm{BD}}=0.00000 \quad \mathrm{~N}_{3}{ }^{3}-\frac{\mathrm{BC}}{\mathrm{BE}}=0.00000 \quad \mathrm{~N}_{3}{ }^{4}-\frac{\mathrm{BC}}{\mathrm{BF}}=0.00000
\]} & Link to \({ }^{\text {a }}\) & & & & & & \\
\hline & \multicolumn{5}{|l|}{\[
\frac{\mathrm{N} 4_{2}}{\mathrm{~N} 2_{2}}=1.39420 \quad \frac{\mathrm{~N} 2_{2}}{\mathrm{~N} 1_{2}}=1.39420 \quad \frac{\mathrm{~N} 1_{2}}{\text { Unit }_{2}}=1.39420 \quad \frac{\text { Unit }_{2}}{\mathrm{~N} 3_{2}}=1.39420
\]} & Eink to 9 & \[
\frac{N_{1}{ }^{2}}{N_{2} \cdot\left(N_{1}+1\right)}-L_{1}=0.00
\] & 0000 & \(\frac{\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{1}+\mathbf{1}}-\mathrm{M}_{1}\) & = 0.00 & 0000 & Link to 17 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}{ }^{2}}{N_{2}}-N_{5}=0.00000 \quad \frac{N_{1}{ }^{3}}{N_{2}{ }^{2}}-N_{6}=0.00000 \quad \frac{N_{2}{ }^{2}}{N_{1}}-N_{7}=0.00000
\]} & Link to 10 & \[
\frac{\mathrm{N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{4}}-\mathrm{N}_{7}=0.00000
\] & \(\mathrm{N}_{2}{ }^{4}-\mathrm{N}_{8}\) & = 0.00000 & & \({ }^{-1} \mathrm{~N}_{25}=0.00000\) & \multirow[t]{2}{*}{\(\xrightarrow{\text { Eink to } 18}\)} \\
\hline & \multicolumn{5}{|l|}{} & & \[
\frac{\mathrm{N}_{2}{ }^{4}}{\mathrm{~N}_{1}}-\mathrm{N}_{26}=\mathbf{0 . 0 0 0 0 0}
\] & \multicolumn{2}{|l|}{\[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{27}=0.00000
\]} & \multicolumn{2}{|l|}{\[
\frac{\mathrm{N}_{2}{ }^{7}}{\mathrm{~N}_{1}}-\mathrm{N}_{8}=0.00000
\]} & \\
\hline
\end{tabular}


\(\frac{\mathrm{U}_{\text {nit }}}{0 \mathrm{~N}_{4}}=2.50000\)
\(\frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1}}=2.50000\)
\(\frac{\mathrm{U}_{\text {nit }}}{\mathbf{U n i t}^{N_{4}}}=1.66667\)
\(\frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathbf{N}_{2}}=1.66667\)

Divide
N1 by N2
\begin{tabular}{|c|c|c|c|}
\hline N1 & & \multicolumn{2}{|l|}{N2} \\
\hline 1 & 16 & 1 & 16 \\
\hline 2 & 17 & 2 & 17 \\
\hline 3 & 18 & 3 & 18 \\
\hline 4 & 19 & 4 & 19 \\
\hline 5 & 20 & 5 & 20 \\
\hline 6 & 21 & 6 & 21 \\
\hline 7 & 22 & 7 & 22 \\
\hline 8 & 23 & 8 & 23 \\
\hline 9 & 24 & 9 & 24 \\
\hline 10 & 25 & 10 & 25 \\
\hline 11 & 26 & 11 & 26 \\
\hline 12 & 27 & 12 & 27 \\
\hline 13 & 28 & 13 & 28 \\
\hline 14 & 29 & 14 & 29 \\
\hline 15 & 30 & 15 & 30 \\
\hline & 31 & & 31 \\
\hline
\end{tabular}

\(\mathrm{N}_{1}=3.00000\)
\(\mathrm{~N}_{2}=2.00000\)
\(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=1.50000\)
\(\mathrm{~N}_{3}=1.50000\)
\(\mathrm{~N}_{4}=0.75000 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{4}=0.00000\)
\(\mathrm{~N}_{5}=0.37500 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}{ }^{3}}-\mathrm{N}_{5}=\mathbf{0 . 0 0 0 0 0}\)
etc.


\[
\begin{gathered}
\mathrm{N}_{1}=2.00000 \\
\mathrm{~N}_{2}=2.00000 \\
\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}=4.00000 \\
\mathrm{~N}_{3}=4.00000 \\
\mathrm{~N}_{4}=6.00000 \\
2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}-\mathrm{N}_{4}=0.00000
\end{gathered}
\]


N2

- 3




I tossed this together, so it is not perfect-it just looks good
\begin{tabular}{|c|c|c|c|}
\hline N & & \multicolumn{2}{|c|}{N2} \\
\hline 1 & [16 & 1 & 116 \\
\hline 2 & [17 & \(\underline{1}\) & 17 \\
\hline 3 & [18) & 3 & 18 \\
\hline 4 & [19 & 4 & 10 \\
\hline 5 & 120 & 5 & 20 \\
\hline 6 & \({ }^{21}\) & 6 & [2] \\
\hline 0 & \({ }^{2}\) & 0 & [2] \\
\hline 8 & \({ }^{23}\) & 8 & \({ }^{23}\) \\
\hline \(\underline{0}\) & \({ }^{[24}\) & 0 & \({ }^{24}\) \\
\hline 10 & \(\underline{5}\) & 10 & \(\underline{ }\) \\
\hline 回 & \(\underline{26}\) & [1] & [26 \\
\hline 12 & [27] & [12] & [27 \\
\hline 13 & [20 & 13 & \({ }^{28}\) \\
\hline 11 & [20 & [14] & 29 \\
\hline 15 & 30 & 15 & \(1{ }^{30}\) \\
\hline & [3] & & [1] \\
\hline
\end{tabular}


\begin{tabular}{rl} 
Unit \(=1.00000\) & \(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{3}=0.00000\) \\
\(\mathrm{~N}_{1}=2.00000\) & \(\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000\) \\
\(\mathrm{~N}_{2}=2.30952\) & \\
\(\mathrm{~N}_{3}=0.86598\) & \\
\(\mathrm{~N}_{4}=4.61905\) & \\
& \\
\(\mathrm{~N}_{5}=0.74992\) & \(\frac{\mathrm{~N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{5}=\mathbf{0 . 0 0 0 0 0}\) \\
\(\mathrm{N}_{6}=5.33390\) & \(\mathrm{~N}_{2}{ }^{2}-\mathrm{N}_{6}=\mathbf{0 . 0 0 0 0 0}\)
\end{tabular}



\begin{tabular}{|c|c|}
\hline Unit \(=1.00000\) & \\
\hline \(\mathrm{N}_{1}=2.00000\) & \\
\hline \(\mathrm{N}_{2}=1.41421\) & \(\mathrm{N}_{1}{ }^{\mathbf{0} .5}-\mathrm{N}_{2}=0.00000\) \\
\hline \(\mathrm{N}_{3}=1.18921\) & \(\mathrm{N}_{1}{ }^{0.25}-\mathrm{N}_{3}=0.00000\) \\
\hline \(\mathrm{N}_{4}=1.09051\) & \(\mathrm{N}_{1}{ }^{\mathbf{0 . 1 2 5}}\) - \(\mathrm{N}_{4}=0.00000\) \\
\hline
\end{tabular}

Unit \(=1.00000\)
\(\mathrm{~N}_{1}=1.77542\)
\(\mathrm{~N}_{2}=1.51695\)

\(\mathrm{~N}_{3}=1.08185 \quad \frac{\mathrm{~N}_{1}{ }^{0.5}}{\mathrm{~N}_{2}{ }^{0.5}}-\mathrm{N}_{3}=0.00000\)
\(\mathrm{~N}_{4}=0.84450 \quad \frac{\mathrm{~N}_{1}{ }^{0.25}}{\mathrm{~N}_{2} .{ }^{0.75}}-\mathrm{N}_{4}=0.00000\)
\(\mathrm{~N}_{5}=2.48947\)


Unit \(=1.00000\)
\(\mathrm{N}_{1}=1.00000\)
\(N_{2}=2.00000 \quad \frac{N_{1}}{N_{2}}-N_{3}=0.00000\)
\(\mathrm{N}_{\mathbf{3}}=\mathbf{0 . 5 0 0 0 0}\)
\(\mathrm{N}_{4}=\mathbf{2 . 0 0 0 0 0} \quad \mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=\mathbf{0 . 0 0 0 0 0}\)
\(L_{1}=0.16667 \quad \frac{N_{1}{ }^{2}}{\left(N_{1}+N_{2}\right) \cdot N_{2}}-L_{1}=0.00000\)
\(M_{1}=0.66667 \quad \frac{N_{1}{ }^{2} \cdot N_{2}}{N_{1}+N_{2}}-M_{1}=0.00000\)

\[
\begin{array}{ll}
\mathrm{U}_{1}=1.00000 \\
\mathrm{~N}_{1}=2.00000 \\
\mathrm{~N}_{2}=2.00000 & \\
\mathrm{~N}_{3}=1.00000 & \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=1.00000 \\
\mathrm{~N}_{4}=4.00000 & \mathrm{~N}_{1} \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000 \\
\mathrm{U}[1] / \mathrm{U}_{2}=0.25000 \\
\mathrm{~N}_{5}=2.00000 & \\
\mathrm{~N}_{6}=2.00000 & \\
\mathrm{~N}_{7}=0.25000 & \frac{\mathrm{~N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{4}}-\mathrm{N}_{7}=\mathbf{0 . 0 0 0 0 0} \\
\mathrm{N}_{8}=16.00000 & \mathrm{~N}_{2}{ }^{4}-\mathrm{N}_{8}=0.00000 \\
\mathrm{U}_{2}=1.00000 & \\
\mathrm{~N}_{25}=8.00000 & \mathrm{~N}_{2}{ }^{3}-\mathrm{N}_{25}=0.00000 \\
\mathrm{~N}_{26}=8.00000 & \frac{\mathrm{~N}_{2}{ }^{4}}{\mathrm{~N}_{1}}-\mathrm{N}_{26}=0.00000 \\
\mathrm{~N}_{27}=1.00000 & \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{27}=0.00000 \\
\mathrm{~N}_{8}=64.00000 & \frac{\mathrm{~N}_{2}{ }^{7}}{\mathrm{~N}_{1}}-\mathrm{N}_{8}=0.00000
\end{array}
\]

\begin{tabular}{|c|c|}
\hline Unit \(=1.00000\) & \\
\hline \(\mathrm{N}_{1}=1.72159\) & \[
\frac{N_{1}}{N_{2}}-N_{3}=0.00000
\] \\
\hline \(\mathrm{N}_{2}=2.12500\) & \(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000\) \\
\hline \(\mathrm{N}_{3}=0.81016\) & \[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=0.81016
\] \\
\hline \(\mathrm{N}_{4}=3.65838\) & \\
\hline \(\mathrm{N}_{5}=0.57386\) & \\
\hline \(\mathrm{N}_{6}=1.14773\) & \\
\hline \(\mathrm{N}_{7}=0.70833\) & \\
\hline \(\mathrm{N}_{8}=1.41667\) & \\
\hline \(\mathrm{N}_{9}=1.21946\) & \[
\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\frac{1}{3}\right)-\mathrm{N}_{9}=0.00000
\] \\
\hline \(\mathrm{N}_{10}=2.43892\) & \[
\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\frac{2}{3}\right)-\mathrm{N}_{10}=0.00000
\] \\
\hline
\end{tabular}


Unit \(=\mathbf{1 . 0 0 0 0 0}\)
\(\mathrm{N}_{1}=1.37056\)
\(\mathrm{N}_{2}=1.73096\)
\(\mathrm{N}_{3}=0.79179 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=0.79179\)
\(\mathrm{N}_{4}=2.37239 \quad \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}=2.37239\)
\[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=0.79179
\]
\(N_{5}=0.60565 \quad N_{1} \cdot\left(\frac{N_{1}}{N_{1}+N_{2}}\right)-N_{5}=0.00000\)
\(N_{6}=0.76491 \quad N_{1} \cdot\left(\frac{N_{2}}{N_{1}+N_{2}}\right)-N_{6}=0.00000\)
\(N_{7}=1.04835 \quad N_{1} \cdot N_{2} \cdot\left(\frac{N_{1}}{N_{1}+N_{2}}\right)-N_{7}=0.00000\)


\begin{tabular}{|c|c|}
\hline Unit \(=1.00000\) & \\
\hline \(\mathrm{N}_{1}=2.00000\) & 1 \\
\hline \(\mathrm{N}_{2}=1.41421\) & \(\mathrm{N}_{1}{ }^{2}-\mathrm{N}_{2}=0.00000\) \\
\hline & 1 \\
\hline \(\mathrm{N}_{3}=1.18921\) & \(\mathrm{N}_{1}{ }^{\mathbf{4}}-\mathrm{N}_{3}=0.00000\) \\
\hline \(\mathrm{N}_{4}=1.09051\) & \[
\mathrm{N}_{1}{ }^{\frac{1}{8}}-\mathrm{N}_{4}=0.00000
\] \\
\hline
\end{tabular}




The computational speed by straight edge and compass outdoes long hand by factors. The computational accuracy exceeds that of any binary computer. The understanding as to what numbers mean cannot be outdone. Yet, instead of improving Euclid, they made a mess of it.

What led me to this solution was not Euclid, it was my own geometry play-especially doing the formula's and solution to a power line In order to solve for the power line, I actually had to know how to divide a square by a line. That coupled with the feeling that one should know the basic mathematical operations in geometry, as a starter made me break down and simply do it.

Geometry is still undefined. It is undefined because, as we know, a set can be constructed in only two ways, by enumeration and by definition. By saying that Euclidean Geometry only uses two tools, the straight edge and compass, we have enumerated its set. To define it, one would have to say, Geometry is that language by which we speak where there is one, and only one difference between two points.

This change not only defines Euclidean Geometry, but we find that it has been short changed for a long time. A straight edge does indeed give us one and only one difference between two points, and so does a compass, these are the unit and universe of discourse in the subject. However, there is yet one more tool, that tool that gives us every ratio inbetween the unit and the universe, the ellipes. There is indeed one and only one difference between the two points called the foci of an ellipse.

If one can accept that, one can then understand my solution to the Delian Problem. A figure that gives one every aspect of an ellipse and one simply has to lay it down. Accepting that definition also takes something that is implied in Euclidean Geometry and makes it explicit, the ability to add, to do the math.

I hope you have fun.

\section*{Complete Induction.}
or counting.


\section*{Addition and Subtraction.}


\section*{The Square, Reciprocal and Root.}


\section*{Multiplication and Division.}
\(\mathrm{N}_{1}=1.26531\)
\(N_{2}=2.76531\)
\(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{R}_{\mathbf{1}}=\mathbf{0}\)
\(\frac{N_{1}}{N_{2}}-R_{4}=0\)



The Delian Quest.
2015 rev.

\[
\begin{aligned}
& \mathrm{AB}=1.38526 \mathrm{~cm} \\
& \mathrm{AC}=2.74270 \mathrm{~cm} \\
& \mathrm{AD}=3.85923 \mathrm{~cm} \\
& \mathrm{AE}=5.43030 \mathrm{~cm} \\
& \mathrm{AF}=10.75151 \mathrm{~cm} \\
& \left(\mathrm{AB}^{2} \cdot \mathbf{A F}\right)^{\frac{1}{3}}-\mathrm{AC}=0.00000 \\
& \left(\mathrm{AB} \cdot \mathrm{AF}^{2}\right)^{\frac{1}{3}}-\mathrm{AE}=0.00000 \\
& (\mathrm{AB} \cdot \mathrm{AF})^{\frac{1}{2}}-\mathrm{AD}=0.00000
\end{aligned}
\]

\section*{On the Principles of Dialectic.}

I am not going to make a long and tedious demonstration here, I will be presenting a more or less concise outline.

Dialectic is used for the maintenance and promotion of the functionality of the human mind in order for it to do its own work. The fact that the mind has a biologically determine job to perform is not an assumption. Nor is it an assumption that other life forms in the universe have guided the development of the mind of man so that one day the mind can perform this biologically determined job. One of the reasons one teaches someone to perform a task is because the teacher is not going to do that task for someone. The concept taught through religions, that a teacher is going to do man's job for him, is the product of a dysfunctional mind and it is a self-referential fallacy which defeats the purpose and efficacy of education. Another fallacy is that philosophy is the product of an individual mind.

The mind is responsible for the behavior of the body within which that mind resides. When that behavior is the product of language, language principles not currently recognized nor taught, it is called will. Will is, therefore, a linguistic product of a functional mind. Thus behavior is divided, itself, into two categories which can simply be indexed as "good" and "evil". Will is obtained as a learned process. No one is born free, nor is freedom something bestowed on an individual by another. Freedom is the unobstructed ability to do one's own work. One of the greatest obstructions to human freedom is the lack of education required to learn to perform one's biologically determined job; another is the personal interference from dysfunctional behavior of other individuals in one's environment; and a third is the physical inability of the mind, itself, to attain to that performance. Mankind is currently protolinguistic but this does not negate the fact that these obstructions must be dealt with commensurately with the specific disability. This small essay and demonstration is educational.

Dialectic is functional as a craft. Like any craft, there are two functional parts. These parts are the material one works with and the processes upon that material in order to render a specific product. This craft can be recorded, retained in memory, as a Two-Element Metaphysics. Due to the principles of language, this Two-Element Metaphysics can be and have been put into a large number of metaphors such as the Two-Witnesses of God, or the Two-Stone Tablets of Law and even The Theory of Forms. As the mind is wholly linguistic by function, one would be committing a linguistic error and thus behavioral errors to conclude that these terms are either "religious" or "philosophical"; the grouping function of the mind is factual. Metaphor is used in the exercise of linguistic functionality.

As the mind is wholly linguistic by function, both elements of the crafting processes of the mind must be comprehended in terms of language. Thus language is factually divided into logic and analogic. analogic being the material and logic the form applied to that material. Again, one can view this pair of functions in terms of metaphor as the Two Witnesses of God, or as The Two Tablets of Law, primitively this conceptual pair are derived from the definition of a thing and this definition is exampled in living biology. As this pair maintain an image of a thing, language can be effected starting with either of them.

Definition: A thing is any material in some form.
Here we see a natural division in things themselves which establishes a crafting paradigm which is universal. The name of a thing is equal to the names of that things elements. One of those elements, form, is a container for the other, material. Even the word dialectic is constructed as a recognition of this division in language which is commensurate with biology.

It is living biology which is the aim of that product called human will, and learning human will entails the comprehension of all human behavior along with the ability to distinguish good and evil behavior. In short, good and evil is in respect to the product of the mind, human behavior. In this regard I will lay down a concise out line of human behaviors with which the mind functions to regulate in order to maintain and promote life.

In short, the mind is responsible for a product of human behavior that maintains and promotes the life of the body. It performs its job wholly through the artifice of language. Language itself is produced as standards in human behavior to maintain and promote life. Therefore, language is standards of human behavior that maintains and promotes life and is called Law. Law therefore is not the product of any individual or group of individuals, organizations, or so called governing bodies, Law is a derivative of the Law of Identity for the specific purpose of maintaining a particular image which can be put in a concise metaphor as I AM THAT I AM. It means that our life is obtained through the images provided by perception, or in other words by the functions of the seven life support systems of our own body.

The crafting systems of a biological organism can be comprehended as life support systems. Life support systems can be comprehended in terms of environmental acquisition systems of a living organism.

\section*{Environmental Acquisition Systems.}

Life support systems which are obvious and which abstract from the environment.

Definition: An environmental acquisition system of a living organism is that system of an organism which must acquire from the environment an element from some thing and process that element which it has acquired for a product that maintains and promotes the life of that organism.

\section*{Those Systems that Acquire Material.}
1) The Digestive-System.
2) The Manipulative-System.
3) The Respiratory-System.

\section*{Those Systems that Acquire Form.}
4) The Ocular-System.
5) The Vestibular-System.
6) The Procreative-System.
7) The Judgmental-System.

That system, which can be called our self, is that system which is responsible for the behavior of the remaining systems through a function called judgment. Judgment determines behavior. Judgment is effected wholly through the artifice of language. Thus, one can list our responsibilities for the rendition of judgment according to the division exhibited in the definition of a thing.

\section*{The Self.}
1) The Judgmental-System.

The human mind is wholly linguistic by function. Its product is behavior. The first order of behavior is language itself. Language is effected as standards of behavior. There are two branches of language:
a) Analogic. The application of forms to standard given material.

Examples are provided by:
1) The Digestive-System.
2) The Manipulative-System.
3) The Respiratory-System.
b) Logic. The application of materials to standard given forms.

Examples are provided by:
1) The Ocular-System.
2) The Vestibular-System.
3) The Procreative-System.

From the paradigm expressed in the definition of a thing and exampled in living biology, we learn the fundamentals of both logic and analogic to govern the behaviors specified by the function of our environmental acquisition
systems. We learn to do our own work by example. Refusing these examples only indicates the degree of mental dysfunction.

\section*{The Law of Identity.}

The Law, or principle, of Identity is an expression of perception. Its specific expressions such as, we learn by experience, and seeing is believing are among them as well as relation to self is inadmissible and;
\(A\) equals \(A\).

It also means that we, a biological life form, are not different from ourselves. Language is a biological function. Every functional part of a living organism functions in order to maintain and promote the life of that organism.

> "Everything which has a function exists for its function." On the Heavens, by Aristotle, W. D. Ross.

Therefore, the first place that one starts with, in the study of any language, is the desire to maintain and promote the relationship between language and survival. This desire to do our own work is our most fundamental ally to becoming functional.

\section*{The Paradigm.}

Every environmental acquisition system of a living organism, functions by what it can acquire from the environment. It acquires abstractions from things and these abstractions are called a things elements. As the mind is responsible for judgment in relation to these things in the environment, the paradigm of judgment starts with the definition of a thing itself. This definition is a product of abstraction by a functional mind and establishes the unit, the foundation, the first principle of language and judgment. If one is not capable of making this abstraction, one cannot do their own work.

Definition: A thing is any material in any form.
In regard to the definition of a thing, neither form, nor material are, in of themselves, things. The part is not the whole.

From the definition of a thing, we acquire, commensurate with our own biology, two, and only two, primitive branches of language; logic commensurate with form and analogic commensurate with material. Also, by the definition of a thing, one of these languages must play the part of form while the other plays
the part of material difference. Also, by the definition of a thing, both branches of reasoning are paired which can only say one and the same thing. Also by definition, neither branch of reasoning is a branch of reasoning if the complementary language is not present-i.e., functionally resident in the mind.

Logics play the part of form. As such logics are seen as containers for the memory of experiences. One can also say that logics are indexing systems, or grouping systems, or again scripting systems for information retrieval and manipulation. The material indexed or contained is the material difference of the memory of perceptions. Memory can be said to be retained fragments of experience or perceptions. These experiences can be either perceptible or intelligible.

Analogics play the part of the material difference. Analogics are best learned through well ordered behaviors which include crafts. One such craft is called geometry.

Logics have the form as a given and the material for those forms must be supplied, while analogics have the material as a given and the form to those materials must be applied.
'A part' may be a part either of the form (i.e. of the essence), or of the compound of the form and the matter, or of the matter itself. Metaphysics by Aristotle.

Repairing this translation for accuracy of statement:
'A part' is ether form, or the material in that form of a compound or composite called a thing.
> "Therefore one kind of substance can be defined and formulated, i.e. the composite kind, whether it be perceptible or intelligible; but the primary parts of which this consists cannot be defined, since a definitory formula predicates some thing of some thing, and therefore, one part of the definition must play the part of matter and the other that of form." Metaphysics by Aristotle. W. D. Ross.

Things are thus defined in terms of that things parts, or elements, but neither of these parts can be defined as they are not things; one can only name them.

The method that Plato used to make his reader aware of Aristotle's second statement was as a demonstration in psychotherapy by dialog.
"SOCRATES: Let me give you, then, a dream in return for a dream:-Methought that I too had a dream, and I heard in my dream that the primeval letters or elements out of which you and I and all other things are compounded, have no reason or explanation; you can only name them, but no predicate can be either affirmed or denied of them, for in the one case existence, in the other non-existence is already implied, neither of which must be added, if you mean to speak of this or

\begin{abstract}
that thing by itself alone. It should not be called itself, or that, or each, or alone, or this, or the like; for these go about everywhere and are applied to all things, but are distinct from them; whereas, if the first elements could be described, and had a definition of their own, they would be spoken of apart from all else. But none of these primeval elements can be defined; they can only be named, for they have nothing but a name, and the things which are compounded of them, as they are complex, are expressed by a combination of names, for the combination of names is the essence of a definition. Thus, then, the elements or letters are only objects of perception, and cannot be defined or known; but the syllables or combinations of them are known and expressed, and are apprehended by true opinion. When, therefore, any one forms the true opinion of anything without rational explanation, you may say that his mind is truly exercised, but has no knowledge; for he who cannot give and receive a reason for a thing, has no knowledge of that thing; but when he adds rational explanation, then, he is perfected in knowledge and may be all that I have been denying of him. Was that the form in which the dream appeared to you?" Theætetus, by Plato, Jowett.
\end{abstract}

One may be confused as to why Socrates stated that you and I and all things are composed of letters-Plato was very aware that analog information was indeed a language. As the mind is wholly linguistic by function, it can only conceive all information via language itself. What can be determined is that many presentations to teach mankind this concept historically failed. That this would be so is recorded in the Judeo-Christian Scripture. There is no amount of teaching which can change the physical development of the mind itself.

By recursion of the paradigm for a container or form, definition then demonstrates the equality between the name of a thing which contains as a compound of the elements of form and matter which construct that thing by listing names of those elements. Thus we get the Theory of Forms, and why Plato was fixated on definition. Truth, at the foundation of language is achieved by maintaining the biological image as a convention of names, this is the whole of the correct process of both virtual construction and deconstruction.

Definition is a linguistic convention preserving the identity between the name of a thing and the names of the elements which comprise that thing. It is effected by maintaining then the equality between the name of a thing and the names of that things forms and the names of the materials contained in those forms.

Definition is a standard of individual and social behavior that is critical to the mind's ability to do its own work. The importance of definition, as an image, cannot be overstressed. A mind, or a collection of minds, incapable of this standard of behavior cannot be said to be linguistic, at best it can only be said to be proto-linguistic and fundamentally savage.

This is why the Theory of Forms is not a theory at all, but a factual observation concerning the foundation of language.

The fact that all of language resolves to this convention of names also determines what a proof is, and what it functions to do, to resolve a group of words back to the original naming convention which is based on perception. It also determines why we parse statements and parse them to isolate the individual assertions and denials contained in a sentence. Parsing is aimed at examining a statement for the compliance with the original naming convention also. Parsing is therefore part of the proofing process. This convention of names also determines that truth is the compliance with this convention. Naming a thing does not change a thing, but naming is part of the virtualization of experience.

As every environmental acquisition system of a living organism crafts from things to make other things, the paradigm of a thing itself will be used recursively, as a unit of conceptualization in the development of our understanding of language. In the short of it, the psychology of a linguistic species is founded upon a Two-Element Metaphysics, or in terms of the product of human behavior, Two Tablets of Law, or in other words, definition which is functional, by biological fact, only through perception. We learn, like anything else in reality, by experience.

Some important facts to take away from the paradigm. The form is not, nor ever can be the material difference, nor can the material difference ever be the form. Whether or not we use the paradigm as the basis for a name or for an entire system of reasoning, this one fact remains, it cannot exist as a thing in of itself. It takes both, the container and the contained, the form and the material to make any thing and everything-even in the realm of language. One may see this as a simple concept, however a proto-linguistic mind cannot comprehend it enough to effect behavior in accordance with it. A protolinguistic mind cannot think in accordance with definition.

Within a proto-linguistic species there will always be individuals doing their best to establish another animal, real or imagined, as the standard for human behavior as a means of asserting what they themselves simply desire. They really have no other option than to rely on someone else to set their standards of behavior. This means that in terms of psychology, the psychological foundation of a proto-linguistic species rests upon the self-referential fallacy, or again, ignorance. This is the source of all savage behavior. It also indicates that all governing bodies today are either potentially or actually savage by nature.

\section*{Logic.}

There is a metaphor for the fact that language, i.e. Law is based on two branches. The most widely recognized is the Two Stone Tablets of Law, which would one day be revealed to man again. Another is in Set Theory, that a set can be constructed either through definition which is commensurate with form
or by enumeration which is commensurate with material. Or again as the container and the contained.

Logic is based on form; this is why Plato's so called Theory of Forms can also be called the Theory of Definition; this is why, in some dialogs, the question was ask if the topic were a thing or not. There is no amount of discourse which can define an element of a thing. The elements of things can only be known by direct perception, perceptible or intelligible, to which an agreed upon name is given to that abstraction. All we can do is name an abstraction, and all language functions to maintain that correspondence.

Definition: A thing is any material in any form.

\section*{Categories of Names.}

From the definition of a thing, we find that we have three, and only three primitive categories of names. We can name a thing directly and we can name a thing, as Plato pointed out, by a combination of the names for a thing's elements, those elements being a thing's material and the forms within which those materials reside.

\section*{Parts of Speech.}

These three categories define the parts of speech. Just like an algebraic equation, they are added together as building blocks for more complex statements. Parts of Speech begins with the recognition of two fundamental naming conventions. The parts of speech not only include the naming convention for things, but the convention of names for the operations upon those names. For example, in assertion and denial, the words "is" and "is not" are operands. Assertion and denial are operations performed with names. Thus one does not fault the names for an incorrect operation, one faults the operator. Operands are directed towards the operator, or that system which is manipulating the conventions used in naming.

\section*{Naming Conventions.}

From the definition of a thing, we find that we have two distinct naming conventions for logic. We can name a thing directly, which is called the Subject Naming Convention, and we can name a thing as a combination of the names of a thing's materials and the names of the forms which contain those materials. This second convention is called the Predicate Naming Convention.

The convention of naming things, itself has two categories commensurate with form and material. Some names are standards while others are named in situ. Groups of names have been established for assignment in situ. Many of those are based on the physical act of pointing to an object from which the
abstraction is to be made. These pointers also can point to the perceptible and the intelligible.

One of the mistakes made in logic is using pointers which cannot, do not, point to a shared abstractable, and again perceptible or intelligible.

\section*{Assertion and Denial.}

Going back to the naming convention itself, assertion and denial turn out to be operands, the first operand in regard to the naming convention, establishing that convention itself. When used in context it becomes a proposition. One can proof this proposition by referring back to the original convention of names, or again the definition.

Assertion is commensurate with the paradigm of form, meaning no difference. Denial is commensurate with the paradigm of material, meaning some difference. The explicit coordinate system of reference, i.e. environmental acquisition system, for comparison for either of these is not in the words.

When we assign names to abstractions, we are establishing a standard behavioral system. Our commitment to doing our own work can be measured by the effort we expend in maintaining that convention as a one-to-one correspondence, or again truth. What is trying to be achieved is a one-to-one correspondence between an abstractable and a name. When we maintain that correspondence is what is meant by truth.
1) Truth is the state of being true between two or more things.
2) True is a lack of difference between two or more things.

Language is functional an intelligible equality. To a simple mind, it is imagined to be mystical.

That state of functionality for a mind called truth is then measured in terms of the maintenance and preservation of the correspondence between a name and the abstraction named, or again by the maintenance and preservation of the naming convention; or again, definition. This is why it was written that we shall know the truth and the truth shall set us free. It is a simple biological fact.

When we name we are not naming our abstractions. We are naming the source of abstraction. As we are not the standard for a name, nor is it possible to standardize the abstracting systems, standardization is afforded by things in the environment itself. These are sometimes established through bureaus of standards. When man becomes functional, this bureau of standards will imply the entire ecosystem of man, including his own behavior, man is destined to have dominion over the earth, a dominion aimed at maintaining and promoting a life supporting ecosystem.

One of the most common fallacies in trying to negate the efficacy of words is by claiming that the name of a thing is referencing a particular persons abstraction, or again, "man is the measure of all things." It is a simple minded argument which has apparently mastered many so called intellectuals and it is this fallacy which denotes a savage proto-linguistic species.

When we make an assertion we are saying that two names by their respective conventions of names are equal by some means of comparison. When we make a denial, we are saying that two names are not equal and again by some means of comparison. The means of comparison is often implied, i.e. fundamental to an equation is often an ellipsis for the system of comparison itself. It is often taken for granted that as a multi-sensing organism that one can locate the system used by the names given itself to complete the meaning of an assertion or denial. This aids in economy, but detracts from those without what is called "common sense." Sometimes those without "common sense" can be corrected by affording them the opportunity to participate in the naming convention; this means pointing them to something commonly sensed from which they may make an abstraction; one can afford someone the opportunity, but not the ability. Higher level of processing involves metaphor. As fundamental to language is the ability to abstract the similar concept from many examples, these functions are tested through metaphor. Metaphor tests the range of one's ability to depend upon definition.

Locating the senses systems used to make either an assertion or denial is a requirement of the indexing system of the mind.

\section*{Unit Sentences.}

Combining the naming conventions with assertion and denial, provide us with unit sentences.

Subject is or is not Subject.
Subject is or is not Predicates.
Predicate equals Predicate.
Thus not every sentence has both subject and predicates. Notice that in these statements the use of both singular and plural for the Predicate Naming Convention.

\section*{Parsing.}

Parsing a statement means to break that statement down to all of its expressed assertions and denials.

As every thing is crafted by bringing together material and form, we craft knowledge of things through combinations of a things predicates. The content of predicates come from direct perception; in regard to metaphor, one must not forget that the mind is a environmental acquisition system in its own right and therefore its predicates are, more often than not, intelligibles. We parse a statement in order to proof it, at least to the limit of our ability. One should never expect that the analog domain is equivalent in individuals concerning any statement.

\section*{Proofing.}

Proofing involves the products of parsing for determining both the authors compliance with the original naming convention and testing one's facility in using the indexing system. An assertion or denial is true if it complies with the original naming convention, false if it is not. Proofing does not exclude indexing based on the principles of the naming convention at all, which means that proofing also tests one's ability to following the indexing system through what is called metaphor.

It is not language when the original naming convention is not complied with. It is not comprehensible to a reader when they cannot follow the indexing systems in play. In other words, every proof actually proves the author of the words for that authors linguistic integrity while simultaneously proves the linguistic skill of the reader.

Currently what is called popular education leaves the student product with a false sense security by believing that they understand even common grammar.

Often one does not have the analog references to effect a proof, in this case, the parsing products indicate which analog information one has to acquire. This limitation is why proofing is part and parcel of formal presentation which provide both branches of reasoning in parallel.

As all we can do is assign names to the elements via abstraction, all that proof can do is check that the naming convention has, indeed, been complied with. In order to parse correctly, one has to have a level of ability in using the indexing system itself along with sufficient analog memory required by the naming convention to perform that task.

\section*{Maintenance and Preservation of the Naming Convention.}

Again, commensurate with the paradigm of a thing, there are two methods of maintaining and preserving the naming convention.

\section*{Form: Definition:}

Definition is equating the name of a thing to the names of that things materials and the names of the forms which contain those materials. As the mind is aimed at standards of behavior, a standard definition is then the preservation of the naming convention through preserving the assertions that equate the Subject Naming Convention to the Predicate Naming Convention in regard to the names of any perceptible and of any intelligible thing.

As mankind is currently proto-linguistic, this process is left to writers of dictionaries who still do not know the foundation of language, nor the difference between a definition and a description. Writers of dictionaries also think it is an improvement in logic that names "grow" by changing their indexing references. Anyone in a right frame of mind does not think it is a growth of language to scramble and obfuscate the indexes.

\section*{Material: Description:}

Descriptions are directions for locating a thing from which an abstraction may be made. Locating a thing can even entail directions for constructing that thing. Descriptions also involve direct experience being pointed out by someone else. By definition the acquisition of analog memory is required for linguistic functionality.

Throughout history many have confused a description with a definition, and thought they were arguing over definition, when in fact they were arguing over descriptions. The only thing provable by this process is that these persons could not even attain to the first principle of language itself, a convention of names.

\section*{The Perceptible and the Intelligible.}

The perceptible are things directly observable within the environment. The intelligible are things constructed within the mind on the same paradigm of any thing. Intelligibles are constructed by a complex combination of perceptibles. Given the time and effort, every intelligible can be parsed back to primary perceptions; thus, even intelligibles have for their origin, perceptible reality. These intelligibles can be proofed by a linguistic process demonstrated, for example, in the works of Euclid such as the Elements.

What I have outlined here are basic elements for logic in general. This outline also exhibits a fact in regard to mankind's current place in the process of becoming functional as there has yet to be written a correct book of elementary grammar.

Parsing demonstrates, in logic, that there is only one error possible, that of assertion and denial in reference to the original naming convention upon which a logic resides.

All of logic resolves to yea and nay, in reference only to the original naming convention itself. There never has been anything in logic which would suggest that as we start a logic by naming abstractions, that the results could be anything more than maintaining that original process. In other words, maintaining a simple human behavior. If one cannot do the simple, one certainly cannot do the complex. As names neither adds to, nor subtracts from, that which is named, proofing only insures that we, the user of the indexing system have kept our word. If we cannot give and keep our word, how is it that one can claim that we are linguistic?

\section*{Analogic.}

Analogics are based on material difference. What is added to make something is simply the application of form. Thus, human industry, human will, is the product of analogic.

It is on this wise that the complex customs developed by Confucius was aimed at linguistic functionality. The tie between language and human behavior has always been the goal of a true philosopher, a true prophet, and even true philosophy and true religion-all of them true craftsmen.
"Tsze-lu said, "The ruler of Wei has been waiting for you, in order with you to administer the government. What will you consider the first thing to be done?"

The Master replied, "What is necessary is to rectify names."
"So! indeed!" said Tsze-lu. "You are wide of the mark! Why must there be such a rectification?"

The Master said, "How uncultivated you are, Yu! A superior man, in regard to what he does not know, shows a cautious reserve.
"If names be not correct, language is not in accordance with the truth of things. If language be not in accordance with the truth of things, affairs cannot be carried on to success.
"When affairs cannot be carried on to success, proprieties and music do not flourish. When proprieties and music do not flourish, punishments will not be properly awarded. When punishments are not properly awarded, the people do not know how to move hand or foot.
"Therefore, a superior man considers it necessary that the names he uses may be spoken appropriately, and also that what he speaks may be carried out appropriately. What the superior man requires is just that, in his words there may be nothing incorrect." Analects by Confucius

In regard to analogic as a written language, we have what is called Geometry. Along with the logic of Algebra, one has a formal pairing used in elementary teaching of dialectic. As all that one can do is apply form to material in an analog language, the word geometry can be used metaphorically
for standards of all behaviors of man. The difference in analog language is that concepts are presented as part of the language itself. As the mind of most cannot comply with even the principles of logic, analog presents a greater challenge. One can write an equation analogically that simply will not register at all to a simple mind, they cannot abstract the concepts of what they are perceiving. This is why mankind has not even suspected that lucid dreaming is an analog language.

It is a very naive and simple mind that imagines that one can have many contradicting geometries as a written language, as if form, which is not a difference, is a difference. This only denotes how dysfunctional the mind of man is.

Some of the greatest mistakes in the analogic of geometry is confusing the process of writing the language with the language itself and confusing the writing materials with the grammar itself. The foundation for all languages is simply form and material, and, for linguistic purposes, standards in producing them in the language. Those who formulate non-Euclidean Geometries have been, and are too simple to even notice that at every turn, they violated the principles of language itself. The known parallel between the logic of mathematics and the analog figures in geometry was insufficient for them to realize that if one imagines the corruption of geometry, then because of the parallel, they eradicated any recourse to mathematics. One can, however, congratulate them on their consistency in not seeing contradiction after contradiction. A proto-linguistic mind cannot function in accordance with the principles of language.


\section*{A Duplicate Ratio} that with some point \(J\), as \(A B: A D:: A E\) : AC and as \(A D: A J:: A J: A E\) and as AB : AJ :: AJ : AC.

\(\mathbf{A B}:=\mathbf{1}\)
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{5 . 9 9 0 1 7}\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{2} .09550\)
\(\mathbf{B C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{D E}:=\mathbf{N}_{\mathbf{2}}\)

\[
\mathbf{A C}:=\mathbf{A B}+\mathbf{B C}
\]

\(\mathbf{A F}:=\mathbf{A B} \quad \mathbf{A G}:=\mathbf{A C}\)
AJ \(:=\sqrt{\mathbf{A F} \cdot \mathbf{A G}}\)
\[
\mathbf{A L}:=\frac{\mathbf{D E}}{\mathbf{2}}
\]
\[
\mathbf{F L}:=\mathbf{A F}+\mathbf{A} \mathbf{L}
\]
\[
\mathrm{JL}:=\sqrt{\mathbf{A J}^{2}+\mathbf{A L}^{2}}
\]
AD := \(\mathbf{J L}\) - AL
\(\mathbf{A E}:=\mathbf{J L}+\mathbf{A L}\)
\[
\frac{\mathbf{A B}}{\mathbf{A D}}-\frac{\mathbf{A E}}{\mathbf{A C}}=0 \quad \frac{\mathbf{A D}}{\mathbf{A J}}-\frac{\mathbf{A J}}{\mathbf{A E}}=0 \quad \frac{\mathbf{A B}}{\mathbf{A J}}-\frac{\mathbf{A J}}{\mathbf{A C}}=0
\]



Definitions
\(\mathbf{A C}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)=\mathbf{0}\)

\[
\sqrt{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}-\mathbf{A J}=\mathbf{0}
\]
\[
\begin{aligned}
& \mathbf{A F - 1}=\mathbf{0} \quad \mathbf{A G}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)=\mathbf{0} \quad \mathbf{A J}-\sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}=\mathbf{0} \\
& \mathrm{AL}-\frac{\mathbf{N}_{2}}{2}=0 \quad \mathrm{FL}-\frac{\mathrm{N}_{\mathbf{2}}+2}{2}=0 \quad \mathrm{JL}-\sqrt{\frac{\mathbf{N}_{2}{ }^{2}}{4}+\mathrm{N}_{1}+1}=0 \\
& A D-\frac{\sqrt{N_{2}{ }^{2}+4 \cdot N_{1}+4}-N_{2}}{2}=0 \quad A E-\frac{\sqrt{N_{2}{ }^{2}+4 \cdot N_{1}+4}+N_{2}}{2}=0 \\
& -\frac{2}{N_{2}-\sqrt{N_{2}{ }^{2}+4 \cdot N_{1}+4}}-\frac{\mathbf{N}_{2}+\sqrt{N_{2}{ }^{2}+4 \cdot N_{1}+4}}{2 \cdot\left(N_{1}+1\right)}=0 \quad \frac{A B}{A D}-\frac{A E}{A C}=0 \\
& -\frac{\mathbf{N}_{\mathbf{2}}-\sqrt{\mathbf{N}_{\mathbf{2}}{ }^{2}+\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}}+4}}{2 \cdot \sqrt{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}}-\frac{2 \cdot \sqrt{\mathbf{N}_{\mathbf{1}}+\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}+\sqrt{\mathbf{N}_{\mathbf{2}}{ }^{2}+\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}}+4}}=0 \quad \frac{\mathrm{AD}}{\mathbf{A J}}-\frac{\mathrm{AJ}}{\mathrm{AE}}=0 \\
& \frac{1}{\sqrt{\left(N_{1}+1\right)}}-\left(N_{1}+1\right)^{\frac{-1}{2}}=0 \\
& \frac{\mathbf{A B}}{\mathbf{A J}}-\frac{\mathrm{AJ}}{\mathbf{A C}}=\mathbf{0}
\end{aligned}
\]

\section*{Given \(A B\), how close is \(B J\) to the cube root of \(A B\) taken as a sphere?}
\[
\begin{aligned}
& N_{1}:=4 \quad \text { CUBE_ROOT }:=\left(\frac{4}{3} \cdot \pi \cdot N_{1}{ }^{3}\right)^{\frac{1}{3}} \\
& \mathbf{A B}:=\mathbf{N}_{1} \quad \mathbf{B H}:=\sqrt{2 \cdot \mathbf{A B}^{2}} \quad \mathbf{C G}:=\frac{\mathbf{A B}^{2}}{\mathbf{B H}} \\
& \mathbf{A G}:=\sqrt{\mathbf{C G}^{2}+(\mathbf{A B}+\mathbf{C G})^{2}} \quad \mathbf{D G}:=\mathbf{C G} \cdot \frac{\mathbf{2 A B}}{\mathbf{A G}} \\
& \mathbf{G J}:=\sqrt{\mathbf{A B}^{2}-\mathbf{D G}^{2}} \quad \mathbf{A E}:=\frac{(\mathbf{A B}+\mathbf{C G}) \cdot(\mathbf{A G}+\mathbf{G J})}{\mathbf{A G}} \\
& \mathbf{E J}:=\frac{\mathbf{C G} \cdot \mathbf{A E}}{\mathbf{A B}+\mathbf{C G}} \quad \mathbf{B J}:=\sqrt{\mathbf{E J}{ }^{2}+(\mathbf{A E}-\mathbf{A B})^{2}} \\
& \left.\frac{\text { BJ }}{\left(\frac{4}{3} \cdot \pi \cdot \mathrm{~N}_{1}{ }^{3}\right)^{\frac{1}{3}}}=1.000943 \quad \mathrm{BJ}-\left(\frac{4}{3} \cdot \pi \cdot \mathrm{~N}_{1}\right)^{3}\right)^{\frac{1}{3}}=0.00608
\end{aligned}
\]


Definition

BJ \(-N_{1} \cdot \sqrt{\sqrt{2}+2^{\frac{1}{4}}}=0\)


\section*{Pythagoras Revisited 010893}
Given just the three sides of any triangle, find its heighth from the perpendicular CD, DJ and the medial bisector CJ.

\[
\mathrm{AE}:=\frac{\mathbf{S}_{\mathbf{2}}{ }^{2}}{\mathbf{S}_{\mathbf{1}}} \quad \mathrm{BF}:=\frac{\mathbf{S}_{\mathbf{3}}{ }^{2}}{\mathbf{S}_{\mathbf{1}}}
\]
\[
\mathbf{E F}:=\mathbf{A B}-(\mathbf{A E}+\mathbf{B F}) \quad \mathbf{D E}:=\frac{\mathbf{E F}}{2}
\]
\(\mathbf{A D}:=\mathbf{A E}+\mathbf{D E}\)
G
\(\mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{C D}:=\sqrt{\mathbf{S}_{2}{ }^{2}-\mathbf{A D}^{2}} \quad \mathrm{AJ}:=\frac{\mathbf{S}_{1}}{2} \quad\) DJ \(:=\mathbf{A D}-\mathbf{A J} \quad \mathbf{C J}:=\sqrt{\mathbf{C D}^{2}+\mathbf{D J}^{2}}\)

\(\mathrm{EF}-\frac{\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{\mathrm{~S}_{1}}=0 \quad \mathrm{DE}-\frac{\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{2 \cdot S_{1}}=0 \quad \mathrm{AD}-\frac{\mathrm{S}_{1}{ }^{2}+\mathrm{S}_{2}{ }^{2}-\mathrm{S}_{3}{ }^{2}}{2 \cdot S_{1}}=0 \quad \mathrm{BD}-\frac{\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}+\mathrm{S}_{3}{ }^{2}}{2 \cdot S_{1}}=0\)
\(C D-\frac{\sqrt{\left(S_{1}+S_{2}-S_{3}\right) \cdot\left(S_{1}-S_{2}+S_{3}\right) \cdot\left(S_{2}-S_{1}+S_{3}\right) \cdot\left(S_{1}+S_{2}+S_{3}\right)}}{2 \cdot S_{1}}=0 \quad D J-\frac{\sqrt{\left(S_{2}{ }^{2}-S_{3}{ }^{2}\right)^{2}}}{2 \cdot S_{1}}=0 \quad C J-\frac{\sqrt{2 \cdot S_{2}}{ }^{2}-S_{1}{ }^{2}+2 \cdot S_{3}{ }^{2}}{2}=0\)


\section*{08092015 Pythagoras Revisited Again!}

One of the items often missed, as I aptly demonstrated, is thinking a process through. In order to insure the process is complete, use a Law as a standard to complete the equation. In this case, the Pythagorean Theorem.

\(\mathrm{AB}:=6.20183 \quad \mathrm{AC}:=4.89358 \quad \mathrm{BC}:=9.20468\)
\(\mathbf{G A}:=\frac{\mathbf{A C}^{2}}{\mathbf{A B}} \quad \mathbf{H B}:=\frac{\mathbf{B C}^{2}}{\mathbf{A B}} \quad \mathbf{G H}:=\mathbf{A B}-(\mathbf{G A}+\mathbf{H B}) \quad \mathbf{J A}:=\mathbf{G A}+\frac{\mathbf{G H}}{2}\) \(J B:=H B+\frac{G H}{2} \quad C J:=\sqrt{A C^{2}-J A^{2}} \quad C D:=\sqrt{\left(\frac{A B}{2}-J A\right)^{2}+C J^{2}}\)
\(C D-\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{2}=0\)
\(J A-\frac{A B^{2}+A C^{2}-B C^{2}}{2 \cdot A B}=0 \quad J B-\frac{A B^{2}-A C^{2}+B C^{2}}{2 \cdot A B}=0\)
\(\mathbf{C J}-\frac{\sqrt{(\mathbf{A B}+\mathbf{A C}-\mathbf{B C}) \cdot(\mathbf{A B}-\mathbf{A C}+\mathbf{B C}) \cdot(\mathbf{A C}-\mathbf{A B}+\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{A C}+\mathbf{B C})}}{2 \cdot \mathbf{A B}}=\mathbf{0}\)
Now the above is just what I got with Pythagoras revisited, however, it does not yet comply with the naming convention. There is no such thing as a negative name.
\(\sim_{n=2}^{0}\)


\section*{060393 Exploring The Curve AK}

The curve AK is derived from the cube root figure as demonstrated.

Given \(A G\) and that GF equals one third of \(A G\), for any \(A C\) is \(B D\) the square root of \(A B\) multiplied by DG? Divide a segment twice such that the mean segment is the root of the extreems.
\[
\text { Givens: } \quad \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{4} \quad \mathbf{A G}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A C}:=\frac{\mathbf{A G}}{\mathbf{N}_{\mathbf{2}}}
\]
\(\mathbf{G F}:=\frac{\mathbf{A G}}{\mathbf{3}} \quad \mathbf{F M}:=\sqrt{\mathbf{G F} \cdot(\mathbf{A G}-\mathbf{G F})}\)
\(\mathbf{G M}:=\sqrt{\mathbf{G F}^{2}+\mathbf{F M}^{2}} \quad \mathbf{S T}:=\mathbf{2} \cdot \mathbf{G M} \quad \mathbf{E N}:=\sqrt{\mathbf{G M}^{2}-\left(\frac{\mathbf{A G}}{2}\right)^{2}}\)
\(\mathbf{P S}:=\frac{\mathbf{S T}-\mathbf{A G}}{2} \quad \mathbf{H Q}:=\sqrt{(\mathbf{A C}+\mathbf{P S}) \cdot(\mathbf{A G}-\mathbf{A C}+\mathbf{P S})}\)
\(\mathbf{C H}:=\mathbf{H Q}-\mathbf{E N} \quad \mathbf{A H}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C H}^{2}} \quad \mathbf{G H}:=\sqrt{(\mathbf{A G}-\mathbf{A C})^{2}+\mathbf{C H}^{2}}\)
\(\mathbf{A B}:=\frac{\mathbf{A H}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{D G}:=\frac{\mathbf{G H}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G})\)
\(\mathbf{B D}-\sqrt{\mathbf{A B} \cdot \mathbf{D G}}=\mathbf{0} \quad \mathbf{A B}=\mathbf{0 . 3 4 9} \quad \mathbf{B D}=0.803 \quad \mathrm{DG}=1.849\)
Definitions:
\[
\mathbf{A C}-\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}=0 \quad \mathbf{G F}-\frac{\mathbf{N}_{1}}{3}=0 \quad \mathbf{F M}-\frac{\sqrt{2} \cdot \mathbf{N}_{1}}{3}=0 \quad G M-\frac{\sqrt{3} \cdot \mathbf{N}_{1}}{3}=0 \quad \mathbf{S T}-\frac{2 \cdot \sqrt{3} \cdot \mathbf{N}_{1}}{3}=0 \quad \mathbf{E N}-\frac{\mathbf{N}_{1}}{\sqrt{12}}=0
\]

\(G H-\frac{N_{1} \cdot \sqrt{7 \cdot N_{2}-\sqrt{N_{2}{ }^{2}+12 \cdot N_{2}-12}-6}}{\sqrt{6 \cdot \mathbf{N}_{2}}}=0 \quad A B-\frac{N_{1} \cdot\left(N_{2}-\sqrt{N_{2}{ }^{2}+12 \cdot N_{2}-12}+6\right)}{6 \cdot N_{2}}=0 \quad D G-\frac{N_{1} \cdot\left(7 \cdot N_{2}-\sqrt{N_{2}{ }^{2}+12 \cdot N_{2}-12}-6\right)}{6 \cdot N_{2}}=0\)


\(\mathrm{AG}=2.86667\) in. \(\mathrm{AC}=0.74179 \mathrm{in}\). GF \(=0.95556 \mathrm{in}\). \(F M=1.35136 \mathrm{in}\). GM \(=1.65507 \mathrm{in}\). ST = 3.31014 in . EN \(=0.82754 \mathrm{in}\). PS \(=0.22174 \mathrm{in}\). \(\mathrm{HQ}=1.50367 \mathrm{in}\). \(\mathrm{CH}=0.67614 \mathrm{in}\). \(\mathrm{AH}=1.00370 \mathrm{in}\). GH \(=2.22986 \mathrm{in}\). \(A B=0.35142 \mathrm{in}\). \(B D=0.78074 \mathrm{in}\). \(D G=1.73451 \mathrm{in}\).
\(\frac{\mathrm{AG}}{\mathrm{AC}}=3.86452\)
\(\mathrm{N}_{1}=2.86667 \mathrm{in}\).
\(\mathrm{N}_{2}=3.86452\)
\(\frac{\mathrm{AG}}{\mathrm{N}_{2}}=0.74179 \mathrm{in}\).
\(\mathrm{AC}-\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=0.00000 \mathrm{in}\).
GF- \(\frac{\mathrm{N}_{1}}{3}=0.00000 \mathrm{in}\).
FM- \(\frac{\sqrt{2} \cdot \mathrm{~N}_{1}}{3}=0.00000 \mathrm{in}\).
GM- \(\frac{\sqrt{3} \cdot \mathrm{~N}_{1}}{3}=0.00000 \mathrm{in}\).
ST- \(\frac{2 \cdot \sqrt{3} \cdot \mathrm{~N}_{1}}{3}=0.00000 \mathrm{in}\).
EN- \(\frac{\mathrm{N}_{1}}{\sqrt{12}}=0.00000 \mathrm{in}\).
PS- \(\frac{\mathrm{N}_{1} \cdot(2 \cdot \sqrt{3}-3)}{6}=0.00000 \mathrm{in}\).
\(\mathrm{HQ}-\frac{\mathrm{N}_{1} \cdot \sqrt{\left(\mathrm{~N}_{2}{ }^{2}+12 \cdot \mathrm{~N}_{2}\right)-12}}{\mathrm{~N}_{2} \cdot \sqrt{12}}=0.00000 \mathrm{in}\).
\(\mathrm{CH}-\frac{\mathrm{N}_{1} \cdot \sqrt{\left(\mathrm{~N}_{2}{ }^{2}+12 \cdot \mathrm{~N}_{2}\right)-12} \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{2} \cdot \sqrt{12}}=0.00000 \mathrm{in}\)



\section*{060793}

G
Given two triangles with a common side, find the difference
between their free vertices when the triangles do not intersect and when they do intersect.

Let the two triangles ABD and ACD be given.

\section*{Non-intersecting}

\(\mathbf{B C}_{\mathbf{1}}:=\sqrt{\mathbf{G H}^{\mathbf{2}}+(\mathbf{C G}+\mathbf{B H})^{\mathbf{2}}}\)
\(\mathbf{B C}_{2}:=\sqrt{\mathbf{G H}^{2}+(\mathbf{B H}-\mathbf{C G})^{2}}\)

\[
\begin{aligned}
& \mathbf{A D}:=2.17506 \quad \mathbf{A B}:=3.14654 \quad \mathbf{A C}:=1.74732 \\
& \mathbf{B D}:=2.61333 \quad \mathbf{C D}:=1.38168 \\
& \mathbf{C G}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{C D}+\mathbf{A C}) \cdot(-\mathbf{A D}+\mathbf{C D}+\mathbf{A C}) \cdot(\mathbf{A D}-\mathbf{C D}+\mathbf{A C})(\mathbf{A D}+\mathbf{C D}-\mathbf{A C})}}{\mathbf{2} \cdot \mathbf{A D}} \\
& \mathbf{B H}:=\frac{\sqrt{(\mathbf{A D}+\mathbf{A B}+\mathbf{B D}) \cdot(-\mathbf{A D}+\mathbf{A B}+\mathbf{B D}) \cdot(\mathbf{A D}-\mathbf{A B}+\mathbf{B D})(\mathbf{A D}+\mathbf{A B}-\mathbf{B D})}}{\mathbf{2} \cdot \mathbf{A D}}
\end{aligned}
\]
\[
\begin{gathered}
\mathbf{A G : = \frac { \mathbf { A D } ^ { 2 } + \mathbf { A C } ^ { 2 } - \mathbf { C D } ^ { 2 } } { 2 \cdot \mathbf { A D } } \quad \mathbf { A H } : = \frac { \mathbf { A D } ^ { 2 } + \mathbf { A B } ^ { 2 } - \mathbf { B D } ^ { 2 } } { 2 \cdot \mathbf { A D } }} \begin{array}{c}
\mathbf{G H}:=\mathbf{A H}-\mathbf{A G}
\end{array} .
\end{gathered}
\]
\[
\mathbf{B C}_{1}-\frac{\sqrt{2} \cdot \sqrt{\sqrt{(\mathbf{A B}+\mathbf{A D}-\mathbf{B D}) \cdot(\mathbf{A B}-\mathbf{A D}+\mathbf{B D}) \cdot(\mathbf{A D}-\mathbf{A B}+\mathbf{B D}) \cdot(\mathbf{A B}+\mathbf{A D}+\mathbf{B D})} \cdot \sqrt{(\mathbf{A C}+\mathbf{A D}-\mathbf{C D}) \cdot(\mathbf{A C}-\mathbf{A D}+\mathbf{C D}) \cdot(\mathbf{A D}-\mathbf{A C}+\mathbf{C D}) \cdot(\mathbf{A C}+\mathbf{A D}+\mathbf{C D})} \ldots}}{\sqrt{+-\mathbf{A D}^{4}-\mathbf{A B}^{2} \cdot \mathbf{A C}^{2}+\mathbf{A B}^{2} \cdot \mathbf{A D}^{2}+\mathbf{A C}^{2} \cdot \mathbf{A D}^{2}+\mathbf{A C}^{2} \cdot \mathbf{B D}^{2}+\mathbf{A D}^{2} \cdot \mathbf{B D}^{2}+\mathbf{A B}^{2} \cdot \mathbf{C D}^{2}+\mathbf{A D}^{2} \cdot \mathbf{C D}^{2}-\mathbf{B D}^{2} \cdot \mathbf{C D}^{2}}} 2 \cdot \mathbf{A D} \quad 0
\]

\section*{060993 Rectangular Roots.}

Given any value \(N_{1}\), any other value, \(N_{2}\), greater than twice the square root of \(N_{1}\) can be divided such that the resulting pair of values equals \(\mathrm{N}_{1}\).

Given DE as a square, and some AD equal to or greater than twice the square root of DE , divide \(A D\) into rectangluar roots of \(D E\).
\(A B:=11\)
AC := \(\mathbf{5}\)
\(\xrightarrow{ }\)
\[
\begin{aligned}
& \mathbf{D E}:=\mathbf{A C} \quad \mathbf{E O}:=\frac{\mathbf{A B}}{2} \quad \mathbf{D O}:=\sqrt{\mathbf{E O}^{2}-\mathbf{D E}^{2}} \quad \mathbf{B D}:=\mathbf{E O}+\mathbf{D O} \\
& \mathbf{A D}:=\mathbf{A B}-\mathbf{B D} \quad \mathbf{A D} \cdot \mathbf{B D}-\mathbf{A C}^{2}=\mathbf{0} \\
& \mathbf{A D}-\frac{\mathbf{A B}-\sqrt{\mathbf{A B}^{2}-4 \cdot \mathbf{A C}^{2}}}{2}=0 \\
& \mathbf{A D}=3.209 \\
& \mathbf{B D}-\frac{\mathbf{A B}+\sqrt{\mathbf{A B}^{2}-4 \cdot \mathbf{A C}^{2}}}{2}=0
\end{aligned} \quad \mathbf{B D}=7.791 \quad \mathbf{A D}+\mathbf{B D}=11 .
\]



\section*{930621 Pyramid of Ratios I}

Divide \(A B\) by \(N_{1}\) then divide CD by \(N_{2}\), what are BF/EF and AC/AF?


\[
\begin{aligned}
& \frac{B F}{E F}=9.08799 \quad \frac{N_{1} \cdot N_{2}}{N_{2}-1}=9.08799 \\
& \frac{A C}{A F}=1.49057 \quad \frac{\left(N_{1} \cdot N_{2}-N_{2}\right)+1}{N_{1}}=1.49057 \\
& \frac{B F}{E F}-\frac{N_{1} \cdot N_{2}}{N_{2}-1}=0.00000 \quad \frac{A C}{A F}-\frac{\left(N_{1} \cdot N_{2}-N_{2}\right)+1}{N_{1}}=0.00000
\end{aligned}
\]
\[
\begin{aligned}
& A B:=4.47022 \quad \mathbf{N}_{1}:=3.82131 \quad \mathbf{N}_{\mathbf{2}}:=2.62629 \quad A D:=\frac{A B}{\mathbf{N}_{1}} \quad A L:=\frac{A B}{2} \\
& \mathbf{A C}:=\sqrt{\mathbf{2} \cdot \mathbf{A L}^{2}} \quad \mathbf{C L}:=\mathbf{A L} \quad \mathbf{D L}:=\mathbf{A L}-\mathbf{A D} \quad \mathbf{C D}:=\sqrt{\mathbf{D L}^{2}+\mathbf{C L}^{2}} \\
& \mathbf{D E}:=\frac{\mathbf{C D}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{E K}:=\frac{\mathbf{C L} \cdot \mathbf{D E}}{\mathbf{C D}} \quad \text { DK }:=\frac{\mathbf{D L} \cdot \mathbf{E K}}{\mathbf{C L}} \quad \mathbf{A K}:=\mathbf{A D}+\mathbf{D K} \\
& \mathbf{B K}:=\mathbf{A B}-\mathbf{A K} \quad \mathbf{B E}:=\sqrt{\mathbf{B K}^{2}+\mathbf{E K}^{2}} \quad \mathbf{H K}:=\frac{\mathbf{A L} \cdot \mathbf{E K}}{\mathbf{C L}} \quad \mathbf{B H}:=\mathbf{B K}+\mathbf{H K} \\
& \mathbf{E H}:=\frac{\mathbf{A C} \cdot \mathbf{E K}}{\mathbf{C L}} \quad \mathbf{A F}:=\frac{\mathbf{E H} \cdot \mathbf{A B}}{\mathbf{B H}} \quad \mathbf{B F}:=\frac{\mathbf{B E} \cdot \mathbf{A B}}{\mathbf{B H}} \quad \mathbf{E F}:=\mathbf{B F}-\mathbf{B E} \\
& \frac{\mathbf{B F}}{\mathbf{E F}}=6.171 \quad \frac{\mathrm{AC}}{\mathbf{A F}}=\mathbf{2 . 2 0 1} \quad \frac{\mathrm{AC}}{\mathrm{AF}}-\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{2}+1}{\mathrm{~N}_{1}}=0 \quad \frac{\mathrm{BF}}{\mathrm{EF}}-\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{\mathbf{N}_{2}-1}=0
\end{aligned}
\]


\section*{062793 Describe A Circle About a Triangle}

\section*{Given the difference between three non-collinear points, find the radius of the} circle that circumscribes them.
\[
A B \equiv 3 \quad A C \equiv 4 \quad B C \equiv 6
\]
F

E

radius \(:=\mathbf{i f}(\boldsymbol{\Delta}, \mathbf{B D}, \mathbf{0})\)
radius \(=\mathbf{3 . 3 7 5}\)
imaginary_radius \(=0\)
\(\Delta=1\)
imaginary_radius := if \((\mathbf{N O T}(\Delta), \mathbf{B D}, \mathbf{0})\)
The construction is independent of the side one starts with.
\[
\mathbf{S}_{\mathbf{1}}:=\left(\begin{array}{l}
\mathbf{A B} \\
\mathbf{A C} \\
\mathrm{BC}
\end{array}\right) \quad \mathbf{S}_{\mathbf{2}}:=\left(\begin{array}{l}
\mathbf{A C} \\
\mathbf{B C} \\
\mathbf{A B}
\end{array}\right) \quad \mathbf{S}_{\mathbf{3}}:=\left(\begin{array}{l}
\mathbf{B C} \\
\mathbf{A B} \\
\mathrm{AC}
\end{array}\right)
\]
\[
\mathbf{R}_{\delta}:=\frac{\mathbf{s}_{\mathbf{1}_{\delta}} \cdot \mathbf{s}_{\mathbf{2}_{\delta}} \cdot \mathbf{s}_{\mathbf{3}_{\delta}}}{\sqrt{\mathbf{S}_{\mathbf{1}_{\delta}}+\mathbf{S}_{\mathbf{2}_{\delta}}+\mathbf{S}_{\mathbf{3}_{\boldsymbol{\delta}}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}_{\delta}}+\mathbf{S}_{\mathbf{2}_{\delta}}+\mathbf{S}_{\mathbf{3}_{\delta}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\delta}}-\mathbf{S}_{\mathbf{2}_{\delta}}+\mathbf{S}_{\mathbf{3}_{\delta}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\delta}}+\mathbf{S}_{\mathbf{2}_{\delta}}-\mathbf{S}_{\mathbf{3}_{\delta}}}}
\]

The name of the Radius in terms of the givens.
\[
\mathbf{R}^{\mathbf{T}}=\left(\begin{array}{lll}
3.375 & 3.375 & 3.375
\end{array}\right)
\]

The equation is a statement in regard to the relationship between each side of a triangle.


\section*{071593 Pyramid of Ratios II}
\(A B\) is divided by \(N_{1}\) and \(A C\) and BD is divided by \(N_{2}\), what are EG/FG and CD/DF?

\[
\begin{aligned}
& A B:=1 \quad \mathbf{N}_{1}:=3 \quad \mathbf{N}_{\mathbf{2}}:=5 \quad \mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}_{1}} \quad \mathbf{A C}:=\sqrt{\frac{\mathbf{A B}^{2}}{2}} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{A L}:=\frac{\mathrm{AB}}{2} \\
& \mathbf{D E}:=\frac{\mathbf{B D}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A G}:=\frac{\mathbf{A C}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E} \quad \mathbf{A H}:=\sqrt{\frac{\mathbf{A G}^{2}}{2}} \quad \mathbf{G H}:=\mathbf{A H} \quad \mathbf{E H}:=\mathbf{A E}-\mathbf{A H} \\
& \mathbf{E G}:=\sqrt{\mathbf{E H}^{2}+\mathbf{G H}^{2}} \quad \text { DL }:=\mathbf{A L}-\mathbf{A D} \quad \mathbf{C L}:=\mathbf{A L} \quad \text { HK }:=\frac{\mathbf{D L} \cdot \mathbf{A H}}{\mathbf{A L}} \quad \text { EK }:=\mathbf{E H}+\mathbf{H K} \\
& \text { DJ }:=\frac{\text { HK•DE }}{\text { EK }} \quad \text { EF }:=\frac{\text { EG•DE }}{\text { EK }} \quad \text { FG }:=\mathbf{E G}-\mathbf{E F} \quad \text { FJ }:=\frac{\mathbf{G H} \cdot \mathbf{D E}}{\text { EK }} \\
& \mathbf{C D}:=\sqrt{\mathbf{C L}^{2}+\mathrm{DL}^{2}} \quad \mathrm{DF}:=\sqrt{\mathrm{DJ}^{2}+\mathrm{FJ}^{2}} \\
& \frac{\mathrm{EG}}{\mathrm{FG}}=1.5 \quad \frac{\mathrm{CD}}{\mathrm{DF}}=15 \quad \frac{\mathrm{~N}_{2}+\mathrm{N}_{1}-2}{\mathbf{N}_{2}-1}=1.5 \quad \frac{\mathrm{~N}_{2}{ }^{2}+\mathrm{N}_{1} \cdot \mathbf{N}_{2}-2 \cdot \mathrm{~N}_{2}}{\mathbf{N}_{1}-1}=15 \\
& \frac{\text { EG }}{\text { FG }}-\frac{\mathbf{N}_{2}+N_{1}-2}{N_{2}-1}=0 \quad \frac{C D}{D F}-\frac{N_{2}^{2}+N_{1} \cdot N_{2}-2 \cdot N_{2}}{N_{1}-1}
\end{aligned}
\]
\(\mathrm{N}_{1}=2.32900\)
\(\mathrm{N}_{2}=1.65606\)
\(\frac{\mathrm{N}_{1 \text { num }}}{\mathrm{N}_{1 \text { den }}}=2.32900\)
\(\frac{\mathrm{N}_{2 \text { num }}}{\mathrm{N}_{2}}=1.65606\)

\begin{tabular}{lll}
\(\frac{\mathrm{EG}}{\mathrm{FG}}=3.02573\) & \(\frac{\left(\mathrm{~N}_{2}+\mathrm{N}_{1}\right)-2}{\mathrm{~N}_{2}-1}=3.02573\) & \(\frac{\mathrm{EG}}{\mathrm{FG}}-\frac{\left(\mathrm{N}_{2}+\mathrm{N}_{1}\right)-2}{\mathrm{~N}_{2}-1}=0.00000\) \\
\(\frac{\left(\mathrm{~N}_{2}{ }^{2}+\mathrm{N}_{1} \cdot \mathrm{~N}_{2}\right)-2 \cdot \mathrm{~N}_{2}}{\mathrm{CD}}=2.47357\) & \(\frac{\mathrm{CD}}{\mathrm{DF}}-\frac{\left(\mathrm{N}_{2}{ }^{2}+\mathrm{N}_{1} \cdot \mathrm{~N}_{2}\right)-2 \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{1}-1}=0.00000\)
\end{tabular}



\section*{110693 Gruntwork I on the Delian Solution}

\section*{Does \(\left(\mathrm{AB}^{2} \times \mathrm{AH}\right)^{1 / 3}=\mathrm{AC}\) and \(\left(\mathrm{AB} \times \mathrm{AH}^{2}\right)^{1 / 3}=\mathrm{AE}\) ?}

\[
\begin{aligned}
& \mathbf{N}:=5 \quad \mathbf{B H}:=3 \quad \mathbf{B F}:=\frac{\mathbf{B H}}{2} \quad \mathbf{B D}:=\frac{\mathbf{B F}}{\mathbf{N}} \quad \mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \\
& \text { DK }:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad \text { JO }:=\mathbf{B H}+\mathbf{D K} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B H}}{\mathbf{J O}} \\
& \mathbf{B G}:=\mathbf{B H}-\mathbf{B C} \quad \mathbf{E H}:=\frac{\mathbf{D H} \cdot \mathbf{B H}}{\mathbf{J O}} \quad \mathbf{B E}:=\mathbf{B H}-\mathbf{E H} \quad \mathbf{E G}:=\mathbf{E H}-\mathbf{B C} \\
& \mathbf{G M}:=\sqrt{2 \cdot \mathbf{B G}^{2}} \quad \mathbf{H O}:=\sqrt{2 \cdot \mathbf{B H}^{2}} \quad \mathbf{H Q}:=\frac{\mathbf{G M} \cdot \mathbf{E H}}{\mathbf{E G}} \quad \text { aQ }:=\mathbf{H Q}-\mathbf{H O} \\
& \mathbf{A B}:=\frac{\mathbf{O Q}}{\sqrt{2}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A H}:=\mathbf{A B}+\mathbf{B H} \\
& \left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A E=0 \\
& \mathbf{B F}-\frac{1}{2}=1 \quad B D-\frac{B H}{2 \cdot N}=0 \quad D H-\frac{B H \cdot(2 \cdot N-1)}{2 \cdot N}=0 \quad D K-\frac{B H \cdot \sqrt{2 \cdot N-1}}{(2 \cdot N)}=0 \\
& J O-\frac{B H \cdot(2 \cdot N+\sqrt{2 \cdot N-1})}{2 \cdot \mathbf{N}}=0 \quad B C-\frac{B H}{2 \cdot N+\sqrt{2 \cdot N-1}}=0 \quad B G-\frac{B H \cdot(2 \cdot N+\sqrt{2 \cdot N-1}-1)}{2 \cdot N+\sqrt{2 \cdot N-1}}=0 \\
& \mathbf{E H}-\frac{\mathbf{B H} \cdot(2 \cdot \mathbf{N}-\mathbf{1})}{2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1}}=\mathbf{0} \quad \mathbf{B E}-\frac{\mathbf{B H} \cdot(\sqrt{2 \cdot \mathbf{N}-1}+1)}{2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1}}=0 \quad \mathbf{E G}-\frac{2 \cdot \mathbf{B H} \cdot(\mathbf{N}-\mathbf{1})}{2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1}}=\mathbf{0} \\
& \mathbf{G M}-\sqrt{\mathbf{2}} \cdot \frac{\mathbf{B H} \cdot(\mathbf{2} \cdot \mathbf{N}+\sqrt{\mathbf{2 \cdot N}-\mathbf{1}}-\mathbf{1})}{(\mathbf{2 \cdot N}+\sqrt{2 \cdot \mathbf{N}-\mathbf{1}})}=\mathbf{0} \quad \mathbf{H O}-\sqrt{\mathbf{2}} \cdot \mathbf{B H}=\mathbf{0}
\end{aligned}
\]
\(\mathbf{H Q}-\frac{\sqrt{2} \cdot \mathbf{B H} \cdot(\mathbf{2} \cdot \mathbf{N}-\mathbf{1}) \cdot(\mathbf{2 \cdot N}+\sqrt{2 \cdot \mathbf{N}-1}-1)}{2 \cdot(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{2 \cdot N}+\sqrt{2 \cdot \mathbf{N}-1})}=0 \quad \mathbf{O Q}-\frac{\sqrt{2 \cdot B H} \cdot\left[2 \cdot \sqrt{2 \cdot \mathbf{N}-1}+(2 \cdot \mathbf{N}-1)^{\frac{3}{2}}-\mathbf{2 \cdot N} \cdot \sqrt{2 \cdot N-1}+1\right.}{(2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1}) \cdot(2 \cdot \mathbf{N}-\mathbf{2})}=0\)
\(A B-\frac{B H \cdot\left[2 \cdot \sqrt{2 \cdot N-1}+(2 \cdot \mathbf{N}-1)^{\frac{3}{2}}-2 \cdot \mathbf{N} \cdot \sqrt{2 \cdot N-1}+1\right.}{2 \cdot(\mathbf{N}-1) \cdot(2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1})}=0 \quad \mathbf{A C}-\frac{B H \cdot\left[2 \cdot \mathbf{N}+2 \cdot \sqrt{2 \cdot \mathbf{N}-1}+(2 \cdot \mathbf{N}-1)^{\frac{3}{2}}-2 \cdot \mathbf{N} \cdot \sqrt{2 \cdot N-1}-1\right]}{2 \cdot(\mathbf{N}-1) \cdot(2 \cdot \mathbf{N}+\sqrt{2 \cdot \mathbf{N}-1})}=0\)
\(\mathbf{A E}-\frac{\mathbf{B H} \cdot\left[\mathbf{2} \cdot \mathbf{N}+(\mathbf{2} \cdot \mathbf{N}-\mathbf{1})^{\frac{3}{2}}-\mathbf{1}\right]}{2 \cdot(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{2 \cdot N}+\sqrt{2 \cdot \mathbf{N}-1})}=\mathbf{0}\)
\(A H-\frac{B H \cdot\left[(2 \cdot N-1)^{\frac{3}{2}}-4 \cdot N+4 \cdot \mathbf{N}^{2}+1\right]}{2 \cdot(N-1) \cdot(2 \cdot N+\sqrt{2 \cdot N-1})}=0\)

\(B F=1.37917\) in.
\(B D=0.65310 \mathrm{in}\).
\(\frac{B F}{B D}=2.11173\)
\(\mathrm{N}=2.11173\)
\(B H=2.75833 \mathrm{in}\).
\(\mathrm{AE}=1.85725 \mathrm{in}\).
\(\frac{\mathrm{BH} \cdot\left(\left(2 \cdot \mathrm{~N}+(2 \cdot \mathrm{~N}-1)^{\frac{3}{2}}\right)-1\right)}{2 \cdot(\mathrm{~N}-1) \cdot(2 \cdot \mathrm{~N}+\sqrt{2 \cdot \mathrm{~N}-1})}-\mathrm{AE}=0.00000 \mathrm{in}\).

\section*{110993 Solve For Cube Root Placement}

With straight edge and compass only, solve the given problem. \(B H\) is the difference between the segments \(A H\) and \(A B\). \(C F\) is the difference between the cube root of \(A B\) squared by \(A H\) and the cube root of \(A H\) squared by \(A B\). Find \(A B\) and place the roots

\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{4}
\]
\[
\begin{aligned}
& \mathbf{B H}:=\mathbf{N}_{1} \quad \text { BG }:=\frac{\mathbf{B H}}{2} \quad \mathbf{C F}:=\frac{\mathbf{B H}}{\mathbf{N}_{2}} \quad \text { BL }:=\mathbf{C G P}:=\mathbf{B G} \\
& \mathbf{B K}:=\frac{\mathbf{B L}}{2} \text { BD }:=\mathbf{B K} \quad \text { NP }:=\mathbf{B D} \quad \text { GN }:=\mathbf{G P}-\mathbf{N P} \quad \text { EN }:=\mathbf{B L} \\
& \mathbf{G E}:=\sqrt{\mathbf{G N}^{2}-\mathbf{E N}^{2}} \quad \mathbf{C E}:=\mathbf{B D} \quad \mathbf{B C}:=\mathbf{B G}-(\mathbf{G E}+\mathbf{C E}) \\
& \mathbf{G H}:=\mathbf{B G} \quad \mathbf{E F}:=\mathbf{B D} \quad \mathbf{F H}:=\mathbf{G H}+\mathbf{G E}-\mathbf{E F} \quad \mathbf{F Q}:=\mathbf{F H}
\end{aligned}
\]

FO \(:=\mathbf{B L} \quad\) OQ \(:=\mathbf{F Q}-\mathbf{M O}:=\mathbf{C F} \quad \mathbf{A F}:=\frac{\mathbf{M O} \cdot \mathbf{F Q}}{\mathbf{O Q}} \quad \mathbf{A C}:=\mathbf{A F}-\mathbf{C F} \quad \mathbf{A H}:=\mathbf{A F}+\mathbf{F H} \quad \mathbf{A B}:=\mathbf{A H}-\mathbf{B H}\)
\(\left(A B^{2} \cdot A H\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A H^{2}\right)^{\frac{1}{3}}-A F=0 \quad \frac{A H}{A B}=17.944271909999\)
The square inside a right triangle on the hypotenuse is equal to the square of the remaining two segments and all three squares taken to the point of similarity form a cube root relationship.

\section*{Algebraic Names}
\(\mathbf{B H}-\mathbf{N}_{1}=\mathbf{0} \quad \mathbf{B G}-\frac{\mathbf{N}_{1}}{2}=\mathbf{0} \quad \mathbf{C F}-\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{B K}-\frac{\mathbf{N}_{1}}{2 \cdot \mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{G N}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{1}\right)}{2 \cdot \mathbf{N}_{2}}=\mathbf{0}\)

\(\mathbf{F H}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left[\mathbf{N}_{\mathbf{2}}+\left[\sqrt{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{3}\right)}\right]-\mathbf{1}\right]}{2 \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0} \quad \mathbf{O Q}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left[\mathbf{N}_{\mathbf{2}}+\sqrt{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{3}\right)}-\mathbf{3}\right]}{2 \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0}\)
\(\mathbf{A F}-\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}} \cdot \frac{\mathbf{N}_{\mathbf{2}}+\sqrt{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{3}\right)}-\mathbf{1}}{\mathbf{N}_{\mathbf{2}}+\sqrt{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{3}\right)}-\mathbf{3}}=\mathbf{0}\)
\(A C-\frac{2 \mathbf{N}_{1}}{\mathbf{N}_{2} \cdot\left[\mathbf{N}_{2}+\sqrt{\left(\mathbf{N}_{2}+1\right) \cdot\left(\mathbf{N}_{2}-3\right)}-\mathbf{3}\right]}=\mathbf{0}\)
\(\mathbf{A H}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left[\mathbf{N}_{\mathbf{2}}+\sqrt{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{3}\right)}-\mathbf{1}\right]^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{N}_{\mathbf{2}} \cdot\left[\mathbf{N}_{\mathbf{2}}+\sqrt{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{3}\right)}-\mathbf{3}\right]}=\mathbf{0}\)
\(\mathbf{A B}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left[\mathbf{N}_{\mathbf{2}}-\sqrt{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{3}\right)}-\mathbf{1}\right]}{\mathbf{N}_{\mathbf{2}} \cdot\left[\mathbf{N}_{\mathbf{2}}+\sqrt{\left(\mathbf{N}_{\mathbf{2}}+\mathbf{1}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{3}\right)}-\mathbf{3}\right]}=\mathbf{0}\)
\(A B=0.40540 \mathrm{in}\). \(A E=4.74189 \mathrm{in}\). \(\mathrm{AC}=0.92025 \mathrm{in}\). \(A D=2.08896\) in.
\(\left(\mathrm{AB}^{2} \cdot \mathrm{AE}\right)^{\frac{1}{3}}-\mathrm{AC}=0.00000\)
\(\left(\mathrm{AB} \cdot \mathrm{AE}^{2}\right)^{\frac{1}{3}}-\mathrm{AD}=0.00000\)
\(\frac{\mathrm{AE}}{\mathrm{AB}}=11.69681\)



\section*{111193 The Archimedean Paper Trisector}

When I looked up the Archimedean Paper Trisector, which is all I found. I did not find where anyone had bothered to complete the figure, for it was obvious to me that the figure was simply not complete. The first task then in writing up the figure is to simply complete the figure.


Once one understands that the angle on the center is twice the angle from the circumference one can then start to work filling in the figure to include the APT. One can see, not only here, but in other figures that trisection is involved with the right triangle and square roots.

\[
\begin{aligned}
& \mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}} \quad \mathbf{B D}:=\mathbf{A B}-\mathbf{A D} \quad \mathbf{C D}:=\sqrt{\mathbf{A D} \cdot \mathbf{B D}} \quad \mathbf{B C}:=\sqrt{\mathbf{C D}^{2}+\mathbf{B D}^{2}} \\
& A C:=\sqrt{A D^{2}+C D^{2}} \quad B H:=\frac{B C}{2} \quad \text { AO }:=\frac{A B}{2} \quad \text { HO }:=\frac{A C}{2} \quad H L:=\frac{C D}{2} \quad L O:=\frac{A D}{2} \\
& \text { OF }:=\frac{\text { LO } \cdot \mathbf{A O}}{\mathbf{H O}} \quad \mathbf{A F}:=\mathbf{A O}+\mathbf{O F} \quad \mathbf{B F}:=\mathbf{A B}-\mathbf{A F} \quad \mathbf{E F}:=\sqrt{\mathbf{B F} \cdot \mathbf{A F}} \quad \text { DR }:=\frac{\mathbf{A F} \cdot \mathbf{C D}}{\mathbf{E F}} \\
& \mathbf{D O}:=\mathbf{A O}-\mathbf{A D} \quad \mathbf{O R}:=\mathbf{D R}+\mathbf{D O} \quad \mathrm{KQ}:=\frac{\mathbf{C D} \cdot \mathbf{A O}}{\mathbf{O R}} \quad \text { OK }:=\frac{\mathbf{A O} \cdot \mathbf{K Q}}{\mathbf{C D}} \\
& \mathbf{C K}:=A O-O K \quad Q P:=\sqrt{\mathbf{C K}^{2}-K Q^{2}} \quad \text { OQ }:=\frac{D O \cdot K Q}{C D} \quad \text { EH }:=A O-H O \\
& \mathbf{A P}:=\mathbf{A O}-(\mathbf{O Q}+\mathbf{Q P}) \quad \mathbf{A P}-\mathbf{C K}=\mathbf{0}
\end{aligned}
\]

Coser

\[
\begin{aligned}
& \text { CJ }:=\frac{\text { BC. CK }}{\text { AO }} \quad \text { AQ }:=\text { AO - OQ } \quad \text { SO }:=\mathbf{C K}-\mathbf{O Q} \quad \text { BS }:=\mathbf{A O} \text { - SO } \\
& \mathbf{B J}:=\mathbf{B C}-\mathbf{C J} \quad \mathbf{J S}:=\sqrt{\mathbf{B J}^{2}-\mathbf{B S}^{2}} \quad \mathbf{J S}-\mathbf{K Q}=\mathbf{0} \quad \mathbf{S N}:=\mathbf{S O}+\mathbf{O Q}-\mathbf{Q P} \quad \mathbf{J N}:=\sqrt{\mathbf{J S}^{2}+\mathbf{S N}^{2}} \\
& \mathbf{U V}:=\frac{\text { EH.CJ }}{\text { BC }} \quad J V:=\frac{\mathbf{C J}}{2} \quad \mathrm{JU}:=\sqrt{\mathbf{J V}^{2}+\mathrm{UV}^{2}} \quad \text { CU }:=\mathrm{JU} \\
& \mathbf{A T}:=\frac{\mathbf{A D} \cdot \mathbf{C K}}{\mathbf{A C}} \quad \mathbf{P T}:=\mathbf{A P}-\mathbf{A T} \quad \mathbf{M T}:=\frac{\mathbf{C D} \cdot \mathbf{A P}}{\mathbf{A C}} \quad \mathbf{M P}:=\sqrt{\mathbf{P T}^{\mathbf{2}}+\mathbf{M T}^{\mathbf{2}}} \\
& \mathbf{M P}-\mathbf{J N}=\mathbf{0} \quad \mathbf{M P}-\mathbf{J U}=\mathbf{0} \quad \mathbf{M P}-\mathbf{C U}=\mathbf{0}
\end{aligned}
\]

\section*{Algebraic Names or Definitions:}
 \(\mathbf{A O}-\frac{\mathbf{A B}}{2}=\mathbf{0} \quad \mathbf{H O}-\frac{\mathbf{A B}}{2 \cdot \sqrt{\mathbf{N}}}=\mathbf{0} \quad \mathbf{H L}-\frac{\mathbf{A B} \cdot \sqrt{\mathbf{N}-\mathbf{1}}}{2 \cdot \mathbf{N}}=\mathbf{0} \quad \mathbf{L O}-\frac{\mathbf{A B}}{2 \cdot \mathbf{N}}=\mathbf{0} \quad \mathbf{O F}-\frac{\mathbf{A B}}{\mathbf{2} \cdot \sqrt{\mathbf{N}}}=\mathbf{0} \quad \mathbf{A F}-\frac{\mathbf{A B} \cdot(\sqrt{\mathbf{N}}+\mathbf{1})}{\mathbf{2} \cdot \sqrt{\mathbf{N}}} \quad \mathbf{B F}-\frac{\mathbf{A B} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{\mathbf{2} \cdot \sqrt{\mathbf{N}}}=\mathbf{0}\) \(\mathbf{E F}-\frac{\mathbf{A B} \cdot \sqrt{(\mathbf{N}-\mathbf{1})}}{2 \cdot \sqrt{\mathbf{N}}}=\mathbf{0} \quad \mathbf{D R}-\frac{\mathbf{A B} \cdot \sqrt{\mathbf{N}-\mathbf{1}} \cdot(\sqrt{\mathbf{N}}+\mathbf{1})}{\mathbf{N} \cdot \sqrt{(\sqrt{\mathbf{N}}-\mathbf{1}) \cdot(\sqrt{\mathbf{N}}+\mathbf{1})}}=\mathbf{0} \quad \mathbf{D O}-\frac{\mathbf{A B} \cdot \sqrt{(\mathbf{N}-\mathbf{2})^{2}}}{\mathbf{2} \cdot \mathbf{N}}=\mathbf{0} \quad \mathbf{O R}-\frac{\mathbf{A B} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}{\mathbf{2} \cdot \sqrt{\mathbf{N}}}=\mathbf{0} \quad \mathbf{K Q}-\frac{\mathbf{A B} \cdot \sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}\) \(O K-\frac{A B \cdot \sqrt{\mathbf{N}}}{2 \cdot(\sqrt{\mathbf{N}}+2)}=0 \quad \mathbf{Q P}-\frac{\mathbf{A B}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+2)}=0 \quad \mathbf{O Q}-\frac{\mathbf{A B} \cdot\left[\sqrt{(\mathbf{N}-2)^{2}}\right]}{2 \cdot \sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+2)}=0 \quad \mathbf{E H}-\frac{\mathbf{A B} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{2 \cdot \sqrt{\mathbf{N}}}=\mathbf{0}\)
\(A P-\frac{A B}{\sqrt{N}+2}=0 \quad C K-\frac{A B}{\sqrt{N}+2}=0\)
In logic, things which have the same name are equal. CK equals AP.
\(\mathbf{C J}-\frac{2 \cdot \mathbf{A B} \cdot \sqrt{\mathbf{N}-1}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+2)}=\mathbf{0} \quad \mathbf{A Q}-\frac{\mathbf{A B} \cdot(\sqrt{\mathbf{N}}+\mathbf{1})}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+2)}=\mathbf{0} \quad \mathbf{S O}-\frac{\mathbf{A B} \cdot(2 \cdot \sqrt{\mathbf{N}}-\mathbf{N}+2)}{2 \cdot \mathbf{N}+4 \cdot \sqrt{\mathbf{N}}}=\mathbf{0} \quad \mathbf{B S}-\frac{\mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+2)}=\mathbf{0} \quad \mathbf{B J}-\frac{\mathbf{A B} \cdot \sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}}+2}=\mathbf{0}\) \(\mathbf{J S}-\frac{\mathbf{A B} \cdot \sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{J S}-\mathbf{K Q}=\mathbf{0} \quad \mathbf{S N}-\frac{\mathbf{A B} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{J N}-\frac{\sqrt{\mathbf{2} \cdot \mathbf{A B} \cdot \sqrt{\sqrt{\mathbf{N}}-\mathbf{1}}} \mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}{\mathbf{0}} \quad \mathbf{U V}-\frac{\mathbf{A B} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{J V}-\frac{\mathbf{A B} \cdot \sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}\) \(\mathbf{J U}-\frac{\sqrt{\mathbf{2}} \cdot \mathbf{A B} \cdot \sqrt{\sqrt{\mathbf{N}}-\mathbf{1}}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{C U}-\frac{\sqrt{\mathbf{2}} \cdot \mathbf{A B} \cdot \sqrt{\sqrt{\mathbf{N}}-1}}{\frac{\mathbf{1}}{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+2)}=\mathbf{0} \quad \mathbf{A T}-\frac{\mathbf{A B}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{P T}-\frac{\mathbf{A B} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{M T}-\frac{\mathbf{A B} \cdot \sqrt{\mathbf{N}-\mathbf{1}}}{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0}\) \(\mathbf{M P}-\frac{\sqrt{2} \cdot \mathbf{A B} \cdot \sqrt{\sqrt{\mathbf{N}}-\mathbf{1}}}{\mathbf{N}^{\frac{1}{4}} \cdot(\sqrt{\mathbf{N}}+\mathbf{2})}=\mathbf{0} \quad \mathbf{M P}-\mathbf{J N}=\mathbf{0} \quad \mathbf{M P}-\mathbf{J U}=\mathbf{0} \quad \mathbf{M P}-\mathbf{C U}=\mathbf{0}\)


\(\mathbf{K}\)

\(\mathrm{BF}:=1 \quad \mathrm{BE}:=\frac{\mathrm{BF}}{2} \quad \mathrm{EH}:=\mathrm{BE} \quad \mathrm{BD}:=\frac{3}{4} \cdot \mathrm{BE} \quad \mathrm{AB}:=\mathrm{BD}\)
\(\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{F K}:=\frac{\mathbf{E H} \cdot \mathbf{A F}}{\mathbf{A E}} \quad \mathbf{C F}:=\mathbf{F K} \quad \mathbf{B C}:=\mathbf{B F}-\mathbf{C F}\)
\(\mathbf{C G}:=\sqrt{\mathbf{B C} \cdot \mathbf{C F}} \quad \mathbf{F G}:=\sqrt{\mathbf{C F}^{2}+\mathbf{C G}^{2}} \quad \boldsymbol{\pi}_{-} \mathbf{A}:=\frac{\mathbf{F G}^{2}}{\mathbf{B E}^{2}}\)
\(\pi=3.14159265359\)
\(\pi_{\_} \mathbf{A}=\mathbf{3 . 1 4 2 8 5 7 1 4 2 8 5 7}\)
\(\frac{\pi}{\pi_{\_} A}=0.999597662505843\)
\(\pi_{-} A-\frac{22}{7}=0\) rest of his time? triangle.

Sometime in 1992, I remembered reading that some man spent some time in prison and learned the process for squaring a circle off the base of a right
triangle but then history lost the figure, so I set out to find it - or something that could pass for it. It took a couple hours so I wonder what he did with the

Using the approximation, \(\pi=22 / 7\), square the circle off the base of a right

\(111893 A\)

\section*{Given:}
\(\mathbf{N}_{1}:=2 \quad \mathbf{N}_{2}:=1.5\)
describe AB.
BJ \(:=\mathbf{N}_{1} \quad\) BH \(:=\frac{\mathbf{B J}}{2} \quad\) BD \(:=\frac{\mathbf{B H}}{\mathbf{N}_{2}} \quad \mathbf{H J}:=\mathbf{B H}\)
DH \(:=\) BH - BD \(\quad\) HR \(:=\) BJ \(\quad\) DJ \(:=\mathbf{D H}+\mathbf{H J}\)
DL \(:=\sqrt{\mathbf{B D} \cdot \mathbf{D J}} \quad \mathbf{D F}:=\frac{\mathbf{D H} \cdot \mathbf{D L}}{\mathbf{D L}+\mathbf{H R}} \quad\) FO \(:=\mathbf{B H} \quad \mathbf{B F}:=\mathbf{B D}+\mathbf{D F}\)
MO := FO - DL \(\quad\) LM \(:=\mathbf{D F} \quad \mathbf{A F}:=\frac{\mathbf{L M} \cdot \mathbf{F O}}{\mathbf{M O}} \quad \mathbf{A B}:=\mathbf{A F}-\mathbf{B F}\)
Define each step in the description of \(A B\).
\[
\begin{aligned}
& B J-N_{1}=0 \quad B H-\frac{\mathbf{N}_{1}}{2}=0 \quad B D-\frac{\mathbf{N}_{1}}{2 \cdot \mathbf{N}_{2}}=0 \quad H J-\frac{N_{1}}{2}=0 \quad D H-\frac{N_{1} \cdot\left(N_{2}-1\right)}{2 \cdot N_{2}}=0 \\
& H R-N_{1}=0 \quad D J-\frac{N_{1} \cdot\left(2 \cdot \mathbf{N}_{2}-1\right)}{2 \cdot \mathbf{N}_{2}}=0 \quad D L-\frac{N_{1} \cdot \sqrt{2 \cdot N_{2}-1}}{2 \cdot \mathbf{N}_{2}}=0 \\
& D F-\frac{N_{1} \cdot\left(N_{2}-1\right) \cdot \sqrt{2 \cdot N_{2}-1}}{2 \cdot \mathbf{N}_{2} \cdot\left(2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{2}-1}\right)}=0 \quad F O-\frac{N_{1}}{2}=0 \quad B F-\frac{N_{1} \cdot\left(\sqrt{2 \cdot N_{2}-1}+2\right)}{2 \cdot\left(2 \cdot N_{2}+\sqrt{2 \cdot N_{2}-1}\right)}=0 \\
& \mathbf{M O}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-\sqrt{2 \cdot \mathbf{N}_{2}-1}\right)}{2 \cdot \mathbf{N}_{2}}=0 \quad L M-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right) \cdot \sqrt{2 \cdot \mathbf{N}_{2}-1}}{2 \cdot \mathbf{N}_{2} \cdot\left(2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{2}-1}\right)}=0 \\
& A F-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right) \cdot \sqrt{2 \cdot \mathbf{N}_{2}-1}}{\left(2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{2}-1}\right) \cdot\left(2 \cdot \mathbf{N}_{2}-2 \cdot \sqrt{2 \cdot \mathbf{N}_{2}-1}\right)}=0 \quad A B-\frac{\mathbf{N}_{1} \cdot\left(\sqrt{2 \cdot \mathbf{N}_{2}-1}-1\right)}{2 \cdot\left(2 \cdot \mathbf{N}_{2}{ }^{2}-2 \cdot \mathbf{N}_{2}-\mathbf{N}_{2} \cdot \sqrt{2 \cdot \mathbf{N}_{2}-1}+1\right)}=0
\end{aligned}
\]

BH \(-\frac{\mathrm{N}_{1}}{2}=0.00000 \mathrm{in}\).
\(\mathrm{BD}-\frac{\mathrm{N}_{1}}{2 \cdot \mathrm{~N}_{2}}=0.00000 \mathrm{in}\).
HJ- \(\frac{\mathrm{N}_{1}}{2}=0.00000 \mathrm{in}\).
\(\mathrm{DH}-\frac{\mathrm{N}_{1} \cdot\left(\mathrm{~N}_{2}-1\right)}{2 \cdot \mathrm{~N}_{2}}=0.00000 \mathrm{in}\).
HR- \(\mathrm{N}_{1}=0.00000 \mathrm{in}\).
DJ- \(\frac{N_{1} \cdot\left(2 \cdot N_{2}-1\right)}{2 \cdot N_{2}}=0.00000 \mathrm{in}\)
DL- \(\frac{N_{1} \cdot \sqrt{2 \cdot N_{2}-1}}{2 \cdot N_{2}}=0.00000 \mathrm{in}\).
DF- \(\frac{\mathrm{N}_{1} \cdot\left(\mathrm{~N}_{2}-1\right) \cdot \sqrt{2 \cdot \mathrm{~N}_{2}-1}}{2 \cdot \mathrm{~N}_{2} \cdot\left(2 \cdot \mathrm{~N}_{2}+\sqrt{2 \cdot \mathrm{~N}_{2}-1}\right)}=0.00000 \mathrm{in}\).


FO- \(\frac{N_{1}}{2}=0.00000 \mathrm{in}\).
BF- \(\frac{\mathrm{N}_{1} \cdot\left(\sqrt{2 \cdot \mathrm{~N}_{2}-1}+2\right)}{2 \cdot\left(2 \cdot \mathrm{~N}_{2}+\sqrt{2 \cdot \mathrm{~N}_{2}-1}\right)}=0.00000 \mathrm{in}\).
MO- \(\frac{\mathrm{N}_{1} \cdot\left(\mathrm{~N}_{2}-\sqrt{2 \cdot \mathrm{~N}_{2}-1}\right)}{2 \cdot \mathrm{~N}_{2}}=0.00000 \mathrm{in}\).
LM- \(\frac{N_{1} \cdot\left(N_{2}-1\right) \cdot \sqrt{2 \cdot N_{2}-1}}{2 \cdot N_{2} \cdot\left(2 \cdot N_{2}+\sqrt{2 \cdot N_{2}-1}\right)}=0.00000 \mathrm{in}\).
AF- \(\frac{\mathrm{N}_{1} \cdot\left(\mathrm{~N}_{2}-1\right) \cdot \sqrt{2 \cdot \mathrm{~N}_{2}-1}}{\left(2 \cdot \mathrm{~N}_{2}+\sqrt{2 \cdot \mathrm{~N}_{2}-1}\right) \cdot\left(2 \cdot \mathrm{~N}_{2}-2 \cdot \sqrt{2 \cdot \mathrm{~N}_{2}-1}\right)}=0.00000 \mathrm{in}\).
\(A B-\frac{N_{1} \cdot\left(\sqrt{2 \cdot N_{2}-1}-1\right)}{2 \cdot\left(\left(2 \cdot N_{2}{ }^{2}-2 \cdot N_{2}-N_{2} \cdot \sqrt{2 \cdot N_{2}-1}\right)+1\right)}=0.00000 \mathrm{in}\).
BJ \(=2.40000\) in \(\mathrm{BH}=1.20000 \mathrm{in}\) BD \(=0.39794 \mathrm{in}\) \(\mathrm{HJ}=1.20000 \mathrm{in}\). \(\frac{\mathrm{BH}}{\mathrm{BD}}=3.01550\) \(\mathrm{DH}=0.80206 \mathrm{in}\) \(\mathrm{HR}=2.40000 \mathrm{in}\) DJ \(=2.00206\) in. DL \(=0.89258\) in DF \(=0.21743\) in FO \(=1.20000 \mathrm{in}\). \(\mathrm{BF}=0.61537 \mathrm{in}\). MO \(=0.30742 \mathrm{in}\) \(L M=0.21743 \mathrm{in}\) \(A F=0.84873\) in \(A B=0.23336\) in

111893 Exploring Cube Roots Plate B
Using the parallel FO to project to the point of similarity for the square root, point \(L\) is used for the cube root. Notice in this write-up I chose the wrong point to proportion. I get the right answers, but the equations are more complicated. Compare features to plate A.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 4} \quad \mathrm{N}_{\mathbf{2}}:=\mathbf{3 . 0 1 5 5 0} \\
& \text { BJ }:=\mathbf{N}_{\mathbf{1}} \quad \text { BH }:=\frac{\mathbf{B J}}{\mathbf{2}} \quad \text { HL }:=\mathbf{B H} \quad \mathbf{B F}:=\frac{\mathbf{B H}}{\mathbf{N}_{\mathbf{2}}} \quad \text { FH }:=\mathbf{B H}-\mathbf{B F} \quad \text { HR }:=\mathbf{B J} \quad \text { FR }:=\sqrt{\mathbf{F H}^{2}+\mathbf{H R}^{2}} \\
& \text { FP }:=\frac{\mathbf{F H}^{2}}{\text { FR }} \quad \text { PH }:=\frac{\text { HR } \cdot \mathbf{F P}}{\text { FH }} \quad \mathbf{L P}:=\sqrt{\mathbf{H L}^{2}-\mathbf{P H}^{2}} \quad \text { FL }:=\mathbf{L P}-\text { FP } \quad \text { DF }:=\frac{\text { FH } \cdot \text { FL }}{\text { FR }} \quad \text { DL }:=\frac{\text { HR } \cdot \text { FL }}{\text { FR }} \\
& \text { FO := BH } \quad \text { FM }:=\mathbf{D L} \quad \text { MO }:=\mathbf{F O}-\mathbf{F M} \quad \text { LM }:=\mathbf{D F} \quad \mathbf{A F}:=\frac{\mathbf{L M} \cdot \mathbf{F O}}{\mathbf{M O}} \quad \text { AB }:=\mathbf{A F}-\mathbf{B F} \quad \text { BQ }:=\mathbf{B J} \\
& \mathbf{B K}:=\mathbf{D L} \quad \mathbf{B D}:=\mathbf{B F}-\mathbf{D F} \quad \mathbf{K Q}:=\mathbf{B Q}+\mathbf{B K} \quad \mathbf{K L}:=\mathbf{B D} \quad \mathbf{B C}:=\frac{\mathbf{K L} \cdot \mathbf{B Q}}{\mathbf{K Q}} \quad \text { DJ }:=\mathbf{B J}-\mathbf{B D} \quad \mathbf{L N}:=\mathbf{D J} \quad \mathbf{J S}:=\mathbf{B J} \\
& \mathbf{J N}:=\mathbf{D L} \quad \text { NS }:=\mathbf{J S}+\mathbf{J N} \quad \mathbf{G J}:=\frac{\mathbf{L N} \cdot \mathbf{J S}}{\mathbf{N S}} \quad \mathbf{B G}:=\mathbf{B J}-\mathbf{G J} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \text { AG }:=\mathbf{A B}+\mathbf{B G} \quad \text { AJ }:=\mathbf{A B}+\mathbf{B J} \\
& \left(A B^{2} \cdot A J\right)^{\frac{1}{3}}-A C=0 \quad\left(A B \cdot A J^{2}\right)^{\frac{1}{3}}-A G=0 \\
& \mathbf{B J}-\mathbf{N}_{1}=0 \quad \mathbf{B H}-\frac{\mathbf{N}_{1}}{2}=0 \quad \mathrm{HL}-\frac{\mathbf{N}_{1}}{2}=0 \quad \mathrm{BF}-\frac{\mathbf{N}_{1}}{2 \cdot \mathbf{N}_{2}}=0 \quad \mathrm{FH}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right)}{2 \cdot \mathbf{N}_{2}}=0 \quad \mathrm{HR}-\mathbf{N}_{1}=0 \\
& F R-\frac{N_{1} \cdot \sqrt{5 \cdot \mathbf{N}_{2}{ }^{2}-2 \cdot N_{2}+1}}{2 \cdot \mathbf{N}_{2}}=0 \quad F P-\frac{N_{1} \cdot\left(N_{2}-1\right)^{2}}{2 \cdot N_{2} \cdot \sqrt{5 \cdot N_{2}{ }^{2}-2 \cdot N_{2}+1}}=0 \quad P H-\frac{N_{1} \cdot\left(N_{2}-1\right)}{\sqrt{5 \cdot N_{2}{ }^{2}-2 \cdot N_{2}+1}}=0
\end{aligned}
\]
\(C^{2} \mathrm{M}\)
\[
\begin{aligned}
& L P-\frac{N_{1} \cdot \sqrt{\mathbf{N}_{2}{ }^{2}+6 \cdot N_{2}-3}}{2 \cdot \sqrt{5 \cdot \mathbf{N}_{2}{ }^{2}-2 \cdot N_{2}+1}}=0 \quad F L-\frac{N_{1} \cdot\left(2 \cdot N_{2}-N_{2}{ }^{2}+N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-1\right)}{2 \cdot N_{2} \cdot \sqrt{5 \cdot N_{2}{ }^{2}-2 \cdot N_{2}+1}}=0 \\
& D F-\frac{N_{1} \cdot\left(N_{2}-1\right) \cdot\left(2 \cdot N_{2}-N_{2}^{2}+N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-1\right)}{2 \cdot N_{2} \cdot\left(5 \cdot N_{2}{ }^{2}-2 \cdot N_{2}+1\right)}=0 \quad D L-\frac{N_{1} \cdot\left(2 \cdot N_{2}-N_{2}{ }^{2}+N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-1\right)}{5 \cdot N_{2}^{2}-2 \cdot N_{2}+1}=0
\end{aligned}
\]
\(F O-\frac{N_{1}}{2}=0 \quad F M-\frac{N_{1} \cdot\left(2 \cdot N_{2}-N_{2}{ }^{2}+N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-1\right)}{5 \cdot \mathbf{N}_{2}{ }^{2}-2 \cdot N_{2}+1}=0 \quad M O-\frac{N_{1} \cdot\left(7 \cdot N_{2}{ }^{2}-6 \cdot \mathbf{N}_{2}-2 \cdot N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}+3\right)}{2 \cdot\left(5 \cdot \mathbf{N}_{2}{ }^{2}-2 \cdot \mathbf{N}_{2}+1\right)}=0\)
\(L M-\frac{N_{1} \cdot\left(N_{2}-1\right) \cdot\left(2 \cdot N_{2}-N_{2}^{2}+N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-1\right)}{2 \cdot N_{2} \cdot\left(5 \cdot N_{2}{ }^{2}-2 \cdot N_{2}+1\right)}=0 \quad A F-\frac{N_{1} \cdot\left(N_{2}-1\right) \cdot\left(N_{2}^{2}-2 \cdot N_{2}-N_{2} \cdot \sqrt{N_{2}}{ }^{2}+6 \cdot N_{2}-3+1\right)}{2 \cdot N_{2} \cdot\left(6 \cdot N_{2}-7 \cdot N_{2}^{2}+2 \cdot N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-3\right)}=0\)
\(A B-\frac{N_{1} \cdot\left(3 \cdot N_{2}+{N_{2}}^{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-4 \cdot N_{2}{ }^{2}-N_{2}{ }^{3}+N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-2\right)}{2 \cdot\left(3 \cdot N_{2}-2 \cdot N_{2}{ }^{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-6 \cdot N_{2}{ }^{2}+7 \cdot N_{2}{ }^{3}\right)}=0 \quad \quad B Q-N_{1}=0\)
\(B K-\frac{N_{1} \cdot\left(2 \cdot \mathbf{N}_{2}-\mathbf{N}_{2}{ }^{2}+\mathbf{N}_{2} \cdot \sqrt{\mathbf{N}_{2}{ }^{2}+6 \cdot \mathbf{N}_{2}-3}-1\right)}{5 \cdot \mathbf{N}_{2}{ }^{2}-2 \cdot \mathbf{N}_{2}+1}=0 \quad B D-\frac{\mathbf{N}_{1} \cdot\left[2 \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}+\left(1-\mathbf{N}_{2}\right) \cdot \sqrt{\mathbf{N}_{2}{ }^{2}+\mathbf{6} \cdot \mathbf{N}_{2}-\mathbf{3}+1}\right]}{2 \cdot\left(5 \cdot \mathbf{N}_{2}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{2}+\mathbf{1}\right)}=\mathbf{0}\)
\(K Q-\frac{N_{1} \cdot N_{2} \cdot\left(4 \cdot N_{2}+\sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}\right)}{5 \cdot N_{2}{ }^{2}-2 \cdot N_{2}+1}=0 \quad K L-\frac{N_{1} \cdot\left[2 \cdot N_{2}+N_{2}{ }^{2}+\left(1-N_{2}\right) \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}+1\right]}{2 \cdot\left(5 \cdot N_{2}{ }^{2}-2 \cdot N_{2}+1\right)}=0\)

\[
\begin{aligned}
& \text { (~NT } \\
& J N-\frac{N_{1} \cdot\left(2 \cdot N_{2}-N_{2}^{2}+N_{2} \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3}-1\right)}{5 \cdot N_{2}^{2}-2 \cdot N_{2}+1}=0 \quad N S-\frac{N_{1} \cdot N_{2} \cdot\left(4 \cdot N_{2}+\sqrt{N_{2}^{2}+6 \cdot N_{2}-3}\right)}{5 \cdot N_{2}^{2}-2 \cdot N_{2}+1}=0 \\
& \mathbf{G J}-\frac{\mathbf{N}_{1} \cdot\left(9 \cdot \mathbf{N}_{2}^{2}-6 \cdot \mathbf{N}_{2}+\mathbf{N}_{2} \cdot \sqrt{\mathbf{N}_{2}{ }^{2}+6 \cdot \mathbf{N}_{2}-3}-\sqrt{\mathbf{N}_{2}^{2}+6 \cdot \mathbf{N}_{2}-3}+1\right)}{2 \cdot \mathbf{N}_{2} \cdot\left(4 \cdot \mathbf{N}_{2}+\sqrt{\mathbf{N}_{2}^{2}+6 \cdot \mathbf{N}_{2}-3}\right)}=0 \quad \mathbf{B G}-\frac{3 \cdot \mathbf{N}_{1}-\mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{1} \cdot \sqrt{\mathbf{N}_{2}{ }^{2}+6 \cdot \mathbf{N}_{2}-3}}{6 \cdot \mathbf{N}_{2}}=0 \\
& A C-\frac{3 \cdot N_{1}-5 \cdot N_{1} \cdot N_{2}^{2}+9 \cdot N_{1} \cdot N_{2}^{3}+6 \cdot N_{1} \cdot N_{2}^{4}+\sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3} \cdot\left(9 \cdot N_{1} \cdot N_{2}{ }^{2}-6 \cdot N_{1} \cdot N_{2}^{3}-8 \cdot N_{1} \cdot N_{2}+N_{1}\right)-5 \cdot N_{1} \cdot N_{2}}{36 \cdot N_{2}{ }^{2}-72 \cdot N_{2}^{3}+52 \cdot N_{2}^{4}-\sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3} \cdot\left(2 \cdot N_{2}{ }^{3}+12 \cdot N_{2}{ }^{2}-6 \cdot N_{2}\right)}=0 \\
& A G-\frac{N_{1}+N_{1} \cdot N_{2}{ }^{2}-4 \cdot N_{1} \cdot N_{2}^{3}+\sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3} \cdot\left(4 \cdot N_{1} \cdot N_{2}{ }^{2}-3 \cdot N_{1} \cdot N_{2}+N_{1}\right)-2 \cdot N_{1} \cdot N_{2}}{6 \cdot N_{2}-12 \cdot{N_{2}}^{2}+14 \cdot N_{2}^{3}-4 \cdot \sqrt{N_{2}{ }^{2}+6 \cdot N_{2}-3 \cdot N_{2}{ }^{2}}}=0 \\
& A J-\frac{13 \cdot N_{1} \cdot N_{2}^{3}-16 \cdot N_{1} \cdot N_{2}^{2}-2 \cdot N_{1}+\sqrt{N_{2}^{2}+6 \cdot N_{2}-3} \cdot\left(N_{1} \cdot N_{2}-3 \cdot N_{1} \cdot N_{2}^{2}\right)+9 \cdot N_{1} \cdot N_{2}}{6 \cdot N_{2}-12 \cdot N_{2}^{2}+14 \cdot N_{2}^{3}-4 \cdot \sqrt{N_{2}^{2}+6 \cdot N_{2}-3 \cdot N_{2}^{2}}}=0
\end{aligned}
\]

Etc.



\section*{111893 Exploring Cube Roots Plate C}

If \(A L=1 / 2\) of \(C G\), then the circle LM passes through the square root of \(A B \times A K\), being point \(E\).

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{4} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 . 2} \quad \mathrm{BK}:=\mathbf{N}_{\mathbf{1}} \\
& \text { BH }:=\frac{\mathbf{B K}}{2} \quad \text { BD }:=\frac{\mathbf{B H}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{D K}:=\mathbf{B K}-\mathbf{B D} \\
& \mathbf{D N}:=\sqrt{\mathbf{B D} \cdot \mathbf{D K}} \quad \mathbf{B Q}:=\mathbf{B K} \quad \text { KS }:=\mathbf{B K} \quad \text { HR }:=\mathbf{B K} \\
& \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B Q}}{\mathbf{B Q}+\mathbf{D N}} \quad \mathbf{G K}:=\frac{\mathbf{D K} \cdot \mathbf{K S}}{\mathbf{K S}+\mathbf{D N}} \quad \mathbf{B G}:=\mathbf{B K}-\mathbf{G K} \\
& \mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \text { FH }:=\frac{\mathbf{D H} \cdot \mathbf{H R}}{\mathbf{H R}+\mathbf{D N}} \quad \text { BF }:=\mathbf{B H}-\mathbf{F H} \\
& \mathbf{C F}:=\mathbf{B F}-\mathbf{B C} \quad \mathbf{A L}:=\mathbf{C F} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D} \\
& \text { NO := DF FP := BH PO := FP - DN } \\
& \mathbf{A D}:=\frac{\mathbf{N O} \cdot \mathbf{D N}}{\mathbf{P O}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \\
& \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{L M}:=\mathbf{A F} \quad \mathbf{E L}:=\mathbf{A F} \quad \mathbf{A K}:=\mathbf{A D}+\mathbf{D K} \\
& \mathbf{A E}_{1}:=\sqrt{\mathbf{E L}^{2}-\mathbf{A L}^{2}} \quad \mathbf{A E}_{2}:=\sqrt{\mathbf{A B} \cdot \mathbf{A K}} \quad \mathbf{A E}_{1}-\mathbf{A E}_{2}=\mathbf{0}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{H R}-\mathbf{N}_{1}=0 \quad \mathbf{B C}-\frac{\mathbf{N}_{1}}{2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{2}-1}}=0 \quad G K-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{2}-1\right)}{2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{2}-1}}=0 \quad B G-\frac{\mathbf{N}_{1} \cdot\left(\sqrt{2 \cdot N_{2}-1}+1\right)}{2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot N_{2}-1}}=0 \quad \mathbf{D H}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right)}{2 \cdot \mathbf{N}_{2}}=0 \\
& F H-\frac{N_{1} \cdot\left(N_{2}-1\right)}{2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot N_{2}-1}}=0 \quad B F-\frac{N_{1} \cdot\left(\sqrt{2 \cdot N_{2}-1}+2\right)}{2 \cdot\left(2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot N_{2}-1}\right)}=0 \quad C F-\frac{N_{1} \cdot \sqrt{2 \cdot N_{2}-1}}{2 \cdot\left(2 \cdot N_{2}+\sqrt{2 \cdot N_{2}-1}\right)}=0 \quad A L-\frac{N_{1} \cdot \sqrt{2 \cdot N_{2}-1}}{2 \cdot\left(2 \cdot N_{2}+\sqrt{2 \cdot N_{2}-1}\right)}=0 \\
& D F-\frac{\sqrt{2 \cdot N_{2}-1} \cdot \mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right)}{2 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{2}-1}\right)}=0 \quad \mathrm{NO}-\frac{\sqrt{2 \cdot \mathbf{N}_{2}-1} \cdot \mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right)}{2 \cdot \mathbf{N}_{2} \cdot\left(2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{2}-1}\right)}=0 \quad \mathrm{FP}-\frac{\mathbf{N}_{1}}{2}=0 \quad \text { PO }-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-\sqrt{2 \cdot \mathbf{N}_{2}-1}\right)}{2 \cdot \mathbf{N}_{2}}=0 \\
& \mathbf{A D}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right) \cdot\left(\sqrt{2 \cdot \mathbf{N}_{2}-1}\right)^{2}}{2 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{2}-\sqrt{2 \cdot \mathbf{N}_{2}-1}\right) \cdot\left(2 \cdot \mathbf{N}_{2}+\sqrt{2 \cdot \mathbf{N}_{2}-1}\right)}=0 \quad \mathbf{A B}-\frac{\mathbf{N}_{1} \cdot\left(\sqrt{2 \cdot \mathbf{N}_{2}-1}-1\right)}{2 \cdot\left(2 \cdot \mathbf{N}_{2}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{2}-\mathbf{N}_{2} \cdot \sqrt{2 \cdot \mathbf{N}_{2}-1}+\mathbf{1}\right)}=0 \\
& A F-\frac{N_{1} \cdot\left(N_{2}-1\right) \cdot\left(2 \cdot N_{2}+2 \cdot N_{2} \cdot \sqrt{2 \cdot N_{2}-1}-1\right)}{2 \cdot\left(3 \cdot N_{2}+\sqrt{2 \cdot N_{2}-1}-6 \cdot N_{2}{ }^{2}+4 \cdot N_{2}{ }^{3}-2 \cdot N_{2} \cdot \sqrt{2 \cdot N_{2}-1}\right)}=0 \quad E L-A F=0 \quad L M-A F=0 \quad A K-\frac{N_{1} \cdot\left[4 \cdot N_{2}{ }^{2}-\left(2 \cdot N_{2}-1\right)^{\frac{3}{2}}-4 \cdot N_{2}+1\right]}{2 \cdot\left(2 \cdot N_{2}{ }^{2}-2 \cdot N_{2}-N_{2} \cdot \sqrt{2 \cdot N_{2}-1}+1\right)}=0 \\
& \left.A E_{1}-\sqrt{\left[\frac{N_{1}{ }^{2} \cdot\left(N_{2}-1\right)^{2} \cdot\left(2 \cdot N_{2}+2 \cdot N_{2} \cdot \sqrt{2 \cdot N_{2}-1}-1\right)^{2}}{4 \cdot\left(3 \cdot N_{2}+\sqrt{2 \cdot N_{2}-1}-6 \cdot N_{2}{ }^{2}+4 \cdot N_{2}{ }^{3}-2 \cdot N_{2} \cdot \sqrt{2 \cdot N_{2}-1}\right)^{2}}-\frac{N_{1}{ }^{2} \cdot\left(2 \cdot N_{2}-1\right)}{4 \cdot\left(2 \cdot N_{2}+\sqrt{2 \cdot N_{2}-1}\right)^{2}}\right.}\right]=0 \\
& A E_{2}-\sqrt{\left[\frac{N_{1}{ }^{2} \cdot\left(\sqrt{2 \cdot N_{2}-1}-1\right) \cdot\left[4 \cdot \mathbf{N}_{2}{ }^{2}-\left(2 \cdot N_{2}-1\right)^{\frac{3}{2}}-4 \cdot \mathbf{N}_{2}+1\right]}{4 \cdot\left(2 \cdot N_{2}-2 \cdot \mathbf{N}_{2}{ }^{2}+N_{2} \cdot \sqrt{2 \cdot N_{2}-1}-1\right)^{2}}\right]}=0 \quad \quad A E_{1}-A E_{2}=0
\end{aligned}
\]

\section*{111893D Exploring Cube Roots}

The circle AO passes through point M. FM equals half of CG.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B K}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A K}:=\mathbf{B K}+\mathbf{A B} \\
& \mathbf{A C}:=\left(\mathbf{A B}^{\mathbf{2}} \cdot \mathbf{A K}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \quad \mathbf{A G}:=\left(\mathbf{A B} \cdot \mathbf{A K}^{2}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C F}:=\frac{\mathbf{C G}}{\mathbf{2}} \quad \mathbf{B H}:=\frac{\mathbf{B K}}{\mathbf{2}} \\
& \mathbf{A H}:=\mathbf{A B}+\mathbf{B H} \quad \mathbf{H P}:=\mathbf{B H} \quad \mathbf{A P}:=\sqrt{\mathbf{A H}^{2}+\mathbf{H P}^{2}} \\
& \mathbf{A O}:=\frac{\mathbf{A P}}{\mathbf{2}} \quad \mathbf{D O}:=\frac{\mathbf{H P}}{\mathbf{2}} \quad \mathbf{A F}:=\mathbf{A C}+\mathbf{C F} \quad \mathbf{A D}:=\frac{\mathbf{A H}}{\mathbf{2}} \\
& \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{F M}:=\mathbf{C F} \quad \mathbf{M O}:=\mathbf{A O} \\
& \mathbf{M O}^{\mathbf{2}}-\left[\mathbf{D F}^{\mathbf{2}}+(\mathbf{D O}+\mathbf{F M})^{\mathbf{2}}\right]=\mathbf{0}
\end{aligned}
\]
\[
\begin{aligned}
& \overbrace{n=0}^{0} \\
& \mathbf{A K}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0} \\
& A C-\left[N_{1}{ }^{2} \cdot\left(N_{1}+N_{2}\right)\right]^{\frac{1}{3}}=0 \quad A G-\left[N_{1} \cdot\left(N_{1}+N_{2}\right)^{2}\right]^{\frac{1}{3}}=0 \quad C G-\left[\left[N_{1} \cdot\left(N_{1}+N_{2}\right)^{2}\right]^{\frac{1}{3}}-\left[N_{1}{ }^{2} \cdot\left(N_{1}+N_{2}\right)\right]^{\frac{1}{3}}\right]=0 \\
& C F-\frac{\left[N_{1} \cdot\left(N_{1}+N_{2}\right)^{2}\right]^{\frac{1}{3}}-\left[{N_{1}}^{2} \cdot\left(N_{1}+N_{2}\right)\right]^{\frac{1}{3}}}{2}=0 \quad B H-\frac{N_{2}}{2}=0 \quad A H-\frac{2 \cdot N_{1}+N_{2}}{2}=0 \quad H P-\frac{N_{2}}{2}=0 \quad A P-\frac{\sqrt{2 \cdot N_{1}{ }^{2}+2 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}}}{\sqrt{2}}=0 \\
& A O-\frac{\sqrt{2}}{4} \cdot \sqrt{2 \cdot N_{1}{ }^{2}+2 \cdot N_{1} \cdot N_{2}+\mathbf{N}_{2}{ }^{2}}=0 \quad \text { DO }-\frac{N_{2}}{4}=0 \quad A F-\frac{\left.\left[N_{1} \cdot\left(N_{1}+N_{2}\right)^{2}\right]^{\frac{1}{3}}+\left[N_{1}{ }^{2} \cdot\left(N_{1}+N_{2}\right)\right]^{\frac{1}{3}}\right]}{2}=0 \quad A D-\frac{2 \cdot N_{1}+N_{2}}{4}=0 \\
& D F-\frac{\left[2 \cdot\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{2}\right]^{\frac{1}{3}}-\mathbf{N}_{2}-2 \cdot \mathbf{N}_{1}+2 \cdot\left[\mathbf{N}_{1}{ }^{2} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)\right]^{\frac{1}{3}}\right]}{4}=0 \quad \mathbf{F M}-\frac{\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{2}\right]^{\frac{1}{3}}-\left[\mathbf{N}_{1}{ }^{2} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)\right]^{\frac{1}{3}}}{2}=0 \\
& \text { MO }-\frac{\sqrt{2}}{4} \cdot \sqrt{2 \cdot N_{1}{ }^{2}+2 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}}=0 \\
& 4 \cdot\left[N_{1} \cdot\left(N_{1}+N_{2}\right)^{2}\right]^{\frac{2}{3}}+2 \cdot N_{1}{ }^{2}+{N_{2}}^{2}-4 \cdot N_{1} \cdot\left[N_{1}{ }^{2} \cdot\left(N_{1}+N_{2}\right)\right]^{\frac{1}{3}}-4 \cdot N_{2} \cdot\left[N_{1}{ }^{2} \cdot\left(N_{1}+N_{2}\right)\right]^{\frac{1}{3}} \ldots \\
& \mathrm{MO}^{2}-\frac{+2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+4 \cdot\left(\mathbf{N}_{1}{ }^{3}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}{ }^{2}\right)^{\frac{2}{3}}-4 \cdot \mathbf{N}_{1} \cdot\left[\mathrm{~N}_{1} \cdot\left(\mathbf{N}_{1}+\mathrm{N}_{2}\right)^{2}\right]^{\frac{1}{3}}}{8} \\
& \frac{\left[N_{1} \cdot\left(N_{1}+N_{2}\right)^{2}\right]^{\frac{2}{3}}}{2}+\frac{\left[N_{1}{ }^{2} \cdot\left(N_{1}+N_{2}\right)\right]^{\frac{2}{3}}}{2}-\frac{\mathbf{N}_{1} \cdot\left[N_{1} \cdot\left(N_{1}+N_{2}\right)^{2}\right]^{\frac{1}{3}}}{2}-\frac{N_{1} \cdot\left[N_{1}{ }^{2} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)\right]^{\frac{1}{3}}}{2}-\frac{\mathbf{N}_{2} \cdot\left[\mathbf{N}_{1}{ }^{2} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)\right]^{\frac{1}{3}}}{2}=0
\end{aligned}
\]

Generalize the work of 07/25/93 for dividing the base AE with K constant.
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{2}:=\mathbf{5} \quad \mathbf{A E}:=\mathbf{1} \\
& \alpha:=\mathbf{1 . .} \mathbf{N}_{\mathbf{1}}-\mathbf{1} \quad \boldsymbol{\beta}:=\mathbf{1} . . \mathbf{N}_{\mathbf{2}}-\mathbf{1}
\end{aligned}
\]

112493 POR Series IV

\[
\begin{aligned}
& \mathrm{AB}:=\frac{\mathrm{AE}}{\mathbf{N}_{1}} \quad \mathrm{AD}:=\frac{\mathrm{AE}}{2} \quad \mathrm{DK}:=\mathrm{AD} \quad \mathrm{DE}:=\mathrm{AD} \\
& \mathrm{BD}:=\mathrm{AD}-\mathrm{AB} \quad \mathrm{BK}:=\sqrt{\mathrm{BD}^{2}+\mathrm{DK}^{2}} \quad \mathrm{BG}:=\frac{\mathrm{BK}}{\mathbf{N}_{2}} \quad \mathrm{BC}:=\frac{\mathrm{BD} \cdot \mathrm{BG}}{\mathrm{BK}} \\
& \mathrm{CG}:=\frac{\mathrm{DK} \cdot \mathrm{BG}}{\mathrm{BK}} \mathrm{AC}:=\mathrm{AB}+\mathrm{BC} \quad \mathrm{CE}:=\mathrm{AE}-\mathrm{AC} \quad \mathrm{DF}:=\frac{\mathrm{CG} \cdot \mathrm{DE}}{\mathrm{CE}} \mathrm{EG}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CG}^{2}} \\
& \mathrm{EF}:=\sqrt{\mathrm{DE}^{2}+\mathrm{DF}^{2}} \quad \mathrm{AH}:=\frac{\mathrm{DF} \cdot \mathrm{AE}}{\mathrm{EF}} \quad \mathrm{EH}:=\frac{\mathrm{DE} \cdot \mathrm{AE}}{\mathrm{EF}} \quad \mathrm{GH}:=\mathrm{EH}-\mathrm{EG} \quad \mathrm{FH}:=\mathrm{EH}-\mathrm{EF}
\end{aligned}
\]
\[
\text { FJ }:=\frac{\text { DF } \cdot \text { FH }}{\text { EF }} \text { HJ }:=\frac{\text { DE FH }}{\text { EF }} \quad \text { DJ }:=\text { DF }+ \text { FJ } \quad \text { JK }:=\text { DK }- \text { DJ } \quad \text { HK }:=\sqrt{H J^{2}+J K^{2}}
\]
\[
\frac{A H}{H K}=0.265 \quad \frac{\sqrt{2} \cdot \mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{1}-1\right) \cdot\left(\mathbf{N}_{2}-1\right)}=0.265 \quad \text { SeriesAH }_{\alpha, \beta}:=\frac{\sqrt{2} \cdot \mathbf{N}_{1} \cdot \beta}{2 \cdot\left(\mathbf{N}_{1}-\alpha\right) \cdot\left(\mathbf{N}_{2}-\beta\right)} \quad \text { SeriesAH }=\left(\begin{array}{cccc}
0.265 & 0.707 & 1.591 & 4.243 \\
0.53 & 1.414 & 3.182 & 8.485
\end{array}\right)
\]
\[
\frac{E H}{G H}=2.85 \quad N_{1} \cdot N_{2} \cdot \frac{2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{2}-N_{1}+2}{\left(N_{2}-1\right) \cdot\left(2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{2}+N_{1}^{2}-2 \cdot N_{1}+2\right)}=2.85 \quad \text { SeriesEH }_{\alpha, \beta}:=N_{1} \cdot N_{2} \cdot \frac{2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{2} \cdot \alpha-N_{1} \cdot \beta+2 \cdot \alpha \cdot \beta}{\left(N_{2}-\beta\right) \cdot\left(2 \cdot N_{1} \cdot N_{2} \cdot \alpha-2 \cdot N_{2} \cdot \alpha^{2}+N_{1} \cdot \boldsymbol{2}-2 \cdot N_{1} \cdot \alpha \cdot \beta+2 \cdot \alpha^{2} \cdot \beta\right)}
\]
\[
\text { SeriesEH }=\left(\begin{array}{cccc}
2.85 & 3 & 3.643 & 6 \\
1.65 & 2 & 2.786 & 5.25
\end{array}\right)
\]
\(\mathrm{HK}=2.35269\)
\(\frac{\mathrm{AH}}{\mathrm{HK}}=0.26517\)
\(\frac{\sqrt{2} \cdot \mathrm{~N}_{1}}{2 \cdot\left(\mathrm{~N}_{1}-1\right) \cdot\left(\mathrm{N}_{2}-1\right)}=0.26517\)
\(\frac{\sqrt{2} \cdot \mathrm{~N}_{1}}{2 \cdot\left(\mathrm{~N}_{1}-1\right) \cdot\left(\mathrm{N}_{2}-1\right)}-\frac{\mathrm{AH}}{\mathrm{HK}}=0.00000\)
\(\mathrm{EH}=3.95105\)
GH \(=\mathbf{1 . 3 8 6 3 3}\)
\(\frac{\mathrm{EH}}{\mathbf{G H}}=\mathbf{2 . 8 5 0 0 0}\)
\(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}\right)+2\right)}{\left.\left(\mathrm{N}_{2}-1\right) \cdot\left(\left(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}\right)+\mathrm{N}_{1}{ }^{2}\right)-2 \cdot \mathrm{~N}_{1}\right)+2\right)}=2.85000\) \(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}\right)+2\right)}{\left.\left(\mathrm{N}_{2}-1\right) \cdot\left(\left(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}\right)+\mathrm{N}_{1}{ }^{2}\right)-2 \cdot \mathrm{~N}_{1}\right)+2\right)}-\frac{\mathrm{EH}}{\mathbf{G H}}=0.00000\)

\(\sim_{n=2}^{0}\)
120293.MCD POR Roots and Powers
(Pyramid of Ratio Series V)
Is the progression noticed in 11_29_93 a continuous phenomenon?

\[
\begin{aligned}
& \text { AH := } 5 \\
& \delta:=\mathbf{1} . . \mathbf{7} \quad \mathbf{A P} \mathbf{P}_{\delta}:=\frac{\mathbf{A H}}{\delta} \\
& \mathbf{A G} \mathbf{g}_{\delta}:=\frac{\left(\mathbf{A} \mathbf{P}_{\delta}\right)^{2}}{\mathbf{A H}} \quad \mathbf{A O _ { \delta }}:=\mathbf{A G _ { \delta }} \quad \mathbf{A F} \boldsymbol{F}_{\delta}:=\frac{\left(\mathbf{A G _ { \delta }}\right)^{\mathbf{2}}}{\mathbf{A} \mathbf{P}_{\delta}} \\
& \mathbf{A E}_{\delta}:=\frac{\left(\mathbf{A F}_{\delta}\right)^{2}}{\mathbf{A O}_{\delta}} \quad \mathbf{A N} \mathbf{N}_{\delta}:=\mathbf{A F}_{\delta} \quad \mathbf{A D}_{\delta}:=\frac{\left(\mathbf{A E}_{\delta}\right)^{2}}{\mathbf{A N}_{\delta}} \quad \mathbf{A M}_{\delta}:=\mathbf{A E}_{\delta} \\
& \mathbf{A C} \mathbf{C}_{\delta}:=\frac{\left(\mathbf{A D}_{\delta}\right)^{2}}{\mathbf{A M}_{\delta}} \quad \mathbf{A K} K_{\delta}:=\mathbf{A D}_{\delta} \quad \mathbf{A B} \boldsymbol{B}_{\delta}:=\frac{\left(\mathbf{A C}_{\delta}\right)^{2}}{\mathbf{A K}_{\delta}} \quad \Delta:=1 . .6
\end{aligned}
\]



\[
\begin{aligned}
& \mathbf{A P}_{\boldsymbol{\Delta}}= \\
& \begin{array}{|r}
\hline 5 \\
\hline 2.5 \\
\hline 1.667 \\
\hline 1.25 \\
\hline 1 \\
\hline 0.833 \\
\hline
\end{array}
\end{aligned}
\]






\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{G P}_{\Delta}{ }^{\text {a }}=\) & \(\mathrm{FO}_{\Delta}=\) & \(\mathrm{EN}_{\Delta}=\) & \(\mathrm{DM}_{\Delta}=\) & \(\mathrm{CK}_{\Delta}=\) & \(\mathbf{B J} \mathbf{J}_{\Delta}=\) & \[
\frac{\mathbf{G P}_{\Delta}}{\Delta^{\mathbf{5}}}=
\] & \[
\frac{\mathbf{F O}_{\Delta}}{\Delta^{4}}=
\] & \[
\frac{\mathbf{E N}_{\Delta}}{\Delta^{3}}=
\] & \[
\frac{\mathbf{D M}_{\Delta}}{\Delta^{2}}=
\] & \[
\frac{\mathbf{C K}_{\Delta}}{\Delta}=
\] & \(\mathbf{B J}_{\Delta}=\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2.165 & 1.083 & 0.541 & 0.271 & 0.135 & 0.068 & 0.068 & 0.068 & 0.068 & 0.068 & 0.068 & 0.068 \\
\hline 1.571 & 0.524 & 0.175 & 0.058 & 0.019 & \(6.466 \cdot 10^{-3}\) & \(6.466 \cdot 10^{-3}\) & \(6.466 \cdot 10^{-3}\) & \(6.466 \cdot 10^{-3}\) & 6.466 \(10^{-3}\) & \(6.466 \cdot 10^{-3}\) & \(6.466 \cdot 10^{-3}\) \\
\hline 1.21 & 0.303 & 0.076 & 0.019 & \(4.728 \cdot 10^{-3}\) & \(1.182 \cdot 10^{-3}\) & 1.182 \(10^{-3}\) \\
\hline 0.98 & 0.196 & 0.039 & \(7.838 \cdot 10^{-3}\) & \(1.568 \cdot 10^{-3}\) & \(3.135 \cdot 10^{-4}\) \\
\hline 0.822 & 0.137 & 0.023 & \(3.804 \cdot 10^{-3}\) & \(6.34 \cdot 10^{-4}\) & 1.057 \(10^{-4}\) & 1.057 \(\cdot 10^{-4}\) & \(1.057 \cdot 10^{-4}\) & 1.057•10-4 & 1.057 \(\cdot 10^{-4}\) & 1.057 \(10^{-4}\) & 1.057 \(10^{-4}\) \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{G P}_{\Delta}=\) & \(\mathrm{FO}_{\Delta}=\) & \(\mathbf{E N}_{\Delta}=\) & \(\mathbf{D M}_{\Delta}=\) & \(\mathbf{C K}_{\Delta}=\) & \(\mathbf{B J}_{\Delta}=\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2.165 & 1.083 & 0.541 & 0.271 & 0.135 & 0.068 \\
\hline 1.571 & 0.524 & 0.175 & 0.058 & 0.019 & \(6.466 \cdot 10^{-3}\) \\
\hline 1.21 & 0.303 & 0.076 & 0.019 & 4.728.10-3 & \(1.182 \cdot 10^{-3}\) \\
\hline 0.98 & 0.196 & 0.039 & \(7.838 \cdot 10^{-3}\) & \(1.568 \cdot 10^{-3}\) & \(3.135 \cdot 10^{-4}\) \\
\hline 0.822 & 0.137 & 0.023 & \(3.804 \cdot 10^{-3}\) & \(6.34 \cdot 10^{-4}\) & \(1.057 \cdot 10^{-4}\) \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\frac{\sqrt{\mathrm{AG}_{2} \cdot \mathbf{G H}_{2}}}{2}=1.083 & \frac{\sqrt{\mathrm{AG}_{2} \cdot \mathbf{G H}_{2}}}{2^{2}}=0.541 \\
\frac{\sqrt{\mathrm{AG}_{3} \cdot \mathbf{G H}_{3} \cdot \mathbf{G H}_{2}}}{2^{3}}=0.271 \\
3 & =0.524 \quad \frac{\sqrt{\mathrm{AG}_{3} \cdot \mathbf{G H}_{3}}}{3^{2}}=0.175 \quad \frac{\sqrt{\mathrm{AG}_{3} \cdot \mathbf{G H}_{3}}}{3^{3}}=0.058
\end{array}
\]



abac \({ }_{2}\) ac ad ae ad \({ }_{2}\) af ag ae \({ }_{2}\) ap



0

T

To use the digital indexing system to apply names, let AC be the thing with which we seek to name an exponential series on. AB is our unit. As a number is a ratio, numbers are two dimensional.
\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}}
\]
The circle is a two dimensional object which is capable of producing every ratio between two differences.
\(\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\sqrt{\mathbf{B C} \cdot \mathbf{A B}}\)
\[
\mathbf{A H}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B D}^{2}}
\]
\[
A J:=\sqrt{A H^{2}+H^{2}}
\]
\[
\mathbf{C J}:=\mathbf{A C}-\mathbf{A} \mathbf{J}
\]
\[
\mathbf{J S}:=\sqrt{\mathbf{C J} \cdot \mathbf{A J}}
\]
\[
\mathbf{A K}:=\sqrt{\mathbf{J S}^{2}+\mathbf{A} \mathbf{J}^{2}}
\]
\[
\mathbf{A I}:=\frac{A J^{2}}{A K} \quad A G:=\frac{A H^{2}}{A I} \quad A F:=\frac{A H^{2}}{A J} \quad A E:=\frac{A F^{2}}{A G} \quad\left(\frac{A C}{A B}\right)^{0}-\frac{A B}{A B}=0
\]
\[
\mathbf{C H}:=\mathbf{A C}-\mathbf{A H} \quad \mathbf{H N}:=\sqrt{\mathbf{C H} \cdot \mathbf{A H}}
\]
\[
A C^{\frac{1}{8}}-A E=0
\]
\[
A C^{\frac{2}{8}}-A F=0
\]
\[
A C^{\frac{3}{8}}-A G=0
\]
\[
A C^{\frac{4}{8}}-A H=0
\]
\[
A C^{\frac{5}{8}}-A I=0
\]
\[
A C^{\frac{6}{8}}-A J=0
\]
\[
A C^{\frac{7}{8}}-A K=0
\]
\[
A C^{\frac{8}{8}}-A C=0
\]

\[
\begin{aligned}
& \left(\frac{A C}{A B}\right)^{\frac{1}{8}}-\frac{A E}{A B}=0 \quad\left(\frac{A C}{A B}\right)^{\frac{2}{8}}-\frac{A F}{A B}=0 \quad\left(\frac{A C}{A B}\right)^{\frac{3}{8}}-\frac{A G}{A B}=0 \quad\left(\frac{A C}{A B}\right)^{\frac{4}{8}}-\frac{A H}{A B}=0 \\
& \left(\frac{A C}{A B}\right)^{\frac{5}{8}}-\frac{A I}{A B}=0 \quad\left(\frac{A C}{A B}\right)^{\frac{6}{8}}-\frac{A J}{A B}=0 \quad\left(\frac{A C}{A B}\right)^{\frac{7}{8}}-\frac{A K}{A B}=0 \quad\left(\frac{A C}{A B}\right)^{\frac{8}{8}}-\frac{A C}{A B}=0
\end{aligned}
\]

Alternate method of creating an exponential series


Cris 3


120693 Alternate Method: Square Root
Common Segment Common Endpoint
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{6} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{4} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathrm{BE}:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \\
& \mathbf{D F}:=\mathbf{B D} \quad \mathbf{A D}:=\mathbf{B D}+\mathbf{A B} \\
& \mathbf{A F}:=\sqrt{\mathbf{A D}^{2}-\mathbf{D F}^{2}} \quad \mathbf{A C}:=\mathbf{A F} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A C}=\mathbf{0} \quad \mathbf{A F}-\sqrt{\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)\right]}=\mathbf{0} \quad \mathbf{A C}-\sqrt{\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)\right]}=\mathbf{0} \\
& A E-\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)=0 \quad B D-\frac{\mathbf{N}_{2}}{2}=0 \\
& \text { DF }-\frac{\mathbf{N}_{2}}{2}=0 \quad A D-\frac{2 \cdot N_{1}+N_{2}}{2}=0
\end{aligned}
\]

\section*{120693B Gruntwork IV on the Delian Solution.}
\[
\text { Are } A, P \text { and } Q \text { collinear? Are } A, K \text { and } N \text { collinear? }
\]

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{6} \\
& \mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{C J}:=\mathbf{N}_{\mathbf{2}} \quad \text { AJ }:=\mathbf{A C}+\mathbf{C J} \\
& \mathbf{A E}:=\left(\mathbf{A C}^{\mathbf{2}} \cdot \mathbf{A J}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \quad \mathbf{A G}:=\left(\mathbf{A C} \cdot \mathbf{A J} \mathbf{I}^{2}\right)^{\frac{\mathbf{1}}{\mathbf{3}}} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{G J}:=\mathbf{C J}-\mathbf{C G} \quad \mathbf{G N}:=\sqrt{\mathbf{C G} \cdot \mathbf{G J}} \\
& \mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{2}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C H}:=\frac{\mathbf{C J}}{\mathbf{2}}
\end{aligned}
\]
\(\mathbf{B K}:=\mathrm{AB} \quad \mathbf{H K}:=\mathbf{C H} \quad \mathbf{H J}:=\mathbf{C H} \quad \mathbf{A H}:=\mathrm{AJ}-\mathrm{HJ} \quad \mathrm{BH}:=\mathrm{AH}-\mathrm{AB} \quad \mathrm{BD}:=\frac{\mathrm{BK}^{2}+\mathrm{BH}^{2}-\mathbf{H K}^{2}}{2 \cdot \mathrm{BH}}\) \(\mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{D K}:=\sqrt{\mathbf{A D} \cdot \mathbf{D E}} \quad \mathbf{G Q}:=\sqrt{\mathbf{A G} \cdot \mathbf{G J}} \quad \mathbf{C P}:=\sqrt{\mathbf{A C} \cdot \mathbf{C E}}\)
\[
\frac{\mathbf{A G}}{\mathbf{G N}}-\frac{\mathbf{A D}}{\mathbf{D K}}=\mathbf{0} \quad \frac{\mathbf{A G}}{\mathbf{G Q}}-\frac{\mathbf{A C}}{\mathbf{C P}}=0
\]
\[
\begin{aligned}
& \text { P } \quad \text { AJ }-\left(N_{1}+N_{2}\right)=0 \quad A E-\left(N_{1}{ }^{3}+N_{1}{ }^{2} \cdot N_{2}\right)^{\frac{1}{3}}=0 \quad A G-\left(N_{1}{ }^{3}+2 \cdot N_{1}{ }^{2} \cdot N_{2}+N_{1} \cdot N_{2}{ }^{2}\right)^{\frac{1}{3}}=0 \\
& \mathbf{C G}-\left[\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{2}\right]^{\frac{1}{3}}-\mathbf{N}_{1}\right]=\mathbf{0} \quad \mathbf{G J}-\left[\mathbf{N}_{1}+\mathbf{N}_{2}-\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{2}\right]^{\frac{1}{3}}\right]=\mathbf{0} \\
& \mathbf{G N}-\sqrt{\left[\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{2}\right]^{\frac{1}{3}}-\mathbf{N}_{1}\right] \cdot\left[\mathbf{N}_{1}+\mathbf{N}_{2}-\left[\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{2}\right]^{\frac{\mathbf{1}}{\mathbf{3}}}\right]}=\mathbf{0}
\end{aligned}
\]

121193 The structure in red appears to be a constant.

\(\mathbf{N}:=\mathbf{6} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A L}:=\mathbf{A B} \cdot \mathbf{N}\)
\(\left.\mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B K}:=\frac{\mathbf{B L}}{2} \quad \mathbf{A E}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A L}\right)^{\frac{1}{3}} \quad \mathbf{A J}:=(\mathbf{A B} \cdot \mathbf{A L})^{2}\right)^{\frac{1}{3}}\) \(\mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{J L}:=\mathbf{B L}-\mathbf{B J} \quad \mathbf{E J}:=\mathbf{A J}-\mathbf{A E} \quad\) FT \(:=\frac{\mathbf{J L} \cdot \mathbf{E J}}{\mathbf{J L}+\mathbf{B E}}\) \(\mathbf{F L}:=\mathbf{J L}+\mathbf{F J} \quad \mathbf{B F}:=\mathbf{B L}-\mathbf{F L} \quad\) FP \(:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}} \quad \mathbf{K R}:=\mathbf{B K} \quad \mathbf{K L}:=\mathbf{B K}\) \(\mathbf{F K}:=\mathbf{F L}-\mathbf{K L} \quad \mathbf{I K}:=\frac{\mathbf{F K} \cdot \mathbf{K R}}{\mathbf{K R}+\mathbf{F P}} \quad \mathbf{A K}:=\mathbf{B K}+\mathbf{A B} \quad \mathbf{A I}:=\mathbf{A K}-\mathbf{I K} \quad \mathbf{A D}:=\frac{\mathbf{A I}}{\mathbf{2}}\) \(\mathbf{K T}:=\mathbf{B L} \quad \mathbf{F H}:=\frac{\mathbf{F K} \cdot \mathbf{F P}}{\mathbf{K T}+\mathbf{F P}} \quad \mathbf{A F}:=\mathbf{B F}+\mathbf{A B} \quad \mathbf{A H}:=\mathbf{A F}+\mathbf{F H} \quad \mathbf{H I}:=\mathbf{A I}-\mathbf{A H}\) HO \(:=\sqrt{\mathbf{A H} \cdot \mathbf{H I}} \quad \mathbf{D N}:=\mathbf{A D} \quad \mathbf{K N}:=\mathbf{B K} \quad \mathbf{D K}:=\mathbf{A K}-\mathbf{A D} \quad \mathbf{C K}:=\frac{\mathrm{KN}^{2}+\mathbf{D K}^{2}-\mathbf{D N}^{2}}{2 \cdot \mathbf{D K}}\) \(\mathbf{A C}:=\mathbf{A K}-\mathbf{C K} \quad \mathbf{C I}:=\mathbf{A I}-\mathbf{A C} \quad \mathbf{C N}:=\sqrt{\mathbf{A C} \cdot \mathbf{C I}} \quad \frac{\mathbf{K R}}{\mathbf{I K}}-\frac{\mathbf{H O}}{\mathbf{H I}}=\mathbf{0} \quad \frac{\mathbf{A F}}{\mathbf{F P}}-\frac{\mathbf{A C}}{\mathbf{C N}}=\mathbf{0}\)
\(c^{\circ} \mathrm{n}\) 오
\(\mathbf{A B}:=1 \quad \mathbf{A L}-\mathbf{N}=\mathbf{0} \quad \mathbf{B L}-(\mathbf{N}-1)=0 \quad \mathbf{B K}-\frac{\mathbf{N}-1}{2}=0 \quad A E-\mathbf{N}^{\frac{1}{3}}=0 \quad A J-\mathbf{N}^{\frac{2}{3}}=0\) \(\mathbf{B E}-\left(N^{\frac{1}{3}}-1\right)=0 \quad B J-\left(N^{\frac{2}{3}}-1\right)=0 \quad J L-\left(N^{\frac{2}{3}}\right)=0 \quad E J-N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}-1\right)=0\)
 \(F K-\frac{\left(N^{\frac{1}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}-1\right)^{2}}{2 \cdot\left(N^{\frac{2}{3}}+1\right)}=0 \quad I K-\frac{\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}-1\right)^{2}}{2 \cdot\left(N^{\frac{1}{3}}+1\right)}=0\)

\(A K-\frac{N+1}{2}=0 \quad A I-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{2}{3}}+1\right)}{N^{\frac{1}{3}}+1}=0 \quad A D-\frac{N+N^{\frac{1}{3}}}{2 \cdot\left(N^{\frac{1}{3}}+1\right)}=0 \quad A H-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}-1\right)^{2} \cdot\left(N^{\frac{1}{3}}+1\right)}{2 \cdot\left(N^{\frac{2}{3}}+1\right)}=0 \quad A F-\frac{\left(N^{\frac{1}{3}}\right)^{2} \cdot\left(N^{\frac{1}{3}}+1\right)}{N^{\frac{2}{3}}+1}=0\)
Cㅂ․․as \(A H-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}+1\right)}{2}=0 \quad H I-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}-1\right)^{2}}{2 \cdot\left(N^{\frac{1}{3}}+1\right)}=0\) \(H O-\frac{\sqrt{N^{\frac{2}{3}}-2 \cdot N+N^{\frac{4}{3}}}}{2}=0\)

\[
\begin{aligned}
& D K-\frac{N^{\frac{4}{3}}+1}{2 \cdot\left(N^{\frac{1}{3}}+1\right)}=0 \quad C K-\frac{\left(N^{\frac{1}{3}}+1\right) \cdot\left(N^{\frac{2}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right) \cdot\left(N^{\frac{1}{3}}-1\right)^{2}}{2 \cdot\left(N^{\frac{4}{3}}+1\right)}=0 \\
& A C-\frac{\left(N^{\frac{1}{3}}\right)^{3} \cdot\left(N^{\frac{1}{3}}+1\right)}{N^{\frac{4}{3}}+1}=0 \quad C I-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}-1\right) \cdot\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right)^{2}}{\left(N^{\frac{1}{3}}+1\right) \cdot\left(N^{\frac{4}{3}}+1\right)}=0
\end{aligned}
\]
\[
\mathbf{C N}-\frac{N^{\frac{2}{3}} \cdot\left(N^{\frac{1}{3}}-1\right) \cdot\left(N^{\frac{1}{3}}+N^{\frac{2}{3}}+1\right)}{\left(N^{\frac{4}{3}}+1\right)}=0
\]
\[
\frac{K R}{I K}-\frac{N^{\frac{1}{3}}+1}{N^{\frac{1}{3}}-1}=0 \quad \frac{A F}{F P}-\frac{N^{\frac{1}{3}} \cdot\left(N^{\frac{1}{3}}+1\right)}{N-1}=0
\]

\section*{121293 The Square Root}

Square root by common segment common midpoint. Given AFand BE is GH their root?

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \\
& \mathbf{A F}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B E}:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{A D}:=\frac{\mathbf{A F}}{\mathbf{2}} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{\mathbf{2}} \quad \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \\
& \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{\mathbf{2}} \quad \mathbf{C G}:=\mathbf{A C} \\
& \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{G H}:=\mathbf{2} \cdot \sqrt{\mathbf{C G}^{2}-\mathbf{C D}^{2}} \\
& \mathbf{G H}-\sqrt{\mathbf{A F} \cdot \mathbf{B E}}=\mathbf{0} \\
& \mathbf{G H}-\sqrt{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0}
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{2} \\
& \mathbf{A F}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{D F}:=\frac{\mathbf{A F}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A D}:=\mathbf{A F}-\mathbf{D F} \\
& \mathbf{D E}:=\frac{\mathbf{D F}}{\mathbf{N}_{\mathbf{3}}} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E} \quad \mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{2}} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{A B} \\
& \mathbf{G H}:=\mathbf{2} \cdot \sqrt{(\mathbf{B H})^{\mathbf{2}}-(\mathbf{B D})^{\mathbf{2}}} \\
& \mathbf{G H}-\mathbf{2} \cdot \frac{\mathbf{N}_{\mathbf{1}} \cdot \sqrt{\mathbf{N}_{\mathbf{2}}-\mathbf{1}}}{\mathbf{N}_{\mathbf{2}} \cdot \sqrt{\mathbf{N}_{\mathbf{3}}}}=\mathbf{0}
\end{aligned}
\]


\section*{12_16_93, using 12_04_93.MCD}
\(\mathbf{A R}:=\mathbf{1 0} \quad \Delta:=\mathbf{5} \quad \delta:=\mathbf{2} . . \Delta+\mathbf{1} \quad \mathbf{A B}_{\delta}:=\frac{\mathbf{A R}}{\delta}\)
\(\mathbf{A J _ { \delta }}:=\sqrt{\mathbf{A B} \cdot \mathbf{A R}} \quad \mathbf{J R}_{\boldsymbol{\delta}}:=\mathbf{A R}-\mathbf{A J _ { \delta }}\)
\(\mathbf{J W}_{\delta}:=\sqrt{\mathbf{A J} \mathbf{J}_{\boldsymbol{\delta}} \cdot \mathbf{J R}_{\boldsymbol{\delta}}} \quad \mathbf{A W} \boldsymbol{D}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{A J _ { \delta }}\right)^{\mathbf{2}}+\left(\mathbf{J W}_{\delta}\right)^{2}}\)
\begin{tabular}{lc}
\(\mathbf{A B}_{\boldsymbol{\delta}}=\) & \(\mathbf{A} \mathbf{J}_{\boldsymbol{\delta}}=\) \\
\begin{tabular}{|r|}
\hline 5 \\
\hline 3.333 \\
\hline 2.5 \\
\hline 2 \\
\hline 1.667 \\
\hline
\end{tabular} & \begin{tabular}{|r}
\hline 7.071 \\
\hline 5.774 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{r}
5 \\
\hline 4.472 \\
\hline 4.082 \\
\hline
\end{tabular}
\end{tabular}

The figure presents me with a progression. What is it's progression. It turns out not formula? It turns out not
only that I can do square only that I can do square
roots, but any two-prime root. It took me 48 pages of sieve work to realize what I was


\section*{Euclidean Exponential Series}
\(\mathbf{A T}:=\mathbf{A R} \quad \mathbf{A N}_{\boldsymbol{\delta}}:=\mathbf{A W}_{\boldsymbol{\delta}} \quad \mathbf{A F}_{\boldsymbol{\delta}}:=\frac{\left(\mathbf{A J}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}}{\mathbf{A W}_{\boldsymbol{\delta}}}\)
\(\mathbf{N R}_{\boldsymbol{\delta}}:=\mathbf{A R}-\mathbf{A N} \mathbf{N}_{\boldsymbol{\delta}} \quad \mathbf{N} \mathbf{X}_{\boldsymbol{\delta}}:=\sqrt{\mathbf{A N} \mathbf{N}_{\boldsymbol{\delta}} \cdot \mathbf{N R}_{\boldsymbol{\delta}}}\)
\(\mathbf{A} \mathbf{X}_{\delta}:=\sqrt{\left(\mathbf{A N}_{\delta}\right)^{2}+\left(\mathbf{N} \mathbf{X}_{\delta}\right)^{2}}\)



What I find interesting, foremost, is the implication for number theory-- We learn exponential notation prior to any naturally occurring exponential examples- Here is one example. The figure removes the conception that exponentiation is purely a notational device and raises it's rank to that of a realistic abstraction.

\(\mathbf{S}\)

\[
\begin{aligned}
& \mathbf{A V}:=\mathbf{A R} \quad \mathbf{A} \mathbf{Q}_{\delta}:=A \mathbf{Y}_{\delta} \quad \mathbf{A O _ { \delta }}:=\frac{\left(\mathbf{A P _ { \delta }}\right)^{2}}{\mathbf{A Y _ { \delta }}} \quad \mathbf{A M _ { \delta }}:=\frac{\left.(\mathbf{A N})_{\delta}\right)^{2}}{\mathbf{A O _ { \delta }}} \\
& \mathbf{A K}_{\delta}:=\frac{\left(\mathbf{A L}_{\delta}\right)^{2}}{\mathbf{A M}_{\delta}} \quad \mathbf{A I _ { \delta }}:=\frac{\left(\mathbf{A J _ { \delta } ) ^ { 2 }}\right.}{\mathbf{A K _ { \delta }}} \quad \mathbf{A G _ { \delta }}:=\frac{\left(\mathbf{A H _ { \delta }}\right)^{2}}{\mathbf{A I}_{\delta}} \\
& \mathbf{A E _ { \delta }}:=\frac{\left(\mathbf{A F _ { \delta } ) ^ { 2 }}\right.}{\mathbf{A G _ { \delta }}} \quad \mathbf{A C _ { \delta }}:=\frac{\left(\mathbf{A D}_{\delta}\right)^{2}}{\mathbf{A E}_{\delta}}
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{P} \mathbf{R}_{\boldsymbol{\delta}}:=\mathbf{A R}-\mathbf{A} \mathbf{P}_{\boldsymbol{\delta}} \quad \mathbf{P} \mathbf{Y}_{\boldsymbol{\delta}}:=\sqrt{\mathbf{A} \mathbf{P}_{\boldsymbol{\delta}} \cdot \mathbf{P R}_{\boldsymbol{\delta}}} \quad \mathbf{A} \mathbf{Y}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{A} \mathbf{P}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}+\left(\mathbf{P} \mathbf{Y}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}}
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{A G}_{\boldsymbol{\delta}}=\) & \(\mathbf{A H}_{\boldsymbol{\delta}}=\) & \(\mathbf{A I}_{\boldsymbol{\delta}}=\) & \(\mathbf{A J} \boldsymbol{J}_{\boldsymbol{\delta}}=\) & \(\mathbf{A K}_{\boldsymbol{\delta}}=\) & \(\mathbf{A L}_{\boldsymbol{\delta}}=\) & \(\mathbf{A M}_{\boldsymbol{\delta}}=\) & \(\mathbf{A N}_{\boldsymbol{\delta}}=\) & \(\mathbf{A O}_{\delta}=\) & \(\mathbf{A P} \mathbf{S}_{\boldsymbol{\delta}}=\) & \(\mathbf{A} \mathbf{Q}_{\boldsymbol{\delta}}=\) \\
\hline 6.209 & 6.484 & 6.771 & 7.071 & 7.384 & 7.711 & 8.052 & 8.409 & 8.781 & 9.17 & 9.576 \\
\hline 4.699 & 5.033 & 5.39 & 5.774 & 6.184 & 6.623 & 7.094 & 7.598 & 8.138 & 8.717 & 9.336 \\
\hline 3.856 & 4.204 & 4.585 & 5 & 5.453 & 5.946 & 6.484 & 7.071 & 7.711 & 8.409 & 9.17 \\
\hline 3.307 & 3.657 & 4.044 & 4.472 & 4.945 & 5.469 & 6.047 & 6.687 & 7.395 & 8.178 & 9.043 \\
\hline 2.918 & 3.263 & 3.65 & 4.082 & 4.566 & 5.107 & 5.713 & 6.389 & 7.147 & 7.993 & 8.941 \\
\hline
\end{tabular}

Values found by the investigator of
12_14_93




\(C^{2}{ }^{2}{ }^{38}\)
- \(\triangle\) B




Resultant Equation
\[
\begin{aligned}
& \left(A^{\delta} \cdot B^{D I V-\delta}\right)^{\frac{1}{D I V}} \\
& \left(A^{D I V-\delta} \cdot B^{\delta}\right)^{\frac{1}{D I V}}
\end{aligned}
\]
or
depending on direction of transcription.

040694 Inscribing A Circle In A Given Triangle
Given three sides of a triangle, what is the length of the inscribed radius?

\[
\begin{aligned}
& \mathbf{A B}:=\mathbf{3} \quad \mathbf{B C}:=4 \quad \mathbf{A C}:=5 \\
& \mathbf{A K}:=\mathbf{A C} \quad \mathbf{B D}:=\mathbf{B C} \quad \mathbf{A F}:=\frac{\mathbf{A C}^{2}+\mathbf{A B}^{2}-\mathbf{B C}^{2}}{2 \cdot \mathbf{A B}} \\
& \mathbf{F K}:=\mathbf{A K}-\mathbf{A F} \quad \mathbf{C F}:=\sqrt{\mathbf{A C}^{2}-\mathbf{A F}^{2}} \\
& \mathbf{C K}:=\sqrt{\mathbf{F K}^{2}+\mathbf{C F}^{2}} \quad \mathbf{A N}:=\frac{\mathbf{C F} \cdot \mathbf{A K}}{\mathbf{C K}} \\
& \mathbf{A H}:=\frac{\mathbf{C F} \cdot \mathbf{A N}}{\mathbf{C K}} \quad \mathbf{H N}:=\frac{\mathbf{F K} \cdot \mathbf{A N}}{\mathbf{C K}} \quad \mathbf{B F}:=\mathbf{A B}-\mathbf{A F}
\end{aligned}
\]
\(\mathbf{D F}:=\mathbf{B D}-\mathbf{B F} \quad \mathbf{C D}:=\sqrt{\mathbf{C F}^{2}+\mathrm{DF}^{2}} \quad \mathbf{B M}:=\frac{\mathbf{C F} \cdot \mathbf{B D}}{\mathbf{C D}} \quad \mathbf{B E}:=\frac{\mathbf{C F} \cdot \mathbf{B M}}{\mathbf{C D}} \quad\) GL \(:=\frac{\mathrm{HN} \cdot \mathbf{A B}}{\mathbf{A H}+\mathbf{B E}}\)
\(\mathbf{S}_{\mathbf{1}}:=\left(\begin{array}{l}\mathbf{A B} \\ \mathbf{B C} \\ \mathbf{A C}\end{array}\right) \mathbf{S}_{\mathbf{2}}:=\left(\begin{array}{l}\mathbf{B C} \\ \mathbf{A C} \\ \mathbf{A B}\end{array}\right) \mathbf{S}_{\mathbf{3}}:=\left(\begin{array}{l}\mathbf{A C} \\ \mathbf{A B} \\ \mathbf{B C}\end{array}\right) \delta_{n}:=\mathbf{0} . .2\)


\section*{Cris}
\[
\begin{array}{ll}
\text { DE }=0.58830 & \text { AB }=2.25959 \\
\text { GL }=0.58830 & B C=2.13235 \\
\text { DE_GL }=0.00000 & \text { AC }=1.84623
\end{array}
\]



\section*{042194 The Cradle}

Are A, M, N colinear?
\(\mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A L}:=\mathbf{A B} \cdot \mathbf{N}\)
\(A F:=\sqrt{A B \cdot A L} \quad A C:=\left(A B^{2} \cdot \mathbf{A L}\right)^{\frac{1}{3}} A J:=\left(A B \cdot A L^{2}\right)^{\frac{1}{3}}\)
\(\mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B P}:=\mathbf{B L} \quad \mathbf{L R}:=\mathbf{B L} \quad \mathbf{F L}:=\mathbf{A L}-\mathbf{A F}\)
\(\mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{J L}:=\mathbf{B L}-\mathbf{B J}\)
\(\mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{F J}:=\mathbf{A J}-\mathbf{A F} \quad \mathbf{C F}:=\mathbf{A F}-\mathbf{A C}\)
\(\mathbf{F G}:=\frac{\mathbf{B F} \cdot \mathbf{F J}}{\mathbf{B F}+\mathbf{J L}} \quad \mathbf{G N}:=\frac{\mathbf{B P} \cdot \mathbf{F G}}{\mathbf{B F}} \quad \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{C F}}{\mathbf{B C}+\mathbf{F L}}\)
\(\mathbf{D M}:=\frac{\mathbf{B P} \cdot \mathbf{C D}}{\mathbf{B C}} \quad \mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{A G}:=\mathbf{A F}+\mathbf{F G}\)
\(\frac{\mathbf{A G}}{\mathbf{G N}}-\frac{\mathbf{A D}}{\mathbf{D M}}=\mathbf{0}\)
\[
\begin{aligned}
& \mathbf{A L}-\mathbf{N}=\mathbf{0} \quad \mathbf{A F}-\sqrt{\mathbf{N}}=\mathbf{0} \quad \mathbf{A C}-\mathbf{N}^{\frac{1}{3}}=0 \quad \mathbf{A J}-\mathbf{N}^{\frac{2}{3}}=0 \quad \mathbf{B L}-(\mathbf{N}-1)=0 \quad \mathbf{F L}-(\mathbf{N}-\sqrt{\mathbf{N}})=0
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{B C}-\left(\mathbf{N}^{\frac{1}{3}}-1\right)=0 \quad \mathbf{B J}-\left(\mathbf{N}^{\frac{2}{3}}-1\right)=0 \quad \mathbf{J L}-\left[\mathbf{N}-1-\left(\mathbf{N}^{\frac{2}{3}}-1\right)\right]=0 \quad B F-(\sqrt{N}-1)=0 \\
& \mathbf{F J}-\left(\mathbf{N}^{\frac{2}{3}}-\sqrt{\mathbf{N}}\right)=\mathbf{0} \quad \mathbf{C F}-\left[\sqrt{\mathbf{N}}-(\mathbf{N})^{\frac{1}{3}}\right]=0 \quad \mathbf{F G}-\frac{\sqrt{\mathbf{N}} \cdot(\sqrt{\mathbf{N}}-1)}{\mathbf{N}^{\frac{1}{3}}+\mathbf{N}^{\frac{2}{3}}+\mathbf{N}^{\frac{1}{6}}+\mathbf{N}^{\frac{5}{6}}+1}=\mathbf{0} \\
& \mathbf{G N}-\frac{\sqrt{N} \cdot(\mathbf{N}-1)}{N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0 \quad \mathbf{C D}-\frac{N^{\frac{1}{3} \cdot\left(N^{\frac{1}{3}}-1\right)}}{\sqrt{N}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0 \\
& \mathbf{D M}-\frac{\mathbf{N}^{\frac{1}{3}} \cdot\left(N^{\prime}-1\right)}{\sqrt{N}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0 \quad \mathbf{A D}-\frac{\left(N^{\frac{1}{6}}\right)^{3} \cdot\left(\sqrt{N}+N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+1\right)}{\sqrt{N}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0 \\
& A G-\frac{N^{\frac{2}{3}} \cdot\left(\sqrt{N}+N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+1\right)}{N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+N^{\frac{5}{6}}+1}=0 \quad \frac{A G}{G N}-\frac{N^{\frac{1}{6}} \cdot\left(\sqrt{N}+N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+1\right)}{N-1}=0 \quad \frac{A D}{D M}-\frac{N^{\frac{1}{6}} \cdot\left(\sqrt{N}+N^{\frac{1}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{6}}+1\right)}{N-1}=0
\end{aligned}
\]
\(\sim_{N=0}^{\infty}\)
\(\mathbf{N}_{\mathbf{1}}:=-\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{3}}:=-\mathbf{7}\)
\(\mathbf{R}_{\mathbf{1}}:=\sqrt{\mathbf{N}_{\mathbf{1}}{ }^{\mathbf{2}}} \quad \mathbf{R}_{\mathbf{2}}:=\sqrt{\mathbf{N}_{\mathbf{2}}{ }^{\mathbf{2}}}\)
The above is one way using a numbered line for values that do not have negative values.
\(\mathbf{A C}:=\mathbf{R}_{\mathbf{1}} \quad\) BD \(:=\mathbf{R}_{\mathbf{2}} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{3}}\)

042694 Tangents and Similarity Points.


What is the length of the \(A O, O\) being the similarity point?
\(\mathbf{D E}:=\mathbf{A B} \quad \mathbf{A E}:=\mathbf{B D} \quad \mathbf{C E}:=\mathbf{A C}-\mathbf{A E}\)
AO := \(\frac{\text { DE } \cdot \mathrm{AC}}{\text { CE }} \quad\) AO \(=-21\)
\(\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}}=-\mathbf{2 1}\)
\(\mathbf{A O}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}}=\mathbf{0}\)

CrAB

\section*{What is the length of the tangent GO?}
\[
\begin{aligned}
& \mathbf{A G}:=\mathbf{R}_{\mathbf{1}} \quad \mathbf{G O}:=\sqrt{\mathbf{A O} \mathbf{O}^{2}-\mathbf{A G}{ }^{2}} \\
& \mathbf{G O}-\frac{\mathbf{R}_{\mathbf{1}} \cdot \sqrt{\mathbf{N}_{\mathbf{3}}{ }^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}+\mathbf{2} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{2}}{ }^{2}}}{\sqrt{\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}\right)^{2}}}=\mathbf{0}
\end{aligned}
\]


What is the length of the tangent HO?
\[
\begin{aligned}
& \mathbf{B H}:=\mathbf{R}_{\mathbf{2}} \quad \mathbf{H O}:=\sqrt{\left(\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}}-\mathbf{N}_{\mathbf{3}}\right)^{\mathbf{2}}-\mathbf{R}_{\mathbf{2}}{ }^{2}} \\
& \mathbf{H O}-\frac{\mathbf{R}_{\mathbf{2}} \cdot \sqrt{\mathbf{N}_{\mathbf{3}}{ }^{\mathbf{2}}-\mathbf{R}_{\mathbf{1}}{ }^{\mathbf{2}+\mathbf{2} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{2}}{ }^{2}}} \frac{\mathbf{~}}{\sqrt{\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}\right)^{\mathbf{2}}}}=\mathbf{0}}{}=\text {, }
\end{aligned}
\]

What is the length of line tangent to tangent of these circles?
\[
\mathbf{G H}:=\frac{\mathbf{G O} \cdot \mathbf{A B}}{\mathbf{A O}} \quad \mathbf{G H}-\sqrt{\mathbf{N}_{3}^{2}-\mathbf{R}_{1}^{2}+2 \cdot \mathbf{R}_{1} \cdot \mathbf{R}_{2}-\mathbf{R}_{2}^{2}}=\mathbf{0}
\]

\section*{}

What are the names of the tangents AP and BP to the similarity point \(P\) ?
\(\mathbf{A P}:=\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}} \quad \mathbf{B P}:=\mathbf{N}_{\mathbf{3}}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}} \quad \mathbf{B P}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{R}_{\mathbf{2}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}=\mathbf{0}\)
What is JP?
\(J P:=\sqrt{A P^{2}-\mathbf{R}_{1}{ }^{2}} \quad J P-\frac{\mathbf{R}_{1} \cdot \sqrt{\mathbf{N}_{3}{ }^{2}-\mathbf{R}_{1}{ }^{2}-2 \cdot \mathbf{R}_{1} \cdot \mathbf{R}_{2}-\mathbf{R}_{2}{ }^{2}}}{\mathbf{R}_{1}+\mathbf{R}_{2}}=0\)


What is KP?
\(\mathbf{K P}:=\frac{\mathbf{J P} \cdot \mathbf{B P}}{\mathbf{A P}} \quad K P-\frac{\mathbf{R}_{\mathbf{2}} \cdot \sqrt{\mathbf{N}_{\mathbf{3}}{ }^{\mathbf{2}}-\mathbf{R}_{\mathbf{1}}{ }^{\mathbf{2}}-\mathbf{2} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{2}}{ }^{\mathbf{2}}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}=\mathbf{0}\)

\section*{What is JK?}
\(\mathbf{J K}:=\frac{\mathbf{J P} \cdot \mathbf{A B}}{\mathbf{A P}} \quad \mathbf{J K}-\sqrt{\mathbf{N}_{3}{ }^{2}-\mathbf{R}_{1}{ }^{2}-\mathbf{2} \cdot \mathbf{R}_{1} \cdot \mathbf{R}_{2}-\mathbf{R}_{\mathbf{2}}{ }^{\mathbf{2}}}=\mathbf{0}\)

04/27/94 The Chordal or Power Line of two Circles
The solution for finding the chordal as outlined in 100 Great Problems of Elementary Mathematics Their History and Solution by Heinrich Dörrie did not lend itself to an ordered process, so I took a couple of minuets (Bach) and developed my own method.
One of the attributes of the powerline is that a circle drawn with a center on the powerline which cuts one perpendicularly will cut the other as such.
Given two circles find their chordal or power line given just their radius and difference between their centers. Then, pick a spot on the power line and write the equation for the tangent circle.
\[
\begin{array}{rl}
\mathbf{N}_{1}:=3 & \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{3}}:=6 \quad \mathbf{R}_{\mathbf{1}}:=\sqrt{\mathbf{N}_{\mathbf{1}}{ }^{2}} \quad \mathbf{R}_{\mathbf{2}}:=\sqrt{\mathbf{N}_{\mathbf{2}}{ }^{2}} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{3}} \\
\mathbf{A C}:=\frac{\mathbf{R}_{\mathbf{1}}{ }^{2}}{\mathbf{A B}} \quad \mathbf{B D}:=\frac{\mathbf{R}_{\mathbf{2}}{ }^{2}}{\mathbf{A B}} \quad \mathbf{C D}:=\mathbf{A B}-(\mathbf{A C}+\mathbf{B D}) \quad \mathbf{C E}:=\frac{\mathbf{C D}}{2} \\
\mathbf{A E}:=\mathbf{A C}+\mathbf{C E} & \mathbf{B E}:=\mathbf{A B}-\mathbf{A E} \\
& \mathbf{A E}-\frac{\mathbf{N}_{\mathbf{3}}{ }^{2}+\mathbf{R}_{\mathbf{1}}{ }^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}}{\mathbf{2} \cdot \mathbf{N}_{\mathbf{3}}}=\mathbf{0} \\
\mathbf{B E}-\frac{\mathbf{N}_{\mathbf{3}}{ }^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}+\mathbf{R}_{\mathbf{2}}{ }^{2}}{\mathbf{2} \cdot \mathbf{N}_{\mathbf{3}}}=\mathbf{0}
\end{array}
\]

If these equations look familiar, see 01/08/93 The perpendicular of a Triangle would be on the powerline.
\[
\begin{aligned}
& \mathbf{N}_{4}:=.698 \quad \mathbf{A F}:=\sqrt{\mathbf{A E}^{2}+\mathbf{N}_{\mathbf{4}}{ }^{2}} \quad \mathbf{A G}:=\mathbf{R}_{\mathbf{1}} \quad \mathbf{F G}:=\sqrt{\mathbf{A F}^{2}-\mathbf{R}_{\mathbf{1}}{ }^{2}} \\
& \mathbf{F G}-\frac{\sqrt{\mathbf{N}_{\mathbf{3}}{ }^{2} \cdot\left(\mathbf{N}_{\mathbf{3}}{ }^{2}+4 \cdot \mathbf{N}_{\mathbf{4}}{ }^{2}-\mathbf{2} \cdot \mathbf{R}_{1}{ }^{2}-\mathbf{2} \cdot \mathbf{R}_{\mathbf{2}}{ }^{2}\right)+\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}\right)^{\mathbf{2}} \cdot\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}\right)^{2}}}{2 \cdot \sqrt{\mathbf{N}_{\mathbf{3}}{ }^{2}}}=\mathbf{0}
\end{aligned}
\]

\section*{042894 Power Point}

Given three circles find their power point and if it is at all possible, cut all three perpendicularly. Demonstrate an Algebraic name for the power point and the length of the resultant tangent.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=1 \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{2} \quad \mathrm{AC}:=\mathbf{7 . 8 1 4 4 7} \quad \mathrm{AE}:=6.96686 \quad \text { CE }:=\mathbf{5 . 3 3 2 7 9} \\
& \mathbf{R}_{1}:=\sqrt{\mathbf{N}_{\mathbf{1}}{ }^{2}} \quad \mathbf{R}_{\mathbf{2}}:=\sqrt{\mathbf{N}_{\mathbf{2}}{ }^{2}} \quad \mathbf{R}_{\mathbf{3}}:=\sqrt{\mathbf{N}_{\mathbf{3}}{ }^{2}} \quad \mathrm{D}_{\mathbf{1}}:=\mathbf{A C} \quad \mathbf{D}_{\mathbf{2}}:=\mathrm{AE} \quad \mathbf{D}_{\mathbf{3}}:=\mathbf{C E} \\
& A G:=\frac{\sqrt{\left({R_{1}}^{2}+{D_{1}}^{2}-{R_{2}}^{2}\right)^{2}}}{2 \cdot D_{1}} \quad A H:=\frac{\sqrt{\left({R_{1}}^{2}+D_{2}{ }^{2}-R_{3}{ }^{2}\right)^{2}}}{2 \cdot D_{2}} \\
& A M:=\frac{\sqrt{\left({D_{2}}^{2}+D_{1}{ }^{2}-D_{3}{ }^{2}\right)^{2}}}{2 \cdot D_{1}} \\
& \mathbf{E M}:=\sqrt{\mathbf{A E}^{\mathbf{2}}-\mathbf{A M}^{\mathbf{2}}} \quad \mathbf{A K}:=\frac{\mathbf{A E} \cdot \mathbf{A H}}{\mathbf{A M}} \quad \mathbf{G K}:=\mathbf{A K}-\mathbf{A G} \quad \mathbf{G J}:=\frac{\mathbf{A M} \cdot \mathbf{G K}}{\mathbf{E M}} \\
& G J-\frac{2 \cdot D_{1}{ }^{2} \cdot \sqrt{\left({D_{2}}^{2}+{R_{1}}^{2}-R_{3}{ }^{2}\right)^{2}}-\sqrt{\left({D_{1}}^{2}+{D_{2}}^{2}-D_{3}{ }^{2}\right)^{2}} \cdot \sqrt{\left({D_{1}}^{2}+{R_{1}}^{2}-R_{2}{ }^{2}\right)^{2}}}{2 \cdot \sqrt{D_{1}{ }^{2}} \cdot \sqrt{\left(D_{1}+D_{2}-D_{3}\right) \cdot\left(D_{1}-D_{2}+D_{3}\right) \cdot\left(D_{2}-D_{1}+D_{3}\right) \cdot\left(D_{1}+D_{2}+D_{3}\right)}}=0
\end{aligned}
\]

AJ \(:=\sqrt{\mathbf{A G}^{2}+\mathbf{G J}^{2}} \quad \mathbf{A N}:=\mathbf{R}_{1} \quad \mathbf{J N}:=\sqrt{\mathbf{A J}^{2}-\mathbf{A N}}{ }^{\mathbf{2}}\)
\begin{tabular}{llll}
\(N_{1}=2.27017\) & \(R_{1}=2.27017\) & & \\
\(N_{2}=1.11001\) & \(R_{2}=1.11001\) & \(A C=1.74796\) & \(D_{1}=1.74796\) \\
\(N_{3}=1.12235\) & \(R_{3}=1.12235\) & CE \(=3.17617\) & \(D_{2}=4.17617\) \\
\(N_{4}=2.09689\) & & \(A M=1.38576\) & \(D_{3}=3.95617\) \\
& & GJ \(=2.00571\) & \\
& & JN \(=1.68883\) &
\end{tabular}





Given AB, AF, BE, what is EF?
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{2} \quad \mathbf{N}_{2}:=\mathbf{3} \quad \mathbf{N}_{3}:=\mathbf{5} \quad \mathbf{A F}:=\mathbf{N}_{1} \quad \mathrm{BE}:=\mathrm{N}: \mathbf{A B}:=\mathrm{N}_{3} \\
& \mathbf{A D}:=\mathbf{B E} \quad \mathbf{D E}:=\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{E F}:=\left(\mathbf{D F}^{2}+\mathbf{D E}^{2}\right)^{\frac{1}{2}} \\
& \mathbf{E F}-\sqrt{\mathbf{N}_{\mathbf{1}}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{2}}{ }^{2}+\mathbf{N}_{\mathbf{3}}{ }^{2}}=\mathbf{0}
\end{aligned}
\]
\[
E F-\sqrt{N_{1}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}+N_{3}^{2}}=\mathbf{0}
\]

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B C}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A C}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B C}^{2}} \\
& \mathbf{C D}:=\frac{\mathbf{B C} \cdot \mathbf{A C}}{\mathbf{A B}} \quad \mathbf{B D}:=\sqrt{\mathbf{C D}^{2}-\mathbf{B C}^{2}} \\
& \frac{\mathbf{N}_{\mathbf{2}}{ }^{2}}{\mathbf{N}_{\mathbf{1}}}-\mathbf{B D}=\mathbf{0}
\end{aligned}
\]


\section*{050194 Two Circles And A Parallel}

Given the radius of two tangent circles find the radius of the third that is tangent to the two circles and tangent to the parallel opposite AP which is tangent to the larger circle.


The Algebraic name for GJ suggests a simpler method of construction.
\[
\begin{aligned}
& \mathbf{R}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{2} \\
& \mathrm{DE}:=\mathbf{R}_{1} \quad \mathrm{BC}:=\mathbf{R}_{2} \quad \mathbf{C N}:=\mathrm{BC} \quad \mathrm{EQ}:=\mathrm{DE} \quad \mathrm{CD}:=\mathrm{BC} \quad \mathrm{CE}:=\mathrm{CD}+\mathrm{DE} \\
& \mathbf{E S}:=\mathbf{C N} \quad \mathbf{N S}:=\mathbf{C E} \quad \mathbf{S Q}:=\mathbf{E Q}-\mathbf{E S} \quad \mathbf{A E}:=\frac{\mathbf{N S} \cdot \mathbf{E Q}}{\mathbf{S Q}} \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathbf{E P}:=\mathbf{D E} \\
& \mathbf{A P}:=\sqrt{\mathbf{A E}^{2}-\mathbf{E P}^{2}} \quad \mathbf{D O}:=\frac{\mathbf{E P} \cdot \mathbf{A D}}{\mathbf{A P}} \quad \mathbf{D L}:=\frac{\mathbf{D O} \cdot \mathbf{D E}}{\mathbf{C D}} \quad \mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \\
& \mathbf{A M}:=\frac{\mathbf{A P} \cdot \mathbf{A C}}{\mathbf{A E}} \quad \mathbf{A O}:=\frac{\mathbf{A E} \cdot \mathbf{A D}}{\mathbf{A P}} \text { MO }:=\mathbf{A O}-\mathbf{A M} \quad \text { MR }:=\frac{\mathbf{A D} \cdot \mathbf{M O}}{\mathbf{A O}} \quad \text { RO }:=\frac{\mathbf{D O} \cdot \mathbf{M R}}{\mathbf{A D}} \\
& \mathbf{D R}:=\mathbf{D O}-\mathbf{R O} \quad \mathbf{L R}:=\mathbf{D R}+\mathbf{D L} \quad \mathbf{M L}:=\sqrt{\mathbf{M R}^{\mathbf{2}}+\mathbf{L R}^{\mathbf{2}}} \quad \mathbf{D K}:=\frac{\mathbf{M R} \cdot \mathbf{D L}}{\mathbf{L R}} \\
& \mathbf{C K}:=\mathrm{DK}-\mathbf{C D} \quad \mathbf{C H}:=\frac{\mathrm{LR} \cdot \mathbf{C K}}{\mathrm{ML}} \quad \mathbf{C M}:=\mathbf{B C} \quad \mathbf{M H}:=\sqrt{\mathbf{C M}^{2}-\mathbf{C H}^{2}} \\
& \mathbf{M G}:=\mathbf{2} \cdot \mathbf{M H} \quad \mathbf{G L}:=\mathbf{M L}-\mathbf{M G} \quad \mathbf{G J}:=\frac{\mathbf{C M} \cdot \mathbf{G L}}{\mathbf{M G}} \\
& \mathbf{R}_{\mathbf{3}}:=\frac{\mathbf{R}_{\mathbf{1}}{ }^{\mathbf{2}}}{\mathbf{4} \cdot \mathbf{R}_{\mathbf{2}}} \quad \mathbf{G} \mathbf{J}-\mathbf{R}_{\mathbf{3}}=\mathbf{0} \\
& \text { ET }:=4 \cdot B C \quad E V:=D E \quad E U \quad:=\frac{D E^{2}}{E T} \\
& \mathbf{V W}:=\mathbf{E U} \quad \mathbf{X Y}:=\mathbf{E U} \quad \mathbf{E V}:=\mathbf{D E} \mathbf{C X}:=\mathbf{B C} \\
& \mathbf{E W}:=\mathbf{E V}+\mathbf{V W} \quad \mathbf{C Y}:=\mathbf{C X}+\mathbf{X Y} \\
& \mathbf{G} \mathbf{J}_{\mathbf{2}}:=\mathbf{E} \mathbf{U} \quad \mathbf{G J}-\mathbf{G} \mathbf{J}_{\mathbf{2}}=\mathbf{0}
\end{aligned}
\]

\section*{050494 Two Circles And A Tangent}

Given two circles, the difference between them and a point on one expressed as a ratio of the diameter, find the circle tangent to both at that point.

\[
\begin{aligned}
& \begin{array}{l}
\mathbf{R}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{D}:=\mathbf{2} \quad \mathbf{d x}:=\mathbf{2} \\
\mathbf{F K}:=\mathbf{R}_{\mathbf{1}} \\
\mathbf{B C}:=\mathbf{R}_{\mathbf{2}}
\end{array} \quad \mathbf{C H}:=\mathbf{D} \quad \mathbf{F L}:=\mathbf{2} \cdot \mathbf{F K} \quad \mathbf{A K}:=\frac{\mathbf{D} \cdot \mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}} \\
& \mathbf{E K}:=\frac{\mathbf{R}_{1}{ }^{\mathbf{2}}+\mathbf{D}^{\mathbf{2}}-\mathbf{R}_{\mathbf{2}}{ }^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{D}} \quad \mathbf{A Q}:=\mathbf{R}_{1} \cdot \frac{\sqrt{\left(\mathbf{R}_{1}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(-\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}}{\mathbf{R}_{1}-\mathbf{R}_{\mathbf{2}}} \quad \mathbf{F G}:=\frac{\mathbf{F L}}{\mathbf{d x}} \\
& \mathbf{G L}:=\mathbf{F L}-\mathbf{F G} \quad \mathbf{G M}:=\sqrt{\mathbf{F G} \cdot \mathbf{G L}} \quad \mathbf{A J}:=\frac{\mathbf{A Q} \cdot \mathbf{A Q}}{\mathbf{A K}} \quad \mathbf{A F}:=\mathbf{A K}-\mathbf{F K} \\
& \text { FJ }:=\mathbf{A J}-\mathbf{A F} \quad \mathbf{J L}:=\mathbf{F L}-\mathbf{F J} \quad \mathbf{J Q}:=\sqrt{\text { FJ.JL }} \quad \text { GJ }:=\mathbf{F J}-\mathbf{F G} \\
& \mathbf{Q M}:=\sqrt{(\mathbf{J Q}+\mathbf{G M})^{2}+\mathbf{G J}^{\mathbf{2}}} \quad \mathbf{G H}:=\frac{\mathbf{G J} \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}} \quad \mathbf{H M}:=\frac{\mathbf{Q M} \cdot \mathbf{G M}}{\mathbf{J Q}+\mathbf{G M}} \\
& \mathbf{E F}:=\mathbf{E K}-\mathbf{F K} \quad \mathbf{E H}:=\mathbf{E F}+\mathbf{F G}+\mathbf{G H} \quad \mathbf{H O}:=\frac{\mathbf{H M} \cdot \mathbf{E H}}{\mathbf{G H}} \quad \text { MO }:=\mathbf{H O}-\mathbf{H M} \\
& \mathbf{K M}:=\mathbf{F K} \quad \mathbf{M N}:=\frac{\mathbf{K M} \cdot \mathbf{M O}}{\mathbf{Q M}} \\
& \mathbf{M N}=-\mathbf{4 . 5} \\
& \sqrt{\left[\frac{\left(\mathbf{4} \cdot \mathbf{R}_{1} \cdot \mathbf{D}\right)-\mathbf{d x} \cdot\left(\mathbf{R}_{2}+\mathbf{D}-\mathbf{R}_{1}\right) \cdot\left(\mathbf{R}_{2}+\mathbf{R}_{1}-\mathbf{D}\right)}{2 \cdot d x \cdot\left(\mathbf{R}_{2}+\mathbf{D}-\mathbf{R}_{1}\right)-\mathbf{4} \cdot \mathbf{D}}\right]^{2}}=\mathbf{4 . 5}
\end{aligned}
\]

\[
\begin{array}{ll}
\mathbf{A B}:=2.38542 & \frac{\mathbf{N}_{\mathbf{3}}{ }^{2}+\mathbf{R}_{\mathbf{1}}{ }^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}}{\mathbf{2} \cdot \mathbf{N}_{\mathbf{3}}} \\
\mathbf{C D}:=1.72917 & \text { From } 042794 \text { power line. } \\
\text { BD }:=3.17708 & \text { F }
\end{array}
\]

\[
\begin{aligned}
& \mathbf{E F}:=\mathbf{B D} \quad \mathbf{E G}:=\mathbf{A B}-\mathbf{C D} \quad \mathbf{B H}:=\frac{\mathbf{E F} \cdot \mathbf{A B}}{\mathbf{E G}} \quad \mathbf{B J}:=\frac{\mathbf{A B}^{\mathbf{2}}}{\mathbf{B H}} \quad \mathbf{K L}:=\frac{\mathbf{2} \cdot \mathbf{A B}}{\mathbf{d x}} \\
& \mathbf{J L}:=\mathbf{A B}-\mathbf{B J} \quad \mathbf{J K}:=\mathbf{J L}-\mathbf{K L} \quad \text { GJ }:=\sqrt{(\mathbf{2} \cdot \mathbf{A B}-\mathbf{J L}) \cdot \mathbf{J L}} \\
& \mathbf{K O}:=\sqrt{(2 \cdot \mathbf{A B}-\mathbf{K L}) \cdot \mathbf{K L}} \quad \mathrm{KN}:=\frac{\mathrm{JK} \cdot \mathbf{K O}}{\mathbf{G J}+\mathbf{K O}} \quad \mathrm{BP}:=\frac{\mathrm{BD}^{2}+\mathrm{AB}^{2}-\mathrm{CD}^{2}}{2 \cdot \mathbf{B D}} \\
& \mathbf{J N}:=\frac{\mathbf{J K} \cdot \mathbf{G J}}{\mathbf{G J}+\mathbf{K O}} \quad \mathbf{N P}:=\mathbf{B P}-(\mathbf{B J}+\mathbf{J N}) \quad \text { NO }:=\sqrt{\mathbf{K O}^{2}+\mathbf{K N}^{2}} \\
& \mathbf{Q N}:=\frac{\mathbf{N O} \cdot \mathbf{N P}}{\mathbf{K N}} \quad \mathbf{O Q}:=\mathbf{Q N}-\mathbf{N O} \quad \mathbf{O R}:=\frac{\mathbf{O Q}}{\mathbf{2}} \quad \mathbf{G O}:=\sqrt{(\mathbf{G J}+\mathbf{K O})^{\mathbf{2}}+\mathbf{J K}^{\mathbf{2}}} \\
& \text { SO := } \frac{\text { AB } \cdot \text { OR } \cdot 2}{\text { GO }} \quad \text { SO }=-4.204157 \\
& \mathbf{R}_{\mathbf{1}}:=\mathbf{A B} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{C D} \quad \mathbf{D}:=\mathbf{B D} \\
& \mathbf{S O}-\frac{\left(\mathbf{4} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{D}\right)-\mathbf{d x} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right) \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}-\mathbf{D}\right)}{\mathbf{2 \cdot d x} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right)-\mathbf{4} \cdot \mathbf{D}}=\mathbf{0} \\
& \sqrt{\left[\frac{\left(\mathbf{4} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{D}\right)-\mathbf{d x} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right) \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}-\mathbf{D}\right)}{\mathbf{2} \cdot \mathbf{d x} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right)-\mathbf{4} \cdot \mathbf{D}}\right]^{2}}=\mathbf{4 . 2 0 4 1 5 7}
\end{aligned}
\]

\section*{\(\sim_{n=0}^{0}\)}



\section*{050694 A Ratio In Trisection}

What is AJ to CG?

\(\mathbf{C G}:=\frac{\mathbf{F H}}{\mathbf{N}} \quad \mathbf{E G}:=\sqrt{\mathbf{C E}^{2}-\mathbf{C G}^{2}} \quad \mathbf{C D}:=\frac{\mathbf{C G}^{2}}{\mathbf{C E}}\)
\(\mathbf{D G}:=\sqrt{\mathbf{C G}^{2}-\mathbf{C D}^{2}} \quad\) EH \(:=2 \cdot \mathbf{E G} \quad \mathbf{B H}:=\frac{\mathbf{D G} \cdot \mathbf{E H}}{\text { EG }} \quad \mathbf{C H}:=\mathbf{F H}\)
\(\mathbf{B C}:=\sqrt{\mathbf{C H}^{2}-\mathbf{B H}^{2}} \quad \mathbf{A C}:=2 \cdot \mathbf{B A E}:=\mathbf{A C}+\mathbf{C E} \quad \mathbf{A J}:=\frac{\mathbf{C G} \cdot \mathbf{A E}}{\mathbf{C E}} \quad 3 \cdot \mathbf{C G}-\frac{4 \cdot \mathbf{C G}^{\mathbf{3}}}{\mathbf{C E}^{2}}-\mathbf{A J}=\mathbf{0}\)
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{6} \\
& \mathbf{F H}:=\mathbf{1}
\end{aligned}
\]

The resultant equation suggests this construction.
\[
\left(3 \cdot \frac{C G}{F H}-4 \cdot \frac{C G^{3}}{F H}\right)-\frac{A J}{F H}=0.00000
\]
\[
\begin{aligned}
& \text { FM }:=\mathbf{1} \\
& \mathbf{C E}:=\mathbf{F H}
\end{aligned}
\]



\section*{050794 A Trisection Ratio}

In trisection, what is the ratio of FG/EK?


The gist of the story is this. Once one knows the ratio between difference parts of a figure the ratio between difference parts of a fig example, AE as unit and EF as a ratio of the figure, then one knows the multiple of the unit by which to project any of the remaining unknowns; i.e. EK/HK. -1 to 1.
\[
\mathbf{E F}-\frac{\mathbf{A E} \cdot \sqrt{\mathbf{N}+1} \cdot(\mathbf{N}-2)}{(\mathbf{3}}=0 \quad \mathbf{E K}-\frac{\mathbf{A E} \cdot(\mathbf{N}+2)}{2 \cdot \mathbf{N}}=0 \quad \frac{\mathbf{E F}}{\mathbf{E K}}-\frac{2 \cdot \mathbf{N} \cdot \sqrt{\mathbf{N}+1} \cdot(\mathbf{N}-2)}{(\mathbf{N}+2)^{\frac{5}{2}}}=0
\]
\(\mathbf{F G}-\frac{\mathbf{A E} \cdot\left[\sqrt{\mathbf{N}+\mathbf{1}} \cdot(\mathbf{N}+\mathbf{2})^{2}+\sqrt{\mathbf{N}+\mathbf{2}} \cdot(\mathbf{N}+\mathbf{1}) \cdot(\mathbf{2}-\mathbf{N})\right]}{\sqrt{\mathbf{N}+\mathbf{1}} \cdot(\mathbf{N}+\mathbf{2})^{2}}=\mathbf{0}\)
\[
\frac{\mathbf{A E}}{\mathbf{E F}}-\frac{(\sqrt{\mathbf{N}+2})^{3}}{\sqrt{\mathbf{N}+1} \cdot(\mathbf{N}-2)}=0
\]
\(\mathbf{A E}:=1 \quad \mathbf{E H}:=\frac{\mathbf{A E}}{2} \quad \mathbf{H K}:=\frac{\mathbf{A E}}{\mathbf{N}} \quad\) AK \(:=\mathbf{A E}+\mathbf{E H}+\mathbf{H K}\)
EJ \(:=\) AE \(\quad\) EK \(:=\mathbf{E H}+\) HK AD \(:=\frac{\text { EJ•AK }}{\text { EK }} \quad\) CD \(:=A E\)
\(\mathrm{AC}:=\mathrm{AD}-\mathbf{C D} \quad \mathrm{BC}:=\frac{\mathbf{A C}}{2} \mathbf{C E}:=\mathrm{AE} \quad \mathrm{BE}:=\sqrt{\mathrm{CE}^{2}-\mathrm{BC}^{2}}\)
\(\mathrm{BD}:=\mathrm{CD}+\mathrm{BC} \quad \mathrm{DE}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BE}^{2}} \quad \mathrm{DF}:=\frac{\mathrm{BD} \cdot \mathrm{AD}}{\mathrm{DE}}\)
\(\mathbf{E G}:=\mathbf{A E} \quad \mathbf{D G}:=\mathbf{D E}+\mathbf{E G} \quad \mathbf{F G}:=\mathbf{D G}-\mathbf{D F}\)
\(\mathbf{E F}:=\mathbf{A E}-\mathbf{F G} \quad \mathbf{D K}:=\mathbf{A E}+\mathbf{E K}\)

Algebraic Names.
\[
\frac{F G}{E K}-\frac{2 \cdot \mathbf{N} \cdot\left[\sqrt{\mathbf{N}+1} \cdot(2-\mathbf{N})+(\mathbf{N}+2)^{\frac{3}{2}}\right]}{(\mathbf{N}+2)^{\frac{5}{2}}}=0 \quad \frac{\mathbf{E K}}{\mathbf{E F}}-\frac{(\mathbf{N}+2)^{\frac{5}{2}}}{2 \cdot \mathbf{N} \cdot \sqrt{N+1} \cdot(\mathbf{N}-2)}=0
\]
\[
\frac{\mathbf{E F}}{\mathbf{A E}} \cdot \frac{(\sqrt{\mathbf{N}+2})^{3}}{\sqrt{\mathbf{N}+1} \cdot(\mathbf{N}-2)}=1
\]
\[
\frac{\mathbf{E K}}{\mathbf{H K}}-\frac{\mathrm{N}+2}{2}=0
\]


\section*{\(\mathbf{N}_{1}=3.64002\)}
\(\frac{\left(2 \cdot N_{1} \cdot\left(\sqrt{N_{1}+1} \cdot\left(2-N_{1}\right)+\left(N_{1}+2\right)^{\frac{3}{2}}\right)\right)}{\left(N_{1}+2\right)^{\frac{5}{2}}}-\frac{F G}{E K}=0.00000 \frac{\left(N_{1}+2\right)^{\frac{5}{2}}}{\left(2 \cdot N_{1} \cdot \sqrt{N_{1}+1} \cdot\left(N_{1}-2\right)\right)}-\frac{E K}{E F}=0.00000\)
\(\frac{A E \cdot \sqrt{N_{1}+1} \cdot\left(N_{1}-2\right)}{{\sqrt{N_{1}+2^{3}}}^{3}}-E F=0.00000 \quad \frac{A E \cdot\left(N_{1}+2\right)}{2 \cdot N_{1}}-E K=0.00000 \quad \frac{\left(2 \cdot N_{1} \cdot \sqrt{N_{1}+1} \cdot\left(N_{1}-2\right)\right)}{\left(N_{1}+2\right)^{\frac{5}{2}}}-\frac{E F}{E K}=0.00000\)
\(\frac{A E \cdot\left(\sqrt{N_{1}+1} \cdot\left(N_{1}+2\right)^{2}+\sqrt{N_{1}+2} \cdot\left(N_{1}+1\right) \cdot\left(2-N_{1}\right)\right)}{\sqrt{N_{1}+1} \cdot\left(N_{1}+2\right)^{2}}-F G=0.00000 \quad \frac{\sqrt{N_{1}+2^{3}}}{\left(\sqrt{N_{1}+1} \cdot\left(N_{1}-2\right)\right)}-\frac{A E}{E F}=0.00000 \quad \frac{\sqrt{N_{1}+2^{3}}}{\left(\sqrt{N_{1}+1} \cdot\left(N_{1}-2\right)\right)} \cdot\left(\frac{E F}{A E}\right)=1.00000\)


051694A Tangent Diameter and Circles

Choose a point along CF and the number of circles tanget to it and to the circumscribing circle and place them in the downright position.

The first variable is just the chosen place for the tangent circles. The second is the number of circles to construct.
\(\mathbf{C F}:=2 \quad \mathrm{CE}:=1 \quad \mathbf{N}_{1}:=4 \quad \mathbf{N}_{2}:=2 \quad \mathrm{CD}:=\frac{\mathrm{CE}}{\mathbf{N}_{1}} \quad \mathrm{DE}:=\mathrm{CE}-\mathrm{CD} \quad \mathrm{EJ}:=\mathrm{CE} \cdot \mathbf{N}_{2}\)

BJ \(:=\mathbf{B G}+\mathbf{J G} \quad \mathbf{J K}:=\mathbf{C E} \quad \mathbf{B D}:=\mathbf{B J}-\mathbf{D J} \quad \mathbf{D H}:=\frac{\mathbf{J K} \cdot \mathbf{B D}}{\mathbf{B J}}\)
Algebraic Names:
\(C D-\frac{1}{N_{1}}=0 \quad D E-\frac{\left(N_{1}-1\right)}{N_{1}}=0 \quad E J-N_{2}=0 \quad D J-\frac{\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}}}{N_{1}}=0\)
\(J G-\frac{N_{1} \cdot N_{2}{ }^{2}}{\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}}}=0 \quad E G:=\frac{\left(N_{1}-1\right) \cdot N_{2}}{\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}}}\)
\(B G-\sqrt{\frac{\left(N_{1}{ }^{2}-2 \cdot N_{1}+1+2 \cdot N_{2}{ }^{2} \cdot N_{1}-N_{2}{ }^{2}\right)}{\left(N_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}\right)}}=0\)
BJ \(-\frac{\left(\sqrt{N_{1}^{2}-2 \cdot N_{1}+1+2 \cdot N_{2}^{2} \cdot N_{1}-N_{2}^{2}}+{N_{2}}^{2} \cdot N_{1}\right)}{\sqrt{N_{1}^{2}-2 \cdot N_{1}+1+N_{2}^{2} \cdot N_{1}^{2}}}=0\)
\(B D-\frac{\left(2 \cdot N_{1}-N_{1}{ }^{2}+N_{1} \cdot \sqrt{N_{1}{ }^{2}+2 \cdot N_{1} \cdot N_{2}{ }^{2}-2 \cdot N_{1}-N_{2}{ }^{2}+1}-1\right)}{\left(\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}+1+N_{2}{ }^{2} \cdot N_{1}{ }^{2}} \cdot N_{1}\right)}=0\)
\(\mathrm{DH}-\frac{\sqrt{\mathrm{N}_{1}^{2}-2 \cdot N_{1}+1+2 \cdot N_{2}^{2} \cdot N_{1}-N_{2}^{2}} \cdot N_{1}-N_{1}^{2}+2 \cdot N_{1}-1}{N_{1} \cdot\left(\sqrt{N_{1}{ }^{2}-2 \cdot N_{1}+1+2 \cdot N_{2}^{2} \cdot N_{1}-N_{2}^{2}}+N_{2}^{2} \cdot N_{1}\right)}=0\)

05/ 16/94B Tangent Diameter and Circles
Choose a point along DF and the number of circles tanget to it and to the circumscribing circle and place them in the upright position.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{A F}:=\mathbf{1} \\
& \text { DF }:=\mathbf{A F} \quad \text { DE }:=\frac{\mathbf{D F}}{\mathbf{N}_{\mathbf{1}}} \text { AJ }:=\mathbf{A F} \cdot \mathbf{N}_{\mathbf{2}} \\
& \text { HJ := AF EF := DF - DE FJ := AJ - AF } \\
& \text { EJ }:=\sqrt{\mathbf{E F}^{2}+\mathbf{F J}^{2}} \quad \text { EG }:=\frac{\mathbf{E F}^{2}}{\mathrm{EJ}} \quad \mathrm{BF}:=\mathbf{A F} \\
& \mathbf{F G}:=\sqrt{\mathbf{E F}^{2}-\mathbf{E G}}{ }^{\mathbf{2}} \quad \mathbf{B G}:=\sqrt{\mathbf{B F}^{2}-\mathbf{F G}^{2}} \quad \mathbf{B E}:=\mathbf{B G}-\mathbf{E G} \\
& \text { BJ }:=\mathbf{B E}+\mathbf{E J} \quad \mathbf{K E}:=\frac{\mathbf{H J} \cdot \mathbf{B E}}{\mathrm{BJ}} \quad \mathbf{B C}:=\mathbf{B F}-\sqrt{\mathbf{E F}^{2}+\left[\left(\frac{\mathbf{A J}-\mathbf{A F}}{\mathrm{AF}}\right) \cdot \mathrm{KE}\right]^{2}} \quad \mathbf{B C}-\mathbf{K E}=0 \\
& B C-\frac{2 \cdot N_{1}-N_{1}{ }^{2}+N_{1} \cdot \sqrt{N_{1}{ }^{2}+2 \cdot N_{1} \cdot N_{2}{ }^{2}-4 \cdot N_{1} \cdot N_{2}-N_{2}{ }^{2}+2 \cdot N_{2}}-1}{N_{1} \cdot\left(N_{1}+N_{1} \cdot N_{2}{ }^{2}-2 \cdot N_{1} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+2 \cdot N_{1} \cdot N_{2}{ }^{2}-4 \cdot N_{1} \cdot N_{2}-N_{2}{ }^{2}+2 \cdot N_{2}}\right)}=0
\end{aligned}
\]

\(A E\) is the square root of \(A B \times A G\).
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \\
& \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \\
& \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{F H}:=\mathbf{B F} \quad \mathbf{D F}:=\frac{\mathbf{F H}^{2}}{\mathbf{A F}} \mathbf{A D}:=\mathbf{A F}-\mathbf{D F} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{F J}:=\mathbf{B F} \\
& \mathbf{D H}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathbf{D E}:=\frac{\mathbf{D F} \cdot \mathbf{D H}}{\mathbf{D H}+\mathbf{F J}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B D}+\mathbf{D E} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A G}}-\mathbf{A E}=\mathbf{0}
\end{aligned}
\]


\section*{102894 Trivial Method Square Root}

\(A E\) is the square root of \(A B \times A H\).
\[
\begin{aligned}
& \mathbf{N}:=5 \quad \mathbf{A B}:=1 \quad \mathbf{A H}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \\
& \mathbf{B G}:=\frac{\mathbf{B H}}{2} \quad \mathbf{G K}:=\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \\
& \mathbf{D G}:=\frac{\mathbf{G K}^{\mathbf{2}}}{\mathbf{A G}} \quad \mathbf{A D}:=\mathbf{A G}-\mathbf{D G} \mathbf{A L}:=\mathbf{B G} \\
& \mathbf{G L}:=\sqrt{\mathbf{A L}^{\mathbf{2}}+\mathbf{A G}^{\mathbf{2}}} \mathbf{B D}:=\mathbf{B G}-\mathbf{D G} \quad \mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \\
& \mathbf{D K}:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad \mathbf{K L}:=\sqrt{\mathbf{A D}^{2}+(\mathbf{A L}+\mathbf{D K})^{2}} \\
& \mathbf{S}_{\mathbf{1}}:=\mathbf{G K} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{G L} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{K L} \\
& \text { GJ }:=\frac{\mathbf{S}_{2}{ }^{2}+\mathbf{S}_{1}{ }^{2}-\mathbf{S}_{3}{ }^{2}}{2 \cdot \mathbf{S}_{1}} \mathrm{JL}:=\sqrt{\mathbf{G L}^{2}-\mathbf{G J}^{2}}
\end{aligned}
\]
\[
\mathbf{F G}:=\frac{\mathbf{D G} \cdot \mathbf{G J}}{\mathbf{G K}} \quad \mathbf{A F}:=\mathbf{A G}-\mathbf{F G} \quad \mathbf{F J}:=\frac{\mathbf{D K} \cdot \mathbf{G J}}{\mathbf{G K}} \quad \mathbf{E F}:=\frac{\mathbf{A F} \cdot \mathbf{F J}}{\mathbf{F J}+\mathbf{A L}} \quad \mathbf{A E}:=\mathbf{A F}-\mathbf{E F} \quad \sqrt{\mathbf{A B} \cdot \mathbf{A H}}-\mathbf{A E}=\mathbf{0}
\]

103194 Square Root of a Segment
Given a unit divide a segment into N and its square. Let AB be the unit and \(B F\) the segment then \(B E\) is \(N\) and EF its square. Language begins with a naming convention.

\[
\begin{aligned}
& \mathbf{N}:=22 \quad \mathrm{AB}:=1 \\
& \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{\mathbf{2}} \\
& \mathbf{A J}:=\mathbf{A F} \quad \mathbf{F K}:=\mathbf{A F} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B J}:=\sqrt{\mathbf{A B}^{\mathbf{2}}+\mathbf{A J}^{\mathbf{2}}} \\
& \mathbf{B G}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \mathbf{D H}:=\mathbf{A D} \mathbf{D G}:=\frac{\mathbf{A J} \cdot \mathbf{B D}}{\mathbf{B J}} \quad \mathbf{G H}:=\sqrt{\mathbf{D H}^{2}-\mathbf{D G}^{2}} \\
& \mathbf{H J}:=\mathbf{B J}+\mathbf{B G}+\mathbf{G H} \quad \mathbf{B C}:=\frac{\mathbf{A B} \cdot(\mathbf{B G}+\mathbf{G H})}{\mathbf{B J}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \\
& \mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \quad \mathbf{C H}:=\sqrt{\mathbf{A C} \cdot \mathbf{C F}} \quad \mathbf{C E}:=\frac{\mathbf{C F} \cdot \mathbf{C H}}{(\mathbf{C H}+\mathbf{F K})} \\
& \mathbf{E F}:=\mathbf{C F}-\mathbf{C E} \quad \mathbf{B E}:=\mathbf{B C}+\mathbf{C E} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{B E}^{2}-\mathbf{E F}=\mathbf{0} \\
& \mathbf{B E}-\frac{\mathbf{N}+\mathbf{N} \cdot \sqrt{4 \cdot \mathbf{N}-\mathbf{3}}-\mathbf{2}}{2 \cdot \mathbf{N}+\sqrt{4 \cdot \mathbf{N}-\mathbf{3}}+\mathbf{1}}=\mathbf{0} \quad \mathbf{E F}-\left(\frac{\mathbf{2 \cdot \mathbf { N } ^ { 2 }}-\sqrt{4 \cdot \mathbf{N}-\mathbf{3}}-\mathbf{2} \cdot \mathbf{N}+\mathbf{1}}{2 \cdot \mathbf{N}+\sqrt{4 \cdot \mathbf{N}-\mathbf{3}}+\mathbf{1}}\right)=\mathbf{0} \\
& \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \text { unit }:=\mathbf{A B} \\
& \frac{A E}{\text { unit }}-\frac{\mathrm{BE}}{\mathrm{unit}}=1 \sqrt{\frac{\mathrm{EF}}{\text { unit }}}-\frac{\mathrm{BE}}{\text { unit }}=0\left(\frac{\mathrm{BE}}{\text { unit }}\right)^{2}-\frac{\mathrm{EF}}{\text { unit }}=0
\end{aligned}
\]

There is a difference between a unit, and the number 1 . A unit is any difference, when it is called a standard, then it is given the name of 1.

\section*{(}


any
\[
\sqrt{\frac{\mathrm{AB}}{\text { unit }}} \cdot \frac{\mathrm{N}_{3}}{\text { any }}-\frac{\text { Bo }}{\text { unit }}=0
\]

\section*{Adding a multiplyer.} or again a definition. It then follows that:

Let OA be any difference what so ever and let 1 be any difference what so ever and called a standard, a unit,
\[
\begin{aligned}
& \mathbf{N}_{1}:=2.77083 \quad \mathbf{N}_{2}:=.53125 \quad \mathbf{N}_{3}:=\mathbf{N}_{1}+\mathbf{N}_{2} \quad \mathbf{N}_{4}:=1.35844 \\
& \text { Ao }:=\mathbf{N}_{1} \quad \text { unit }:=\mathbf{N}_{2} \quad \mathbf{m}:=\frac{\mathbf{N}_{3}}{2} \quad \text { any }:=\mathbf{N}_{\mathbf{4}} \quad \mathbf{m o}:=\mathbf{m}-\text { unit anyo }:=\sqrt{\text { any }^{2}+\text { unit }^{2}} \\
& \text { ao }:=\frac{\text { unit } \cdot \mathbf{m o}}{\text { anyo }} \quad \text { ma }:=\frac{\text { any } \cdot \mathbf{m o}}{\text { anyo }} \quad \text { ab }:=\sqrt{\mathbf{m}^{2}-\mathbf{m a}^{2}} \\
& \text { po }:=\frac{\text { unit } \cdot(\mathbf{a b}+\mathbf{a o})}{\text { anyo }} \quad \text { Ap }:=\mathbf{N}_{3}-(\text { po }+ \text { unit }) \quad \text { bp }:=\sqrt{(\text { po }+ \text { unit }) \cdot \mathbf{A p}} \\
& \text { AB }:=\frac{\text { Ap } \cdot \text { any }}{\text { any }+\mathbf{b p}} \quad \text { Bo }:=\mathbf{N}_{3}-(\mathbf{A B}+\text { unit })
\end{aligned}
\]

D


\section*{122494 Power Line At Square Root}


In this square root figure, what is the Algebraic name of the tangent circle OS?
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A J}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A J}} \quad \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B G}:=\frac{\mathbf{B J}}{2} \\
& \mathbf{A G}:=\mathbf{A B}+\mathbf{B G} \quad \mathbf{G S}:=\mathbf{B G} \quad \mathbf{D G}:=\frac{\mathbf{G S}^{2}}{\mathbf{A G}} \\
& \mathbf{F G}:=\mathbf{A G}-\mathbf{A F} \quad \mathbf{B D}:=\mathbf{B G}-\mathbf{D G} \quad \mathbf{D J}:=\mathbf{B J}-\mathbf{B D} \\
& \mathbf{D S}:=\sqrt{\mathbf{B D} \cdot \mathbf{D J}} \quad \text { FK }:=\frac{\mathbf{D S} \cdot \mathbf{F G}}{\mathbf{D G}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \mathbf{B K}:=\sqrt{\mathbf{B F}}{ }^{\mathbf{2}}+\mathbf{F K} \\
& \text { BP }:=\frac{\mathbf{B K} \cdot \mathbf{B J}}{\mathbf{B I}} \quad \mathbf{K P}:=\frac{\mathbf{D J} \cdot \mathbf{F K}}{\mathbf{D S}} \quad \mathbf{B I}:=\mathbf{F I}+\mathbf{B F} \\
& \text { BK BK } \quad \mathbf{M P}:=\frac{\mathbf{B J} \cdot \mathbf{K P}}{\mathbf{B K}} \quad \mathbf{O S}:=\frac{\mathbf{M P}}{\mathbf{2}}
\end{aligned}
\]

Algebraic Names
\(\mathbf{D G}-\frac{(\mathbf{N}-\mathbf{1})^{2}}{2 \cdot(\mathbf{N}+\mathbf{1})}=0 \quad\) OS \(-\frac{\sqrt{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1})}}{2 \cdot(\mathbf{N}+\sqrt{\mathbf{N}+1)}}=\mathbf{0}\)
\[
\begin{aligned}
& \sim_{n=2}^{0} \\
& 122595 \text { Two Prime Exponential Series } \\
& \text { Developed Through The Powerline Progression } \\
& \Delta:=\mathbf{8} \quad \delta:=\mathbf{1} . . \Delta \\
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \\
& \mathbf{A O}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A G}:=\sqrt{\mathbf{A B} \cdot \mathbf{A O}} \quad \mathbf{B O}:=\mathbf{A O}-\mathbf{A B} \quad \mathbf{B J}:=\frac{\mathbf{B O}}{2} \quad \mathbf{J Z}:=\mathbf{B J} \\
& \mathbf{J V}:=\mathbf{B J} \quad \mathbf{J O}:=\mathbf{B J} \quad \mathbf{B G}_{\mathbf{1}}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{G O}_{\mathbf{1}}:=\mathbf{B O}-\mathbf{B} \mathbf{G}_{\mathbf{1}} \\
& \mathbf{G W}_{\mathbf{1}}:=\sqrt{\mathbf{B G}_{\mathbf{1}} \cdot \mathbf{G O}_{\mathbf{1}}} \mathbf{G J}_{\mathbf{1}}:=\mathbf{B J}-\mathbf{B G}_{\mathbf{1}} \quad \mathbf{G H}_{\mathbf{1}}:=\frac{\mathbf{G J _ { \mathbf { 1 } }} \cdot \mathbf{G W _ { \mathbf { 1 } }}}{\mathbf{J Z}+\mathbf{G W}} \mathbf{1}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{H J}:=\mathbf{B J}-\mathbf{B G}_{\Delta} \quad \mathbf{F J}:=\frac{(\mathbf{N}-\mathbf{1})^{2}}{2 \cdot(\mathbf{N}+\mathbf{1})} \quad \text { BF }:=\mathbf{B J}-\mathbf{F J} \quad \text { FO }:=\mathbf{F J}+\mathbf{J O} \\
& \text { FV }:=\sqrt{\text { BF } \cdot \text { FO }} \quad \text { HR }:=\frac{\text { FV•HJ }}{\text { FJ }} \quad \text { BH }:=\mathbf{B J}-\mathbf{H J} \quad \mathbf{B R}:=\sqrt{\mathbf{H R}^{\mathbf{2}}+\mathbf{B H}^{\mathbf{2}}} \\
& \mathbf{H M}:=\frac{\mathbf{F O} \cdot \mathbf{H R}}{\mathbf{F V}} \quad \mathbf{B U}:=\frac{\mathbf{B R} \cdot \mathbf{B O}}{\mathbf{B H}+\mathbf{H M}} \quad \mathbf{R U}:=\mathbf{B U}-\mathbf{B R} \quad \mathbf{S U}:=\frac{\mathbf{B O} \cdot \mathbf{R U}}{\mathbf{B R}} \quad \mathbf{T V}:=\frac{\mathbf{S U}}{2} \quad \mathbf{P U}:=\frac{\mathbf{B H} \cdot \mathbf{S U}}{\mathbf{B R}} \quad \mathbf{B P}:=\mathbf{B U}-\mathbf{P U} \quad \mathbf{B E}:=\frac{\mathbf{B R} \cdot \mathbf{B P}}{\mathbf{B H}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \\
& N^{\frac{1}{2^{\Delta}}}-\mathrm{AE}=0
\end{aligned}
\]

\[
\begin{aligned}
& \text { LU }:=\frac{\mathbf{H R} \cdot \mathbf{B U}}{\mathbf{B R}} \text { BL }:=\frac{\mathbf{B H} \cdot \mathbf{B U}}{\mathbf{B R}} \quad \text { HO }:=\mathbf{J O}+\mathbf{H J} \\
& \text { OR }:=\sqrt{\mathrm{HR}^{2}+\mathrm{HO}^{2}} \text { DS }:=\mathrm{LU} \quad \mathrm{OS}:=\frac{\mathrm{OR} \cdot \mathrm{DS}}{\mathrm{HR}} \\
& \begin{array}{l}
\text { DO }:=\frac{\text { HO } \cdot \mathbf{D S}}{\text { HR }} \quad \text { QS }:=\frac{\text { DO } \cdot \mathbf{S U}}{\text { OS }} \text { OQ }:=\mathbf{O S}-\mathbf{Q S} \\
\text { KO }:=\frac{\text { OS } \cdot \mathbf{O Q}}{\text { DO }} \quad \text { AK }:=\mathbf{A O}-\mathbf{K O} \\
\frac{\mathbf{2}^{\Delta_{-1}}}{\mathbf{2}^{\Delta}}-\mathbf{A K}=0
\end{array}
\end{aligned}
\]


\section*{122694 Is Point G on DJ?}

\section*{Is G, the intersection of FH and BK, on} DJ?
\[
\frac{(\mathbf{N}-1)^{2}}{2 \cdot(\mathbf{N}+1)} \quad \text { From } 122494
\]



\section*{010695 Alternate Method Quad Roots}


040195 Exponential Series-Roots and

\section*{Powers}

I remember a dream was it? That exponential notation is not
demonstrable in Geometric Grammar, that it is a pure conceptual abstract.

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{5} \quad \mathbf{A B}:=1 \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N}_{1} \\
& \boldsymbol{\delta}:=\mathbf{0} . . \mathbf{3} \\
& \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{A J _ { 0 }}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{2}} \quad \mathbf{A N}:=\mathbf{A J _ { 0 }} \quad \mathbf{A J _ { 1 }}:=\frac{\mathbf{A N}^{2}}{\mathbf{A F}} \quad \mathbf{A J _ { \delta + 1 }}:=\frac{\mathbf{A J _ { \delta }} \cdot \mathbf{A N}}{\mathbf{A F}} \\
& \mathbf{A D}_{\mathbf{0}}:=\mathbf{A} \mathbf{J}_{\mathbf{0}} \quad \mathbf{D F}_{\mathbf{0}}:=\mathbf{A F}-\mathbf{A D}_{\mathbf{0}} \quad \mathbf{D O _ { 0 }}:=\sqrt{\mathbf{A D}_{\mathbf{0}} \cdot \mathbf{D F}_{\mathbf{0}}} \quad \mathbf{A O _ { 0 }}:=\sqrt{\left(\mathbf{D O}_{\mathbf{0}}\right)^{2}+\left(\mathbf{A D}_{\mathbf{0}}\right)^{2}}
\end{aligned}
\]
\[
\left(\begin{array}{l}
\mathbf{A D _ { \delta + 1 }} \\
\mathbf{D F _ { \delta + 1 }} \\
\mathbf{D O}_{\delta+1} \\
\mathbf{A O}_{\delta+1}
\end{array}\right):=\left[\begin{array}{c}
\sum_{\delta}\left[\frac{\mathbf{A F}}{\mathbf{A} \mathbf{J}_{\delta}}-\left(\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}}\right)^{\delta+\mathbf{1}}\right]=\mathbf{0} \\
\mathbf{A F}-\mathbf{A O _ { \delta }} \\
\sqrt{\mathbf{A O _ { \delta }} \cdot\left(\mathbf{A F}-\mathbf{A O _ { \delta }}\right)} \\
\left.\sqrt{\mathbf{A O _ { \delta }} \cdot\left(\mathbf{A F}-\mathbf{A O} \mathbf{O}_{\delta}\right)+\left(\mathbf{A O _ { \delta } ) ^ { 2 }}\right.}\right] \\
\sum_{\delta}\left[\frac{\mathbf{A F}}{\mathbf{A} \mathbf{D}_{\delta}}-\left(\frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{2}}}\right)^{\frac{\mathbf{1}}{\mathbf{2}}}\right]=\mathbf{0}
\end{array}\right.
\]
\[
\begin{aligned}
& \text { ( } 091395 \text { A Study In Placement } \\
& \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{G K}:=\frac{\mathrm{AE} \cdot \mathrm{BC}}{\mathrm{CE}} \quad \mathrm{GH}_{1}:=\frac{\mathbf{G K}}{2} \\
& \mathbf{G H}_{1}-\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}{2 \cdot \mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-1\right)}=0
\end{aligned}
\]

Given \(\mathbf{A E}, \mathbf{A B}, \mathbf{A C}\) what is \(\mathbf{G H}\) ?

Given AE, AB, EF what is GH?
\(\mathbf{N}_{1}:=4.22537 \quad \mathbf{N}_{2}:=1.23589 \quad \mathrm{AD}:=\frac{\mathrm{AE}}{2} \quad \mathrm{AB}:=\frac{\mathrm{AE}}{\mathbf{N}_{1}} \quad \mathrm{DE}:=\mathrm{AD} \quad \mathrm{EF}:=\frac{\mathrm{AE}}{\mathbf{N}_{2}} \quad \mathrm{CE}:=\frac{\mathrm{EF}^{2}}{\mathrm{AE}}\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B E}:=\mathbf{B D}+\mathbf{D E} \quad \mathbf{E G}:=\frac{\mathbf{E F} \cdot \mathbf{B E}}{\mathbf{C E}} \quad \mathbf{F G}:=\mathbf{E G}-\mathbf{E F} \quad \mathbf{G H}_{2}:=\frac{\mathbf{A D} \cdot \mathbf{F G}}{\mathbf{E F}}\)
\(\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}{ }^{2}-\mathbf{N}_{1}-\mathbf{N}_{2}^{2}}{2 \cdot \mathbf{N}_{1}}-\mathbf{G H}_{2}=0\)


Given AE, AB, BG what is GH?
\(\mathbf{N}_{1}:=4.22537 \quad \mathbf{N}_{2}:=1.80385 \quad \mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{N}_{1}} \quad \mathrm{BG}:=\frac{\mathbf{A E}}{\mathbf{N}_{\mathbf{2}}} \quad \mathrm{BE}:=\mathrm{AE}-\mathrm{AB}\)
\(\mathbf{B J}:=\frac{\mathbf{B G}^{2}}{\mathbf{B E}} \quad \mathbf{C E}:=\frac{\mathbf{B E} \cdot \mathbf{A E}}{\mathbf{B E}+\mathbf{B J}} \quad \mathbf{B C}:=\mathbf{B E}-\mathbf{C E} \quad \mathbf{G K}:=\frac{\mathbf{A E} \cdot \mathbf{B C}}{\mathbf{C E}} \quad \mathbf{G H}_{3}:=\frac{\mathbf{G K}}{2}\)
\(\mathbf{G H}_{3}-\frac{\left(\mathbf{N}_{1}{ }^{2}-\mathbf{N}_{1} \cdot \mathbf{N}_{2}{ }^{2}+\mathbf{N}_{2}{ }^{2}\right)}{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}{ }^{2} \cdot\left(\mathbf{N}_{1}-1\right)}=0\)


\section*{(201495 Alternate Method Square Root}

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{4} \\
& \mathbf{A B}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{1}} \quad \mathbf{A K}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{2}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \mathbf{B O}:=\frac{\mathbf{B F}}{\mathbf{2}} \mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \quad \mathbf{K M}:=\mathbf{A O} \quad \mathbf{A M}:=\sqrt{\mathbf{A K}^{\mathbf{2}}+\mathbf{K M}^{\mathbf{2}}} \\
& \mathbf{G O}:=\mathbf{B O} \quad \mathbf{D J}:=\mathbf{B} \mathbf{A J}:=\mathbf{A M} \quad \mathbf{A D}:=\sqrt{\mathbf{A J}^{\mathbf{2}}-\mathbf{D J}^{\mathbf{2}}} \\
& \mathbf{K N}:=\mathbf{A D} \quad \mathbf{C K}:=\mathbf{A D} \quad \mathbf{A C}:=\sqrt{\mathbf{C K}^{\mathbf{2}}-\mathbf{A K}^{\mathbf{2}}} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A F}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]
CrAsh
102095 Four Times The Square

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{A E}:=\mathbf{1} \quad \mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{N}_{\mathbf{1}}} \\
& \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B F}:=\sqrt{\mathbf{A B} \cdot \mathbf{B E}} \quad \mathbf{A F}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B F}^{2}} \\
& \mathbf{A C}:=\mathbf{A F} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{E G}:=\mathbf{C E} \quad \mathbf{D E}:=\frac{\mathbf{E G}^{2}}{\mathbf{A E}} \\
& \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathbf{D G}:=\sqrt{\mathbf{A D} \cdot \mathbf{D E}} \quad \mathbf{B D}:=\mathbf{A E}-(\mathbf{A B}+\mathbf{D E}) \quad \frac{\mathbf{B D}^{\mathbf{2}}}{\mathbf{4} \cdot(\mathbf{A B} \cdot \mathbf{D E})}=\mathbf{1}
\end{aligned}
\]
Algebraic Names:
\[
\begin{aligned}
& \frac{1}{N_{1}}-\mathbf{A B}=0 \quad 1-\frac{1}{N_{1}}-\mathbf{B E}=0 \quad \sqrt{\frac{\left(N_{1}-1\right)}{\left(N_{1} \cdot N_{1}\right)}}-\mathbf{B F}=0 \quad \sqrt{\frac{N_{1}}{N_{1}^{2}}}-\mathbf{A F}=\mathbf{0} \\
& 1-\sqrt{\frac{N_{1}}{N_{1}^{2}}}-\mathbf{C E}=0 \quad 1-2 \cdot \sqrt{\frac{1}{N_{1}}}+\frac{1}{N_{1}}-\mathbf{D E}=0 \quad 2 \cdot \sqrt{\frac{1}{N_{1}}}-\frac{2}{N_{1}}-\mathbf{B D}=0 \\
& 2 \cdot \sqrt{\frac{1}{N_{1}}}-\frac{1}{N_{1}}-\mathbf{A D}=0 \quad \sqrt{\left[N_{1}^{2} \cdot\left(\sqrt{\frac{1}{N_{1}}}-1\right)^{2} \cdot\left(2-\sqrt{\frac{1}{N_{1}}}\right) \cdot \sqrt{\frac{1}{N_{1}}}\right]}-\mathbf{D G}=0
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \text { AG }:=\mathbf{1} \\
& \mathbf{A E}:=\frac{\mathbf{A G}}{2} \quad \mathbf{E G}:=\mathbf{A E} \quad \mathbf{E F}:=\frac{\mathbf{A G}}{2 \cdot \mathbf{N}_{\mathbf{1}}} \quad \mathbf{A F}:=\mathbf{A E}+\mathbf{E F} \\
& \text { FG }:=\mathbf{E G}-\mathbf{E F} \quad \text { FN }:=\sqrt{\text { AF•FG }} \quad \text { GN }:=\sqrt{\mathbf{F N}^{2}+\mathbf{F G}^{2}} \quad \text { GK }:=\text { GN } \\
& \mathrm{EK}:=\sqrt{\mathrm{GK}^{2}-\mathrm{EG}^{2}} \mathbf{E O}:=\frac{\mathrm{EG} \cdot \mathbf{E F}}{\mathrm{EK}} \quad \text { OK }:=\mathrm{EO}+\mathbf{E K} \quad \mathrm{DE}:=\frac{\mathrm{AE}}{\mathbf{N}_{2}} \quad \mathrm{DO}:=\sqrt{\mathrm{DE}^{2}+\mathrm{EO}^{2}}
\end{aligned}
\]
\(\mathbf{A L}:=\mathbf{A J} \quad \mathbf{A B}:=\frac{\mathbf{A L ^ { 2 }}}{\mathbf{A G}} \quad \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{G J}:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}} \quad \mathbf{G M}:=\mathbf{G J} \quad \mathbf{D G}:=\frac{\mathbf{G M}^{2}}{\mathbf{A G}}\)
\(\mathbf{B D}:=\mathbf{A G}-(\mathbf{A B}+\mathbf{D G})\)
\[
\frac{\mathbf{N}_{1}-\mathbf{1}}{2}-\frac{\sqrt{\mathbf{A B} \cdot \mathbf{D G}}}{\mathbf{B D}}=0
\]

110595 Alternate Method Gemini Roots

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{6} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{7} \\
& \mathbf{A G}:=\mathbf{1} \quad \mathbf{A F}:=\frac{\mathbf{A G}}{\mathbf{2}} \quad \mathbf{A R}:=\mathbf{A F} \quad \mathbf{F Q}:=\mathbf{A F} \mathbf{F G}:=\mathbf{A F} \\
& \mathbf{A L}:=\frac{\mathbf{A R}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{I M}:=\frac{\mathbf{A R}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{A K}:=\frac{\mathbf{A L} \cdot \mathbf{I M}}{\mathbf{A R}} \\
& \mathbf{D O}:=\mathbf{I M} \quad \mathbf{A B}:=\mathbf{A K} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{F O}:=\mathbf{B F} \\
& \mathbf{O Q}:=\mathbf{F Q}-\mathbf{F O} \quad \mathbf{N P}:=\frac{(\mathbf{A G}-\mathbf{2} \cdot \mathbf{A B}) \cdot \mathbf{O Q}}{\mathbf{F O}} \quad \mathbf{N P}-\mathbf{2} \cdot \mathbf{A K}=\mathbf{C D}:=\mathbf{A K} \quad \mathbf{D E}:=\mathbf{A K} \\
& \mathbf{D F}:=\sqrt{\mathbf{F O}^{\mathbf{2}}-\mathbf{D O}} \quad \mathbf{A D}:=\mathbf{A F}-\mathbf{D F} \quad \mathbf{A C}:=\mathbf{A D}-\mathbf{C D} \quad \mathbf{E G}:=\mathbf{F G}+\mathbf{D F}-\mathbf{D E} \\
& \mathbf{C E}:=\mathbf{N P} \quad \frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{2}}-\frac{\sqrt{\mathbf{A C} \cdot \mathbf{E G}}}{\mathbf{C E}}=\mathbf{0} \\
& \frac{\sqrt{\mathbf{A C} \cdot \mathbf{E G}}}{\mathbf{C E}}=\mathbf{3}
\end{aligned}
\]


\section*{120195 Method For Equals}

Given \(A B\) find NP.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \\
& \mathbf{A H}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A H}}{2} \quad \mathbf{E H}:=\mathbf{A E} \quad \mathbf{E P}:=\mathbf{A E} \quad \mathbf{A P}:=\sqrt{\mathbf{2} \cdot \mathbf{A E}^{2}} \\
& \mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{C E}:=\mathbf{A B} \quad \mathbf{C H}:=\mathbf{E H}+\mathbf{C E} \quad \mathbf{C L}:=\sqrt{\mathbf{2} \cdot \mathbf{C E}^{\mathbf{2}}} \\
& \mathbf{A M}:=\frac{\mathbf{C L} \cdot \mathbf{A H}}{\mathbf{C H}} \mathbf{M P}:=\mathbf{A P}-\mathbf{A M} \mathbf{N P}:=\frac{\mathbf{E P} \cdot \mathbf{M P}}{\mathbf{A P}} \\
& \frac{\mathbf{1}}{\mathbf{2}} \cdot \frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)}{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}-\mathbf{N P}=\mathbf{0} \quad \frac{\left(\mathbf{N}_{\mathbf{1}}-\mathbf{1}\right)}{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{1}\right)}-\mathbf{2} \cdot \mathbf{N P}=\mathbf{0}
\end{aligned}
\]

12_07_95.MCD
Given three sides of a triangle, determine the length of the Euler
line. Work the drawing from each of the sides.
Scholia: 100 Great Problems of Elementary Mathematics H. Dorrie Problem 27 Euler's Line

\[
\begin{aligned}
& \delta:=0 . .2 \quad \text { AC }:=\left(\begin{array}{c}
\text { Side_1 } \\
\text { Side_2 } \\
\text { Side_3 }
\end{array}\right) \quad \text { BC }:=\left(\begin{array}{c}
\text { Side_2 } \\
\text { Side_3 } \\
\text { Side_1 }
\end{array}\right) \quad \text { AB }:=\left(\begin{array}{l}
\text { Side_3 } \\
\text { Side_1 } \\
\text { Side_2 }
\end{array}\right) \\
& A E_{\delta}:=\frac{\mathbf{A B}}{\delta} 2 \quad \mathbf{A} \mathbf{k}_{\delta}:=A C_{\delta} \quad \mathbf{B} l_{\delta}:=\mathbf{B C}_{\delta} \quad \mathbf{A i _ { \delta }}:=\frac{\left(\mathbf{A} \mathbf{k}_{\delta}\right)^{2}}{\mathbf{A B}} \quad \mathbf{B h _ { \delta }}:=\frac{\left(\mathbf{B l _ { \delta }}\right)^{2}}{\mathbf{A B}} \\
& \mathbf{A h _ { \delta }}:=\mathbf{A B} \boldsymbol{B}_{\boldsymbol{\delta}}-\mathbf{B h}_{\boldsymbol{\delta}} \quad \mathbf{h \mathbf { i } _ { \boldsymbol { \delta } }}:=\mathbf{A h _ { \boldsymbol { \delta } }}-\mathbf{A i _ { \boldsymbol { \delta } }} \quad \mathbf{A} \mathbf{j}_{\boldsymbol{\delta}}:=\mathbf{A i _ { \boldsymbol { \delta } }}+\frac{\mathbf{h \mathbf { i } _ { \boldsymbol { \delta } }}}{2}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{Bf}_{\delta}:=\frac{\mathrm{BC}_{\delta} \cdot \mathrm{BE}_{\delta}}{\mathrm{Bj}_{\delta}} \quad \mathrm{fg}_{\delta}:=\mathrm{Bf}_{\boldsymbol{\delta}}-\mathbf{B g _ { \delta }} \quad \mathbf{U g _ { \delta }}:=\mathbf{i f}\left(\mathbf{C j}_{\delta}, \frac{\mathrm{Bj}_{\delta} \cdot \mathbf{f g}_{\delta}}{\mathrm{Cj}_{\delta}}, 0\right) \\
& \mathbf{B U}_{\delta}:=\mathbf{i f}\left[\mathbf{U g}_{\delta}, \sqrt{\left(\mathbf{U g}_{\delta}\right)^{2}+\left(\mathbf{B g}_{\delta}\right)^{2}}, \infty\right] \quad \mathbf{A M} \mathbf{M}_{\boldsymbol{\delta}}:=\frac{\mathbf{A C _ { \delta }}}{2} \quad \mathbf{A n _ { \delta }}:=\frac{\mathbf{A j _ { \delta }} \cdot \mathbf{A M}}{\boldsymbol{\delta}}{ }_{\mathbf{A C}}^{\delta} \\
& \mathbf{B n}_{\boldsymbol{\delta}}:=\mathbf{A B} \boldsymbol{B}_{\boldsymbol{\delta}}-\mathbf{A n}_{\boldsymbol{\delta}} \quad \mathbf{n M _ { \delta }}:=\sqrt{\left(\mathbf{A M}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}-\left(\mathbf{A n}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}} \quad \mathbf{B M}_{\boldsymbol{\delta}}:=\sqrt{\left(\mathbf{n M}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}+\left(\mathrm{Bn}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}} \\
& \mathbf{B S}_{\boldsymbol{\delta}}:=\frac{2 \cdot \mathbf{B M}_{\boldsymbol{\delta}}}{3} \quad \mathbf{B G}_{\boldsymbol{\delta}}:=\frac{\mathbf{B n}_{\boldsymbol{\delta}} \cdot \mathbf{B S}_{\boldsymbol{\delta}}}{\mathbf{B M}_{\boldsymbol{\delta}}} \quad \mathbf{G S}_{\boldsymbol{\delta}}:=\frac{\mathbf{n M}_{\boldsymbol{\delta}} \cdot \mathbf{B S}_{\boldsymbol{\delta}}}{\mathbf{B M}_{\boldsymbol{\delta}}}
\end{aligned}
\]
\(\overbrace{n=0}^{0}\)
\(\mathbf{A G} \boldsymbol{\sigma}_{\boldsymbol{\delta}}:=\mathbf{A B}_{\boldsymbol{\delta}}-\mathbf{B G _ { \delta }} \quad \mathbf{A S _ { \delta }}:=\sqrt{\left(\mathbf{A G} \mathbf{G}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}+\left(\mathbf{G S}_{\boldsymbol{\delta}}\right)^{\mathbf{2}}} \quad \mathbf{M S} \boldsymbol{S}_{\boldsymbol{\delta}}:=\mathbf{B M}_{\boldsymbol{\delta}}-\mathbf{B S}_{\boldsymbol{\delta}}\)
\(\mathbf{A U}_{\delta}:=\mathbf{B U}_{\delta} \quad \mathbf{M U}_{\delta}:=\sqrt{\left(\mathbf{A U _ { \delta }}\right)^{2}-\left(\mathbf{A M}_{\delta}\right)^{2}} \quad \mathbf{A e} e_{\delta}:=\frac{1}{2} \cdot \frac{\left(\mathbf{A S}_{\delta}\right)^{2}}{\mathbf{A M}_{\delta}}+\frac{\mathbf{1}}{2} \cdot \mathbf{A M} \mathbf{M}_{\delta}-\frac{1}{2} \cdot \frac{\left(\mathbf{M S}_{\delta}\right)^{2}}{\mathbf{A M}_{\delta}}\)
The following sequence is from 06_07_93.MCD. In that paper I treated it as a problem between two triangles, which it is. One can restate it as finding the fourth side of a quadrilateral by pulling up a line.
 \(\mathbf{U m}_{\delta}:=\mathbf{i f}\left[\mathbf{A C _ { \delta }}<\sqrt{(\mathbf{B C}} \boldsymbol{D}_{\delta}\right)^{\mathbf{2}}+\left(\mathbf{A B _ { \delta } ) ^ { 2 }}, \mathbf{M U}_{\delta}-\mathbf{M m}_{\delta}, \mathbf{M U}_{\delta}+\mathbf{M m}_{\delta}\right]\)
\(\mathbf{S U}_{\delta}:=\sqrt{\left(\mathbf{U m}_{\delta}\right)^{2}+\left(\mathbf{S m}_{\delta}\right)^{2}} \quad \mathbf{U} \mathbf{O}_{\delta}:=\mathbf{3} \cdot \mathbf{S U}_{\delta}\)
Due to the way in which certain lines lay, the above switch was needed.
Is this a TRIANGLE = 1 ?
Side_1 \(\equiv 14.07583 \quad\) Side_2 \(\equiv \mathbf{3 . 4 2 3 7 7} \quad\) Side_3 \(\equiv 11.91932\)

\(\mathbf{S U}_{\boldsymbol{\delta}}=\)
\begin{tabular}{|r|}
\hline 5.58256 \\
\hline 5.58256 \\
\hline 5.58256 \\
\hline
\end{tabular}
\(\mathbf{U} \mathbf{O}_{\boldsymbol{\delta}}=\)
\begin{tabular}{|c|}
\hline 16.74768 \\
\hline 16.74768 \\
\hline 16.74768 \\
\hline
\end{tabular}
\begin{tabular}{l}
\multicolumn{1}{c}{\(\boldsymbol{U}_{\boldsymbol{\delta}}=\)} \\
\hline 8.382562 \\
\hline 8.382562 \\
\hline 8.382562 \\
\hline
\end{tabular}
U
\[
\begin{aligned}
& \operatorname{con}_{n \rightarrow 2}^{0} \\
& 122095 \text { Just For Fun } \\
& \mathbf{N}:=\mathbf{3} \\
& \mathbf{E F}:=1 \quad \text { EJ }:=\mathbf{E F} \cdot \mathbf{N} \quad \mathbf{A E}:=\frac{\mathbf{E J}^{2}}{\mathbf{E F}} \quad \mathbf{A F}:=\mathbf{A E}+\mathbf{E F} \\
& \mathbf{A B}:=\frac{\mathbf{A F}}{2} \quad \mathbf{B F}:=\mathbf{A B} \quad \mathbf{B E}:=\mathbf{B F}-\mathbf{E F} \quad \mathbf{B H}:=\mathbf{B E} \quad \mathbf{B J}:=\sqrt{\mathbf{E J}^{2}+\mathbf{B E}^{2}} \\
& \mathbf{B D}:=\frac{\mathbf{B E} \cdot \mathbf{B H}}{\mathbf{B J}} \quad \mathbf{B G}:=\mathbf{B D} \quad \mathbf{B C}:=\frac{\mathbf{B E} \cdot \mathbf{B G}}{\mathbf{B J}} \quad \mathbf{G H}:=\mathbf{B H}-\mathbf{B G} \quad \mathbf{D E}:=\mathbf{B E}-\mathbf{B D} \\
& \mathbf{H O}:=\mathbf{D E} \quad \mathbf{E G}_{1}:=\sqrt{\mathbf{B E}^{2}-\mathbf{B G}^{2}} \quad \mathbf{G J}:=\mathbf{B J}-\mathbf{B G} \quad \mathbf{E G}_{\mathbf{2}}:=\sqrt{\mathbf{E J}^{2}-\mathbf{G \mathbf { J } ^ { 2 }}} \\
& \frac{\mathrm{GH}}{\mathrm{HO}}=1 \quad \frac{E G_{1}}{E G_{2}}=1 \quad\left(\mathrm{BC}^{2} \cdot \mathrm{BF}\right)^{\frac{1}{3}}-\mathrm{BD}=0 \quad\left(\mathrm{BC} \cdot \mathrm{BF}^{2}\right)^{\frac{1}{3}}-\mathrm{BE}=0 \\
& \mathbf{B C}-\frac{(\mathbf{N}+1)^{3} \cdot(\mathbf{N}-1)^{3}}{2 \cdot\left(\mathbf{N}^{2}+1\right)^{2}}=0
\end{aligned}
\]

122195 Pascal's Triangle With Exponential Division \(\mathbf{N}:=\mathbf{7}\)
\(\mathbf{A B}:=1 \quad \mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C}\) \(\mathbf{B C}:=\mathbf{B D}-\mathbf{C D} \quad \mathbf{C F}:=\sqrt{\mathbf{B C} \cdot \mathbf{C D}} \quad \mathbf{C F}:=\sqrt{\mathbf{B C} \cdot \mathbf{C D}} \quad \mathbf{D F}:=\sqrt{\mathbf{C F}^{2}+\mathbf{C D}^{2}}\) DK \(:=\frac{\text { PF } \cdot \text { BD }}{\text { CD }} \quad\) FK \(:=\frac{\text { DK • BC }}{\text { BD }} \quad\) MK \(:=\frac{\text { FK•FK }}{\text { DK }} \quad\) UK \(:=\frac{\text { MK } \cdot \text { MK }}{\text { PK }}\) \(\frac{\mathbf{D K}}{\mathbf{F K}}-(\sqrt{\mathbf{N}}+\mathbf{1})=\mathbf{0} \quad \frac{\mathbf{D K}}{\mathbf{H K}}-(\sqrt{\mathbf{N}}+\mathbf{1})^{\mathbf{2}}=\mathbf{0} \quad \frac{\mathbf{D K}}{\mathbf{J K}}-(\sqrt{\mathbf{N}}+\mathbf{1})^{\mathbf{3}}=\mathbf{0}\)


\[
\mathbf{A B}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{N} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{A E}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{B E}
\]
\[
\mathbf{B D}:=\frac{\mathbf{B E} \cdot \mathbf{B H}}{\mathbf{B F}} \quad \mathbf{B G}:=\mathbf{B D} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B G}}{\mathbf{B E}}
\]
\[
\frac{\mathbf{B F}}{\mathbf{B E}}-(\sqrt{\mathbf{N}}+\mathbf{1})=\mathbf{0} \quad \frac{\mathbf{B F}}{\mathbf{B D}}-(\sqrt{\mathbf{N}}+\mathbf{1})^{2}=\mathbf{0} \quad \frac{\mathbf{B F}}{\mathbf{B C}}-(\sqrt{\mathbf{N}}+\mathbf{1})^{\mathbf{3}}=\mathbf{0}
\]
\[
\begin{array}{lll}
\mathbf{E} & \mathbf{D} \mathbf{C B} & \mathbf{A} \\
\mathbf{A B}:=\mathbf{1} & \mathbf{A G}:=\mathbf{N} & \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
\left.\mathbf{A F}:=(\mathbf{A B} \cdot \mathbf{A G})^{\mathbf{3}}\right)^{\frac{1}{4}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B}
\end{array}
\]
\[
\mathbf{B J}:=\mathbf{B F} \quad \mathbf{B E}:=\frac{\mathbf{B J} \cdot \mathbf{B F}}{\mathbf{B G}} \quad \mathbf{B H}:=\mathbf{B E} \quad \mathbf{B C}:=\frac{\mathbf{B H} \cdot \mathbf{B E}}{\mathbf{B F}}
\]
\[
\frac{\mathrm{BG}}{\mathrm{BF}}-\frac{\mathrm{N}-1}{N^{\frac{3}{4}}-1}=0 \quad \frac{\mathrm{BG}}{\mathrm{BE}}-\frac{(N-1)^{2}}{\left(N^{\frac{3}{4}}-1\right)^{2}}=0 \quad \frac{\mathrm{BG}}{\mathrm{BC}}-\frac{(N-1)^{3}}{\left(N^{\frac{3}{4}}-1\right)^{3}}=0
\]


122995

\section*{Given \(A C\) and \(C E\) find \(B C\).}



\section*{010496 The Archamedian Paper Trisector- Without the Numbers.}


As \(\angle \mathrm{HBJ}\) is opposite and equal to \(\angle \mathrm{GBD}, \mathrm{DG}=\mathrm{HJ}\), therefore \(\angle \mathrm{DG}\) is \(\frac{1}{3} \mathrm{CF}\). As CE is parallel to DH and EF is parallel to GJ, EGBD is equilateral.
By construction DK \(=K M\).
As DH is parallel to CE, CH = DG.
As DK is equal and opposite \(\mathrm{CH}, \mathrm{MK}+\mathrm{DK}+\mathrm{DG}\) is \(\frac{1}{3} \mathrm{DG}\).



\section*{010796 Rusty Cubes}


A rusty Compass construction for the duplication of
the cube.
\(\mathbf{A D}:=2 \quad \mathbf{A B}:=\frac{\mathbf{A D}}{2} \quad \mathbf{A G}:=\sqrt{2 \cdot \mathbf{A B}^{2}} \quad \mathbf{A F}:=\frac{\mathbf{A G}}{9} \cdot 8\)
\(A C:=A F \quad A C=1.257079\)
\(\left(A B^{2} \cdot A D\right)^{\frac{1}{3}}=1.259921 \quad \frac{\left(A B^{2} \cdot A D\right)^{\frac{1}{3}}}{A C}=1.002261\)
I remember a rusty construction for squaring a circle off the base of a right triangle. Here is one more rust pile construction.

\[
\begin{aligned}
& \mathbf{R}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{D}:=\mathbf{4} \\
& \mathbf{D E}:=\mathbf{R}_{\mathbf{1}} \quad \mathbf{K M}:=\mathbf{R}_{\mathbf{2}} \quad \mathbf{E K}:=\mathbf{D} \quad \mathbf{D M}:=\mathbf{D E}+\mathbf{E K}+\mathbf{K M} \\
& \mathbf{E F}:=\mathbf{D E} \quad \mathbf{J K}:=\mathbf{K M} \quad \text { FJ }:=\mathbf{E K}-(\mathbf{E F} \mathbf{A D}:=\mathbf{D M} \\
& \mathbf{B M}:=\mathbf{D M} \quad \mathbf{D F}:=\mathbf{D E}+\mathbf{E F} \quad \mathbf{J M}:=\mathbf{J K}+\mathbf{K M} \\
& \text { FG }:=\frac{\mathbf{D F} \cdot \mathbf{F J}}{\mathbf{D F}+\mathbf{J M}} \quad \mathbf{G J}:=\mathbf{F J}-\mathbf{F G} \quad \mathbf{D I}:=\frac{\mathbf{D M}}{\mathbf{2}} \\
& \mathbf{\text { DG } : = \mathbf { D F } + \mathbf { F G }} \quad \mathbf{G I}:=\mathbf{D I}-\mathbf{D G} \quad \mathbf{C I}:=\mathbf{D I} \quad \mathbf{G N}:=\frac{\mathbf{A D} \cdot \mathbf{F G}}{\mathbf{D F}} \\
& \mathbf{G H}:=\frac{\mathbf{G I} \cdot \mathbf{G N}}{\mathbf{C I}+\mathbf{G N}} \quad \mathbf{D H}:=\mathbf{D F}+\mathbf{F G}+\mathbf{G H} \quad \mathbf{D H}=\mathbf{1} .375 \\
& \mathbf{H M}:=\mathbf{D M}-\mathbf{D H} \\
& \mathbf{D H}-\frac{\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}+\mathbf{D}\right)}{\mathbf{2} \cdot \mathbf{D}}=\mathbf{0} \\
& \mathbf{H M}-\frac{\left(\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}+\mathbf{D}\right) \cdot\left(\mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{1}}+\mathbf{D}\right)}{\mathbf{2} \cdot \mathbf{D}}=\mathbf{0}
\end{aligned}
\]


01_08_96.MCD


The figure cuts the base line in quad roots. As such it would be another trivial method for doing quad roots, however I am interested in some of the ratio's of the figure instead.
\[
\begin{aligned}
& \mathbf{N}=\mathbf{5} \quad \mathbf{A G}:=\mathbf{N} \mathbf{A B}:=\frac{\mathbf{A G}}{\mathbf{N}} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{B O}:=\frac{\mathbf{B G}}{\mathbf{2}} \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \quad \mathbf{A C}:=\left(\mathbf{A B}^{\mathbf{3}} \cdot \mathbf{A G}\right)^{\frac{\mathbf{1}}{4}} \\
& \left.\mathbf{A F}:=(\mathbf{A B} \cdot \mathbf{A G})^{\mathbf{3}}\right)^{\frac{\mathbf{1}}{\mathbf{4}}} \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{F G}:=\mathbf{A G}-\mathbf{A F} \\
& \mathbf{D G}:=\mathbf{A G}-\mathbf{A D} \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D K}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \\
& \mathbf{B K}:=\sqrt{\mathbf{B D}^{\mathbf{2}}+\mathbf{D K}}{ }^{\mathbf{2}} \mathbf{G K}:=\sqrt{\mathbf{D G}^{\mathbf{2}}+\mathbf{D K}^{\mathbf{2}}} \\
& \mathbf{B J}:=\frac{\mathbf{B K} \cdot \mathbf{B C}}{\mathbf{B G}} \quad \mathbf{G L}:=\frac{\mathbf{G K} \cdot \mathbf{F G}}{\mathbf{B G}}
\end{aligned}
\]
\[
\frac{\mathbf{G L}}{\mathbf{B J}}=5 \quad \frac{\mathbf{A G}}{\mathbf{A B}}=5
\]

Plug in AG here. AB will become "1".
\(\mathbf{N} \equiv \mathbf{5}\)

Crina

\[
\frac{\mathbf{G K}}{\mathbf{G L}}-\frac{\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{3}{4}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{2}{4}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{1}{4}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{0}{4}}}{\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{3}{4}}}=0 \quad \frac{\mathbf{G K}}{\mathbf{G L}}-\left(\frac{\mathbf{N}^{\frac{3}{4}}+\mathbf{N}^{\frac{2}{4}}+\mathbf{N}^{\frac{1}{4}}+\mathbf{N}^{\frac{0}{4}}}{\mathbf{N}^{\frac{3}{4}}}\right)=0
\]
\[
\frac{B K}{B J}-\left[\left(\frac{A G}{A B}\right)^{\frac{3}{4}}+\left(\frac{A G}{A B}\right)^{\frac{2}{4}}+\left(\frac{A G}{A B}\right)^{\frac{1}{4}}+\left(\frac{A G}{A B}\right)^{\frac{0}{4}}\right]=0 \quad \frac{B K}{B J}-\left(N^{\frac{3}{4}}+N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}\right)=0
\]
\[
\mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{B M}:=\frac{\mathbf{B D} \cdot \mathbf{B C}}{\mathbf{B G}} \quad \mathbf{C N}:=\frac{\mathbf{B D} \cdot \mathbf{C D}}{\mathbf{B G}} \mathbf{D P}:=\frac{\mathbf{B D} \cdot \mathbf{D F}}{\mathbf{B G}} \text { FQ }:=\frac{\mathbf{B D} \cdot \mathbf{F G}}{\mathbf{B G}}
\]
\[
\frac{\mathrm{BG}}{\mathrm{BM}}-\left[\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{5}{4}}+\frac{\mathrm{AG}}{\mathrm{AB}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathbf{A G}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathbf{A G}}{\mathrm{AB}}\right)^{\frac{0}{4}}\right]=0
\]
\[
\frac{B G}{B M}-\left(N^{\frac{5}{4}}+N+N^{\frac{3}{4}}+N^{\frac{3}{4}}+N^{\frac{2}{4}}+N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}\right)=0
\]
\[
\frac{\mathbf{B G}}{\mathbf{C N}}-\left[\frac{\mathbf{A G}}{\mathbf{A B}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{3}{4}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{2}{4}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{2}{4}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{1}{4}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{1}{4}}+\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right)^{\frac{0}{4}}+\left(\frac{\mathbf{A B}}{\mathbf{A G}}\right)^{\frac{1}{4}}\right]=0
\]
\[
\frac{\mathrm{BG}}{\mathrm{CN}}-\left(\mathrm{N}+\mathrm{N}^{\frac{3}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{2}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{1}{4}}+\mathrm{N}^{\frac{0}{4}}+\mathrm{N}^{\frac{-1}{4}}\right)=0
\]

\[
\begin{aligned}
& \frac{\mathrm{BG}}{\mathrm{DP}}-\left[\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{3}{4}}+\left(\frac{\mathbf{A G}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathbf{A G}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathbf{A B}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}\right]=0 \\
& \frac{B G}{D P}-\left(N^{\frac{3}{4}}+N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}+N^{\frac{0}{4}}+N^{\frac{-1}{4}}+N^{\frac{-2}{4}}\right)=0 \\
& \frac{\mathrm{BG}}{\mathrm{FQ}}-\left[\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AG}}{\mathrm{AB}}\right)^{\frac{0}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{1}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{2}{4}}+\left(\frac{\mathrm{AB}}{\mathrm{AG}}\right)^{\frac{3}{4}}\right]=0 \\
& \frac{B G}{F Q}-\left(N^{\frac{2}{4}}+N^{\frac{1}{4}}+N^{\frac{0}{4}}+N^{\frac{0}{4}}+N^{\frac{-1}{4}}+N^{\frac{-1}{4}}+N^{\frac{-2}{4}}+N^{\frac{-3}{4}}\right)=0 \\
& \frac{A G}{B M}-\left(\frac{A G^{\frac{6}{4}}+A G^{\frac{4}{4}} \cdot A B^{\frac{2}{4}}}{A G^{\frac{1}{4}} \cdot A B^{\frac{5}{4}}-A B^{\frac{6}{4}}}\right)=0 \quad \frac{A G}{B M}-\left(\frac{N^{\frac{3}{2}}+N}{N^{\frac{1}{4}}-N^{\frac{0}{4}}}\right)=0 \quad \frac{A G}{C N}-\left(\frac{A G^{\frac{5}{4}}+A G^{\frac{3}{4}} \cdot A B^{\frac{2}{4}}}{A G^{\frac{1}{4}} \cdot A B^{\frac{4}{4}}-A B^{\frac{5}{4}}}\right)=0 \\
& \frac{A G}{C N}-\left(\frac{N^{\frac{5}{4}}+N^{\frac{3}{4}}}{N^{\frac{1}{4}}-N^{\frac{0}{4}}}\right)=0 \quad \frac{A G}{D P}-\left(\frac{A G^{\frac{4}{4}}+A G^{\frac{2}{4}} \cdot A B^{\frac{2}{4}}}{A \mathbf{N}^{\frac{1}{4}} \cdot A B^{\frac{3}{4}}-A B^{\frac{4}{4}}}\right)=0 \quad \frac{A G}{D P}-\left(\frac{N+N^{\frac{2}{4}}}{N^{\frac{1}{4}}-N^{\frac{0}{4}}}\right)=0 \\
& \frac{A G}{F Q}-\left(\frac{A G^{\frac{3}{4}}+A G^{\frac{1}{4}} \cdot A B^{\frac{2}{4}}}{A G^{\frac{1}{4}} \cdot A B^{\frac{2}{4}}-A B^{\frac{3}{4}}}\right)=0 \quad \frac{A G}{F Q}-\left(\frac{N^{\frac{3}{4}}+N^{\frac{1}{4}}}{N^{\frac{1}{4}}-N^{\frac{0}{4}}}\right)=0
\end{aligned}
\]


011396 Pyramid of Ratios VI, Moving the Point

\[
\mathbf{A D}:=\mathbf{1} \quad \mathbf{A B}:=\frac{\mathbf{A D}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\sqrt{\mathbf{A B} \cdot \mathbf{B D}} \quad \mathbf{B E}:=\frac{\mathbf{B G}}{\mathbf{N}_{\mathbf{2}}}
\]
\[
\mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B E}}{\mathbf{B G}} \quad \mathbf{A E}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B E}^{2}} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{A F}:=\frac{\mathbf{A E} \cdot \mathbf{A D}}{\mathbf{A C}}
\]
\[
\mathbf{E F}:=\mathbf{A F}-\mathbf{A E} \quad \frac{\mathbf{A F}}{\mathbf{E F}}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\left(\mathbf{N}_{1}-\mathbf{1}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)}=\mathbf{0}
\]
\[
\Delta:=\mathbf{2} . . \mathbf{N}_{1} \quad \delta:=\mathbf{2} . . \mathbf{N}_{2} \quad \operatorname{SeriesAF}_{\Delta}, \delta:=\frac{\Delta \cdot \delta}{(\Delta-\mathbf{1}) \cdot(\delta-\mathbf{1})}
\]
\[
\text { SeriesAF }=\left(\begin{array}{cccccc}
4 & 3 & 2.666667 & 2.5 & 2.4 & 2.333333 \\
3 & 2.25 & 2 & 1.875 & 1.8 & 1.75 \\
2.666667 & 2 & 1.777778 & 1.666667 & 1.6 & 1.555556 \\
2.5 & 1.875 & 1.666667 & 1.5625 & 1.5 & 1.458333
\end{array}\right)
\]
\(D G:=\sqrt{B^{2}+\mathbf{B G}^{2}} \quad C E:=\sqrt{B^{2}+B^{2}} \quad D F:=\frac{C E \cdot A D}{A C} \quad G F:=D G-D F \quad \frac{D G}{G F}-\frac{\left(\mathbf{N}_{2}+\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{2}-\mathbf{1}\right)}=\mathbf{0}\)
SeriesDG \(_{\Delta, \delta}:=\frac{(\delta+\Delta-1)}{(\delta-1)} \quad\) SeriesDG \(=\left(\begin{array}{cccccc}3 & 2 & 1.666667 & 1.5 & 1.4 & 1.333333 \\ 4 & 2.5 & 2 & 1.75 & 1.6 & 1.5 \\ 5 & 3 & 2.333333 & 2 & 1.8 & 1.666667 \\ 6 & 3.5 & 2.666667 & 2.25 & 2 & 1.833333\end{array}\right)\)

\[
\begin{aligned}
& \mathbf{N}:=10 \\
& \mathbf{A G}:=\mathbf{N} \quad \mathbf{A B}:=\frac{\mathbf{A G}}{\mathbf{N}} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{B G}}{\mathbf{2}} \\
& A C:=\left(A B^{2} \cdot A G\right)^{\frac{1}{3}} \quad B C:=A C-A B \\
& \mathbf{A F}:=\left(\mathbf{A B} \cdot \mathbf{A G}{ }^{2}\right)^{\frac{1}{3}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{F G}:=\mathbf{B G}-\mathbf{B F} \\
& \mathbf{H J}:=\frac{\mathbf{B C} \cdot \mathbf{B G}}{\mathbf{B C}+\mathbf{F G}} \quad \mathbf{B D}:=\mathbf{H J} \quad \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \\
& \text { DJ }:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathbf{G J}:=\sqrt{\mathbf{D J}^{2}+\mathbf{D G}^{\mathbf{2}}} \quad \mathbf{B J}:=\sqrt{\mathbf{D J}^{2}+\mathbf{B D}^{\mathbf{2}}} \\
& \mathbf{G N}:=\frac{\mathbf{G J} \cdot \mathbf{F G}}{\mathbf{B G}} \quad \mathbf{B M}:=\frac{\mathbf{B J} \cdot \mathbf{B C}}{\mathbf{B G}} \\
& \frac{\mathbf{A G}}{\mathbf{A B}}=10 \quad \frac{\mathbf{G N}}{\mathbf{B M}}=10 \\
& \left(\frac{A B}{A G}\right)^{\frac{2}{3}}+\left(\frac{A B}{A G}\right)^{\frac{1}{3}}+\left(\frac{A B}{A G}\right)^{\frac{0}{3}}=1.679602 \quad \frac{G J}{G N}=1.679602 \quad \frac{N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}}{N^{\frac{2}{3}}}=1.679602 \\
& \left(\frac{A G}{A B}\right)^{\frac{2}{3}}+\left(\frac{A G}{A B}\right)^{\frac{1}{3}}+\left(\frac{A G}{A B}\right)^{\frac{0}{3}}=7.796024 \quad \frac{B J}{B M}=7.796024 \quad N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}=7.796024
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \quad \mathbf{B P}:=\frac{\mathbf{B D} \cdot \mathbf{B C}}{\mathbf{B G}} \quad \mathbf{C D}:=\frac{\mathbf{B D} \cdot \mathbf{C F}}{\mathbf{B G}} \quad \text { FR }:=\frac{\mathbf{B D} \cdot \mathbf{F G}}{\mathbf{B G}} \\
& \left(\frac{A G}{A B}\right)^{\frac{4}{3}}+\left(\frac{A G}{A B}\right)^{\frac{3}{3}}+\left(\frac{A G}{A B}\right)^{\frac{2}{3}}+\left(\frac{A G}{A B}\right)^{\frac{2}{3}}+\left(\frac{A G}{A B}\right)^{\frac{1}{3}}+\left(\frac{A G}{A B}\right)^{\frac{0}{3}}=43.981959 \\
& N^{\frac{4}{3}}+N^{\frac{3}{3}}+N^{\frac{2}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}=43.981959 \quad \frac{B G}{B P}=43.981959 \\
& \left(\frac{A G}{A B}\right)^{\frac{1}{3}}+\left(\frac{A G}{A B}\right)^{\frac{1}{3}}+\left(\frac{A G}{A B}\right)^{\frac{2}{3}}+\left(\frac{A G}{A B}\right)^{\frac{3}{3}}+\left(\frac{A B}{A G}\right)^{\frac{0}{3}}+\left(\frac{A B}{A G}\right)^{\frac{1}{3}}=20.414617 \\
& N^{\frac{3}{3}}+N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}+\frac{1}{N^{\frac{1}{3}}}=20.414617 \quad \frac{B G}{C D}=20.414617 \\
& \left(\frac{A G}{A B}\right)^{\frac{2}{3}}+\left(\frac{A G}{A B}\right)^{\frac{1}{3}}+\left(\frac{A G}{A B}\right)^{\frac{0}{3}}+\left(\frac{A G}{A B}\right)^{\frac{0}{3}}+\left(\frac{A B}{A G}\right)^{\frac{1}{3}}+\left(\frac{A B}{A G}\right)^{\frac{2}{3}}=9.475626 \\
& N^{\frac{2}{3}}+N^{\frac{1}{3}}+N^{\frac{0}{3}}+N^{\frac{0}{3}}+\frac{1}{N^{\frac{1}{3}}}+\frac{1}{N^{\frac{2}{3}}}=9.475626 \quad \frac{B G}{F R}=9.475626
\end{aligned}
\]

\[
\begin{aligned}
& \begin{array}{ll}
A G^{\frac{5}{3}}+A B^{\frac{2}{3}} \cdot A G \\
A G^{\frac{1}{3}} \cdot A B^{\frac{4}{3}}-A B^{\frac{5}{3}} & 48.868844 \\
\frac{A G}{B P}=48.868844 & \frac{N^{\frac{5}{3}}+N}{N^{\frac{1}{3}}-N^{\frac{0}{3}}}=48.868844
\end{array} \\
& \frac{A G^{\frac{4}{3}}+A B^{\frac{2}{3}} \cdot A G^{\frac{2}{3}}}{A G^{\frac{1}{3}} \cdot A B-A B^{\frac{4}{3}}}=22.682908 \quad \frac{A G}{C D}=22.682908 \quad \frac{N^{\frac{4}{3}}+N^{\frac{2}{3}}}{N^{\frac{1}{3}}-N^{\frac{0}{3}}}=22.682908 \\
& \frac{A G+A B^{\frac{2}{3}} \cdot A G^{\frac{1}{3}}}{A G^{\frac{1}{3}} \cdot A B^{\frac{2}{3}}-A B}=10.528473 \quad \frac{A G}{F R}=10.528473 \quad \frac{N+N^{\frac{1}{3}}}{N^{\frac{1}{3}}-N^{\frac{0}{3}}}=10.528473
\end{aligned}
\]

011796A Right Triangle In A Given Ratio

Given \(A E\) and \(A B\) on \(A E\), place a right triangle on \(B E\) as base such that the opposite sides are in the ratio of \(A B\) to AE.
\[
\frac{A E}{A B}-\frac{E F}{B F}=0 \quad A C-\frac{\mathbf{N}^{2}+N}{\mathbf{N}^{2}+1}=0 \quad B F-\frac{N-1}{\sqrt{N^{2}+1}}=0 \quad E F-\frac{\mathbf{N}^{2}-N}{\sqrt{N^{2}+1}}=0
\]
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{3} \\
& \mathbf{A B}:=1 \quad \mathbf{A E}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \\
& \text { BD }:=\frac{\mathbf{B E}}{2} \quad \mathbf{D F}:=\mathbf{B D} \quad \mathbf{D E}:=\mathbf{B D} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathbf{D H}:=\mathbf{B D} \quad \mathbf{A H}:=\sqrt{\mathbf{A D}^{2}+\mathbf{D H}^{2}} \quad \mathbf{A G}:=\frac{\mathbf{A D} \cdot \mathbf{A D}}{\mathbf{A H}} \\
& \mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \quad \mathbf{F G}:=\mathbf{G H} \quad \mathbf{A F}:=\mathbf{A H}-(\mathbf{F G}+\mathbf{G H}) \\
& \mathrm{S}_{1}:=\mathrm{AD} \quad \mathrm{~S}_{2}:=\mathrm{AF} \quad \mathrm{~S}_{3}:=\mathrm{DF} \quad \mathrm{CD}:=\frac{\mathbf{S}_{\mathbf{3}}{ }^{2}+\mathbf{S}_{1}{ }^{2}-\mathbf{S}_{\mathbf{2}}{ }^{2}}{2 \cdot \mathbf{S}_{1}} \quad \mathrm{BC}:=\mathrm{BD}-\mathrm{CD} \\
& \mathbf{C E}:=\mathbf{C D}+\mathbf{D E} \quad \mathbf{C F}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathrm{BF}:=\sqrt{\mathrm{BC}^{2}+\mathrm{CF}^{2}} \quad \mathrm{EF}:=\sqrt{\mathrm{CE}^{2}+\mathrm{CF}^{2}} \quad \mathrm{AC}:=\mathrm{AD}-\mathbf{C D}
\end{aligned}
\]

\section*{011796B Divide The Sides Of A Triangle In A Given Ratio}

Given AG and AB on AG and a right triangle on BG divide the sides of the triangle such that a section on one side is to the other as \(A B\) is to AG.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{9} \\
& \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{1}} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \\
& \mathbf{A C}:=\frac{\mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{1}} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \\
& \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \\
& \mathbf{B D}:=\frac{\mathbf{C F}}{\mathbf{N}_{\mathbf{2}}}+\mathbf{B C} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D}
\end{aligned}
\]
\(\mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{D M}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathbf{F O}:=\mathbf{B F} \quad \mathbf{E F}:=\frac{\mathbf{D F} \cdot \mathbf{F O}}{\mathbf{F O}+\mathbf{D M}} \quad \mathbf{A E}:=\mathbf{A F}-\mathbf{E F} \quad \mathbf{E O}:=\sqrt{\mathbf{E F}^{2}+\mathbf{F O}^{2}}\)
MO := EO (DM + FO) \(\quad\) EK \(:=\frac{\mathbf{E F} \cdot \mathbf{A E}}{\mathbf{E O}} \quad \mathbf{K M}:=\mathbf{M O}-(\mathbf{E K}+\mathbf{E O}) \quad\) HK \(:=\mathbf{K M} \quad \mathbf{H M}:=\sqrt{\mathbf{2} \cdot \mathbf{K M}^{2}}\)
\(\mathbf{B M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D M}^{2}} \quad \mathbf{B H}:=\mathbf{B M}-\mathbf{H M} \quad \mathbf{G M}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D M}^{2}} \quad \mathbf{L M}:=\mathbf{H M} \quad\) GL \(:=\mathbf{G M}-\mathbf{L M}\)
\(\frac{\mathbf{A G}}{\mathbf{A B}}-\frac{\mathbf{G L}}{\mathbf{B H}}=\mathbf{0}\)


\section*{012296 Trivial Method Square Root}

For any \(E\) between \(M\) and \(L\), \(A M\) is the square root of \(A B \times A E\).

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{6} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \\
& \mathbf{A F}:=\mathbf{1} \quad \mathbf{A L}:=\mathbf{A F} \cdot \mathbf{N}_{\mathbf{1}} \quad \mathbf{F L}:=\mathbf{A L}-\mathbf{A F} \quad \mathbf{F J}:=\frac{\mathbf{F L}}{2} \\
& \mathbf{A M}:=\sqrt{\mathbf{A F} \cdot \mathbf{A L}} \quad \mathbf{A J}:=\mathbf{A F}+\mathbf{F J} \quad \mathbf{A G}:=\frac{\mathbf{A M}^{2}}{\mathbf{A J}} \\
& \mathbf{G L}:=\mathbf{A L}-\mathbf{A G} \quad \mathbf{G K}:=\frac{\mathbf{G L}}{\mathbf{N}_{\mathbf{2}}} \quad \mathbf{F G}:=\mathbf{A G}-\mathbf{A F} \\
& \text { FK }:=\mathbf{G K}+\mathbf{F G} \quad \mathbf{K L}:=\mathbf{F L}-\mathbf{F K} \quad \mathbf{E K}:=\sqrt{\mathbf{F K} \cdot \mathbf{K L}} \\
& \text { AK }:=\mathbf{F K}+\mathbf{A F} \quad \mathbf{A E}:=\sqrt{\mathbf{A K}}{ }^{\mathbf{2}}+\mathbf{E K} \quad \text { AD }:=\frac{\mathbf{A K} \cdot \mathbf{A J}}{\mathbf{A E}} \\
& \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{B D}:=\mathbf{D E} \quad \mathbf{A B}:=\mathbf{A E}-\mathbf{2} \cdot \mathbf{B D} \\
& \sqrt{\mathbf{A B} \cdot \mathbf{A E}}-\mathbf{A M}=\mathbf{0}
\end{aligned}
\]

\section*{012496 Tangent}

The tangent from any point outside a circle is equal to the square root of the difference to the circle and that
difference plus the diameter of the circle.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A E}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathbf{D M}:=\mathbf{B D} \quad \mathbf{D H}:=\mathbf{B D} \quad \mathbf{C D}:=\frac{\mathbf{D H} \cdot \mathbf{D M}}{\mathbf{A D}} \\
& \mathbf{B C}:=\mathbf{B D}-\mathbf{C D} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \\
& \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{A J}:=\sqrt{(\mathbf{A B}+\mathbf{B C})^{2}+\mathbf{C J}^{2}} \\
& \mathbf{A J}-\sqrt{\mathbf{N}}=\mathbf{0} \quad \mathbf{A J}-\sqrt{\mathbf{A B} \cdot \mathbf{A E}}=\mathbf{0} \\
& \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{2} \cdot \mathbf{A B} \cdot \frac{\mathbf{N}}{(\mathbf{1}+\mathbf{N})}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]


Given a point on BD (a point on the cubes
powerline), project to the point of cubic
similarity.
\(\mathbf{N}:=\mathbf{9} \quad \mathbf{B E}:=\mathbf{1}\)
BD \(:=\frac{\mathbf{B E}}{2} \quad\) DK \(:=\mathbf{B D} \quad\) DJ \(:=\mathbf{B D} \quad\) JK \(:=\mathbf{B E} \quad\) DE \(:=\mathbf{B D}\)
\(B C:=\frac{B D}{N} C D:=B D-B C \quad C K:=\sqrt{C D^{2}+D K^{2}}\)
\(\mathrm{HK}:=\frac{\mathrm{DK} \cdot \mathrm{JK}}{\mathrm{CK}} \quad \mathbf{C H}:=\mathrm{HK}-\mathbf{C K} \quad \mathbf{C F}:=\frac{\mathbf{C H}}{2}\)
FK \(:=\mathbf{C K}+\mathbf{C F} \quad \mathbf{G K}:=\frac{\text { DK } \cdot \mathbf{F K}}{\mathbf{C K}} \quad\) FG \(:=\frac{\mathbf{C D} \cdot \mathbf{F K}}{\mathbf{C K}}\)
GJ \(:=\mathbf{J K}-\mathbf{G K} \quad \mathbf{A D}:=\frac{\mathbf{G J} \cdot \mathbf{D K}}{\text { FG }} \quad \mathbf{A E}:=\mathbf{A D}+\mathbf{D E}\)
\(\mathbf{A B}:=\mathbf{A E}-\mathbf{B E}\)
\(A E-\frac{(2 \cdot N-1)^{3}}{2 \cdot(N-1) \cdot\left(4 \cdot N^{2}-2 \cdot N+1\right)}=0\)
\(A B-\frac{1}{2 \cdot(N-1) \cdot\left(4 \cdot \mathbf{N}^{2}-2 \cdot \mathbf{N}+1\right)}=0\)
\[
\frac{8 \cdot N^{3}-12 \cdot N^{2}+6 \cdot N-1}{8 \cdot N^{3}-12 \cdot N^{2}+6 \cdot N-2} \quad \frac{1}{8 \cdot N^{3}-12 \cdot N^{2}+6 \cdot N-2}
\]
\[
\begin{aligned}
& 012996 \text { Linear division } \frac{N_{1} \cdot\left(N_{2}+2 \cdot N_{3}\right)}{2 \cdot\left(N_{2}+N_{3}\right)} \\
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{9} \\
& \mathbf{A E}:=\mathbf{N}_{1} \quad \mathbf{A H}:=\mathbf{N}_{2} \quad \mathrm{AC}:=\frac{\mathrm{AE}}{2} \quad \mathbf{C F}:=\mathbf{N}_{3} \quad \mathrm{BC}:=\frac{\mathrm{AC} \cdot \mathbf{C F}}{\mathrm{AH}} \quad \mathbf{C E}:=\mathrm{AC} \\
& \mathbf{B E}:=\mathbf{C E}+\mathbf{B C} \quad \mathbf{C D}:=\frac{\mathrm{BC} \cdot \mathbf{C E}}{\mathrm{BE}} \quad \mathrm{DE}:=\mathbf{C E}-\mathbf{C D} \quad \mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathrm{DG}:=\frac{\mathbf{A H} \cdot \mathbf{C D}}{\mathrm{AC}} \quad \mathbf{B C}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{3}}}{2 \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0} \\
& D E-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{2 \cdot\left(\mathbf{N}_{2}+\mathbf{N}_{3}\right)}=0 \quad A D-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}+2 \cdot \mathbf{N}_{3}\right)}{2 \cdot\left(\mathbf{N}_{2}+\mathbf{N}_{3}\right)}=0 \quad C D-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{3}}{2 \cdot\left(\mathbf{N}_{2}+\mathbf{N}_{3}\right)}=0 \quad D G-\frac{\mathbf{N}_{2} \cdot \mathbf{N}_{3}}{\mathbf{N}_{2}+\mathbf{N}_{3}}=0 \\
& \text { Linear division } \frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{3}\right)^{\mathbf{2}}}{\mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{N}_{2} \cdot \mathbf{N}_{3}+\mathbf{N}_{3} \cdot \mathbf{N}_{4}} \\
& \mathbf{N}_{\mathbf{1}}:=\mathbf{4} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{4} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{4}}:=\mathbf{3} \\
& \mathbf{A E}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A H}:=\mathbf{N}_{\mathbf{2}} \quad \text { AC }:=\mathbf{N}_{\mathbf{3}} \quad \mathbf{C F}:=\mathbf{N}_{\mathbf{4}} \quad \text { BC }:=\frac{\mathrm{AC} \cdot \mathbf{C F}}{\mathrm{AH}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \\
& \mathrm{BE}:=\mathrm{CE}+\mathrm{BC} \quad \mathrm{CD}:=\frac{\mathrm{BC} \cdot \mathbf{C E}}{\mathrm{BE}} \quad \mathrm{DE}:=\mathrm{CE}-\mathrm{CD} \quad \mathrm{AD}:=\mathrm{AC}+\mathrm{CD} \quad \mathrm{DG}:=\frac{\mathrm{CF} \cdot \mathrm{CE}}{\mathrm{BE}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{C D}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{4}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{4}}}=\mathbf{0} \quad \mathbf{D G}-\frac{\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{4}} \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{4}}}=\mathbf{0}
\end{aligned}
\]

013196 On Gemini Roots
Hitting AO from any RT while maintaining Gemini Roots.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{B C}:=\mathbf{1} \\
& \text { BJ }:=\mathrm{BC} \cdot \mathbf{N}_{\mathbf{1}} \mathbf{C J}:=\mathrm{BJ}-\mathbf{B C} \quad \mathrm{CI}:=\frac{\mathbf{C J}}{2} \\
& \mathbf{I J}:=\mathbf{C I} \quad \mathbf{B F}:=\sqrt{\mathbf{B C} \cdot \mathbf{B J}} \quad \mathbf{A B}:=\mathbf{B F} \\
& \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{C F}:=\mathbf{B F}-\mathbf{B C} \quad \mathbf{F J}:=\mathbf{C J}-\mathbf{C F} \\
& \text { FO }:=\sqrt{\mathbf{C F} \cdot \mathbf{F J}} \quad \mathbf{C R}:=\mathbf{C J} \cdot \mathbf{N}_{2} \quad \text { HS }:=\mathbf{C R} \\
& \text { FI }:=\mathbf{F J}-\mathbf{I J} \quad \text { FG }:=\frac{\text { FI } \cdot \mathbf{F O}}{\mathbf{F O}+\mathbf{H S}} \text { AG }:=\mathbf{A B}+\mathbf{B F}+\mathbf{F G} \\
& \text { OS }:=\sqrt{(H S+F O)^{2}+\mathbf{F I}^{2}} \quad \text { GO }:=\frac{\text { OS } \cdot \mathbf{F O}}{\text { HS }+ \text { FO }} \quad \text { AJ }:=\mathbf{A F}+\text { FJ GL }:=\frac{\text { HS } \cdot \mathbf{G O}}{\text { OS }} \quad \text { FU }:=\frac{\text { AG } \cdot \mathbf{F O}}{\text { GL }} \\
& \mathbf{A H}:=\frac{\mathbf{F U} \cdot \mathbf{A J}}{\mathbf{F U}+\mathbf{F J}} \quad \mathbf{D K}:=\frac{\mathbf{F O} \cdot(\mathbf{A F}-\mathbf{C F})}{\mathbf{F U}-\mathbf{C F}} \quad \mathbf{A D}:=\frac{\mathbf{A G} \cdot \mathbf{D K}}{\mathbf{G L}} \quad \mathbf{A C}:=\mathbf{A F}-\mathbf{C F} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \\
& \mathbf{C H}:=\mathbf{A H}-\mathbf{A C} \quad \mathbf{D H}:=\mathbf{C H}-\mathbf{C D} \quad \mathbf{H J}:=\mathbf{C J}-\mathbf{C H} \quad \mathbf{E N}:=\frac{\mathbf{C R} \cdot \mathbf{D H}}{\mathbf{C D}+\mathbf{H J}} \quad \mathbf{C E}:=\frac{\mathbf{C D} \cdot(\mathbf{C R}+\mathbf{E N})}{\mathbf{C R}} \\
& \mathbf{A E}:=\mathbf{A C}+\mathbf{C E} \quad \frac{\mathbf{A F}}{\mathbf{F O}}-\frac{\mathbf{A E}}{\mathbf{E N}}=\mathbf{0} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \quad \mathbf{B H}:=\mathbf{B C}+\mathbf{C H} \\
& \sqrt{\mathbf{B C} \cdot \mathbf{B J}}-\sqrt{\mathbf{B D} \cdot \mathbf{B H}}=\mathbf{0}
\end{aligned}
\]

\section*{020296 Find A Segment}

Given \(\mathbf{B E}\) and \(\mathbf{B C}\) such that \(\sqrt{(\mathbf{A B}+\mathbf{B E}) \cdot \mathbf{A B}}=\mathbf{A B}+\mathbf{B C}\), find \(\mathbf{A B}\).

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \\
& \mathbf{B C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B E}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{\mathbf{2}} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \\
& \mathbf{C H}:=\mathbf{B D} \quad \mathbf{D H}:=\sqrt{\mathbf{C D}^{2}+\mathbf{C H}^{2}} \quad \mathbf{D F}:=\frac{\mathbf{D H}}{2} \\
& \mathbf{A D}:=\frac{\mathbf{D H} \cdot \mathbf{D F}}{\mathbf{C D}} \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \\
& \mathbf{A B}-\frac{\mathbf{N}_{\mathbf{1}}{ }^{2}}{\mathbf{N}_{\mathbf{2}}-\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}}=\mathbf{0} \\
& \sqrt{(\mathbf{A B}+\mathbf{B E}) \cdot \mathbf{A B}}-(\mathbf{A B}+\mathbf{B C})=\mathbf{0}
\end{aligned}
\]

021496.MCD Or, the 17 decimal place rustic solution.

\section*{Use iteration to find any root pair for BE.} Remember that when \(N\) is set to 2 , we have cube roots.
\[
\mathbf{C I}:=1 \quad \text { CG }:=\frac{\text { CI }}{2} \quad \text { GI }:=\text { CG } \quad \mathbf{B C}:=1
\]
\[
\mathbf{B I}:=\mathbf{B C}+\mathbf{C I} \quad \mathbf{B E}:=\sqrt{\mathbf{B C} \cdot \mathbf{B I}} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C}
\]
\[
\mathbf{E I}:=\mathbf{C I}-\mathbf{C E} \quad \text { EK }:=\sqrt{\mathbf{C E} \cdot \mathbf{E I}} \quad \mathbf{E G}:=\mathbf{C G}-\mathbf{C E}
\]
\[
\mathbf{A E}:=\frac{\mathbf{E K}^{2}}{\mathbf{E G}} \mathbf{A C}:=\mathbf{A E}-\mathbf{C E} \quad \mathbf{A G}:=\mathbf{A C}+\mathbf{C G}
\]
\[
\mathbf{N}:=\mathbf{2} \quad \mathbf{G N}:=\mathbf{C G} \cdot \mathbf{N} \quad \mathbf{I O}:=\mathbf{G N} \quad \mathbf{C M}:=\mathbf{G N}
\]
\[
\Delta:=40 \quad \delta:=0 . . \Delta
\]
\[
\left(\begin{array}{l}
\mathbf{E P}_{\mathbf{0}} \\
\mathbf{F G}_{\mathbf{0}} \\
\mathbf{A F}_{\mathbf{0}} \\
\mathbf{F I}_{\mathbf{0}} \\
\mathbf{C F}_{\mathbf{0}} \\
\mathbf{F L}_{\mathbf{0}}
\end{array}\right):=\left[\begin{array}{c}
\frac{\mathbf{E K} \cdot \mathbf{G N}}{\mathbf{G N}+\mathbf{E K}} \\
\mathbf{A G}-\frac{\mathbf{E G} \cdot \mathbf{G N}}{\mathbf{G N}+\mathbf{E K}} \\
\left.\sqrt{\left[\begin{array}{l}
\mathbf{G I}+\frac{\mathbf{E G} \cdot \mathbf{G N}}{\mathbf{G N}+\mathbf{E K}} \\
\left.\left[\left(\frac{\left.\mathbf{A G}-\left(\frac{\mathbf{E G} \cdot \mathbf{G N}}{\mathbf{G N}+\mathbf{E K}}\right)\right]-\mathbf{A C}}{\mathbf{G N}+\mathbf{E K}}\right)\right]-\mathbf{A C}\right] \cdot \mathbf{G I}+\left(\frac{\mathbf{E G} \cdot \mathbf{G N}}{\mathbf{G N}+\mathbf{E K}}\right)
\end{array}\right]}\right]
\end{array}\right]
\]

\[
\begin{aligned}
& \mathbf{A K}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E K}^{2}} \mathbf{A L}:=\sqrt{\left(\mathbf{A F}_{\Delta}\right)^{2}+\left(\mathbf{F L}_{\Delta}\right)^{2}} \quad \mathbf{A J}:=\frac{\mathbf{A K}^{2}}{\mathbf{A L}} \quad \mathbf{A Q}:=\frac{\mathbf{A F}_{\Delta} \cdot \mathbf{A J}}{\mathbf{A L}} \quad \mathbf{C Q}:=\mathbf{A Q}-\mathbf{A C} \\
& \mathbf{I Q}:=\mathbf{C I}-\mathbf{C Q} \quad \mathbf{J Q}:=\sqrt{\mathbf{C Q} \cdot \mathbf{I Q}} \quad \mathbf{C D}:=\frac{\mathbf{C Q} \cdot \mathbf{C M}}{\mathbf{C M}+\mathbf{J Q}} \quad \mathbf{H I}:=\frac{\mathbf{I Q} \cdot \mathbf{I O}}{\mathbf{I O}+\mathbf{J Q}} \quad \mathbf{D H}:=\mathbf{C I}-(\mathbf{C D}+\mathbf{H I}) \\
& \mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \quad \mathbf{B H}:=\mathbf{B C}+\mathbf{C D}+\mathbf{D H}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\mathbf{D H}}{\sqrt{\mathbf{C D} \cdot \mathbf{H I}}}=\mathbf{1} \\
& \mathbf{B E}-\sqrt{\mathbf{B D} \cdot \mathbf{B H}}=\mathbf{0}
\end{aligned}
\]

The next two equations are for the Delian Problem only. Resolution set to max of the program.
\(\left(B C^{2} \cdot B I\right)^{\frac{1}{3}}-B D=0 \quad\left(B C \cdot B I^{2}\right)^{\frac{1}{3}}-B H=0\)
\(B D=1.2599210498948732 \quad 2^{\frac{1}{3}}=1.2599210498948732\)
17 decimal places. Good to the limits of the program.
\(B H=1.5874010519681994 \quad 4^{\frac{1}{3}}=1.5874010519681994\)


A graphics peek.


The problem as stated was to duplicate the altar of Apollo. The solution demanded was material and not theoretical, and therefore has been solved by a finite number of steps. The next step is to solve it theoretically. That solution alone will conquer contiguous domains and will satisfy the purist. The solution is only good to material differences, on the atomic level, so to speak.

\section*{041496 Method for Unequals}

Given \(c_{1}, c_{2}, c_{3}\), find \(c_{4}\). I had this sketched out in 95 , but if I put it there I would have had a lot of document links to redo in "The Quest."

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{7} \\
& \mathbf{C M}:=\mathbf{1} \quad \mathbf{C K}:=\frac{\mathbf{C M}}{\mathbf{2}} \quad \mathbf{C E}:=\frac{\mathbf{C M}}{\mathbf{N}_{\mathbf{1}}} \\
& \mathbf{L M}:=\frac{\mathbf{C M}}{\mathbf{N}_{\mathbf{2}}} \quad \text { EL }:=\mathbf{C M}-(\mathbf{C E}+\mathbf{L M})
\end{aligned}
\]
\(\mathbf{B L}:=\frac{\mathbf{E L} \cdot \mathbf{L M}}{\mathbf{L M}-\mathbf{C E}} \mathbf{B M}:=\mathbf{B L}+\mathbf{L M} \quad \mathbf{B C}:=\mathbf{B M}-\mathbf{C M} \quad \mathbf{B K}:=\frac{\mathbf{C M}}{\mathbf{2}}+\mathbf{B C} \quad \mathbf{R}_{\mathbf{1}}:=\mathbf{L M} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{C E} \quad \mathbf{D}:=\mathbf{E L} \quad \mathbf{K S}:=\mathbf{C K} \quad \mathbf{E H}:=\frac{\left(\mathbf{R}_{\mathbf{2}}{ }^{\mathbf{2}}+\mathbf{D}^{\mathbf{2}}-\mathbf{R}_{\mathbf{1}}{ }^{\mathbf{2}}\right)}{\mathbf{2} \cdot \mathbf{D}}\)
 \(\mathbf{J R}:=\frac{\mathbf{F S} \cdot \mathbf{C M}}{\mathbf{A F}+\mathbf{F M}} \quad\) RO \(:=\frac{\mathbf{C M} \cdot(\mathbf{F S}-\mathbf{J R})}{\text { FS }} \quad\) PS \(:=\frac{\mathbf{R O}}{2} \quad \mathbf{P S}-\frac{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{2}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{2}\right)}{2 \cdot\left(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{4}\right)}=\mathbf{0}\)


\section*{On Gemini Roots}
\(A B:=\mathbf{N}_{1} \quad B E:=\mathbf{N}_{2} \quad B D:=\frac{B E}{2}\)
\(\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A E}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B}\)
\(\mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{C F}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C}\)
\(\mathbf{C G}:=\frac{\mathbf{C F}^{2}}{\mathrm{CD}} \quad \mathrm{BG}:=\mathbf{C G}-\mathbf{B C} \quad \mathbf{E G}:=\mathrm{BG}+\mathrm{BE}\)
\(\mathrm{CH}:=\frac{1}{2} \cdot \mathrm{CF} \quad \mathrm{DH}:=\sqrt{\mathrm{CH}^{2}+\mathrm{CD}^{2}} \mathrm{DI}:=\frac{1}{2} \cdot \mathrm{DH}\)

\(\mathbf{D L}:=\frac{\mathbf{C D} \cdot \mathbf{D I}}{\mathbf{D H}} \quad \mathbf{B L}:=\mathbf{B D}-\mathbf{D L} \quad \mathbf{E L}:=\mathbf{B E}-\mathbf{B L} \quad \mathbf{J L}:=\sqrt{\mathbf{B L} \cdot \mathbf{E L}} \quad \mathbf{G L}:=\mathbf{B L}+\mathbf{B G} \quad \mathbf{G J}:=\sqrt{\mathbf{J L}^{\mathbf{2}}+\mathbf{G L}}{ }^{\mathbf{2}}\)
\(\mathbf{G K}:=\frac{\mathbf{B G} \cdot \mathbf{E G}}{\mathbf{G J}} \quad \mathbf{G M}:=\frac{\mathbf{G L} \cdot \mathbf{G K}}{\mathbf{G J}} \quad \mathbf{B M}:=\mathbf{G M}-\mathbf{B G} \quad \mathbf{E M}:=\mathbf{B E}-\mathbf{B M} \quad \mathbf{I L}:=\sqrt{\mathbf{D I}^{2}-\mathbf{D L}^{\mathbf{2}}} \quad \mathbf{C O}:=\frac{\mathbf{G L} \cdot \mathbf{C H}}{\mathbf{I L}}\)
\(\mathbf{N P}:=\frac{\mathbf{C H} \cdot \mathbf{E G}}{(\mathbf{C O}+\mathbf{C E})} \quad \mathbf{E P}:=\frac{\mathbf{C E} \cdot \mathbf{N P}}{\mathbf{C H}} \quad \mathbf{C Q}:=\frac{\mathbf{I L} \cdot \mathbf{C G}}{\mathbf{G L}} \quad \mathbf{C R}:=\frac{\mathbf{B C} \cdot \mathbf{C Q}}{\mathbf{C H}} \quad \mathbf{G R}:=\mathbf{C G}-\mathbf{C R} \quad \mathbf{B S}:=\frac{\mathbf{C R} \cdot \mathbf{B G}}{\mathbf{G R}}\)

\(\mathbf{T W}_{\boldsymbol{\delta}}-\mathbf{V} \mathbf{X}_{\boldsymbol{\delta}}\)


041696 Given Three Radii

Given c1, c2 and c3 find c4 such that

\(A B\) is collinear with \(c 1\) and \(c 2\).
\(\mathbf{N}_{1}:=4 \quad \mathbf{N}_{\mathbf{2}}:=16\)
AJ \(:=1 \quad\) AF \(:=\frac{\mathbf{A J}}{2} \quad \mathrm{HJ}:=\frac{\mathrm{AJ}}{\mathbf{N}_{1}} \quad\) NO \(:=\frac{\mathrm{AJ}}{\mathbf{N}_{\mathbf{2}}}\)
HM := HJ MO := NO HO := HM + MO
FO :=AF - NO AH \(:=\mathbf{A J}-\mathbf{H J} \quad\) FH \(:=\mathbf{A H}-\mathbf{A F}\)
\(S_{1}:=\mathrm{FH} \quad \mathrm{S}_{2}:=\mathrm{FO} \quad \mathrm{S}_{3}:=\mathrm{HO} \quad \mathrm{EH}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}}{2 \cdot \mathrm{~S}_{1}} \quad \mathrm{EO}:=\sqrt{\mathrm{HO}^{2}-\mathrm{EH}^{2}} \quad\) OP \(:=\mathrm{NO}\)
\(\mathbf{E G}:=\mathbf{O P} \quad \mathbf{A E}:=\mathbf{A H}-\mathbf{E H} \quad \mathbf{A G}:=\mathbf{A E}+\mathbf{E G} \quad \mathbf{G P}:=\mathbf{E O} \quad \mathbf{A P}:=\sqrt{\mathbf{A G}^{\mathbf{2}}+\mathbf{G P}^{\mathbf{2}}}\)
\(\mathbf{P L}:=\frac{\mathbf{A G} \cdot(\mathbf{N O}+\mathbf{O P})}{\mathbf{A P}} \quad \mathbf{A L}:=\mathbf{A P}-\mathbf{P L} \quad \mathbf{A B}:=\frac{\mathbf{A P} \cdot \mathbf{A L}}{\mathbf{2} \cdot \mathbf{A G}} \quad \mathbf{A B}-\frac{\mathbf{N}_{2} \cdot \mathbf{N}_{1}-\mathbf{2} \cdot \mathbf{N}_{2}-\mathbf{2} \cdot \mathbf{N}_{1}}{2 \cdot\left(\mathbf{N}_{2} \cdot \mathbf{N}_{1}-\mathbf{2} \cdot \mathbf{N}_{2}-\mathbf{4}\right)}=\mathbf{0}\)


\section*{041796 A Circle In A Crescent}

\[
\begin{aligned}
& \mathbf{R}_{\mathbf{1}}:=4.65667 \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{2 . 5 0 8 0 4} \quad \mathbf{D}_{\mathbf{1}}:=\mathbf{3 . 0 5 1 1 4} \quad \mathbf{D}_{\mathbf{2}}:=\mathbf{5 . 2 0 7 3 9} \\
& \mathbf{A G}:=\mathbf{R}_{\mathbf{1}} \quad \mathbf{A J}:=\mathbf{2} \cdot \mathbf{R}_{\mathbf{1}} \quad \mathbf{C F}:=\mathbf{R}_{\mathbf{2}} \quad \mathbf{C G}:=\mathrm{D}_{\mathbf{1}} \quad \mathrm{BG}:=\frac{\left(\mathbf{R}_{\mathbf{1}}{ }^{\mathbf{2}}+\mathrm{D}_{\mathbf{1}}{ }^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}\right)}{2 \cdot \mathbf{D}_{\mathbf{1}}} \\
& \mathbf{B C}:=\mathbf{C G}-\mathbf{B G} \quad \mathbf{F G}:=\mathbf{C G}-\mathbf{C F} \quad \mathbf{A F}:=\mathbf{A G}-\mathbf{F G} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{2} \quad \mathbf{A B}:=\mathbf{A G}-\mathbf{B G} \\
& \mathbf{B J}:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B H}:=\mathbf{D}_{\mathbf{2}} \quad \mathbf{A H}:=\mathbf{B H}+\mathbf{A B} \quad \mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \quad \mathbf{H R}:=\sqrt{\mathbf{A G}^{\mathbf{2}}-\mathbf{G H}^{\mathbf{2}}} \\
& \mathbf{A P}:=\mathbf{H R} \quad \mathbf{P R}:=\mathbf{B H} \quad \mathbf{P S}:=\frac{\mathbf{G H} \cdot \mathbf{P R}}{\mathbf{H R}} \quad \mathbf{B S}:=\mathbf{A P}+\mathbf{P S} \quad \mathbf{R S}:=\sqrt{\mathbf{P R}^{2}+\mathbf{P S}^{\mathbf{2}}} \quad \text { NS }:=\mathbf{R S} \\
& \mathbf{C N}:=\mathbf{C F} \quad \mathbf{C S}:=\sqrt{\mathrm{NS}^{2}+\mathrm{CN}^{2}} \quad \mathrm{CK}:=\frac{\mathrm{CN}^{2}}{\mathrm{CS}} \mathrm{SK}:=\mathbf{C S}-\mathrm{CK} \quad \mathrm{KN}:=\sqrt{\mathrm{CN}^{2}-\mathrm{CK}^{2}} \quad \mathrm{KM}:=\frac{\mathrm{BC} \cdot \mathrm{KN}}{\mathrm{BS}} \\
& \text { SM }:=\mathbf{S K}+\mathbf{K M} \quad \mathbf{S L}:=\frac{\mathbf{B S} \cdot \mathbf{S M}}{\mathbf{C S}} \quad \mathbf{B L}:=\mathbf{B S}-\mathbf{S L} \quad \text { EN }:=\mathbf{B L} \quad \text { CE }:=\sqrt{\mathbf{C N}^{2}-\mathbf{E N}^{2}} \\
& \text { HT }:=\frac{\mathbf{C E} \cdot \mathbf{H R}}{\mathbf{E N}} \quad \mathbf{G T}:=\mathbf{H T}-\mathbf{G H} \text { GO }:=\frac{\mathbf{A G} \cdot \mathbf{C G}}{\mathbf{G T}} \quad \text { OR }:=\mathbf{A G}-\mathbf{G O} \mathbf{O R}=\mathbf{2} .005063
\end{aligned}
\]

Cris


\section*{041796b A Circle In A Crescent}
\[
\begin{aligned}
& \mathbf{R}_{\mathbf{1}}:=\mathbf{5 . 7 9 4 3 8} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{2 . 4 0 2 7 2} \quad \mathbf{D}_{\mathbf{1}}:=\mathbf{3 . 8 2 2 3 1} \quad \mathbf{D}_{\mathbf{2}}:=\mathbf{6 . 9 6 4 3 6} \\
& \mathbf{A F}:=\mathbf{R}_{\mathbf{1}} \quad \mathbf{A K}:=\mathbf{2} \cdot \mathbf{R}_{\mathbf{1}} \quad \text { FP }:=\mathbf{A F} \quad \text { FK }:=\mathbf{A F} \\
& \mathbf{D H}:=\mathbf{R}_{\mathbf{2}} \quad \mathbf{D F}:=\mathbf{D}_{\mathbf{1}} \quad \mathbf{C D}:=\frac{\mathbf{D H}^{2}+\mathbf{D F}^{2}-\mathbf{A F}^{2}}{2 \cdot \mathbf{D F}} \\
& \text { FH }:=\mathbf{D F}-\mathbf{D H} \quad \mathbf{A H}:=\mathbf{A F}-\mathbf{F H} \quad \mathbf{A E}:=\frac{\mathbf{A H}}{2} \quad \text { EH }:=\mathbf{A E} \quad \mathbf{A D}:=\mathbf{D F}-\mathbf{A F} \\
& \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{D N}:=\mathbf{D H} \quad \mathbf{A C}:=\mathbf{C D}-\mathbf{A D} \quad \mathbf{C K}:=\mathbf{A K}-\mathbf{A C} \quad \mathbf{C J}:=\mathbf{D}_{\mathbf{2}} \quad \mathbf{C F}:=\mathbf{C K}-\mathbf{F K} \\
& \mathbf{C F}:=\mathbf{D F}-\mathbf{C D} \quad \text { FJ }:=\mathbf{C J}-\mathbf{C F} \quad \mathrm{JP}:=\sqrt{\mathrm{FP}^{2}-\mathrm{FJ}^{2}} \quad \mathrm{FS}:=\frac{\text { FP.CF }}{\text { FJ }} \quad \text { PS }:=\mathrm{FS}+\mathrm{FP} \\
& \mathbf{Q S}:=\frac{\mathbf{F P} \cdot \mathbf{P S}}{\mathbf{J P}} \mathbf{P Q}:=\frac{\mathbf{F J} \cdot \mathbf{Q S}}{\mathbf{F P}} \quad \mathbf{C S}:=\frac{\mathbf{J P} \cdot \mathbf{C F}}{\mathbf{F J}} \quad \mathbf{C Q}:=\mathbf{Q S}-\mathbf{C S} \quad \mathbf{D Q}:=\sqrt{\mathbf{C D}^{2}+\mathbf{C Q}^{\mathbf{2}}} \\
& \mathbf{D L}:=\frac{\mathbf{D H}^{2}}{\mathbf{D Q}} \quad \mathbf{L N}:=\sqrt{\mathbf{D N}^{2}-\mathbf{D L}^{2}} \quad \mathbf{L Z}:=\frac{\mathbf{C D} \cdot \mathbf{L N}}{\mathbf{C Q}} \quad \mathbf{Q Z}:=\mathbf{D Q}-\mathbf{D L}+\mathbf{L Z} \quad \mathrm{MQ}:=\frac{\mathbf{C Q} \cdot \mathbf{Q Z}}{\mathbf{D Q}} \\
& \mathbf{C M}:=\mathbf{C Q}-\mathbf{M Q} \quad \mathbf{G N}:=\mathbf{C M} \quad \mathbf{D G}:=\sqrt{\mathbf{D N}^{2}-\mathbf{G N}^{2}} \quad \text { BJ }:=\frac{\mathbf{D G} \cdot \mathbf{J P}}{\mathbf{G N}} \quad \mathbf{B F}:=\mathbf{B J}-\mathbf{F J} \\
& \text { FO }:=\frac{\text { FP } \cdot \text { DF }}{\text { BF }} \quad \text { OP }:=\text { FP }- \text { FO } \quad \text { OP }=2.915191
\end{aligned}
\]

042296 a
Given BF as a ratio to BM and EG as a ratio to EI, what is CE?

\[
\begin{aligned}
& \mathrm{N}_{1}:=9.8425 \quad \mathrm{D}_{1}:=.26381 \quad \mathrm{D}_{2}:=.74461 \\
& \mathbf{M T}:=\mathbf{N}_{\mathbf{1}} \quad \text { AB }:=\frac{\mathbf{M T}}{2} \quad \text { BM }:=A B \quad \text { BE }:=A B \quad \text { BL }:=A B \\
& \mathbf{M F}:=\mathbf{D}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{1}} \quad \mathbf{B F}:=\mathbf{N}_{\mathbf{1}}-\mathbf{M F}-\mathbf{A B} \quad \mathbf{E F}:=\sqrt{\sqrt{\left(\mathbf{B E}^{2}-\mathbf{B F}^{2}\right)^{2}}} \\
& \mathbf{E I}:=\mathbf{2} \cdot \mathbf{E F} \quad \mathbf{E G}:=\mathbf{E I} \cdot \mathbf{D}_{2} \quad \mathbf{F G}:=\mathbf{E G}-\mathbf{E F} \quad \mathbf{B G}:=\sqrt{\mathbf{B F}^{\mathbf{2}}+\mathbf{F G}^{\mathbf{2}}} \cdot \frac{\mathbf{F G}}{\sqrt{\mathbf{F G}^{\mathbf{2}}}} \quad \mathbf{G L}:=\mathbf{B L}-\mathbf{B G} \\
& \mathbf{D G}:=\mathbf{G L} \quad \mathbf{G H}:=\frac{\mathbf{F G} \cdot \mathbf{G L}}{\mathbf{B G}} \quad \mathbf{H L}:=\sqrt{\mathbf{G L}^{2}-\mathbf{G H}^{\mathbf{2}}} \quad \mathbf{E H}:=\mathbf{E G}+\mathbf{G H} \quad \mathbf{E L}:=\sqrt{\mathbf{E H}^{2}+\mathbf{H L}^{\mathbf{2}}} \\
& \mathrm{JL}:=\frac{\mathrm{EL}}{2} \quad \mathrm{BJ}:=\sqrt{\mathrm{BL}^{2}-\mathrm{JL}^{2}} \quad \mathrm{LN}:=\frac{\mathrm{BL} \cdot \mathrm{JL}}{\mathrm{BJ}} \quad \mathrm{GN}:=\sqrt{\mathrm{LN}^{2}+\mathrm{GL}^{2}} \quad \mathrm{JN}:=\sqrt{\mathrm{LN}^{2}-\mathrm{JL}^{2}} \\
& \mathbf{E J}:=\mathbf{J L} \quad \mathbf{E N}:=\sqrt{\mathbf{J N}^{2}+\mathbf{E J}^{2}} \quad \mathbf{S}_{\mathbf{1}}:=\mathbf{E G} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{E S} \mathbf{S}_{\mathbf{3}}:=\mathbf{G N} \quad \mathbf{G O}:=\frac{\mathbf{S}_{\mathbf{3}}{ }^{2}+\mathbf{S}_{\mathbf{1}}{ }^{2}-\mathbf{S}_{\mathbf{2}}{ }^{2}}{\mathbf{2} \cdot \mathbf{S}_{\mathbf{1}}} \\
& \text { NO }:=\sqrt{\mathbf{G N}^{2}-\mathbf{G O}^{\mathbf{2}}} \quad \mathbf{N R}:=\frac{\mathbf{N O}^{\mathbf{2}}}{\mathbf{G N}} \quad \mathbf{G S}:=\frac{\mathbf{D G}^{\mathbf{2}}}{\mathbf{G N}} \quad \mathbf{R S}:=\mathbf{G N}-(\mathbf{N R}+\mathbf{G S}) \quad \mathbf{D T}:=\mathbf{R S} \\
& \text { eS }:=\sqrt{D G G^{2}-G S S^{2}} \quad \text { RT }:=\mathrm{DS} \quad \text { OR }:=\sqrt{\mathbf{N O}^{2}-\mathbf{N R}^{2}} \quad \text { OT }:=O R-R T \quad D O:=\sqrt{D T^{2}+O T^{2}} \\
& S_{1}:=\text { GO } \quad S_{2}:=\text { DG } \quad S_{3}:=\text { DO } \quad \text { On }:=\frac{\mathbf{S}_{\mathbf{3}}{ }^{2}+{S_{1}}^{2}-{S_{2}}^{2}}{2 \cdot S_{1}} \quad \text { GQ }:=\text { GO - On } \\
& \mathrm{DQ}:=\sqrt{\mathrm{DO}^{2}-\mathbf{O Q}^{2}} \quad \text { FP }:=\frac{\mathbf{G Q} \cdot \mathbf{B F}}{\mathrm{DQ}} \quad \mathbf{C E}:=\sqrt{\left(\frac{\mathrm{BE} \cdot \mathbf{E G}}{\mathrm{FP}+\mathbf{E F}}\right)^{2}} \quad \mathbf{C E}=2.583347
\end{aligned}
\]
042296.MCD

Place EF and GH and find JK.

\[
\begin{aligned}
& \mathbf{N}_{1}:=11.59521 \quad \mathbf{N}_{2}:=3.34617 \quad \mathbf{D}_{1}:=.812152 \quad \mathbf{D}_{2}:=3.19428 \\
& \mathbf{A C}:=\mathbf{N}_{1} \quad \mathbf{A B}:=\frac{\mathbf{A C}}{2} \quad \mathbf{B C}:=\mathbf{A B} \quad \mathbf{B D}:=\mathbf{N}_{2} \quad \mathbf{A a}:=\mathbf{A C} \cdot \mathbf{D}_{1} \quad \mathbf{B a}:=\mathbf{A a}-\mathbf{A B} \\
& \mathrm{CD}:=\sqrt{\mathrm{BD}^{2}+\mathrm{BC}^{2}} \quad \mathrm{EF}:=\frac{\mathrm{CD} \cdot\left(\sqrt{\mathrm{CD}^{2}-\mathrm{Ba}^{2}}-\mathrm{BD}\right)}{\sqrt{\mathrm{CD}^{2}-\mathrm{Ba}^{2}}} \quad \mathrm{DE}:=\mathrm{CD}-\mathrm{EF} \\
& \mathbf{B E}:=\sqrt{\mathbf{D E}^{2}-\mathbf{B D}^{2}} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{G H}:=\frac{\mathbf{A E}-\mathbf{E F}}{\mathbf{D}_{2}} \quad \mathbf{E G}:=\mathbf{E F}+\mathbf{G H} \\
& \mathbf{D G}:=\mathbf{C D}-\mathbf{G H} \quad \mathbf{D b}:=\frac{\mathbf{D E}^{2}+\mathbf{D G}^{2}-\mathbf{E G}^{2}}{2 \cdot \mathbf{D G}} \quad \mathbf{E b}:=\sqrt{\mathbf{D E}^{2}-\mathbf{D b}^{2}} \quad \mathbf{E c}:=\frac{\mathbf{D E}{ }^{2}}{\mathbf{E b}} \\
& \mathrm{Dc}:=\frac{\mathrm{Db} \cdot \mathbf{D E}}{\mathrm{~Eb}} \quad \mathrm{Dd}:=\frac{\mathrm{DE}^{2}}{\mathrm{BD}} \quad \mathrm{Ed}:=\frac{\mathrm{BE} \cdot \mathrm{Dd}}{\mathrm{DE}} \quad \mathrm{Ee}:=\frac{\mathrm{DE} \cdot \mathrm{Ed}}{\mathrm{Dc}} \quad \text { Ef }:=\frac{\mathrm{Ee} \cdot \mathrm{DE}}{\mathrm{DE}+\mathrm{Ee}} \\
& \mathbf{E g}:=\frac{\mathbf{E c} \cdot \mathbf{E f}}{\mathbf{D E}} \quad \mathbf{b g}:=\mathbf{E b}-\mathbf{E g} \quad \mathbf{B M}:=\frac{\mathbf{b g} \cdot \mathbf{B D}}{\mathbf{D b}} \quad \mathbf{D M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{B M}^{2}}
\end{aligned}
\]
\(\mathbf{B k}:=\frac{\mathbf{B M} \cdot \mathbf{C D}}{\mathrm{DM}} \quad \mathbf{H M}:=\mathbf{C D}-\mathbf{D M} \quad \mathbf{H k}:=\frac{\mathbf{B D} \cdot \mathbf{H M}}{\mathrm{DM}} \quad \mathbf{M k}:=\frac{\mathbf{B M} \cdot \mathbf{H k}}{\mathbf{B D}} \quad \mathbf{I k}:=\frac{\mathbf{H k}}{\mathbf{M k}} \quad \mathbf{H I}:=\sqrt{\mathbf{H k}^{2}+\mathbf{I k}} \quad \mathbf{E a}:=\frac{\mathbf{B E} \cdot \mathbf{E F}}{\mathbf{D E}} \quad \mathbf{B a}:=\mathbf{B E}+\mathbf{E a} \quad \mathbf{I a}:=\mathbf{I k}+\mathbf{B a}+\mathbf{B k}\)
Fa \(:=\frac{\mathrm{BD} \cdot \mathbf{E F}}{\mathrm{DE}} \quad\) FI \(:=\sqrt{\mathrm{Ia}^{2}+\mathrm{Fa}^{2}} \quad \mathrm{JI}:=\frac{\mathrm{HI}^{2}}{\mathrm{FI}} \quad \mathrm{Jm}:=\frac{\mathrm{Fa} \cdot \mathbf{J I}}{\mathrm{FI}} \quad \mathrm{JK}:=\frac{\mathrm{CD} \cdot \mathbf{J m}}{\mathrm{BD}+\mathbf{J m}} \quad \mathbf{J K}=1.126755\)


042396a
Is CF always equal to EK?

\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{A B}:=\mathbf{1}
\]
\[
\mathbf{A H}:=\mathbf{A B} \cdot \mathbf{N}_{1} \quad \mathbf{B H}:=\mathbf{A H}-\mathbf{A B} \quad \mathbf{B G}:=\frac{\mathbf{B H}}{2} \mathbf{B N}:=\mathbf{B G} \quad \mathbf{G O}:=\mathbf{B G} \quad \mathbf{H P}:=\mathbf{B G}
\]
\[
\mathbf{G M}:=\mathbf{B G} \quad \mathbf{G H}:=\mathbf{B G} \quad \mathbf{A G}:=\mathbf{A H}-\mathbf{G H} \quad \mathbf{A M}:=\sqrt{\mathbf{G M}^{2}+\mathbf{A G}^{\mathbf{2}}} \quad \mathbf{A L}:=\frac{\mathbf{A G}}{\mathbf{A M}}
\]
\[
\mathbf{L M}:=\mathbf{A M}-\mathbf{A L} \quad \mathbf{J L}:=\mathbf{L M} \quad \mathbf{A J}:=\mathbf{A M}-(\mathbf{J L}+\mathbf{L M}) \quad \mathbf{A D}:=\frac{\mathbf{A G} \cdot \mathbf{A J}}{\mathbf{A M}}
\]
\[
\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D H}:=\mathbf{B H}-\mathbf{B D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D H}} \quad \mathbf{B C}:=\frac{\mathbf{B D} \cdot \mathbf{B N}}{\mathbf{B N}+\mathbf{D J}}
\]
\[
\mathbf{D F}:=\frac{\mathbf{D H} \cdot \mathbf{D J}}{\mathbf{B N}+\mathbf{D J}} \mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{C F}:=\mathbf{C D}+\mathbf{D F} \quad \mathbf{C E}:=\frac{\mathbf{C F}}{2} \quad \mathbf{B E}:=\mathbf{B C}+\mathbf{C E}
\]
\[
\mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{E K}:=\frac{\mathbf{G M} \cdot \mathbf{A E}}{\mathbf{A G}} \mathbf{E K}-\mathbf{C F}=\mathbf{0} \quad \mathbf{E K}=\mathbf{0 . 7 5}
\]


\section*{Definitions.}

\[
\begin{aligned}
& \mathbf{B H}-\left(\mathbf{N}_{1}-1\right)=0 \quad \mathbf{B G}-\frac{\mathbf{N}_{1}-1}{2}=0 \quad \text { AG }-\left(\frac{1}{2} \cdot N_{1}+\frac{1}{2}\right)=0 \\
& A M-\frac{1}{2} \cdot \sqrt{2 \cdot N_{1}{ }^{2}+2}=0 \quad A L-\frac{1}{2} \cdot \frac{\left(N_{1}+1\right)^{2}}{\sqrt{2 \cdot N_{1}{ }^{2}+2}}=0 \quad L M-\frac{1}{2} \cdot \frac{\left(N_{1}-1\right)^{2}}{\sqrt{2 \cdot N_{1}{ }^{2}+2}}=0 \\
& A J-\frac{2}{\sqrt{2 \cdot N_{1}{ }^{2}+2}} \cdot N_{1}=0 \quad A D-\left(N_{1}+1\right) \cdot \frac{N_{1}}{\left(N_{1}{ }^{2}+1\right)}=0 \quad B D-\frac{\left(N_{1}-1\right)}{\left(N_{1}{ }^{2}+1\right)}=0 \\
& D H-N_{1}{ }^{2} \cdot \frac{\left(N_{1}-1\right)}{\left({N_{1}}^{2}+1\right)}=0 \quad D J-\frac{\left(N_{1}-1\right)}{\left(N_{1}{ }^{2}+1\right)} \cdot N_{1}=0 \quad B C-\frac{\left(N_{1}-1\right)}{\left(N_{1}+1\right)^{2}}=0 \\
& D F-2 \cdot N_{1}{ }^{3} \cdot \frac{\left(N_{1}-1\right)}{\left[\left(N_{1}+1\right)^{2} \cdot\left(N_{1}{ }^{2}+1\right)\right]}=0 \quad C D-2 \cdot\left(N_{1}-1\right) \cdot \frac{N_{1}}{\left[\left(N_{1}{ }^{2}+1\right) \cdot\left(N_{1}+1\right)^{2}\right]}=0 \\
& \mathbf{C F}-2 \cdot \mathbf{N}_{1} \cdot \frac{\left(\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{1}+1\right)^{2}}=0 \quad \operatorname{CE}-\mathbf{N}_{1} \cdot \frac{\left(\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{1}+1\right)^{2}}=0 \quad \mathrm{BE}-\frac{\left(\mathbf{N}_{1}-1\right)}{\left(\mathbf{N}_{1}+1\right)}=0 \\
& A E-2 \cdot \frac{N_{1}}{\left(N_{1}+1\right)}=0 \quad E K-2 \cdot\left(N_{1}-1\right) \cdot \frac{N_{1}}{\left(N_{1}+1\right)^{2}} \\
& \mathbf{E K}-\mathbf{C F}=\mathbf{0} \quad \mathbf{E K}=\mathbf{0 . 7 5}
\end{aligned}
\]

Three Circles 042496
Given AC , find CK and BH.
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{9 . 8 4 2 5} \quad \mathrm{D}_{\mathbf{1}}:=.36802 \\
& \mathbf{A F}:=\mathbf{N}_{\mathbf{1}} \quad \text { AD }:=\frac{\mathbf{A F}}{2} \quad \text { AC }:=\mathbf{A F} \cdot \mathbf{D}_{\mathbf{1}} \quad \mathbf{D O}:=\mathbf{A D} \quad \text { OR }:=\mathbf{A F} \\
& \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{C O}:=\sqrt{\mathbf{C D}^{2}+\text { DO }^{2}} \quad \text { PO }:=\frac{\text { DO.OR }}{\mathbf{C O}} \quad \mathbf{C P}:=\mathbf{P O}-\mathbf{C O} \quad \mathbf{C K}:=\frac{\text { DO. CP }}{\text { PO }} \\
& \mathbf{J K}:=\mathbf{C K} \quad \mathrm{KO}:=\sqrt{\mathrm{CD}^{2}+(\mathrm{DO}+\mathrm{CK})^{2}} \quad \mathrm{JO}:=\sqrt{\mathrm{KO}^{2}-\mathrm{JK}^{2}} \quad \mathrm{KS}:=\frac{\mathrm{JK}^{2}}{\mathrm{KO}} \quad \text { SO }:=\mathrm{KO}-\mathrm{KS} \\
& \text { JS }:=\frac{\mathbf{J K} \cdot \mathbf{S O}}{\mathbf{J O}} \text { ST }:=\frac{\mathbf{C D} \cdot \mathbf{S O}}{\mathbf{D O}+\mathbf{C K}} \text { JT }:=\mathbf{J S}+\mathbf{S T} \quad \text { TO }:=\frac{\mathbf{K O} \cdot \mathbf{S T}}{\mathbf{C D}} \text { TU }:=\frac{\mathbf{C D} \cdot \mathbf{J T}}{\mathbf{K O}} \quad \text { DU }:=\mathbf{T O}-(\mathbf{D O}+\mathbf{T U}) \\
& \mathbf{C V}:=\mathrm{DU} \quad \mathbf{C Q}:=\mathbf{2} \cdot \mathbf{C K} \quad \mathbf{Q V}:=\mathbf{C Q}-\mathbf{C V} \quad \mathrm{BH}:=\frac{\mathrm{CK} \cdot \mathrm{CV}}{\mathrm{QV}} \quad \mathrm{BH}=0.812843
\end{aligned}
\]

Some Algebraic Names, or Definitions.
\[
B H-N_{1} \cdot \frac{D_{1} \cdot\left(D_{1}-1\right) \cdot\left(2 \cdot D_{1}-2 \cdot D_{1}^{2}-2 \cdot \sqrt{2} \cdot D_{1}+\sqrt{2}-2\right)}{2 \cdot D_{1}+6 \cdot D_{1}^{2}-16 \cdot D_{1}^{3}+8 \cdot D_{1}^{4}-2 \cdot \sqrt{2} \cdot D_{1}+\sqrt{2}+2}=0
\]
\(\overbrace{n=0}^{0}\)

\[
A D-\frac{N_{1}}{2}=0 \quad A C-N_{1} \cdot D_{1}=0 \quad C D-\frac{N_{1} \cdot\left(1-2 \cdot D_{1}\right)}{2}=0 \quad C O-\frac{N_{1} \cdot \sqrt{\left(2 \cdot D_{1}^{2}-2 \cdot D_{1}+1\right)}}{\sqrt{2}}=0
\]
\[
P O-\frac{N_{1} \cdot \sqrt{2}}{2 \cdot \sqrt{2 \cdot D_{1}{ }^{2}-2 \cdot D_{1}+1}}=0 \quad C P-N_{1} \cdot \frac{\sqrt{2} \cdot D_{1} \cdot\left(1-D_{1}\right)}{\sqrt{2 \cdot D_{1}^{2}-2 \cdot D_{1}+1}}=0 \quad C K-N_{1} \cdot\left(D_{1}-D_{1}^{2}\right)=0
\]
\[
K O-N_{1} \cdot \frac{\sqrt{\left(2 \cdot D_{1}^{4}-4 \cdot D_{1}^{3}+2 \cdot D_{1}^{2}+1\right)}}{\sqrt{2}}=0 \quad K S-N_{1} \cdot \frac{\sqrt{2} \cdot D_{1}^{2} \cdot\left(D_{1}-1\right)^{2}}{\sqrt{2 \cdot D_{1}^{4}-4 \cdot D_{1}^{3}+2 \cdot D_{1}^{2}+1}}=0
\]
\[
S O-N_{1} \cdot \frac{\sqrt{2}}{2 \cdot \sqrt{2 \cdot D_{1}^{4}-4 \cdot D_{1}^{3}+2 \cdot D_{1}^{2}+1}}=0 \quad J S-N_{1} \cdot \frac{D_{1} \cdot\left(1-D_{1}\right)}{\sqrt{2 \cdot D_{1}^{4}-4 \cdot D_{1}^{3}+2 \cdot D_{1}^{2}+1}}=0
\]
\[
S T-N_{1} \cdot \frac{\sqrt{2} \cdot\left(1-2 \cdot D_{1}\right)}{2 \cdot\left(2 \cdot D_{1}-2 \cdot D_{1}^{2}+1\right) \cdot \sqrt{2 \cdot D_{1}^{4}-4 \cdot D_{1}^{3}+2 \cdot D_{1}^{2}+1}}=0 \quad \text { JO }-N_{1} \cdot \frac{1}{\sqrt{2}}=0
\]
\[
J T-N_{1} \cdot \frac{D_{1}+D_{1}^{2}-4 \cdot D_{1}^{3}+2 \cdot D_{1}^{4}-\sqrt{2} \cdot D_{1}+\frac{\sqrt{2}}{2}}{\left(2 \cdot D_{1}-2 \cdot D_{1}{ }^{2}+1\right) \cdot \sqrt{2 \cdot D_{1}^{4}-4 \cdot D_{1}^{3}+2 \cdot D_{1}^{2}+1}}=0 \quad T O-N_{1} \cdot \frac{1}{2 \cdot D_{1}-2 \cdot D_{1}{ }^{2}+1}=0
\]
\(T U-N_{1} \cdot\left[\frac{1}{2 \cdot D_{1}-2 \cdot D_{1}{ }^{2}+1}-\frac{(3 \cdot \sqrt{2}-2) \cdot D_{1}{ }^{2}-2 \cdot \sqrt{2} \cdot D_{1}{ }^{3}+(2-\sqrt{2}) \cdot D_{1}+1}{2 \cdot\left(2 \cdot D_{1}{ }^{4}-4 \cdot D_{1}{ }^{3}+2 \cdot D_{1}{ }^{2}+1\right)}\right]=0 \quad D U-N_{1} \cdot\left[\frac{(3 \cdot \sqrt{2}-2) \cdot D_{1}{ }^{2}-2 \cdot \sqrt{2} \cdot D_{1}{ }^{3}+(2-\sqrt{2}) \cdot D_{1}+1}{2 \cdot\left(2 \cdot D_{1}{ }^{4}-4 \cdot D_{1}{ }^{3}+2 \cdot D_{1}{ }^{2}+1\right)}-\frac{1}{2}\right]=0\)
\(C Q-N_{1} \cdot 2 \cdot\left(D_{1}-D_{1}{ }^{2}\right)=0 \quad Q V-N_{1} \cdot \frac{D_{1} \cdot\left(D_{1}-1\right) \cdot\left(2 \cdot D_{1}+6 \cdot D_{1}{ }^{2}-16 \cdot D_{1}{ }^{3}+8 \cdot D_{1}{ }^{4}-2 \cdot \sqrt{2} \cdot D_{1}+\sqrt{2}+2\right)}{2 \cdot\left(4 \cdot D_{1}{ }^{3}-2 \cdot D_{1}{ }^{4}-2 \cdot D_{1}{ }^{2}-1\right)}=0\)

One Over N + One 042596

\section*{Construct \(1 /(N+1)\)}

In this construction, \(\mathbf{N}_{\mathbf{2}}\) has to be something, but it can be anything and will not change the equation.
\[
\begin{aligned}
& \mathbf{N}_{1}:=2.817 \quad \mathbf{N}_{2}:=\mathbf{3} \quad \text { AC }:=1 \\
& \mathbf{A F}:=A C \cdot \mathbf{N}_{1} \quad \mathbf{C F}:=\mathbf{A F}-\mathbf{A C} \quad \mathbf{C E}:=\frac{\mathbf{C F}}{2} \quad \mathbf{A E}:=A C+\mathbf{C E} \quad \text { FK }:=\mathbf{N}_{2} \quad \text { EJ }:=\frac{\mathrm{FK} \cdot \mathbf{A E}}{\mathrm{AF}} \\
& \mathbf{D L}:=\mathrm{FEF}:=\mathbf{C E} \quad \mathbf{D F}:=\frac{\mathbf{E F} \cdot \mathbf{D L}}{\mathbf{E J}} \quad \mathbf{C G}:=\frac{\mathbf{F K} \cdot \mathbf{A C}}{\mathbf{A F}} \mathbf{C D}:=\mathbf{C F}-\mathbf{D F} \quad \mathbf{D H}:=\mathbf{C G} \\
& \mathrm{HL}:=\mathrm{DL}-\mathrm{DH} \quad \mathrm{BC}:=\frac{\mathrm{CD} \cdot \mathrm{CG}}{\mathrm{HL}} \quad \mathrm{CF}:=\mathbf{N}_{1}-1 \quad \mathrm{CE}:=\frac{1}{2} \cdot\left(\mathbf{N}_{1}-1\right) \quad \mathrm{AE}:=\frac{1}{2} \cdot\left(1+\mathbf{N}_{1}\right) \\
& \text { FK }:=\mathbf{N}_{2} \quad \text { EJ }:=\frac{1}{2} \cdot \mathbf{N}_{2} \cdot \frac{\left(\mathbf{1}+\mathbf{N}_{1}\right)}{\mathbf{N}_{1}} \quad \text { DF }:=\frac{\left(\mathbf{N}_{1}-\mathbf{1}\right)}{\left(\mathbf{1}+\mathbf{N}_{1}\right)} \cdot \mathbf{N}_{1} \quad C G:=\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}} \quad C D:=\frac{\left(\mathbf{N}_{1}-\mathbf{1}\right)}{\left(\mathbf{1}+\mathbf{N}_{1}\right)} \\
& \mathbf{H L}:=\mathbf{N}_{2} \cdot \frac{\left(\mathbf{N}_{1}-1\right)}{\mathbf{N}_{1}} \quad \frac{1}{\mathbf{N}_{1}+\mathbf{1}}-\mathbf{B C}=0
\end{aligned}
\]


04_26_96.MCD
Three Base Theorem.

Three peaks, three predictable bases that intersect our hypotenuse through the Gemini roots.

\[
N_{\mathbf{1}}:=.64966 \quad \mathbf{N}_{\mathbf{2}}:=7.51417 \quad \mathbf{N}_{\mathbf{3}}:=1.92131
\]
\[
\mathbf{B C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{C I}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{C G}:=\frac{\mathbf{C I}}{2} \quad \mathbf{B I}:=\mathbf{B C}+\mathbf{C I}
\]
\[
\begin{aligned}
& \mathbf{B E}:=\sqrt{\mathbf{B C} \cdot \mathbf{B I}} \quad \mathbf{B M}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{E M}:=\sqrt{\mathbf{B M}^{2}+\mathbf{B E}^{2}} \quad \mathbf{B D}:=\mathbf{E M}-\mathbf{B M} \\
& \mathbf{B H}:=\mathbf{B M}+\mathbf{E M} \quad \mathbf{G N}:=\mathbf{C G} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \\
& \mathbf{E I}:=\mathbf{C I}-\mathbf{C E} \quad \mathbf{E N}:=\sqrt{\mathbf{C E} \cdot \mathbf{E I}} \quad \mathbf{E H}:=\mathbf{B H}-\mathbf{B E} \\
& \mathbf{E G}:=\mathbf{E I}-\mathbf{C G} \\
& \mathbf{A E}:=\frac{\mathbf{E N}^{2}}{\mathbf{E G}} \quad \mathbf{H I}:=\mathbf{E I}-\mathbf{E H} \\
& \mathbf{H L}:=\frac{\mathbf{E N} \cdot \mathbf{H I}}{\mathbf{E I}} \quad \mathbf{A G}:=\mathbf{A E}+\mathbf{E G}
\end{aligned}
\]


\section*{CrAB}
\[
\begin{array}{ll}
\mathbf{A H}:=\mathbf{A E}+\mathbf{E H} & \text { Ea }:=\frac{\mathbf{A H} \cdot \mathbf{E N}}{\mathbf{H L}} \\
\text { FG }:=\frac{\mathbf{E G} \cdot \mathbf{A G}}{(\mathbf{E a}+\mathbf{E G})} & \mathbf{C F}:=\mathbf{C G}-\mathbf{F G} \\
\text { FI }:=\mathbf{C G}+\mathbf{F G} & \text { FP }:=\sqrt{\mathbf{C F} \cdot \mathbf{F I}} \\
\mathbf{A F}:=\mathbf{A G}-\mathbf{F G} & \text { EO }:=\frac{\mathbf{F P} \cdot \mathbf{A E}}{\mathbf{A F}} \\
\text { EF }:=\mathbf{A F}-\mathbf{A E} & \mathbf{G U}:=\frac{\mathbf{E O} \cdot \mathbf{F G}}{\mathbf{E F}}
\end{array}
\]


\[
\mathbf{A C}:=\mathbf{A E}-\mathbf{C E} \quad \mathbf{A I}:=\mathbf{A C}+\mathbf{C I} \quad \mathbf{A P}:=\sqrt{\mathbf{A F}^{2}+\mathbf{F P}^{2}}
\]
\[
\mathbf{A W}:=\frac{\mathbf{A C} \cdot \mathbf{A I}}{\mathbf{A P}} \quad \mathbf{A X}:=\frac{\mathbf{A F} \cdot \mathbf{A W}}{\mathbf{A P}} \quad \mathbf{C X}:=\mathbf{A X}-\mathbf{A C} \quad \mathbf{X I}:=\mathbf{C I}-\mathbf{C X}
\]
\(\mathbf{W X}:=\sqrt{\mathbf{C X} \cdot \mathbf{X I}} \quad \mathbf{X G}:=\mathbf{C G}-\mathbf{C X} \quad\) YU \(:=\mathbf{X G} \quad \mathbf{U V}:=\mathbf{C G}\)
\(\mathbf{Y V}:=\mathbf{Y U}+\mathbf{U V} \quad \mathbf{X H}:=\frac{\mathbf{Y V} \cdot \mathbf{W X}}{\mathbf{W X}+\mathbf{G U}} \quad \mathbf{C H}:=\mathbf{A H}-\mathbf{A C} \quad \frac{\mathbf{C H}}{\mathbf{X H}+\mathbf{C X}}=\mathbf{1}\)
\[
\mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{D X}:=\frac{\mathbf{C X} \cdot \mathbf{W X}}{\mathbf{W X}+\mathbf{G U}}
\]
\[
\frac{\mathbf{C D}}{\mathbf{C X}-\mathbf{D X}}=\mathbf{1}
\]

\section*{\(\sim_{n=2}^{0}\)}

\[
\begin{aligned}
& \text { Ek }:=\mathbf{G U} \quad \text { Ig }:=\frac{\text { Ek } \cdot \mathbf{B I}}{\mathbf{B E}} \quad \text { Cm }:=\frac{\text { Ek } \cdot \mathbf{B C}}{\mathbf{B E}} \\
& \text { Fn }:=\mathbf{I} \mathbf{I} \mathbf{g n}:=\mathbf{F I} \quad \text { FH }:=\frac{\mathbf{\text { gn }} \mathbf{\text { FP }}}{\mathbf{F P}+\mathbf{F n}} \\
& \frac{\mathbf{F H}}{\mathbf{A H}-\mathbf{A F}}=\mathbf{1} \quad \text { DF }:=\frac{\mathbf{C F} \cdot \mathbf{F P}}{\mathbf{F P}+\mathbf{C m}} \\
& \frac{\mathbf{C D}}{\mathbf{C F}-\mathbf{D F}}=\mathbf{1}
\end{aligned}
\]
\(\sim_{n=2}^{0}\)

\section*{A Root Figure 042796}
\(\mathbf{C D}+\mathbf{B C}\) is the square root of \(\sqrt{\mathbf{B C} \cdot \mathbf{B F}}\). What is \(\mathbf{B C}\) ?

\(\mathbf{N}_{\mathbf{1}}:=\mathbf{7 . 7 2 5 8 3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 . 6 5 4 2 9} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{3 . 8 8 2 3 3}\)
\(\mathbf{C F}:=\mathbf{N}_{\mathbf{1}} \quad\) CE \(:=\frac{\mathbf{C F}}{2} \quad\) CD \(:=\mathbf{N}_{\mathbf{2}} \quad\) FK \(:=\mathbf{N}_{\mathbf{3}}\)
\(\mathbf{D M}:=\mathbf{F K} \quad\) EL \(:=\mathbf{F K} \quad\) DF := CF \(-\mathbf{C D}\)
EF := \(\frac{\text { CF }}{2} \quad\) EJ \(:=\frac{\text { DM } \cdot \mathbf{E F}}{\text { DF }} \quad\) JL \(:=\) EL \(-\mathbf{E J}\)
\(\mathbf{K L}:=\mathbf{E F} \quad \mathbf{A F}:=\frac{\mathbf{K L} \cdot \mathbf{F K}}{\mathbf{J L}} \quad \mathbf{A C}:=\mathbf{A F}-\mathbf{C F} \quad \mathbf{C G}:=\frac{\mathbf{F K} \cdot \mathbf{A C}}{\mathbf{A F}}\)
DH \(:=\) CG \(\quad\) HM \(:=\mathbf{D M}-\mathbf{D H} \quad\) BC \(:=\frac{\text { CD } \cdot \mathbf{D H}}{\text { HM }}\)
\(\mathbf{B F}:=\mathbf{B C}+\mathbf{C F} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \quad \sqrt{\mathbf{B C} \cdot \mathbf{B F}}-\mathbf{B D}=\mathbf{0}\)
Definitions.


Once again, FK makes the equation possible, but disappears in the result.
\[
\left[\frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}{\mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}}\right]^{2}-\frac{\mathbf{N}_{2}^{2}}{\mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}} \cdot \frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}{\mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}}=0
\] \(\mathbf{C G}-\frac{\mathbf{N}_{2} \cdot \mathbf{N}_{3}}{\mathbf{N}_{1}-\mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{H M}-\frac{\mathbf{N}_{3} \cdot\left(\mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}\right)}{\mathbf{N}_{1}-\mathbf{N}_{2}}=0 \quad \mathbf{B C}-\frac{\mathbf{N}_{2}{ }^{2}}{\mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{B F}-\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}{\mathbf{N}_{1}-2 \cdot \mathbf{N}_{2}}=0 \quad \mathbf{B D}-\frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)}{\mathbf{N}_{1}-\mathbf{2} \cdot \mathbf{N}_{2}}=\mathbf{0}\)


\section*{042896.MCD}

I had finally decided to write this up in Oct. of 94, and being punctual, here it is.

Given one root in a prime root series, determine the rest of the series using the straight edge method. The other method uses a compass and is shown at the end of document.

Process Summary will use a \(5^{\text {th }}\) root series for an example.
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{6} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A G}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A E}:=\left(\mathbf{A B}^{2} \cdot \mathbf{A G}\right)^{\mathbf{3}} \\
& \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{G Z}:=\mathbf{B G} \quad \mathbf{Y Z}:=\mathbf{B G} \\
& \mathbf{B Y}:=\mathbf{B G} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{E G}:=\mathbf{B G}-\mathbf{B E} \\
& \mathbf{G H}:=\frac{\mathbf{B Y} \cdot \mathbf{E G}}{\mathbf{B E}}
\end{aligned}
\]

\section*{H.}

\[
\begin{array}{ll}
\mathbf{G a}:=\frac{\mathbf{G Z} \cdot \mathbf{A G}}{\mathbf{E G}} & \mathbf{H b}:=\frac{\mathbf{G H} \cdot(\mathbf{G H}+\mathbf{G Z})}{\mathbf{G H}+\mathbf{G a}} \\
\mathbf{G b}:=\mathbf{G H}-\mathbf{H b} & \mathbf{I b}:=\frac{\mathbf{A G} \cdot(\mathbf{G H}+\mathbf{G Z})}{\mathbf{G H}+\mathbf{G a}} \\
\mathbf{B d}:=\mathbf{B G}-\mathbf{I b} & \mathbf{B C}:=\frac{\mathbf{B d} \cdot \mathbf{B Y}}{\mathbf{B Y}+\mathbf{G b}} \\
\mathbf{A C}:=\mathbf{A B}+\mathbf{B C} & \\
\mathbf{C G}:=\mathbf{B G}-\mathbf{B C} & \mathbf{B J}:=\frac{\mathbf{G Z} \cdot \mathbf{B C}}{\mathbf{C G}}
\end{array}
\]

H


\[
\begin{aligned}
& \mathbf{G K}:=\frac{\mathbf{B J} \cdot \mathbf{A G}}{\mathbf{A B}} \quad \mathbf{K Z}:=\mathbf{G Z}+\mathbf{G K} \\
& \mathbf{F G}:=\frac{\mathbf{Y Z} \cdot \mathbf{G K}}{\mathbf{K Z}} \quad \mathbf{A F}:=\mathbf{A G}-\mathbf{F G} \\
& \mathbf{K e}:=\frac{\mathbf{G K} \cdot \mathbf{K Z}}{\mathbf{G K}+\mathbf{G a}} \quad \mathbf{M e}:=\frac{\mathbf{A G} \cdot \mathbf{K Z}}{\mathbf{G K}+\mathbf{G a}} \\
& \mathbf{B D}:=\frac{(\mathbf{B G}-\mathbf{M e}) \cdot \mathbf{B Y}}{\mathbf{K Z}-\mathbf{K e}} \quad \mathbf{A D}:=\mathbf{A B}+\mathbf{B D}
\end{aligned}
\]
\[
\begin{array}{ll}
\frac{\left(A B^{5} \cdot A G^{0}\right)^{\frac{1}{5}}}{A B}=1 & \frac{\left(\mathrm{AB}^{4} \cdot A G^{1}\right)^{\frac{1}{5}}}{A C}=1 \\
\frac{\left(A B^{3} \cdot A G^{2}\right)^{\frac{1}{5}}}{A D}=1 & \frac{\left(\mathrm{AB}^{2} \cdot A G^{3}\right)^{\frac{1}{5}}}{A E}=1 \\
\frac{\left(A B^{1} \cdot A G^{4}\right)^{\frac{1}{5}}}{A F}=1 & \frac{\left(A B^{0} \cdot A G^{5}\right)^{\frac{1}{5}}}{A G}=1
\end{array}
\]


If any of a prime root series can be given exactly, every root of the series can be determined exactly.

What is DJ? 042996
DJ is the Geometric name, what is its Algebraic name?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \mathbf{F K}:=\mathbf{E F O}:=\mathbf{B F} \quad \mathbf{A F}:=\mathbf{B F}+\mathbf{A B} \\
& \mathbf{D F}:=\frac{\mathbf{F K} \cdot \mathbf{F O}}{\mathbf{A F}} \mathbf{A K}:=\sqrt{\mathbf{A F}^{2}+\mathbf{F K}^{2}} \quad \mathbf{K O}:=\mathbf{B G} \\
& \mathbf{H O}:=\frac{\mathbf{A F} \cdot \mathbf{K O}}{\mathbf{A K}} \mathbf{D O}:=\frac{\mathbf{A K} \cdot \mathbf{F O}}{\mathbf{A F}} \quad \mathbf{D H}:=\mathbf{H O}-\mathbf{D O} \\
& \text { DJ }:=\sqrt{\mathbf{D H} \cdot \mathbf{D O}} \\
& \mathbf{A G}:=\mathbf{N} \quad \mathbf{B G}:=\mathbf{N}-\mathbf{1} \quad \mathbf{B F}:=\frac{\mathbf{N}-\mathbf{1}}{\mathbf{2}} \quad \mathbf{A F}:=\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{N}+\frac{\mathbf{1}}{\mathbf{2}} \\
& \mathbf{D F}:=\frac{\mathbf{1}}{\mathbf{2}} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+\mathbf{1})} \quad \mathbf{A K}:=\frac{\mathbf{1}}{\mathbf{2}} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}^{\mathbf{2}}+\mathbf{2}} \\
& \text { HO }:=(\mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{\sqrt{\mathbf{2} \cdot \mathbf{N}^{\mathbf{2}}+\mathbf{2}}} \quad \mathbf{D O}:=\frac{\mathbf{1}}{\mathbf{2}} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}^{\mathbf{2}}+\mathbf{2} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+\mathbf{1})}} \\
& \text { DH }:=\mathbf{2} \cdot \mathbf{N} \cdot \frac{(\mathbf{N}-\mathbf{1})}{\left[\sqrt{\mathbf{2} \cdot \mathbf{N}^{\mathbf{2}}+\mathbf{2}} \cdot(\mathbf{N}+\mathbf{1})\right]} \\
& \mathbf{D J}:=\sqrt{\mathbf{N}} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+\mathbf{1})}
\end{aligned}
\]



Plug in BG here as N. AB as M. Plug in root series also.
\(\mathbf{N} \equiv 4 \quad\) Root \(\equiv 4 \quad \delta:=1 .\). Root \(\quad \mathbf{M} \equiv 1\)

\[
\begin{aligned}
& \mathbf{G L}=\begin{array}{c}
1.376805 \\
\text { Root }-\delta
\end{array} \quad \mathbf{B J}=\mathbf{0 . 2 7 5 3 6 1} \quad \frac{\mathbf{G L}}{\mathbf{B J}}=5 \quad \frac{\mathbf{A G}}{\mathbf{A B}}=5 \\
& \sum_{\delta}\left(\frac{\mathbf{A G}}{\mathbf{A B}}\right) \\
& \text { Root }
\end{aligned}
\]



122096 Alternate Method Quad Roots

If \(F N: F P\) as \(B Q: B S\) then quad roots series can be divided off in the figure.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=.2 \\
& \mathbf{A B}:=\mathbf{1} \quad \text { AL }:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{1}} \\
& \mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B S}:=\mathbf{B L} \quad \mathbf{L T}:=\mathbf{B L} \\
& \mathbf{B H}:=\frac{\mathbf{B L}}{\mathbf{2}} \quad \mathbf{H L}:=\mathbf{B H} \quad \mathbf{B Q}:=\mathbf{B S} \cdot \mathbf{N}_{\mathbf{2}} \\
& \mathbf{A F}:=\sqrt{\mathbf{A B} \cdot \mathbf{A L}} \quad \text { FL }:=\mathbf{A L}-\mathbf{A F} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \text { FP }:=\sqrt{\mathbf{B F} \cdot \mathbf{F L}} \quad \text { FN }:=\frac{\mathbf{B Q} \cdot \mathbf{F P}}{\mathbf{B S}} \quad \mathbf{E F}:=\frac{\mathbf{B F} \cdot \mathbf{F N}}{\mathbf{B Q}} \\
& \text { EL }:=\mathbf{E F}+\mathbf{F L} \quad \text { FG }:=\frac{\mathbf{E F} \cdot \mathbf{F L}}{\mathbf{E L}} \quad \mathbf{G O}:=\frac{\mathbf{F N} \cdot \mathbf{F G}}{\mathbf{E F}} \\
& \mathbf{G L}:=\mathbf{F L}-\mathbf{F G} \quad \mathbf{L R}:=\mathbf{B Q} \quad \mathbf{J L}:=\frac{\mathbf{G L} \cdot \mathbf{L R}}{\mathbf{L R}+\mathbf{G O}} \\
& \mathbf{A J}:=\mathbf{A L}-\mathbf{J L} \\
& \left.(\mathbf{A B} \cdot \mathbf{A L})^{\mathbf{3}}\right)^{\frac{\mathbf{1}}{4}}-\mathbf{A J}=\mathbf{0}
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{n}:=\mathbf{1} . . \mathbf{3} \\
& \mathbf{S}_{\mathbf{1}}:=\left(\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c}
\end{array}\right) \quad \mathbf{S}_{\mathbf{2}}:=\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{c} \\
\mathbf{a}
\end{array}\right) \quad \mathbf{S}_{\mathbf{3}}:=\left(\begin{array}{l}
\mathbf{c} \\
\mathbf{a} \\
\mathbf{b}
\end{array}\right)
\end{aligned}
\]


Is_This_a_Triangle \(:=\left(\mathbf{S}_{\mathbf{1}_{1}}+\mathbf{S}_{\mathbf{2}_{\mathbf{1}}}>\mathbf{S}_{\mathbf{3}_{\mathbf{1}}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}_{\mathbf{1}}}+\mathbf{S}_{\mathbf{3}_{\mathbf{1}}}>\mathbf{S}_{\mathbf{2}_{\mathbf{1}}}\right) \cdot\left(\mathbf{S}_{\mathbf{2}_{\mathbf{1}}}+\mathbf{S}_{\mathbf{3}_{\mathbf{1}}}>\mathbf{S}_{\mathbf{1}_{\mathbf{1}}}\right)\) As was learned in school, the area of a triagle is given by \(\frac{1}{2} \cdot B \cdot H\).

From 04_02_97.MCD I show that, for a given side, the height is given by;

\[
\mathbf{A}_{n}:=\frac{\sqrt{\mathbf{S}_{\mathbf{1}_{n}}+\mathbf{S}_{\mathbf{2}_{n}}+\mathbf{S}_{\mathbf{3}_{n}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}_{n}}+\mathbf{S}_{\mathbf{2}_{n}}+\mathbf{S}_{\mathbf{3}_{n}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{n}}-\mathbf{S}_{\mathbf{2}_{n}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{\mathbf{S}_{1_{n}}+\mathbf{S}_{\mathbf{2}_{n}}-\mathbf{S}_{\mathbf{3}_{n}}}}{4}
\]

\(\mathbf{A}_{\mathbf{n}}=\)
\begin{tabular}{|l}
\hline 2.904738 \\
\hline 2.904738 \\
\hline 2.904738 \\
\hline
\end{tabular}
\(\mathbf{H}_{\mathbf{n}}=\)
\begin{tabular}{|r|}
\hline 2.904738 \\
\hline 1.936492 \\
\hline 1.452369 \\
\hline
\end{tabular}

What is the definition of acute, solely in terms of the sides of a triangle? Basically from this it can be argued that Euclid's definition of acute or obtuse was out of order.
\[
\text { Acute }_{n}:=\text { if }\left[\sqrt{\left(S_{1}\right)^{2}+\left(S_{2_{n}}\right)^{2}}>S_{3_{n}}, 1,0\right] \quad \text { Acute } 2_{n}:=\text { if }\left[\sqrt{\left(S_{1}\right)_{n}^{2}+\left(S_{3_{n}}\right)^{2}}>S_{2_{n}}, 1,0\right]
\]


\section*{Is_This_a_Triangle \(=1\)}

Since the greater angle is subtended by the greater side, halving the lesser angle increases the area of the triangle by the greater amount.
\[
\begin{aligned}
& \left(\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}>\mathbf{S}_{\mathbf{3}_{\mathbf{n}}}\right)-\left[\frac{\left(\mathbf{B}_{\mathbf{n}}+\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}\right) \cdot \mathbf{H}_{\mathbf{n}}}{\mathbf{2}}-\mathbf{A}_{\mathbf{n}}>\frac{\left(\mathbf{B}_{\mathbf{n}}+\mathbf{S}_{\mathbf{3}_{\mathbf{n}}}\right) \cdot \mathbf{H}_{\mathbf{n}}}{\mathbf{2}}-\mathbf{A}_{\mathbf{n}}\right]= \\
& \begin{array}{|r|}
\hline 0 \\
\hline 0 \\
\hline 0
\end{array}
\end{aligned}
\]

Given two sides of a triangle, the height and if the angle contained by the two sides is acute or not, find the remaining side. What would happen if you were given just the equation and had no idea what the equation represented? You could not possibly solve it so quickly
\[
\mathbf{H}_{n}=\frac{\sqrt{\mathbf{S}_{\mathbf{1}_{n}}+\mathbf{S}_{\mathbf{2}_{n}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{3}_{n}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\mathbf{n}}}-\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}_{\mathbf{n}}}+\mathbf{S}_{\mathbf{2}_{\mathbf{n}}}-\mathbf{S}_{\mathbf{3}}}}{\mathbf{2 \cdot \mathbf { S } _ { \mathbf { 1 } }}}
\]

Given \(S_{1}, S_{2}\) and \(\sqrt{S_{1}{ }^{2}+S_{2}{ }^{2}}>S_{3}\), find \(S_{3}\).



\section*{040497 Triangles}

Given the base, one side and the height of a triangle, find both possible lengths of the remaining side.
\[
\begin{gathered}
\mathbf{A B}:=\mathbf{5} \quad \mathbf{A C}:=\mathbf{4} \quad \mathbf{C D}:=\mathbf{3} \\
\mathbf{A D}:=\sqrt{\mathbf{A C}^{2}-\mathbf{C D}^{2}} \quad \mathbf{B D}_{\mathbf{1}}:=\mathbf{A B}+\mathbf{A D} \quad \mathbf{B D}_{\mathbf{2}}:=\mathbf{A B}-\mathbf{A D} \\
\mathbf{B C}_{\mathbf{1}}:=\sqrt{\mathbf{C D}^{2}+\mathbf{B D}_{\mathbf{1}}^{2}} \quad \mathbf{B C}_{\mathbf{2}}:=\sqrt{\mathbf{C D}^{2}+\mathbf{B D}_{\mathbf{2}}^{2}} \\
\mathbf{B C}_{\mathbf{1}}=\mathbf{8 . 2 1 3 2 5 2} \quad \mathbf{B C}_{\mathbf{2}}=\mathbf{3 . 8 1 3 4 6 1} \\
\mathbf{S}_{\mathbf{1}}:=\mathbf{A B} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{A C} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{B C}_{\mathbf{1}} \\
\frac{\sqrt{\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}}}{\mathbf{2} \cdot \mathbf{S}_{\mathbf{1}}}-\mathbf{C D}=\mathbf{0} \\
\mathbf{S}_{\mathbf{1}}:=\mathbf{A B} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{A C} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{B C}_{\mathbf{2}} \\
\sqrt{\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{-\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}} \cdot \sqrt{\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}} \\
\mathbf{2} \cdot \mathbf{S}_{\mathbf{1}}
\end{gathered} \mathbf{C D}=\mathbf{0} \quad .
\]

042897

\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 1 4 8 5 4} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{6 . 5 0 8 7 5} \quad \mathbf{A D}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}}
\]
\[
\mathbf{C D}:=\sqrt{\mathbf{A D}^{2}+\mathbf{A C}^{2}} \quad \mathbf{D H}:=\mathbf{C D}
\]
\[
\mathbf{C G}:=\mathbf{A D} \quad \mathbf{D G}:=\mathbf{A C} \quad \mathbf{G H}:=\mathbf{D H}-\mathbf{D G} \quad \mathbf{C H}:=\sqrt{\mathbf{G H}^{2}+\mathbf{C G}^{\mathbf{2}}}
\]
\[
\text { HJ }:=\mathbf{C G} \quad \text { DJ }:=\mathbf{D G}
\]
\[
\mathbf{F H}:=\frac{\left(\mathbf{H J} \mathbf{2}^{2}+\mathbf{D H}{ }^{2}\right)-\mathbf{D J}^{2}}{2 \cdot \mathbf{D H}} \quad \mathbf{E F}:=\mathbf{F H} \quad \mathbf{D E}:=\mathbf{D H}-(\mathbf{E F}+\mathbf{F H})
\]
\[
\mathbf{A B}:=\mathbf{D E} \quad \mathbf{E G}:=\mathbf{D G}-\mathbf{D E} \quad \mathbf{L M}:=\mathbf{C H} \quad \mathbf{L K}:=\mathbf{E G}
\]
\[
\mathbf{K M}:=\sqrt{\mathbf{L M}^{2}-\mathbf{L K}^{2}} \quad \mathbf{B E}:=\mathbf{A D} \quad \mathbf{B K}:=\mathbf{2} \cdot \mathbf{B E} \quad \mathbf{B M}:=\mathbf{B K}+\mathbf{K M}
\]

Some definitions:
\[
2 \cdot N_{1}+\frac{\sqrt{2 \cdot N_{2}}{ }^{3} \cdot{\sqrt{N_{1}}{ }^{2}+{N_{2}}^{2}}^{2}+{N_{1}}^{4}+5 \cdot{N_{1}}^{2} \cdot{N_{2}}^{2}-2 \cdot N_{2} \cdot\left(N_{1}{ }^{2}+N_{2}^{2}\right)^{\frac{3}{2}}-2 \cdot{N_{1}}^{2} \cdot N_{2} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}{\sqrt{{N_{1}}^{2}+{N_{2}}^{2}}}-B M=0
\]




Start with H. Construct the two tangent circles. With those project to G, from the tangent at F and the enter line of the first circle for the tangent string; which will also construct the unit line.
Project from I perpendicular to BF to etc. etc.

\section*{An Indeterminate Problem Reduced To An}

\section*{Equation}

Page 5 of A Treatise on Algebraic Geometry by Rev. Dionysius Lardner, 1831

Given the base AB, and the sum of the sides (AC and BC) of a triangle, to find the vertex (C).


Let \(A B=a, A C=y\), and \(C B=x\), and the the excess of the sum of the sides above the base be \(d\).
\[
\therefore y+x=a+b
\]

Any values of \(y\) and \(x\), which fulfill the conditions of this equation, represent the sides of the triangle, whose vertex solves the problem.

The ability to render a solution to a problem is first tendered by determining if the problem is indeed a problem first in grammar. The problem as stated makes an elementary grammar error, that of that of number itself. The sum of two sides yields a plurality, while the "the vertex" is decidely singular. Even so, anyone with any wit at all does not tender an answer to a problem by giving synonyms. \(y\) and \(x\) are synonyms for \(a\) and \(b\). Any triangle can be seen as three potential ellipses, one for each side, while the remaining two as the sum of foci. Therefor, there was no indeterminate problem save 3, two grammatical, and the third a pretense of an answer. A vertex is not a difference, therefore it cannot possibly solve any problem.

\section*{09/11/97 The Ellipse}

Given that the major axis is \(A D\) and the minor axis EF, derive the formula for the radius CG, the height BG, and the foci axis MN.
\[
\begin{aligned}
& \mathbf{N}_{1}:=2.028 \quad \mathbf{N}_{2}:=1.035 \\
& \mathbf{A D}:=3.333 \quad \mathbf{E F}:=\frac{\mathbf{A D}}{\mathbf{N}_{1}} \quad \mathbf{A B}:=\frac{\mathbf{A D}}{\mathbf{N}_{2}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B J}:=\sqrt{\mathbf{A B} \cdot \mathbf{B D}} \\
& \mathbf{A C}:=\frac{\mathbf{A D}}{2} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{C H}:=\frac{\mathbf{E F}}{2} \quad \text { CJ }:=\mathbf{A C} \quad \mathbf{B G}:=\frac{\mathbf{B J} \cdot \mathbf{C H}}{\mathbf{C J}} \quad \mathbf{C G}:=\sqrt{\mathbf{B G}^{2}+\mathbf{B C}^{2}}
\end{aligned}
\]

\[
M N:=2 \cdot \sqrt{\left(\frac{A D}{2}\right)^{2}-C H^{2}} \quad \frac{A D \cdot \sqrt{4 \cdot N_{2}-4+N_{2}{ }^{2} \cdot N_{1}^{2}-4 \cdot N_{2} \cdot N_{1}^{2}+4 \cdot N_{1}^{2}}}{2 \cdot N_{1} \cdot N_{2}}-C G=0 \quad \frac{A D \cdot \sqrt{N_{2}-1}}{\left(N_{2} \cdot N_{1}\right)}-B G=0 \quad \frac{A D}{} \cdot \sqrt{\left(N_{1}{ }^{2}-1\right)} \mathbf{N}_{1} \quad \mathbf{M N}=0
\]

\section*{Given triangle \(A B C\), and \(A B\) as base, describe the Ellipse}
\[
\begin{aligned}
& \mathbf{S}_{\mathbf{1}}:=8.14917 \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{7 . 2 3 7 4 5} \quad \mathbf{S}_{\mathbf{3}}:=2.58277 \\
& \mathbf{A B}:=\mathbf{S}_{\mathbf{1}} \\
& \mathbf{A C}:=\mathbf{S}_{\mathbf{2}} \\
& \mathbf{B C}:=\mathbf{S}_{\mathbf{3}} \\
& \mathbf{D E}:=\mathbf{A C}+\mathbf{B C} \\
& \mathbf{A H}:=\frac{\mathbf{D E}}{2} \quad \mathbf{A G}:=\frac{\mathbf{A B}}{2} \quad \mathbf{F G}:=\sqrt{\mathbf{A H}^{2}-\mathbf{A G}^{2}} \\
& \text { FG }-\frac{\sqrt{\left(\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{3}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}\right)}}{2}=\mathbf{0} \\
& \text { The ratio of the ellipse is thus; } \\
& \mathbf{A H} \\
& \text { FG }-\frac{\left(\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}\right)}{\sqrt{\left(\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{3}}\right) \cdot\left(\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}+\mathbf{S}_{\mathbf{3}}\right)}}=\mathbf{0}
\end{aligned}
\]

From any point on DE, one can find everything and not once think about \(x\) and \(y\).
\(\sim_{n=0}^{0}\)
020298
\[
\begin{aligned}
& \Delta:=4 \quad \delta:=\mathbf{0} . . \Delta-\mathbf{1} \\
& \mathbf{N}:=.656 \quad \text { AF }:=\mathbf{2 . 3 7 5 4} \\
& \mathbf{A O}:=\frac{\mathbf{A F}}{2} \quad \mathbf{A B}_{\mathbf{0}}:=\mathbf{N} \quad \mathbf{B D}_{\mathbf{0}}:=\sqrt{\mathbf{A B _ { \mathbf { 0 } } \cdot ( \mathbf { A F } - \mathbf { A B } \mathbf { 0 } )}} \\
& \mathbf{C E}_{\mathbf{0}}:=\frac{\mathbf{B D}_{\mathbf{0}}}{2} \quad \mathbf{A C}_{\mathbf{0}}:=\frac{\mathbf{A B _ { \mathbf { 0 } }}}{2}
\end{aligned}
\]

\[
\mathbf{O C} \mathbf{0}:=\mathbf{A O}-\mathbf{A C} \mathbf{0}
\]
\[
\mathrm{OE}_{\mathbf{0}}:=\sqrt{\left(\mathrm{CE}_{0}\right)^{2}+\left(\mathrm{OC}_{0}\right)^{2}}
\]
\[
\sqrt{\left(\mathbf{A B}_{\delta}\right)^{2}+\left(\mathrm{BD}_{\delta}\right)^{2}}
\]
\[
A D_{\delta}:=\sqrt{\left(\mathrm{AB}_{\delta}\right)^{2}+\left(\mathrm{BD}_{\delta}\right)^{2}} \quad \mathrm{AD}=\left(\begin{array}{l}
1.248304 \\
0.648825 \\
0.327541 \\
0.164163
\end{array}\right) \quad \begin{aligned}
& \text { Length of cord by } \\
& \text { progressive } \\
& \text { bisections. }
\end{aligned}
\]

\footnotetext{
I have no idea why I did this figure, it was so long ago.
}

\section*{A Square In A Triangle 021098}

What is the Algebraic Name for the square as given in a right triangle? What is the Algebraic name for the ratio AE/AC?

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 9 8 9 5 8} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 . 8 6 6 9 0} \\
& \mathbf{A E}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{E G}:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{A B}:=\frac{\mathbf{A E}}{\mathbf{2}} \\
& \text { BJ }:=\frac{\mathbf{E G}}{\mathbf{2}} \quad \mathbf{B D}:=\mathbf{B J} \\
& \mathbf{A D}:=\mathbf{A B}+\mathbf{B D} \\
& \mathbf{A C E}:=\mathbf{B D} \cdot \frac{\mathbf{A E}}{\mathbf{A D}} \\
& \mathbf{A C}:=\mathbf{A E}-\mathbf{C E} \\
& \text { FG }:=\mathbf{E G}-\mathbf{C E}
\end{aligned}
\]
\[
A B-\frac{\mathbf{N}_{1}}{2}=0 \quad B J-\frac{\mathbf{N}_{2}}{2}=0 \quad A D-\left(\frac{\mathbf{N}_{1}}{2}+\frac{\mathbf{N}_{2}}{2}\right)=0 \quad C E-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad A C-\frac{\mathbf{N}_{1}^{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0
\]
\[
F G-\frac{\mathbf{N}_{2}^{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \frac{A E}{A C}-\left(\frac{\mathbf{N}_{1}+N_{2}}{\mathbf{N}_{1}}\right)=0 \quad \frac{E G}{F G}-\frac{N_{1}+N_{2}}{\mathbf{N}_{2}}=0
\]

Alternate Method Root Series 022598
Given a length and a unit, raise
that length to any whole power.
Given for the third power.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{4} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \\
& \text { AH }:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{H N}:=\mathbf{A H} \cdot \mathbf{N}_{\mathbf{2}} \\
& \mathbf{H J}:=\mathbf{H N}-\mathbf{A H} \quad \mathbf{F H}:=\frac{\mathbf{A H} \cdot \mathbf{H J}}{\mathbf{A H}+\mathbf{H J}} \quad \mathbf{A F}:=\mathbf{A H}-\mathbf{F H} \\
& \text { FG }:=\mathbf{F H} \quad \mathbf{D F}:=\frac{\mathbf{A F} \cdot \mathbf{F G}}{\mathbf{A F}+\mathbf{F G}} \mathbf{A D}:=\mathbf{A F}-\mathbf{D F} \\
& \text { DE }:=\mathbf{D F} \quad \mathbf{B D}:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}} \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \\
& \mathbf{A H}_{\mathbf{A F}}-\mathbf{N}_{\mathbf{2}}{ }^{\mathbf{1}}=\mathbf{0} \quad \frac{\mathbf{A H}}{\mathbf{A D}}-\mathbf{N}_{\mathbf{2}}^{\mathbf{2}}=\mathbf{0} \quad \frac{\mathbf{A H}}{\mathbf{A B}}-\mathbf{N}_{\mathbf{2}}^{3}=\mathbf{0} \\
& \mathbf{N}_{\mathbf{2}}^{\mathbf{3}}=\mathbf{2 7}^{\mathbf{3}}
\end{aligned}
\]


Sum DIvided by One Powered 022598B


Doing the Math
These plates sat, never actually being wrote up, in their directory, but included in the Delian Quest. Because they are so elementary, \(I\) assumed that doing math with a geometric figure was known. I was a bit conflicted about this, however, working 12 hours a day for years on end tends to dull the senses. Then, I got to thinking about them again in 2007. I even did a couple of searches on the internet to see if anyone had actually developed doing the math with a simple geometric figure and could not find anything. Then I found scraps in old books found on the Internet Archive where certain operations were fragmented and really undeveloped. Then I started to realize and understand that BAM was not developed as a language. If it had been, there would be no talk of non-Euclidean Geometry, there would only be embarrassment of its memory.

One can see that it is directly derived from plate A on this date. BAM (Basic Analog Mathematics) has its roots in exponential series.


022698
Now ain't this just typically human. Some of the more defined plates that led to Basic Analog Mathematics promptly get wrote up in 0816 2015. I am on the ball! It appears I never even bothered to do a pdf file of these. They are, however, not fundamentally distinct from some previous write ups except, these are series format. So, I think \(I\) will forgo the write ups again!

\begin{tabular}{|l|}
\hline Move BG->AX \\
\hline Move BG->BC \\
\hline Move BG->BA \\
\hline Move BG->BD \\
\hline Move BG->AZ \\
\hline Move BG->BE \\
\hline Move BG->BB \\
\hline Move BG->BF \\
\hline
\end{tabular}

\section*{A Square Root Figure And Triseciton 042398}

In this square root figure, what is the radius of the circle with the trisected angle? What is the radius CH?

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 6 4 5 8 3} \quad \mathbf{N}_{\mathbf{2}}:=11.29771 \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \text { AD :=(AB•AF) }{ }^{\frac{1}{2}} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \text { BD }:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D E}:=\mathbf{B E}-\mathbf{B D} \\
& \left.\mathbf{E Q}:=\mathbf{B E} \quad \mathbf{D Q}:=\left(\mathbf{D E}^{2}+\mathbf{E Q}\right)^{2}\right)^{\overline{2}} \quad \mathbf{P Q}:=\mathbf{B F} \quad \mathbf{Q M}:=\frac{\mathbf{E Q} \cdot \mathbf{P Q}}{\mathbf{D Q}} \\
& \mathbf{D M}:=\mathbf{Q M}-\mathbf{D Q} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{D b}:=\frac{\mathbf{D M}}{2} \\
& \mathbf{C M}:=\mathbf{A C} \quad \mathbf{a b}:=\frac{\mathbf{C M} \cdot \mathbf{D b}}{\mathbf{D M}} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \\
& \mathbf{C a}:=\frac{\mathbf{C D}}{2} \quad \mathbf{A a}:=\mathbf{A C}+\mathbf{C a} \quad \mathbf{C H}:=\frac{\mathbf{a b} \cdot \mathbf{A C}}{\mathbf{A a}} \\
& \mathbf{A M}:=\mathbf{A D} \quad \mathbf{A c}:=\frac{\mathbf{A M} \cdot \mathbf{C H}}{\mathbf{C M}} \quad \mathbf{H M}:=\mathbf{C M}-\mathbf{C H} \quad \mathbf{H M}-\mathbf{A c}=\mathbf{0} \\
& \mathbf{A c}-\frac{\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\mathbf{N}_{1}+\mathbf{N}_{2}+\mathbf{4} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}}=\mathbf{0} \\
& \mathbf{H M}-\frac{\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\mathbf{N}_{1}+\mathbf{N}_{2}+\mathbf{4} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}}=\mathbf{0}
\end{aligned}
\]

Cins

\[
\begin{aligned}
& A B-\mathbf{N}_{1}=0 \quad \mathbf{A F}-\mathbf{N}_{2}=\mathbf{0} \quad \mathbf{B F}-\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{1}\right)=\mathbf{0} \quad \mathbf{A D}-\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}\right)^{\frac{1}{2}}=\mathbf{0} \\
& \mathbf{B E}-\frac{\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}}{2}=\mathbf{0} \quad \mathbf{B D}-\left(\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}-\mathbf{N}_{1}\right)=\mathbf{0} \quad \mathbf{D E}-\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}}{2}=\mathbf{0} \\
& \mathbf{D Q}-\frac{\sqrt{\left\lfloor\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}\right)\right.}}{\sqrt{2}}=0 \quad \mathbf{Q M}-\frac{\sqrt{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}{2 \cdot \sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}\right)}}=\mathbf{0} \\
& \mathbf{D M}-\frac{\mathbf{N}_{1} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}+\mathbf{N}_{\mathbf{2}} \cdot \sqrt{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}-\mathbf{2} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}}{\sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}\right)}}=\mathbf{0} \quad \mathbf{A E}-\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}}{2}=\mathbf{0} \quad \mathbf{A C}-\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}}{4}=\mathbf{0} \\
& \mathbf{D b}-\frac{\mathbf{N}_{\mathbf{1}} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}+\mathbf{N}_{\mathbf{2}} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}-\mathbf{2} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}}{2 \cdot \sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}\right)}}=\mathbf{0} \quad \mathbf{a b}-\frac{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}}{\mathbf{8}}=\mathbf{0} \\
& \mathbf{C D}-\frac{4 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}-\mathbf{N}_{2}-\mathbf{N}_{1}}{4}=0 \quad \mathbf{C a}-\frac{\mathbf{4} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}-\mathbf{N}_{2}-\mathbf{N}_{1}}{8}=0 \quad A a-\frac{\mathbf{N}_{1}+\mathbf{N}_{2}+4 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}}{8}=0 \\
& \mathrm{CH}-\frac{\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)^{2}}{4 \cdot\left(\mathrm{~N}_{1}+\mathrm{N}_{2}+4 \cdot \sqrt{\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}}\right)}=0 \\
& \text { Definitions: }
\end{aligned}
\]
~R \(R=\frac{\sqrt{\mathbf{N}_{2}} \cdot\left(1+\mathbf{N}_{2}\right)}{1+\mathbf{N}_{2}+4 \cdot \sqrt{\mathbf{N}_{2}}} \quad \frac{\mathbf{N}_{2}-\mathbf{N}_{1}}{2}-\mathbf{B E}=0\)
\[
\begin{aligned}
& \left.\left[\frac{\mathbf{R}}{3}+\left(\frac{\mathbf{R}}{3}+\frac{2 \cdot \mathbf{R}^{2}}{3}+\frac{\mathbf{R}^{3}}{27}+\sqrt{\frac{50 \cdot \mathbf{R}^{2}}{27}-\frac{44 \cdot \mathbf{R}^{3}}{27}-\frac{\mathbf{R}^{4}}{9}-\frac{4 \cdot \mathbf{R}}{9}+\frac{1}{27}}\right)^{\frac{1}{3}}+\frac{\frac{\mathbf{R}^{2}}{9}+\frac{4 \cdot \mathbf{R}}{3}-\frac{1}{3}}{\left(\frac{\mathbf{R}}{3}+\frac{2 \cdot \mathbf{R}^{2}}{3}+\frac{\mathbf{R}^{3}}{27}+\sqrt{\frac{50 \cdot \mathbf{R}^{2}}{27}-\frac{44 \cdot \mathbf{R}^{3}}{27}-\frac{\mathbf{R}^{4}}{9}-\frac{4 \cdot R}{9}+\frac{1}{27}}\right)}\right]^{\frac{1}{3}}\right]^{2} 11.29771 \\
& \mathbf{N}_{2}-\left[\frac{\mathbf{R}}{\mathbf{3}}+\left(\frac{\mathbf{R}}{3}+\frac{2 \cdot \mathbf{R}^{2}}{3}+\frac{\mathbf{R}^{3}}{27}+\sqrt{\frac{50 \cdot \mathbf{R}^{2}}{27}-\frac{44 \cdot \mathbf{R}^{3}}{27}-\frac{\mathbf{R}^{4}}{9}-\frac{4 \cdot \mathbf{R}}{9}+\frac{1}{27}}\right)^{\frac{1}{3}}+\frac{\frac{\mathbf{R}^{2}}{9}+\frac{4 \cdot \mathbf{R}}{3}-\frac{1}{3}}{\left(\frac{\mathbf{R}}{3}+\frac{2 \cdot \mathbf{R}^{2}}{3}+\frac{\mathbf{R}^{3}}{27}+\sqrt{\frac{50 \cdot \mathbf{R}^{2}}{27}-\frac{44 \cdot \mathbf{R}^{3}}{27}-\frac{\mathbf{R}^{4}}{9}-\frac{4 \cdot R}{9}+\frac{1}{27}}\right)^{\frac{1}{3}}}\right]^{2}=0
\end{aligned}
\]

\section*{A Square Root Figure And Triseciton 042398}

In this square root figure, what is the radius of the circle with the trisected angle? What is the radius CH?

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 6 4 5 8 3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{8 . 6 5 1 8 8} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B F}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}} \\
& \text { AD :=(AB•AF) }{ }^{\frac{1}{2}} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \text { BD }:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D E}:=\mathbf{B E}-\mathbf{B D} \\
& \mathbf{E Q}:=\mathbf{B E} \quad \mathbf{D Q}:=\left(\mathbf{D E}^{2}+\mathbf{E Q}^{2}\right)^{\frac{1}{2}} \quad \mathbf{P Q}:=\mathbf{B F} \quad \mathbf{Q M}:=\frac{\mathbf{E Q} \cdot \mathbf{P Q}}{\mathbf{D Q}} \\
& \mathbf{D M}:=\mathbf{Q M}-\mathbf{D Q} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{D b}:=\frac{\mathbf{D M}}{2} \\
& \mathbf{C M}:=\mathbf{A C} \quad \mathbf{a b}:=\frac{\mathbf{C M} \cdot \mathbf{D b}}{\mathbf{D M}} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \\
& \mathbf{C a}:=\frac{\mathbf{C D}}{2} \quad \mathbf{A a}:=\mathbf{A C}+\mathbf{C a} \quad \mathbf{C H}:=\frac{\mathbf{a b} \cdot \mathbf{A C}}{\mathbf{A a}} \\
& \mathbf{A M}:=\mathbf{A D} \quad \mathbf{A c}:=\frac{\mathbf{A M} \cdot \mathbf{C H}}{\mathbf{C M}} \quad \mathbf{H M}:=\mathbf{C M}-\mathbf{C H} \quad \mathbf{H M}-\mathbf{A c}=\mathbf{0} \\
& A c-\frac{\sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)} \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}+\mathbf{4} \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}}}=0 \\
& H M-\frac{\sqrt{\mathbf{N}_{1}{ }^{2}+N_{2} \cdot N_{1}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}+4 \cdot \sqrt{\mathbf{N}_{1}^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}}}=0
\end{aligned}
\]

Cris

\[
\begin{aligned}
& \text { Definitions: } \\
& \mathbf{A B}-\mathbf{N}_{1}=\mathbf{0} \quad \mathbf{B F}-\mathbf{N}_{2}=\mathbf{0} \quad \mathbf{A F}-\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)=\mathbf{0} \quad \mathbf{A D}-\sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=\mathbf{0} \quad \mathbf{B E}-\frac{\mathbf{N}_{2}}{2}=\mathbf{0} \\
& \mathbf{B D}-\left[\sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}-\mathbf{N}_{1}\right]=0 \quad \mathrm{DE}-\frac{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}}}{2}=0 \quad A E-\frac{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}}{2}=0 \\
& D Q-\frac{\left[\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}}\right)\right]^{\frac{1}{2}}}{\sqrt{2}}=0 \quad A C-\frac{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}}{4}=0 \\
& Q M-\frac{\sqrt{2} \cdot \mathbf{N}_{2}{ }^{2}}{2 \cdot \sqrt{\left(2 \cdot N_{1}+N_{2}\right) \cdot\left(2 \cdot N_{1}+N_{2}-2 \cdot \sqrt{N_{1}^{2}+N_{2} \cdot N_{1}}\right)}}=0 \quad a b-\frac{2 \cdot N_{1}+N_{2}}{8}=0 \\
& \mathrm{DM}-\frac{\sqrt{2} \cdot\left[\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{2} \cdot \mathbf{N}_{1}{ }^{2}\right]}{\left.\sqrt{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left[\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}\right.}\right]}=\mathbf{0} \\
& \mathbf{D b}-\frac{\sqrt{2} \cdot\left[\sqrt{\mathbf{N}_{1}^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{2} \cdot \mathbf{N}_{1}{ }^{2}\right]}{2 \cdot \sqrt{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left[2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}\right]}}=\mathbf{0} \\
& \mathrm{CD}-\frac{4 \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathrm{N}_{2} \cdot \mathrm{~N}_{1}}-\mathrm{N}_{2}-2 \cdot \mathrm{~N}_{1}}{4}=0 \\
& \mathrm{Ca}-\frac{4 \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}}-\mathbf{N}_{2}-2 \cdot \mathbf{N}_{1}}{8}=0 \\
& A a-\frac{2 \cdot N_{1}+N_{2}+4 \cdot \sqrt{N_{1}{ }^{2}+N_{2} \cdot N_{1}}}{8}=0 \\
& \mathrm{CH}-\frac{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{2}}{4 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}+4 \cdot \sqrt{\mathbf{N}_{1}^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}}\right)}=0
\end{aligned}
\]

On Gemini Roots 072499

\section*{CE is to EF as CY is to CW}

\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{1 . 5 1 2 9 2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 0 . 7 7 3 3 4} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{3}
\]
\[
\mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A D}:=\mathbf{N}_{\mathbf{2}}
\]
\[
\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B C}:=\frac{\mathbf{B D}}{2} \quad \mathbf{C W}:=\mathbf{B C} \quad \mathbf{C T}:=\mathbf{B C}
\]
\[
\mathbf{F V}:=\mathbf{B C} \quad \mathbf{A I}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \quad \mathbf{B I}:=\mathbf{A I}-\mathbf{A B} \quad \mathbf{D I}:=\mathbf{B D}-\mathbf{B I}
\]
\[
\mathbf{I R}:=\sqrt{\mathbf{B I} \cdot \mathbf{D I}} \quad \mathbf{A E}:=\mathbf{A I} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C} \quad \mathbf{E D}:=\mathbf{A D}+\mathbf{A E}
\]
\[
\mathbf{C E}:=\mathbf{A C}+\mathbf{A E} \quad \mathbf{E F}:=\frac{\mathbf{C E}}{\mathbf{N}_{\mathbf{3}}} \quad \mathbf{B E}:=\mathbf{A E}+\mathbf{A B} \quad \mathbf{E I}:=\mathbf{A E}+\mathbf{A I}
\]
\[
\mathbf{F I}:=\mathbf{E I}-\mathbf{E F} \quad \text { FG }:=\frac{\mathbf{F I} \cdot \mathbf{F V}}{\mathbf{F V}+\mathbf{I R}} \quad \mathbf{E G}:=\mathbf{E F}+\mathbf{F G} \quad \mathbf{G I}:=\mathbf{F I}-\mathbf{F G}
\]
\[
\mathbf{G M}:=\frac{\mathbf{F V} \cdot \mathbf{G I}}{\mathbf{F I}} \quad \mathbf{I a}:=\frac{\mathbf{E G} \cdot \mathbf{I R}}{\mathbf{G M}} \mathbf{E L}:=\frac{\mathbf{I a} \cdot \mathbf{E D}}{\mathbf{I a}+\mathbf{D I}} \mathbf{B R}:=\sqrt{\mathbf{B I}^{2}+\mathbf{I R}^{2}}
\]
\[
\mathbf{B a}:=\mathbf{I} \mathbf{a}-\mathbf{B I} \quad \mathbf{B H}:=\frac{\mathbf{B I} \cdot \mathbf{B E}}{\mathbf{B a}} \quad \mathbf{E H}:=\mathbf{B E}+\mathbf{B H} \quad \mathbf{C I}:=\mathbf{A C}-\mathbf{A I}
\]
\[
\text { JO }:=\frac{\mathbf{I R} \cdot \mathbf{C E}}{\mathbf{C I}+\mathbf{I a}} \quad \text { CJ }:=\frac{\mathbf{C I} \cdot \mathbf{J O}}{\text { IR }} \quad \text { JI }:=\mathbf{C I}-\mathbf{C J} \quad \text { CY }:=\frac{\text { IR.CJ }}{\text { JI }}
\]
\[
\frac{\mathrm{CY}}{\mathrm{CW}}-\frac{\mathrm{CE}}{\mathrm{EF}}=0 \quad \frac{\mathrm{CE}}{\mathrm{EF}}=3 \quad \frac{\mathrm{CY}}{\mathrm{CW}}=3
\]

\section*{A Delian Solution 081199}

Note: Needs lipstick and a dress. Parse it. If I get around to it, I will redo the graphics.

What are the minor and major axis for the ellipse that will give point \(Z\) for the cube root?

\(\mathbf{A B}:=\mathbf{1} \quad \mathbf{N}:=16 \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B}\)
\(\mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{F G}:=\mathbf{B F} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{F X}:=\mathbf{B F} \quad \mathbf{M f}:=\frac{\sqrt{\mathrm{AF}^{2}+\mathrm{FX}^{2}}}{2}\)
Lf \(:=\frac{\text { FX }}{2} \quad\) ML \(:=\mathbf{M f}-\) Lf \(\quad\) FL \(:=\frac{\text { AF }}{2} \quad\) Xd \(:=\) FL \(\quad\) df \(:=\) Lf \(\quad\) IX \(:=\) FX
\(\mathbf{M d}:=\mathbf{M f}+\mathbf{d f} \quad \mathbf{M X}:=\sqrt{\mathrm{Xd}^{2}+\mathbf{M d}^{2}} \quad \mathbf{S X}:=\frac{\mathbf{M X} \cdot I X}{I X-M L} \quad \operatorname{Lg}:=\frac{\text { FL } \cdot \mathbf{M L}}{\mathbf{M L}+\mathbf{F X}}\)
\(\mathbf{Q X}:=\frac{\mathbf{S X}}{2} \quad \mathbf{F g}:=\mathbf{F L}-\mathbf{L g} \quad \mathbf{X g}:=\frac{\mathbf{M X} \cdot \mathbf{F g}}{\mathbf{X d}} \quad \mathbf{Q g}:=\mathbf{Q X}-\mathbf{X g}\)
\(\mathbf{K g}:=\frac{\mathbf{X g} \cdot \mathbf{Q g}}{\mathbf{F g}} \quad \mathbf{G K}:=\mathbf{F G}+\mathbf{F g}+\mathbf{K g} \quad \mathbf{G J}:=\mathbf{B G} \quad \mathbf{G T}:=\frac{\mathbf{F g} \cdot \mathbf{G K}}{\mathbf{F X}}\)
\(\mathbf{J T}:=\mathbf{G J}+\mathbf{G T} \quad \mathbf{I J}:=\mathbf{B F} \quad\) FP \(:=\frac{\mathbf{I J} \cdot \mathbf{G J}}{\mathbf{J T}} \quad \mathbf{O P}:=\frac{\mathbf{I X} \cdot \mathbf{G T}}{\mathbf{J T}}\)
\(\mathbf{K P}:=\mathbf{F g}+\mathbf{K g}+\mathbf{F P} \quad \mathbf{P i}:=\mathbf{L f} \quad \mathbf{O i}:=\mathbf{O P}+\mathbf{P i} \quad \mathbf{h i}:=\frac{\mathbf{K P} \cdot \mathbf{O i}}{\mathbf{O P}} \quad \mathbf{f i}:=\mathbf{F P}+\mathbf{F L}\)
\(\mathbf{f h}:=\mathbf{h i}-\mathbf{f i} \quad \mathbf{K O}:=\sqrt{K P^{2}+\mathbf{O P}^{\mathbf{2}}} \quad\) hk \(:=\frac{\mathbf{K P} \cdot \mathbf{f h}}{\mathrm{KO}} \quad\) fk \(:=\frac{\mathbf{O P} \cdot \mathbf{f h}}{\mathrm{KO}} \quad\) Nf \(:=\mathbf{M f}\)
\(\mathbf{N k}:=\sqrt{\mathbf{N f}^{\mathbf{2}}-\mathbf{f k}^{\mathbf{2}}} \quad \mathbf{N h}:=\mathbf{h k}+\mathbf{N k} \quad \mathbf{O h}:=\frac{\mathbf{K O} \cdot \mathbf{O i}}{\mathbf{O P}} \quad \mathbf{N O}:=\mathbf{O h}-\mathbf{N h}\)
\(\mathbf{K N}:=\mathbf{K O}-\mathbf{N O}\)

Nons

\[
\begin{aligned}
& \text { N1:= } \frac{\text { OP } \cdot \text { KN }}{\text { KO }} \quad \text { K1 }:=\frac{\text { KP } \cdot \mathbf{K N}}{\text { KO }} \quad \text { FK }:=\mathbf{K P}-\text { FP } \quad \text { F1 }:=\text { FK }-\mathbf{K 1} \\
& \mathbf{N X}:=\sqrt{(\mathbf{F X}+\mathbf{N} 1)^{2}+\mathbf{F l}^{2}} \quad \mathbf{X Y}:=\frac{\mathbf{N X} \cdot \mathbf{I X}}{\mathbf{I X}-\mathbf{N} \mathbf{1}} \quad \text { Fm }:=\frac{\mathbf{F} \cdot \mathbf{X Y}}{\mathbf{N X}} \quad \mathbf{K m}:=\mathbf{F K}-\mathbf{F m} \\
& \text { Fo }:=\frac{\text { F1. FX }}{\text { FX }+\mathbf{N} 1} \quad \text { Xo }:=\frac{\text { NX•Fo }}{\text { F1 }} \quad \text { mo }:=\text { Fm }- \text { Fo } \quad \text { Ym }:=\frac{\text { FX•mo }}{\text { Fo }} \\
& \text { FI }:=\mathbf{2} \cdot \mathbf{B F} \quad \text { IL }:=\sqrt{\mathbf{F L}^{2}+\mathbf{F I}^{2}} \quad \text { IS }:=\frac{\mathrm{IL} \cdot \mathbf{I X}}{\mathrm{IX}-\mathbf{M L}} \quad \text { In }:=\frac{\mathrm{IS}^{2}-\mathbf{S X}^{2}+\mathrm{IX}^{2}}{2 \cdot \mathbf{I S}} \\
& \mathbf{X n}:=\sqrt{\mathbf{I X}^{2}-\mathbf{I n}^{2}} \quad \mathbf{Q R}:=\frac{\mathbf{X n} \cdot \mathbf{Q X}}{\mathbf{I S}-\mathbf{I n}} \quad \mathbf{K T}:=\sqrt{\mathbf{G K} \mathbf{K}^{2}+\mathbf{G T}^{\mathbf{2}}} \quad \mathbf{K Y}:=\frac{\mathbf{K T} \cdot \mathbf{Y m}}{\mathbf{G T}} \\
& \mathbf{K Q}:=\frac{\mathbf{G K} \cdot \mathbf{Q g}}{\mathbf{G T}} \mathbf{R Y}:=\mathbf{K Y}-\mathbf{K Q}+\mathbf{Q R} \quad \mathbf{X d}:=\mathbf{F L} \quad \mathbf{d p}:=\frac{\mathbf{G K} \cdot \mathbf{X d}}{\mathbf{K T}} \\
& \mathbf{p q}:=\mathbf{Q R} \quad \mathbf{d q}:=\mathbf{d p}-\mathbf{p q} \quad \mathbf{X p}:=\frac{\mathbf{G T} \cdot \mathbf{X d}}{\mathbf{K T}} \quad \mathbf{Q p}:=\mathbf{Q X}-\mathbf{X p} \quad \mathbf{R q}:=\mathbf{Q p} \\
& \text { er }:=\mathbf{d q} \quad \mathbf{R e}:=\mathbf{R Y} \quad \mathbf{R r}:=\sqrt{\mathbf{R e}^{2}-\mathbf{e r}^{\mathbf{2}}} \quad \mathbf{R s}:=\frac{\mathbf{R e} \cdot \mathbf{R q}}{\mathbf{R r}}
\end{aligned}
\]

Is the segment Zv equal to the perpendicular for the ellipse?

\[
\begin{aligned}
& \mathbf{A C}:=\left(\mathbf{A B} \mathbf{B}^{2} \cdot \mathbf{A G}\right)^{\frac{1}{3}} \quad \mathbf{A E}:=(\mathbf{A B} \cdot \mathbf{A G})^{\frac{1}{3}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \\
& \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{E G}:=\mathbf{B G}-\mathbf{B E} \quad \mathbf{C U}:=\frac{\mathbf{B C} \cdot \mathbf{C E}}{\mathbf{B C}+\mathbf{E G}} \mathbf{B U}:=\mathbf{B C}+\mathbf{C U} \\
& \mathbf{G U}:=\mathbf{B G}-\mathbf{B U} \quad \mathbf{U Z}:=\sqrt{\mathbf{B U} \cdot \mathbf{G U}} \quad \mathbf{U W}:=\frac{\mathbf{G K} \cdot \mathbf{U Z}}{\mathbf{G T}} \quad \mathbf{G g}:=\mathbf{G K}-\mathbf{K g} \\
& \mathbf{t u}:=\mathbf{Q R} \quad \mathbf{g t}:=\frac{\mathbf{K T} \cdot \mathbf{t u}}{\mathbf{G K}} \mathbf{G t}:=\mathbf{G g}+\mathbf{g t} \quad \mathbf{G W}:=\mathbf{G U}+\mathbf{U W} \\
& \mathbf{W} \mathbf{t}:=\mathbf{G W}-\mathbf{G} \mathbf{t} \quad \mathbf{t v}:=\frac{\mathbf{G T} \cdot \mathbf{W} \mathbf{t}}{\mathbf{K T}} \quad \mathbf{K t}:=\mathbf{G K}-\mathbf{G} \mathbf{t} \quad \mathbf{R t}:=\frac{\mathbf{G T} \cdot \mathbf{K} \mathbf{t}}{\mathbf{K T}} \\
& \mathbf{R v}:=\mathbf{t v}-\mathbf{R t} \quad \mathbf{b c}:=\mathbf{2} \cdot \mathbf{R s} \quad \mathbf{R c}:=\mathbf{R s} \quad \mathbf{c v}:=\mathbf{R} \mathbf{c}+\mathbf{R v} \quad \mathbf{Y} \mathbf{w}:=\mathbf{2} \cdot \mathbf{R Y} \\
& \mathbf{W Z}:=\frac{\mathbf{K T} \cdot \mathbf{U Z}}{\mathbf{G T}} \quad \mathbf{W v}:=\frac{\mathbf{G K} \cdot \mathbf{t v}}{\mathbf{G T}} \quad \mathbf{Z v}:=|\mathbf{W Z}-\mathbf{W} \mathbf{v}| \\
& \mathbf{N}_{\mathbf{1}}:=\mathbf{Y} \mathbf{w} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{b c} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{c v} \quad \mathbf{N}_{\mathbf{4}}:=\mathbf{b c} \\
& \sqrt{\mathbf{N}_{3} \cdot\left(\mathbf{N}_{4}-\mathbf{N}_{3}\right)} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}-\mathbf{Z v}=0 \quad \frac{A C}{2 \cdot A B}-2^{\frac{1}{3}}=0
\end{aligned}
\]
\(\sqrt{\mathbf{N}_{3} \cdot\left(\mathbf{N}_{4}-\mathbf{N}_{3}\right)} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}\) is from 09/11/97 The Ellipse for the segment \(\mathrm{Zv}(B G)\), units divided out.

081899
Promptly writing this up in 08162015
Exponential series by changing the unit, in other words, the same way as done inside a circle only this circle is getting smaller.
\[
\mathbf{A}
\]
\[
\left(\frac{\mathbf{A F}}{\mathbf{A C}}\right)^{2}-\frac{\mathbf{B F}}{\mathbf{B C}}=0 \quad \sqrt{\frac{B F}{B C}}-\frac{\mathbf{A F}}{\mathbf{A C}}=0
\]
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5 . 0 5 3 5 4} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 4 . 4 9 9 1 7} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{5 . 7 1 5 0 0} \\
& A C:=\mathbf{N}_{\mathbf{1}} \quad \text { AF := } \mathbf{N}_{\mathbf{2}} \quad \text { FN }:=\mathbf{N}_{\mathbf{3}} \quad \text { CF }:=\mathbf{A F}-\mathbf{A C} \\
& \mathbf{C G}:=\frac{\mathbf{F N} \cdot \mathbf{A C}}{\mathbf{A F}} \quad \mathbf{E F}:=\frac{\mathbf{C F}}{2} \quad \mathbf{E H}:=\frac{\mathbf{F N} \cdot(\mathbf{A C}+\mathbf{E F})}{\mathbf{A F}} \\
& \mathbf{K N}:=\frac{\text { EF } \cdot \mathbf{F N}}{\text { EH }} \quad \text { JK }:=\mathbf{C F}-\mathbf{K N} \quad \mathbf{B C}:=\frac{\mathbf{J K} \cdot \mathbf{C G}}{\text { FN }-\mathbf{C G}} \quad \mathbf{B F}:=\mathbf{B C}+\mathbf{C F} \\
& \mathbf{A D}:=\mathbf{A C}+\mathbf{J K} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{J K} \\
& \mathbf{C F}-\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)=\mathbf{0} \\
& \mathbf{C G}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{1}}{\mathbf{N}_{2}}=\mathbf{0} \quad \mathbf{E F}-\frac{\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}}{2}=\mathbf{0} \quad \mathbf{E H}-\frac{\mathbf{N}_{\mathbf{3}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}{2 \cdot \mathbf{N}_{2}}=\mathbf{0} \\
& K N-\frac{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{1}\right)}{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}}=\mathbf{0} \quad \mathbf{J K}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{1}\right)}{\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}}=\mathbf{0} \quad \mathbf{B C}-\frac{\mathbf{N}_{\mathbf{1}}{ }^{2}}{\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}}=\mathbf{0} \\
& B F:=\frac{\mathbf{N}_{2}{ }^{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}} \quad A D-\frac{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=\mathbf{0} \quad B D-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=\mathbf{0}
\end{aligned}
\]


Since the figure only uses proportion, which has been proven any proof of the figure can be left for an exersize.


In process. POR something or other.


\(C^{\circ} \mathrm{m}\)




CN


07/09/00 Alternate Method Quad Roots
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{1 . 7 9 2 0 1} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 0 . 4 1 7 4 3} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A G}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \\
& \mathbf{D G}:=\mathbf{B G}-\mathbf{B D} \quad \mathbf{D M}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \\
& \mathbf{A J}:=\mathbf{A D} \quad \mathbf{A K}:=\mathbf{A D} \quad \mathbf{B M}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D M}^{2}} \\
& \mathbf{G M}:=\sqrt{\mathbf{D G}^{\mathbf{2}}+\mathbf{D M}^{\mathbf{2}}} \quad \mathbf{A F}:=\frac{\mathbf{G M} \cdot \mathbf{A J}}{\mathbf{B M}} \\
& \mathbf{A C}:=\frac{\mathbf{B M} \cdot \mathbf{A K}}{\mathbf{G M}} \\
& \left(\mathbf{A B} \cdot \mathbf{A G}^{\mathbf{3}}\right)^{\frac{1}{4}}-\mathbf{A F}=\mathbf{0} \quad\left(\mathbf{A B}^{\mathbf{3}} \cdot \mathbf{A G}\right)^{\frac{1}{4}}-\mathbf{A C}=\mathbf{0}
\end{aligned}
\]


000720a Quad Roots via Tangent Circles.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=3.73926 \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 1 . 7 8 2 5 9} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B d}:=\frac{\mathbf{B F}}{2} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D d}:=\mathbf{B d}-\mathbf{B D} \\
& \mathbf{D H}:=\sqrt{\mathbf{B d}^{2}+\mathbf{D d}^{2}} \quad \mathbf{H L}:=\frac{\mathbf{B d} \cdot \mathbf{B F}}{\mathbf{D H}} \\
& \mathbf{D L}:=\mathbf{H L}-\mathbf{D H} \quad \mathbf{D k}:=\frac{\mathbf{D d} \cdot \mathbf{D L}}{\mathbf{D H}} \\
& \mathbf{B k}:=\mathbf{B d}-(\mathbf{D d}+\mathbf{D k}) \quad \mathbf{L k}:=\frac{\mathbf{B d} \cdot \mathbf{D k}}{\mathbf{D d}} \\
& \mathbf{A} \quad \mathbf{B d} \cdot \mathbf{B F} \quad \mathbf{G K}:=\frac{\mathbf{B d} \cdot \mathbf{B F}}{(\mathbf{B d}+\mathbf{D d})} \\
& \mathbf{J N}:=\frac{\mathbf{B D}}{} \\
& \text { FN }:=\mathbf{J N}-\mathbf{B d} \quad \mathbf{B K}:=\mathbf{G K}-\mathbf{B d}
\end{aligned}
\]

\(A k:=B k+A B \quad A F-\frac{B F \cdot F N}{F N-B K}=0 \quad \frac{A F}{F N}-\frac{A k}{L k}=0 \quad\) i.e., A, \(K, L\) and \(N\) are colinear.
\(\mathbf{D F}:=\mathbf{B d}+\mathbf{D d} \quad \mathbf{D M}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}} \quad \mathbf{c d}:=\frac{\mathbf{D d} \cdot \mathbf{B d}}{\mathbf{B d}+\mathbf{D M}} \quad \mathbf{d k}:=\mathbf{B d}-\mathbf{B k} \quad \mathbf{c e}:=\frac{\mathbf{L k} \cdot \mathbf{c d}}{\mathbf{d k}} \quad \mathbf{F b}:=\frac{\mathbf{c e} \cdot \mathbf{F N}}{\mathbf{B d}+\mathbf{c d}} \quad \mathbf{B a}:=\frac{\mathbf{c e} \cdot \mathbf{B K}}{\mathbf{B d}-\mathbf{c d}} \quad \mathbf{A E}:=\mathbf{A F}-\mathbf{2} \cdot \mathbf{F b}\) \(A C:=A B+2 \cdot B a \quad\left(A B^{3} \cdot A F\right)^{\frac{1}{4}}-A C=0 \quad\left(A B \cdot A F^{3}\right)^{\frac{1}{4}}-A E=0 \quad\) etc., etc.

000720b Quad Roots by equal angles.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 0 7 3 2 0} \\
& \mathbf{N}_{\mathbf{2}}:=\mathbf{1 0 . 5 3 9 8 7} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \\
& \mathbf{A M}:=\mathbf{A D} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D G}:=\sqrt{\mathbf{D F} \cdot \mathbf{B D}} \\
& \mathbf{B G}:=\sqrt{\mathbf{D G}^{2}+\mathbf{B D}^{2}} \quad \mathbf{A C}:=\frac{\mathbf{B D} \cdot \mathbf{A D}}{\mathbf{D G}} \\
& \mathbf{A C}-\left(\mathbf{A B}^{\mathbf{3}} \cdot \mathbf{A F}\right)^{\frac{\mathbf{1}}{4}}=\mathbf{0}
\end{aligned}
\]

08/01/00 Alternate Method Quad Roots

\[
\begin{aligned}
& \mathbf{N}:=5 \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \\
& \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{N Y}:=\mathbf{D E} \\
& \text { BD := AD - AB DG:= BG - BD } \quad \mathbf{E Q}:=\mathbf{B E} \\
& \mathbf{D N}:=\sqrt{\mathbf{B D} \cdot \mathbf{D G}} \quad \mathbf{N Q}:=\sqrt{\mathbf{D E}^{\mathbf{2}}+(\mathbf{D N}+\mathbf{E Q})^{\mathbf{2}}} \\
& \mathbf{Q R}:=\mathbf{A E} \quad \mathbf{O Q}:=\mathbf{B G} \quad \mathbf{N O}:=\sqrt{\mathbf{O Q}^{2}-\mathbf{N Q}^{2}} \\
& \mathbf{P Q}:=\frac{\mathbf{N O} \cdot 2 \cdot \mathbf{Q R}}{\mathbf{O Q}} \quad \mathbf{N P}:=\mathbf{N Q}-\mathbf{P Q} \quad \mathbf{M N}:=\sqrt{\frac{\mathbf{N P}^{2}}{2}} \quad \mathbf{B N}:=\sqrt{\mathbf{B D}^{2}+\mathbf{D N}^{2}} \quad \mathbf{G N}:=\sqrt{\mathbf{D G}^{2}+\mathbf{D N}^{2}} \\
& \mathbf{G M}:=\mathbf{G N}-\mathbf{M N} \quad \mathbf{F G}:=\frac{\mathbf{B G} \cdot \mathbf{G M}}{\mathbf{G N}} \quad \mathbf{A F}:=\mathbf{A G}-\mathbf{F G} \quad(\mathbf{A B} \cdot \mathbf{A G})^{\mathbf{3}}-\mathbf{A F}=\mathbf{0}
\end{aligned}
\]

In Trisection What Is AB? 08/02/00
In the trisection figure given and given
\(A C\) as the Unit what is AB?

\[
\begin{aligned}
& \mathbf{A C}:=.884 \quad \mathbf{A E}:=3.521 \quad \mathbf{A D}:=\frac{\mathbf{A E}}{2} \quad \mathbf{E P}:=\mathbf{A E} \quad \mathbf{D E}:=\mathbf{A D} \quad \mathbf{D P}:=\sqrt{\mathbf{E P}^{2}-\mathbf{D E}^{2}} \\
& \mathbf{F P}:=\mathbf{E P} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C D}:=\mathbf{C E}-\mathbf{D E} \quad \mathbf{C F}:=\sqrt{\mathbf{F P}^{2}-\mathbf{C D}^{2}}-\mathbf{D P} \quad \mathbf{P R}:=\mathbf{C F} \quad \mathbf{D R}:=\mathbf{D P}+\mathbf{P R} \\
& \mathbf{C R}:=\sqrt{\mathbf{C D}^{2}+\mathbf{D R}^{2}} \quad \mathbf{C S}:=\frac{\mathbf{C D}^{2}}{\mathbf{C R}} \mathbf{D S}:=\sqrt{\mathbf{C D}^{2}-\mathbf{C S}^{2}} \quad \mathbf{D L}:=\mathbf{A D} \quad \mathbf{L S}:=\sqrt{\mathbf{D L}^{2}-\mathbf{D S}^{2}} \quad \mathbf{R S}:=\mathbf{C R}-\mathbf{C S} \\
& \mathbf{L R}:=\mathbf{R S}+\mathbf{L S} \quad \mathbf{B D}:=\frac{\mathbf{C D} \cdot \mathbf{L R}}{\mathbf{C R}} \mathbf{A B}:=\mathbf{A D}-\mathbf{B D} \quad \mathbf{S T}:=\mathbf{L S} \quad \mathbf{R T}:=\mathbf{R S}-\mathbf{S T}
\end{aligned}
\]

In trisection the length RT to the similarity point is equal to the radius
\[
\mathbf{R T}-\left(\frac{\mathbf{1}}{2}\right) \cdot \mathbf{A E}=\mathbf{0}
\] of the circle.
\[
\begin{aligned}
& \mathbf{A D}-\frac{\mathbf{A E}}{2}=0 \quad \mathbf{D P}-\frac{\mathbf{A E}}{2} \cdot \sqrt{3}=0 \quad \mathbf{C F}-\left(\frac{\sqrt{4 \cdot A C \cdot A E-4 \cdot A \mathbf{C}^{2}+3 \cdot A \mathbf{E}^{2}}}{2}-\frac{\sqrt{3} \cdot \mathbf{A E}}{2}\right)=0 \\
& \mathbf{C E}-(\mathbf{A E}-\mathbf{A C})=0 \quad \mathbf{C D}-\left(\frac{1}{2} \cdot \mathbf{A E}-\mathbf{A C}\right)=0 \quad \mathrm{DR}-\frac{1}{2} \cdot \sqrt{(\mathbf{A E}+2 \cdot A C) \cdot(3 \cdot A E-2 \cdot A C)}=0 \\
& \mathbf{C R}-\mathbf{A E}=0 \quad \mathbf{C S}-\left(\frac{1}{4}\right) \cdot \frac{(-A E+2 \cdot A C)^{2}}{A E}=0 \quad \mathbf{L S}-\frac{1}{4} \cdot \frac{\left(-4 \cdot A C^{2}+4 \cdot A E \cdot A C+A E^{2}\right)}{A E}=0
\end{aligned}
\]
\(\mathbf{D S}-\frac{1}{4} \cdot \frac{(\mathbf{A E}-2 \cdot \mathbf{A C})}{\mathbf{A E}} \cdot \sqrt{(\mathbf{A E}+2 \cdot \mathbf{A C}) \cdot(3 \cdot \mathbf{A E}-2 \cdot \mathbf{A C})}=0 \quad \mathbf{L R}-\frac{\left(\mathbf{A E}{ }^{2}-2 \cdot \mathbf{A C}{ }^{2}+2 \cdot \mathbf{A E} \cdot \mathbf{A C}\right)}{\mathbf{A E}}=0 \quad \mathbf{R S}-\frac{1}{4} \cdot(\mathbf{A E}+2 \cdot \mathbf{A C}) \cdot \frac{(3 \cdot \mathbf{A E}-2 \cdot \mathbf{A C})}{\mathbf{A E}}=0\) \(B D-\left(\frac{1}{2} \cdot A E-\frac{3}{A E} \cdot A C^{2}+\frac{2}{A E^{2}} \cdot A C^{3}\right)=0 \quad A B-A C^{2} \cdot \frac{(3 \cdot A E-2 \cdot A C)}{A E^{2}}=0 \quad A B \cdot A E^{2}-A C^{2}(3 \cdot A E-2 \cdot A C)=0\)

\section*{080300 Trisection}

If 2 IQ = EK then \(2 \mathrm{JK}=\mathrm{EK}\) and
the figure projected from BCD
will yield a trisected figure JKL.
\[
\mathbf{N}:=\mathbf{3} \quad \mathbf{B D}:=\mathbf{2}
\]

\(\mathbf{A B}:=\frac{\mathbf{B D}}{2} \quad \mathbf{A D}:=\mathbf{A B} \quad \mathbf{A P}:=\frac{\mathbf{A D}}{2} \quad \mathbf{B P}:=\mathbf{A B}+\mathbf{A P} \quad \mathbf{B O}:=\frac{\mathbf{B P}}{\mathbf{N}} \quad \mathbf{A E}:=\mathbf{A B}\) DO \(:=\mathbf{B D}-\mathbf{B O} \quad \mathbf{G O}:=\sqrt{\mathbf{B O} \cdot \mathbf{D O}} \quad \mathbf{B G}:=\sqrt{\mathbf{G O}^{2}+\mathbf{B O}^{2}} \quad \mathbf{B S}:=\frac{\mathbf{B G}}{2} \quad \mathbf{E R}:=\mathbf{B S} \quad\) TO \(:=\mathbf{E R}\) GT \(:=\mathbf{G O}-\mathbf{T O} \quad \mathbf{A S}:=\sqrt{\mathbf{A B}^{2}-\mathbf{B S}^{2}} \quad \mathbf{E S}:=\mathbf{A E}-\mathbf{A S} \quad\) BR \(:=\mathbf{E S} \quad\) OR \(:=\mathbf{B O}-\mathbf{B R}\) ET \(:=\) OR \(\quad\) IO \(:=\frac{\mathbf{E T} \cdot \mathbf{G O}}{\text { GT }} \mathbf{B I}:=\mathbf{I O}-\mathbf{B O} \quad \mathbf{A I}:=\mathrm{BI}+\mathbf{A B} \quad \mathbf{B E}:=\sqrt{\mathbf{E R}^{2}+\mathrm{BR}^{2}}\)

\(\mathbf{E K}:=\mathbf{A K}-\mathbf{A E} \quad \frac{\mathbf{E K}}{\mathbf{I Q}}=2\)
Some Algebraic Names:
\[
\begin{aligned}
& \frac{3 \cdot B D}{4 \cdot N}-\mathbf{B O}=\mathbf{0} \quad \frac{\mathbf{B D}}{4} \cdot \frac{(4 \cdot \mathbf{N}-3)}{\mathbf{N}}-\mathbf{D O}=\mathbf{0} \quad \frac{\mathbf{B D}}{(4 \cdot \mathbf{N})} \cdot \sqrt{3} \cdot \sqrt{4 \cdot N-3}-\mathbf{G O}=0 \quad \frac{\mathbf{B D}}{2} \cdot \sqrt{\mathbf{3}} \cdot \sqrt{\frac{1}{N}}-\mathbf{B G}=\mathbf{0} \quad \frac{B D}{4} \cdot \sqrt{\mathbf{3}} \cdot \sqrt{\frac{1}{N}}-\mathbf{B S}=\mathbf{0} \\
& \frac{\mathbf{B D}}{4} \cdot \sqrt{3} \cdot \frac{\left(\sqrt{4 \cdot \mathbf{N}-\mathbf{3}}-\sqrt{\frac{1}{N}} \cdot \mathbf{N}\right)}{\mathbf{N}}-\mathbf{G T}=\mathbf{0} \quad \frac{\mathbf{B D}}{4} \cdot \sqrt{\frac{(4 \cdot \mathbf{N}-\mathbf{3})}{\mathbf{N}}}-\mathbf{A S}=\mathbf{0} \quad \frac{\mathbf{B D}}{4} \cdot\left[\mathbf{2}-\sqrt{\frac{(4 \cdot \mathbf{N}-\mathbf{3})}{\mathbf{N}}}\right]-\mathbf{E S}=\mathbf{0} \frac{\mathbf{B D}}{4} \cdot \frac{\left(\mathbf{3}-\mathbf{2} \cdot \mathbf{N}+\sqrt{\left.\frac{(4 \cdot \mathbf{N}-\mathbf{3})}{\mathbf{N}} \cdot \mathbf{N}\right]}\right.}{\mathbf{N}}-\mathbf{O R}=\mathbf{0}
\end{aligned}
\]

\[
\frac{-B D}{4} \cdot \frac{\left[3 \cdot \sqrt{4 \cdot N-3} \cdot \sqrt{N}-2 \cdot \sqrt{4 \cdot N-3} \cdot \mathbf{N}^{\left(\frac{3}{2}\right)}+4 \cdot \mathbf{N}^{2}-3 \cdot N\right]}{\left[\mathbf{N}^{\left(\frac{3}{2}\right)} \cdot(-\sqrt{4 \cdot N-3}+\sqrt{N})\right]}-10=0
\]

\[
\begin{aligned}
& \frac{-\mathbf{B D}}{2} \cdot \frac{(\sqrt{4 \cdot \mathbf{N}-3}-2 \cdot \sqrt{\mathbf{N}})}{(\sqrt{4 \cdot \mathbf{N}-\mathbf{3}}-\sqrt{\mathbf{N}})}-\mathbf{B I}=\mathbf{0} \\
& \frac{-\mathbf{B D}}{(-2 \cdot \sqrt{4 \cdot \mathbf{N}-\mathbf{3}}+2 \cdot \sqrt{\mathbf{N}})} \cdot \sqrt{\mathbf{N}}-\mathbf{A I}=\mathbf{0} \\
& \frac{\mathbf{B D}}{2} \cdot \sqrt{2-\frac{1}{\sqrt{\mathbf{N}}} \cdot \sqrt{4 \cdot \mathbf{N}-\mathbf{3}}}-\mathbf{B E}=\mathbf{0}
\end{aligned}
\]

\(\frac{-\mathbf{B D}}{2} \cdot \sqrt{2-\frac{\sqrt{4 \cdot N-3}}{\sqrt{N}}} \cdot \frac{\sqrt{N}}{(-\sqrt{4 \cdot N-3}+\sqrt{N})}-\mathbf{E I}=\mathbf{0}\)
\(\frac{\mathbf{B D}}{4} \cdot \frac{(2 \cdot \sqrt{\mathbf{N}}-\sqrt{\mathbf{4 \cdot N}-\mathbf{3}})}{(\sqrt{4 \cdot \mathbf{N}-\mathbf{3}}-\sqrt{\mathbf{N}})}-\mathbf{I Q}=\mathbf{0} \quad \frac{\mathbf{B D}}{2} \cdot \frac{(2 \cdot \sqrt{\mathbf{N}}-\sqrt{4 \cdot \mathbf{N}-3})}{(\sqrt{4 \cdot \mathbf{N}-\mathbf{3}}-\sqrt{\mathbf{N}})}-\mathbf{E K}=\mathbf{0}\)

\section*{000804A Trisection and Square Roots}


With the following construction, one can see that square roots is directly involved with what is called angle trisection. Is there a reasonable method of projecting to the square? Probably not, but what the heck?

I am going to figure this out and then \(I\) am going to order the equations a little different at the start to see what happens to all the definitions.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{1 . 9 0 5 5 7} \quad \mathbf{N}_{\mathbf{2}}:=12.01265 \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A F}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}} \\
& \mathbf{B E}:=\frac{\mathbf{B F}}{\mathbf{2}} \quad \mathbf{E O}:=\frac{\mathbf{B E}}{\mathbf{2}} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{E Q}:=\frac{\mathbf{E O}^{2}}{\mathbf{A E}} \\
& \mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{D M}:=\sqrt{\mathbf{D E}^{2}+\mathbf{B E}}{ }^{2} \quad \mathbf{H M}:=\frac{\mathbf{B E} \cdot \mathbf{B F}}{\mathbf{D M}} \\
& \mathbf{D H}:=\mathbf{H M}-\mathbf{D M} \quad \mathbf{C D}:=\frac{\mathbf{D E} \cdot \mathbf{D H}}{\mathbf{D M}} \quad \mathbf{C E}:=\mathbf{D E}+\mathbf{C D} \quad \mathbf{B C}:=\mathbf{B E}-\mathbf{C E} \\
& \mathbf{E N}:=\sqrt{\mathbf{B F}^{\mathbf{2}}-\mathbf{B E}^{\mathbf{2}}} \quad \mathbf{K G}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{B E}}{\mathbf{E O}} \quad \mathbf{A G}:=\mathbf{A E}-\mathbf{K G} \\
& \mathbf{C S}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{A G}}{\mathbf{A E}} \quad \mathbf{A S}:=\mathbf{A E}-(\mathbf{D E}+\mathbf{C D}+\mathbf{C S}) \quad \mathbf{B S}:=\mathbf{A S}-\mathbf{A B}
\end{aligned}
\]

Definitions:
\(\mathbf{A B}-\mathbf{N}_{1}=\mathbf{0} \quad \mathbf{A F}-\mathbf{N}_{\mathbf{2}}=\mathbf{0} \quad \mathbf{A D}-\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0} \quad \mathbf{B D}-\left(\sqrt{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}-\mathbf{N}_{\mathbf{1}}\right)=\mathbf{0}\)
\(\mathbf{B F}-\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)=\mathbf{0} \quad \mathbf{D F}-\left(\mathbf{N}_{\mathbf{2}}-\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}\right)=\mathbf{0} \quad \mathbf{D J}-\sqrt{\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)-\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}}=\mathbf{0}\)
\(\mathbf{N}\)


\(\mathbf{N}\)
\[
\mathrm{DE}-\frac{\mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}}{2}=\mathbf{0} \quad \mathbf{D M}-\frac{\sqrt{\left[\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2}^{2}+2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)\right]}}{\sqrt{2}}=0
\]
\[
H M-\frac{\sqrt{2} \cdot\left(N_{1}-N_{2}\right)^{2}}{2 \cdot \sqrt{N_{1}{ }^{2}+N_{2}^{2}-2 \cdot \sqrt{N_{1} \cdot N_{2}} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)+2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}}=0
\]
\[
\mathbf{D H}-\frac{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}-\mathbf{2} \cdot \sqrt{\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}}}{\sqrt{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}\right)}}=\mathbf{0}
\]
\[
\mathbf{C D}-\frac{\sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}} \cdot\left(\mathbf{N}_{1}{ }^{2}+6 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}\right)-4 \cdot \mathbf{N}_{1}^{2} \cdot \mathbf{N}_{2}-4 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}^{2}}{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}-2 \cdot \sqrt{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}\right)}=0
\]
\[
\mathbf{C E}-\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad \mathbf{B C}-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \mathbf{E N}-\frac{\sqrt{3} \cdot \sqrt{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}}{2}=0
\]
\[
K G-\frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}{2 \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad A G-\frac{2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \mathrm{CS}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)^{2}}{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0
\]
\[
A S-\frac{N_{1} \cdot N_{2} \cdot\left(\mathbf{N}_{1}{ }^{2}+6 \cdot N_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}\right)}{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0
\]
\[
\mathbf{B S}-\frac{\mathbf{N}_{1}{ }^{2} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{1}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{3} \cdot \mathbf{N}_{\mathbf{2}}\right)}{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)^{3}}=\mathbf{0}
\]

\section*{000804B Trisection and Square Roots}


With the following construction, one can see that square roots is directly involved with what is called angle trisection. Is there a reasonable method of projecting to the square? Probably not, but what the heck?

\section*{Cris 3}

\[
\mathbf{N}_{\mathbf{1}}:=1.90557 \quad \mathbf{N}_{\mathbf{2}}:=10.10708
\]
\[
\mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B F}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A D}:=\sqrt{\mathbf{A B} \cdot \mathbf{A F}}
\]
\[
\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{D J}:=\sqrt{\mathbf{B D} \cdot \mathbf{D F}}
\]
\[
\mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E O}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \quad \mathbf{E Q}:=\frac{\mathbf{E O}^{2}}{\mathbf{A E}}
\]
\[
\mathbf{D E}:=\mathbf{A E}-\mathbf{A D} \quad \mathbf{D M}:=\begin{gathered}
\mathbf{D E}^{2}+\mathbf{B E}^{2} \\
\mathbf{D E} \cdot \mathbf{D H}
\end{gathered} \quad \mathbf{H M}:=\frac{\mathbf{B E} \cdot \mathbf{B F}}{\mathbf{D M}}
\]
\[
\mathbf{D H}:=\mathbf{H M}-\mathbf{D M} \quad \mathbf{C D}:=\frac{\mathbf{D E} \cdot \mathbf{D H}}{\mathbf{D M}} \quad \mathbf{C E}:=\mathbf{D E}+\mathbf{C D} \quad \mathbf{B C}:=\mathbf{B E}-\mathbf{C E}
\]
\[
\mathbf{E N}:=\sqrt{\mathbf{B F}^{2}-\mathbf{B E}^{2}} \quad \mathbf{K G}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{B E}}{\mathbf{E O}} \quad \mathbf{A G}:=\mathbf{A E}-\mathbf{K G}
\]
\[
\mathbf{C S}:=\frac{\mathbf{2} \cdot \mathbf{E Q} \cdot \mathbf{A G}}{\mathbf{A E}} \quad \mathbf{A S}:=\mathbf{A E}-(\mathbf{D E}+\mathbf{C D}+\mathbf{C S}) \quad \mathbf{B S}:=\mathbf{A S}-\mathbf{A B}
\]

Definitions:
\[
\begin{aligned}
& \mathbf{A B}-\mathbf{N}_{\mathbf{1}}=\mathbf{0} \quad \mathbf{B F}-\mathbf{N}_{\mathbf{2}}=\mathbf{0} \quad \mathbf{A F}-\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)=\mathbf{0} \\
& \mathbf{A D}-\sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}\right)}=\mathbf{0} \quad \mathbf{B D}-\left[\sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}\right)}-\mathbf{N}_{\mathbf{1}}\right] \quad \mathbf{D F}-\left[\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}-\sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}\right]=\mathbf{0} \\
& \text { DJ } \left.-\sqrt{\left[\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{2} \cdot \mathbf{N}_{1}} \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)-2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-2 \cdot \mathbf{N}_{1}{ }^{2}\right.}\right]=0 \quad B E-\frac{\mathbf{N}_{2}}{2}=0 \quad \text { EO }-\frac{\mathbf{N}_{2}}{4}=0 \\
& A E-\frac{2 \cdot N_{1}+N_{2}}{2}=0 \quad E Q-\frac{\mathbf{N}_{2}{ }^{2}}{8 \cdot\left(2 \cdot N_{1}+N_{2}\right)}=0 \quad D E-\frac{2 \cdot N_{1}+N_{2}-2 \cdot \sqrt{N_{1}{ }^{2}+N_{2} \cdot N_{1}}}{2}=0
\end{aligned}
\]

\(\mathbf{N}\)
\[
\begin{aligned}
& D M-\frac{\sqrt{2 \cdot\left(2 \cdot N_{1}+N_{2}\right)^{2}-4 \cdot \sqrt{N_{1}{ }^{2}+N_{2} \cdot N_{1}} \cdot\left(2 \cdot N_{1}+N_{2}\right)}}{2}=0 \\
& H M-\frac{{N_{2}}^{2}}{\sqrt{2 \cdot\left(2 \cdot N_{1}+N_{2}\right)^{2}-4 \cdot \sqrt{N_{1}{ }^{2}+N_{2} \cdot N_{1}} \cdot\left(2 \cdot N_{1}+N_{2}\right)}}=0 \\
& \mathbf{D H}-\frac{\sqrt{\mathbf{2}} \cdot\left[\sqrt{\left.\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{1} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)-\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}{ }^{\mathbf{2}}-\mathbf{2} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}\right]}\right.}{\sqrt{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left[\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}\right]}}=\mathbf{0} \\
& \mathbf{C D}-\frac{\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{1}} \cdot\left(\mathbf{8} \cdot \mathbf{N}_{1}{ }^{2}+\mathbf{8} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{2}}{ }^{2}\right)-\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right)}{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{\mathbf{2}}-\mathbf{2} \cdot \sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{1}}\right)}=\mathbf{0} \\
& \mathbf{C E}-\frac{\mathbf{N}_{2}{ }^{2}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad \mathbf{B C}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \mathbf{E N}-\frac{\sqrt{3} \cdot \sqrt{\mathbf{N}_{2}{ }^{2}}}{2}=0 \\
& K G-\frac{\mathbf{N}_{2}{ }^{2}}{2 \cdot\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad A G-\frac{2 \cdot \mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}}=0 \quad \mathbf{C S}-\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{\mathbf{2}}{ }^{2} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0 \\
& A S-\frac{\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{8} \cdot \mathbf{N}_{1}{ }^{2}+\mathbf{8} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{\mathbf{2}}{ }^{2}\right)}{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}=0 \\
& B S-\frac{\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{4} \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{3} \cdot \mathbf{N}_{2}\right)}{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{\mathbf{3}}}=\mathbf{0}
\end{aligned}
\]

08/07/00 Proportion Series II


Divide BC into the same ratio as AB:CD.
\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{9} \quad \mathbf{N}_{2}:=\mathbf{2} \quad \mathbf{N}_{3}:=\mathbf{5} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{C D}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{B C}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{B O}:=\frac{\mathbf{A B} \cdot \mathbf{B C}}{\mathbf{A B}+\mathbf{C D}} \quad \mathbf{C O}:=\frac{\mathbf{C D} \cdot \mathbf{B C}}{\mathbf{A B}+\mathbf{C D}} \\
& \mathbf{B O}+\mathbf{C O}-\mathbf{B C}=\mathbf{0} \\
& \frac{\mathbf{A B}}{\mathbf{C D}}-\frac{\mathbf{B O}}{\mathbf{C O}}=\mathbf{0} \quad
\end{aligned}
\] 000822 Square Root and the Archimedean Paper Trisecter.


This square root figure affords
another approach to proofing
the Archimedean Paper
Trisecter.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 7 6 1 5 2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 2 . 2 2 8 1 8} \\
& \mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A G}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A E}:=\sqrt{\mathbf{A C} \cdot \mathbf{A G}} \quad \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \\
& \mathbf{C F}:=\frac{\mathbf{C G}}{2} \quad \mathbf{A F}:=\mathbf{A C}+\mathbf{C F} \quad \mathbf{A D}:=\frac{\mathbf{A F}}{2} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \\
& \mathbf{E F}:=\mathbf{C F}-\mathbf{C E} \quad \mathbf{E W}:=\sqrt{\mathbf{E F}^{2}+\mathbf{C F}^{2}} \quad \text { NW }:=\frac{\mathbf{C F} \cdot \mathbf{C G}}{\mathbf{E W}} \\
& \text { EN }:=\mathbf{N W}-\mathbf{E W} \quad \text { EU }:=\frac{\text { EF } \cdot \mathbf{E N}}{2 \cdot \mathbf{E W}} \quad \text { AU }:=\mathbf{A E}-\mathbf{E U} \\
& \text { NT }:=\frac{\text { CF•EN }}{\text { EW }} \quad \text { UV }:=\sqrt{\left(\frac{\text { AD }}{2}\right)^{2}-\left(\frac{N T}{2}\right)^{2}} \quad \text { AV }:=A U-U V \\
& \mathbf{J S}:=\frac{\mathbf{N T} \cdot \mathbf{A D}}{\mathbf{2} \cdot \mathbf{A V}} \quad \mathbf{D J}:=\frac{\mathbf{A D} \cdot \mathbf{J S}}{\mathbf{N T}} \quad \text { BJ }:=\mathbf{A D}-\mathbf{D J} \\
& \mathbf{D S}:=\frac{\mathbf{2} \cdot \mathbf{U V} \cdot \mathbf{J S}}{\mathbf{N T}} \quad \mathbf{A S}:=\mathbf{A D}+\mathbf{D S} \quad \mathbf{B S}:=\sqrt{\mathbf{B J}^{2}-\mathbf{J S}^{2}} \quad \mathbf{A B}:=\mathbf{A S}-\mathbf{B S} \\
& \mathbf{A B}-\mathbf{B J}=\mathbf{0}
\end{aligned}
\]

\section*{08/23/00 Trisection In A Square Root Figure}

Given the square root figure drawn for trisection, what is AR given AB and AD? A slightly different apprach than the one on 04.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{4} \quad \mathbf{A B}:=\mathbf{2} \quad \mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{A C}:=\sqrt{\mathbf{A B} \cdot \mathbf{A D}} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B N}:=\frac{\mathbf{B D}}{2} \quad \mathbf{K N}:=\mathbf{B N} \\
& \mathbf{A N}:=\mathbf{A B}+\mathbf{B N} \quad \mathbf{A K}:=\mathbf{A N} \quad \mathbf{A P}:=\frac{\mathbf{A K}^{\mathbf{2}}+\mathbf{A N}^{2}-\mathbf{K N}^{2}}{\mathbf{2} \cdot \mathbf{A N}} \\
& \mathbf{A F}:=\frac{\mathbf{A P} \cdot \mathbf{A N}}{\mathbf{A K}} \quad \mathbf{F K}:=\mathbf{A K}-\mathbf{A F} \quad \mathbf{E F}:=\mathbf{F K} \quad \mathbf{A E}:=\mathbf{A K}-\mathbf{2} \cdot(\mathbf{E F}) \\
& \mathbf{A R}:=\frac{\mathbf{A P} \cdot \mathbf{A E}}{\mathbf{A K}} \quad \mathbf{A B} \cdot \mathbf{N} \cdot \frac{\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+\mathbf{1}\right)}{(\mathbf{N}+\mathbf{1})^{\mathbf{3}}}-\mathbf{A R}=\mathbf{0} \quad \mathbf{B R}:=\mathbf{A R}-\mathbf{A B} \\
& \mathbf{A B} \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{B R}=\mathbf{0}
\end{aligned}
\]

Does KS = FK?
\[
\begin{aligned}
& \mathbf{B P}:=\mathbf{A P}-\mathbf{A B} \quad \mathbf{D P}:=\mathbf{B D}-\mathbf{B P} \quad \mathbf{N P}:=\mathbf{B N}-\mathbf{B P} \quad \mathbf{K S}:=\mathbf{N P} \quad \mathbf{K S}-\mathbf{F K}=\mathbf{0} \\
& \frac{\mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})^{2}}{\mathbf{4} \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{K S}=\mathbf{0}
\end{aligned}
\]

\section*{09/03/00 Ratios In Trisection}

How does BF vary with BC? How does DF vary with BC?
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{4} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{8} \\
& \mathrm{BG}:=1 \quad \mathrm{BE}:=\frac{\mathrm{BG}}{2} \quad \mathbf{E M}:=\mathrm{BE} \quad \mathrm{BO}:=\sqrt{2 \cdot \mathbf{B E}^{2}} \quad \text { EN }:=\mathrm{BE} \quad \mathrm{EK}:=\frac{\mathrm{BE} \cdot \mathbf{B E}}{\mathrm{BO}} \\
& \mathbf{K N}:=\mathbf{E N}-\mathbf{E K} \quad \mathbf{B K}:=\frac{\mathbf{B O}}{2} \quad \mathbf{B N}:=\sqrt{\mathbf{B K}^{2}+\mathbf{K N}^{2}} \quad \mathbf{B D}:=\frac{\mathbf{B N}^{2}}{\mathbf{B G}} \quad \mathbf{B C}:=\mathbf{B D} \cdot \frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{2}} \\
& \mathbf{C G}:=\mathbf{B G}-\mathbf{B C} \quad \mathbf{C J}:=\sqrt{\mathbf{B C} \cdot \mathbf{C G}} \quad \mathbf{A J}:=\mathbf{B E} \quad \mathbf{A C}:=\sqrt{\mathbf{A J}^{2}-\mathbf{C J}^{2}} \quad \mathbf{A B}:=\mathbf{A C}-\mathbf{B C} \\
& \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{J H}:=\frac{\mathbf{C J}^{\mathbf{2}}}{\mathbf{A J}} \quad \mathbf{A H}:=\mathbf{A J}-\mathbf{J H} \quad \mathbf{A L}:=\frac{\mathbf{A H} \cdot \mathbf{A E}}{\mathbf{A C}} \quad \mathbf{J L}:=\mathbf{A L}-\mathbf{A J} \\
& \mathbf{L M}:=\mathbf{J L} \quad \mathbf{A M}:=\mathbf{A L}+\mathbf{L M} \quad \mathbf{A F}:=\frac{\mathbf{A H} \cdot \mathbf{A M}}{\mathbf{A C}} \quad \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{D F}:=\mathbf{B F}-\mathbf{B D} \\
& B F-\frac{1}{8} \cdot(7 \cdot \sqrt{2}-10) \cdot\left(N_{1}-4 \cdot N_{2}-2 \cdot N_{2} \cdot \sqrt{2}\right) \cdot \frac{\left(2 \cdot N_{1}-2 \cdot N_{2}-N_{2} \cdot \sqrt{2}\right)^{2}}{N_{2}{ }^{3}}=0 \\
& \frac{(3-2 \cdot \sqrt{2}) \cdot\left(2 \cdot N_{2}-2 \cdot N_{1}+\sqrt{2} \cdot N_{2}\right)^{2} \cdot\left(4 \cdot N_{2}-N_{1}+2 \cdot \sqrt{2} \cdot N_{2}\right)}{2 \cdot N_{1} \cdot \mathbf{N}_{2}{ }^{2}}-\frac{B F}{B C}=0
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\mathbf{N}_{\mathbf{1}} \cdot(\mathbf{2}-\sqrt{\mathbf{2}})}{\mathbf{4} \cdot \mathbf{N}_{\mathbf{2}}}-\mathbf{B C}=\mathbf{0} \\
& \frac{\left(N_{1}-N_{2}\right) \cdot\left[(7 \cdot \sqrt{2}-10) \cdot\left(12 \cdot \sqrt{2} \cdot N_{2}{ }^{2}+17 \cdot N_{2}{ }^{2}+2 \cdot N_{1}{ }^{2}-10 \cdot N_{1} \cdot N_{2}-6 \cdot N_{1} \cdot \sqrt{2} \cdot N_{2}\right)\right]}{4 \mathbf{N}_{2}{ }^{3}}-\mathbf{D F}=0 \\
& \frac{\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right) \cdot\left[(2 \cdot \sqrt{2}-3) \cdot\left(2 \cdot \mathbf{N}_{1}{ }^{2}-10 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}-6 \cdot \mathbf{N}_{1} \cdot \sqrt{2} \cdot \mathbf{N}_{2}+17 \cdot \mathbf{N}^{2}{ }^{2}+12 \cdot \sqrt{2} \cdot \mathbf{N}_{2}{ }^{2}\right)\right]}{\mathbf{N}_{1} \cdot \mathbf{N}_{2}{ }^{2}}-\frac{\mathrm{DF}}{\mathrm{BC}}=\mathbf{0}
\end{aligned}
\]


\section*{Midpoints and Similarity Points 09/18/00}

What is AE given the radius of the two circles and the difference between their centers? (External Unit).

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{8} \quad \mathbf{B C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{G H}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{C G}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{C J}:=\mathbf{B C} \quad \mathbf{G M}:=\mathbf{G H} \quad \mathbf{G K}:=\mathbf{C J} \quad \mathbf{B H}:=\mathbf{B C}+\mathbf{C G}+\mathbf{G H} \quad \mathbf{B E}:=\frac{\mathbf{B H}}{\mathbf{2}} \\
& \mathbf{K M}:=\mathbf{G M}-\mathbf{G K} \quad \mathbf{J K}:=\mathbf{C G} \quad \mathbf{A G}:=\frac{\mathbf{J K} \cdot \mathbf{G M}}{\mathbf{K M}} \mathbf{A H}:=\mathbf{A G}+\mathbf{G H} \\
& \mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{A E}-\frac{\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}+\mathbf{N}_{\mathbf{1}}{ }^{\mathbf{2}}+\mathbf{N}_{\mathbf{3}} \cdot \mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}{ }^{\mathbf{2}}}{\mathbf{2} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}=\mathbf{0}
\end{aligned}
\]

What is \(A E\) if given the difference between their extremes and the radius given as a ratio of that segment? (Internal Unit).
\(\mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{7} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{4} \quad \mathbf{N}_{\mathbf{4}}:=\mathbf{9}\)
\(\mathbf{B H}:=1 \quad \mathrm{BE}:=\frac{\mathbf{B H}}{2} \quad \mathbf{B C}:=\mathrm{BH} \cdot \frac{\mathbf{N}_{\mathbf{1}}}{\mathbf{N}_{2}} \quad \mathbf{G H}:=\mathbf{B H} \cdot \frac{\mathbf{N}_{3}}{\mathbf{N}_{4}} \quad \mathbf{C G}:=\mathbf{B H}-(\mathbf{B C}+\mathbf{G H})\) \(\mathbf{C J}:=\mathbf{B C} \quad \mathbf{G M}:=\mathbf{G H} \quad \mathbf{G K}:=\mathbf{C J} \quad \mathbf{K M}:=\mathbf{G M}-\mathbf{G K} \quad \mathbf{J K}:=\mathbf{C G} \quad \mathbf{A G}:=\frac{\mathbf{J K} \cdot \mathbf{G M}}{\mathbf{K M}}\) \(\mathbf{A H}:=\mathbf{A G}+\mathbf{G H} \quad \mathbf{A B}:=\mathbf{A H}-\mathbf{B H} \quad \mathbf{A E}:=\mathbf{A B}+\mathbf{B E}\)
\(A E-\frac{\left(\mathbf{N}_{3} \cdot \mathbf{N}_{2}-\mathbf{4} \cdot \mathbf{N}_{3} \cdot \mathbf{N}_{1}+\mathbf{N}_{1} \cdot \mathbf{N}_{4}\right)}{2 \cdot\left(\mathbf{N}_{3} \cdot \mathbf{N}_{2}-\mathbf{N}_{1} \cdot \mathbf{N}_{4}\right)}=0\)


000920 Squaring

Is \(A C\) the square root of \(A B \times A E\) ?
Given \(B C\), find \(A B\) such that \(A B \times A E\) is the square root.


11/13/00 For Two Right Triangles.
Given \(A B, D E, A D\) find \(B E, A C, C D, C E, B C\).
\(B A D\) and BED are right.

\[
\begin{aligned}
& \mathbf{N}_{1}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{1} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \text { AD }:=\mathbf{N}_{\mathbf{2}} \quad \mathrm{DE}:=\mathbf{N}_{\mathbf{3}} \\
& B D \quad:=\sqrt{A B^{2}+\mathbf{A D}^{2}} \quad \mathrm{BF}:=\frac{\mathrm{AB}^{2}}{\mathrm{BD}} \quad \mathrm{DG}:=\frac{\mathrm{DE}^{2}}{\mathrm{BD}} \quad \mathrm{BE}:=\sqrt{\mathrm{BD}^{2}-\mathrm{DE}^{2}} \\
& \mathbf{A F}:=\sqrt{\mathbf{A B}^{2}-\mathbf{B F}^{2}} \quad \mathbf{E G}:=\sqrt{\mathbf{D E}^{2}-\mathbf{D G}^{2}} \quad \mathbf{F G}:=\mathbf{B D}-(\mathbf{B F}+\mathbf{D G}) \\
& \text { EJ }:=\text { FG } \quad \text { FJ }:=\text { EG } \quad \text { AJ }:=\mathbf{A F}-\mathbf{F J} \quad \mathbf{A E}:=\sqrt{E \mathbf{J}^{2}+\mathbf{A J} \mathbf{N}^{2}} \\
& S_{1}:=A D \quad S_{2}:=\mathrm{DE} \quad \mathrm{~S}_{3}:=\mathrm{AE} \quad \mathrm{AH}:=\frac{\mathrm{S}_{3}{ }^{2}+\mathrm{S}_{1}{ }^{2}-\mathbf{S}_{2}{ }^{2}}{2 \cdot \mathbf{S}_{1}} \\
& \mathbf{E H}:=\sqrt{\mathbf{A E}^{2}-\mathbf{A H}^{2}} \quad \mathbf{C H}:=\frac{\mathbf{E H} \cdot \mathbf{A H}}{\mathbf{A B}+\mathbf{E H}} \quad \mathbf{A C}:=\mathbf{A H}-\mathbf{C H} \\
& \mathbf{C E}:=\frac{\mathbf{A C} \cdot \mathbf{D E}}{\mathbf{A B}} \quad \mathbf{C D}:=\mathbf{A D}-\mathbf{A C} \quad \mathbf{B C}:=\mathbf{B E}-\mathbf{C E}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{BE}-\sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{2}{ }^{2}-\mathrm{N}_{3}{ }^{2}}=0 \\
& \frac{N_{1} \cdot\left(N_{1}{ }^{2} \cdot N_{2}-N_{2} \cdot N_{3}{ }^{2}+N_{2}{ }^{3}-N_{1} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}\right)}{N_{1} \cdot N_{2}{ }^{2}+N_{1}{ }^{3}+N_{3} \cdot \sqrt{N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}+N_{1}{ }^{2} \cdot N_{3}{ }^{2}-N_{2}{ }^{2} \cdot N_{3}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}}}}=\mathrm{AC}=0 \\
& N_{2}+\frac{N_{1} \cdot N_{2} \cdot N_{3}{ }^{2}-N_{2} \cdot\left(N_{1}{ }^{3}+N_{1} \cdot N_{2}{ }^{2}\right)+N_{1}{ }^{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}}{N_{1} \cdot N_{2}{ }^{2}+N_{1}{ }^{3}+N_{3} \cdot \sqrt{N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}+N_{1}{ }^{2} \cdot N_{3}{ }^{2}-N_{2}{ }^{2} \cdot N_{3}{ }^{2}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}}}-C D=0 \\
& \frac{N_{3} \cdot\left(N_{1}{ }^{2} \cdot N_{2}-N_{2} \cdot N_{3}{ }^{2}+N_{2}{ }^{3}-N_{1} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}{ }^{2}}\right)}{N_{1} \cdot N_{2}{ }^{2}+N_{1}{ }^{3}+N_{3} \cdot \sqrt{N_{2}{ }^{4}+N_{1}{ }^{2} \cdot N_{2}{ }^{2}+N_{1}{ }^{2} \cdot N_{3}^{2}-N_{2}^{2} \cdot N_{3}^{2}-2 \cdot N_{1} \cdot N_{2} \cdot N_{3} \cdot \sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}-N_{3}}}}-\mathbf{C E}=0
\end{aligned}
\]


Means On Means 11/28/00
Modify 02/28/98 for Mean proportionals between E and J.

\[
\mathbf{A E}:=\mathbf{1} \quad \mathbf{N}:=\mathbf{3} \quad \text { EU }:=\mathbf{A E} \cdot \mathbf{N} \quad \mathbf{J K}:=\mathbf{A E}
\]
\[
\begin{array}{lll}
\mathbf{H J}:=\frac{\mathbf{J X}+\mathbf{E J}}{\mathbf{J K}} & \mathbf{E H}:=\mathbf{E J}-\mathbf{H J} & \mathbf{G H}:=\frac{\mathbf{E H}+\mathbf{H J}}{} \\
\mathbf{E G}:=\mathbf{E H}-\mathbf{G H} & \mathbf{F G}:=\frac{\mathbf{E G} \cdot \mathbf{G H}}{\mathbf{E G}+\mathbf{G H}} & \mathbf{E F}:=\mathbf{E G}-\mathbf{F G} \\
\mathbf{D E}:=\frac{\mathbf{E F} \cdot \mathbf{A E}}{\mathbf{E F}+\mathbf{A E}} & \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} & \mathbf{C D}:=\frac{\mathbf{A D} \cdot \mathbf{D E}}{\mathbf{A D}+\mathbf{D E}} \\
\mathbf{A C}:=\mathbf{A D}-\mathbf{C D} & \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{C D}}{\mathbf{A C}+\mathbf{C D}} & \mathbf{A B}:=\mathbf{A C}-\mathbf{B C}
\end{array}
\]
\[
\mathbf{M}:=\mathbf{0} . . \mathbf{3} \quad \mathbf{P}:=\mathbf{0} . . \mathbf{3} \quad \mathbf{A E A B}_{\mathbf{M}, \mathbf{P}}:=\left[\frac{\mathbf{N}^{\mathbf{M}+\mathbf{1}}}{(\mathbf{N}+\mathbf{1})^{\mathbf{M}}}+\mathbf{1}\right]^{\mathbf{P}}
\]
\[
\text { AEAB }=\left(\begin{array}{cccc}
1 & 4 & 16 & 64 \\
1 & 3.25 & 10.5625 & 34.328125 \\
1 & 2.6875 & 7.222656 & 19.410889 \\
1 & 2.265625 & 5.133057 & 11.629581
\end{array}\right)
\]
\(\mathrm{AEAB}_{3,3}-\frac{\mathrm{AE}}{\mathrm{AB}}=0 \quad \mathrm{AEAB}_{3,2}-\frac{\mathrm{AE}}{\mathrm{AC}}=0 \quad \mathrm{AEAB}_{3,1}-\frac{\mathrm{AE}}{\mathrm{AD}}=0 \quad \mathrm{AEAB}_{3}, 0-\frac{\mathrm{AE}}{\mathrm{AE}}=0\)


\section*{Multiplication and Division-Line By A Line 11/29/00}

Given some unit, and two differences, multiply or divide the one difference by the other.
For Division:
\[
\begin{aligned}
& \mathbf{A C}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1 2} \quad \mathbf{A H}:=\mathbf{N}_{\mathbf{1}} \\
& \mathbf{C J}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A B}:=\frac{\mathbf{A H}}{(\mathbf{C J}+\mathbf{A H})} \cdot \mathbf{A C} \\
& \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B D}:=\mathbf{B C} \quad \mathbf{C G}:=\frac{\mathbf{B D} \cdot \mathbf{A C}}{\mathbf{A B}} \\
& \mathbf{C G}-\frac{\mathbf{N}_{\mathbf{2}}}{\mathbf{N}_{\mathbf{1}}}=\mathbf{0} \quad \mathbf{C G}=\mathbf{4}
\end{aligned}
\]

For Multiplication:
\(A C:=\mathbf{1} \quad \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{7} \quad\) AH \(:=\mathbf{N}_{\mathbf{1}}\)
\(\mathbf{C G}:=\mathbf{N}_{2} \quad \mathbf{C O}:=\mathbf{C G} \quad \mathrm{BD}:=\frac{\mathrm{CG} \cdot \mathrm{AC}}{\mathrm{AC}+\mathrm{CO}}\)
\(\mathbf{B C}:=\mathbf{B D} \quad \mathbf{A B}:=\mathbf{A C}-\mathbf{B C} \quad \mathbf{B F}:=\frac{\mathbf{A H} \cdot \mathbf{B C}}{\mathbf{A C}}\)
\(\mathbf{C J}:=\mathbf{B F} \cdot \frac{\mathbf{A C}}{\mathbf{A B}} \quad \mathbf{C J}-\mathbf{N}_{1} \cdot \mathbf{N}_{2}=\mathbf{0} \quad \mathbf{C J}=\mathbf{3 5}\)

From an observer \(C\), the distance to star \(A\) and \(B\) are known, a reference CEF has been constructed, find the difference between the two stars.

\[
\begin{gathered}
\mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2 5} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{4}}:=. \mathbf{5} \\
\mathbf{B C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{C E}:=\mathbf{N}_{\mathbf{3}} \quad \mathbf{E F}:=\mathbf{N}_{\mathbf{4}} \\
\mathbf{B D}:=\frac{\mathbf{E F} \cdot \mathbf{B C}}{\mathbf{C E}} \quad \mathbf{C F}:=\sqrt{\mathbf{C E}^{2}-\mathbf{E F}}{ }^{2} \quad \mathbf{C D}:=\frac{\mathbf{C F} \cdot \mathbf{B C}}{\mathbf{C E}} \\
\mathbf{A D}:=\mathbf{A C}-\mathbf{C D} \quad \mathbf{A B}:=\sqrt{\mathbf{B D}^{2}+\mathbf{A D}^{2}} \\
\mathbf{A B}-\frac{\sqrt{\mathbf{N}_{\mathbf{1}}{ }^{2} \cdot \mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{2}}{ }^{2} \cdot \mathbf{N}_{\mathbf{3}}-\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}} \cdot \sqrt{\mathbf{N}_{\mathbf{3}}^{2}-\mathbf{N}_{\mathbf{4}}^{2}}}}{\sqrt{\mathbf{N}_{\mathbf{3}}}}=\mathbf{0}
\end{gathered}
\]

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B C}:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{A B}:=\mathbf{A C}-\mathbf{B C} \quad \mathbf{B D}:=\sqrt{\mathbf{A B} \cdot \mathbf{B C}} \quad \mathbf{C D}:=\sqrt{\mathbf{B D}^{2}+\mathbf{B C}^{2}} \\
& \sqrt{\mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{1}}}-\mathbf{C D}=\mathbf{0}
\end{aligned}
\]

Three Given Five Taken 042101
Given \(\mathrm{AB}, \mathrm{CD}, \mathrm{AC}\) and that CDB , and BAC are right angles, what are \(\mathrm{BD}, \mathrm{AE}, \mathrm{CE}, \mathrm{BE}, \mathrm{DE}\) ?


\[
\begin{aligned}
& \text { Some Algebraic Names: } \\
& \begin{array}{ll}
\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}}-\mathbf{B C}=0 & \frac{N_{2}{ }^{2}}{\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}}}-\mathbf{C G}=0 \\
\frac{N_{1}{ }^{2}}{\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}}}-\mathbf{B F}=0 & \frac{\left({\left.N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}\right)}_{\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}}}\right.}{}-\mathbf{B G}=0
\end{array}
\end{aligned}
\]

\[
\begin{aligned}
& \frac{N_{3}^{2}}{\sqrt{N_{1}^{2}+N_{3}^{2}}}-\mathbf{C F}=0 \\
& \frac{N_{1} \cdot N_{3}}{\sqrt{N_{1}{ }^{2}+N_{3}^{2}}}-\mathbf{A F}=0 \\
& N_{2} \cdot \sqrt{\frac{\left({N_{1}}^{2}+N_{3}^{2}-N_{2}^{2}\right)}{\left(N_{1}^{2}+N_{3}^{2}\right)}}-D G=0
\end{aligned}
\]
\[
\begin{aligned}
& \frac{N_{3} \cdot N_{1} \cdot\left(N_{1}^{2}+N_{3}^{2}-N_{2}^{2}\right)}{N_{2} \cdot \sqrt{\left(N_{1}{ }^{2}+N_{3}^{2}-N_{2}^{2}\right) \cdot\left(N_{1}^{2}+N_{3}^{2}\right)}}-\mathbf{F H}=0 \\
& {\left[\frac{N_{3}^{2}}{\sqrt{N_{1}{ }^{2}+N_{3}^{2}}}+\frac{N_{3} \cdot N_{1} \cdot\left({N_{1}}^{2}+N_{3}^{2}-N_{2}^{2}\right)}{N_{2} \cdot \sqrt{\left(N_{1}^{2}+N_{3}^{2}-N_{2}^{2}\right) \cdot\left(N_{1}^{2}+N_{3}^{2}\right)}}\right]-C H=0 \quad N_{3} \cdot \frac{N_{1}}{N_{2}}-A H=0}
\end{aligned}
\]

\[
\frac{N_{2} \cdot\left(N_{1}{ }^{2}+N_{3}^{2}\right)}{N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}^{2}-N_{2}^{2}} \cdot N_{1}}-C E=0
\]
\[
N_{3}-\frac{N_{2} \cdot\left(N_{1}^{2}+N_{3}^{2}\right)}{\left(N_{3} \cdot N_{2}+\sqrt{N_{1}^{2}+N_{3}^{2}-N_{2}^{2}} \cdot N_{1}\right)}-A E=0
\]
\[
\begin{aligned}
& \sqrt{\mathrm{N}_{1}{ }^{2}+\mathrm{N}_{3}{ }^{2}-\mathrm{N}_{2}{ }^{2}}-\mathrm{BD}=0 \\
& \mathbf{N}_{2} \cdot \frac{\left(\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{3}{ }^{2}-\mathbf{N}_{2}{ }^{2}} \cdot \mathbf{N}_{3}-\mathbf{N}_{1} \cdot \mathbf{N}_{2}\right)}{\left(\mathbf{N}_{3} \cdot \mathbf{N}_{2}+\sqrt{\mathbf{N}_{1}{ }^{2}+\mathbf{N}_{3}{ }^{2}-\mathbf{N}_{2}{ }^{2}} \cdot \mathbf{N}_{1}\right)}-\mathrm{DE}=\mathbf{0} \\
& N_{1} \cdot \frac{\left(N_{1}{ }^{2}+N_{3}{ }^{2}\right)}{\left(N_{3} \cdot N_{2}+\sqrt{N_{1}{ }^{2}+N_{3}{ }^{2}-N_{2}{ }^{2}} \cdot N_{1}\right)}-\mathbf{B E}=0
\end{aligned}
\]


\section*{042201}

Given \(A B\) as unit, \(A D\) and \(D C\), what is EF and DF?
\[
\begin{aligned}
& \mathbf{N}_{1}:=2.052 \quad \mathbf{N}_{2}:=.62 \quad \text { AB }:=1.802 \\
& \mathbf{A D}:=\frac{\mathbf{A B}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{C D}:=\mathbf{A B} \cdot \mathbf{N}_{\mathbf{2}} \quad \mathbf{D E}:=\mathbf{2 C D} \quad \mathbf{A F}:=\mathbf{A B} \quad \mathbf{C F}:=\mathbf{C D}
\end{aligned}
\]
\[
\mathbf{A C}:=\sqrt{\mathbf{A D}^{2}+\mathbf{C D}^{2}} \quad \mathbf{S}_{1}:=\mathbf{A F} \quad \mathbf{S}_{2}:=\mathbf{A C} \quad \mathbf{S}_{3}:=\mathbf{C F}
\]
\[
A G:=\frac{S_{2}^{2}+S_{1}^{2}-S_{3}^{2}}{2 \cdot S_{1}} \quad C G:=\sqrt{A C^{2}-A G^{2}}
\]
\[
\mathbf{L}_{1}:=\mathbf{A D} \quad \mathbf{L}_{2}:=\mathbf{C G} \quad \mathbf{L}_{3}:=\mathbf{C D}
\]
\[
D H:=L_{3}-\frac{L_{2} \cdot\left(L_{1}^{2}+L_{3}^{2}\right)}{L_{3} \cdot L_{2}+\sqrt{L_{1}^{2}+L_{3}^{2}-L_{2}^{2}} \cdot L_{1}}
\]
\[
A H:=L_{1} \cdot \frac{\left(L_{1}{ }^{2}+L_{3}{ }^{2}\right)}{\left(L_{3} \cdot L_{2}+\sqrt{L_{1}{ }^{2}+\mathbf{L}_{3}{ }^{2}-\mathbf{L}_{2}^{2}} \cdot \mathbf{L}_{1}\right)} \quad F H:=A F-A H \quad H J:=\frac{D H \cdot F H}{A H}
\]


\section*{Some Algebraic Names:}
\[
\begin{aligned}
& \frac{A B}{\mathbf{N}_{1}}-\mathbf{A D}=0 \quad A B \cdot \mathbf{N}_{2}-C D=0 \\
& (2 A B) \cdot \mathbf{N}_{2}-D E=0 \quad A B \cdot \frac{\sqrt{\left(1+\mathbf{N}_{2}^{2} \cdot \mathbf{N}_{1}^{2}\right)}}{\mathbf{N}_{1}}-A C=0
\end{aligned}
\]

\[
\frac{1}{2} \cdot A B \cdot \frac{\left(1+N_{1}^{2}\right)}{N_{1}^{2}}-A G=0
\]
\[
A B \cdot \frac{\sqrt{\left(2 \cdot N_{1}^{2} \cdot N_{2}+N_{1}^{2}-1\right) \cdot\left(2 \cdot{N_{1}}^{2} \cdot N_{2}-N_{1}^{2}+1\right)}}{2 \cdot N_{1}^{2}}-C G=0
\]
\[
A B \cdot \frac{N_{2} \cdot N_{1}^{3}+N_{2} \cdot N_{1}-\sqrt{2 \cdot N_{1}^{2}+4 \cdot N_{1}^{4} \cdot N_{2}^{2}-1-N_{1}^{4}}}{N_{1}^{3}+N_{1}^{2} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}^{2}+4 \cdot N_{1}^{4} \cdot N_{2}^{2}-1-N_{1}^{4}}+N_{1}}-D H=0
\]
\[
2 \cdot A B \cdot \frac{\left(1+{N_{2}^{2}}^{2} \cdot N_{1}^{2}\right)}{\left(N_{1} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}^{2}+4 \cdot N_{1}^{4} \cdot N_{2}^{2}-1-N_{1}^{4}}+1+N_{1}^{2}\right)}-A H=0
\]
\[
A B-2 \cdot A B \cdot \frac{\left(1+{N_{2}}^{2} \cdot N_{1}^{2}\right)}{\left(N_{1} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}^{2}+4 \cdot N_{1}^{4} \cdot N_{2}^{2}-1-N_{1}^{4}}+1+N_{1}^{2}\right)}-F H=0
\]
\[
\frac{-1}{2} \cdot A B \cdot\left(\frac{6 \cdot N_{1}^{4} \cdot N_{2}^{2}-N_{1}^{4}+2 \cdot N_{1}^{2} \cdot{N_{2}}^{2}+1}{N_{1}^{2} \cdot N_{2}+N_{1}^{4} \cdot N_{2}+N_{1}^{3} \cdot N_{2}^{2} \cdot \sqrt{4 \cdot N_{1}^{4} \cdot N_{2}^{2}-N_{1}^{4}+2 \cdot N_{1}^{2}-1}}-\frac{N_{1}^{4} \cdot N_{2}^{2}+3 \cdot N_{1}^{2} \cdot N_{2}^{2}-N_{1}^{2}+1}{N_{1}^{4} \cdot N_{2}^{3}+N_{1}^{2} \cdot N_{2}}\right)-H J=0
\]

\[
\begin{aligned}
& \frac{1}{2} \cdot A B \cdot \frac{4 \cdot N_{1}{ }^{3} \cdot N_{2}^{3}-N_{1}{ }^{3} \cdot N_{2}+3 \cdot N_{1} \cdot N_{2}+\sqrt{4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-N_{1}{ }^{4}+2 \cdot N_{1}{ }^{2}-1}}{N_{1} \cdot\left(N_{1}{ }^{2} \cdot N_{2}{ }^{2}+1\right)}-E J=0 \\
& \frac{-1}{2} \cdot A B \frac{\left(-N_{1} \cdot N_{2} \cdot \sqrt{2 \cdot N_{1}^{2}+4 \cdot N_{1}{ }^{4} \cdot{N_{2}}^{2}-1-N_{1}^{4}}+1-{N_{1}}^{2}+2 \cdot{N_{2}}^{2} \cdot N_{1}{ }^{2}\right)}{\left[N_{1} \cdot\left(1+{N_{2}}^{2} \cdot{N_{1}}^{2}\right)\right]}-F J=0 \\
& A B \cdot \frac{\sqrt{N_{2} \cdot\left[N_{1} \cdot N_{2} \cdot\left(4 \cdot N_{1}{ }^{2} \cdot N_{2}{ }^{2}-N_{1}{ }^{2}+3\right)+\sqrt{4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-N_{1}{ }^{4}+2 \cdot N_{1}{ }^{2}-1}\right.}}{\sqrt{N_{1}{ }^{3} \cdot N_{2}{ }^{2}+N_{1}}}-E F=0 \\
& A B \cdot \frac{\sqrt{\left[N_{2} \cdot\left(N_{1}{ }^{3} \cdot N_{2}+N_{1} \cdot N_{2}-\sqrt{4 \cdot N_{1}{ }^{4} \cdot N_{2}{ }^{2}-N_{1}{ }^{4}+2 \cdot N_{1}{ }^{2}-1}\right)\right.}}{\sqrt{N_{1} \cdot\left(N_{1}{ }^{2} \cdot N_{2}{ }^{2}+1\right)}}-D F=0
\end{aligned}
\]

042401


Does HM intersect at D? What is the Algebraic name of HM in relation to \(A B\) and \(A G\) ?
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A K}:=\mathbf{A F} \\
& \mathbf{F K}:=\mathbf{B F} \quad \mathbf{A E}:=\frac{2 \mathbf{A K} \mathbf{N}^{\mathbf{2}-\mathbf{F K}^{2}}}{2 \mathbf{A F}} \quad \mathbf{A J}:=\mathbf{A E} \quad \mathbf{J K}:=\mathbf{A K}-\mathbf{A J} \quad \mathbf{H J}:=\mathbf{J K} \\
& \mathbf{A H}:=\mathbf{A K}-(\mathbf{J K}+\mathbf{H J}) \quad \mathbf{A C}:=\frac{\mathbf{A E} \cdot \mathbf{A H}}{\mathbf{A K}} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \\
& \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{E G}:=\mathbf{B G}-\mathbf{B E} \quad \mathbf{E K}:=\sqrt{\mathbf{B E} \cdot \mathbf{E G}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \\
& \mathbf{C G}:=\mathbf{B G}-\mathbf{B C} \quad \mathbf{C H}:=\sqrt{\mathbf{B C} \cdot \mathbf{C G}} \quad \mathbf{D E}:=\frac{\mathbf{C E} \cdot \mathbf{E K}}{\mathbf{E K}+\mathbf{C H}} \\
& \mathbf{D F}:=\mathbf{2} \cdot \mathbf{D E} \quad \mathbf{H M}:=\sqrt{\mathbf{C E}^{\mathbf{2}}+(\mathbf{E K}+\mathbf{C H})^{\mathbf{2}}}
\end{aligned}
\]

Some Algebraic Names:
\(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A B}-\mathbf{B G}=\mathbf{0} \quad \frac{\mathbf{1}}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{B F}=\mathbf{0}\)
\(\frac{1}{2} \cdot A B+\frac{1}{2} \cdot A B \cdot N-A F=0 \quad \frac{1}{4} \cdot A B \cdot \frac{\left(\mathbf{N}^{2}+6 \cdot N+1\right)}{(1+N)}-A E=0\)
\(\frac{1}{4} \cdot A B \cdot \frac{\left(1-2 \cdot N+\mathbf{N}^{2}\right)}{(1+N)}-J K=0 \quad 2 \cdot A B \cdot \frac{N}{(1+N)}-A H=0\)
\(A B \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{3}} \cdot N-A C=0 \quad \frac{1}{4} \cdot A B \cdot\left(N^{2}+6 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}-C E=0\)
\(\frac{1}{4} \cdot \mathbf{A B} \cdot(\mathbf{N}+3) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(1+\mathbf{N})}-\mathbf{B E}=0 \quad \frac{1}{4} \cdot \mathbf{A B} \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(1+\mathbf{N})}-\mathbf{E G}=\mathbf{0}\)
\(A B \cdot(\mathbf{3} \cdot \mathbf{N}+1) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})^{3}}-\mathbf{B C}=0 \quad \frac{1}{4} \cdot \mathbf{A B} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(1+\mathbf{N})}-\mathbf{E K}=\mathbf{0}\)
\(A B \cdot \mathbf{N}^{2} \cdot(\mathbf{N}+3) \cdot \frac{(\mathbf{N}-1)}{(1+\mathbf{N})^{3}}-\mathbf{C G}=0 \quad \mathbf{A B} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(1+\mathbf{N})^{3}}-\mathbf{C H}=\mathbf{0}\)
\(\frac{1}{4} \cdot A B \cdot \frac{(N-1)^{2}}{(1+N)}-D E=0 \quad \frac{1}{2} \cdot A B \cdot \frac{(N-1)^{2}}{(N+1)}-D F=0\)
\(\frac{1}{2} \cdot A B \cdot(N-1) \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{2}}-H M=0\)

CN
042501


What is the Algebraic name of the circle HM? Does point \(N\) divide DR in half?
\[
\begin{aligned}
& \mathbf{N}:=5.768 \quad \text { AB }:=.583 \quad \mathbf{A J}:=\mathbf{A B} \cdot \mathbf{N} \\
& \text { BJ }:=\mathbf{A J}-\mathbf{A B} \quad \mathbf{B H}:=\frac{\mathbf{B J}}{2} \quad \mathbf{H R}:=\mathbf{B H} \\
& \text { HP }:=\frac{\mathbf{H R}}{2} \quad \text { GO }:=\mathbf{H P} \quad \mathbf{A H}:=\mathbf{A B}+\mathbf{B H} \\
& \text { AO }:=\mathbf{A H} \quad \text { AG }:=\sqrt{\mathbf{A O}^{2}-\mathbf{G O}} \\
& \text { HQ }:=\mathbf{B H} \quad \text { AQ }:=\mathbf{A H} \quad \text { FH }:=\frac{\mathbf{H Q}}{\mathbf{2} \cdot \mathbf{A H}} \\
& \text { AF }:=\mathbf{A H}-\mathbf{F H} \quad \text { FM }:=\frac{\mathbf{G O} \cdot \mathbf{A F}}{\mathbf{A G}} \\
& \text { HJ }:=\mathbf{B H} \quad \text { FJ }:=\mathbf{F H}+\mathbf{H J} \quad \mathbf{B F}:=\mathbf{B J}-\mathbf{F J} \\
& \text { FQ }:=\sqrt{\mathbf{B F} \cdot \mathbf{F J}} \quad \mathbf{M Q}:=\mathbf{F Q}-\mathbf{F M} \quad \mathbf{H M}:=\sqrt{\mathbf{F H}^{2}+\mathbf{F M}^{2}} \quad \mathbf{H M}-\mathbf{M Q}=\mathbf{0} \\
& \mathbf{D H}:=\frac{\mathbf{H R}}{\mathbf{A H}} \quad \frac{\text { DH }}{\mathbf{2}}-\mathbf{F H}=\mathbf{O}
\end{aligned}
\]

Some Algebraic Names:
\(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A B}-\mathbf{B J}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot(\mathbf{N}-1)-\mathbf{B H}=0 \quad \frac{1}{4} \cdot \mathbf{A B} \cdot(\mathbf{N}-1)-\mathbf{H P}=\mathbf{0}\)
\(\frac{1}{2} \cdot \mathbf{A B} \cdot(1+\mathbf{N})-\mathbf{A H}=\mathbf{0} \quad \frac{1}{4} \cdot \mathbf{A B} \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}-\mathbf{A G}=0 \quad \frac{1}{4} \cdot \mathbf{A B} \cdot \frac{(\mathbf{N}-1)^{2}}{(1+\mathbf{N})}-\mathbf{F H}=\mathbf{0}\)
\(\frac{1}{4} \cdot A B \cdot \frac{\left(1+6 \cdot N+\mathbf{N}^{2}\right)}{(1+\mathbf{N})}-\mathbf{A F}=0 \quad \frac{1}{4} \cdot(\mathbf{N}-1) \cdot A B \cdot \frac{\left(1+6 \cdot \mathbf{N}+\mathbf{N}^{2}\right)}{[(1+\mathbf{N}) \cdot \sqrt{(\mathbf{N}+3) \cdot(3 \cdot \mathbf{N}+1)}]}-\mathbf{F M}=\mathbf{0}\)

\section*{Cring}

\(\frac{1}{4} \cdot \mathbf{A B} \cdot(\mathbf{N}+\mathbf{3}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(1+\mathbf{N})}-\mathbf{B F}=\mathbf{0} \quad \frac{1}{4} \cdot \mathbf{A B} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}{(1+\mathbf{N})}-\mathbf{F J}=\mathbf{0}\)
\(\frac{\mathbf{1}}{\mathbf{4}} \cdot \mathbf{A B} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})}-\mathbf{F Q}=\mathbf{0}\)
\(\frac{1}{2} \cdot(\mathbf{1}+\mathbf{N}) \cdot \mathbf{A B} \cdot \frac{(\mathbf{N}-\mathbf{1})}{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}-\mathbf{M Q}=\mathbf{0} \quad \frac{\mathbf{1}}{2} \cdot \mathbf{A B} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{1}+\mathbf{N})}{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}-\mathbf{H M}=\mathbf{0}\) \(\mathbf{H M}-\mathbf{M Q}=\mathbf{0}\)
\(\frac{1}{2} \cdot A B \cdot \frac{(N-1)^{2}}{(1+N)}-D H=0 \quad \frac{D H}{2}-F H=0\)

\section*{Four Lines To A Point 042901}

Does the difference OU and PU each have but one Algebraic name?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A D}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{B D}}{2} \quad \mathbf{O W}:=\mathbf{B O} \\
& \mathbf{O Y}:=\mathbf{B O} \quad \mathbf{D O}:=\mathbf{B O} \quad \mathbf{A O}:=\mathbf{A B}+\mathbf{B O}
\end{aligned}
\]
\[
\mathbf{H O}:=\frac{\mathbf{O Y}^{2}}{\mathbf{A O}} \quad \mathbf{A H}:=\mathbf{A O}-\mathbf{H O} \quad \mathbf{A L}:=\mathbf{A H}
\]
\[
\mathrm{OL}:=\mathrm{BO} \quad \mathrm{GO}:=\frac{\mathrm{OL}^{2}+\mathrm{AO}^{2}-\mathrm{AL}^{2}}{2 A O}
\]
\[
\mathbf{B G}:=\mathbf{B O}-\mathbf{G O} \quad \mathbf{D G}:=\mathbf{G O}+\mathbf{D O}
\]
\[
\mathbf{G L}:=\sqrt{\mathbf{B G} \cdot \mathbf{D G}} \quad \mathbf{E O}:=\frac{\mathbf{G O} \cdot \mathbf{O W}}{\mathbf{O W}-\mathbf{G L}}
\]
\[
\mathbf{B E}:=\mathbf{E O}-\mathbf{B O} \quad \mathbf{B H}:=\mathbf{B O}-\mathbf{H O}
\]
\[
\mathbf{E G}:=\mathbf{B E}+\mathbf{B G} \quad \mathbf{E H}:=\mathbf{B E}+\mathbf{B H}
\]

\[
\begin{aligned}
& \mathbf{H M}:=\frac{\mathbf{G L} \cdot \mathbf{E H}}{\text { EG }} \quad \mathbf{H H}_{2}:=\frac{\mathbf{H O} \cdot \mathbf{H M}}{\mathbf{O W}} \quad \text { OU }:=\frac{\mathbf{H O}^{2}}{\mathbf{H H}_{2}+\mathbf{H O}} \\
& \mathbf{U P}:=\frac{\text { HM } \cdot \mathbf{O U}}{\text { HO }}
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{O T}:=\frac{\mathbf{O W}}{\mathbf{2}} \quad \mathbf{K S}:=\mathbf{O T} \quad \mathbf{A S}:=\mathbf{A O} \\
& \mathbf{A K}:=\sqrt{\mathbf{A S}^{\mathbf{2}}-\mathbf{K S}^{\mathbf{2}}} \quad \mathbf{O S}_{\mathbf{2}}:=\frac{\mathbf{K S} \cdot \mathbf{A O}}{\mathbf{A K}} \\
& \mathbf{O E}_{\mathbf{2}}:=\frac{\mathbf{E O} \cdot \mathbf{O S}_{\mathbf{2}}}{\mathbf{O T}} \quad \mathbf{A S}_{\mathbf{2}}:=\sqrt{\mathbf{A O}^{\mathbf{2}}+\mathbf{O S}_{\mathbf{2}}{ }^{\mathbf{2}}} \\
& \mathbf{A E}_{\mathbf{2}}:=\mathbf{O E}_{\mathbf{2}}-\mathbf{A O} \quad \mathbf{A E}:=\mathbf{E O}-\mathbf{A O} \\
& \mathbf{A P}:=\frac{\mathbf{A S}_{\mathbf{2}} \cdot \mathbf{A E}}{\mathbf{A E}_{\mathbf{2}}} \quad \mathbf{A U}:=\frac{\mathbf{A O} \cdot \mathbf{A E}}{\mathbf{A E}} \\
& \mathbf{U O}:=\mathbf{A O}-\mathbf{A U} \quad \mathbf{P U}:=\frac{\mathbf{O S}_{\mathbf{2}} \cdot \mathbf{A U}}{\mathbf{A O}} \\
& \mathbf{U O}-\mathbf{O U}=\mathbf{0} \\
& \mathbf{P U}-\mathbf{U P}=\mathbf{0}
\end{aligned}
\]

Cosers


\section*{Some Algebraic Names:}
\(\mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})-\mathbf{B D}=0 \quad \frac{\mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})}{2}-\mathbf{B O}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot(\mathbf{1}+\mathbf{N})-\mathbf{A O}=\mathbf{0}\) \(\frac{1}{2} \cdot A B \cdot \frac{(N-1)^{2}}{(1+N)}-H O=0 \quad 2 \cdot A B \cdot \frac{N}{(1+N)}-A H=0 \quad \frac{1}{2} \cdot A B \cdot\left(N^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}-G O=0\) \(\mathbf{A B} \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-1)}{(1+\mathbf{N})^{3}}-\mathbf{B G}=0 \quad \mathbf{A B} \cdot(\mathbf{N}-1) \cdot \mathbf{N}^{2} \cdot \frac{(\mathbf{N}+3)}{(1+\mathbf{N})^{3}}-\mathbf{D G}=\mathbf{0}\)
\[
\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N} \cdot(\mathbf{N}-1) \cdot \frac{\mathbf{A B}}{(1+\mathbf{N})^{3}}-\mathbf{G L}=0
\]
\[
\frac{1}{2} \cdot A B \cdot\left(N^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{\left[3 \cdot N+1+3 \cdot N^{2}+N^{3}-2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N\right]}-E O=0
\]
\[
\mathbf{A B} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{[\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}-\mathbf{3} \cdot \mathbf{N}-\mathbf{1}]}{\left[\mathbf{3} \cdot \mathbf{N}+\mathbf{1}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-2 \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}\right]}-\mathbf{B E}=\mathbf{0} \quad \mathbf{A B} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})}-\mathbf{B H}=\mathbf{0}
\]
\[
A B \cdot \frac{(N-1)^{2} \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N \cdot\left(N^{2}+4 \cdot N+1\right)}{\left.\left[3 \cdot N+1+3 \cdot N^{2}+N^{3}-2 \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)} \cdot N\right] \cdot(1+N)^{3}\right]}-E G=0
\]
\(\mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})^{2} \cdot \mathbf{N} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{1}]}{\left.\left[\mathbf{3} \cdot \mathbf{N}+\mathbf{1}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-\mathbf{2} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}\right] \cdot(\mathbf{1}+\mathbf{N})\right]}-\mathbf{E H}=\mathbf{0} \quad \mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{\mathbf{A B}}{(\mathbf{1}+\mathbf{N})} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{1}]}{\left(\mathbf{N}^{2}+\mathbf{4} \cdot \mathbf{N}+\mathbf{1}\right)}-\mathbf{H M}=\mathbf{0}\)
\[
A B \cdot \frac{(N-1)^{2}}{(1+N)^{2}} \cdot N \cdot \frac{[\mathbf{N}+\sqrt{(N+3) \cdot(3 \cdot N+1)}+1]}{\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}-\mathbf{H H}_{2}=0 \quad \frac{1}{2} \cdot A B \cdot(\mathbf{N}-1)^{2} \cdot \frac{\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}{\left[7 \cdot \mathbf{N} \cdot(\mathbf{N}+1)+2 \cdot \sqrt{(N+3) \cdot(3 \cdot \mathbf{N}+1)} \cdot \mathbf{N}+\mathbf{1}+\mathbf{N}^{3}\right]}-\mathbf{O U}=\mathbf{0}
\]

\(\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \mathbf{A B} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{1}]}{\left[\mathbf{7} \cdot \mathbf{N}+\mathbf{7} \cdot \mathbf{N}^{2}+\mathbf{2} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}+\mathbf{1}+\mathbf{N}^{\mathbf{3}}\right]}-\mathbf{U P}=\mathbf{0}\)
\(\frac{\mathbf{1}}{\mathbf{4}} \cdot \mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})-\mathbf{O T}=\mathbf{0} \quad \frac{\mathbf{A B}}{4} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{A K}=\mathbf{0}\)
\[
\frac{1}{2} \cdot A B \cdot \frac{(N-1) \cdot(\mathbf{1}+\mathbf{N})}{\sqrt{(N+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}-0 S_{2}=0
\]
\[
\frac{\left[A B \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}\right]}{\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-\mathbf{2} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right]} \cdot \frac{(1+\mathbf{N})}{\sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}-\mathrm{OE}_{2}=\mathbf{0}
\]
\[
(1+N)^{2} \cdot \frac{A B}{\sqrt{3+10 \cdot N+3 \cdot \mathbf{N}^{2}}}-A S_{2}=0
\]
\[
\frac{\left[A B \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}\right]}{\left[3 \cdot \mathbf{N}+1+3 \cdot \mathbf{N}^{2}+\mathbf{N}^{3}-\mathbf{2} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}\right]} \cdot \frac{(1+\mathbf{N})}{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}}-\frac{1}{2} \cdot \mathbf{A B} \cdot(1+\mathbf{N})-\mathbf{A E}_{2}=0
\]
\[
-\mathbf{A B} \cdot \mathbf{N} \cdot \frac{\left[\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+\mathbf{1}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}\right]}{\left[\mathbf{3} \cdot \mathbf{N}+\mathbf{1}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{N}^{\mathbf{3}}-\mathbf{2} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}\right]}-\mathbf{A E}=\mathbf{0}
\]
\[
\begin{aligned}
& \frac{-\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{N} \cdot(\mathbf{1}+\mathbf{N}) \cdot\left[\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}+\mathbf{1}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}\right]}{\left(\mathbf{2} \cdot \mathbf{N}^{\mathbf{4}}+\mathbf{1 0} \cdot \mathbf{N}^{\mathbf{3}}+\mathbf{8} \cdot \mathbf{N}^{2}+\mathbf{1 0} \cdot \mathbf{N}+\mathbf{2}\right)-\mathbf{3} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N} \ldots}-\mathbf{A P}=\mathbf{0} \\
& +-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{3} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}^{2}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}^{\mathbf{3}}
\end{aligned}
\]
 \(-\frac{\mathbf{A B} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot\left[\mathbf{6} \cdot \mathbf{N}-\mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{N}^{2}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{1}\right]}{\mathbf{1 0 \cdot \mathbf { N } - \mathbf { 3 } \cdot \mathbf { N } \cdot \sqrt { ( \mathbf { N } + \mathbf { 3 } ) \cdot ( \mathbf { 3 } \cdot \mathbf { N } + \mathbf { 1 } ) } - \sqrt { ( \mathbf { N } + \mathbf { 3 } ) \cdot ( \mathbf { 3 } \cdot \mathbf { N } + \mathbf { 1 } ) } - \mathbf { 3 } \cdot \mathbf { N } ^ { 2 } \cdot \sqrt { ( \mathbf { N } + \mathbf { 3 } ) \cdot ( \mathbf { 3 } \cdot \mathbf { N } + \mathbf { 1 } ) } - \mathbf { N } ^ { \mathbf { 3 } } \cdot \sqrt { ( \mathbf { N } + \mathbf { 3 } ) \cdot ( \mathbf { 3 } \cdot \mathbf { N } + \mathbf { 1 } ) } + \mathbf { 2 } + ( \mathbf { 8 } \cdot \mathbf { N } ^ { \mathbf { 2 } } + \mathbf { 1 0 } \cdot \mathbf { N } ^ { \mathbf { 3 } } + \mathbf { 2 } \cdot \mathbf { N } ^ { 4 } )}-\mathbf{A U}=\mathbf{0}}\)
\(-\frac{\mathbf{A B} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot\left[\mathbf{6} \cdot \mathbf{N}-\mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{N}^{2}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{1}\right]}{\mathbf{1 0} \cdot \mathbf{N}-\mathbf{3} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{8} \cdot \mathbf{N}^{\mathbf{2}}+\mathbf{1 0} \cdot \mathbf{N}^{\mathbf{3}}+\mathbf{2} \cdot \mathbf{N}^{\mathbf{4}}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{3} \cdot \mathbf{N}^{\mathbf{2}} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{N}^{\mathbf{3}} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{2}}-\mathbf{A U}=\mathbf{0}\)
\[
\begin{aligned}
& \frac{-\mathbf{A B} \cdot \mathbf{N} \cdot\left[\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+\mathbf{1}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}\right] \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{\left(\mathbf{2} \cdot \mathbf{N}^{4}+\mathbf{1 0} \cdot \mathbf{N}^{3}+\mathbf{8} \cdot \mathbf{N}^{2}+\mathbf{1 0} \cdot \mathbf{N}+\mathbf{2}\right)-\mathbf{3} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N} \ldots}=\mathbf{0} \\
& \quad+-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{3} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}^{2}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}^{3}
\end{aligned}
\]
\[
\frac{1}{2} \cdot A B \cdot(\mathbf{N}-1)^{2} \cdot \frac{\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}{\left[7 \cdot \mathbf{N} \cdot(\mathbf{N}+1)+2 \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+1)} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-\mathbf{U O}=0 \quad \mathbf{N} \cdot(\mathbf{N}-1) \cdot \mathbf{A B} \cdot \frac{[\mathbf{N}+\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{1}]}{\left[7 \cdot \mathbf{N}+\mathbf{7} \cdot \mathbf{N}^{2}+2 \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}+1+\mathbf{N}^{3}\right]}-\mathbf{P U}=0
\]

Cons


\section*{}

\section*{050601.MCD}

Just some Algebraic Names

\[
\begin{aligned}
& \mathbf{A B}:=.818 \quad \mathbf{N}:=4.082 \\
& \mathbf{A E}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \quad \mathbf{B O}:=\frac{\mathbf{B E}}{2} \quad \mathbf{A O}:=\mathbf{A B}+\mathbf{B O} \\
& \text { AJ }:=\mathbf{A O} \\
& \text { JO }:=\mathbf{B O} \\
& \text { GO }:=\frac{\mathbf{J O}}{2} \quad \text { AG }:=\sqrt{\mathbf{A O}^{2}-\mathbf{G O}^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{A P}:=\frac{\mathbf{A G}^{2}}{\mathbf{A O}} \quad \text { OP }:=\mathbf{A O}-\mathbf{A P} \\
& \text { NO }:=\mathbf{2} \cdot \mathbf{O P} \quad \text { AN }:=\mathbf{A O}-\mathbf{N O} \\
& \mathbf{J M}:=\mathbf{N O} \quad \text { HO }:=\mathbf{B O} \\
& \text { HJ }:=\mathbf{2} \cdot \mathbf{J M} \quad \text { AH }:=\mathbf{A J}-\mathbf{H J}
\end{aligned}
\]
\[
\mathbf{A C}:=\frac{\mathbf{A N} \cdot \mathbf{A H}}{\mathbf{A J}} \quad \mathbf{C H}:=\sqrt{\mathbf{A H}^{2}-\mathbf{A C}^{\mathbf{2}}}
\]
\[
\mathbf{H Q}:=\mathbf{2} \cdot \mathbf{C H} \quad \mathbf{C N}:=\mathbf{A N}-\mathbf{A C}
\]


FO \(:=\frac{\mathbf{J O} \cdot \mathbf{G O}}{\mathbf{O R}} \quad\) FJ \(:=\) FO \(\quad\) DQ \(:=\frac{\mathbf{J Q} \cdot \mathbf{C Q}}{\mathbf{C Q}+\mathbf{J N}} \quad\) DF \(:=\mathbf{J Q}-(\mathbf{D Q}+\mathbf{F J}) \quad\) FH \(:=\) HO - FO \(\quad\) FG \(:=\frac{\text { JR } \cdot \mathbf{G O}}{\mathbf{O R}} \quad\) AF \(:=\mathbf{A G}-\mathbf{F G}\)

\(\mathbf{A E}-\mathbf{A B} \cdot \mathbf{N}=\mathbf{0} \quad \mathbf{B E}-(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A B})=\mathbf{0} \quad \mathbf{B O}-\frac{\mathbf{1}}{2} \cdot \mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})=\mathbf{0}\)
\(\mathbf{A O}-\frac{1}{2} \cdot \mathbf{A B} \cdot(\mathbf{1}+\mathbf{N})=\mathbf{0} \quad \mathbf{A G}-\frac{\mathbf{A B}}{4} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}=\mathbf{0}\)
\(A P-\frac{A B}{8} \cdot(N+3) \cdot \frac{(3 \cdot N+1)}{(1+N)}=0 \quad O P-\frac{A B}{8} \cdot \frac{(N-1)^{2}}{(1+N)}=0 \quad N O-\frac{A B}{4} \cdot \frac{(N-1)^{2}}{(1+N)}=0\)
\(A N-\frac{A B}{4} \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)}=0 \quad H J-\frac{A B}{2} \cdot \frac{(N-1)^{2}}{(1+N)}=0 \quad A H-2 \cdot A B \cdot \frac{N}{(1+N)}=0\)
\(A C-A B \cdot\left(1+6 \cdot \mathbf{N}+\mathbf{N}^{2}\right) \cdot \frac{\mathbf{N}}{(1+\mathbf{N})^{3}}=0 \quad \mathbf{C H}-\mathbf{A B} \cdot \mathbf{N} \cdot \sqrt{\mathbf{N}+3} \cdot \sqrt{3 \cdot \mathbf{N}+1} \cdot \frac{(\mathbf{N}-1)}{(1+\mathbf{N})^{3}}=0\)
\(H Q-2 \cdot A B \cdot N \cdot \sqrt{N+3} \cdot \sqrt{3 \cdot N+1} \cdot \frac{(N-1)}{(1+N)^{3}}=0 \quad C N-\frac{A B}{4} \cdot\left(N^{2}+6 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{(1+N)^{3}}=0\)
\(J N-\frac{A B}{4} \cdot(\mathbf{N}-1) \cdot \sqrt{3 \cdot N+1} \cdot \frac{\sqrt{N+3}}{(1+\mathbf{N})}=0 \quad J Q-\frac{A B}{2} \cdot(N-1) \cdot \frac{\left(\mathbf{N}^{2}+6 \cdot N+1\right)}{(1+N)^{2}}=0\)
\(O R-\frac{A B}{4} \cdot\left(N^{2}+6 \cdot N+1\right) \cdot \frac{(N-1)}{(1+N)^{2}}=0 \quad J R-\frac{A B}{4} \cdot(N-1)^{2} \cdot \sqrt{N+3} \cdot \frac{\sqrt{3 \cdot N+1}}{(1+N)^{2}}=0\)
\(F O-\frac{A B}{2} \cdot(1+N)^{2} \cdot \frac{(N-1)}{\left(N^{2}+6 \cdot N+1\right)}=0 \quad D Q-2 \cdot N \cdot(N-1) \cdot \frac{A B}{(1+N)^{2}}=0\)
\(\mathbf{D F}-2 \cdot \mathbf{N} \cdot(\mathbf{N}-1) \cdot \frac{\mathbf{A B}}{\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}=0 \quad \mathbf{F H}-2 \cdot \mathbf{N} \cdot(\mathbf{N}-1) \cdot \frac{\mathbf{A B}}{\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}=0\)
\(\mathbf{F G}-\frac{\mathbf{A B}}{4} \cdot(\mathbf{N}-1)^{2} \cdot \sqrt{\mathbf{N}+3} \cdot \frac{\sqrt{3 \cdot N+1}}{\left(\mathbf{N}^{2}+6 \cdot \mathbf{N}+1\right)}=0 \quad \mathbf{G O}-\frac{\mathbf{A B}}{4} \cdot(\mathbf{N}-1)=0\)
\(\left.\mathbf{A F}-\left[\frac{\mathbf{A B}}{4} \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\frac{1}{4} \cdot \mathbf{A B} \cdot(\mathbf{N}-1)^{2} \cdot \sqrt{\mathbf{N}+\mathbf{3}} \cdot \frac{\sqrt{3 \cdot \mathbf{N}+1}}{\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+1\right.}\right)\right]=0\)

Cring


\[
\begin{aligned}
& \mathbf{N}:=\mathbf{1} \\
& \mathbf{A L}:=\mathbf{N} \quad \mathbf{A E}:=\frac{\mathbf{A L}}{2} \quad \mathbf{A R}:=\sqrt{2 \cdot \mathbf{A E}^{2}} \\
& \mathbf{A M}:=\frac{\mathbf{A R}}{2} \quad \mathbf{E N}:=\mathbf{A E} \quad \text { EM }:=\mathbf{A M} \\
& \mathbf{M N}:=\mathbf{E N}-\mathbf{E M} \quad \mathbf{A N}:=\sqrt{\mathbf{A M}^{2}+\mathbf{M N}^{2}} \\
& \mathbf{A D}:=\frac{\mathbf{A N}^{2}}{\mathbf{A L}} \quad \text { EF }:=\frac{\mathbf{A L}-(\mathbf{4} \cdot \mathbf{A D})}{2}
\end{aligned}
\]

Cring


Some Algebraic Names.
\[
\begin{array}{ll}
\mathbf{A R}-\frac{N}{2} \cdot \sqrt{2}=0 \quad \mathbf{A M}-\frac{N}{4} \cdot \sqrt{2}=0 \quad \mathbf{M N}-\frac{N}{4} \cdot(2-\sqrt{2})=0 \quad \text { AN }-\frac{N}{2} \cdot \sqrt{2-\sqrt{2}}=0 \\
\mathbf{A D}-\frac{\mathbf{N} \cdot(2-\sqrt{2})}{4}=0 \quad \mathbf{E F}-\left(\frac{1}{2} \cdot \mathbf{N} \cdot \sqrt{2}-\frac{1}{2} \cdot \mathbf{N}\right)=0 \quad(2 \cdot \mathbf{A D}-\mathbf{E F})-\left(\frac{3}{2} \cdot \mathbf{N}-\mathbf{N} \cdot \sqrt{2}\right)=0
\end{array}
\]

Some Algebraic Names Where \(\mathbf{N}=1\).
\[
\begin{aligned}
& A R-\frac{\sqrt{2}}{2}=0 \quad A M-\frac{\sqrt{2}}{4}=0 \quad \text { MN }-\frac{2-\sqrt{2}}{4}=0 \quad A N-\frac{\sqrt{2-\sqrt{2}}}{2}=0 \\
& A D-\frac{2-\sqrt{2}}{4}=0 \quad E F-\left(\frac{\sqrt{2}}{2}-\frac{1}{2}\right)=0 \quad(2 \cdot A D-E F)-\left(\frac{3}{2}-\sqrt{2}\right)=0
\end{aligned}
\]

\section*{Elliptic Progression Outtake One 0507011}

A method of trisection Algebraically.
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{M} \\
& \mathbf{N} \geq \mathbf{4}=\mathbf{1} \quad \mathbf{A F}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A F}}{2} \quad \mathbf{D E}:=\frac{\mathbf{A F}}{\mathbf{N}} \quad \mathbf{A D}:=\mathbf{A E}-\mathbf{D E} \quad \mathbf{D F}:=\mathbf{A F}-\mathbf{A D} \\
& \mathbf{D G}:=\sqrt{\mathbf{A D} \cdot \mathbf{D F}} \quad \mathbf{C D}:=\mathbf{D E} \quad \mathbf{E G}:=\mathbf{A E} \quad \mathbf{C O}:=\frac{\mathbf{C D}^{2}}{\mathbf{E G}} \mathbf{C G}:=\mathbf{E G} \quad \mathbf{C J}:=\mathbf{C G}-\mathbf{4} \cdot \mathbf{C O} \\
& \mathbf{B C}:=\frac{\mathbf{C D} \cdot \mathbf{C J}}{\mathbf{C G}} \mathbf{A B}:=\mathbf{A E}-(\mathbf{2} \cdot \mathbf{D E}+\mathbf{B C}) \quad \mathbf{B J}:=\frac{\mathbf{D G} \cdot \mathbf{B C}}{\mathbf{C D}} \quad \mathbf{B D}:=\mathbf{B C}+\mathbf{C D} \\
& \mathbf{J K}:=\sqrt{\mathbf{D G}^{2}-\mathbf{2} \cdot \mathbf{D G} \cdot \mathbf{B J}+\mathbf{B J}^{2}+\mathbf{B D}^{2}} \quad \frac{\mathbf{J K}}{2 \cdot \mathbf{D E}}=1 \quad \text { Some Algebraic Names, }
\end{aligned}
\]

Part of this demonstration may be something of a reductio ad absurdum, if one supposed that CJ were not true. I suppose I need a plate to demonstrate it.
\[
\begin{array}{ll}
A F \cdot \frac{(N-2)}{2 \cdot N}-A D=0 & A F \cdot \frac{(N+2)}{2 \cdot N}-D F=0 \\
\frac{2 A F}{N^{2}}-C O=0 & A F \cdot \frac{\sqrt{(N-2) \cdot(N+2)}}{2 \cdot N}-D G=0 \\
2 \cdot N^{2} & (N-4) \cdot(N+4) \\
& C J=0
\end{array} \quad A F \cdot \frac{(N-4) \cdot(N+4)}{N^{3}}-B C=0
\]
\[
A F \cdot \frac{(N+2) \cdot(N-4)^{2}}{-3}-A B=0 \quad \begin{aligned}
& \text { One of the meanings of trisection is solving for the following } \\
& \text { equation when given } A F \text { and } A B .
\end{aligned}
\]
\[
\frac{A F}{A B}-\frac{2 \cdot \mathbf{N}^{3}}{(N+2) \cdot(\mathbf{N}-4)^{2}}=0 \quad A F \cdot \frac{(N-4) \cdot(\mathbf{N}+4) \cdot \sqrt{(\mathbf{N}-2) \cdot(\mathbf{N}+2)}}{2 \cdot \mathbf{N}^{3}}-B J=0
\]
\[
A F \cdot \frac{2 \cdot\left(N^{2}-8\right)}{N^{3}}-B D=0 \quad \frac{2 \cdot A F}{N}-J K=0
\]


\[
\begin{aligned}
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}-\frac{A F}{A B}=0 \quad \frac{A F}{A B}=6 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}-6=0 \\
& \frac{2 \cdot M^{3}}{(M+2) \cdot(M-4)^{2}}=6 \\
& 9 M^{2}-M^{3}-48=0 \\
& D E-\frac{A F}{M}=0 \\
& M \equiv 8.303889634816388 \\
& Z:=5.9,6 . .8 .9
\end{aligned}
\]


Elliptic Progression Outtake Two 0507012
Angles TEV and EVJ equals CTG.

\[
\begin{aligned}
& \text { N:= 6.381 AN := } 2.792 \\
& \text { EN := } \frac{\text { AN }}{2} \quad \text { ET }:=\text { EN } \quad \text { EV }:=\text { EN } \\
& \mathbf{E G}:=\frac{\mathbf{A N}}{\mathbf{N}} \quad \mathbf{E P}:=\mathbf{E G} \quad \mathbf{G T}:=\sqrt{\mathbf{E G} \mathbf{G}^{2}+\mathbf{E T}^{2}} \\
& \text { GO }:=\frac{\mathbf{E G}^{\mathbf{2}}}{\mathbf{G T}} \mathbf{G X}:=\mathbf{G T}-\mathbf{2} \cdot \mathbf{G O} \\
& \boldsymbol{J X}:=\frac{\mathbf{E T} \cdot \mathbf{G X}}{\mathbf{G T}} \quad \mathbf{G J}:=\frac{\mathbf{E G} \cdot \mathbf{G X}}{\mathbf{G T}} \\
& \frac{\mathbf{E T}}{\mathbf{E P}}-\frac{\mathbf{J X}}{\mathbf{G} \mathbf{J}}=\mathbf{0} \quad \mathbf{J V}:=\boldsymbol{J X} \\
& \text { EJ := EG + GJ } \\
& T V:=\sqrt{E T^{2}-2 \cdot E T \cdot J V+V^{2}+E J^{2}}
\end{aligned}
\]
\[
\frac{\mathbf{E T}}{\mathbf{T V}}-\frac{\mathbf{G T}}{2 \cdot \mathbf{E G}}=\mathbf{0} \quad \mathbf{E Q}:=\frac{\mathbf{E J} \cdot \mathbf{E G}}{\mathbf{E V}} \quad \mathbf{G Q}:=\frac{\mathbf{J V} \cdot \mathbf{E Q}}{\mathbf{E J}} \quad \mathbf{G Q}-\mathbf{G J}=0 \quad \mathbf{T V}-\frac{2 \cdot \mathbf{A N}}{\sqrt{\mathbf{N}^{2}+4}}=\mathbf{0}
\]

Outtake Three: Alternate Method: Pentasection Or Irrational Rationals 0507013
\[
\begin{aligned}
& \mathbf{A L}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A L}}{\mathbf{2}} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \quad \mathbf{C E}:=\mathbf{A C} \quad \mathbf{E R}:=\mathbf{A E} \quad \mathbf{C R}:=\sqrt{\mathbf{C E}^{2}+\mathbf{E R}^{2}} \\
& \mathbf{C J}:=\mathbf{C R} \quad \mathbf{E J}:=\mathbf{C J}-\mathbf{C E} \quad \mathbf{J R}:=\sqrt{\mathbf{E J}^{2}+\mathbf{E R}^{2}} \quad \text { NR }:=\mathbf{J R} \quad \mathbf{E N}:=\mathbf{A E} \quad \mathbf{E M}:=\frac{\mathbf{E N}^{2}+\mathbf{E R}^{2}-\mathbf{N R}^{2}}{\mathbf{2} \cdot \mathbf{E R}} \\
& \mathbf{K N}:=\mathbf{E M} \quad \mathbf{E K}:=\sqrt{\mathbf{E N}^{2}-\mathbf{K N}^{2}} \quad \mathbf{E L}:=\mathbf{A E} \quad \mathbf{K L}:=\mathbf{E L}-\mathbf{E K} \quad \mathbf{L N}:=\sqrt{\mathbf{K L}^{2}+\mathbf{K N}^{2}} \\
& \mathbf{E G}:=\frac{\mathbf{E J}}{\mathbf{2}} \mathbf{G L}:=\mathbf{E L}-\mathbf{E G} \quad \mathbf{A G}:=\mathbf{A E}+\mathbf{E G} \quad \mathbf{G P}:=\sqrt{\mathbf{A G} \cdot \mathbf{G L}} \quad \mathbf{P R}:=\sqrt{\mathbf{E R}^{2}-\mathbf{2} \cdot \mathbf{E R} \cdot \mathbf{G P}+\mathbf{G P}^{2}+\mathbf{E G}^{2}} \\
& \mathbf{P R}-\mathbf{L N}=\mathbf{0} \quad \mathbf{A N}:=\sqrt{\mathbf{A L}^{2}-\mathbf{L N}^{2}}
\end{aligned}
\]


Irrational means the inability of a grammar to provide a name for a given thing. Many things are then irrational in Arithmetic due to the principles of the naming convention. Algebraic naming solves the problem by incorporating operands as part of a name. Algebra provides a degree of rationality then that is not achievable by Arithmetic. The following are some Algebraic names.

\section*{Definitions:}
\[
\begin{aligned}
& \frac{1}{2}-\mathbf{A E}=\frac{1}{4}-\mathbf{A C}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{5}-\mathbf{C R}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{5}-\frac{1}{4}-\mathbf{E J}=\mathbf{0} \quad \frac{1}{4} \cdot \sqrt{10-2 \cdot \sqrt{5}}-\mathbf{J R}=\mathbf{0} \\
& \frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{E M}=\mathbf{0} \quad \frac{1}{2} \cdot \sqrt{\frac{5}{8}+\frac{1}{8} \cdot \sqrt{5}}-\mathbf{E K}=\mathbf{0} \quad \frac{1}{2}-\frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}-\mathbf{K L}=\mathbf{0} \\
& \frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathbf{L N}=0 \quad \frac{-1}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{E G}=0 \quad \frac{5}{8}-\frac{1}{8} \cdot \sqrt{5}-\mathbf{G L}=0 \\
& \frac{3}{8}+\frac{1}{8} \cdot \sqrt{5}-\mathbf{A G}=\mathbf{0} \quad \frac{1}{8} \cdot \sqrt{10+2 \cdot \sqrt{5}}-\mathbf{G P}=0 \quad \frac{1}{4} \cdot \sqrt{8-2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\mathbf{P R}=\mathbf{0} \\
& \frac{1}{4} \cdot \sqrt{8+2 \cdot \sqrt{10+2 \cdot \sqrt{5}}}-\text { AN }=0
\end{aligned}
\]


\section*{Outtake Four: Some Names 0507014}
\[
\begin{aligned}
& \mathbf{A G}:=\mathbf{1} \quad \mathbf{A E}:=\frac{\mathbf{A G}}{2} \quad \mathbf{A C}:=\frac{\mathbf{A E}}{2} \\
& \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{C J}:=\sqrt{\mathbf{A C} \cdot \mathbf{C G}} \\
& \mathbf{E L}:=\mathbf{A E} \quad \mathbf{C E}:=\mathbf{A C} \\
& \mathbf{J L}:=\sqrt{\mathbf{E L}^{2}-\mathbf{2} \cdot \mathbf{E L} \cdot \mathbf{C J}+\mathbf{C J}^{2}+\mathbf{C E}^{2}} \\
& \mathbf{A J}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C J}} \quad \mathrm{GJ}:=\sqrt{\mathbf{C G}^{2}+\mathbf{C J}^{2}} \\
& \mathbf{A L}:=\sqrt{\mathbf{A E}^{2}+\mathbf{E L}}{ }^{\mathbf{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{A E}-\frac{1}{2}=0 \quad \text { AC }-\frac{1}{4}=0 \quad \mathbf{C G}-\left(1-\frac{1}{4}\right)=0 \quad \mathbf{C J}-\frac{1}{4} \cdot \sqrt{3}=0 \quad \mathbf{J L}-\left(\frac{1}{4} \cdot \sqrt{6}-\frac{1}{4} \cdot \sqrt{2}\right)=0 \\
& \mathbf{A J}-\frac{1}{2}=0 \quad \text { GJ }-\frac{1}{2} \cdot \sqrt{3}=0 \quad \mathbf{A L}-\frac{1}{2} \cdot \sqrt{2}=0
\end{aligned}
\]

Quadsection: 0507013

\[
\begin{aligned}
& \mathbf{A L}:=2.5 \quad \mathbf{A E}:=\frac{\mathbf{A L}}{2} \quad \mathbf{A R}:=\sqrt{2 \cdot \mathbf{A E}^{2}} \\
& \mathbf{A M}:=\frac{\mathbf{A R}}{2} \quad \mathbf{E O}:=\mathbf{A E} \quad \mathbf{E M}:=\mathbf{A M} \\
& \mathbf{M O}:=\mathbf{E O}-\mathbf{E M} \mathbf{A O}:=\sqrt{\mathbf{A M}^{2}+\mathbf{M O}^{\mathbf{2}}} \\
& \mathbf{A Y}:=\frac{\mathbf{A O}}{2} \quad \mathbf{E Y}:=\sqrt{\mathbf{A E}^{\mathbf{2}}-\mathbf{A Y}}{ }^{\mathbf{2}} \\
& \text { EN }:=\mathbf{A E} \quad \text { NY }:=\mathbf{E N}-\mathbf{E Y} \quad \text { AN }:=\sqrt{\mathbf{A Y} \mathbf{Y}^{2}+\mathbf{N Y}^{2}} \\
& \mathbf{A P}:=\frac{\mathbf{A N}^{2}}{\mathbf{A L}} \quad \mathbf{N P}:=\sqrt{\mathbf{A N}^{2}-\mathbf{A P}}{ }^{2} \quad \mathbf{E S}:=\frac{\mathbf{N P} \cdot \mathbf{A E}}{\mathbf{A L}-\mathbf{A P}}
\end{aligned}
\]

Some Algebraic Names.
\(\mathbf{A R}-\frac{\mathbf{A L}}{2} \cdot \sqrt{2}=\mathbf{0} \quad \mathbf{A M}-\frac{\mathbf{A L}}{4} \cdot \sqrt{2}=0 \quad \mathbf{M O}-\frac{\mathbf{A L}}{4} \cdot(2-\sqrt{2})=0 \quad \mathbf{A O}-\frac{\mathbf{A L}}{\mathbf{2}} \cdot \sqrt{\mathbf{2}-\sqrt{2}}=\mathbf{0}\)
\(\mathbf{A Y}-\frac{\mathbf{A L}}{4} \cdot \sqrt{2-\sqrt{2}}=\mathbf{0} \quad \mathbf{E Y}-\frac{\mathbf{A L}}{4} \cdot \sqrt{2+\sqrt{2}}=\mathbf{0} \quad \mathbf{N Y}-\frac{\mathbf{A L}}{4} \cdot(2-\sqrt{2+\sqrt{2}})=0\)
\(\mathbf{A N}-\frac{\mathbf{A L}}{2} \cdot \sqrt{2-\sqrt{2+\sqrt{2}}}=\mathbf{0} \quad \frac{2-\sqrt{2+\sqrt{2}}}{4} \cdot \mathbf{A L}-\mathbf{A P}=\mathbf{0} \quad \frac{\mathbf{A L}}{4} \cdot \sqrt{2-\sqrt{2}}-\mathbf{N P}=\mathbf{0}\)
\(\frac{1}{2} \cdot \mathbf{A L} \cdot \frac{\sqrt{2-\sqrt{2}}}{2+\sqrt{2+\sqrt{2}}}-\mathbf{E S}=\mathbf{0}\)

\section*{Trisection: 0507013}

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{4} \\
& \mathbf{A L}:=\mathbf{N} \quad \mathbf{A E}:=\frac{\mathbf{A L}}{2} \quad \mathbf{E R}:=\mathbf{A E} \\
& \mathbf{N R}:=\mathbf{E R} \quad \mathbf{F N}:=\frac{\mathbf{N R}}{2} \quad \mathbf{E N}:=\mathbf{A E} \\
& \mathbf{E F}:=\sqrt{\mathbf{E N}^{2}-\mathbf{F N}^{2}} \quad \mathbf{D E}:=\mathbf{A E} \\
& \mathbf{D F}:=\mathbf{D E}-\mathbf{E F} \quad \mathbf{D N}:=\sqrt{\mathbf{D F}^{2}+\mathbf{F N}^{2}} \\
& \mathbf{A N}:=\mathbf{D N} \quad \mathbf{A B}:=\frac{\mathbf{A N}^{2}}{\mathbf{A L}} \quad \mathbf{E L}:=\mathbf{A E} \\
& \mathbf{B L}:=\mathbf{A L}-\mathbf{A B} \quad \mathbf{B N}:=\sqrt{\mathbf{A N}}{ }^{\mathbf{2}-\mathbf{A B}} \\
& \mathbf{E J}:=\frac{\mathbf{B N} \cdot \mathbf{E L}}{\mathbf{B L}} \quad \mathbf{G H}:=\mathbf{A E}-(\mathbf{E J}+\mathbf{2} \cdot \mathbf{A B})
\end{aligned}
\]

Some Algebraic Names.
\(\mathbf{F N}-\frac{\mathbf{N}}{4}=\mathbf{0} \quad \mathbf{E F}-\frac{\mathbf{N}}{4} \cdot \sqrt{\mathbf{3}}=\mathbf{0} \quad \mathbf{D F}-\frac{\mathbf{N} \cdot(2-\sqrt{3})}{4}=\mathbf{0} \quad \mathbf{A N}-\frac{\sqrt{2} \cdot \mathbf{N} \cdot(\sqrt{\mathbf{3}}-\mathbf{1})}{4}=\mathbf{0} \quad \frac{\mathbf{N} \cdot(2-\sqrt{\mathbf{3}})}{4}-\mathbf{A B}=\mathbf{0}\)
\(\frac{\mathbf{N} \cdot(\sqrt{\mathbf{3}}+2)}{4}-\mathbf{B L}=\mathbf{0} \quad \frac{\sqrt{\mathbf{N}^{2}}}{4}-\mathbf{B N}=\mathbf{0} \quad \frac{\sqrt{\mathbf{N}^{2}}}{2 \cdot \sqrt{\mathbf{3}}+4}-\mathbf{E J}=\mathbf{0} \quad \frac{\mathbf{N}+\sqrt{\mathbf{3}} \cdot \mathbf{N}-\sqrt{\mathbf{N}^{2}}}{2 \cdot(\sqrt{3}+2)}-\mathbf{G H}=\mathbf{0}\)

\section*{Pentasection 050701}

\[
\mathbf{A D}:=\frac{\mathbf{N}}{\mathbf{2}} \quad \mathbf{A C}:=\frac{\mathbf{N}}{\mathbf{2}} \quad \mathbf{A G}:=\frac{\mathbf{N}}{2} \quad \mathbf{A H}:=\frac{\mathbf{N}}{4} \quad \frac{\sqrt{\mathbf{5}} \cdot \mathbf{N}}{\mathbf{4}}-\mathbf{C H}=\mathbf{0}
\]
\[
\frac{\sqrt{5} \cdot \mathbf{N}}{4}-\mathbf{H I}=\mathbf{0} \quad \frac{\mathbf{N} \cdot(\sqrt{5}-1)}{4}-\mathbf{A I}=\mathbf{0} \quad \frac{\sqrt{2} \cdot \mathbf{N} \cdot \sqrt{5-\sqrt{5}}}{4}-\mathbf{C I}=\mathbf{0}
\]
\[
\frac{\mathbf{N} \cdot(5-\sqrt{5})}{8}-\mathbf{C N}=\mathbf{0} \quad \frac{\mathbf{N} \cdot(\sqrt{5}-\mathbf{1})}{8}-\mathbf{A N}=\mathbf{0}
\]
\[
\frac{\sqrt{\mathbf{N}^{2}} \cdot \sqrt{2 \cdot \sqrt{5}+10}}{8}-\mathbf{J N}=0 \quad \frac{\mathbf{N} \cdot(\sqrt{5}-1)}{2 \cdot \sqrt{2 \cdot \sqrt{5}+10}+8}-\mathbf{A W}=0
\]
\[
\begin{aligned}
& \mathbf{N}:=\mathbf{3 . 3 3 3} \quad \mathbf{D G}:=\mathbf{N} \\
& \mathbf{A D}:=\frac{\mathbf{D G}}{\mathbf{2}} \quad \mathbf{A C}:=\mathbf{A D} \\
& \text { AG }:=\mathbf{A D} \quad \mathbf{A H}:=\frac{\mathbf{A D}}{\mathbf{2}} \\
& \mathbf{C H}:=\sqrt{\mathbf{A H}^{2}+\mathbf{A C}^{2}} \\
& \mathbf{H I}:=\mathbf{C H} \quad \mathbf{A I}:=\mathbf{H I}-\mathbf{A H} \quad \mathbf{C I}:=\sqrt{\mathbf{A I}^{2}+\mathbf{A C}^{2}} \quad \mathbf{C J}:=\mathbf{C I} \quad \mathbf{C N}:=\frac{\mathbf{C J}^{2}}{2 \cdot \mathbf{A C}} \\
& \text { AN }:=\mathbf{A C}-\mathbf{C N} \quad \mathbf{J P}:=\mathbf{A N} \quad \mathbf{J N}:=\sqrt{\mathbf{C J}^{2}-\mathbf{C N}^{2}} \quad \text { AP }:=\mathbf{J N} \quad \mathbf{A W}:=\frac{\mathbf{J P} \cdot \mathbf{A D}}{\mathbf{A D}+\mathbf{A P}}
\end{aligned}
\]

\section*{On Trisection 051301}

For any given trisection what is the Algebraic names of \(B C\) and BE taking BG as unit?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{9} \quad \mathbf{B G}:=\mathbf{1} \quad \mathbf{A G}:=\mathbf{B G} \cdot \mathbf{N} \\
& \mathbf{A B}:=\mathbf{A G}-\mathbf{B G} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \quad \mathbf{A N}:=\mathbf{A F} \quad \mathbf{A K}:=\mathbf{A N} \\
& \mathbf{F K}:=\mathbf{B F} \quad \mathbf{S}_{\mathbf{1}}:=\mathbf{A F} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{A K} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{F K} \\
& \mathbf{A E}:=\frac{\mathbf{S}_{\mathbf{2}}{ }^{\mathbf{2}}+\mathbf{S}_{\mathbf{1}}{ }^{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}{ }^{\mathbf{2}}}{\mathbf{2} \cdot \mathbf{S}_{\mathbf{1}}} \quad \mathbf{A I}:=\mathbf{A E} \quad \mathbf{I K}:=\mathbf{A K}-\mathbf{A I} \quad \mathbf{H I}:=\mathbf{I K} \quad \mathbf{A H}:=\mathbf{A K}-(\mathbf{H I}+\mathbf{I K}) \\
& \mathbf{A C}:=\frac{\mathbf{A E} \cdot \mathbf{A H}}{\mathbf{A K}} \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B}
\end{aligned}
\]

Some Algebraic Names:
\(\mathbf{N}-1-\mathbf{A B}=\mathbf{0} \quad \frac{1}{2}-\mathbf{B F}=\mathbf{0} \quad \frac{1}{2} \cdot(\mathbf{2} \cdot \mathbf{N}-1)-\mathbf{A F}=0 \quad \frac{1}{4} \cdot \frac{\left(\mathbf{8} \cdot \mathbf{N}^{2}-\mathbf{8} \cdot \mathbf{N}+1\right)}{(2 \cdot \mathbf{N}-1)}-\mathbf{A E}=\mathbf{0}\)
\(\frac{1}{4} \cdot \frac{1}{(2 \cdot \mathbf{N}-1)}-\mathbf{I K}=0 \quad 2 \cdot \mathbf{N} \cdot \frac{(\mathbf{N}-1)}{(2 \cdot \mathbf{N}-1)}-\mathbf{A H}=0 \quad \frac{\left(8 \cdot \mathbf{N}^{2}-8 \cdot \mathbf{N}+1\right)}{(2 \cdot \mathbf{N}-1)^{3}} \cdot \mathbf{N} \cdot(\mathbf{N}-1)-\mathbf{A C}=0\)
\((\mathbf{N}-1)^{2} \cdot \frac{(4 \cdot \mathbf{N}-1)}{(2 \cdot \mathbf{N}-1)^{3}}-\mathbf{B C}=0 \quad \frac{1}{4} \cdot \frac{(-3+4 \cdot N)}{(2 \cdot N-1)}-\mathbf{B E}=0\)
\(\frac{1}{4} \cdot \frac{(-\mathbf{3}+4 \cdot \mathbf{N})}{(2 \cdot \mathbf{N}-\mathbf{1})}-\mathbf{B E}=\mathbf{0}\)
\(\sim_{n=0}^{0}\)
On Trisection 051401.MCD

For any given QLX, XLZ is \(1 / 3\) of that angle. What are the Algebraic names in this figure for the cords QX and XZ?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5} \quad \mathbf{C E}:=\mathbf{1} \quad \mathbf{C N}:=\mathbf{C E} \cdot \mathbf{N} \\
& \mathbf{E N}:=\mathbf{C N}-\mathbf{C E} \quad \mathbf{E L}:=\frac{\mathbf{E N}}{2} \quad \mathbf{L V}:=\mathbf{E L} \\
& \mathbf{C L}:=\mathbf{C E}+\mathbf{E L} \\
& \mathbf{C V}:=\mathbf{C L} \quad \mathbf{S}_{\mathbf{1}}:=\mathbf{C L} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{C V} \\
& \mathbf{S}_{\mathbf{3}}:=\mathbf{L V} \quad \mathbf{C K}:=\frac{\mathbf{S}_{\mathbf{2}}{ }^{2}+\mathbf{S}_{\mathbf{1}}{ }^{2}-\mathbf{S}_{\mathbf{3}}{ }^{2}}{2 \cdot \mathbf{S}_{\mathbf{1}}} \quad \mathbf{C R}:=\mathbf{C K} \quad \mathbf{R V}:=\mathbf{C V}-\mathbf{C R} \\
& \mathbf{Q R}:=\mathbf{R V} \quad \mathbf{C Q}:=\mathbf{C V}-(\mathbf{Q R}+\mathbf{R V}) \quad \text { CI }:=\frac{\mathbf{C K} \cdot \mathbf{C Q}}{\mathbf{C V}} \quad \text { EI }:=\mathbf{C I}-\mathbf{C E} \\
& \mathbf{I N}:=\mathbf{E N}-\mathbf{E I} \quad \mathbf{I Q}:=\sqrt{\mathbf{E l}} \mathbf{L P}:=\mathbf{I Q} \quad \mathbf{L X}:=\mathbf{E I L}:=\mathbf{E L}-\mathbf{E I} \quad \mathbf{P X}:=\mathbf{L X}-\mathbf{L P} \\
& \mathbf{A L}:=\frac{\mathbf{I L} \cdot \mathbf{L X}}{\mathbf{P X}} \quad \mathbf{A E}:=\mathbf{A L}-\mathbf{E L} \quad \mathbf{A C}:=\mathbf{A E}-\mathbf{C E} \quad \mathbf{A I}:=\mathbf{A C}+\mathbf{C I} \quad \mathbf{A X}:=\sqrt{\mathbf{A L}}+
\end{aligned}
\]
\[
\mathbf{A Q}:=\frac{\mathbf{A X} \cdot \mathbf{A I}}{\mathbf{A L}} \quad \mathbf{Q X}:=\mathbf{A X}-\mathbf{A Q} \quad \mathbf{C X}:=\sqrt{\mathbf{C L}^{2}+\mathbf{L X}^{2}} \quad \mathbf{C S}:=\frac{\mathbf{C L}^{2}}{\mathbf{C X}} \quad \mathbf{S X}:=\mathbf{C X}-\mathbf{C S}
\]
\[
\mathbf{O S}:=\mathbf{S X} \quad \mathbf{C O}:=\mathbf{C X}-(\mathbf{S X}+\mathbf{O S}) \quad \mathbf{G O}:=\frac{\mathbf{L X} \cdot \mathbf{C O}}{\mathbf{C X}} \quad \mathbf{C G}:=\frac{\mathbf{C L} \cdot \mathbf{C O}}{\mathbf{C X}} \quad \mathbf{E G}:=\mathbf{C G}-\mathbf{C E}
\]
\[
\mathbf{A G}:=\mathbf{A E}+\mathbf{E G} \quad \mathbf{A O}:=\sqrt{\mathbf{A G}^{2}+\mathbf{G O}^{2}} \quad \mathbf{A U}:=\frac{\mathbf{A G} \cdot \mathbf{A L}}{\mathbf{A O}} \quad \mathbf{O U}:=\mathbf{A U}-\mathbf{A O} \quad \mathbf{U Z}:=\mathbf{O U} \quad \mathbf{A Z}:=\mathbf{A O}+(\mathbf{O U}+\mathbf{U Z})
\]

\section*{Cris 3}
\[
\mathbf{L W}:=\frac{\mathbf{G O} \cdot \mathbf{A L}}{\mathbf{A G}} \quad \mathbf{A W}:=\frac{\mathbf{A O} \cdot \mathbf{A L}}{\mathbf{A G}} \quad \mathbf{W Z}:=\mathbf{A Z}-\mathbf{A W} \quad \mathbf{W Y}:=\frac{\mathbf{G O} \cdot \mathbf{W Z}}{\mathbf{A O}}
\]

\[
\mathbf{Y Z}:=\frac{\mathbf{A G} \cdot \mathbf{W Z}}{\mathbf{A O}} \quad \mathbf{Y X}:=\mathbf{L X}-(\mathbf{L W}+\mathbf{W Y}) \quad \mathbf{X Z}:=\sqrt{\mathbf{Y} \mathbf{X}^{\mathbf{2}}+\mathbf{Y Z} \mathbf{Z}^{2}}
\]

Some Algebraic Names:
\(\frac{1}{2} \cdot \mathbf{C E} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{C E}-\mathbf{E L}=0 \quad \frac{1}{4} \cdot \mathbf{C E} \cdot \frac{\left(1+6 \cdot N+\mathbf{N}^{2}\right)}{(1+\mathbf{N})}-\mathbf{C K}=0\)
\(\frac{1}{4} \cdot \mathrm{CE} \cdot \frac{\left(1+\mathrm{N}^{2}-2 \cdot \mathrm{~N}\right)}{(1+\mathrm{N})}-\mathrm{RV}=0 \quad 2 \cdot \mathrm{CE} \cdot \frac{\mathrm{N}}{(1+\mathrm{N})}-\mathrm{CQ}=0\)
\(\mathbf{C E} \cdot \frac{\mathbf{N}^{3}+6 \mathbf{N}^{2}+\mathrm{N}}{(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{C E}-\mathbf{E I}=\mathbf{0} \quad \mathbf{C E} \cdot \frac{\left(1+6 \cdot N+\mathbf{N}^{2}\right)}{(1+N)^{3}} \cdot \mathbf{N}-\mathbf{C I}=\mathbf{0}\)
\(\mathbf{C E} \cdot \mathbf{N}^{2} \cdot \frac{\left(-3+2 \cdot \mathbf{N}+\mathbf{N}^{2}\right)}{(1+\mathbf{N})^{3}}-\mathrm{IN}=\mathbf{0} \quad(\mathbf{N}-\mathbf{1}) \cdot \mathbf{N} \cdot \mathbf{C E} \cdot \frac{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+1)}}{(1+\mathbf{N})^{3}}-I Q=0\)
\(\frac{1}{2} \cdot C E \cdot \frac{\left(2 \cdot N-6 \cdot N^{2}+2 \cdot N^{3}+N^{4}+1\right)}{(1+N)^{3}}-I L=0\)
\[
\left[\frac{1}{2} \cdot \mathbf{C E} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{\left[\mathbf{N}^{3}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}+1\right]}{(\mathbf{1}+\mathbf{N})^{3}}\right]-\mathbf{P X}=\mathbf{0}
\]

\(\mathbf{C E} \cdot(\mathbf{N}-1) \cdot \sqrt{\mathbf{2}} \cdot \sqrt{\frac{(1+\mathbf{N})^{3}}{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}-2 \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}\right]}} \cdot \mathbf{N} \cdot \frac{\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(1+\mathbf{N})^{3}}-\mathbf{A Q}=\mathbf{0}\)
\[
\begin{aligned}
& \sqrt{\left[\mathbf{2} \cdot(\mathbf{1}+\mathbf{N})^{3}\right]} \\
& \begin{array}{l}
{\left[\begin{array}{l}
\mathbf{N}^{\mathbf{3}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}} \ldots \\
+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}
\end{array}\right.} \\
+-\mathbf{Q X}
\end{array} \\
& +\mathbf{C E} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{\left[\begin{array}{l}
\left(\mathbf{N}^{3}+\mathbf{3} \cdot \mathbf{N}^{2}\right)-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \ldots
\end{array}\right]}{\mathbf{+ 3 \cdot ( \mathbf { 1 } + \mathbf { N } ) ^ { 3 }}} \ldots=\mathbf{0} \\
&
\end{aligned}
\]
\[
\frac{1}{2} \cdot C E \cdot\left(N^{2}+4 \cdot N+1\right) \cdot \frac{(N-1)^{2}}{\left[N^{3}+3 \cdot N^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}-A L=0
\]
\[
-\mathbf{C E} \cdot \mathbf{N} \cdot \frac{\left[-\mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{6} \cdot \mathbf{N}+\mathbf{1}-\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{N}^{2}\right]}{\left[\mathbf{N}^{\mathbf{3}}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}\right]}-\mathbf{A C}=\mathbf{0}
\]
\[
\frac{\mathbf{C E} \cdot(\mathbf{N}-\mathbf{1})^{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+\mathbf{1}\right)}{\left[\mathbf{N}^{\mathbf{3}}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}\right] \cdot(\mathbf{1}+\mathbf{N})^{3}}-\mathbf{A I}=\mathbf{0}
\]
\[
\frac{1}{2} \cdot \mathbf{C E} \cdot(\mathbf{N}-1) \cdot \sqrt{2} \cdot \sqrt{\frac{(1+N)^{3}}{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}-2 \cdot N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}}-\mathbf{A X}=\mathbf{0}
\]

\section*{\(\cos ^{2}{ }^{3}{ }^{38}\)}

\[
\begin{aligned}
& \frac{C E}{2} \cdot \sqrt{2} \cdot \sqrt{\left(1+\mathbf{N}^{2}\right)}-\mathbf{C X}=0 \quad \frac{1}{4} \cdot \mathbf{C E} \cdot(1+N)^{2} \cdot \frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{C S}=0 \\
& \frac{1}{4} \cdot \sqrt{2} \cdot \mathbf{C E} \cdot \frac{(N-1)^{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{S X}=0 \quad \frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}} \cdot \mathbf{C E} \cdot \mathbf{N}-\mathbf{C O}=0 \quad C E \cdot N \cdot \frac{(N-1)}{\left(1+N^{2}\right)}-G O=0 \\
& C E \cdot \frac{\mathbf{N}^{2}+N}{\left(1+N^{2}\right)}-C G=0 \quad C E \cdot \frac{(N-1)}{\left(1+N^{2}\right)}-E G=0 \\
& \mathbf{C E} \cdot(\mathbf{N}-\mathbf{1})^{\mathbf{2}} \cdot \mathbf{N} \cdot \frac{[\mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}-\mathbf{2} \cdot \mathbf{N}+\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}]}{\left.\left[\mathbf{N}^{\mathbf{3}}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \mathbf{N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}\right] \cdot\left(\mathbf{1}+\mathbf{N}^{2}\right)\right]}-\mathbf{A G}=\mathbf{0}
\end{aligned}
\]


Segment DF And HM 052201
Given AB and AG, what is HM and DF?

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{7 . 1 1 1} \quad \mathbf{A B}:=.375 \\
& \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \quad \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \text { FK }:=\mathbf{B F} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \\
& \mathbf{A K}:=\sqrt{\mathbf{A F}^{2}+\mathbf{F K}^{2}} \quad \mathbf{A J}:=\frac{\mathbf{A F}^{2}}{\mathbf{A K}} \quad \mathbf{J K}:=\mathbf{A K}-\mathbf{A J} \quad \mathbf{H J}:=\mathbf{J K} \\
& \mathbf{A H}:=\mathbf{A K}-(\mathbf{J K}+\mathbf{H J}) \quad \mathbf{A C}:=\frac{\mathbf{A F} \cdot \mathbf{A H}}{\mathbf{A K}} \quad \mathbf{E M}:=\frac{\mathbf{B F}}{2} \quad \text { FL }:=\mathbf{2} \cdot \mathbf{A F} \\
& \mathbf{E F}:=\frac{\mathbf{F L}}{2}-\frac{\sqrt{-4 \mathbf{E M}^{2}+\mathbf{F L}^{2}}}{\mathbf{2}} \quad \text { AE }:=\mathbf{A F}-\mathbf{E F} \quad \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C H}:=\frac{\mathbf{F K} \cdot \mathbf{A H}}{\mathbf{A K}} \\
& \mathbf{H M}:=\sqrt{(\mathbf{E M}+\mathbf{C H})^{2}+\mathbf{C E}^{2}} \quad \text { DE }:=\frac{\mathbf{C E} \cdot \mathbf{E M}}{\mathbf{E M}+\mathbf{C H}} \quad \mathbf{D F}:=\mathbf{D E}+\mathbf{E F}
\end{aligned}
\]

Some Algebraic Names:
\(\mathbf{A B} \cdot \mathbf{N}-\mathbf{A G}=\mathbf{0} \quad \mathbf{A B} \cdot \mathbf{N}-\mathbf{A B}-\mathbf{B G}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{B F}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{A B}-\mathbf{F K}=\mathbf{0}\)
\(\frac{1}{2} \cdot \mathbf{A B}+\frac{1}{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{A F}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot \sqrt{2} \cdot \sqrt{1+\mathbf{N}^{2}}-\mathbf{A K}=0 \quad \frac{1}{4} \cdot \mathbf{A B} \cdot(1+\mathbf{N})^{2} \cdot \frac{\sqrt{2}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{A J}=\mathbf{0}\)
\(\frac{1}{4} \cdot \sqrt{2} \cdot \mathbf{A B} \cdot \frac{\left(1+\mathbf{N}^{2}-2 \cdot \mathbf{N}\right)}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{J K}=\mathbf{0} \quad \mathbf{A B} \cdot \sqrt{2} \cdot \frac{\mathrm{~N}}{\sqrt{1+\mathbf{N}^{2}}}-\mathbf{A H}=0 \quad \mathbf{A B} \cdot(1+\mathbf{N}) \cdot \frac{\mathbf{N}}{1+\mathbf{N}^{2}}-\mathbf{A C}=\mathbf{0}\)
\(\frac{1}{4} \cdot \mathbf{A B} \cdot \mathbf{N}-\frac{1}{4} \cdot \mathbf{A B}-\mathbf{E M}=\mathbf{0} \quad \mathbf{A B}+\mathbf{A B} \cdot \mathbf{N}-\mathbf{F L}=\mathbf{0}\)

\[
\left(\frac{1}{2} \cdot A B+\frac{1}{2} \cdot A B \cdot N\right)-\frac{1}{4} \cdot A B \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}-E F=0
\]
\[
\frac{1}{4} \cdot A B \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3}-A E=0
\]
\[
\frac{1}{4} \cdot A B \cdot \frac{\left(\sqrt{3 \cdot N^{2}+10 \cdot N+3}+\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N^{2}-4 \cdot N-4 \cdot N^{2}\right)}{\left(1+N^{2}\right)}-C E=0
\]
\[
(N-1) \cdot A B \cdot \frac{N}{\left(1+\mathbf{N}^{2}\right)}-\mathbf{C H}=\mathbf{0}
\]
\(\frac{1}{2} \cdot \mathbf{A B} \cdot \sqrt{(\mathbf{1}+\mathbf{N}) \cdot \frac{\left[\mathbf{N}^{\mathbf{3}}+\mathbf{3} \cdot \mathbf{N}^{2}-\mathbf{2} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot \mathbf{N}+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}\right.}{\left(\mathbf{1 + \mathbf { N } ^ { 2 } )}\right.}}-\mathbf{H M}=\mathbf{0}\)
\(\frac{1}{4} \cdot\left(\sqrt{3 \cdot N^{2}+10 \cdot N+3}+\sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N^{2}-4 \cdot N-4 \cdot N^{2}\right) \cdot \frac{A B}{\left(N^{2}+4 \cdot N+1\right)}-D E=0\)
\(\frac{1}{2} \cdot A B \cdot \frac{\left(3 \cdot N+3 \cdot N^{2}+1+N^{3}-2 \cdot \sqrt{3 \cdot N^{2}+10 \cdot N+3} \cdot N\right)}{\left(N^{2}+4 \cdot N+1\right)}-D F=0\)
\(\sim_{N \rightarrow \infty}^{0}\)


\section*{Point of Intersection 052701}

Do RY and PW intersect at G?
\[
\begin{aligned}
& \mathbf{N}:=5 \quad \text { CE := } 1 \quad \text { CN := CE } \cdot \mathbf{N} \quad \text { EN }:=\mathbf{C N}-\mathbf{C E} \quad \text { EL := } \frac{\text { EN }}{2} \quad \text { LV }:=\mathbf{E L} \\
& \text { LT }:=\mathbf{E L} \quad \text { LY }:=\mathbf{E L} \quad \text { CL }:=\mathbf{C E}+\mathbf{E L} \quad \text { CT }:=\mathbf{C L} \quad \mathbf{S}_{\mathbf{1}}:=\mathbf{C L} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{C T} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{L T} \\
& \mathrm{KL}:=\frac{\mathbf{S}_{\mathbf{3}}{ }^{2}+{\mathbf{\mathbf { S } _ { \mathbf { 1 } }}}^{2}-{\mathbf{\mathbf { S } _ { \mathbf { 2 } }}}^{2}}{\mathbf{2} \cdot \mathbf{S}_{\mathbf{1}}} \mathbf{C K}:=\mathbf{C L}-\mathrm{KL} \mathbf{C S}:=\mathbf{C K} \quad \mathbf{S T}:=\mathbf{C T}-\mathbf{C S} \quad \text { RS }:=\mathbf{S T} \\
& \mathbf{C R}:=\mathbf{C T}-(\mathbf{S T}+\mathbf{R S}) \quad \mathbf{C F}:=\frac{\mathbf{C K} \cdot \mathbf{C R}}{\mathbf{C T}} \quad \mathbf{F R}:=\sqrt{\mathbf{C R}^{2}-\mathbf{C F}^{2}} \text { FQ }:=\frac{\mathbf{L V} \cdot \mathbf{C F}}{\mathbf{C L}} \quad \text { FL }:=\mathbf{C L}-\mathbf{C F} \\
& \mathbf{G L}:=\frac{\mathbf{F L} \cdot \mathbf{L Y}}{(\mathbf{L Y}+\mathbf{F R})} \\
& \text { Some Algebraic Names: }
\end{aligned}
\]
\(\mathbf{C E} \cdot \mathbf{N}-\mathbf{C N}=\mathbf{O} \quad \mathbf{C E} \cdot \mathrm{N}-\mathbf{C E}-\mathbf{E N}=\mathbf{O} \quad \frac{1}{2} \cdot \mathbf{C E} \cdot \mathbf{N}-\frac{1}{2} \cdot \mathbf{C E}-\mathbf{E L}=0 \quad \frac{1}{2} \cdot \mathbf{C E}+\frac{1}{2} \cdot \mathbf{C E} \cdot \mathrm{~N}-\mathbf{C L}=0 \quad \frac{1}{4} \cdot \mathbf{C E} \cdot \frac{(\mathbf{N}-1)^{2}}{(1+\mathbf{N})}-\mathrm{KL}=0\)
\(\frac{1}{4} \cdot \mathbf{C E} \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)}-\mathbf{C K}=0 \quad \frac{1}{4} \cdot \mathbf{C E} \cdot \frac{\left(1-2 \cdot N+N^{2}\right)}{(1+N)}-S T=0 \quad 2 \cdot C E \cdot \frac{N}{(1+N)}-\mathbf{C R}=0 \quad C E \cdot \frac{\left(1+6 \cdot N+N^{2}\right)}{(1+N)^{3}} \cdot N-C F=0\)
\(\mathbf{C E} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot N+3} \cdot N \cdot \frac{(N-1)}{(1+N)^{3}}-F R=0 \quad C E \cdot(N-1) \cdot\left(1+6 \cdot N+N^{2}\right) \cdot \frac{N}{(1+N)^{4}}-F Q=0 \quad \frac{1}{2} \cdot C E \cdot \frac{\left(1+2 \cdot N-6 \cdot N^{2}+2 \cdot N^{3}+N^{4}\right)}{(1+N)^{3}}-F L=0\)

\[
\mathbf{G L}:=\frac{1}{2} \cdot \frac{\mathbf{C E} \cdot\left(\mathbf{N}^{2}+\mathbf{4} \cdot \mathbf{N}+\mathbf{1}\right) \cdot(\mathbf{N}-\mathbf{1})^{2}}{\left[\mathbf{N}^{\mathbf{3}}+\mathbf{3} \cdot \mathbf{N}^{2}+\mathbf{2 N} \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}+\mathbf{3} \cdot \mathbf{N}+\mathbf{1}\right]}
\]

From Segment DF And HM 052201:
\(\frac{1}{2} \cdot \frac{\mathbf{C E} \cdot\left(\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}+3 \cdot \mathbf{N}-2 \mathbf{N} \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot \mathbf{N}+3}+1\right)}{\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}-\mathbf{G L}=0\)

Which does reduce to,
\[
\frac{\frac{1}{2} \cdot \frac{C E \cdot\left(\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}+3 \cdot \mathbf{N}-2 N \cdot \sqrt{3 \cdot \mathbf{N}^{2}+10 \cdot N+3}+1\right)}{\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right)}}{\frac{1}{2} \cdot \frac{\mathbf{C E} \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot(\mathbf{N}-1)^{2}}{\left[\mathbf{N}^{3}+3 \cdot \mathbf{N}^{2}+2 N \cdot \sqrt{(N+3) \cdot(3 \cdot N+1)}+3 \cdot N+1\right]}}=1 \quad 1=1
\]


0530011

What is CD and BL?
\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{5}
\]
\[
\mathbf{C E}:=\mathbf{N}_{1} \quad \mathbf{E K}:=\mathbf{N}_{2} \quad \mathbf{E G}:=\frac{\mathbf{E K}}{2} \quad \mathbf{C G}:=\mathbf{C E}+\mathbf{E G}
\]
\[
\mathbf{C Q}:=\mathbf{C G} \quad \mathbf{P Q}:=\frac{\mathbf{E G}^{2}}{\mathbf{C Q}} \quad \mathbf{C P}:=\mathbf{C Q}-\mathbf{P Q} \quad \mathbf{G T}:=\mathrm{EG} \quad \mathbf{C F}:=\frac{\mathbf{C P}^{2}+\mathbf{C G}^{2}-\mathbf{E G}^{2}}{2 \cdot \mathbf{C G}}
\]
\[
\mathbf{P F}:=\sqrt{\mathbf{C P}^{2}-\mathbf{C F}^{2}} \quad \mathbf{G S}:=\mathbf{E G} \quad \mathbf{F G}:=\mathbf{C G}-\mathbf{C F} \quad \mathbf{F S}:=\sqrt{\mathbf{F G}^{2}+\mathbf{G S}^{2}}
\]
\[
\mathbf{D G}:=\frac{\mathbf{G S} \cdot \mathbf{G T}}{\mathbf{F G}} \quad \mathbf{C D}:=\mathbf{C G}-\mathbf{D G} \quad \mathbf{B L}:=\frac{\mathbf{P F} \cdot \mathbf{C D}}{\mathbf{C P}}
\]

Some Algebraic Names;
\(\mathbf{C E}:=\mathbf{N}_{1} \quad \mathbf{E K}:=\mathbf{N}_{2} \quad \mathbf{E G}-\frac{\mathbf{N}_{2}}{2}=\mathbf{0} \quad \mathbf{C G}-\left(\mathbf{N}_{1}+\frac{\mathbf{N}_{2}}{2}\right)=0\)
\(P Q-\frac{1}{2} \cdot \frac{\mathbf{N}_{2}^{2}}{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0 \quad \mathbf{C P}-2 \cdot \mathbf{N}_{1} \cdot \frac{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}=0\)
\(C F:=N_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot \frac{\left(8 \cdot \mathbf{N}_{1}^{2}+8 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}^{2}\right)}{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{3}}\)
\(\mathbf{P F}-\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot \mathbf{N}_{1} \cdot \sqrt{\left(\mathbf{N}_{2}+\mathbf{4} \cdot \mathbf{N}_{1}\right) \cdot\left(\mathbf{3} \cdot \mathbf{N}_{2}+\mathbf{4} \cdot \mathbf{N}_{1}\right)} \cdot \frac{\mathbf{N}_{\mathbf{2}}}{\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)^{\mathbf{3}}}=\mathbf{0}\)

Cina

\[
\begin{aligned}
& F G-\frac{1}{2} \cdot N_{2}{ }^{2} \cdot \frac{\left(6 \cdot N_{1}{ }^{2}+6 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}\right)}{\left(2 \cdot N_{1}+N_{2}\right)^{3}}=0 \\
& \text { FS }-\sqrt{\left[\frac{1}{2} \cdot N_{2}^{2} \cdot \frac{\left(6 \cdot N_{1}{ }^{2}+6 \cdot N_{1} \cdot N_{2}+N_{2}{ }^{2}\right)}{\left(2 \cdot N_{1}+N_{2}\right)^{3}}\right]^{2}+\left(N_{R} N_{2}\right)^{2}}=0 \\
& F S-\left(\frac{1}{2}\right) \cdot N_{2} \cdot \sqrt{2} \cdot \frac{\sqrt{\left(138 \cdot N_{2}{ }^{2} \cdot N_{1}{ }^{4}+116 \cdot N_{2}{ }^{3} \cdot N_{1}{ }^{3}+54 \cdot N_{2}{ }^{4} \cdot N_{1}{ }^{2}+32 \cdot N_{1}{ }^{6}+96 \cdot N_{1}{ }^{5} \cdot N_{2}{ }^{5} \cdot N_{1}\right) \ldots}}{\left(2 \cdot N_{1}+N_{2}\right)^{3}}=0 \\
& \text { DG }-\frac{\left(2 \cdot N_{1}+N_{2}\right)^{3}}{\left[2 \cdot\left(6 \cdot N_{1}{ }^{2}+6 \cdot N_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}^{2}\right)\right]}=0 \\
& \mathbf{C D}-\mathbf{N}_{1} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot \frac{\left(2 \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right)}{\left(6 \cdot \mathbf{N}_{1}{ }^{2}+6 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{2}{ }^{2}\right)}=0 \\
& \text { BL }-\frac{\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot \mathbf{N}_{1} \cdot \sqrt{\left(\mathbf{N}_{2}+4 \cdot \mathbf{N}_{1}\right) \cdot\left(\mathbf{3} \cdot \mathbf{N}_{2}+4 \cdot \mathbf{N}_{1}\right)} \cdot \mathbf{N}_{2}}{2 \cdot\left(\mathbf{2} \cdot \mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{6} \cdot \mathbf{N}_{1}{ }^{2}+\mathbf{6} \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{2}+\mathbf{N}_{\mathbf{2}}{ }^{2}\right)}=\mathbf{0}
\end{aligned}
\]

A Small Extrapolation 060101
Given AE, AG, and EG, what is the Algebraic name of the segment GJ?

\[
\begin{aligned}
& \mathbf{S}_{\mathbf{1}}:=\mathbf{6 . 0 0 6 0 4} \quad \mathbf{S}_{\mathbf{2}}:=\mathbf{4 . 0 2 1 6 7} \quad \mathbf{S}_{\mathbf{3}}:=\mathbf{3} .38667 \\
& \mathbf{A E}:=\mathbf{S}_{\mathbf{1}} \quad \mathbf{A G}:=\mathbf{S}_{\mathbf{2}} \quad \mathbf{E G}:=\mathbf{S}_{\mathbf{3}} \\
& \mathbf{A C}:=\frac{\mathbf{A G}^{\mathbf{2}}+\mathbf{A E}^{\mathbf{2}}-\mathbf{E G}^{\mathbf{2}}}{\mathbf{2 A E}} \\
& \mathbf{A H}:=\frac{\mathbf{A C} \cdot \mathbf{A E}}{\mathbf{A G}} \quad \mathbf{G H}:=\mathbf{A H}-\mathbf{A G} \\
& \text { HJ }:=\mathbf{G H} \quad \mathbf{G J}:=\mathbf{G H}+\mathbf{H J}
\end{aligned}
\]

Some Algebraic Names:
\[
\begin{array}{ll}
\frac{S_{2}^{2}+S_{1}^{2}-S_{3}^{2}}{2 S_{1}}-A C=0 & \frac{{S_{1}}^{2}+{S_{2}}^{2}-S_{3}^{2}}{2 S_{2}}-A H=0 \\
\frac{S_{1}^{2}-S_{2}^{2}-S_{3}^{2}}{S_{2}}-G J=0 & \frac{S_{2}^{2}-S_{3}^{2}}{2 S_{2}}-G H=0
\end{array}
\]


Units From Both Sides 060201
Start with AB as unit and find. . . . then start with . .
. . as unit and find AB.

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{5 . 7 2 7} \quad \mathbf{A B}:=.573 \quad \mathbf{A G}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B G}:=\mathbf{A G}-\mathbf{A B} \quad \mathbf{B F}:=\frac{\mathbf{B G}}{2} \quad \mathbf{A F}:=\mathbf{A B}+\mathbf{B F} \\
& \mathbf{A E}:=\sqrt{\mathbf{A B} \cdot \mathbf{A G}} \quad \mathbf{B E}:=\mathbf{A E}-\mathbf{A B} \\
& \mathbf{F N}:=\mathbf{B F} \quad \mathbf{E F}:=\mathbf{B F}-\mathbf{B E} \quad \text { EN }:=\sqrt{\mathbf{F N}^{2}+\mathbf{E F}^{2}} \\
& \text { NO }:=\frac{\mathbf{F N}^{2}}{\mathbf{E N}} \quad \mathbf{N I}:=\mathbf{2} \cdot \mathbf{N O} \quad \text { EI }:=\mathbf{N I}-\mathbf{E N} \quad \frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})-\mathbf{B F}=\mathbf{0} \\
& \mathbf{D E}:=\frac{\mathbf{E F} \cdot \mathbf{E I}}{\mathbf{E N}} \quad \mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})-\mathbf{B G}=\mathbf{0}
\end{aligned}
\]
\(\mathbf{A B} \sqrt{\mathbf{N}}-\mathbf{A E}=\mathbf{0} \quad \mathbf{A B} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})-\mathbf{B E}=\mathbf{0}\) \(\frac{1}{2} \cdot \mathbf{A B} \cdot(1+\mathbf{N})-\mathbf{A F}=0\)
\(\mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{B G}_{\mathbf{2}}:=1 \quad \mathbf{B F}_{2}:=\frac{\mathrm{BG}_{2}}{2} \quad \mathbf{B E}_{2}:=\frac{\mathrm{BF}_{2}}{\mathbf{N}_{2}} \quad \mathbf{E F}_{2}:=\mathbf{B F}_{\mathbf{2}}-\mathbf{B E}_{\mathbf{2}}\)
\(\mathbf{F N}_{2}:=\mathrm{BF}_{2} \quad \mathrm{EN}_{2}:=\sqrt{\mathrm{EF}_{2}{ }^{2}+\mathrm{FN}_{\mathbf{2}}{ }^{2}} \quad \mathbf{N P}_{\mathbf{2}}:=\frac{\mathrm{EN}_{\mathbf{2}}}{2} \quad \mathbf{L N _ { 2 }}:=\frac{\mathrm{EN}_{\mathbf{2}} \cdot \mathbf{N P}_{\mathbf{2}}}{\mathbf{E F}_{\mathbf{2}}}\)
\(\mathbf{A F}_{\mathbf{2}}:=\mathbf{L N}_{\mathbf{2}} \quad \mathbf{A B} \mathbf{2}:=\mathbf{A F}_{\mathbf{2}}-\mathbf{B F}_{\mathbf{2}}\)


\section*{Crina}

\[
\begin{aligned}
& \frac{\mathbf{B G}_{2}}{2}-\mathbf{B F}_{2}=\mathbf{0} \quad \frac{\mathrm{BG}_{2}}{\left(\mathbf{2} \cdot \mathbf{N}_{2}\right)}-\mathrm{BE}_{2}=\mathbf{0} \quad \frac{\mathbf{B G _ { 2 }}}{2} \cdot \frac{\left(\mathbf{N}_{2}-\mathbf{1}\right)}{\mathbf{N}_{2}}-\mathbf{E F}_{2}=\mathbf{0} \\
& \frac{\mathbf{B G}_{2}}{2} \cdot \frac{\sqrt{2 \cdot \mathbf{N}_{2}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{2}+1}}{\mathbf{N}_{2}}-\mathbf{E N}_{2}=\mathbf{0} \quad \frac{\mathbf{B G}_{2}}{4} \cdot \frac{\sqrt{2 \cdot \mathbf{N}_{2}{ }^{2}-2 \cdot \mathbf{N}_{2}+\mathbf{1}}}{\mathbf{N}_{2}}-\mathbf{N P}_{\mathbf{2}}=\mathbf{0} \\
& \frac{\mathbf{B G}_{2}}{4} \cdot \frac{\left(\mathbf{2} \cdot \mathbf{N}_{2}{ }^{2}-\mathbf{2} \cdot \mathbf{N}_{2}+\mathbf{1}\right)}{\left[\mathbf{N}_{2} \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)\right]}-\mathbf{L N}_{2}=0 \quad \frac{\mathbf{B G}_{2}}{4 \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{2}-\mathbf{1}\right)}-\mathbf{A B}_{2}=\mathbf{0} \\
& \mathbf{A I}:=\mathbf{A E} \quad \mathbf{F I}:=\mathbf{B F} \quad \mathbf{A D}:=\frac{\mathbf{A I}^{\mathbf{2}}+\mathbf{A F}^{\mathbf{2}}-\mathbf{F I}^{\mathbf{2}}}{2 \mathbf{A F}} \quad \mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \\
& \mathbf{A D}-\mathbf{2} \cdot \mathbf{A B} \cdot \frac{\mathbf{N}}{(\mathbf{N}+\mathbf{1})}=\mathbf{0} \quad \mathbf{B D}-\mathbf{A B} \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{1}+\mathbf{N})}=\mathbf{0}
\end{aligned}
\]

\section*{}

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{3}}:=\mathbf{3 . 3 6 4} \quad \mathbf{B G}_{\mathbf{3}}:=\mathbf{2 . 7 0 8} \quad \mathbf{B F}_{\mathbf{3}}:=\frac{\mathbf{B G}_{\mathbf{3}}}{2} \quad \mathbf{B D}_{\mathbf{3}}:=\frac{\mathbf{B F}_{\mathbf{3}}}{\mathbf{N}_{\mathbf{3}}} \quad \mathbf{\mathbf { D G } _ { \mathbf { 3 } } : = \mathbf { B G } _ { \mathbf { 3 } } - \mathbf { B D } _ { \mathbf { 3 } }} \\
& \mathbf{D I}_{\mathbf{3}}:=\sqrt{\mathbf{B D}_{\mathbf{3}} \cdot \mathbf{D G}_{\mathbf{3}}} \quad \mathbf{D F _ { \mathbf { 3 } }}:=\mathbf{B F}_{\mathbf{3}}-\mathbf{B D}_{\mathbf{3}} \quad \mathbf{F N}_{\mathbf{3}}:=\mathbf{B F}_{\mathbf{3}} \quad \mathbf{E F}_{\mathbf{3}}:=\frac{\mathbf{D F}_{\mathbf{3}} \cdot \mathbf{F N}_{\mathbf{3}}}{\mathbf{F N}_{\mathbf{3}}+\mathbf{D I}_{\mathbf{3}}} \\
& \mathbf{E N}_{\mathbf{3}}:=\sqrt{\mathbf{E F}_{\mathbf{3}}{ }^{\mathbf{2}+\mathbf{F N}_{\mathbf{3}}^{2}} \quad \mathbf{N P}_{\mathbf{3}}:=\frac{\mathbf{E N}_{\mathbf{3}}}{2} \quad \mathbf{L N}_{\mathbf{3}}:=\frac{\mathbf{E N}_{\mathbf{3}} \cdot \mathbf{N P}_{\mathbf{3}}}{\mathbf{E F}_{\mathbf{3}}} \quad \mathbf{A F}_{\mathbf{3}}:=\mathbf{L N}_{\mathbf{3}}} \\
& \mathbf{A B}_{\mathbf{3}}:=\mathbf{A F}_{\mathbf{3}}-\mathbf{B F}_{\mathbf{3}}
\end{aligned}
\]
\(\mathrm{BD}_{3}-\frac{1}{2} \cdot \frac{\mathrm{BG}_{3}}{\mathbf{N}_{3}}=\mathbf{0} \quad \mathrm{DG}_{3}-\frac{1}{2} \cdot \mathrm{BG}_{3} \cdot \frac{\left(2 \cdot \mathbf{N}_{3}-1\right)}{\mathbf{N}_{3}}=0 \quad \mathrm{DI}_{3}-\frac{1}{\left(2 \cdot \mathbf{N}_{3}\right)} \cdot \mathrm{BG}_{3} \cdot \sqrt{2 \cdot N_{3}-1}=0 \quad \quad \mathrm{DF}_{3}-\frac{1}{2} \cdot \mathrm{BG}_{3} \cdot \frac{\left(\mathbf{N}_{3}-1\right)}{\mathbf{N}_{3}}=0\) \(\mathbf{E F}_{3}-\frac{1}{2} \cdot \mathbf{B G}_{3} \cdot \frac{\left(\mathbf{N}_{3}-1\right)}{\left(\mathbf{N}_{3}+\sqrt{2 \cdot \mathbf{N}_{3}-1}\right)}=0 \quad \mathbf{N P}_{3}-\frac{1}{4} \cdot \mathbf{B G}_{3} \cdot \sqrt{2} \cdot \sqrt{\frac{\mathbf{N}_{3}}{\left(\mathbf{N}_{3}+\sqrt{2 \cdot \mathbf{N}_{3}-1}\right)}}=0 \quad \mathbf{E N}_{3}-\frac{1}{2} \cdot \mathbf{B G}_{3} \cdot \sqrt{2} \cdot \sqrt{\frac{\mathbf{N}_{3}}{\left(\mathbf{N}_{3}+\sqrt{2 \cdot N_{3}-1}\right)}}=\mathbf{0}\) \(\mathbf{L N}_{3}-\frac{1}{2} \cdot \mathbf{B G}_{3} \cdot \frac{\mathbf{N}_{3}}{\left(\mathbf{N}_{3}-\mathbf{1}\right)}=0 \quad \mathrm{AB}_{3}-\frac{1}{2} \cdot \frac{\mathrm{BG}_{3}}{\left(\mathbf{N}_{3}-1\right)}=0\)
\(C^{\circ}{ }^{2}{ }^{38}\)

\(\mathbf{A H}:=\mathbf{A D}\)
\(\mathbf{F H}:=\mathbf{B F} \quad \mathbf{A C}:=\frac{\mathbf{A H}^{2}+\mathbf{A F}^{\mathbf{2}}-\mathbf{F H}^{2}}{\mathbf{2} \cdot \mathbf{A F}}\)
\(\mathbf{B C}:=\mathbf{A C}-\mathbf{A B}\)
\(\mathbf{A B} \cdot(\sqrt{\mathbf{N}}-\mathbf{1})-\mathbf{B E}=\mathbf{0}\)
\(\mathbf{A C}-\mathbf{A B} \cdot \mathbf{N} \cdot \frac{\left(\mathbf{6} \cdot \mathbf{N}+\mathbf{1}+\mathbf{N}^{2}\right)}{(\mathbf{N}+\mathbf{1})^{3}}=\mathbf{0}\)
\(\mathbf{B C}-\mathbf{A B} \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(\mathbf{N}+\mathbf{1})^{\mathbf{3}}}=\mathbf{0}\)


\section*{Isolating A Problem 060301}

If one is given point \(F\), then finding point \(G\) would lead straightway to the solution. How is BK related to BC?

\[
\begin{aligned}
& \mathbf{N}:=4 \quad \mathbf{B E}:=\mathbf{1} \\
& \mathbf{B D}:=\frac{\mathbf{B E}}{2} \quad \mathbf{B C}:=\frac{\mathbf{B E}}{\mathbf{N}} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \\
& \mathbf{C G}:=\sqrt{\mathbf{B C} \cdot \mathbf{C E}} \quad \mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{A C}:=\frac{\mathbf{C G}^{2}}{\mathbf{C D}} \\
& \mathbf{A F}:=\mathbf{A C} \quad \mathbf{A D}:=\mathbf{A C}+\mathbf{C D} \quad \mathbf{D F}:=\mathbf{B D} \\
& \mathbf{D K}:=\frac{\mathbf{D F}^{2}+\mathbf{A D}^{2}-\mathbf{A F}^{2}}{\mathbf{2 A D}} \quad \mathbf{B K}:=\mathbf{B D}-\mathbf{D K} \\
& \mathbf{C K}:=\mathbf{B C}-\mathbf{B K}
\end{aligned}
\]
\(\mathbf{B E} \cdot \frac{(\mathbf{N}-\mathbf{1})}{\mathbf{N}}-\mathbf{C E}=\mathbf{0} \quad \mathbf{B E} \cdot \frac{\sqrt{(\mathbf{N}-\mathbf{1})}}{\mathbf{N}}-\mathbf{C G}=\mathbf{0} \quad \mathbf{B E} \cdot \frac{(\mathbf{N}-\mathbf{2})}{\mathbf{2} \cdot \mathbf{N}}-\mathbf{C D}=\mathbf{0}\)
\(\mathbf{B E} \cdot \frac{2 \cdot(\mathbf{N}-1)}{\mathbf{N} \cdot(\mathbf{N}-2)}-\mathbf{A C}=0 \quad B E \cdot \frac{\mathbf{N}}{2 \cdot(\mathbf{N}-2)}-\mathbf{A D}=0 \quad B E \cdot \frac{(\mathbf{N}-2) \cdot\left(\mathbf{N}^{2}+2 \cdot \mathbf{N}-2\right)}{2 \cdot \mathbf{N}^{3}}-\mathbf{D K}=0\)
\(\mathbf{B E} \cdot \frac{(3 \cdot \mathbf{N}-2)}{\mathbf{N}^{3}}-\mathbf{B K}=\mathbf{0} \quad \mathbf{B E} \cdot \frac{(\mathbf{N}-1) \cdot(\mathbf{N}-2)}{\mathbf{N}^{3}}-\mathbf{C K}=0 \quad \frac{\mathbf{B K}}{\mathbf{B C}}-\frac{\left(3 \cdot \mathbf{N}^{2}-2\right)}{\mathbf{N}^{2}}=\mathbf{0}\)

Crish 3
For Any AB 061001

\section*{For any AB, AF what is DG?}
\[
\begin{aligned}
& \mathbf{N}:=4.39 \quad \mathbf{A B}:=.615 \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{2} \quad \mathbf{E K}:=\mathbf{B E} \\
& \mathbf{A E}:=\mathbf{A B}+\mathbf{B E} \quad \mathbf{D E}:=\frac{\mathbf{E K}^{2}}{\mathbf{A E}} \quad \mathbf{E F}:=\mathbf{B E} \\
& \mathbf{F M}:=\mathbf{B F} \quad \mathbf{E M}:=\sqrt{\mathbf{F M}^{2}-\mathbf{E F}^{2}} \quad \mathbf{G M}:=\mathbf{F M} \\
& \mathbf{G Q}:=\mathbf{D E} \quad \mathbf{M Q}:=\sqrt{\mathbf{G M}^{2}-\mathbf{G Q}^{2}} \quad \mathbf{E Q}:=\mathbf{M Q}-\mathbf{E M} \quad \mathbf{D G}:=\mathbf{E Q}
\end{aligned}
\]

Some Algebraic Names:
\(\mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})-\mathbf{B F}=\mathbf{0} \quad \frac{\mathbf{A B} \cdot(\mathbf{N}-\mathbf{1})}{2}-\mathbf{B E}=\mathbf{0} \quad \frac{1}{2} \cdot \mathbf{A B} \cdot(\mathbf{N}+\mathbf{1})-\mathbf{A E}=\mathbf{0}\)
\(\frac{1}{2} \cdot \mathbf{A B} \cdot \frac{(\mathbf{N}-1)^{2}}{(\mathbf{N}+1)}-\mathbf{D E}=0 \quad \frac{1}{2} \cdot \sqrt{3} \cdot \mathbf{A B} \cdot(\mathbf{N}-1)-\mathbf{E M}=\mathbf{0}\)
\(\frac{\mathbf{A B} \cdot[\sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})} \cdot(\mathbf{N}-\mathbf{1})]}{2 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{M Q}=\mathbf{0}\)


Elipse By Parallels 082601

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{4} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{1} \\
& \mathbf{A F}:=\mathbf{1} \quad \mathbf{A C}:=\frac{\mathbf{A F}}{\mathbf{2}} \mathbf{C J}:=\mathbf{A C} \\
& \mathbf{B C}:=\frac{\mathbf{A C}}{\mathbf{N}_{\mathbf{1}}} \quad \mathbf{A E}:=\frac{\mathbf{A F}}{\mathbf{N}_{\mathbf{2}}} \\
& \mathbf{E F}:=\mathbf{A F}-\mathbf{A E} \quad \mathbf{E H}:=\sqrt{\mathbf{A E} \cdot \mathbf{E F}} \quad \mathbf{E G}:=\frac{\mathbf{B C} \cdot \mathbf{E H}}{\mathbf{C J}} \\
& \mathbf{C E}:=\mathbf{A E}-\mathbf{A C} \quad \mathbf{C G}:=\sqrt{\mathbf{C E}^{2}+\mathbf{E G}^{2}}
\end{aligned}
\]

Some Algebraic Names:
\[
\begin{aligned}
& \mathbf{B C}-\frac{1}{\left(2 \cdot \mathbf{N}_{1}\right)}=0 \quad \mathrm{AE}-\frac{1}{\mathbf{N}_{2}}=0 \quad \mathbf{E F}-\left(1-\frac{1}{\mathbf{N}_{2}}\right)=0 \quad \mathbf{E H}-\frac{\sqrt{\mathbf{N}_{2}-1}}{\mathbf{N}_{2}}=0 \quad \mathbf{E G}-\frac{\sqrt{\mathbf{N}_{2}-1}}{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}=0 \\
& \mathrm{CE}-\left(\frac{1}{\mathbf{N}_{2}}-\frac{1}{2}\right)=0 \quad \mathrm{CG}-\frac{1}{2} \cdot \frac{\sqrt{4 \cdot \mathbf{N}_{1}{ }^{2}-4 \cdot \mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}+\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}{ }^{2}+4 \cdot \mathbf{N}_{2}-4}}{\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}\right)}=0
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{N}:=\mathbf{7} \quad \mathbf{A B}:=\mathbf{1} \quad \mathbf{A F}:=\mathbf{A B} \cdot \mathbf{N} \\
& \mathbf{B F}:=\mathbf{A F}-\mathbf{A B} \quad \mathbf{B E}:=\frac{\mathbf{B F}}{\mathbf{2}} \quad \mathbf{A E}:=\mathbf{B E}+\mathbf{A B} \\
& \mathbf{A J}:=\mathbf{A E} \quad \mathbf{E J}:=\mathbf{B E} \quad \mathbf{E a}:=\frac{\mathbf{E J}^{2}+\mathbf{A E}^{2}-\mathbf{A J}^{\mathbf{2}}}{\mathbf{2 \cdot A E}} \\
& \mathbf{G b}:=\mathbf{E a} \quad \mathbf{G J}:=\mathbf{2} \cdot \mathbf{G b} \quad \mathbf{A G}:=\mathbf{A J}-\mathbf{G J} \\
& \mathbf{A a}:=\mathbf{A E}-\mathbf{E a} \quad \mathbf{A U}:=\frac{\mathbf{A a} \cdot \mathbf{A G}}{\mathbf{A J}} \\
& \mathbf{J a}:=\sqrt{\mathbf{A J}^{\mathbf{2}}-\mathbf{A a}} \mathbf{A a}^{\mathbf{2}} \quad \mathbf{G U}:=\frac{\mathbf{J a} \cdot \mathbf{A G}}{\mathbf{A J}} \\
& \mathbf{U a}:=\mathbf{A a}-\mathbf{A U} \quad \mathbf{J O}:=\sqrt{\mathbf{U a} \mathbf{a}^{2}+(\mathbf{G U}+\mathbf{J a})^{2}} \\
& \mathbf{J N}:=\frac{\mathbf{J O} \cdot \mathbf{E a}}{\mathbf{U a}} \mathbf{J N}-\mathbf{B E}=\mathbf{0}
\end{aligned}
\]

From 4/29/94 \(O P:=\sqrt{J a^{2}-2 \cdot J a \cdot G U+\mathbf{G U}^{2}+\mathbf{U a}^{2}}\)
\(\mathbf{O P}-\mathbf{2} \cdot \mathbf{E a}=\mathbf{O} \quad\) NO \(:=\mathbf{J O}+\mathbf{J N} \quad \mathbf{E U}:=\mathbf{U a}+\mathbf{E a} \quad \mathbf{E N}:=\sqrt{\mathbf{N O}^{2}-\mathbf{E U}}{ }^{2} \quad\) EL \(:=\mathbf{B E} \quad \mathbf{L N}:=\mathbf{E N}-\mathbf{E L}\)
\(\operatorname{con}^{\infty}\)


\section*{Some Algebraic Names;}
\[
\begin{aligned}
& \mathbf{N}-\mathbf{1}-\mathbf{B F}=\mathbf{0} \quad \frac{\mathbf{N}-1}{2}-\mathbf{B E}=\mathbf{0} \quad \frac{\mathbf{N}+\mathbf{1}}{2}-\mathbf{A E}=0 \quad \frac{(\mathbf{N}-1)^{2}}{4 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{E a}=\mathbf{0} \\
& \frac{(\mathbf{N}-\mathbf{1})^{2}}{2 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{G J}=\mathbf{0} \quad \frac{\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+\mathbf{1}}{4 \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{A a}=\mathbf{0} \quad \frac{\mathbf{2} \cdot \mathbf{N}}{\mathbf{N}+\mathbf{1}}-\mathbf{A G}=\mathbf{0} \quad \frac{\mathbf{N} \cdot\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+1\right)}{(\mathbf{N}+\mathbf{1})^{3}}-\mathbf{A U}=\mathbf{0} \\
& \frac{(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{\mathbf{4} \cdot(\mathbf{N}+\mathbf{1})}-\mathbf{J a}=\mathbf{0} \quad \frac{\mathbf{N} \cdot(\mathbf{N}-\mathbf{1}) \cdot \sqrt{(\mathbf{N}+\mathbf{3}) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{(\mathbf{N}+\mathbf{1})^{\mathbf{3}}}-\mathbf{G U}=\mathbf{0} \\
& \frac{\left(\mathbf{N}^{2}+6 \cdot N+1\right) \cdot(\mathbf{N}-1)^{2}}{4 \cdot(N+1)^{3}}-\mathbf{U a}=\mathbf{0} \quad \frac{(\mathbf{N}-1) \cdot\left(\mathbf{N}^{2}+\mathbf{6} \cdot \mathbf{N}+1\right)}{2 \cdot(\mathbf{N}+\mathbf{1})^{2}}-\mathbf{J O}=\mathbf{0} \quad \frac{\mathbf{N}-1}{2}-\mathrm{JN}=\mathbf{0} \\
& \frac{(N-1)^{2}}{2 \cdot(\mathbf{N}+1)}-\mathbf{O P}=0 \quad \frac{(N-1) \cdot\left(\mathbf{N}^{2}+4 \cdot N+1\right)}{(N+1)^{2}}-N O=0 \quad \frac{(N-1)^{2} \cdot\left(N^{2}+4 \cdot N+1\right)}{2 \cdot(N+1)^{3}}-E U=0
\end{aligned}
\]
\[
\begin{aligned}
& \frac{(\mathbf{N}-1) \cdot\left(\mathbf{N}^{2}+4 \cdot \mathbf{N}+1\right) \cdot \sqrt{(\mathbf{N}+3) \cdot(\mathbf{3} \cdot \mathbf{N}+\mathbf{1})}}{2 \cdot(\mathbf{N}+\mathbf{1})^{3}}-\frac{\mathbf{N}-\mathbf{1}}{2}-\mathbf{L N}=\mathbf{0}
\end{aligned}
\]


\section*{Easy Power-Line}

06_20_02
For any two intersecting circles, the power-line BJ intersects their common tangents AC at midpoint.

\[
\begin{aligned}
& \text { AC }:=\mathbf{5} \quad \mathbf{A F}:=4 \\
& \mathbf{C E}:=\mathbf{3} \quad \text { FH }:=\mathbf{A F} \quad \mathbf{E H}:=\mathbf{C E} \\
& \text { AD }:=\mathbf{C E} \quad \text { DF }:=\mathbf{A F}-\mathbf{A D} \\
& \text { EJ }:=\mathbf{C E} \quad \text { FJ }:=\mathbf{A F} \\
& \text { DE }:=\mathbf{A C} \quad \mathbf{E F}:=\sqrt{\mathbf{D F}^{2}+\mathbf{D E}^{2}} \\
& \text { EG }:=\frac{\mathbf{E J}^{2}+\mathbf{E F}^{2}-\mathbf{F J}^{2}}{\mathbf{2} \cdot \mathbf{E F}}
\end{aligned}
\]
\[
\begin{array}{rl}
\mathbf{E H}:=\frac{\mathbf{D F} \cdot \mathbf{E G}}{\mathbf{E F}} \quad \mathbf{C H}:=\mathbf{C E}+\mathbf{E H} \quad \mathbf{G H}:=\frac{\mathbf{D E} \cdot \mathbf{E G}}{\mathbf{E F}} \quad \mathbf{C K}:=\mathbf{G H} \quad \mathbf{K G}:=\mathbf{C H} \\
\mathbf{B K}:=\frac{\mathbf{D F} \cdot \mathbf{K G}}{\mathbf{D E}} \quad \mathbf{B C}:=\mathbf{C K}+\mathbf{B K} & \mathbf{B C}-\frac{\mathbf{A C}}{2}=\mathbf{0}
\end{array}
\]


021603
From AD project a trisection to EH.


AD \(:=.969 \quad\) AB \(:=\frac{\mathbf{A D}}{2} \quad \mathbf{N}:=1.51\)
\(\mathbf{B D}:=\mathbf{A D}-\mathbf{A B} \quad \mathbf{B C}:=\frac{\mathbf{B D}}{\mathbf{N}}\)
\(\mathbf{C D}:=\mathbf{B D}-\mathbf{B C} \quad \mathbf{A C}:=\mathbf{A B}+\mathbf{B C}\)
AF \(:=A D \quad C F:=\sqrt{A F^{2}-A C^{2}}\)
FI \(:=\sqrt{C D^{2}+C F^{2}}\)

\(\mathrm{DI}:=2 \cdot \mathrm{CF} \quad \mathrm{AI}:=\mathrm{AD} \quad \mathrm{AL}:=\frac{\left(2 \mathrm{AD}^{2}-\mathrm{DI}^{2}\right)}{2 \cdot \mathbf{A D}}\)
FJ \(:=\mathbf{A C}-\mathbf{A L} \quad \mathbf{I L}:=\sqrt{\mathbf{A I}^{2}-\mathbf{A L}^{2}} \quad\) IJ \(:=\mathbf{I L}-\mathbf{C F}\)
\(\mathbf{E L}:=\frac{\mathbf{F J} \cdot \mathbf{I L}}{\mathbf{I J}} \quad \mathbf{A E}:=\mathbf{A L}+\mathbf{E L} \quad\) EI \(:=\frac{\mathbf{F I} \cdot \mathbf{I L}}{\mathbf{I J}}\)
\(\mathbf{E F}:=\mathbf{E I}-\mathbf{F I}\)


Cring

\(\mathbf{F G}:=\frac{\mathbf{E F}{ }^{2}+\mathbf{A F}^{2}-\mathbf{A E} \mathbf{E}^{2}}{-\mathbf{A F}} \quad \mathbf{A G}:=\mathbf{A F}+\mathbf{F G} \quad \mathbf{A N}:=\frac{\mathbf{A C} \cdot \mathbf{A G}}{\mathbf{A F}}\)
\[
\mathbf{E N}:=\mathbf{A E}-\mathbf{A N} \quad \mathbf{F M}:=\frac{\mathbf{F G}}{2} \quad \mathbf{F M}-\mathbf{E N}=\mathbf{0}
\]

\section*{Some Algebraic Names;}
\(\mathbf{B C}-\frac{\mathbf{A D}-\mathbf{A B}}{\mathbf{N}}=\mathbf{C D}-(\mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{A D}-\mathbf{A B})}{\mathbf{N}} \mathbf{A C}-\frac{(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B})}{\mathbf{N}}=\mathbf{0}\)
\(\mathbf{C F}-\frac{\sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}+\mathbf{A B} \cdot \mathbf{N})}}{\mathbf{N}}=\mathbf{0} \quad \mathbf{F I}-\sqrt{\mathbf{2}} \cdot \sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{\mathbf{A D}}{\mathbf{N}}}=\mathbf{0}\)
\(\mathbf{D I}-\mathbf{2} \cdot \frac{\sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}+\mathbf{A B} \cdot \mathbf{N})}}{\mathbf{N}}=\mathbf{0}\)
\(\mathbf{A L}-\frac{-\left(\mathbf{A D}^{2} \cdot \mathbf{N}^{2}-4 \cdot \mathbf{A D} \cdot \mathbf{N} \cdot \mathbf{A B}+4 \cdot \mathbf{A B}^{2} \cdot \mathbf{N}-2 \cdot \mathbf{N}^{2} \cdot \mathbf{A B}^{2}-2 \cdot \mathbf{A D}^{2}+4 \cdot \mathbf{A D} \cdot \mathbf{A B}-2 \cdot \mathbf{A B}{ }^{2}\right)}{\left(\mathbf{A D} \cdot \mathbf{N}^{2}\right)}=0\)
\(\mathbf{F J}-(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{(\mathbf{A D} \cdot \mathbf{N}+\mathbf{2} \cdot \mathbf{A D}-\mathbf{2} \cdot \mathbf{A B}+\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{N})}{\left(\mathbf{A D} \cdot \mathbf{N}^{2}\right)}=\mathbf{0}\)
\(\mathbf{I L}-\frac{(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B})}{\left(\mathbf{A D} \cdot \mathbf{N}^{2}\right)} \cdot \sqrt{\mathbf{4}} \cdot \sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}+\mathbf{A B} \cdot \mathbf{N})}=\mathbf{0}\)

\section*{Cris}

\[
\begin{aligned}
& \mathbf{I J}--\sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}+\mathbf{A B} \cdot \mathbf{N})} \cdot \frac{(-\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{A D}+\mathbf{2} \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})}{\left(\mathbf{A D} \cdot \mathbf{N}^{2}\right)}=\mathbf{0} \\
& \mathbf{E L}-\frac{-2 \cdot(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot(\mathbf{A D} \cdot \mathbf{N}+2 \cdot \mathbf{A D}-\mathbf{2} \cdot \mathbf{A B}+2 \cdot \mathbf{A B} \cdot \mathbf{N}) \cdot(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B})}{\mathbf{A D} \cdot\left[\mathbf{N}^{2} \cdot(-2 \cdot \mathbf{A B} \cdot \mathbf{N}-2 \cdot \mathbf{A D}+2 \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})\right]}=\mathbf{0} \\
& \mathbf{A E}--\mathbf{A D}^{2} \cdot \frac{\mathbf{N}}{(-2 \cdot \mathbf{A B} \cdot \mathbf{N}-2 \cdot \mathbf{A D}+2 \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})}=0 \\
& \mathbf{E I}-2 \cdot \sqrt{2} \cdot \sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{\mathbf{A D}}{\mathbf{N}}} \cdot \frac{(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B})}{(2 \cdot \mathbf{A B} \cdot \mathbf{N}+\mathbf{2} \cdot \mathbf{A D}-\mathbf{2} \cdot \mathbf{A B}-\mathbf{A D} \cdot \mathbf{N})}=\mathbf{0} \\
& \mathbf{E F}--\sqrt{2} \cdot \sqrt{(\mathbf{N}-\mathbf{1}) \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{\mathbf{A D}}{\mathbf{N}}} \cdot \mathbf{A D} \cdot \frac{\mathbf{N}}{(-2 \cdot \mathbf{A B} \cdot \mathbf{N}-2 \cdot \mathbf{A D}+2 \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})}=\mathbf{0} \\
& \mathbf{F G}-\mathbf{- 2} \cdot \mathbf{A D} \cdot(\mathbf{A D}-\mathbf{A B}) \cdot \frac{(\mathbf{N}-\mathbf{1})}{(-\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{A D}+\mathbf{2} \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})}=\mathbf{0} \\
& \mathbf{A G}--\mathbf{A D}^{2} \cdot \frac{\mathbf{N}}{(-2 \cdot \mathbf{A B} \cdot \mathbf{N}-2 \cdot A D+2 \cdot A B+A D \cdot \mathbf{N})}=0 \\
& \mathbf{A N}-(\mathbf{A B} \cdot \mathbf{N}+\mathbf{A D}-\mathbf{A B}) \cdot \frac{\mathbf{A D}}{(\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{N}+\mathbf{2} \cdot \mathbf{A D}-\mathbf{2} \cdot \mathbf{A B}-\mathbf{A D} \cdot \mathbf{N})}=\mathbf{0} \\
& \mathbf{E N}--\mathbf{A D} \cdot(\mathbf{N}-\mathbf{1}) \cdot \frac{(\mathbf{A D}-\mathbf{A B})}{(-\mathbf{2} \cdot \mathbf{A B} \cdot \mathbf{N}-\mathbf{2} \cdot \mathbf{A D}+\mathbf{2} \cdot \mathbf{A B}+\mathbf{A D} \cdot \mathbf{N})}=\mathbf{0} \quad \mathbf{F M}-\mathbf{E N}=\mathbf{0}
\end{aligned}
\]

Given AC, AB and either point of contact, D or F from 032304 any \(C\), what is the lenght of the cord DF cut off by a line from any \(C\) ?

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{1 . 7 0 8} \quad \mathbf{N}_{\mathbf{2}}:=1.649 \\
& \mathbf{N}_{\mathbf{3}}:=\mathbf{1 . 2 4} \\
& \mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{C F}:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{A F}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{D F}_{\mathbf{1}}:=\frac{\mathbf{N}_{\mathbf{3}}{ }^{2}+\mathbf{N}_{\mathbf{2}}{ }^{2}-\mathbf{N}_{\mathbf{1}}{ }^{2}}{\mathbf{N}_{\mathbf{2}}} \\
& \mathbf{C D}:=\mathbf{C F}-\mathbf{D} \mathbf{N}_{\mathbf{2}}:=\mathbf{C D} \\
& \mathbf{D F}_{\mathbf{2}}:=\frac{\mathbf{N}_{\mathbf{3}}{ }^{2}+\mathbf{N}_{\mathbf{2}}{ }^{2}-\mathbf{N}_{\mathbf{1}}{ }^{2}}{\mathbf{N}_{\mathbf{2}}}
\end{aligned}
\]
\[
\mathrm{DF}_{1}=0.812333 \quad \mathrm{DF}_{2}=-\mathbf{0 . 8 1 2 3 3 3} \quad \mathrm{DF}_{1}+\mathrm{DF}_{2}=0
\]

041904

\section*{Straight Line Ellipse}

Cardinal
\[
\mathbf{U}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{1}}:=\mathbf{3} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2}
\]
\[
\mathbf{A C}:=\mathbf{U} \quad \mathbf{B E}:=\mathbf{A C} \quad \mathbf{B D}:=\frac{\mathbf{B E}}{\mathbf{N}_{\mathbf{1}}}
\]
\[
\mathbf{A B}:=\frac{\mathbf{A C}}{\mathbf{N}_{2}} \quad \mathbf{A E}:=\sqrt{\mathbf{B E}^{2}-\mathbf{A B}^{2}} \quad \mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathrm{DH}:=\frac{\mathbf{A E} \cdot \mathbf{B D}}{\mathbf{B E}}
\]
\[
\mathbf{A H}:=\mathbf{A B}-\mathbf{B H} \quad \mathbf{A D}:=\sqrt{\mathbf{A H}^{2}+\mathbf{D H}^{\mathbf{2}}}
\]
\[
\frac{\mathbf{U}}{\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}\right)} \cdot \sqrt{\left(\mathbf{N}_{1}\right)^{2}-\mathbf{2} \cdot \mathbf{N}_{1}+\left(\mathbf{N}_{2}\right)^{2}}-\mathbf{A D}=\mathbf{0} \quad \frac{\sqrt{\left(\mathbf{N}_{1}\right)^{2}-\mathbf{2} \cdot \mathbf{N}_{1}+\left(\mathbf{N}_{2}\right)^{2}}}{\mathbf{N}_{1} \cdot \mathbf{N}_{2}}-\frac{\mathbf{A D}}{\mathbf{U}}=\mathbf{0}
\]

Ordinal
\(N_{1}:=1.344 \quad N_{2}:=.3 \quad N_{3}:=.5\)
AC := \(\mathbf{N}_{\mathbf{1}} \quad\) BD \(:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{3}}\)
\(\mathbf{A F}:=\mathbf{A C} \quad \mathbf{B E}:=\mathbf{A C} \quad \mathbf{A E}:=\sqrt{\mathbf{B E}^{2}-\mathbf{A B}^{2}}\)
\(\mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathbf{D H}:=\frac{\mathbf{A E} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathbf{A H}:=\mathbf{A B}-\mathbf{B H} \quad \mathbf{A D}:=\sqrt{\mathbf{A H}^{2}+\mathbf{D H}^{2}}\)
\(\sqrt{\frac{\mathbf{1}}{\mathbf{N}_{1}} \cdot\left[\left(\mathbf{N}_{3}\right)^{\mathbf{2}} \cdot \mathbf{N}_{1}-\mathbf{2} \cdot\left(\mathbf{N}_{3}\right)^{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{2}}+\left(\mathbf{N}_{2}\right)^{\mathbf{2}} \cdot \mathbf{N}_{1}\right]}-\mathbf{A D}=\mathbf{0}\)

\[
\begin{aligned}
& \begin{array}{l}
\mathbf{N}_{1}:=\mathbf{1 . 3 4 4} \quad \mathbf{N}_{\mathbf{2}}:=.=\mathbf{4 1 5} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{1 . 1 0 2} \\
\mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B D}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{A B}:=\mathbf{N}_{\mathbf{3}} \quad \mathbf{A F}:=\mathbf{A C}
\end{array} \\
& \mathbf{B E}:=\mathbf{A C} \quad \mathbf{A E}:=\sqrt{\mathbf{B E}^{2}-\mathbf{A B}^{2}} \\
& \mathbf{B H}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{B E}} \quad \mathbf{D H}:=\frac{\mathbf{A E} \cdot \mathrm{BD}}{\mathbf{B E}} \\
& \mathbf{A H}:=\mathbf{A B}-\mathbf{B H} \\
& \mathbf{A D}:=\sqrt{\mathbf{A H}^{\mathbf{2}}+\mathbf{D H}^{\mathbf{2}}} \\
& A D:=\sqrt{\frac{1}{N_{1}} \cdot\left[\left(N_{3}\right)^{\mathbf{2}} \cdot \mathbf{N}_{1}-\mathbf{2} \cdot\left(\mathbf{N}_{3}\right)^{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{2}}+\left(\mathbf{N}_{2}\right)^{\mathbf{2}} \cdot \mathbf{N}_{1}\right]}
\end{aligned}
\]


\section*{Another Ellipse 031405a}

The locus formed by \(N\) and \(I\) as determined by \(L\) provides an ellipse. Privide an Algebraic name for the Major and Minor Axis.
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{1 . 2 5} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3} \\
& \mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A D}:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{D V}:=\mathbf{A C} \quad \mathbf{A V}:=\sqrt{\mathbf{A D}^{2}+\mathbf{D V}^{\mathbf{2}}} \quad \mathbf{A F}:=\mathbf{2} \cdot \mathbf{A C} \\
& \mathbf{V X}:=\mathbf{A F}-\mathbf{A D} \quad \mathbf{A Y}:=\frac{\mathbf{A V} \cdot \mathbf{A C}}{\mathbf{A C}-\mathbf{V X}} \quad \mathbf{A G}:=\frac{\mathbf{A D} \cdot \mathbf{A Y}}{\mathbf{A V}} \\
& \mathbf{B C}:=\frac{\mathbf{A C} \cdot \mathbf{A C}}{\mathbf{A C}+\mathbf{A D}} \quad \mathbf{C G}:=\mathbf{A G}-\mathbf{A C} \quad \mathbf{B G}:=\mathbf{B C}+\mathbf{C G} \\
& \mathbf{B E}:=\frac{\mathbf{B G}}{\mathbf{2}} \quad \mathbf{C E}:=\mathbf{B E}-\mathbf{B C} \quad \mathbf{E S}:=\mathbf{B E} \\
& \mathbf{C S}:=\sqrt{\mathbf{E S}^{\mathbf{2}}-\mathbf{C E}^{\mathbf{2}} \quad \mathbf{C R}:=\frac{\mathbf{D V} \cdot \mathbf{A C}}{\mathbf{A D}}}
\end{aligned}
\]


\section*{Crns}

\[
\begin{aligned}
& \text { EU }:=\frac{\mathbf{E S} \cdot \mathbf{C R}}{\mathbf{C S}} \\
& \mathbf{E Z}:=\mathbf{E U} \\
& \mathbf{E Z}-\frac{\mathbf{N}_{\mathbf{1}}^{2} \cdot \sqrt{\mathbf{N}_{\mathbf{2}}^{2}-\mathbf{N}_{\mathbf{1}}^{2}}}{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}=\mathbf{0} \\
& \mathbf{B G}-\frac{2 \cdot \mathbf{N}_{1}^{2} \cdot \mathbf{N}_{\mathbf{2}}}{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}=\mathbf{0}
\end{aligned}
\]
\(\sim_{n}^{0}\)
032305a
An Ellipse

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{3}}:=. \mathbf{5} \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{M N}:=\mathbf{2} \cdot \mathbf{A B} \\
& \mathbf{B E}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{B D}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{D E}:=\mathbf{B E}-\mathbf{B D} \quad \mathbf{A G}:=\mathbf{A B} \\
& \mathbf{E P}:=\frac{\mathbf{A G} \cdot \mathbf{B E}}{\mathbf{A B}} \quad \mathbf{E N}:=\mathbf{A B} \\
& \mathbf{N L}:=\frac{\mathbf{D E} \cdot(\mathbf{E P}+\mathbf{E N})}{\mathbf{E P}} \\
& \mathbf{C E}:=\mathbf{N L} \quad \mathbf{C D}:=\mathbf{C E}-\mathbf{D E} \\
& \mathbf{N}_{\mathbf{1}} \cdot \frac{\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{\mathbf{2}}}-\mathbf{C D}=\mathbf{0}
\end{aligned}
\]

032905
Elipse Projected From a Perpendicular.
Let AC be some perpendicular on some line GH.
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=1.9167 \quad \mathbf{N}_{\mathbf{2}}:=.3244 \quad \mathbf{N}_{\mathbf{3}}:=.437 \\
& \mathbf{A C}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{C D}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{C E}:=\mathbf{C D} \quad \mathbf{C G}:=\sqrt{\mathbf{C E} \cdot \mathbf{A C}} \quad \mathbf{G H}:=\mathbf{2} \cdot \mathbf{C G} \\
& \mathbf{G I}:=\mathbf{N}_{\mathbf{3}} \quad \mathbf{C I}:=\mathbf{C G}-\mathbf{G I} \quad \mathbf{A D}:=\mathbf{A C}-\mathbf{C D} \quad \mathbf{A I}:=\sqrt{\mathbf{A C}^{2}+\mathbf{C I}^{2}} \quad \mathbf{A M}:=\frac{\mathbf{A D}}{\mathbf{2}} \\
& \mathbf{D M}:=\mathbf{A M} \quad \mathbf{D U}:=\frac{\mathbf{C I} \cdot \mathbf{A D}}{\mathbf{A I}} \quad \text { AU }:=\frac{\mathbf{A C} \cdot \mathbf{A D}}{\mathbf{A I}} \quad \mathbf{I U}:=\mathbf{A I}-\mathbf{A U} \quad \mathbf{A L}:=\frac{\mathbf{D U} \cdot \mathbf{A I}}{\mathbf{I U}} \\
& \mathbf{I L}:=\sqrt{\mathbf{A I}^{2}+\mathbf{A L}^{2}} \quad \text { DI }:=\sqrt{\mathbf{D U}^{2}+\mathbf{I U}^{2}} \quad \text { DL }:=\mathbf{I L}-\mathbf{D I} \quad \mathbf{D V}:=\frac{\mathbf{C D} \cdot \mathbf{D L}}{\mathbf{D I}} \\
& \mathbf{M V}:=\mathbf{D V}-\mathbf{D M} \quad \mathbf{A V}:=\mathbf{A M}-\mathbf{M V} \quad \mathbf{L V}:=\sqrt{\mathbf{A L}^{\mathbf{2}}-\mathbf{A V}^{\mathbf{2}}} \quad \mathbf{M T}:=\mathbf{L V} \\
& \mathbf{A G}:=\sqrt{\mathbf{C G}^{2}+\mathbf{A C}}{ }^{\mathbf{2}} \quad \mathbf{D W}:=\frac{\mathbf{C G} \cdot \mathbf{A D}}{\mathbf{A G}} \quad \mathbf{A W}:=\frac{\mathbf{A C} \cdot \mathbf{A D}}{\mathbf{A G}} \quad \mathbf{G W}:=\mathbf{A G}-\mathbf{A W} \\
& \text { AN }:=\frac{\mathbf{D W} \cdot \mathbf{A G}}{\mathbf{G W}} \quad \mathbf{M N}:=\sqrt{\mathbf{A N}^{2}-\mathbf{A M}^{2}} \quad \text { ON }:=\mathbf{2} \cdot \mathbf{M N} \quad \mathbf{O N}-\sqrt{\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)^{2} \cdot \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}}=\mathbf{0}
\end{aligned}
\]


\section*{033005c \\ \(\mathrm{N}^{3}\) and More}
\[
\mathbf{N}_{\mathbf{1}}:=\mathbf{1} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{4} \quad \mathbf{A}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{N}:=\mathbf{N}_{\mathbf{3}}
\]
\(A B\) is the unit \(A H / A B\) is the constant one. \(B C / B N\) is constant two.

\[
\begin{aligned}
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A H}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{B H}:=\sqrt{\mathbf{A B}^{2}+\mathbf{A H}^{2}} \quad \mathbf{G O}:=\frac{\mathbf{A B} \cdot \mathbf{2} \cdot \mathbf{A B}}{\mathbf{B H}} \quad \mathbf{H O}:=\mathbf{B H}-\mathbf{G O} \\
& \mathbf{D H}:=\frac{\mathbf{B H} \cdot \mathbf{B H}}{\mathbf{H O}} \quad \mathbf{A C}:=\frac{\mathbf{A B} \cdot \mathbf{D H}}{\mathbf{B H}} \quad \mathbf{B O}:=\sqrt{\mathbf{B H}^{2}-\mathbf{H O}^{2}} \quad \mathbf{D G}:=\frac{\mathbf{B O} \cdot \mathbf{B H}}{\mathbf{H O}} \\
& \mathbf{D E}:=\frac{\mathbf{B H} \cdot \mathbf{D G}}{\mathbf{A B}} \quad \mathbf{C D}:=\frac{\mathbf{D G}}{\mathbf{D E}} \quad \mathbf{B C}:=\mathbf{A C}-\mathbf{A B} \quad \mathbf{C E}:=\mathbf{D E}-\mathbf{C D} \\
& \frac{\mathbf{C E}}{\mathbf{B C}}-\left(\frac{\mathbf{A H}}{\mathbf{A B}}\right)^{\mathbf{3}}=\mathbf{0} \quad \frac{\mathbf{N}_{\mathbf{2}}{ }^{\mathbf{3}}}{\mathbf{N}_{\mathbf{1}}{ }^{3}}-\frac{\mathbf{C E}}{\mathbf{B C}}=\mathbf{0}
\end{aligned}
\]
\(\operatorname{More}\left(\mathbf{A}^{\mathbf{3}} \cdot \mathbf{N}\right)-(\mathbf{N}-\mathbf{1}) \cdot \mathbf{A} \quad\) Let \(\mathbf{N}_{\mathbf{3}}\) be \(\mathbf{N}\)
\(\mathbf{B N}:=\frac{\mathbf{B C}}{\mathbf{N}_{\mathbf{3}}} \quad \mathbf{K N}:=\frac{\mathbf{C D}}{\mathbf{N}_{\mathbf{3}}} \quad \mathbf{C G}:=\mathbf{A C}+\mathbf{A B} \quad\) GN \(:=\mathbf{2} \cdot \mathbf{A B}+\frac{\mathbf{B C}}{\mathbf{N}_{\mathbf{3}}} \quad\) NR \(:=\frac{\mathbf{C E} \cdot \mathbf{G N}}{\mathbf{C G}}\)
\(\left[\frac{\mathbf{N}_{\mathbf{2}}{ }^{3}}{\mathbf{N}_{1}{ }^{3}} \cdot \mathbf{N}_{3}-\frac{\mathbf{N}_{2} \cdot\left(\mathbf{N}_{3}-1\right)}{\mathbf{N}_{1}}\right]-\frac{\mathbf{N R}}{\mathbf{B N}}=0 \quad \mathbf{A}^{3} \cdot \mathbf{N}-(\mathbf{N}-1) \cdot A=26 \quad \frac{\mathbf{N R}}{\mathbf{B N}}=26\)

033105b
Just Another Ellipse


Given the difference between the foci and difference
between the proportional radii, etc., etc.
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=1.708 \quad \mathbf{N}_{\mathbf{2}}:=.693 \quad \mathbf{N}_{\mathbf{3}}:=1.032 \\
& \mathbf{D E}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B C}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{F G}:=\mathbf{D E}+\mathbf{B C} \quad \mathbf{A B}:=\frac{\mathbf{B C}}{2} \quad \mathbf{A D}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{C D}:=\mathbf{A D}+\mathbf{A B} \quad \mathbf{B E}:=\mathbf{D E}-\mathbf{A D}+\mathbf{A B} \quad \mathbf{E H}:=\mathbf{B E} \quad \mathbf{D H}:=\mathbf{C D} \\
& \text { DJ }:=\frac{\mathbf{D H}^{2}+\mathbf{D E}^{2}-\mathbf{E H}^{2}}{\mathbf{2} \cdot \mathbf{D E}} \quad \mathbf{H J}:=\sqrt{\mathbf{D H}^{2}-\mathbf{D J}^{2}} \\
& \frac{\sqrt{-\mathbf{N}_{\mathbf{3}} \cdot\left(\mathbf{N}_{\mathbf{3}}-\mathbf{N}_{\mathbf{1}}\right) \cdot \mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}+\mathbf{2} \cdot \mathbf{N}_{\mathbf{1}}\right)}}{\mathbf{N}_{\mathbf{1}}}-\mathbf{H J}=\mathbf{0}
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=2.188 \quad \mathbf{N}_{\mathbf{2}}:=.278 \quad \mathbf{N}_{\mathbf{3}}:=3.095 \\
& \mathbf{C D}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{C O}:=\frac{\text { CD }}{2} \quad \mathbf{E F}:=\mathbf{N}_{2} \quad \mathbf{C E}:=\frac{\mathbf{C D}}{\mathbf{N}_{\mathbf{3}}} \\
& \mathbf{C G}:=\mathbf{C E}+\mathbf{E F} \quad \mathbf{D H}:=\mathbf{C D}-\mathbf{C G}+\mathbf{2} \cdot \mathbf{E F} \\
& \mathbf{C I}:=\mathbf{C G} \quad \mathbf{D I}:=\mathbf{D H} \quad \text { IO }:=\frac{\sqrt{2 \cdot \mathbf{C I}^{2}-\mathbf{C D}^{2}+2 \cdot \mathbf{D I}^{2}}}{2} \\
& \text { IP }:=\frac{\sqrt{(-\mathbf{C D}+\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}+\mathbf{C I})(\mathbf{C D}-\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}-\mathbf{C I})}}{2 \cdot \mathbf{C D}} \\
& \text { 2. } \frac{\sqrt{\mathbf{N}_{\mathbf{2}} \cdot\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{2}\right) \cdot\left(\mathbf{N}_{\mathbf{3}}-\mathbf{1}\right)}}{\mathbf{N}_{\mathbf{3}}}-\mathbf{I P}=\mathbf{0}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=2.188 \quad \mathbf{N}_{\mathbf{2}}:=.278 \quad \mathbf{N}_{\mathbf{3}}:=.707 \\
& \mathbf{C D}:=\mathbf{N}_{\mathbf{1}} \quad \text { CO := } \frac{\text { CD }}{2} \quad \text { EF }:=\mathbf{N}_{\mathbf{2}} \\
& \mathbf{C E}:=\mathbf{N}_{\mathbf{3}} \quad \text { CG }:=\mathbf{C E}+\mathbf{E F} \quad \text { DH }:=\mathbf{C D}-\mathbf{C G}+2 \cdot \mathbf{E F} \\
& \text { CI }:=\text { CG DI }:=\mathrm{DH} \quad \text { IO }:=\frac{\sqrt{2 \cdot \mathrm{CI}^{2}-\mathrm{CD}^{2}+2 \cdot \mathrm{DI}^{2}}}{2}
\end{aligned}
\]
\[
\begin{aligned}
& \text { IP }:=\frac{\sqrt{(-\mathbf{C D}+\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}+\mathbf{C I})(\mathbf{C D}-\mathbf{D I}-\mathbf{C I})(\mathbf{C D}+\mathbf{D I}-\mathbf{C I})}}{2 \cdot \mathbf{C D}} \\
& 2 \cdot \frac{\sqrt{-\mathbf{C E} \cdot \mathbf{E F} \cdot(\mathbf{C D}+\mathbf{E F}) \cdot(-\mathbf{C D}+\mathbf{C E})}}{\mathbf{C D}}-\mathbf{I P}=\mathbf{0} \\
& 2 \cdot \frac{\sqrt{-\mathbf{N}_{3} \cdot \mathbf{N}_{2} \cdot\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right) \cdot\left(-\mathbf{N}_{1}+\mathbf{N}_{3}\right)}}{\mathbf{N}_{1}}-\mathbf{I P}=0 \\
& \text { IO }:=\frac{1}{2} \cdot \sqrt{4 \cdot \mathbf{C E}^{2}+4 \cdot \mathbf{E F}^{2}+\mathbf{C D}^{2}-4 \cdot \mathbf{C D} \cdot \mathbf{C E}+4 \cdot \mathbf{C D} \cdot \mathbf{E F}}
\end{aligned}
\]

041305b

\[
\begin{aligned}
& N^{3} \text { N Cubed } \\
& \mathbf{N}_{\mathbf{1}}:=1 \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{3 6} \\
& \mathbf{D H}:=\mathbf{N}_{\mathbf{1}} \quad \text { FH }:=\mathbf{N}_{\mathbf{2}} \quad \text { DF }:=\mathbf{D H}+\mathbf{F H} \quad \mathbf{A D}:=\frac{\mathrm{DF}}{\mathbf{2}} \\
& \mathbf{E H}:=\sqrt{\text { DH } \cdot \mathbf{F H}} \quad \text { HI }:=\frac{\mathbf{E H} \cdot \mathbf{A D}}{\text { FH }} \quad \mathbf{H M}:=\mathbf{E H}-\mathbf{2} \cdot(\mathbf{E H}-\mathbf{H I}) \\
& \frac{F H}{H M}-\left(\frac{D H}{H M}\right)^{3}=0 \\
& D F:=\sqrt{D H^{2}+E H E F}:=\sqrt{F H^{2}+E H^{2}} \frac{F H}{H M}-\left(\frac{E F}{D F}\right)^{3}=0 \\
& \frac{F H}{H M}=216\left(\frac{F H}{D H}\right)^{1.5}=216
\end{aligned}
\]

\section*{042205B}

Given the major axis and the difference between the two

\section*{foci, whatis the minor axis?}
\(\mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 6 0 4} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2} .234\)

\[
\begin{aligned}
& \mathbf{D E}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{F I}:=\mathbf{N}_{\mathbf{2}} \quad \text { EI }:=\frac{\mathbf{D E}-\mathbf{F I}}{2} \\
& \mathbf{D I}:=\mathbf{D E}-\mathbf{E I} \quad \mathbf{E P}:=\sqrt{\mathbf{E I} \cdot \mathbf{D I}} \\
& \mathbf{A Q}:=\mathbf{E P} \\
& \mathbf{A Q}-\frac{\mathbf{1}}{\mathbf{2}} \cdot \sqrt{\left(\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}\right)}=\mathbf{0} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{A Q} \\
& \text { FI }-\sqrt{\mathbf{N}_{\mathbf{1}}{ }^{2}-\mathbf{4} \cdot \mathbf{N}_{\mathbf{2}}{ }^{\mathbf{2}}}=\mathbf{0}
\end{aligned}
\]

062007 C.mcd

Tangent from Major Axis

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{3 . 1 7 5 0 0} \quad \mathbf{N}_{\mathbf{2}}:=1.24993 \quad \mathbf{N}_{\mathbf{3}}:=4.23333 \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \text { AI := } \mathbf{N}_{\mathbf{2}} \quad \text { AD := } \mathbf{N}_{\mathbf{3}} \\
& \text { AJ }:=\frac{\mathbf{A D}}{2} \quad \text { From } 080193 \quad \text { EK }:=\frac{\mathbf{A B} \cdot \sqrt{(2 \cdot \mathbf{A J}-\mathbf{A B}) \cdot(2 \cdot \mathbf{A J}+\mathbf{A B})}}{2 \cdot \mathbf{A J}} \\
& \mathbf{A K}:=\sqrt{\mathbf{A B}^{2}-\mathbf{E K}^{2}} \quad \mathbf{D K}:=\mathbf{A D}-\mathbf{A K} \quad \text { FK }:=\frac{\mathbf{A I} \cdot \mathbf{E K}}{\mathbf{A B}} \quad \mathrm{DF}:=\sqrt{\mathbf{D K}^{2}+\mathrm{FK}^{2}} \\
& \mathbf{A G}:=\sqrt{\mathbf{A B}^{\mathbf{2}}-\mathbf{A I}^{\mathbf{2}}} \quad \mathbf{A H}:=\mathbf{A G} \quad \mathbf{H K}:=\mathbf{A H}+\mathbf{A K} \quad \mathbf{G K}:=\mathbf{A G}-\mathbf{A K} \\
& \text { FG }:=\sqrt{\mathbf{F K}^{2}+\mathbf{G K}^{2}} \quad \text { FM }:=\mathbf{F G} \quad \text { FH }:=\sqrt{\mathbf{H K}^{2}+\mathbf{F K}^{2}} \quad \mathbf{H M}:=\mathbf{F H}-\mathbf{F M} \\
& \text { HO }:=\frac{\text { HK } \cdot \mathbf{H M}}{\text { FH }} \text { GH }:=\mathbf{2} \cdot \mathbf{A H} \quad \text { GO }:=\mathbf{G H}-\mathbf{H O} \\
& \text { MO }:=\frac{\mathbf{F K} \cdot \mathbf{H M}}{\text { FH }} \quad \frac{\mathbf{G O}}{\text { MO }}-\frac{\mathbf{D K}}{\mathbf{F K}}=\mathbf{0} \quad \mathbf{N}_{\mathbf{2}} \cdot \frac{\sqrt{\left(\mathbf{N}_{\mathbf{3}}-\mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{1}}\right)}}{\mathbf{N}_{\mathbf{3}}}-\mathbf{F K}=\mathbf{0}
\end{aligned}
\]

062007 D.mcd


Tangent from Minor Axis
\(\mathbf{N}_{1}:=3.78354 \quad \mathbf{N}_{2}:=1.53747 \quad \mathbf{N}_{\mathbf{3}}:=2.43417\)
\(A B:=\mathbf{N}_{\mathbf{1}} \quad\) AI \(:=\mathbf{N}_{\mathbf{2}} \quad\) AD \(:=\mathbf{N}_{\mathbf{3}}\)
\(\mathbf{A J}:=\frac{\mathbf{A D}}{2} \quad \mathbf{P K}:=\frac{\mathbf{A I} \cdot \sqrt{(2 \cdot \mathbf{A J}-\mathbf{A I}) \cdot(\mathbf{2} \cdot \mathbf{A J}+\mathbf{A I})}}{\mathbf{2} \cdot \mathbf{A J}} \quad \mathbf{A K}:=\sqrt{\mathbf{A I}^{2}-\mathbf{P K}^{2}}\)
\(\mathbf{D K}:=\mathbf{A D}-\mathbf{A K}\) FK \(:=\frac{\mathbf{P K} \cdot \mathbf{A B}}{\mathbf{A I}} \quad \mathbf{D F}:=\sqrt{\mathbf{D K}^{2}+\mathbf{F K}^{2}} \quad \mathbf{A G}:=\sqrt{\mathbf{A B}^{2}-\mathbf{A I}^{2}}\)
\(\mathbf{A H}:=\mathbf{A G} \quad \mathbf{H R}:=\mathbf{A H}+\mathbf{F K} \quad \mathbf{G R}:=\mathbf{A G}-\mathbf{F K} \quad \mathbf{F G}:=\sqrt{\mathbf{A K}^{\mathbf{2}}+\mathbf{G R}^{\mathbf{2}}} \quad \mathbf{F M}:=\mathbf{F G}\)
\(\frac{\sqrt{\left(\mathbf{N}_{\mathbf{3}}-\mathbf{N}_{\mathbf{2}}\right) \cdot\left(\mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{2}}\right)}}{\mathbf{N}_{\mathbf{3}}} \cdot \mathbf{N}_{\mathbf{1}}-\mathbf{F K}=\mathbf{0} \quad \quad \mathbf{M a j o r}:=\mathbf{N}_{\mathbf{2}} \cdot \frac{\sqrt{\left(\mathbf{N}_{\mathbf{3}}-\mathbf{N}_{\mathbf{1}}\right) \cdot\left(\mathbf{N}_{\mathbf{3}}+\mathbf{N}_{\mathbf{1}}\right)}}{\mathbf{N}_{\mathbf{3}}}\)
FH \(:=\sqrt{\mathbf{H R}^{2}+\mathbf{A K}^{2}} \quad \mathbf{H M}:=\mathbf{F H}-\mathbf{F M} \quad \mathbf{H O}:=\frac{\mathbf{H R} \cdot \mathbf{H M}}{\text { FH }} \quad\) GH \(:=\mathbf{2} \cdot \mathbf{A H}\)
GO \(:=\mathbf{G H}-\) HO \(\quad\) MO \(:=\frac{\text { AK } \cdot \mathbf{H M}}{\text { FH }} \quad \frac{\text { GO }}{\text { MO }}-\frac{\text { FK }}{\text { DK }}=0\)

Found on the Internet 062407

Found the construction, now I explore it with Algebra.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{2 . 9 8 9 7 9} \quad \mathbf{N}_{\mathbf{2}}:=1.77791 \quad \mathbf{N}_{\mathbf{3}}:=\mathbf{1} .83972 \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{E J}:=\mathbf{N}_{\mathbf{3}} \\
& \text { AJ }:=\sqrt{\mathbf{A B}^{2}-\mathbf{A C}^{2}} \quad \mathbf{F I}:=(\mathbf{A B}-\mathbf{E J})+\mathbf{A B} \\
& \mathbf{D E}:=\sqrt{\mathbf{A J}^{2}-(\mathbf{A B}-\mathbf{E J})^{2}} \quad \mathbf{A N}:=\frac{\sqrt{\mathbf{D E}^{2} \cdot(\mathbf{D E}+\mathbf{A B}) \cdot(-\mathbf{D E}+\mathbf{A B})}}{\mathbf{D E}} \\
& \mathbf{D N}:=\mathbf{A B}-\mathbf{A N} \quad \text { GJ }:=\mathbf{E J}-\mathbf{D N} \quad \mathbf{H I}:=\mathbf{F I}-\mathbf{D N} \quad \mathbf{G L}:=\frac{\mathbf{G J} \cdot \mathbf{2} \cdot \mathbf{D E}}{\mathbf{G J}+\mathbf{H I}} \\
& \mathbf{H L}:=\mathbf{2} \cdot \mathbf{D E}-\mathbf{G L} \quad \mathbf{J L}:=\sqrt{\mathbf{G L}^{2}+\mathbf{G J}^{2}} \quad \mathbf{I L}:=\sqrt{\mathbf{H I}^{2}+\mathbf{H L}^{2}} \\
& (\mathbf{J L}+\mathbf{I L})-\mathbf{2} \cdot \mathbf{A B}=\mathbf{0}
\end{aligned}
\]

\section*{Definitions:}

\[
A J-\sqrt{\mathbf{N}_{1}^{2}-\mathbf{N}_{2}^{2}}=0 \quad \text { FI }-\left(2 \cdot \mathbf{N}_{1}-\mathbf{N}_{3}\right)=0
\]
\[
\mathrm{DE}-\sqrt{-\mathrm{N}_{2}^{2}+2 \cdot \mathrm{~N}_{1} \cdot \mathbf{N}_{3}-\mathbf{N}_{3}^{2}}=0 \quad \sqrt{\mathbf{N}_{1}^{2}+\mathrm{N}_{2}^{2}-2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{3}+\mathbf{N}_{3}^{2}}-\mathrm{AN}=0
\]
\[
\mathbf{N}_{1}-\sqrt{\mathbf{N}_{1}^{2}+\mathbf{N}_{2}^{2}-2 \cdot \mathbf{N}_{1} \cdot \mathbf{N}_{3}+\mathbf{N}_{3}^{2}}-\mathbf{D N}=\mathbf{0}
\]
\[
\mathbf{N}_{3}-\mathbf{N}_{1}+\sqrt{\mathbf{N}_{1}^{2}+{N_{2}}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{3}^{2}}-G J=0
\]
\[
\left(N_{1}-N_{3}+\sqrt{N_{1}^{2}+N_{2}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{3}^{2}}\right)-H I=0
\]
\[
\left(N_{3}-N_{1}+\sqrt{N_{1}^{2}+N_{2}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{3}^{2}}\right) \cdot \frac{\sqrt{-N_{2}^{2}+2 \cdot N_{1} \cdot N_{3}-N_{3}^{2}}}{\sqrt{N_{1}^{2}+N_{2}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{3}^{2}}}-G L=0
\]
\[
\sqrt{-N_{2}^{2}+2 \cdot N_{1} \cdot N_{3}-N_{3}^{2}} \cdot \frac{\left(\sqrt{N_{1}^{2}+N_{2}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{3}^{2}}-N_{3}+N_{1}\right.}{\sqrt{N_{1}^{2}+N_{2}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{3}^{2}}}-H L=0
\]
\[
N_{1} \cdot \frac{\sqrt{2 \cdot N_{1}^{2}+N_{2}^{2}+2 \cdot N_{3}^{2}+2 \cdot \sqrt{N_{1}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{2}^{2}+N_{3}^{2}} \cdot\left(N_{3}-N_{1}\right)-4 \cdot N_{1} \cdot N_{3}}}{\sqrt{N_{1}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{2}^{2}+N_{3}^{2}}}-J L=0
\]
\[
N_{1} \cdot \frac{\sqrt{2 \cdot N_{1}^{2}+N_{2}^{2}+2 \cdot N_{3}^{2}+2 \cdot \sqrt{N_{1}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{2}^{2}+N_{3}^{2}} \cdot\left(N_{1}-N_{3}\right)-4 \cdot N_{1} \cdot N_{3}}}{\sqrt{N_{1}^{2}-2 \cdot N_{1} \cdot N_{3}+N_{2}^{2}+N_{3}^{2}}}-I L=0
\]

\section*{My Name is John.}


Hello. My name is John and I am going to explain how to multiply and divide a line by a line in Geometry. Now, if you are going to ask me if I am a geometer, I have to reply by myth. Explanation by myth is one the ancient Greek's methods of teaching by discourse.

Once upon a time, God created man; They created him male and female, in the image of God. Or one can say, male and female created They him, which is rather awkward, but it does have that ancient New England flair to it. At any rate, once upon a time is not this time. It came to pass as men multiplied on the earth that men started to work for a living and not being god's themselves needed a way to designate each other and so individuals, which are not, by definition man started calling each other by their craft. That is where we got Mr. Smith and Mr. Clark, etc. A vestige of this remains today. Not being man, we tend to think of each other by an assigned craft. I work in a factory, but my name is Clark. The conflict of course is why I spend the entirety of my wages in therapy.

Now this works to my advantage. I have learned that individuals calling themselves geometers (I am personally hoping for the day I become part of man) cannot multiply and divide a line by a line. So, I guess one could say, that a geometer is someone who cannot do the math, which is really a sign for some serious expenditure on therapyand, if those in mind-field knew what they were doing, the outlay would be advantageous. Too bad they cannot define a man. Now a nonEuclidean Geometer is someone who not only cannot do the math, they demand, as part of their initiation rights, that one will never be able to do the math. So, in due respect to non-Euclidean Geometers, please stop reading and go back to your scribbling-and contradicting yourself. Doing geometry inside of or on the outside of a tennis ball, or a Frisbee, makes me think that one has spent way to many days on the court, spiking one's tea, and certainly missing the ball.

Now, if your like me, a factory worker, and someone were to give you two lines and say,

Hey, you (He is hairy and has a club). Here are two lines, show me how to multiply one by the other, and after that, show me how to divide one by the other.

I would look at the man, think for a moment and draw a blank. What the heck does he mean? Then I would say, I am sorry, but I don't understand
what you mean. The man would leave off and I would go get another cup of coffee.

If I were a bit strange, I would consult Euclid's Elements and find to my dismay, the chap could do the math, but seems to have left this off for some reason, probably because it was too easy (so who don't lie for a friend?). Now, I happen to have in my possession a number of unpublished manuscripts which does have the answer in them and they are full of doing the math. I acquired them from the God's (and for those of you interested, the Delian Problem does have a solution-and it has something to do with Plato under extending himself). If it should be discovered that I am stealing a bit of fire, and giving it to man, please don't tell where you got it from. I have learned from first hand experience, you don't want to mess with Them-they be giants-really, really, big giants.

Now I am not going to explain this exactly as it was explained to me, as I have a poor memory. Please bear with me.

If I were given two lines, and asked to compare them, I would look at them and say;

well, \(A B\) is shorter than CE. I mean, what can you do with two lines anyway. Reminds me of when I was a kid asking my mother what could I do with seven cents, realizing early on I was three cents short of a dime. If I were Euclid I would subtract one from the other and find that CE \(A B=C D\), or if you're a top down programmer, \(C E-A B=D E\). If I move CE off a ways,


I would say that \(\mathrm{CE}-\mathrm{AB}=\mathrm{CD}\), or DE which ever you choose. NonEuclidean Geometers, like Einstein, claim that this equality, this simultaneity, is not true and that at some point of moving AB and CE apart, as if it were part of the equation, does mysterious things to these segments. It amounts to a thief's logic-moving CE off sufficiently will make \(A B\) infinitely greater than \(C E\) 'cause we exact a kind of tribute on it and subtract that tribute as we go. It amounts to constructing a square say, of 25 square inches or so, and claiming if we repeat it enough, well, it just plain disappears-we wore it out. While on the other hand, there are those who claim that if I assert a point an infinite number of times, I can create a line. You know, like waving a knife in the air an infinite number of times an making a salad. This is the kind of mentality that makes credit card lenders rich. As I said, non-Euclidean Geometers are really crooked bankers in disguise-or really lousy cooks. A basic fact of abstraction, when you really know that a boundary is not the difference (a point is that which has not part), a form is in fact absolute, you know you can never attribute difference to that form, the form is applied as a boundary to any given difference-material. The cut is not the cutted! Wow, that was trashy!

Now if I had \(A B\), and wanted to construct \(C E\) from it.


I could transfer one segment at a time

using parallel lines, but this is not multiplication, it is multiple processes, or simply addition. Parallel lines gives us the ability to do multiple additions, which is again not multiplication. One sign of that is that we have to assert each unit point in constructing CE. We have to assert each unit point just to do the parallels. Duh!

One of the things our ancient quibbling buddies, the Greeks, did tell us is that in order to multiply and divide, we have to have a unit. This is just part of plain simple Arithmetic. And they also said that when dealing with numbers in multiplication and division we were dealing with square and oblong (rectangular) numbers. Keep these ideas in mind. A square, an oblong, and a unit. Euclid drew a number of them. We will have need of them. For the moment let us learn what they did say about ratio,
which we will also need. Now, if in constructing CE, we stayed up too late;-

and made a mistake in drawing-or were simply dyslexic;

we would discover the ratio. As AB is to CD , so AF is to DF . And by George-(if you remember, he too was a hairy fellow and curious), One learns how to take any multiple and divide another segment of any length by the same multiple. From multiple addition, we have a kind of multiple division, but it is not division, it is still just a plain ratio, of anther segment.


Now, as AB is to GH , so to DE is to HI , etc., etc. This is all fine and good, but, we still have not really learned how to multiply and divide. That is because these ratio's work regardless of the notion of unit, or square. Unless you are a crooked banker or a non-Euclidean Geometer, or a bad cook, this relationship is always true. There is one, and only one, difference between two points.

We are building our ideas up, one standard at a time. Intellectually, we fail, at the point we cannot abstract and use a standard-or what Plato called form because a boundary is not a difference and by definition (not a difference) always true. The divergence of language itself, starts with the inability to establish a standard even for a name. Many linguists call it the "growth" of language when meaning changes, but then they are non-Euclidean Geometers at heart also. What do they say of a government that has got its constitution saying exactly the opposite of what is written? If you want to reduce them to rubble, ask them outright, Why can one word be or not be predicated of another? Or again, if definition is conventional, and meaning can never be conventional, what in the heck does meaning have to do with definition? or even language? They will either get a funny look on their face mumbling to themselves, or start babbling non-sense to you. I have some books by the gods on that topic also. It is really simple, . . . but not here, not now.

Multiplication and division rely on a standard in unit. So lets add that and see where we go.


At the outset the figure is very shy and unassuming. If you saw it laying in the street, you would hardly be pressed to pick it up. We have placed our segments the difference of our chosen unit apart, and we do have a square. No offence to Descartes who tried to find what I am doing, we don't have a number line, but a lined number. First time I ever seen a studious use of cross hairs actually miss the target.


It don't look like much, but it can not only multiply and divide, one can use it to do much in the way of exponential manipulation as well. Let us take a closer look as to what the figure tells us.


This is how we perform multiplication. Given \(A C\) as our unit, \(A B \times C D\) \(=\mathrm{AH}\). In order to see this using the Arithmetic Grammar system, We divide AC by AC and get 1 , our Unit. We then divide AB by AC which gives AB in terms of our unit. We then divide CE by AC and acquire that in units, and again for AH . We will find that by using the notion of Unit, Square and Oblong Numbers, which is incorporated in the idea of ratio, we can Multiply. And we can do what no binary calculator will ever do, we do it exactly. What about division?

\(\frac{\text { (Area MANO) }}{\text { (Area ONCP) }}-\frac{(\text { Area } \triangle \mathrm{BAC})}{(\text { Area } \triangle \mathrm{ADC})}=\mathbf{0 . 0 0 0 0 0}\)

Wouldn't you know it, there is a triplicate ratio in the figure! Right under our pencil. Didn't Euclid write that it was the hardest thing to do in geometry? Well, I have never taken geometry in school and set out to comprehend the triplicate ratio, guess I got somewhere. Going through our steps as before, we find that \(A B \div C D=A Q\). Each of these steps is proven individually in Euclid. I suspect he was like Plato and wanted to see if his readers were smart enough to add and subtract ideas. And again, no binary computer will ever be up to Geometry, as Geometry is exact.

One can do a whole lot with this figure, through various projections. One can do a lot in the way of exponential manipulation. Try that with cross hairs! Some of the methods one will find in those unpublished books I was talking about. I don't know how long the gods will let me work on them, in fact, if it were not for Them, I would have been killed over thirty years ago. Imagine that, I am a walking contradiction, a living dead man. At any rate, I hope you have fun playing with the figure.

Now this is not the place to show the solution to the Delian Problem. My god, if one is just learning the simple four, by adding multiplication and division to our list of addition and subtraction, it may be too difficult realize a revolution in Euclidean Geometry based upon a standard long ago recognized but left unemployed-just like these. I will put the idea in the Geometer's Sketchpad file.

I hope I have made it clear that through multiple addition and subtraction, one leads into the understanding of ratio, just like Euclid did, but it is still a step away from multiplication and division. Those depend upon a respect for, and understanding of a standard in definition. We learn to add, and subtract. These teach us ratio-it is part of them. We learn about the units which is taught by them also. This then leads to multiplication and division and our primary four are thus established.

I do have some food for thought though. Using the facts of conventions in language, can you count the ways non-Euclidean geometries commit self-referential errors in simple logic? Apparently not, they are popular. Maybe it has something to do with linguist waving their knife in the air constructing sentences. What is prediction? Maybe I will read it to you sometime. The solution was once written on a Temple "Know Thyself." I will say this, as a sense system, the human mind is suppose to abstract form and create things with it. To deny form as the foundation for thought is simply a sign of dysfunction. I know, look at me.

\section*{Multiplication And Division of Lines}
1. An unit is that by virtue of which each of the things that exist is called one. Euclid's Elements

The Basic figures in this little thing are written up in my work Threee Pieces of Paper, or The Delian Quest. This is not a formal presentation, is a presentation of craft basics.

John Clark


312
(c) JClark8659@hotmail.com

Printed via import to MS Word.

\section*{Following the Yellow Brick Road}


\section*{Introduction}

Maybe I am too dogmatic, but I think one should have geometry teach one something of basic math. One should be able to add, subtract, multiply and divide with lines. These can provide proofs and constructible.

The figures can be modified in various ways to produce various results. I present a few here. The main figure is composed of the notion of common unit, and that multiplication and division works with square numbers, which is distinct from squaring a number. The square thus constructed provides the properties needed for multiplication and division.

I once read, in an Algebra book, that exponential notation had nothing to do with Geometry, that it was a pure mental abstract. What am I, then, to do with all the figures I have come up with that display the principles?

I would also like to see how the four basic operations of Math hold up in "non-Euclidean" Geometries. In fact, as part of their presentation, I think the four basic operations of mathematics should be a requirement. Perhaps by teaching the remaining two in geometry, something about reality and standards of thought will be learned.

The material in this little flyer is not new to me, it is part of four works I am currently engaged in, The Delian Quest, which is essentially completed, it needs some lipstick and a dress, Three Pieces of Paper, Eloi, and something with a puny Latin name.

Oh, and no, I have never studied geometry in an institution-I have never seen ideas survive in an institution. I have and probably will be again, be institutionalized at my own request.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Function Contents} & Page & \multicolumn{5}{|l|}{Function Link to Introdution} & Page \\
\hline & \multicolumn{5}{|l|}{( \(\left.\mathrm{N}_{1} \cdot \mathrm{~N}_{2}\right)-\mathrm{N}_{3}=0.00000\)} & Link tor & & & & & & \\
\hline & \[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=1.13725
\] & \(\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1}}=1.87931\) & \multicolumn{3}{|l|}{\[
\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{2}}=2.13725
\]} & Link tor & \(\frac{\mathrm{N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{5}=0.00000\) & \(\mathrm{N}_{2}{ }^{2} \mathrm{~N}_{6}\) & \(=0.00000\) & & & Link to 11 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{1}{N_{1}}-N_{3}=0.00000
\]} & Link to 3 & \(\sqrt{2}-\mathrm{N}_{5}=0.00000\) & \(\frac{\sqrt{2} \cdot \mathbf{N}_{1}}{\mathrm{~N}_{2}}\) & \(\mathrm{N}_{6}=0.00000\) & & \(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{\sqrt{2}}-\mathrm{N}_{7}=0.00000\) & Link to 12 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}}{N_{2}{ }^{2}}-N_{4}=0.00000 \quad \frac{N_{1}}{N_{2}{ }^{3}}-N_{5}=0.00000
\]} & Eink to4 & \(\mathrm{N}_{5}-2^{0.75}=0.00000\) & \(\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)\) & \(\mathrm{N}_{5}-\mathrm{N}_{6}=0.00\) & & \(\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{5}}-\mathrm{N}_{7}=0.00000\) & Link to 13 \\
\hline & \multicolumn{5}{|l|}{2. \(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}-\mathrm{N}_{4}=0.00000\)} & Link tos & \(\mathrm{N}_{1}{ }^{0.5}-\mathrm{N}_{2}=0.00000\) & \(\mathrm{N}_{1}{ }^{0.25}\) & \(-\mathrm{N}_{3}=0.00000\) & & \(\mathrm{N}_{1}{ }^{0.125-\mathrm{N}_{4}}=0.00000\) & Link to 14 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}{ }^{2}}{\left(N_{2}+N_{1}\right) \cdot N_{2}}-N_{3}=0.00000
\]} & Link to 6 & \(\frac{\mathrm{N}_{1}{ }^{0.5}}{\mathrm{~N}_{2}{ }^{0.5}}-\mathrm{N}_{3}=0.00000\) & \(\frac{\mathrm{N}_{1}{ }^{0.25}}{\mathrm{~N}_{2}{ }^{0.75}}\) & \(-\mathrm{N}_{4}=0.00000\) & & \({ }_{1}^{0.5} \mathrm{~N}_{2}{ }^{1.5}-\mathrm{N}_{5}=0.00000\) & Link to 15 \\
\hline & \multicolumn{5}{|l|}{\(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}+\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}\right)-\mathrm{N}_{3}=0.00000\)} & Eink to7 & \[
\frac{N_{1}{ }^{2}}{\left(N_{1}+N_{2}\right) \cdot N_{2}}-L_{1}=0.0
\] & .00000 & \[
\frac{\mathbf{N}_{1}{ }^{2} \cdot \mathbf{N}_{2}}{\mathbf{N}_{1}+\mathbf{N}_{2}}-\mathrm{M}
\] & \[
I_{1}=0.0
\] & .00000 & Link to 16 \\
\hline & \multicolumn{5}{|l|}{\[
\mathrm{N}_{3}{ }^{2}-\frac{\mathrm{BC}}{\mathrm{BD}}=0.00000 \quad \mathrm{~N}_{3}{ }^{3}-\frac{\mathrm{BC}}{\mathrm{BE}}=0.00000 \quad \mathrm{~N}_{3}{ }^{4}-\frac{\mathrm{BC}}{\mathrm{BF}}=0.00000
\]} & Link to \({ }^{\text {a }}\) & & & & & & \\
\hline & \multicolumn{5}{|l|}{\[
\frac{\mathrm{N} 4_{2}}{\mathrm{~N} 2_{2}}=1.39420 \quad \frac{\mathrm{~N} 2_{2}}{\mathrm{~N} 1_{2}}=1.39420 \quad \frac{\mathrm{~N} 1_{2}}{\text { Unit }_{2}}=1.39420 \quad \frac{\text { Unit }_{2}}{\mathrm{~N} 3_{2}}=1.39420
\]} & Eink to 9 & \[
\frac{N_{1}{ }^{2}}{N_{2} \cdot\left(N_{1}+1\right)}-L_{1}=0.00
\] & 0000 & \(\frac{\mathrm{N}_{1}{ }^{2} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{1}+\mathbf{1}}-\mathrm{M}_{1}\) & = 0.00 & 0000 & Link to 17 \\
\hline & \multicolumn{5}{|l|}{\[
\frac{N_{1}{ }^{2}}{N_{2}}-N_{5}=0.00000 \quad \frac{N_{1}{ }^{3}}{N_{2}{ }^{2}}-N_{6}=0.00000 \quad \frac{N_{2}{ }^{2}}{N_{1}}-N_{7}=0.00000
\]} & Link to 10 & \[
\frac{\mathrm{N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{4}}-\mathrm{N}_{7}=0.00000
\] & \(\mathrm{N}_{2}{ }^{4}-\mathrm{N}_{8}\) & = 0.00000 & & \({ }^{-1} \mathrm{~N}_{25}=0.00000\) & \multirow[t]{2}{*}{\(\xrightarrow{\text { Eink to } 18}\)} \\
\hline & \multicolumn{5}{|l|}{} & & \[
\frac{\mathrm{N}_{2}{ }^{4}}{\mathrm{~N}_{1}}-\mathrm{N}_{26}=\mathbf{0 . 0 0 0 0 0}
\] & \multicolumn{2}{|l|}{\[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{27}=0.00000
\]} & \multicolumn{2}{|l|}{\[
\frac{\mathrm{N}_{2}{ }^{7}}{\mathrm{~N}_{1}}-\mathrm{N}_{8}=0.00000
\]} & \\
\hline
\end{tabular}


\(\frac{\mathrm{U}_{\text {nit }}}{0 \mathrm{~N}_{4}}=2.50000\)
\(\frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1}}=2.50000\)
\(\frac{\mathrm{U}_{\text {nit }}}{\mathbf{U n i t}^{N_{4}}}=1.66667\)
\(\frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathbf{N}_{2}}=1.66667\)

Divide
N1 by N2
\begin{tabular}{|c|c|c|c|}
\hline N1 & & \multicolumn{2}{|l|}{N2} \\
\hline 1 & 16 & 1 & 16 \\
\hline 2 & 17 & 2 & 17 \\
\hline 3 & 18 & 3 & 18 \\
\hline 4 & 19 & 4 & 19 \\
\hline 5 & 20 & 5 & 20 \\
\hline 6 & 21 & 6 & 21 \\
\hline 7 & 22 & 7 & 22 \\
\hline 8 & 23 & 8 & 23 \\
\hline 9 & 24 & 9 & 24 \\
\hline 10 & 25 & 10 & 25 \\
\hline 11 & 26 & 11 & 26 \\
\hline 12 & 27 & 12 & 27 \\
\hline 13 & 28 & 13 & 28 \\
\hline 14 & 29 & 14 & 29 \\
\hline 15 & 30 & 15 & 30 \\
\hline & 31 & & 31 \\
\hline
\end{tabular}

\(\mathrm{N}_{1}=3.00000\)
\(\mathrm{~N}_{2}=2.00000\)
\(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=1.50000\)
\(\mathrm{~N}_{3}=1.50000\)
\(\mathrm{~N}_{4}=0.75000 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{4}=0.00000\)
\(\mathrm{~N}_{5}=0.37500 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}{ }^{3}}-\mathrm{N}_{5}=\mathbf{0 . 0 0 0 0 0}\)
etc.


\[
\begin{gathered}
\mathrm{N}_{1}=2.00000 \\
\mathrm{~N}_{2}=2.00000 \\
\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}=4.00000 \\
\mathrm{~N}_{3}=4.00000 \\
\mathrm{~N}_{4}=6.00000 \\
2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}-\mathrm{N}_{4}=0.00000
\end{gathered}
\]


N2

- 3




I tossed this together, so it is not perfect-it just looks good
\begin{tabular}{|c|c|c|c|}
\hline N & & \multicolumn{2}{|c|}{N2} \\
\hline 1 & [16 & 1 & 116 \\
\hline 2 & [17 & \(\underline{1}\) & 17 \\
\hline 3 & [18) & 3 & 18 \\
\hline 4 & [19 & 4 & 10 \\
\hline 5 & 120 & 5 & 20 \\
\hline 6 & \({ }^{21}\) & 6 & [2] \\
\hline 0 & \({ }^{2}\) & 0 & [2] \\
\hline 8 & \({ }^{23}\) & 8 & \({ }^{23}\) \\
\hline \(\underline{0}\) & \({ }^{[24}\) & 0 & \({ }^{24}\) \\
\hline 10 & \(\underline{5}\) & 10 & \(\underline{ }\) \\
\hline 回 & \(\underline{26}\) & [1] & [26 \\
\hline 12 & [27] & [12] & [27 \\
\hline 13 & [20 & 13 & \({ }^{28}\) \\
\hline 11 & [20 & [14] & 29 \\
\hline 15 & 30 & 15 & \(1{ }^{30}\) \\
\hline & [3] & & [1] \\
\hline
\end{tabular}


\begin{tabular}{rl} 
Unit \(=1.00000\) & \(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{3}=0.00000\) \\
\(\mathrm{~N}_{1}=2.00000\) & \(\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000\) \\
\(\mathrm{~N}_{2}=2.30952\) & \\
\(\mathrm{~N}_{3}=0.86598\) & \\
\(\mathrm{~N}_{4}=4.61905\) & \\
& \\
\(\mathrm{~N}_{5}=0.74992\) & \(\frac{\mathrm{~N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{N}_{5}=\mathbf{0 . 0 0 0 0 0}\) \\
\(\mathrm{N}_{6}=5.33390\) & \(\mathrm{~N}_{2}{ }^{2}-\mathrm{N}_{6}=\mathbf{0 . 0 0 0 0 0}\)
\end{tabular}



\begin{tabular}{|c|c|}
\hline Unit \(=1.00000\) & \\
\hline \(\mathrm{N}_{1}=2.00000\) & \\
\hline \(\mathrm{N}_{2}=1.41421\) & \(\mathrm{N}_{1}{ }^{\mathbf{0} .5}-\mathrm{N}_{2}=0.00000\) \\
\hline \(\mathrm{N}_{3}=1.18921\) & \(\mathrm{N}_{1}{ }^{0.25}-\mathrm{N}_{3}=0.00000\) \\
\hline \(\mathrm{N}_{4}=1.09051\) & \(\mathrm{N}_{1}{ }^{\mathbf{0 . 1 2 5}}\) - \(\mathrm{N}_{4}=0.00000\) \\
\hline
\end{tabular}

Unit \(=1.00000\)
\(\mathrm{~N}_{1}=1.77542\)
\(\mathrm{~N}_{2}=1.51695\)

\(\mathrm{~N}_{3}=1.08185 \quad \frac{\mathrm{~N}_{1}{ }^{0.5}}{\mathrm{~N}_{2}{ }^{0.5}}-\mathrm{N}_{3}=0.00000\)
\(\mathrm{~N}_{4}=0.84450 \quad \frac{\mathrm{~N}_{1}{ }^{0.25}}{\mathrm{~N}_{2} .{ }^{0.75}}-\mathrm{N}_{4}=0.00000\)
\(\mathrm{~N}_{5}=2.48947\)


Unit \(=1.00000\)
\(\mathrm{N}_{1}=1.00000\)
\(N_{2}=2.00000 \quad \frac{N_{1}}{N_{2}}-N_{3}=0.00000\)
\(\mathrm{N}_{\mathbf{3}}=\mathbf{0 . 5 0 0 0 0}\)
\(\mathrm{N}_{4}=\mathbf{2 . 0 0 0 0 0} \quad \mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=\mathbf{0 . 0 0 0 0 0}\)
\(L_{1}=0.16667 \quad \frac{N_{1}{ }^{2}}{\left(N_{1}+N_{2}\right) \cdot N_{2}}-L_{1}=0.00000\)
\(M_{1}=0.66667 \quad \frac{N_{1}{ }^{2} \cdot N_{2}}{N_{1}+N_{2}}-M_{1}=0.00000\)

\[
\begin{array}{ll}
\mathrm{U}_{1}=1.00000 \\
\mathrm{~N}_{1}=2.00000 \\
\mathrm{~N}_{2}=2.00000 & \\
\mathrm{~N}_{3}=1.00000 & \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=1.00000 \\
\mathrm{~N}_{4}=4.00000 & \mathrm{~N}_{1} \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000 \\
\mathrm{U}[1] / \mathrm{U}_{2}=0.25000 \\
\mathrm{~N}_{5}=2.00000 & \\
\mathrm{~N}_{6}=2.00000 & \\
\mathrm{~N}_{7}=0.25000 & \frac{\mathrm{~N}_{1}{ }^{2}}{\mathrm{~N}_{2}{ }^{4}}-\mathrm{N}_{7}=\mathbf{0 . 0 0 0 0 0} \\
\mathrm{N}_{8}=16.00000 & \mathrm{~N}_{2}{ }^{4}-\mathrm{N}_{8}=0.00000 \\
\mathrm{U}_{2}=1.00000 & \\
\mathrm{~N}_{25}=8.00000 & \mathrm{~N}_{2}{ }^{3}-\mathrm{N}_{25}=0.00000 \\
\mathrm{~N}_{26}=8.00000 & \frac{\mathrm{~N}_{2}{ }^{4}}{\mathrm{~N}_{1}}-\mathrm{N}_{26}=0.00000 \\
\mathrm{~N}_{27}=1.00000 & \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}-\mathrm{N}_{27}=0.00000 \\
\mathrm{~N}_{8}=64.00000 & \frac{\mathrm{~N}_{2}{ }^{7}}{\mathrm{~N}_{1}}-\mathrm{N}_{8}=0.00000
\end{array}
\]

\begin{tabular}{|c|c|}
\hline Unit \(=1.00000\) & \\
\hline \(\mathrm{N}_{1}=1.72159\) & \[
\frac{N_{1}}{N_{2}}-N_{3}=0.00000
\] \\
\hline \(\mathrm{N}_{2}=2.12500\) & \(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{N}_{4}=0.00000\) \\
\hline \(\mathrm{N}_{3}=0.81016\) & \[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=0.81016
\] \\
\hline \(\mathrm{N}_{4}=3.65838\) & \\
\hline \(\mathrm{N}_{5}=0.57386\) & \\
\hline \(\mathrm{N}_{6}=1.14773\) & \\
\hline \(\mathrm{N}_{7}=0.70833\) & \\
\hline \(\mathrm{N}_{8}=1.41667\) & \\
\hline \(\mathrm{N}_{9}=1.21946\) & \[
\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\frac{1}{3}\right)-\mathrm{N}_{9}=0.00000
\] \\
\hline \(\mathrm{N}_{10}=2.43892\) & \[
\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\frac{2}{3}\right)-\mathrm{N}_{10}=0.00000
\] \\
\hline
\end{tabular}


Unit \(=\mathbf{1 . 0 0 0 0 0}\)
\(\mathrm{N}_{1}=1.37056\)
\(\mathrm{N}_{2}=1.73096\)
\(\mathrm{N}_{3}=0.79179 \quad \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=0.79179\)
\(\mathrm{N}_{4}=2.37239 \quad \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}=2.37239\)
\[
\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=0.79179
\]
\(N_{5}=0.60565 \quad N_{1} \cdot\left(\frac{N_{1}}{N_{1}+N_{2}}\right)-N_{5}=0.00000\)
\(N_{6}=0.76491 \quad N_{1} \cdot\left(\frac{N_{2}}{N_{1}+N_{2}}\right)-N_{6}=0.00000\)
\(N_{7}=1.04835 \quad N_{1} \cdot N_{2} \cdot\left(\frac{N_{1}}{N_{1}+N_{2}}\right)-N_{7}=0.00000\)


\begin{tabular}{|c|c|}
\hline Unit \(=1.00000\) & \\
\hline \(\mathrm{N}_{1}=2.00000\) & 1 \\
\hline \(\mathrm{N}_{2}=1.41421\) & \(\mathrm{N}_{1}{ }^{2}-\mathrm{N}_{2}=0.00000\) \\
\hline & 1 \\
\hline \(\mathrm{N}_{3}=1.18921\) & \(\mathrm{N}_{1}{ }^{\mathbf{4}}-\mathrm{N}_{3}=0.00000\) \\
\hline \(\mathrm{N}_{4}=1.09051\) & \[
\mathrm{N}_{1}{ }^{\frac{1}{8}}-\mathrm{N}_{4}=0.00000
\] \\
\hline
\end{tabular}




The computational speed by straight edge and compass outdoes long hand by factors. The computational accuracy exceeds that of any binary computer. The understanding as to what numbers mean cannot be outdone. Yet, instead of improving Euclid, they made a mess of it.

What led me to this solution was not Euclid, it was my own geometry play-especially doing the formula's and solution to a power line In order to solve for the power line, I actually had to know how to divide a square by a line. That coupled with the feeling that one should know the basic mathematical operations in geometry, as a starter made me break down and simply do it.

Geometry is still undefined. It is undefined because, as we know, a set can be constructed in only two ways, by enumeration and by definition. By saying that Euclidean Geometry only uses two tools, the straight edge and compass, we have enumerated its set. To define it, one would have to say, Geometry is that language by which we speak where there is one, and only one difference between two points.

This change not only defines Euclidean Geometry, but we find that it has been short changed for a long time. A straight edge does indeed give us one and only one difference between two points, and so does a compass, these are the unit and universe of discourse in the subject. However, there is yet one more tool, that tool that gives us every ratio inbetween the unit and the universe, the ellipes. There is indeed one and only one difference between the two points called the foci of an ellipse.

If one can accept that, one can then understand my solution to the Delian Problem. A figure that gives one every aspect of an ellipse and one simply has to lay it down. Accepting that definition also takes something that is implied in Euclidean Geometry and makes it explicit, the ability to add, to do the math.

I hope you have fun.


080521

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=3.86292 \quad \mathbf{N}_{\mathbf{2}}:=1.905 \quad \mathbf{N}_{\mathbf{3}}:=.74482 \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{B E}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{B D}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{A D}:=\sqrt{\mathbf{A B}^{2}+\mathbf{B D}^{2}} \quad \mathbf{D G}:=\frac{\mathbf{B D}^{2}}{\mathbf{A D}} \quad \mathbf{B H}:=\mathbf{B E} \\
& \mathbf{B G}:=\frac{\mathbf{A B} \cdot \mathbf{B D}}{\mathbf{A D}} \quad \mathbf{G H}:=\sqrt{\mathbf{B H}^{2}-\mathbf{B G}^{2}} \\
& \mathbf{A C}:=\mathbf{A D}+\mathbf{G H}-\mathbf{D G}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\sqrt{\mathrm{AB}^{2} \cdot \mathrm{BE}^{2}+\mathrm{BD}^{2} \cdot \mathrm{BE}^{2}-\mathrm{AB}^{2} \cdot \mathrm{BD}^{2}}+\mathrm{AB}^{2}}{\sqrt{\mathrm{AB}^{2}+\mathrm{BD}^{2}}}-\mathrm{AC}=\mathbf{0} \\
& A C-\frac{N_{1}{ }^{2}+\sqrt{N_{1}{ }^{2} \cdot N_{2}{ }^{2}-N_{1}{ }^{2} \cdot N_{3}{ }^{2}+N_{2}{ }^{2} \cdot N_{3}{ }^{2}}}{\sqrt{{N_{1}}^{2}+N_{3}{ }^{2}}}=0
\end{aligned}
\]

For a straight line ellipse and three givens.

\[
\begin{aligned}
& \mathbf{N}_{1}:=1.40187 \quad \mathbf{N}_{2}:=2.31398 \quad \mathbf{N}_{\mathbf{3}}:=1.13348 \\
& \mathbf{A B}:=\mathbf{N}_{1} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{C D}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{D E}:=\mathbf{A B} \quad \mathbf{C E}:=\sqrt{\mathbf{D E}^{2}-\mathbf{C D}^{2}} \quad \mathbf{D F}:=\frac{\mathbf{D E} \cdot \mathbf{A C}}{\mathbf{C E}} \quad \mathbf{B G}:=\mathrm{DF}-\mathbf{A B} \\
& \mathbf{B G}-\mathbf{N}_{1} \cdot\left(\frac{\mathbf{N}_{\mathbf{2}}}{\sqrt{\mathbf{N}_{1}^{2}-\mathbf{N}_{\mathbf{3}}^{2}}}-\mathbf{1}\right)=\mathbf{0}
\end{aligned}
\]

For a straight line ellipse and three givens.
b: CE, AC, CD.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=.8249 \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2 . 3 1 3 9 8} \quad \mathbf{N}_{\mathbf{3}}:=1.13348 \\
& \mathbf{C E}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{C D}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{A B}:=\sqrt{\mathbf{C D}^{2}+\mathbf{C E}^{2}} \\
& \mathbf{D E}:=\mathbf{A B} \quad \mathbf{D F}:=\frac{\mathbf{D E} \cdot \mathbf{A C}}{\mathbf{C E}} \quad \mathbf{B G}:=\mathbf{D F}-\mathbf{A B} \\
& \mathbf{B G}-\frac{\sqrt{\mathbf{N}_{\mathbf{1}}{ }^{2}+\mathbf{N}_{\mathbf{3}}{ }^{2}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{1}}\right)}{\mathbf{N}_{\mathbf{1}}}=\mathbf{0}
\end{aligned}
\]

060208 c.mcd

For a straight line ellipse and three givens.

\[
\begin{aligned}
& \mathbf{N}_{\mathbf{1}}:=\mathbf{1 . 4 0 1 8 7} \quad \mathbf{N}_{\mathbf{2}}:=\mathbf{2 . 3 1 3 9 8} \quad \mathbf{N}_{\mathbf{3}}:=.8249 \\
& \mathbf{A B}:=\mathbf{N}_{\mathbf{1}} \quad \mathbf{A C}:=\mathbf{N}_{\mathbf{2}} \quad \mathbf{C E}:=\mathbf{N}_{\mathbf{3}} \\
& \mathbf{D E}:=\mathbf{A B} \quad \mathbf{D F}:=\frac{\mathbf{D E} \cdot \mathbf{A C}}{\mathbf{C E}} \quad \mathbf{B G}:=\mathbf{D F}-\mathbf{A B} \\
& \mathbf{B G}-\frac{\mathbf{N}_{\mathbf{1}} \cdot\left(\mathbf{N}_{\mathbf{2}}-\mathbf{N}_{\mathbf{3}}\right)}{\mathbf{N}_{\mathbf{3}}}=\mathbf{0}
\end{aligned}
\]


\section*{08092015 Pythagoras Revisited Again!}

One of the items often missed, as I aptly demonstrated, is thinking a process through. In order to insure the process is complete, use a Law as a standard to complete the equation. In this case, the Pythagorean Theorem.

\(\mathrm{AB}:=6.20183 \quad \mathrm{AC}:=4.89358 \quad \mathrm{BC}:=9.20468\)
\(\mathbf{G A}:=\frac{\mathbf{A C}^{2}}{\mathbf{A B}} \quad \mathbf{H B}:=\frac{\mathbf{B C}^{2}}{\mathbf{A B}} \quad \mathbf{G H}:=\mathbf{A B}-(\mathbf{G A}+\mathbf{H B}) \quad \mathbf{J A}:=\mathbf{G A}+\frac{\mathbf{G H}}{2}\) \(J B:=H B+\frac{G H}{2} \quad C J:=\sqrt{A C^{2}-J A^{2}} \quad C D:=\sqrt{\left(\frac{A B}{2}-J A\right)^{2}+C J^{2}}\)
\(C D-\frac{\sqrt{2 \cdot A C^{2}-A B^{2}+2 \cdot B C^{2}}}{2}=0\)
\(J A-\frac{A B^{2}+A C^{2}-B C^{2}}{2 \cdot A B}=0 \quad J B-\frac{A B^{2}-A C^{2}+B C^{2}}{2 \cdot A B}=0\)
\(\mathbf{C J}-\frac{\sqrt{(\mathbf{A B}+\mathbf{A C}-\mathbf{B C}) \cdot(\mathbf{A B}-\mathbf{A C}+\mathbf{B C}) \cdot(\mathbf{A C}-\mathbf{A B}+\mathbf{B C}) \cdot(\mathbf{A B}+\mathbf{A C}+\mathbf{B C})}}{2 \cdot \mathbf{A B}}=\mathbf{0}\)
Now the above is just what I got with Pythagoras revisited, however, it does not yet comply with the naming convention. There is no such thing as a negative name.

\[
\begin{array}{ll}
\mathbf{A B}:=2.38542 & \frac{\mathbf{N}_{\mathbf{3}}{ }^{2}+\mathbf{R}_{\mathbf{1}}{ }^{2}-\mathbf{R}_{\mathbf{2}}{ }^{2}}{\mathbf{2} \cdot \mathbf{N}_{\mathbf{3}}} \\
\mathbf{C D}:=1.72917 & \text { From } 042794 \text { power line. } \\
\text { BD }:=3.17708 & \text { F }
\end{array}
\]

\[
\begin{aligned}
& \mathbf{E F}:=\mathbf{B D} \quad \mathbf{E G}:=\mathbf{A B}-\mathbf{C D} \quad \mathbf{B H}:=\frac{\mathbf{E F} \cdot \mathbf{A B}}{\mathbf{E G}} \quad \mathbf{B J}:=\frac{\mathbf{A B}^{\mathbf{2}}}{\mathbf{B H}} \quad \mathbf{K L}:=\frac{\mathbf{2} \cdot \mathbf{A B}}{\mathbf{d x}} \\
& \mathbf{J L}:=\mathbf{A B}-\mathbf{B J} \quad \mathbf{J K}:=\mathbf{J L}-\mathbf{K L} \quad \text { GJ }:=\sqrt{(\mathbf{2} \cdot \mathbf{A B}-\mathbf{J L}) \cdot \mathbf{J L}} \\
& \mathbf{K O}:=\sqrt{(2 \cdot \mathbf{A B}-\mathbf{K L}) \cdot \mathbf{K L}} \quad \mathrm{KN}:=\frac{\mathrm{JK} \cdot \mathbf{K O}}{\mathbf{G J}+\mathbf{K O}} \quad \mathrm{BP}:=\frac{\mathrm{BD}^{2}+\mathrm{AB}^{2}-\mathrm{CD}^{2}}{2 \cdot \mathbf{B D}} \\
& \mathbf{J N}:=\frac{\mathbf{J K} \cdot \mathbf{G J}}{\mathbf{G J}+\mathbf{K O}} \quad \mathbf{N P}:=\mathbf{B P}-(\mathbf{B J}+\mathbf{J N}) \quad \text { NO }:=\sqrt{\mathbf{K O}^{2}+\mathbf{K N}^{2}} \\
& \mathbf{Q N}:=\frac{\mathbf{N O} \cdot \mathbf{N P}}{\mathbf{K N}} \quad \mathbf{O Q}:=\mathbf{Q N}-\mathbf{N O} \quad \mathbf{O R}:=\frac{\mathbf{O Q}}{\mathbf{2}} \quad \mathbf{G O}:=\sqrt{(\mathbf{G J}+\mathbf{K O})^{\mathbf{2}}+\mathbf{J K}^{\mathbf{2}}} \\
& \text { SO := } \frac{\text { AB } \cdot \text { OR } \cdot 2}{\text { GO }} \quad \text { SO }=-4.204157 \\
& \mathbf{R}_{\mathbf{1}}:=\mathbf{A B} \quad \mathbf{R}_{\mathbf{2}}:=\mathbf{C D} \quad \mathbf{D}:=\mathbf{B D} \\
& \mathbf{S O}-\frac{\left(\mathbf{4} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{D}\right)-\mathbf{d x} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right) \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}-\mathbf{D}\right)}{\mathbf{2 \cdot d x} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right)-\mathbf{4} \cdot \mathbf{D}}=\mathbf{0} \\
& \sqrt{\left[\frac{\left(\mathbf{4} \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{D}\right)-\mathbf{d x} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right) \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}-\mathbf{D}\right)}{\mathbf{2} \cdot \mathbf{d x} \cdot\left(\mathbf{R}_{\mathbf{2}}+\mathbf{D}-\mathbf{R}_{\mathbf{1}}\right)-\mathbf{4} \cdot \mathbf{D}}\right]^{2}}=\mathbf{4 . 2 0 4 1 5 7}
\end{aligned}
\]

\section*{\(\sim_{n=0}^{0}\)}


\section*{Basic Analog Mathematics.}

Let 0 to 1 be the given Unit and \(N 1\) and \(N 2\) be any two given differences:


With the given analog (figure), it is required to render the products of these two differences using the paradigms sum, differences, and ratio:--



\section*{Complete Induction.}

Complete induction, if the term is to make any sense at all, simply means recursion. These display just two methods of costructing an arithmetic ratio and series in analogically.


Addition and Subtraction.


Multiplication and Division


Square, Root and Reciprocal.


30BT10AR0
30BT10AR3
\[
\frac{N_{1}^{2}+1-\sqrt{2 \cdot N_{1}^{2}+1-3 \cdot N_{1}^{4}}}{2 \cdot N_{1}^{2}+2}=0.16123
\]
\[
\frac{N_{1}^{2}+1+\sqrt{2 \cdot N_{1}^{2}-3 \cdot N_{1}^{4}+1}}{2 \cdot N_{1}^{2}+2}=0.83877
\]
\[
\begin{aligned}
& \frac{\mathrm{N}_{1}^{2}+1+\sqrt{2 \cdot \mathrm{~N}_{1}^{2}-3 \cdot N_{1}^{4}+1}}{2 \cdot \mathrm{~N}_{1}^{2}+2}-\frac{\mathrm{N}_{1}^{2}+1-\sqrt{2 \cdot \mathrm{~N}_{1}^{2}+1-3 \cdot \mathrm{~N}_{1}^{4}}}{2 \cdot \mathrm{~N}_{1}^{2}+2}=0.67755 \\
& \frac{\sqrt{2 \cdot N_{1}^{2}-3 \cdot N_{1}^{4}+1}}{\mathrm{~N}_{1}^{2}+1}=0.67755
\end{aligned}
\]

This figure is one of the hundreds, or thousands of glyphs I demonstrate in BAM. Many glyphs even function by moving parts relative to other values. A single glyph can be a complex equation in of itself.

Curves of equations can be projected directly from any glyph. And, as one can see, these curves can be added together.
\(\mathrm{N}=0.66074\)
\(\mathrm{A}=0.43658\)
\(B=1.43658\)
C \(=0.87315\)
D \(=0.19060\)
\(\mathrm{F}=0.57180\)
\(G=1.30136\)
\(\mathrm{H}=1.14077\)
\(\mathrm{J}=\mathbf{0 . 7 9 4 0 9}\)


\(\mathrm{N}_{\mathbf{1}}=2.16287\)
\(\mathrm{N}_{2}=3.00688\)
\(\mathrm{A}=\mathbf{6 . 5 0 3 5 1}\)
\(\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}-\mathbf{A}=\mathbf{0 . 0 0 0 0 0}\)
\(\frac{\text { Area } \triangle \mathrm{FN}_{1} \mathrm{E}}{\text { Area } \operatorname{BCDE}}-\frac{\text { Area } \triangle \mathrm{EIF}}{\text { Area BFGH }}=\mathbf{0 . 0 0 0 0 0}\)
\(\frac{\text { Area } \triangle E I F}{\text { Area } \triangle \text { FN }_{1} \mathrm{E}}-\frac{\text { Area BFGH }}{\text { Area BCDE }}=\mathbf{0 . 0 0 0 0 0}\)
\(\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}}-\frac{\text { Area BFGH }}{\text { Area BCDE }}=\mathbf{0 . 0 0 0 0 0}\)
\(\frac{\mathbf{N}_{2}}{\mathbf{N}_{1}}-\frac{\text { Area } \triangle E I F}{\text { Area } \triangle \mathrm{FN}_{1} \mathrm{E}}=0.00000\)

Area \(\triangle \mathrm{FN}_{1} \mathrm{E}=14.89003 \mathrm{~cm}^{2}\)
Area BCDE \(=6.43862 \mathrm{~cm}^{2}\)
Area BFGH \(=8.95113\) cm\(^{2}\)
Area \(\triangle E I F=20.70049\) cm\(^{2}\)

\(\mathrm{N}_{1}=2.31671\)
\(\mathrm{N}_{2}=3.23544\)
\(\mathrm{A}=\mathbf{0 . 7 1 6 0 4}\)
\(\frac{N_{1}}{N_{2}}-A=0.00000\)
Area \(\operatorname{BCDE}=2.36319 \mathrm{~cm}^{2}\) Area DCFG \(=3.30036 \mathbf{~ c m}^{2}\)




\[
\begin{aligned}
& \mathbf{N}_{1}=2.39690 \\
& \mathbf{N}_{2}=1.48490 \\
& A=4.72142 \\
& 2 \cdot\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}\right)-\mathbf{N}_{1}-\mathbf{A}=\mathbf{0 . 0 0 0 0 0}
\end{aligned}
\]

\[
\begin{aligned}
& \mathbf{N}_{1}=2.57987 \\
& \mathbf{N}_{2}=3.42162 \\
& \mathbf{A}=0.32412 \\
& \frac{\mathbf{N}_{1}^{2}}{\left(\mathbf{N}_{2}+\mathbf{N}_{1}\right) \cdot \mathbf{N}_{2}}-\mathbf{A}=0.00000
\end{aligned}
\]

\[
\mathbf{N}_{1}=0.77392
\]
\(\mathrm{N}_{2}=1.95611\)
A \(=4.19932\)
\(2 \cdot N_{1} \cdot N_{2}+N_{1}{ }^{2} \cdot N_{2}-A=0.00000\)


Free Proportional Units through piping.

\(A=1.71133\)
\(B=0.40667\)
\[
\begin{aligned}
& \mathbf{N}_{1}=2.11188 \\
& \mathbf{N}_{2}=3.61413
\end{aligned}
\]
\(\frac{\mathrm{D}}{\mathrm{B}}=2.11188\)
\(\frac{\mathrm{D}}{\mathrm{B}}-\mathrm{N}_{1}=0.00000\)

C = 1.46977
D \(=0.85884\)
\(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=1.71133\)
\(\mathrm{E}=0.69595\)
\(\frac{N_{2}}{N_{1}}-A=0.00000\)
\(\frac{C}{B}=3.61413\)
\(\frac{E}{B}=1.71133\)
\(\frac{C}{B}-N_{2}=0.00000\)
\(\frac{E}{B}-\frac{N_{2}}{N_{1}}=0.00000\)

\(N_{1}=1.35967\)
\(N_{2}=2.40682\)
\(\frac{N_{1}}{\mathrm{~N}_{2}}-\mathrm{A}=0.00000\)
\(\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-\mathrm{B}=0.00000\)
\(\frac{\mathrm{~N}_{1}{ }^{2}}{\mathrm{~N}_{2}}-\mathrm{C}=0.00000\)
\(\frac{\mathrm{~N}_{1}{ }^{3}}{\mathrm{~N}_{2}{ }^{2}}-\mathrm{D}=0.00000\)
\(\frac{\mathbf{N}_{2}{ }^{2}}{\mathrm{~N}_{1}}-\mathrm{E}=0.00000\)
\(\mathrm{A}=0.56492\)
\(B=3.27248\)
\(C=0.76811\)
\(\mathrm{D}=0.43392\)
\(\mathrm{E}=4.26045\)

\[
\begin{array}{lll}
\mathbf{N}_{1}=3.17699 & \frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}-\mathbf{A}=0.00000 & \mathbf{A}=1.39741 \\
\mathbf{N}_{2}=2.27348 & \mathbf{N}_{1} \cdot \mathbf{N}_{2}-\mathbf{B}=\mathbf{0 . 0 0 0 0 0} & \mathbf{C}=1.95276 \\
& \left(\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}\right)^{2}-\mathbf{C}=0.00000 & \mathbf{D}=5.16869 \\
& \mathbf{N}_{2}{ }^{2}-\mathbf{D}=0.00000 &
\end{array}
\]



\[
\begin{array}{lll}
N_{1}=2.67783 & N_{1}=2.67783 & A=1.63641 \\
& \mathbf{N}_{1} 0.5-A=0.00000 & B=1.27922 \\
& \mathbf{N}_{1} 0.25-B=0.00000 & C=1.13103 \\
& \mathbf{N}_{1} 0.125-C=0.00000 &
\end{array}
\]


\(\begin{array}{lll}\mathbf{N}_{1}=2.80709 & \frac{N_{1}}{\mathbf{N}_{2}}-A=0.00000 & A=1.41619 \\ \mathbf{N}_{2}=1.98213 & \mathbf{N}_{1} \cdot \mathbf{N}_{2}-B=0.00000 & B=5.56402 \\ & \frac{N_{1}{ }^{2}}{\left(N_{1}+N_{2}\right) \cdot N_{2}}-C=0.00000 & D=3.26121 \\ & \frac{\mathbf{N}_{1}{ }^{2} \cdot N_{2}}{N_{1}+N_{2}}-D=0.00000 & \end{array}\)


~~~~~~~~


[^0]: $\frac{\mathbf{N}_{1} \cdot \mathbf{N}_{2} \cdot \mathbf{N}_{3}}{\sqrt{\left.\left(\mathbf{N}_{1}+\mathbf{N}_{2}+\mathbf{N}_{3}\right) \cdot\left(\left(\mathbf{N}_{1}-\mathbf{N}_{2}\right)+\mathbf{N}_{3}\right) \cdot\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)+\mathbf{N}_{3}\right) \cdot\left(\left(\mathbf{N}_{1}+\mathbf{N}_{2}\right)-\mathbf{N}_{3}\right)}}-\mathbf{B D}=\mathbf{0 . 0 0 0 0 0} \mathbf{i n}$.

[^1]: EH = 3.95105
 GH $=1.38633$
 $\frac{\mathrm{EH}}{\mathrm{GH}}=\mathbf{2 . 8 5 0 0 0}$
 $\frac{\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}\right)+2\right)}{\left.\left(\mathrm{N}_{2}-1\right) \cdot\left(\left(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}\right)+\mathrm{N}_{1}{ }^{2}\right)-2 \cdot \mathrm{~N}_{1}\right)+2\right)}=\mathbf{2 . 8 5 0 0 0}$
 $\mathrm{N}_{1} \cdot \mathrm{~N}_{2} \cdot\left(\left(2 \cdot \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}-2 \cdot \mathrm{~N}_{2}-\mathrm{N}_{1}\right)+2\right) \quad \mathrm{EH}$ $\frac{N_{1} \cdot N_{2} \cdot\left(\left(2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{2}-N_{1}\right)+2\right)}{\left(N_{2}-1\right) \cdot\left(\left(\left(\left(2 \cdot N_{1} \cdot N_{2}-2 \cdot N_{2}\right)+N_{1}{ }^{2}\right)-2 \cdot N_{1}\right)+2\right)}-\frac{E H}{G H}=0.00000$

